
The passion for science and the passion for music are driven by the same

desire: to realize beauty in one’s vision of the world.

Heinz Pagels





Acknowledgements

This study was carried out at Hasselt University and has been supported by grant

given by the Flemish Government to the Flemish Policy Research Center for Traffic

Safety. However, many others have also contributed, all in various ways, to the

realization of this thesis.

First of all, I wish to express my sincere gratitude and appreciation to Prof. dr.

Geert Wets and Prof. dr. Koen Vanhoof, my promotor and copromotor, for intro-

ducing me in the world of data mining and giving me the opportunity to broaden

my knowledge on the field of traffic safety. I am also grateful to dr. Tom Brijs, for

the time, effort and interest he put in the development of my work. Furthermore, I

would like to thank Prof. dr. Lode Vereeck for his experience, encouragement and

invaluable support in finalizing this thesis and Prof. dr. Simon Washington and dr.

Rune Elvik for their valuable remarks and critical evaluation of my work. Finally, I

am also truly grateful to Prof. dr. Dimitris Karlis. His help and inspiring views on

statistics have significantly contributed to the results in this thesis.

I would also like to thank all my colleagues at Hasselt University for creating

a pleasant and stimulating work environment over the past years. Especially, I am

much in debt to my office-mate and true friend Benôıt, for his loyal companionship,
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Chapter 1

General Introduction

This first chapter provides an introduction to the topics covered in this dissertation.

More specifically, the issue of traffic safety and road safety engineering as a strategy to

address road safety problems is explained. In this context, we introduce the concept

of hazardous accident locations and hazardous road location programs. Furthermore,

we will present the objectives of this dissertation and provide an overview of the

chapters to follow.

1.1 Traffic Safety

In 2002, 47,619 traffic accidents with casualties occurred on the Belgian public roads.

In these accidents 1,353 persons were killed, while 8,230 persons were seriously injured

and 56,759 persons were lightly injured (National Institute for Statistics, 2002).

Figure 1.1 compares the level of traffic safety in the 25 European member countries

for 2002 (Daniëls S., 2005) more specifically, these figures represent the number of

road fatalities per million inhabitants. In this list, Belgium is ranked on the 12th

position with 128 road fatalities per million inhabitants, which is higher than the

European average. Consequently, based on these figures, Belgium has a bad record

towards traffic safety in comparison with many other European countries.

Additionally, the steady increase in traffic intensity does not only pose a heavy

burden on society in terms of the number of casualties, the insecurity on the roads also

has an important effect on the economic costs associated with traffic accidents (Elvik

and Vaa, 2004). First of all, there are the non-material costs associated with traffic

1
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Figure 1.1: Road fatalities per million inhabitants (Source: EU-CARE, NIS)

accidents. These costs concern the pain, grief, reduced joy of life and personal damage

influencing the welfare of the victims1. Secondly, traffic accidents cause material costs,

which can be classified into direct and indirect costs. More specifically, direct costs are

related to the accident itself, such as administrative costs, costs of material damage,

medical costs and costs as a result of reduced traffic flow. Indirect costs are related

to the victims of traffic accidents that are, either temporarily (during recovery) or

permanently (in case of death or disability), unable to participate in the production

process. Finally, traffic accidents result in costs related to the increased feeling of

insecurity on the roads. For Belgium, these total costs that are associated with the

insecurity on the roads result in a total macro-economic loss that is estimated for

the year 2002, at 12.5 billion Euros (De Brabander and Vereeck, 2005). Accordingly,

traffic safety is currently one of the highest priorities of the Belgian and Flemish

1The Ministry of the Flemish Community refers to Lindenbergh, Smartengeld, Leiden (1998),
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1.2. Road Safety Engineering 3

government. More specifically, in the long term the Flemish government has set

its goals corresponding to the ‘Zero Vision’, implicating zero deadly or injured road

victims on the Flemish territory. However, in the short term, by 2010, the Flemish

government aims to have improved its level of traffic safety to such an extent that

its arrears compared with the European leaders are cut down to half, taking into

account the number of road fatalities per 100,000 inhabitants (Pact of Vilvoorde,

2001). Correspondingly, the Belgian government has set the objective of reducing the

number of road fatalities by the year 2010 to 50 percent of the average number of

fatalities in 1998, 1999 and 2000. This corresponds with an objective of counting a

maximum of 750 road fatalities on the Belgian roads in 2010. When setting this goal,

the government has taken into account the increase in flow of traffic that should be

expected by this date. In particular, in the period of 1980-1995, the flow of traffic in

the European Union increased with 50%. When no measures are taken concerning

the means of transport, expectations are that by 2010 traffic will have increased with

33% compared to the traffic level in 1998 (Staten-Generaal van de Verkeersveiligheid,

2001).

1.2 Road Safety Engineering

In order to address the road safety problems, a wide range of possible road safety

strategies can be devised. These strategies can be aimed at exposure control, accident

prevention, behavior modification, injury control or post-injury management. Road

safety engineering falls mainly within the second of these categories, and partly within

the third. More specifically, road safety engineering may be defined as a process, based

on analysis of road and traffic related accident information, which applies engineering

principles in order to identify road design or traffic management improvements that

will cost-effectively reduce the cost of road accidents (Ogden, 1996).

The opportunities for road safety engineering in general apply at four levels2:

• safety conscious planning of new road networks,

• incorporation of safety features in the design of new roads,

• improvement of safety aspects of existing roads to avoid future problems, and

2Ogden refers to Ross Silcock Partnership, (1991), Towards safer roads in developing countries.

220 pp. (Transport and Road Research Laboratory, Crowthorne, UK).
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• improvement of known hazardous locations on the road network.

The third and fourth of these applications are closely related but differ in one im-

portant respect, namely that one is pro-active, aimed at accident prevention, while

the other is reactive, focussing upon remedial treatments at sites which are known

hazards, based upon their accident history.

Accordingly, we can state that in general the road safety engineering approach is

based on the following elements (European Union Road Federation, 2002):

1. The application of safety principles for accident prevention over new and existing

roads.

2. The application of cost-effective measures on existing roads as a basis of accident

reduction.

In this context, proactive safety tools such as road safety audits and road safety

audit reviews can be implemented (NCHRP Synthesis 336, 2004). These tools have

been used by transportation safety professionals since the 1980s. More specifically,

a road safety audit is an examination of a transportation project, plan or design

roadway, in which an independent, qualified auditor reports on safety issues. The

step-by-step procedure of a road safety audit can be performed during any or all

stages of a project, including planning, preliminary design, detailed design, traffic

control planning, construction, pre-opening, and on existing roads. For an existing

roadway section or intersection, either just before opening or already open to traffic,

the road safety audit is effectively a review and is discussed as a road safety audit

review.

However, traditional safety planning practice often includes reactive rather than

proactive elements. A problem is identified, primarily through analysis of accident

data, and an appropriate enforcement, education or engineering countermeasure is

implemented. Indeed, every year, states, counties, regions and municipalities spend

considerable amounts of resources on trying to reduce crashes by reconstructing and

improving the roads. In contrast with road safety audits, which are in essence aimed

at crash prevention, this approach is aimed at crash reduction.

Authorities should opt for reactive or preventive measures depending on the situ-

ation they have to respond to in terms of road safety.
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1.3 Hazardous Accident Locations

1.3.1 Different Aggregation Levels

As explained in the previous section, road safety engineering can be applied at different

levels. Indeed, accident histories usually need to be aggregated in order to have

some confidence in the beneficial effects of remedial measures. For example, a single

accident at a site is a poor indicator of what may happen in the future, but if there

are several accidents of the same type occurring at the site, one can be more confident

that a remedial measure, focussed on that particular accident type will be effective.

Examples of appropriate aggregations include (Ogden, 1996):

• accidents clustered at intersections or on short lengths of a road

• accidents clustered along routes or sections of routes

• accidents clustered within an area

• groups of accidents for which there are known effective treatments, occurring

across several sites

• a series of accidents with common features, such as road features (e.g. bridges),

vehicle features (e.g. bicycles), road user features (e.g. pedestrians) or contri-

butory features (e.g. driver fatigue)

• a series of ‘high profile’ accidents such as those involving vehicles carrying dan-

gerous goods, or accidents at railway crossings

Consequently, four basic approaches for reducing crashes by applying engineer-

ing treatments or countermeasure can be discerned (The Bureau of Transport and

Regional Economics of Australia (2001)):

• Single sites or black spots: treating specific sites or short sections of road

• Route action: applying known remedies on a route with an abnormally high

crash rate

• Area-wide action: applying several treatments over a wide area

• Mass action : applying a known remedy to locations with common crash prob-

lems or causal factors

In this research, we will focus on the first of these approaches, more specifically,

treating dangerous sites or short sections of roads.
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1.3.2 Correction of Hazardous Locations

Literature points out that there is no universally accepted definition of what should be

considered as a dangerous location (Hauer, 1996). In general, locations are classified

as hazardous sites after an assessment of the level of risk and the likelihood of a

crash occurring at a location. Locations that have an abnormally high number of

crashes are then described as crash concentrated, high hazard, hazardous or black

spot sites (Bureau of Transport and Regional Economics of Australia, 2001). In order

to improve safety at these sites, a hazardous road location program, also called black

spot safety work, can be defined. This reactive process aims to identify locations

within the road system which have an unacceptably high incidence of road accidents,

in order to develop appropriate treatments to reduce the costs of these accidents

(Ogden, 1996).

More specifically, the overall goal of a hazardous road location program is to iden-

tify locations at which there is not only an inherently high risk of accident losses

but also an economically justifiable opportunity for reducing this risk. Addition-

ally, it aims at identifying countermeasure options and priorities which maximize the

economic benefits from the hazardous road location program3. For simplicity, a ha-

zardous road location program can be summarized in its most simple form as shown

in figure 1.2 (Ogden, 1996).

Analogously with this figure, and based on Schlüter (1997) and Vistisen (2002)

typical procedures for hazardous site correction can be divided into three basic tasks:

1. The identification and ranking of hazardous locations. This results in a list of

sites with promise (‘Identification Phase’).

2. Prioritizing these sites by diagnosing the problems at identified locations and de-

termining potential remedial treatments in order to identify cost-effective safety

improvement projects(‘Investigation Phase’).

3. The appraisal of alternative treatments followed by implementation of the best

treatment if sufficiently cost-effective. To evaluate the effect of treatment, before

and after studies need to be conducted. (‘Program Implementation Phase’)

In this dissertation, we will focus on the first and second element of these steps,

namely the identification and investigation of hazardous accident locations.
3Ogden refers to Sanderson and Cameron (1986). Identification of hazardous road locations. Proc

13th Australian Road Research Board Conference 13(9), pp. 133-147
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Figure 1.2: Hazardous road location program elements (Source: Ogden, 1996)

1.4 Research Objectives

1.4.1 Identification and Ranking of Hazardous Sites

For the identification and ranking of hazardous sites, different criteria can be used.

In general, based on Ogden (1996) and Taylor and Thompson (European Union Road

Federation, 2002), we can discern seven methods that can be used to identify danger-
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ous sites on the road network, each with different order of importance and precision:

1. Accidents Frequency: in this method only the number of accidents (or accidents

per unit length of road) in a given period are considered using a predetermined

threshold value. The disadvantage of this first method is that traffic volume and

accident severity are not taken into account, nor the randomness of accidents.

2. Hazard Potential Ratio: here, the number of accidents and the traffic volume

are considered together. These ratios are usually expressed in terms of accidents

per million vehicle kilometers. Then, road sections are considered as dangerous

using benchmark criteria.

3. Joint Method with Accident Frequency and Accident Risk Ratio: this method

aims at developing a selection of road sections according to their levels of acci-

dent frequency. Next, it aims at prioritizing the measures to be taken depending

on the road section’s accident risk ratio.

4. Confidence Interval Method: this method, sometimes referred as the rate quality

control method, is based on the application of a statistical test with the aim to

determine if the particular accident risk ratio of a road section is significantly

higher than the mean value of this ratio. This mean is previously determined

for locations with similar characteristics.

5. Method of the Accident Severity Ratio: road sections are classified according

to their gravity rate which is calculated using weighted coefficients for different

types of casualties.

6. Risk Rate Method: this method defines for each of the different characteristics

influencing the accident risk ratio of road sections a risk function. The value

of this risk function expresses the accident risk connected to the road section

depending on its characteristics. Consequently, road sections that have a risk

function value higher than a predetermined value are considered as dangerous.

7. Inventory of the Accident Risk Elements in the Road: the purpose of this

method is to identify road sections that present some high potential accident risk

characteristics without having a particular high accident rate. Before identifying

these road sections, a definition of the characteristics considered as dangerous is

developed. The danger represented by these characteristics is measured through

the expected accident risk ratio.
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These definitions indicate that there is a wide range of methodologies available, rang-

ing from simple models based on actual counts to advanced statistical models based

on estimates to identify dangerous locations.

In this dissertation, we will investigate how hazardous accident locations are cur-

rently identified and ranked in Flanders (the Flemish speaking community of Bel-

gium). At the moment, in Flanders, 1,014 accident locations are considered as dan-

gerous (Ministry of the Flemish Community, 2001). These accident sites are selected

by taking into consideration the number of accidents at the location and weighing the

number of light, serious and fatal injuries at each location. More specifically, for each

location where in the last three years, three or more accidents occurred, a priority

score is calculated by summing up the number of injuries at these locations while

using weighing values of respectively 1, 3 and 5 for the injury types light, serious

and fatal. The accident sites with a priority score of 15 or more, are then considered

as dangerous. To improve traffic safety on these locations, the Flemish government

will each year, starting in 2003 for a period of five years, invest 100 million EURO

to redesign the infrastructure of the 800 accident locations with the highest score.

In this dissertation, a sensitivity analysis is performed to investigate the strengths

and weaknesses of this approach to rank and select dangerous accident sites. More

specifically, we will investigate how big the impact would be on the current selection

of dangerous accident locations when different weight values are used. Furthermore,

the effect of giving weight to the severity of the accident instead of to all the injured

occupants of the vehicle is investigated. Finally, effects of using the expected number

of accidents (using Bayesian estimation techniques) instead of using historic count

data are evaluated. By investigating whether these different ranking criteria have a

big impact on the selection of dangerous accident locations, we want to sensitize gov-

ernment to carefully choose the criteria for ranking and selecting dangerous accident

locations.

Indeed, the ordered list of dangerous locations is important as locations are gen-

erally selected by working down the list until the allocated resources are exhausted

for the detailed examination (i.e. the diagnosis and identification of potential treat-

ments), and perhaps, subsequent treatment of locations. Different list orderings may

lead to a different set of locations being examined in detail. An inappropriate ordering

of locations, therefore, could lead to a truly dangerous location not being examined

and considered for treatment, e.g. false negatives (locations not identified as hazard-

ous because the number of accidents happened to be abnormally low) while money
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is invested in other truly safe sites, unjustly identified as dangerous, e.g. false posi-

tives (locations that have a high recorded number of accidents mainly as a results of

chance) (Schlüter et al., 1997).

1.4.2 Investigation of Hazardous Sites

As explained in figure 1.2, after the hazardous sites are identified, it is necessary

to carefully examine the nature of the safety problem at the sites with a view to

identifying whether and how those problems can be dealt with through road or traffic

remedial measures. This allows to set a diagnosis of the problems at the identified

locations and to determine potential remedial treatments (Ogden, 1996).

Indeed, hazardous sites are difficult to analyze, because there are many factors as-

sociated with them (Bureau of Transport and Regional Economics of Australia, 2001).

In order to develop effective countermeasures to reduce the number of accidents at

dangerous locations, one should therefore properly and systematically relate accident

frequency and severity to a large number of variables such as roadway geometries,

traffic control devices, roadside features, roadway conditions, driver behavior or vehi-

cle type (Kononov and Janson, 2002). Furthermore, analyzing road accidents allows

the identification of crash patterns that may arise at sites that may not reveal ele-

vated crash frequencies or rates. The patterns could emerge as crash outcomes (e.g.

over-represented rear-end collisions) or simply elements in common (e.g. night-time

crashes)(see e.g. Shankar et al. (1995) and Kim et al. (2006)).

For this purpose, since a few decades, traffic accident data are registered and an-

alyzed to support the traffic safety policy in Flanders. Additionally, as mentioned in

the Design Report of the Status Questionis Flanders (2002), these accident data are

located in a Geographical Information System (GIS). When necessary, this pinpoint-

ing is done with the help of official police reports. The GIS tools allow for the local

authorities to analyze the located accident data in Access databases. However, this

research is usually limited to the analysis of the evolution of accident data in relation

to certain infrastructure parameters such as the number of accidents in the built-up

area or the number of accidents on numbered roads. The importance of the environ-

mental factors in relation to other relevant factors needs to be further researched to

better identify which combinations generate higher concentrations of accidents.

The following risk factors have been elaborately adopted in the literature for ex-

plaining accident involvement and accident severity: course of the accident (e.g. vehi-

cle manoeuvre, driver action), traffic conditions (e.g. traffic volume, dynamics, speed
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regulation), environmental conditions (e.g. light condition, road surface condition,

road geometry), human conditions (e.g. driver age, occupant age, driver sex, driver

condition (e.g. alcohol, fatigue, illness, seating position, seat belt use) and vehicle

conditions (e.g. vehicle mass, vehicle size) (Nassar, 1996).

Furthermore, several attempts are found for explaining the spatial variation of

road unsafetyness at several levels of spatial aggregation (see Flahaut, 2004a, 2004b

for a review). In this dissertation, we will follow an exploratory approach. More

specifically, we are interested in finding out which factors are associated with the

hazardous accident locations. Therefore, we will profile the accident locations in

terms of accident related data and location characteristics to provide new insights

into the complexity and criteria that play a significant role in the occurrence of traffic

accidents.

For this purpose, in the past, statistical models have been widely used to ana-

lyze road crashes in order to explain the relationship between crash involvement and

traffic, geometric and environmental factors (Lee et al., 2002). However, Chen and

Jovanis (2002) demonstrate certain problems that may arise when using classic sta-

tistical analysis on data sets with large dimensions such as an exponential increase

in the number of parameters as the number of variables increases and the invalidity

of statistical tests as a consequence of sparse data in large contingency tables. This

is where data mining comes into play. Data mining can be defined as the nontrivial

extraction of implicit, previously unknown, and potentially useful information from

large amounts of data (Frawley et al., 1991). The use of data mining methods can

therefore be particularly useful in the context of large data sets on road accidents.

Therefore, in this dissertation we will investigate how data mining and statistical

techniques can be implemented to identify and profile dangerous accident locations

in terms of accident related data and location characteristics. Furthermore, these

techniques will be used to develop models, which will provide new insights into the

criteria that aim to explain to probability of the occurrence of a traffic accident.

1.5 Dissertation Outline

Chapter 2 of this dissertation introduces the main problems encountered with the

identification and ranking of hazardous accident locations such as accident migration

and regression to the mean. Additionally, the issue of defining the best length of a

dangerous road segment and the problem of underreporting of road accidents are ex-
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plained. Next, an overview is presented of several statistical models that are described

in literature to model road accidents taking into account these initial considerations.

Then, several alternative methods that are used to identify and rank hazardous ac-

cident locations are described. Furthermore, the use of before and after studies to

estimate the effect of treatment on these sites is briefly discussed in this text. Finally,

an overview of the hazardous sites approach in Flanders is presented.

Next, chapters 3, 4 and 5 will contain the main research contributions of this dis-

sertation. More specifically, in chapter 3, a sensitivity analysis is performed on the

currently used method to rank and select dangerous accident locations in Flanders.

In particular, we will evaluate how big the impact would be on the current selection of

hazardous accident locations when respectively different weight values are used, when

weight is given to the accident instead of to all the injured occupants of the vehi-

cles, and when the expected number of accidents, estimated from a hierarchical Bayes

model, instead of the historic count data are used to rank and select accident sites.

Additionally, an optimization model is developed in order to automatically generate

the ‘optimal’ weighing values for the ranking and selection problem. In chapter 4,

dangerous accident locations are profiled in terms of accident related data and loca-

tion characteristics using an association algorithm and model based clustering. More

specifically, we will use these techniques to profile respectively different accident types,

high frequency accident locations, black zones and high risk road clusters. Then, in

chapter 5 we will investigate whether the dangerous accident sites in Flanders tend

to migrate over time using accident data from different time periods.

Finally, chapter 6 is reserved for conclusions and an overview of topics for future

research.



Chapter 2

Hazardous Sites Analysis

Methods: Background

There is a fairly extensive literature focussed on methods for the identification of

‘black spots’, ‘sites with promise’, ‘high risk’ or ‘hot spots’ covering an exhaustive

set of issues (Cheng and Washington, 2005). Some papers address regression to the

mean issues, while others address crash outcome versus total crash modeling. Some

discuss the application of Bayesian methods, while others try to make sense of cross-

sectional data. This chapter starts with the discussion of some initial considerations

on the main problems that are encountered with when analyzing hazardous accident

locations. In this context, several statistical models are described in literature to

model the accident frequency and accident severity. Additionally, a literature review

on the most important methods that are used by different authors to identify and rank

hazardous locations is presented. Furthermore, the use of before- and after studies

to estimate the effect of treatment on these sites is discussed. Finally, an overview of

the hazardous sites approach in Flanders is presented1.

1Part of this chapter has been published as follows:

Geurts, K. and Wets, G. (2003). Black Spot Analysis Methods: Literature Review. Rapport Steun-

punt Verkeersveiligheid bij Stijgende Mobiliteit, RA-2003-07, Diepenbeek

13
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2.1 Initial Considerations

Apart from random issues in road accidents, the main problems encountered with the

identification of hazardous accident locations are accident migration and regression

to the mean (European Road Federation, 2002). In this context, several statistical

models are described in literature to model the variation in accident frequencies.

Furthermore, no clear indication exists of what the best length of a dangerous road

segment should be. Finally, the issue of underreporting of road accidents will play a

role in the identification of hazardous accident sites. These issues are briefly discussed

in the following paragraphs2.

2.1.1 Random Issues in Road Accidents

The annual number of accidents occurring on a road section varies each year. This

is explained by the inherent accident risk of the road section. The annual random

accident rate is linked to the accident rate’s own nature. It also depends on a range of

factors that cannot be forecasted. Consequently, if the random nature of the accident

rate is not considered, measures and funds allocated to safety issues will probably be

misused. Therefore, it is important to analyze the road network during:

• A representative time period in which a statistically sound number of accidents

occur. This means that the analysis period must be long enough to yield repre-

sentative accident samples. Following that principle, a large number of studies

have been made and it has been generally agreed that in most cases a period

of three to five years is sufficient to guarantee the reliability of the analysis (see

for example Cheng and Washington, 2005).

• A time period in which no substantial modifications of the infrastructure or the

environment have been made.

2.1.2 Regression to the Mean

A consequence of the random character of a road section’s accident rate is the re-

gression to the mean. If black spot sites are chosen for treatment solely on the basis

of their high crash record in a certain year, the chosen sites may genuinely be very

hazardous. However, it is also possible that the high crash rates observed at some

2This section is mainly based on the dissertation of Vistisen (2002)
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sites may be due to chance, or a combination of both chance and a moderately ha-

zardous nature. In other words, a traffic accident black spot may be due to adverse

road conditions that require extreme care. But it may also be nothing more than a

meaningless cluster of accidents which occurs randomly and has no intrinsic meaning.

These sites are likely to have fewer crashes in a subsequent period even if no treat-

ment is carried out, because the number of crashes will tend to gravitate towards the

long-term mean value. Under these conditions, the effect of any treatment is likely

to be over-estimated. This effect is most commonly called the regression to the mean

effect and is sometimes known as the bias by selection effect (see Davis (1986) for a

general description).

According to Hauer (1997), we can say that for an accident location, the observed

accident count K always fluctuates around some unknown expected value κ. If K

was a good estimator of κ, entities which recorded K accidents in one period would

then record, on average, K accidents in a subsequent period of equal duration (if κ

remained unchanged). However, empirical evidence has shown that, even if K in one

period happens to be larger than κ, the best guess about the magnitude of K in the

next period is still κ. Consequently, if K is not a good estimator of κ, a better method

of estimation needs to be suggested. The empirical Bayes approach, introduced in

the next section and discussed into more detail in the following chapter, will fulfil this

need (Hauer, 1997).

2.1.3 Modeling Variation in Accident Frequencies

To account for the random character of accident counts, in literature a number of sta-

tistical models have been used to estimate accident rates and/or accident frequencies

at a specific location over a given interval of time. According to Nassar (1996), the

following models can be discerned.

Foldvary (1979) and Jovanis and Delleur (1983) have used simple models using

mean and variance. These models are used to study variations in accident rates for

different levels of exposure. These models, however, are not able to incorporate the

effect of risk factors on accident involvement.

In Oppe (1979) and Ceder and Livneh (1982) multiple linear regression models are

used. In these models the dependent variable (either number of accidents or accident

rate) is a function of a series of independent variables such as speed or traffic volume.

Accident occurrence in these models is assumed to be normally distributed. However,

these models generally lack the distributional property that is necessary to describe
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adequately the random and discrete vehicle vehicle accident events on the road and

they are inappropriate for making probabilistic statements about accident occurrence.

Therefore, other types of models were proposed for estimating traffic accident events.

To account for the probabilistic nature of accident occurrence, Saccomanno and

Buyco (1988) and Blower et al. (1993) have used a Poisson loglinear model to explain

variations in accident rates. The occurrence of accident events is rare and random in

nature, which fits the Poisson distribution well theoretically (Land et al., 1996). More

specifically, this Poisson regression model is especially suitable for handling data with

large number of zero counts. However, this model could be inappropriate in certain

situations where the value of the variation deviates from the value of the mean in the

observed accident counts. When the variance is larger than the mean, this is termed

overdispersion (McCullagh and Nelder, 1989).

This discrepancy can be overcome by an additional assumption on the expected

mean, which is a gamma distribution assumption. In brief, it is assumed that the

number of accidents follows a Poisson distribution with rate parameter lambda. The

rate parameters are assumed distributed across the population of locations according

to a gamma distribution. The distribution of the accident counts at the population

level is then given by the negative binomial distribution (Cox, 1983; McCullagh and

Nelder, 1989; Land et al., 1996). The negative binomial regression model is particu-

larly useful in accounting for the overdispersion (Land et al., 1996). Several authors

such as Maycock and Hall (1984), Hauer and Persaud (1987), Persaud (1990), Miaou

(1994), Shankar et al. (1995), Maher and Summersgill (1996), Kulmala (1995), Hauer

(1997), Tunaru (1999), Abdel-Aty and Radwan (2000) have used negative binomial

regression models.

Persaud (1990) incorporated an empirical Bayesian adjustment in his negative

binomial model arguing that adjusting historical data by statistical estimates yields

improved predictability. Ever since, many applications used in some ways an Empir-

ical Bayes approach (Schlüter et al., 1997; Van den Bossche et al., 2002). Recently,

Cheng and Washington (2005) illustrated by means of an experimental evaluation of

hot spot identification methods that the Empirical Bayes technique significantly out-

performs ranking and confidence interval techniques. Another form of the Bayesian

approach, called the hierarchical Bayesian model, has also been proposed in litera-

ture. These methods can handle the uncertainty and the great variability of accident

data and produce a probabilistic ranking of the accident locations. However, the use

of these models in traffic safety is less widespread (Schlüter et al., 1997; Van den
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Bossche et al., 2002).

The issue of extra-Poisson variation in road accident data was addressed further by

Hauer and Persaud (1987). They extended the generalized linear model of Maycock

and Hall (1984) who allowed for systematic differences in accident frequencies between

characteristics such as traffic flow and various geometric variables. In their model, the

Poisson mean was allowed to vary between locations beyond what may be explained by

differences in characteristics. The Poisson-gamma generalized model set up in Hauer

and Persaud (1987) has been supported by Maher and Summersgill (1996), and is

now widely accepted (see e.g. Kulmala, 1995; Hauer 1997). A few extensions to this

model do have been pursued. As an example, in Tunaru (1999), the parameter in the

gamma distribution as well as the regression variables are modeled as random variables

themselves, thus adding several levels to the model. However, most modeling of traffic

accidents use a generalized linear model with negative binomial error structure, and

no specific modeling of dispersion effects (see e.g. Abdel-Aty and Rawan, 2000).

In Lord et al (2004), it is explained that Zero-inflated models have also been used

in traffic safety studies for modeling crashes for various applications. Given the char-

acteristics of these models, most of these authors have automatically assumed that

crashes must follow a dual-state process, which implies that entities (e.g., intersec-

tions, road segments, pedestrian crossings, etc.) exist in one of two states: perfectly

safe and unsafe. Although zero-inflated models do offer improved statistical fit to

crash data in many cases, the authors argue in that the inherent assumption of a

dual state process underlying the development of these models is inconsistent with

crash data. However, as was shown with both empirical and simulated data, excess

observed zeroes are caused by the following four issues: (1) spatial or time scales

that are too small; (2) under or misreporting of crashes; (3) sites characterized by

low exposure and high risk; and (4) important omitted variables describing the crash

process. Accordingly, at risk when using zero-inflated models is the possibility that

misinterpretations about safe and unsafe intersections/road segments/etc. will result.

Someone might falsely believe that certain engineering investments as predicted by

the zero-inflated models will lead to inherently safe locations. Therefore, theoretically

defensible solutions for modeling crash data with excess zeroes include changing the

spatial or time scale of analysis, including unobserved heterogeneity terms in Nega-

tive Binomial and Poisson models, improving the set of explanatory variables, and

applying small area statistical methods.

In the models described above, only the reported number of accidents in the
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observation period is used and location characteristics are thus modeled as constant

within this period. In practice, these characteristics (in particular traffic flows) often

change over time. In order to account for such changes, one may wish to divide the

observation period into sub-periods. However, because accident counts, in different

sub-periods at the same location, depend on the same site-specific conditions not

reflected in the location characteristics, they are not independent (see Maher and

Summersgill, 1996). This poses difficulties in estimating the models, as accident

counts no longer are independently negative binomially distributed. For example, in

Persaud (1994) each year accident’s count is used as separated records. However,

Persaud made the unrealistic assumption of independence between yearly accident

counts at the same time. In Vistisen (2002), disaggregated accident models on sub-

periods of one year are used with the assumption that yearly accident counts at

the same location are dependent. The random variation in accident frequencies is

described by a hierarchical Poisson-gamma distribution, but the Poisson mean is

separated into a fixed and a dispersion part (a parametrization also used in Hauer,

2001).

Finally, Jovanis and Chang (1989) have used survival theory models. These mod-

els predict the probability of a vehicle being involved in an accident at time t given

that the vehicle had survived until that time. Since the use of these models requires

specifically collected data, this approach has not been widely adopted by other re-

searchers in this field. Indeed, what distinguishes survival data from other kinds of

data, is the inevitable presence of incomplete observations (Petersen et al., 1996).

Often, practical restrictions prevent the observation of the terminal event of interest

for every individual in the sample, in which case the available piece of information

is a right-censoring time, a period elapsed in which the event of interest has not oc-

curred (in this case, no accident occurred). Additionally, in traffic safety analysis left

censoring occurs because we don’t observe the true starting point for the vehicles.

For example, if the start is when they last crashed, we probably observed them after

that fact. Right censoring occurs because those that did not crash in our study may

eventually crash after our study, and so we don’t observe their final event.

In this dissertation, we followed the approach of Brijs et al. (2003), who proposed

a multivariate hierarchical Bayes approach for ranking accidents sites taking into

account the number of accidents, the number of fatalities, and the number of light

and severely injured casualties for a given time period for each site. This is done by

using a 3-variate Poisson distribution that allows for covariance between the number
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of lightly, seriously and fatally injured casualties. This will be explained in the third

chapter of this dissertation.

2.1.4 Simulated versus Empirical Data

Besides the development of statistical models to account for the random character of

accident counts, the use of simulated data instead of empirical data is also proposed

in literature. More specifically, Cheng and Washington (2005) use experimentally

derived simulated data to evaluate different hot spot identification methods. The au-

thors argue that when analyzing real data, i.e. crash counts, the analyst never knows

a priori which sites are truly hazardous and which sites happen to have experienced

random up fluctuation in crashes during a period of observation. This leads to the

very difficult situation of trying to count false positives and negatives without know-

ing which sites are truly safe and ‘unsafe’. In contrast, in a simulation it is possible to

establish a priori sites that are hazardous and assess whether hot spot identification

methods can correctly identify them. The simulation approach, however, requires

considerable care in ‘constructing’ the crash data so that they are convincingly sim-

ilar to empirical crash data. In particular, properties of the observed crash data are

used to generate simulated crash frequency distributions at hypothetical sites. Addi-

tionally, the authors note that simulated data suffer from lack of realism encountered

in ‘uncontrolled’ observational settings.

2.1.5 Accident Migration

During the development of black spot measures, a relation has been observed between

a black spot disappearance and the development of a new black spot near the previous

one. Indeed, black spots tend to migrate over time to another location. This phenom-

enon of accident migration occurs when a black spot is not managed properly: on the

one hand the accident number in the existing black spot decreases, while, on the other

hand, usually in a road section nearby, the accident number suddenly increases. In

fact, accident migration represents a decrease in the black spot management efficiency

(European Road Federation, 2002).

This can be explained by the fact that even localized treatments may have non-

localized consequences (Hauer, 1997). One such common consequence of treatment

is traffic diversion. Clearly if treatment on one location causes changes in traffic

elsewhere, safety elsewhere will change too. However, accident migration can also
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take more subtle forms. For example, in a neighborhood where almost all intersections

have been converted from two-way to all-way stop control, people tend to make the

mistake of expecting all vehicles to stop, also at the few intersections which remain

under two-way stop control. This is a plausible mechanism for accidents migrating

from intersections covered to all-way stop control to those which remain unconverted.

Consequently, to prevent accident migration, it is important to determine the

target accidents for a treatment (Hauer, 1997). These target accidents are all those

that can be affected by the treatment. It follows that a convincing evaluation of the

safety effect of a treatment requires a good understanding of the process by which the

accidents are generated and avoided.

2.1.6 Sites, Routes and Areas

As explained in the previous chapter, hazardous site analysis involves an examination

of the accident patterns at a specific location, such as an intersection, a short length of

road or a specific road feature. For the purposes of analysis, it is therefore necessary

to define the road length, or in the case of intersections, to be specific about the

definition (Ogden, 1996).

In practice, methods developed for identifying accidents concentrations often apply

to hot spots (also called black spots, hazardous locations, sites with promise etc.)

which are pinpoint concentrations of road accidents that often migrate over time (see

e.g. Silcock and Smyth, 1985; Maher, 1990; Nguyen, 1991; Joly et al., 1992; Hauer,

1996; Thomas, 1996 or Vandersmissen et al., 1996). However, although the term

‘spot’ suggests a precise location, it also often used to refer to sections of roads, but

in most studies its length is not justified and not controlled.

Furthermore, in literature, the awareness of spatial interaction between contiguous

accident locations arises. However, since in many countries, accident data are avail-

able on a single accident basis, this makes all types of spatial aggregation possible:

aggregation on a point, on a line, or on a surface. The most relevant aggregation unit

for accident data is the road segment. However, no clear indication exists of what

the best length of a dangerous road segment should be, nor or whether an optimal

length can be defined. (Flahaut et al., 2003). For example, in some empirical accident

studies, the road section is divided into road segments either of constant length (e.g.

0.1 mile, 1 mile, 1 km) or of variable length. The size of the segment length is often

not discussed, and sometimes even not clearly defined (Thomas, 1996).

Since in Belgium, the location of accidents is only accurately known for the ‘num-
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bered’ roads, i.e. highways, national and provincial roads linking towns because there

is a stone marker every hectometer, the identification of dangerous accident loca-

tions is related to roadway segments of numbered roads with a length of 100 meters.

Furthermore, each intersection is considered as a possible dangerous site. Accidents

occurring in the direct neighborhood of an intersection (within 50 meters) are also

incorporated in the calculations of this intersection. This means that the accident

locations that are considered as hazardous sites are either roadway segments of 100

meters or intersections.

2.1.7 Underreporting of Road Accidents

One of the most important gaps in the existing accident data provision, and thus

inevitably affecting the identification of hazardous accident locations, is in the area

of underreporting of road accidents (Hauer and Hakkert, 1988). Indeed, a substantial

number of road accidents is not reported to the police, especially in the case of ac-

cidents with only material damage or light injuries. The level of this underreporting

varies considerably from region to region, but is significant in almost all countries

(Asian Development Bank, 2003).

Consequently, in several EU countries, mostly in the northern and western regions,

clinical hospital data on traffic injuries are linked with the police reported accident

data on a national or regional level (Thomas et al, 2003). This serves two purposes:

(1) establishing the underreporting of registration of injury accidents by the police

and (2) adding the detailed injury information to the registered data of accidents.

In this context, Thomas et all (2003) state that it is generally believed that almost

all fatalities are registered, but a German study3 on linked hospital and police data

estimated that up to 5 % could be missing from police data. A French study4 for

the region of Lyon established that as many as 12 % of fatalities were underreported

in the official police based registration. In Nordic countries, Great Britain, Germany

and the Netherlands (Ministerie van Verkeer en Waterstaat, 2001), several studies on

linked hospital and police data5 have revealed that many injuries from single vehicle

3The authors refer to Metzner. G. (1992). Retrospectivanalyse todlicher Verkehrsunfalle unter

dem Aspekt einer Fehlerfassung der Verkehrstoten. Zeitschrift fur Verkehrssicherheit: pp. 150-151.

Koln.
4The authors refer to ETSC (2001). Transport Accident and Incident Investigation in the Eu-

ropean Union. European Transport Safety Council, Brussels. Laumon, B., Martin J.L., Coller P.,

Verney M. P., Chiron M., Ndiaye A., and Vergnes I. (1997)
5The authors refer to OECD (1994). Under-reporting of road traffic accidents recorded by the
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accidents and injuries of pedestrians and cyclists are underreported to a varying ex-

tent in the official road accident registration systems of these countries. On average

between 20-40 % of all serious injuries are not reported, while the largest underreport-

ing with respect to all (light and serious) injuries is generally observed for cyclists.

Up to 80 % of injured cyclists in traffic accidents are not reported.

A case study on the treatment of road accident casualties by emergency services

and general practitioners in the region of Antwerp (Belgium)6 has shown that no less

than 55% of the total number of traffic casualties is not reported in the official figures

of the National Institute for Statistics (Lammar, 2003). Moreover, one should take

into account that this number does not even include the number of casualties that

chose not to receive any treatment for their injuries, nor the number of patients that

did not report their injuries to be due to a road accident).

From these figures, it is evident that the statistical analyses and the monitoring

of developments from the injury accident data in the national databases will be mis-

leading, unless detailed corrections for fairly well known underreporting percentages

are made. Police reports would underestimate the magnitude of injuries and distort

any evaluations of preventive initiatives (Nakahara and Wakai, 2001). Therefore, it

is urgently recommended that national studies on the underreporting of injuries are

periodically performed in every country of the EU. The aim is that correction factors

can then be applied to the types of injury data to obtain reliable information on road

injuries. This would allow the correct estimation of the actual economic costs of road

accidents (now probably underestimated by several tens of percentage points) and the

proper priority setting for road safety improvement (Thomas et al, 2003).

2.2 Hazardous Sites Correction Methods: Overview

As explained in the general introduction of this dissertation, typical procedures for

hazardous site correction can be divided into three basic tasks (see section 1.3.2):

1. The identification and ranking of hazardous locations. This results in a list of

sites with promise (‘Identification Phase’).

2. Prioritizing these sites by diagnosing the problems at identified locations and de-

termining potential remedial treatments in order to identify cost-effective safety

police, at the international level. Special Report: OECD-RTR programme / Public Roads Admin-

istration of Norway. Paris / Oslo.
6The author refers to Beaucourt et al.,(1998). Zelfmoord of verkeersongeval
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improvement projects (‘Investigation Phase’).

3. The appraisal of alternative treatments followed by implementation of the best

treatment if sufficiently cost effective. To evaluate the effect of treatment, before

and after studies need to be conducted (‘Program Implementation Phase’).

In this section, we will provide an overview of the different methods that are used

in literature to perform each of these tasks.

2.2.1 Targeting and Ranking

As described by Vistisen (2002), locations were ranked at first according to their

reported number of accidents. Locations with a number exceeding a chosen threshold

value were targeted as black spots. However, the author, following Hauer (1986) and

Elvik (1997) points out that this method is very sensitive to random variation in

accident counts and to the regression to the mean problem (see previous section).

Indeed, a site may experience relatively high numbers of crashes due to: (1) an

underlying safety problem, for example, the high level of traffic exposure or the nature

of the site; or (2) a random ‘up’ fluctuation in crash counts during the observation

period. Simply observing unusually high crash counts does not indicate which of

the two conditions prevail at the site (Cheng and Washington, 2005). It is possible

to observe an unsafe site that does not reveal elevated crash frequencies, these are

termed false negatives. It is also possible to observe elevated crash frequencies at a

relatively safe site, these are termed false positives. False positives, if acted upon,

lead to investment of public funds with little to no safety benefits. False negatives

lead to missed opportunities for effective safety investments. Accordingly, correct

determination of hazardous accident locations include identifying a safe site as ‘safe’

and an unsafe site as ‘unsafe’. Therefore, the expected number of accidents, estimated

from a model was used instead. However, it is well established that, in general, there

are considerable differences between the expected number of accidents at different

types of intersections and road sections. This may be inexpedient, as the most effective

solution will end up altering the location into a different road type. Such alterations

are often too expensive and/or impossible.

Instead of using the number of accidents on a location, McGuigan (1981) suggested

ranking sites according to their potential for accident reduction (PAR), which is the

difference between the reported number of accidents at a location and the expected

number at locations with similar characteristics. In this context, Vistisen (2002)
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refers to Persaud et al. (1999), who suggested using an empirical Bayes estimate

instead of the accident count in PAR. More specifically, they used a Poisson-gamma

generalized linear model with characteristics such as traffic flow and various geometric

variables. Additionally, in Saccomanno et al (2001) the results of a multivariate

Poisson regression model and Empirical Bayes methods are compared for establishing

the potential for accidents and designating safety black spots along a highway. The

Empirical Bayes model was found to yield fewer black spot locations than the Poisson

regression model.

Vistisen (2002) continues that the task of targeting black spots may also be viewed

as a ranking and selection problem. Parallel with the PAR-method, Gupta and Hsu

(1980) introduced the so-called probability of correct selection (PCS). Then, in a

group of locations a subset is targeted as hot spots, if the probability of hereby

selecting the site with the largest expected number of accidents (the ‘worst’ location)

is above a chosen threshold value. Later, Hauer and Persaud (1984) derived the

probability of correct selection for a Poisson-gamma model. However, the PCS in

Hauer and Persaud was used as a measure of the overall efficiency of the targeting

method and not directly used for targeting dangerous locations. Schlüter et al (1997)

derived the PCS for an individual site as the posterior probability of being ‘worst’ in

a Poisson-gamma model with no location characteristics. Heydecker and Wu (2001)

later extended the PCS measure in Schlüter et al to include location characteristics

and defined PCS as the probability of the Poisson rate exceeding a chosen threshold.

A few alternative methods for targeting black spots have also been proposed (Vis-

tisen, 2002). For a given treatment measure, Heydecker and Wu (1993) suggested

ranking sites according to the posterior probability that accidents occurring at the

location involve the feature the measure is aimed at. Heydecker and Wu assumed a

Poisson-beta model with no location characteristics. In Persaud and Kazakov (1994)

locations are ranked depending on the way in which the estimated economic benefits

of treating the location exceed a threshold value based on the allocated budget.

Van den Bossche et al (2002) investigated the question whether a ranking alone can

give enough evidence for the selection of dangerous sites. More specifically, Bayesian

hierarchical modeling techniques are used to identify and rank hazardous intersections

for bicycles in Leuven, a small university town in Belgium. The authors conclude that

ranking hazardous sites is an interesting means to get insight in dangerous locations,

but there is no such thing as ‘the’ correct ranking. This finding was confirmed by

Miranda-Moreno et al. (2005) who state that many different types of statistical
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models have been proposed in the past for estimating the accident risk in order to rank

locations for safety improvements, ranging from basic Poisson and negative binomial

models to more complicated models such as zero-inflated and hierarchical Bayesian

models. The authors conclude that the choice of model assumptions and ranking

criteria can lead to considerably different lists of black spots. Van den Bossche et al

(2002) continue that it should be clear that ranking hazardous sites is an interesting

tool to get insight in dangerous locations, but it is by no means an exact enumeration,

in ascending order of danger. When investment resources are limited, decision makers

are interested in the most hazardous locations. Making a rank order of dangerous

sites will undoubtedly be helpful to this end. However, since the ranking is in itself

a stochastic term, the obtained rank order may be, to a certain extent, a lucky

coincidence. Therefore, other criteria like investment capacity or specific mobility

and safety objectives should influence the final ranking.

2.2.2 Prioritizing

As explained in the previous section, Vistisen (2002) describes that high-risk sites

are targeted with the aim of improving safety on the road network through remedial

treatment of the sites. Any achieved positive effects of safety measures at hazardous

accident locations are denoted as the benefits of the implemented measures. However,

implementing safety measures is costly and the restricted funding for black spot safety

work does put a limit to the number of sites that may be treated. Therefore, it is

necessary to prioritize between sites and safety measures in order to utilize the limited

funds as effectively as possible.

In this context, Hauer et al. (2004) investigated which of the alternative ranking

criteria points to sites with promise at which the most cost-effective solutions can be

found. More specifically, they used different ranking criteria ((1) sites where most

accidents are expected, (2) sites where most severity-weighed accidents are expected,

(3) sites where most excess accidents are expected and (4) sites where most severity-

weighed excess accidents are expected) to prepare a list of sites with promise, and

made a comparison of the cost-effectiveness of the projects to which these criteria lead.

It was found that sites at which most accidents or most severity-weighed accidents

are expected lead to most cost-effective projects.

The general aim of prioritizing may be described as:
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max
Y

B(Y )
C(Y )

(2.1)

where Y represents a portfolio of safety measures and C(Y) and B(Y) denote the

corresponding overall cost and benefit of Y.

The objective is to improve safety as much as possible with the funds allocated,

but without a given target level of safety. This approach is known as the ‘as low

as reasonable practicable’ (ALARP) principle (Melchers, 2001). Here, ‘reasonable

practicable’ refers to within the budget.

Furthermore, when expressing the benefit and costs of a treatment in objective

measures such as saved number of accidents, saved accident costs etc. two important

problems can be discerned (Vistisen, 2002). First, the problem of pricing injury acci-

dents is that no market prices are stated for e.g. a human life and instead the pricing

of injury accidents is done indirectly (see Dasgupta and Pearce (1972)). There is an

extensive body of literature dealing with the valuation of road safety. Although this

is beyond the scope of this dissertation, we briefly discuss the two most promininent

approaches.

One approach is to assign severity weights that are proportional to the costs to

society of various injuries. In general, there are basically three methods for estimating

the costs of injury and death to society 7

1. Using Implicit Values: the accidents are priced according to the average cost of

the given medical treatment in trying to avoid a person dying, divided by the

probability of the treatment being successful.

2. The method of Human Capital: the major part of the cost of an injury is the

discounted present value of the victims future output or income lost due to the

injury. The additional cost contributors are involving medical treatment, police,

property damage and administration costs.

3. Finally, the Willingness To Pay (WTP) method: this method estimates the value

that individuals attach to human life by means of surveys aimed at determining

the amount of money that individuals would be prepared to pay to reduce the

risk of loss of life. The same principle applies to injury, where an attempt is

made to determine the monetary value which individuals would be prepared to

7Vistisen refers to T10 (2000), Notes for the unit of the Intercollegiates MSc course in transport.

University College London, England.
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pay to, in effect, reduce the risk of injury. The advantage of this approach is

that it reflects the public‘s concern for safety. Also because WTP values tend to

be higher than implicit or human capital values, estimated benefits of remedial

work are increased, which may increase the priority given to road safety.

A second approach, originating in public health, is the ‘Quality Adjusted Life Year’

(QUALY) (Nord, 1999). In this approach, any state of illness or disability may be

assigned a utility on a scale from zero (the utility assigned to the state of being dead)

to unity (the utility assigned to being in full health). The value of a health outcome

for an individual is the calculated as the increase in the utility of the persons‘s health

state and the number of years the person gets to enjoy this improvement. As argued

by Nord (1999), valuations of health based on the person trade-off technique can

reasonably be interpreted as representing an ethical point of view with respect to the

importance of preventing different adverse health outcomes.

Although they have been developed in different application areas, the QUALY and

WTP frameworks share important similarities (Hammitt, 2002): both are justified as

representing the preferences of individuals, and both are summed across individuals

to represent the social value of a change in health risk. However, QUALYs assume

that preferences over health and longevity depend only on health consequences, and

do not depend on other characteristics of the individual or the risk. In contrast, WTP

allows for the possibility that preferences over health outcomes depend on individual

characteristics such as wealth, as well as on characteristics of the risk such as whether

it is perceived to be uncontrollable, unfamiliar or dreaded.

In addition to the problem of pricing accidents, the obtained accident reduction

from implementing a safety measure needs to be estimated. This can be done using

Accident Modification Factors (AMFs). More specifically, AMFs can be used in an

accident prediction algorithm to represent the effects on safety of specific geometric

design and traffic control features. These AMFs are usually based on a variety of

sources including results of before-and-after accident evaluations, coefficients or pa-

rameter values from regression models, and expert judgment (Harwood et al., 2000).

However, the obtained accident reduction from implementing a safety measure is

often uncertain. This uncertainty may be divided into (Vistisen, 2002):

• The uncertainty concerning the reduction rate in accidents due to the treatment

portfolio.

• The uncertainty concerning the extent to which the accident types, the measure
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is aimed at, are in fact present at the site.

• The uncertainty concerning whether or not a site is in fact a black spot.

The last two uncertainties are site-related, while the first uncertainty is linked to

the safety measure. It is assumed that sites with a high certainty of being a black

spot have relatively higher potential for accident reduction than sites with a low

certainty (see Persaud et al., 1999). Also, a safety measure aimed at a particular type

of accident is assumed to have a relatively higher effect at sites where such types are

predominant. To increase knowledge in the uncertainty related to the safety measure,

additional before and after studies of the effects of treatments are needed.

2.2.3 Before and After Studies

Treating a site may lead to changes in traffic volume, road geometry and other site

characteristics thus affecting the accident frequency at the site. However, the liter-

ature on before and after studies has pointed out a number of other observable and

non-observable elements affecting the change in reported accident count before and

after the implementation of preventive safety measures (Vistisen, 2002).

For example, different safety measures may be aimed at the same type of accidents,

thus creating an effect overlap if implemented at the same site. If the purpose of the

before and after study is to estimate the individual effects of the measures, one needs

to account for effect overlap. Additionally, accident treatment measures may, beside

positive effects, also have negative effects on safety. In a before and after study of the

total number of accidents at a site only the net-effect will show.

Another element is the problem of road user behavioral adjustment. This is the

problem of road users adjusting their behavior to a safety measure in such a way

that the actual effect of the measure deviates from what was expected. Behavioral

adjustment leading to an unchanged level of safety after treatment is known as risk

homeostasis (see e.g. Wilde, 1986). This phenomenon is strongly connected to the

road users subjective perception of safety.

A statistical effect on before and after studies is the regression to the mean effect.

Sites for crash reduction monitoring are selected on the basis of a high number of

crashes over a given period. This carries with it a risk that some sites with a low

average rate may meet the selection criteria, due to ‘highs’ in the random fluctuations

over the given period. It would be expected that the crash rate at such a site would

be lower in the period following selection, even in the absence of any improvements,
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reflecting the true underlying crash rate. The benefits of works at such sites would

therefore be overestimated, as some of the apparent reduction attributed to the site

treatment would be due merely to the expected regression to the mean (Hauer, 1997).

Additionally, in before and after studies one should take into account the migra-

tion effect where accident frequency apparently rises at sites that are untreated but

adjacent to treated sites. Vistisen (2002) refers to Boyle and Wright (1984) who

proposed a hypothesis that the migration effect was due to a behavioral mechanism

based on the idea of road user behavioral adjustment. However, the author adds that

the existence of a migration effect has not been verified (see Elvik, 1997), and a study

by Maher (1990) indicates that the apparent migration effects may to a large extent

be explained by a regression to the mean effect caused by a bias-by-not-selection. In

other words, sites are not targeted as black spots because of unusually low (below the

expected at sites with similar traits) accident counts. In addition, incorrect coding of

the location of accidents as well as changes in traffic flow due to treatment of adjacent

sites may be contributing factors.

A next element that is often revealed in a study of time series of accident counts

is a trend in the accident development over a period of time. There are many factors

influencing general increases or decreases in accident counts. For instance road users

are changing their choice of modes and attitude in traffic, for example due to amend-

ments of the law, bigger fines, etc. A before and after study needs to account for the

effect of such trends that are otherwise attributed to the treatment.

Furthermore, incomplete reporting of accidents leads to a general underestimation

of the road safety problems. A change in the level of reporting at a site will also change

its estimated level of safety.

Finally, in Hauer (1997) the central role that prediction plays in the estimation

of the safety effect of treatments is discussed. For example, the shortcomings and

adaptations of conventional approaches such as the Näıve Before-After study are

investigated. In this method the count of ‘before’ period accidents is used to predict

what would have been the expected count of after-period accidents had the treatment

not been implemented. This way of predicting reflects a näıve and usually unrealistic

belief that the passage of time was not associated with changes that affected the safety

of the entity under study. Adaptations that are approached concern the factors that

are measured and interpreted and the use of a comparison group. Furthermore, the

author discusses some approaches that better fit the realities of observational before-

after studies. It is shown that the Empirical Bayes approach to estimation not only
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solves the regression to the mean problem but also yields more precise estimates.

Next, estimation will be freed from the constraint of a fixed-duration before period.

The key roles played by multi-variable models, which express the safety of an entity

as a function of its observable traits, are examined. Finally, the author returns to

the central issue of the before and after study, that of estimating what the effect

of some intervention is and how this approach has been used to estimate the effect

of resurfacing rural roads. Hauer concludes that the subject of how to interpret

observational before-after studies has certainly not reached closure. Compared with

the number of books on the statistical design and interpretation of experiments, very

little is written on observational studies and a great deal needs to be done before a

maturity of method and routine of application can be attained or claimed.

2.3 Hazardous Sites Approach in Flanders

2.3.1 Introduction

Statistics show that Flanders, the Flemish speaking community of Belgium, does not

set a great example for other European countries in the context of traffic safety. In

2002, on the Flemish roads, 721 persons died and 5,234 persons were seriously in-

jured (National Institute for Statistics, 2002). Consequently, in the ‘Mobility Plan

Flanders’, the Flemish government set itself the objective to halve its arrears com-

pared to the European leaders by 2010. Not only does the Flemish region plan to take

measures in the area of enforcement, improved vehicle safety and enhanced road users

awareness, it also plans to speed up improvements in infrastructure. For this purpose,

over a period of five years, a budget of 100 million EURO per year is reserved. More

specifically, to implement these infrastructure changes, the following approach is set

up8:

• Development of a five year program

• Development of a manual ‘Safe Traffic Flanders’

• Collection and analysis of data

• Development of a conceptual solution

8This program was developed by the Temporary Consortium Safe Traffic Flanders (3V) and the

Administration for Roads and Traffic (AWV).
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• Realization and Monitoring

The following paragraphs give a more detailed description of these different steps

(Yearbook Traffic Safety, 2003).

2.3.2 Five year Program

First of all, by processing the accident statistics of the National Institute for Statistics

(NIS) a list of dangerous accident locations is drawn up. In this process, the following

parameters are taken into consideration: the total number of injury accidents and the

number of light, serious and fatal injuries. This selection and ranking procedure will

be elaborately discussed in third chapter of this dissertation. For now, it suffices to

point out that for each location where in the last three years, three or more accidents

occurred, a priority score is calculated by summing up the number of injuries at these

locations while using weighing values of respectively 1, 3 and 5 for the injury types

light, serious and fatal. The accident sites with a priority score of 15 or more, are

then considered as dangerous. This procedure results in a list of 1,014 dangerous ac-

cident locations. The location with the highest list score receives the highest priority.

However, to take into account the social impact of the involvement of vulnerable road

users (often cycling students), the accidents involving cyclists are given 50% more

weight in the priority list. Furthermore, some dangerous accident locations can not

be dissociated from neighboring dangerous sites on the same road. Accordingly, these

locations are joint in one cluster and are studied together. However, since one will

always take into account the accessibility of an area, this does not necessarily imply

that these sites will be redesigned at the same time.

2.3.3 Manual ‘Safe Traffic Flanders’

The Manual ‘Safe Traffic Flanders’ has three objectives:

1. Presenting uniform solutions to enhance traffic safety: This involves the creation

of a traffic situation that is uniform in function of the environment and the road

function. This new situation will simplify the driving requirements of the road

user, which, in turn, will diminish the accident probability.

2. Determining procedures in the design process of a project: This will speed up

the realization of corrective measures.
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3. Establishing standard solutions and a decision tree: This allows the implemen-

tation of previous decisions, while taking into account local limiting conditions

and the planning context.

More specifically, the manual is divided into five chapters. Chapter one describes the

project card, which is intended to guarantee the uniform collection of the different

data that are needed to analyze the accident location. Then, after the basic facts are

collected using this project card and the accident site is explored, a first analysis of the

accidents will be performed. Next, additional data on the spatial and planning context

will be collected in order to propose well-founded solutions for the location. The

second chapter provides standard solutions for the following situations: roundabouts,

traffic lights regulation, bicycle facilities, pedestrian facilities and additional facilities.

Chapter three contains the decision tree and is the most important chapter of the

manual. In particular, the choice between the different solutions is made taking

into account three different perspectives: the accident analysis, the traffic planning

and spatial context (to create a sustainable solution) and finally physical and traffic

related limiting conditions. Note that when specifying specific projects, the particular

situation and influence of other factors than traffic safety will also need to be taken

into account. Then, in chapter four, the different steps and procedures for each project

are discussed. Finally, chapter five describes the monitoring system that is necessary

to evaluate the effects of the implemented measures.

2.3.4 Collection and Analysis of Data

As explained in the previous paragraph, the project card allows to collect data in a

uniform manner. These data are mainly extracted from maneuver diagrams of the

accidents and additional spatial information. The analysis of these data is performed

using three different perspectives:

1. Analysis of the accident data using the AVOC methodology 9: This methodology

is solely based on the use of data of the registered accidents, supplemented with

data on traffic, the road and the environment. Based on the results of this

analysis specific infrastructure measures can be implemented to enhance traffic

safety.

2. Analysis of the traffic planning and spatial context: In this analysis, the road

9AVOC = Aanpak Verkeersongevallenconcentraties, CROW publication 66, 1992
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category of the accident location and the spatial context of the site is considered

(e.g. built-up area, environmental function,..)

3. Analysis of the traffic data: For most of the dangerous accident locations, the

traffic intensity is studied together with the registration of all traffic flows and

different vehicle types. These figures are incorporated in the site’s traffic flow

diagram.

2.3.5 Development of a Conceptual Solution

The development of a conceptual solution occurs step by step by means of a deci-

sion tree, as mentioned in the manual. In order to decide on the preferred solution

for a site, one starts with the results from the traffic safety analysis. This analysis

usually offers a variety of possible measures to diminish the number of accidents at

the location. Next, the analysis of the traffic planning and spatial context produces

a selection of measures. Indeed, it is not only the objective to find a safe but also a

sustainable solution to enhance traffic safety. Additionally, one considers the phys-

ical and traffic related limiting conditions to select the appropriate measures. This

involves evaluating the capacity of the proposed solution and verifying the physical

and environmental issues at the site. Finally, in case still several solutions are appro-

priate for implementation additional factors such as cost, timing and residual risk are

evaluated. This filtering process will eventually lead to one preferred solution.

2.3.6 Realization and Monitoring

After the appropriate measure is chosen, the different steps for the final design and

realization of the measure are taken. Once the projects are executed, the effect of

measures will be continuously monitored.

2.4 Conclusions

The main problems encountered with the analysis of hazardous accident locations

are the random issues in road accidents, accident migration and regression to the

mean. To account for these problems, a number of statistical models are described in

literature to model the variation in accident frequencies. Furthermore, no clear indi-

cation exists of what the best length of a dangerous road segment should be. Finally,
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the issue of underreporting of road accidents will play a role in the identification of

hazardous accident sites.

Next, ‘Black Spot Safety Work’ can be described as the task of improving road

safety through alterations of the geometrical and environmental characteristics of the

problematic sites in the existing road network. This work may be divided into three

phases.

In the first step, hazardous sites are targeted with the aim of enhancing traffic

safety through remedial treatment of the sites. This task may also be viewed as a

ranking and selection problem. Researchers have proposed several alternative meth-

ods for ranking and targeting black spots. However, there is no such thing as ‘the’

correct ranking.

Restricted funding does put a limit on the number of sites that may be treated.

Therefore, it is necessary to prioritize between sites and safety measures in order to

utilize the limited funds as effectively as possible. This is the second step of the

black spot safety work. Two important problems can be discerned when calculating

the costs and benefits of a treatment. First, no market prices are stated for e.g. a

human life and instead the pricing of injury accidents is done indirectly. Secondly,

the obtained accident reduction from implementing a safety measure is uncertain.

The third step of black spot safety work involves the realization of before and af-

ter studies of the effect of treatment. Important elements when analyzing the change

in reported accident counts before and after the implementation of safety measures

are overlap in effects, negative effects, road user behavioral adjustment, regression to

the mean effect, migration effect, general trends and change in the level of reporting.

Accordingly, conventional approaches such as the Näıve Before-After study have a

number of shortcomings which could partly be solved with some adaptations. Fur-

thermore, it is shown that the Empirical Bayes approach for estimation not only solves

the regression to the mean problem but also yields more precise estimates than the

traditional estimation methods. However, very little is written on observational stud-

ies and the subject of how to interpret observational before-after studies has certainly

not reached closure.

Finally, in this chapter the approach towards hazardous sites in Flanders was

discussed. Besides the measures in the area of enforcement, improved vehicle safety

and enhance road users awareness, the Flemish government has reserved, over a period

of five years, a budget of 100 million EURO per year to speed up improvements in

infrastructure. For this purpose, the development of a five year program is set up
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in which the dangerous accident locations are selected. Furthermore, a manual ‘Safe

Traffic Flanders’ will be developed to present uniform solutions, determine procedures

in the design process of a project and establish standard solutions to find a safe and

sustainable solution to enhance traffic safety.
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Chapter 3

Ranking and Selecting

Dangerous Accident

Locations

In this chapter a sensitivity analysis is performed on the currently used method to rank

and select dangerous accident sites in Flanders. Literature has shown that the choice

of model assumptions and ranking criteria can lead to considerably different lists of

hazardous locations. Accordingly, with this research, we want to sensitize government

to carefully choose the criteria for ranking and selecting dangerous accident locations1.

1Parts of this chapter have been published as follows:

• Geurts K., Wets G., Brijs T. Karlis, D. and Vanhoof K. (2006), Ranking and selecting dangerous

accident locations: correcting for the number of passengers and batesian ranking plots. Journal of

Safety Research 37, 83-91.

• Geurts K., Wets G., Brijs T. and Vanhoof K. (2005) Ranking and selecting dangerous accident

locations: Case Study. Urban Transport XI, eds. Brevia and Washra, WIT Press, ISBN: 1-84564-

008-X, 229-238.

• Geurts K., Wets G., Brijs T., and Vanhoof K. (2005), Identification and ranking of black spots:

sensitivity analysis. Journal of Transportation Research Board,Vol. 1897, pp. 34-42. ISBN: 0-3090-

945-X. Also in Electronic Proceedings of the 83th Annual Meeting of the Transportation Research

Board, Washington, January 11-15, USA, 17 pp.

• Geurts K. (2005), Geurts K. (2005), Selectie en rangschikking van gevaarlijke punten: een grafische

benadering. Jaarboek Verkeersveiligheid 2005, Vlaams Congres Verkeersveiligheid, 2005, Brussel.

• Geurts K., Wets G., Brijs T. and Vanhoof K. (2004), Identifying and ranking dangerous accident

locations: Overview Sensitivity analysis. Proceedings of 17th ICTAL Workshop in Tarts, Estonia,

28-30 October, 2004.
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3.1 Introduction

The correction of dangerous locations is one avenue that is available to traffic engineers

in their endeavor to reduce future accident numbers. Typical procedures for hazardous

site correction involve three basis tasks (Schlüter et al., 1997):

1. The identification of hazardous locations

2. A diagnosis of the problems at identified locations and a determination of po-

tential remedial treatments

3. An appraisal of alternative treatments to identify the most cost-effective, fol-

lowed by implementation of the best treatment (if sufficiently cost-effective).

This chapter focusses on the first stage of these procedures, which commonly

involves comparing the accident numbers during some period for all locations, to

determine which locations are unusually dangerous. More specifically, we will focus

of the currently used method in Flanders to identify hazardous locations. This will

be explained in the following section.

3.2 Sensitivity Analysis

3.2.1 Defining ‘Dangerous’

As explained in the introduction of this dissertation, there is no universally accepted

definition of what should be considered as a dangerous location (Hauer, 1996). Ac-

cordingly, different European countries have already been developing different ap-

proaches towards the management of black spots. Some examples of definitions of

hazardous sites (European Road Federation, 2002):

• the United Kingdom: locations of 300 meters where the sum of the road acci-

dents is higher than twelve in three years.

• the Netherlands: intersections where in a period of three to five years at least

ten accidents occurred or where at least five accidents or dangerous situations

occurred with some common characteristics.

• Geurts K. (2004), Grote en kleine middelen om de verkeersveiligheid te verhogen: Hoe rangschikken

en selecteren we gevaarlijke punten? Jaarboek Verkeersveiligheid 2004, Vlaams Congres Verkeersvei-

ligheid, 2004, Brussel pp.44-46.
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• Denmark: road sections or intersections where there has been registered signif-

icantly more accidents than could be expected for that type of intersection and

same traffic volume. Normally, with this, a minimum criterion of four accidents

in five years is used.

• Norway: locations of one hundred meters with more than four casualties.

Whichever criteria is adopted, it is common practice to prepare lists of accident

locations, ordered according to their dangerousness. The ordered list is important as

locations are generally selected by working down the list until the allocated resources

are exhausted for the detailed examination (i.e. the diagnosis and identification of

potential treatments), and, perhaps, subsequent treatment of locations (Schlüter et

al., 1997).

However, although different definitions exist, in general, locations are classified

as hazardous locations after an assessment of the level of risk and the likelihood of

a crash occurring at a location. Locations that have an abnormally high number of

crashes are then described as crash concentrated, high hazard, hazardous or black

spots (Bureau of Transport and Regional Economics of Australia, 2001).

Accordingly, taking these different elements of the different definitions for dan-

gerous accident locations into account, we can conclude that, from a discussion with

Prof. dr. Elvik, a fairly precise theoretical definition of a road accident black spot

is any location that has (a) a higher expected number of accidents than (b) other

similar locations, as a result of (c) specific local risk factors. Therefore, road accident

black spots should be defined in terms of the expected number of accidents, not the

recorded number, as the recorded number of accidents is greatly influenced by random

variation (see section 2.1.2). Moreover, a road accident black spot belongs to a pop-

ulation of similar types of locations, which define the normal level of safety that the

black spot presumably deviates from. Finally, the excessive number of accidents at a

black spot should be attributable to local risk factors that are amenable to highway

engineering treatments. By constructing this theoretical definition, we can evaluate

the operational definition of black spots in Flanders in terms of commonly accepted

diagnostic criteria.

3.2.2 State of the Art in Flanders

In Flanders, 1,014 accident locations are currently considered as dangerous (Ministry

of the Flemish Community, 2001). In order to determine these accident locations, the
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Flemish government analyzes the accident data that are obtained from the Belgian

Analysis Form for Traffic Accidents. This form should be filled out by a police officer

for each traffic accident that occurs with injured or deadly wounded casualties on

a public road in Belgium. Based on these data, each site where in the last three

years three or more accidents have occurred, is selected. Then, a site is considered to

be dangerous when its score for priority (S), calculated using the following formula,

equals 15 or more:

S = LI + 3SI + 5DI (3.1)

where LI = total number of light injuries

SI = total number of serious injuries

(Each casualty that is admitted more than 24 hours in hospital)

DI = total number of deadly injuries

(Each casualty that died within 30 days after the accident)

Based on equation (3.1), in Flanders currently 1,014 locations are considered as dan-

gerous. To improve the traffic safety on these locations, the Flemish government will

each year, starting in 2003 for a period of five years, invest 100 million EURO to

redesign the infrastructure of the 800 accident locations with the highest score.

Taking into account the three key elements of the theoretical definition of a black

spot (see section 3.2.1), it can be seen that the current definition in Flanders is rather

‘simplistic’.

First of all, in the Flemish priority score formula accident counts are used to

target locations with a number of accidents exceeding a chosen threshold as dangerous

accident locations. This relies on the recorded, rather than the expected number of

accidents, which, as explained before, is very sensitive to random variation in accident

counts and to the regression to the mean problem (see section 2.2.1).

Furthermore, the definition does not refer to a population of sites with similar

traits, hence any location, whether it is a curve, narrow bridge, or a junction, that

has recorded three or more accidents will be regarded as a black spot.

However, when comparing the Flemish method for ranking and selecting accident

locations with the ranking methods used in other European countries, it can be seen

that the Flemish government is one of the few countries that does explicitly consider

injury severity by applying differing weighing factors to injuries at different levels of

severity (1 for Slight, 3 for serious, 5 for fatal). The choice for the values of these

weight parameters used in the priority score formula are mainly a policy decision.
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Indeed, on the one hand, weight values can be formulated from an economic point of

view. This implies that the values are based on the economic and social costs that are

associated with the injuries from road accidents such as medical costs, loss of output,

costs of property damage, administrative costs and economic valuation of lost quality

of life (Handbook of Road Safety Measures, 2004). On the other hand, weight values

can be chosen from an ethical point of view. For example, the use of 1 1 1 values

for respectively a light, serious and fatal injury can seem totally irrational from an

economic point of view, while from an ethical viewpoint these values correspond with

the prevention of all types of accidents no matter the costs. Therefore, it is up to the

government to decide which priorities they want to stress in their traffic safety policy.

These priorities can than be translated into different weight values.

Additionally, the calculation of dangerous accident locations in Flanders is cur-

rently effected on the level of casualties and not as such on the level of accidents.

However, this causes a location to appear more dangerous when more passengers are

present in the accidents. Furthermore, a location where four accidents occurred is

considered equally dangerous as a location where in the same period of time one

accident occurred with four occupants.

Therefore, in this chapter, a sensitivity analysis is performed to investigate the

strengths and weaknesses of the currently used method to identify and rank hazardous

sites in Flanders. More specifically, we will evaluate how big the impact would be

on the current selection of dangerous accident locations when different weight values

are used. Additionally, the impact of giving weight to the accident instead of to all

the injured occupants of the vehicles is investigated. Furthermore, effects of using

the expected number of accidents instead of the historic count data to rank and

select accident sites are evaluated. Finally, we will use an optimization framework

to automatically generate the ‘optimal’ weighing values based on the currently used

weighing combination. By investigating whether these different ranking criteria have

an impact on the selection of dangerous accident locations and estimating how big

these effects will be on the current ranking of accident locations ranking criteria, we

want to sensitize government to carefully choose the criteria for ranking and selecting

dangerous accident locations.

3.2.3 Data

To allow for a sensitivity analysis on the currently used black spot criterion in Flan-

ders, this study is based on the same data used to select and rank the 1,014 currently
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considered most dangerous accident locations. These data originate from a large data

set of traffic accidents obtained from the National Institute of Statistics for the region

of Flanders (Belgium) for the period 1997-1999. These data are obtained from the

Belgian ‘Analysis Form for Traffic Accidents’ that should be filled out by a police offi-

cer for each road accident that occurs on a public road involving casualties. However,

since the location of these accidents is only accurately known for the ‘numbered’ roads

(i.e. highways, national and provincial roads linking towns) because there is a stone

marker every hectometer, the identification of dangerous accident locations is related

to roadway segments of numbered roads with a length of 100 meters. Furthermore,

each intersection is considered as a possible black spot. Accidents occurring in the

direct neighborhood of an intersection (within 50 meters) are also incorporated in

the calculations of this intersection. This means that the accident locations that are

considered as black spots are either roadway segments of 100 meters or intersections.

These traffic accident data contain a rich source of information on the different

circumstances in which the accidents have occurred: course of the accident, traffic,

environmental conditions, road conditions, human conditions and geographical con-

ditions. The accident data needed to perform this sensitivity analysis will be limited

to the number of accidents per accident location. Furthermore, these data will only

contain the number of fatalities and the number of light and serious casualties per

accident location.

In total, 50,961 traffic accidents with casualties are reported in this period. This

results in 23,184 unique accident locations included in the data set. On the one hand,

we will focus on the 1,014 most dangerous accident locations to explore the sensitivity

of their ranking orders when using adapted weighing values and estimates instead of

count values. On the other hand, we will concentrate on all of the 23,184 accident

locations and all accident locations where at least 3 accidents occurred between 1997

and 1999 to evaluate the stability of the current list of dangerous accident sites when

using different selection criteria.

However, note that in this research , no simulated accident data, as proposed in

section 2.1.4, were used. Accordingly, we do not know for certain which sites are

truly hazardous and which sites happen to have experienced random up fluctuation

in crashes during the period of observation. Therefore, when investigating the impact

of different ranking criteria we can only estimate the effects on the current ranking

of accident locations and the locations that are currently ranked as most dangerous,

without claiming that these sites are indeed the truly most dangerous sites.
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3.2.4 Percentage Deviation Value

In order to quantify the effects of changing the ranking and selection criteria of

dangerous accident locations, we will use the percentage deviation value (D). This

measure allows comparing the elements of two data sets of equal size containing

different locations.

D = 1− G

T
(3.2)

with G = Number of common elements in both data sets

T = Total number of elements in each data set

As described in 3.2, the percentage deviation D is calculated by dividing the

number of accident locations that do not appear in both data sets by the total number

of locations in one data set. When the percentage deviation value is small, the two

data sets will contain a great number of common elements. In a traffic safety context,

this could for example mean that the current priority list of 800 dangerous locations

is rather stable, regardless of the used weighing values or the consideration of the

number of passengers in the analysis. Note that the percentage deviation only gives

information about the number of locations that do not appear in both ranked data

sets and does not take into account internal shifts in the ranking position of these

common accident locations.

3.3 Impact of the Weight Values

3.3.1 Alternative Weight Value Combinations

As explained in section 2.2.2, restricted funding for black spot safety work puts a limit

to the number of sites that may be treated. Therefore, it is necessary to prioritize

between sites and safety measures in order to utilize the limited funds as effectively as

possible. Accordingly, it can be argued that the severity of accidents should be taken

into account when ranking and selecting dangerous accident locations, as accidents

with fatal and serious injuries are more costly in both social and economic terms.

The problem, however, is how to find weights that reflect the differences in severity

of the different injury types. Again, as explained in section 2.2.2, the problem of

pricing injury accidents is that no market prices are stated for e.g. a human life
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and instead the pricing of injury accidents is done indirectly. Although the different

methods to valuate road safety is beyond the scope of this dissertation, the choice

for the different weights used in the priority value formula will, however, influence

the ranking and selection of the most dangerous accident locations. Therefore, to

investigate how big this effect would be on the current ranking of accident sites in

Flanders, four different weighing value combinations representing a different attitude

towards the traffic safety problem are used:

• 1 1 1: this combination of weight values assumes that every casualty of a traffic

accident is evenly important. Therefore, all accidents are evenly important and

should be prevented, regardless of the severity of the injury. As explained in

section (3.2.2), this type of weighing scheme represents an ethical rather than an

economical point of view to prevent all types of accidents no matter the costs.

• 1 1 10: using these weight values, attention will be focused on accidents with

deadly injured casualties. Accidents with lightly or seriously injured casualties

receive relatively small attention. This type of weighing scheme could represent

the objective of the Belgian government to reduce the number of road fatalities

by the year 2010 by 50 percent (see section (1.1)).

• 1 10 10: this group of weight value combinations discriminates between acci-

dents with small injuries on the one hand and accidents with serious or deadly

injuries on the other hand. Lightly injured persons, are assumed to be char-

acteristic for less serious accidents and will be less taken into account when

identifying hazardous sites. As explained before, this type of weighing scheme

corresponds with the philosophy the ‘Vision Zero’, which is an expression of the

ethical imperative that it can never be ethically acceptable that people are killed

or seriously injured when moving within the road transport system (Gingival

and Tamworth, 1999).

• 1 3 5: These combinations of weight values use a more moderate approach

to stress the importance of deadly accidents. As the injury types are more

serious, the accident is considered to be more important. Note that the current

dangerous accident selection criterion in Flanders is based on this proportion of

weighting values. However, no justification on these proportions can be found

in any public document concerning this policy.
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These weighing combinations show that different policies can be used to arrive at

a weighing scheme. However, the choice for using, in this research, a value of ‘10’ to

stress the importance of an injury type is somewhat arbitrary. Nevertheless, it is not

the objective of this sensitivity analysis to point out how one should best arrive at a

weighing scheme. This research is focussed on the first and necessary step to make the

government aware that choosing different weighing values will greatly influence the

selection of hazardous accident locations. This might seem straightforward, however,

in Flanders no such research is yet conducted. Accordingly, the weighing values used

in this sensitivity analysis are just examples and therefore no statement is made that

one of these four alternatives is the optimal weighing scheme.

In the following sections, we will discuss the effects of using these alternative

weighting value combinations on the 3 different data sets: the 1,014 currently most

dangerous accident locations, all 23,184 accident locations and the 5,326 accident

locations with minimum 3 accidents.

3.3.2 Empirical Results

3.3.2.1 Results for the 1,014 Currently Most Dangerous Accident Loca-

tions

Figure 3.1 gives an overview of the effects of changing the 1 3 5 weight values on

the ranking order of the 1,014 accident locations that are currently considered as

most dangerous. In particular, figure 3.1 shows the percentage deviation values for

different subsets of the 1,014 currently dangerous accident locations, using respectively

the weighing values 1 1 1, 1 1 10 and 1 10 10.

Additionally, as explained in section (3.2.2), for budgetary reasons, the government

does not redesign all 1,014 dangerous accident locations, but only the 800 accident

sites with the highest priority score. Since different weighing value combinations

produce different ranking orders, table 3.1 shows the percentage deviation values for

the top 15%, top 40%, top 70% and top 800 of the 1,014 currently most dangerous

accident locations using different combinations of weighing values.

These results show that when changing the 1 3 5 weight value combinations,

this causes the different location subsets to deviate from the original 1 3 5 location

subsets from 12.5% to 23.5%. This means that in the most extreme case, 23.5% of the

accident locations considered belonging to the 15% most dangerous accident locations

of the 1,014 dangerous accident locations using 1 3 5 weight values do not appear
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Figure 3.1: Percentage deviation values for the 1,014 currently most dangerous acci-

dent sites using alternative weighing value combinations than 1 3 5

in the top 15% when changing the weight values to 1 1 1. On the other hand, when

changing the weight values to the combination 1 1 10, only 12.5% of the resulting

most dangerous accident locations will differ from the currently 800 selected black

spots.

Furthermore, results of table 3.1 show that the percentage deviation values of

the different weighing value combinations differ greatly amongst each other. The

more the weight values deviate from each other, the greater the variability of the

black spots will be. For example, when comparing the top 15% (of the 1,014 most

dangerous accident locations) calculated using the weight value combination 1 10 10

and the weight value combination 1 1 1, table 3.1 shows that 43.8% of the accident

locations in this subset will differ from each other. When comparing this result

with the previous results, it can be seen that this percentage deviation value is more

extreme than the values related to the 1 3 5 weight combination (respectively 23.5%

and 22.8% for the top 15%). This can be explained by the more ‘general’ character

of the 1 3 5 weight values, which does not differ as greatly from the other weight

value combinations. However, note that although both weight value combinations
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Table 3.1: Percentage deviation values for different subsets of the 1,014 currently

most dangerous accident locations using different combinations of weight values

X (top X) LI SI DI

LI SI DI 1 1 1 1 1 10 1 3 5 1 10 10

1 1 1 15% 0%

1 1 1 40% 0%

1 1 1 70% 0%

1 1 1 800 0%

1 1 10 15% 30.0% 0%

1 1 10 40% 26.1% 0%

1 1 10 70% 16.7% 0%

1 1 10 800 11.8% 0%

1 3 5 15% 23.5% 21.5% 0%

1 3 5 40% 18.4% 21.9% 0%

1 3 5 70% 16.4% 15.2% 0%

1 3 5 800 13.1% 12.5% 0%

1 10 10 15% 43.8% 40.5% 22.8% 0%

1 10 10 40% 39.4% 39.6% 22.1% 0%

1 10 10 70% 33.1% 40.5% 22.8% 0%

1 10 10 800 23.4% 23.7% 14.1% 0%

practically have an equal impact on the number of accident locations that will differ

in the top 15%, the actual accident locations that change in this subset will not be

the same.

Finally, the percentage deviation values are on average smaller when more acci-

dent locations are involved in the analysis. A possible explanation could be that the

accident locations with a higher ranking value (i.e. the most dangerous sites), accord-

ing to the 1 3 5 weight values, are more sensitive to changes in the weight values

than the accident locations with smaller ranking values. However, we should take into

account that the larger the top of accident locations that is considered for analysis

(X), the more accident locations can obtain a different ranking order without falling

out of the top X% most dangerous accident locations. Indeed, as explained in one

of the previous sections, the percentage deviation value gives no information about

these internal changes in ranking orders. More specifically, this means that, when
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Table 3.2: Total number of fatal, serious and light injuries for the 1,014 currently

most dangerous sites

Top 800 DI SI LI TOTAL

1 1 1 249 2,326 13,246 15,821

1 1 10 374 2,267 12,814 15,455

1 3 5 329 2,571 12,496 15,396

1 10 10 341 2,817 11,280 14,438

using different weighing values, selecting the accident sites belonging to the top 800

and the top 70% (710 sites) of the most dangerous accident locations, the maximum

number of sites that can differ from the original 1 3 5 selection is respectively 26.75%

((1,014 - 800)/800) and 42.8% ((1,014 - 710)/710). For the top 15% (152 sites) and

the top 40% (406 sites), 100% of the selected sites can differ from the original 1 3 5

selection. Accordingly, we should not compare the absolute values of the percentage

deviation values amongst different subset sizes (vertically) but only amongst different

weighing value combinations selecting the same subset size (horizontally).

Additionally, table 3.2 shows that using the current 1 3 5 weights, selecting

and tackling the 800 most dangerous accident locations relates to 329 deadly injured

victims (DI), 2,571 seriously injured persons (SI) and 12,496 lightly injured persons

(LI). Depending on the chosen alternative weighing combination, the selection of the

800 most dangerous sites will cover a different number of respectively fatally injured

persons (ranging from 249 to 374), seriously injured persons (ranging from 2,267 to

2,817) and lightly injured persons (ranging from 11,280 to 13,246). The total number

of injured persons will then vary from 14,438 to 15,821. As explained in the beginning

of this chapter (see section 3.3.1), this choice between avoiding as much victims as

possible or prioritizing more serious injury accidents represent different attitudes from

the government towards the traffic safety problem.

These results illustrate that a different attitude towards the traffic safety problem

and the choice of the corresponding injury weight values in combination with the size

of the subset of the accident locations that is considered has important consequences

for the selection and ranking of hazardous sites and for traffic safety actions in general.
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3.3.2.2 Results for all 23,184 Accident Locations

In this section, we look at the consequences of changing the injury weight values on

all 23,184 accident locations of Flanders. This allows to explore the sensitivity of the

ranking orders of all accident locations, including the locations that are currently not

considered as being very dangerous.

Figure 3.2 gives an overview of the effects of changing the 1 3 5 weight values

on the ranking order of all 23,184 accident locations that are currently considered

as most dangerous. In particular, figure 3.2 shows the percentage deviation values

for the three combinations of weight values representing different attitudes towards

the traffic safety problem (see previous section) for different subsets of all accident

locations.

In addition, table 3.3 shows the percentage deviation values for the top 800, top

15%, top 40%, top 70% of all 23,184 accident locations using different combinations

of weighing values.

Results of this table show that when selecting the 800 most dangerous accident

locations using the different combinations of weight values, the ‘new black spots’

Figure 3.2: Percentage deviation values for all accident sites using alternative weighing

value combinations than 1 3 5
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Table 3.3: Percentage deviation values for different subsets of all accident locations

using different combinations of weight values

X (top X) LI SI DI

LI SI DI 1 1 1 1 1 10 1 3 5 1 10 10

1 1 1 800 0%

1 1 1 15% 0%

1 1 1 40% 0%

1 1 1 70% 0%

1 1 10 800 34.0% 0%

1 1 10 15% 25.6% 0%

1 1 10 40% 5.9% 0%

1 1 10 70% 3.1% 0%

1 3 5 800 21.6% 24.6% 0%

1 3 5 15% 22.8% 22.3% 0%

1 3 5 40% 19.9% 15.8% 0%

1 3 5 70% 9.8% 8.7% 0%

1 10 10 800 44.6% 44.3% 24.5% 0%

1 10 10 15% 38.5% 36.4% 17.1% 0%

1 10 10 40% 39.4% 35.4% 19.5% 0%

1 10 10 70% 33.1% 8.9% 0.5% 0%

will contain between 21.6% and 24.6% different accident locations compared to the

800 most dangerous accident locations selected by the 1 3 5 values. These results

show that the concept of dangerous accident locations is rather relative and depends

strongly on the chosen traffic safety policy. Note that these figures differ from the

results in table 3.1 for the top 800. This can be explained by the fact that the top

800, which in both tables is selected by the 1 3 5 conditions and which is used to

calculate the percentage deviation values with the other weight values, differs in the

two tables. In this last analysis, we do not select the locations with a minimum of 3

accidents in the last 3 years first. Nor does the priority value need to exceed 15.

Furthermore, when considering subsets of different sizes of all the accident loca-

tions and comparing the results with these of the 1 3 5 weight values the percentage

deviation values will vary from 0.5% to 24.6%. Similar to the results of the previous

section, these percentage deviation values are on average smaller when more accident
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locations are involved in the analysis. For example, when using the 1 10 10 values

to determine the subset of 70% most dangerous accident locations, only 0.5% of these

accident locations will differ from the results of the 1 3 5 weight combination. As

explained in the previous section, this can be a result from the inclusion of more

accident locations which allows more internal shifts without falling out of the subset.

More specifically, for this data set this means that, when using different weighing

values, selecting the accident sites belonging to the top 70% (16,229 sites) of the most

dangerous accident locations, the maximum number of sites that can differ from the

original 1 3 5 selection is 42.85% ((23,184 - 16,229)/16,229). For the top 800, the top

15% (3,478 sites) and the top 40% (9,274 sites), 100% of the selected sites can differ

from the original 1 3 5 selection. Accordingly, we should not compare the absolute

values of the percentage deviation values amongst different subset sizes (vertically)

but only amongst different weighing value combinations selecting the same subset size

(horizontally). However, when comparing this percentage deviation value of 0.5% for

the 1 10 10 values with the the percentage deviation value for the 1 1 1 weight

values to identify the top 70% (9.8%), we can conclude that, although the size of the

subset is large, still some significant changes can appear depending on the weighing

values.

Next, comparing the differences in the selection of the accident locations by the

different weight value combinations amongst each other leads to some interesting

results in accordance with the results of table 3.1. For example, when comparing the

top 800 of all accident locations calculated using the weight value combination 1 10

10 and the weight value combination 1 1 1, table 3.3 shows that 44.6% of the accident

locations in this subset differ from each other. When comparing this result with the

results related to the 1 3 5 weight values again it can be seen that this percentage

deviation value is more extreme for the different weight value combinations amongst

each other. Additionally, although results from table 3.3 show that the impact of

both weight value combinations on the number of accident locations that will differ

in the top 800 does not vary strongly (respectively 21.6% and 24.5% for the 1 1 1

and 1 10 10 combination), the actual accident locations that change in this subset

will not be the same.

Additionally, table 3.4 shows that using the current 1 3 5 weights, selecting

and tackling the 800 most dangerous accident sites relates to 401 deadly injured

victims (DI), 2,636 seriously injured persons (SI) and 12,141 lightly injured persons

(LI). When using an alternative weighing combination, the selection of the 800 most
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Table 3.4: Total number of fatal, serious and light injuries for all 23,184 accident sites

Top 800 DI SI LI TOTAL

1 1 1 234 2,144 13,557 15,935

1 1 10 635 2,006 11,554 14,195

1 3 5 401 2,636 12,141 15,178

1 10 10 399 3,112 9,727 13,238

dangerous sites will cover a different number of respectively fatally injured persons

(ranging from 234 to 635), seriously injured persons (ranging from 2,006 to 3,112) and

lightly injured persons (ranging from 9,727 to 13,557). The total number of injured

persons will then vary from 13,238 to 15,935.

3.3.2.3 Results for the 5,326 Accident Locations with Minimum 3 Acci-

dents

In this last section, we will investigate the effects of changing the injury weight values

on all accident locations of Flanders where at least 3 accidents occurred between

1997 and 1999. Note that this is currently one of the conditions (besides the priority

score) for an accident location to be considered as dangerous. Therefore, analyzing

the impact of the injury weight values on the ranking orders of these 5,326 accident

locations allows a more realistic exploration of the sensitivity of the ranking and

selecting of dangerous accident locations when using different weighing values.

Figure 3.3 gives an overview of the effects of changing the 1 3 5 weight values

on the ranking order of the accident sites with minimum 3 accidents. In particular,

figure 3.3 shows the percentage deviation values for different subsets of these 5,326

accident locations, using respectively the weighing values 1 1 1, 1 1 10 and 1 10

10..

In addition, table 3.5 shows the percentage deviation values for the top 800, top

15%, top 40%, top 70% of all 23,184 accident locations using different combinations

of weighing values.

More specifically, table 3.5 shows the percentage deviation values for different

combinations of weighing values and for different subsets of the accident locations

with at least 3 accidents, all related to the ranking order of the currently used 1 3

5 weighing values. Note that for these locations the top 15% coincides with the top

800.
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Figure 3.3: Percentage deviation values for accident sites with minimum 3 accidents

using alternative weighing value combinations than 1 3 5

These results show that depending on the chosen injury weight values, selecting

subsets of the most dangerous accident locations can deviate from the 1 3 5 location

subsets from 6.9% to 22.1%. More specifically, when selecting the 800 most dangerous

accident locations using the 1 10 10 weight values, 22.1% of these accident locations

will differ from the 1 3 5 selection. Note that for the top 800, these results strongly

coincide with the results of table 3 although in this analysis the extra criterion of

minimum 3 accidents per location was used. Furthermore, analogously to the results

of table 3.1 and table 3.3, the percentage deviation values are on average smaller when

more accident locations are involved in the analysis.

More specifically, for this data set this means that, when using different weighing

values, selecting the accident sites belonging to the top 70% (3,729 sites) of the most

dangerous accident locations, the maximum number of sites that can differ from the

original 1 3 5 selection is 42.83% ((5,326 - 3,729)/3,729). For the top 800 (15%) and

the top 40% (2,131 sites), 100% of the selected sites can differ from the original 1 3

5 selection. Accordingly, we should not compare the absolute values of the percentage

deviation values amongst different subset sizes (vertically) but only amongst different
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Table 3.5: Percentage deviation values for different subsets of the accident locations

with minimum 3 accidents using different combinations of weight values

X (top X) LI SI DI

LI SI DI 1 1 1 1 1 10 1 3 5 1 10 10

1 1 1 800 (15%) 0%

1 1 1 40% 0%

1 1 1 70% 0%

1 1 10 800 (15%) 27.5% 0%

1 1 10 40% 9.0% 0%

1 1 10 70% 1.8% 0%

1 3 5 800 (15%) 19.2% 20.9% 0%

1 3 5 40% 16.4% 12.8% 0%

1 3 5 70% 10.9% 10.2% 0%

1 10 10 800 (15%) 40.0% 34.6% 22.1% 0%

1 10 10 40% 26.1% 24.5% 12.2% 0%

1 10 10 70% 17.9% 17.1% 6.9% 0%

weighing value combinations selecting the same subset size (horizontally).

Additionally, table 3.6 shows that when using the current 1 3 5 weighing com-

bination, selecting and tackling the 800 most dangerous accident sites relates to 329

deadly injured victims (DI), 2,571 seriously injured persons (SI) and 12,496 lightly

injured persons (LI). When using an alternative weighing combination, the selection

of the 800 most dangerous sites will cover a different number of respectively fatally

injured persons (ranging from 223 to 481), seriously injured persons (ranging from

Table 3.6: Total number of fatal, serious and light injuries for the sites with minimum

3 accidents

Top 800 DI SI LI TOTAL

1 1 1 223 2,126 13,580 15,929

1 1 10 481 2,066 12,254 14,801

1 3 5 329 2,571 12,496 15,396

1 10 10 338 2,943 10,457 13,738
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2,006 to 2,943) and lightly injured persons (ranging from 10,457 to 13,580). The total

number of injured persons will then vary from 13,738 to 15,929.

3.3.3 Conclusions

In this section, we used four different weighing value combinations each representing

a different attitude towards the traffic safety problem to investigate how big the

effect would be of using one of these alternative policies on the current selection of

hazardous accident sites in Flanders. More specifically, we discussed the effects of

using the weighing value combinations 1 1 1, 1 1 10, 1 3 5 and 1 10 10 (for

respectively each deadly injured, seriously injured and lightly injured person), on

three different data sets: the 1,014 currently most dangerous accident locations, all

23,184 accident locations and the 5,326 accident locations with minimum 3 accidents.

Results showed that a change in the traffic safety policy and the reflection of this

choice in the injury weighing values used to rank and select the most dangerous acci-

dent locations will not only have an important impact on the number of accident sites

that will change when selecting the most hazardous sites, it will also have an impor-

tant effect on the type of accident locations (e.g. locations with high traffic volumes

resulting in many small accidents with mostly light injuries opposite to locations with

lower traffic volumes but severe injuries) that are selected. More specifically, depend-

ing on the chosen alternative weighing combination, the selection of the 800 most

dangerous sites will cover a different number of respectively fatally injured, seriously

injured and lightly injured persons. This choice between avoiding as much victims

as possible or prioritizing more serious injury accidents represent different attitudes

from the government towards the traffic safety problem and accordingly will have an

impact on the resulting future traffic safety decisions. Government should therefore

carefully decide which priorities should be stressed in the traffic safety policy. Then,

the according weighing value combination can be chosen to rank and select the most

dangerous accident locations.

Note that, as explained in section (3.3) the weighing values used in this sensitivity

analysis are just examples and therefore no statement is made that one of these four

alternatives is the optimal weighing scheme .
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3.4 Impact of the Number of Passengers

3.4.1 Weighing the Severity of the Accident

In this section, we will evaluate how big the effect would be on the current ranking of

the accident locations in Flanders when giving a weight to the severity of the accident

instead of to all the injured occupants of the vehicles. This choice is motivated by

preliminary results, which showed that most of the 1,014 accident locations that are

currently considered as dangerous on average count 10 accidents. In other words, it

turns out that not the number of accidents but the number of injured passengers is

the most differentiating factor for the ranking of these accident locations. However,

if we assume the number of passengers in the car to be a random variable with

equal mean across all accident locations, then the number of passengers involved in

the accidents on a particular location should not reflect the scoring of that location.

We will therefore calculate the scoring of each location based on the severity of the

accident and not on the severity of the involved casualties, the former which is free

of any bias resulting from coincidental circumstances about the number of passengers

in the car. In practice, this means that the points per accident that are summed up

in order to calculate the priority value of the locations can vary between 1 (only light

injuries), 3 (at most serious injuries) and 5 (at least one deadly injured casualty).

3.4.2 Empirical Results

Figure 3.4 gives an overview of the effects of giving weight to the severity of the

accident instead of to all the injured occupants of the vehicle. In particular, figure 3.4

shows the percentage deviation values for different subsets of the three data sets (1,014

currently dangerous accident locations, locations with minimum 3 accidents and all

accident locations,) only taking into account the most serious injury per accident.

These results show that correcting for the number of passengers will indeed cause a

change in the ranking and selection of the most dangerous accident locations.

In addition, table 3.7 shows the percentage deviation values for the top 15%, top

40%, top 70% and top 800 of the most dangerous accident sites when correcting for

the number of passengers.

More specifically, when looking at the first data set, the 1,014 accident locations

that are currently considered as dangerous, giving weight to the accidents instead of

to all the injured passengers, while keeping the 1 3 5 weighing values, causes the

different location subsets to deviate from the original location subsets up to 25.0%
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for the top 15% and 14.7% for the top 800. This means that 14.7% of the accident

locations that are currently considered to belong to the 800 most dangerous accident

locations do not appear in the top 800 when correcting for the number of passengers.

When using different weighing values, the comparison between correcting for the

number of passengers or counting all the injured passengers also produces percentage

deviation values of the same magnitude (see table 3.7).

When looking at the data set containing all of the 23,184 accident locations,

correcting for the number of passengers when using the 1 3 5 weighing values results

in a maximum percentage deviation value of 24.2% (top 800). This means that 24.2%

of the accident locations that are currently considered to belong to the 800 most

dangerous accident locations do not appear in the top 800 when only taking into

account the most serious injury per accident.

Finally, results for the 5,326 accident locations with minimum 3 accidents indicate

Figure 3.4: Percentage deviation values for different subsets of the accident locations

taking into account the most serious injury per accident
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Table 3.7: Percentage deviation values for correcting for the number of passengers

versus not correcting

1,014 currently most dangerous sites top 15% top 40% top 70% top 800

1 1 1 24.3% 22.4% 12.9% 9.1%

1 1 10 24.3% 17.9% 12.1% 9.2%

1 3 5 25.0% 22.9% 18.6% 14.7%

1 10 10 31.4% 23.6% 14.1% 9.7%

all 23,184 accident locations top 800 top 15% top 40% top 70%

1 1 1 23.2% 23.1% 20.9% 13.5%

1 1 10 28.3% 14.5% 18.9% 14.9%

1 3 5 24.2% 22.1% 16.6% 12.2%

1 10 10 31.5% 26.6% 3.1% 12.3%

locations with minimum 3 accidents top 800 (15%) top 40% top 70%

1 1 1 24.6% 20.1% 15.4%

1 1 10 19.8% 16.8% 13.6%

1 3 5 21.4% 16.2% 9.1%

1 10 10 25.5% 11.6% 5.2%

that, using the 1 3 5 values, giving weight to the accidents causes the different

location subsets to deviate from the original location subsets up to 21.4% (top 800 or

15%).

Analogously with the results for the 1,014 currently most dangerous accident lo-

cations, for all the 23,184 accident sites and the 5,326 locations with minimum 3

accidents, when using different weighing values, correcting for the number of passen-

gers produces percentage deviation values of the same magnitude.

Note that again, for the three data sets the percentage deviation values are on

average smaller when more accident locations are selected in top for analysis.

Additionally, table 3.8 shows that selecting the top 15% or 799 most dangerous

accident sites from the 1,014 currently most dangerous accident locations, using the

1 3 5 weights and correcting for the number of passengers, relates to 276 deadly

injured victims (DI), 1,819 seriously injured persons (SI) and 7,178 lightly injured

persons (LI). Additionally, when not only correcting for the number of passengers but



3.4. Impact of the Number of Passengers 59

Table 3.8: Total number of fatal, serious and light injuries for the 1,014 currently

most dangerous sites when correcting for the number of passengers

Top 800 DI SI LI TOTAL

1 1 1 213 1,727 7,526 9,466

1 1 10 318 1,634 7,291 9,243

1 3 5 276 1,819 7,178 9,273

1 10 10 288 1,934 6,512 8,734

also choosing alternative weighing value combinations, the selection of the 800 most

dangerous sites will cover a different number of respectively fatally injured persons

(ranging from 213 to 318), seriously injured persons (ranging from 1,634 to 1,934) and

lightly injured persons (ranging from 6,512 to 7,526). The total number of injured

persons will then vary from 8,734 to 9,466. Compared with the results of table 3.2,

for all the weighing value combinations, the total number of injured persons that will

be selected is smaller when correcting for the number of passengers. These results

are exactly the consequence of calculating the scoring of each location based on the

severity of the accident and not on the severity of the involved casualties, the former

which is free of any bias resulting from coincidental circumstances about the number

of passengers in the car.

Similar results can be found for the data set with all the 23,184 accident locations.

More specifically, selecting the 800 most dangerous sites using the 1 3 5 weights

and correcting for the number of passengers, relates to 272 deadly injured victims

(DI), 1,822 seriously injured persons (SI) and 7,294 lightly injured persons (LI). Ad-

ditionally, when not only correcting for the number of passengers but also choosing

Table 3.9: Total number of fatal, serious and light injuries for all 23,184 accident sites

when correcting for the number of passengers

Top 800 DI SI LI TOTAL

1 1 1 165 1,473 8,202 9,840

1 1 10 611 1,176 5,885 7,672

1 3 5 272 1,822 7,294 9,388

1 10 10 249 2,081 6,206 8,536
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Table 3.10: Total number of fatal, serious and light injuries for the sites with minimum

3 accidents when correcting for the number of passengers

Top 800 DI SI LI TOTAL

1 1 1 165 1,469 8,198 9,832

1 1 10 531 1,277 6,470 8,287

1 3 5 276 1,820 7,269 9,365

1 10 10 248 2,081 6,192 8,521

alternative weighing value combinations, the selection of the 800 most dangerous sites

will cover a different number of respectively fatally injured persons (ranging from 165

to 611), seriously injured persons (ranging from 1,176 to 2,081) and lightly injured

persons (ranging from 5,885 to 8,202). The total number of injured persons will then

vary from 7,672 to 9,840.

Finally, selecting the 800 most dangerous locations from the 5,326 accident sites

with minimum 3 accidents,using the 1 3 5 weights and giving weight to the severity

of the accidents, results in the selection of 276 deadly injured victims (DI), 1,820

seriously injured persons (SI) and 7,269 lightly injured persons (LI). When also using

different weighing value combinations, the selection of the 800 most dangerous sites

will cover between 165 and 531 fatally injured persons, between 1,277 and 2,081

seriously injured persons and between 6,192 and 8,198 lightly injured persons. The

total number of injured persons will then vary from 8,287 to 9,840.

3.4.3 Conclusions

This research showed that giving weight to the severity of the accident instead of to

all the injured occupants of the vehicle will have a big impact on the selection and

ranking of dangerous accident locations. More specifically, when selecting the 800

most dangerous accident sites of all accident locations, when only taking into account

the most serous injury per accident, 24.2% of these locations will differ from the cur-

rent selection. Accordingly, giving weight to the severity of the accident corrects for

the bias that occurs when the number of occupants of the vehicles are subject to coin-

cidence. Obviously, this correction results in different accident sites that are selected

as most dangerous, which will also have an important effect on the resulting future

traffic safety policy and decisions. Furthermore, the total number of injured persons



3.5. Impact of Using the Expected Number of Accidents 61

that will be selected are smaller when correcting for the number of passengers. These

results are exactly the consequence of calculating the scoring of each location based

on the severity of the accident and not on the severity of the involved casualties, the

former which is free of any bias resulting from coincidental circumstances about the

number of passengers in the car. However, in some cases (e.g. discotheques, enter-

tainment centers), it can be reasoned that the number of occupants, and accordingly

the number of injured persons, is not a coincidence but more likely a trend. For

these locations, correcting for the number of passengers would not be advisable since

the number of injuries that appear at these locations are inherent to the locations

characteristics.

3.5 Impact of Using the Expected Number of Acci-

dents

3.5.1 Estimating the Expected Number of Accidents

Literature points out that when identifying hazardous locations, it is common practice

to prepare lists of accident locations, ordered according to their empirical accident

rate (Schlüter et al., 1997). However, as explained by Hauer (1986) the actual count

of accidents are subject to random variation and to the regression to the mean prob-

lem. Accordingly, locations that in one period recorded ‘x’ accidents do not have,

on the average, ‘x’ accidents in the subsequent period. Therefore, the actual count

of accidents is not a very good estimate for the expected number of accidents at a

location. Consequently, ordered lists constructed by ranking locations according to

their empirical accident rate, and thus ignoring the variability associated with each

estimate, do not ensure that the worst locations will be identified (Schlüter et al.,

1997).

To account for this random character of accident counts, a number of statistical

models have been used to estimate the accident frequency at a specific location over

a given interval of time. More specifically, compelling arguments can be found to

support the assumption that accident counts follow the Poisson probability law with

parameter λ (Nag et al., 2002). The underlying assumption is that road accidents can

be treated as random events with an underlying mean accidents rate for each accident

location.

Formula (3.3) shows a Poisson distribution where xi represents the actual number
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of accidents (xi = 0, 1, 2,..) and λi the expected number of accidents for a specific

location:

f(xi | λi) =
e−λi λxi

i

xi!
(3.3)

The expected value λi of a location is the unknown parameter that needs to be

estimated so that we can use this value to rank the locations.

In traditional statistical approaches, this parameter will be estimated using the

frequency theory, which defines the probability of a characteristic as its long term

frequency. For example, suppose we want to estimate the probability of an event A

where N represents the number of times the experiment has been carried out and

M the number of times the event A occurred. Equation (3.4) shows that the long

term frequency of this event A will then be estimated using the limit of the relative

frequency, introduced by Denis Poisson (Jackman, 2002):

Pr(A) = lim
n→∞

M

N
(3.4)

From this equation it should be clear that when it is not possible to carry out

repetitive experiments, or when little data are available or the sample size is small,

traditional statistical approaches are not very suitable to estimate the probability of

an event. This is often the case in traffic research, where the availability of data

is usually sparse with short periods of observation. As a result, Bayesian methods

have received increasing support from traffic researchers attempting to overcome these

difficulties (Schlüter et al., 1997).

3.5.2 Bayesian Statistical Models

3.5.2.1 Bayesian Models in Traffic Safety Research

The interest in the use of Bayesian estimation methods in the domain of traffic safety

originated in the eighties. More specifically, Hauer (1986) first explored Empirical

Bayesian estimation procedures that enhanced the accuracy of estimates. In his re-

search, it is shown that the Empirical Bayes approach yields better estimates of the

expected number of road accidents. Ever since, many applications used in some

ways an Empirical Bayes approach 2. Hauer and Persaud (1984) examined the per-

formance of some identification procedures. Empirical Bayes methods were used to

estimate proportions of correctly and falsely identified deviant road sections. Higle

2Examples referred to by Schlüter et al. (1997) and Van den Bossche et al. (2002)
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and Witowski (1988) specified an upper limit value on the acceptable’ underlying

accident rate and identified a site i as being hazardous when the probability that the

underlying accident rate exceeded the limit value by a predetermined tolerance level.

Davies (1990) proposed a procedure for ranking a set of entities by considering a ra-

tio between the underlying accident rate at each entity (target site) and the pooled

underlying accident rates of the remaining entities (reference sites). Belanger (1994)

applied Empirical Bayes methods to estimate the safety of four-legged unsignalized

intersections. The results were used to identify black spot locations. Hauer (1996)

reviewed the development of procedures to identify hazardous locations in general.

Vogelesang (1996) gives a very comprehensive overview of Empirical Bayes methods

in road safety research.

Another form of the Bayesian approach, called the hierarchical Bayesian model,

has also been proposed in literature. These methods can handle the uncertainty

and the great variability of accident data and produce a probabilistic ranking of

the accident locations. However, the use of these models in traffic safety is less

widespread 3. Christiansen et al. (1992) developed a hierarchical Poisson regression

model to estimate and rank accident sites, using a modified posterior accident rate

estimate as a selection criterion. Schlüter et al. (1997) deal with the problem of

selecting a subset of accident sites based on a probability assertion that the worst

sites are selected first. They propose different criteria for site selection. To estimate

accident frequencies, a hierarchical Bayesian Poisson model has been used. Davis and

Yang (2001) combined hierarchical Bayes methods with an induced exposure model

to identify intersections where the crash risk for a subgroup is relatively high. Tunaru

(2002) proposed a hierarchical Bayesian approach for ranking accident sites based on

a bivariate Poisson log-normal distribution.

The main advantage of these Bayesian statistical models is that they do not only

take into account the available data to make estimates, they also allow to include

prior information in the analysis. This prior information contains expert knowledge

that is not based on the data that are available for the analysis. This will be explained

in the following section.

3.5.2.2 Bayes Rule

In this study λ is the unknown parameter that represents the expected number of

accidents for a location. For each location, this value needs to be estimated so that

3Examples referred to by Schlüter et al. (1997) and Brijs et al. (2003)
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we can use these values to rank the locations.

Suppose the vector x = (x1, x2, ..., xn) represents the available information (i.e.

the actual number of accidents) on the n locations we want to rank according to their

expected accident rate. The n parameters that we are interested in, can then be

represented by the vector λ = (λ1, λ2, ..., λn). However, as explained in the previous

section, the available data or empirical accident rate alone will not be sufficient to

make reliable estimates for the future number of accidents at these locations. There-

fore, we will include prior knowledge or assumptions on the values of λ in the prior

distribution function f(λ). Furthermore, as shown in (3.3), the distribution function

of the data will depend on the values of λ. This dependence can be expressed in a

conditional distribution of probability f(x | λ). After taking into account this prior

knowledge on the values of λ and the distribution function of the data, we can then

use Bayes rule to estimate the values of λ (Spiegelhalter, 1999):

f(λ | x) =
f(λ)f(x | λ)∫
f(λ)f(x | λ)dλ

≈ f(λ)f(x | λ) (3.5)

In (3.5), f(λ | x) is called the posterior or posteriori distribution for λ. This distri-

bution expresses the insecurity about λ after taking into account the available data.

As explained above, f(λ) is called the prior distribution function. Finally, f(x | λ)

is called the likelihood. This is considered as the joint distribution of the data in

function of the parameters λi. This distribution will integrate to 1. Consequently, in

a simplified manner, Bayes Rules can be thought of in the following manner (3.6):

posterior = likelihood× prior (3.6)

From this joint posterior distribution f(λ | x), the conditional posterior distributions

for the λi’s can be calculated for each individual location. This will be explained in

the following sections.

3.5.2.3 Bayesian Hierarchical Models

In this research, we assume that each location i is characterized by a number of road

accidents that are Poisson distributed with parameter λi , i.e. the expected number

of accidents (see equation (3.3)). To estimate this value of λi, we use the empirical

accident frequency that is available from the accident data. This information will be

taken into account by the model in the form of the likelihood. Furthermore, we will

include prior knowledge on the value of λi to estimate the expected accident rate for

each location.
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λ...λ λ2 n−1 nλ 1

x...x x2 n−1 nx 1

Hyperpopulation

Figure 3.5: Diagram of the Hierarchical Bayesian Model

However, according to de Finetti (1974), it is generally unrealistic to assume that

prior information can be readily and reliably elected for each individual site under

investigation. As an alternative, Schlüter et al. (1997) proposed including expert

prior information pertaining to characteristics of the grouping of accident sites under

investigation. This information is both more readily available and more reliable.

This feature can be implemented in the model by assuming exchangeability among

the underlying accident rates. This implies that although each location has specific

site characteristics, it is assumed that the accident rates on these locations arise from

some common distribution, called the hyperdistribution.

Van de Bossche et al. (2002) explain that, based on Gelman et al. (1995), this set-

ting can be schematically represented as in figure (3.5). Here, the value xi (i=1,2,...,n)

is the observed number of accidents at location i. This value depends on the value of

the parameter λi, which represents the corresponding non-observable expected num-

ber of road accidents. This λi, in turn, originates from a hyperdistribution specified

by some hyperparameters.

The authors further explain, that once the hierarchical structure is determined, a

prior distribution should be chosen for the hyper population and its parameters. When

there is no information available for the hyper parameters, a non-informative prior is

preferred. In practice, this often implies assigning a Uniform or Normal distribution
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to the hyperparameter, in order to give each value of the hyperparameter the same

probability. Specifying such a prior distribution for the hyper parameters, to express

the uncertainty about their true value, is called the full Bayesian approach. A second

frequently used approach, the Empirical Bayes approach, obtains point estimates for

the parameters of the hyper prior from the data. In this case the priors are called

informative priors.

For practical reasons, as in Brijs et al. (2003), in this research, we will make use

of a Bayesian hierarchical model with informative priors because, especially for small

counts, diffuse priors can have serious effects on the convergence properties of the

chain (see following section). More specifically, these hyperparameters are estimated

from the data by empirical Bayes.

3.5.3 MCMC Techniques and Gibbs Sampling

3.5.3.1 Markov Chain Monte Carlo (MCMC) Techniques

The main interest in this research is in the posterior probability for road accidents

at each location. In the previous section, the joint posterior distribution of these

probabilities is given by equation (3.5). Here, λ is the vector of the unknown expected

number of accidents and x is the vector of the observed number of road accidents

(data). Since we are interested in ranking the locations based on their expected

number of accidents, information is required on the single values of the λ′s for each

location, say λk. This is achieved by integrating the joint posterior distribution over

all other parameters λi (i = 1, 2, ..., k -1, k+1,..., n) (Spiegelhalter, 1999):

f(λk | x) =
∫

f(λ | x)dλ1dλ2...dλk−1dλk+1...dλn (3.7)

One way to solve these marginal posterior probabilities is to work out the integrals an-

alytically, for which the calculations may become very cumbersome (Van den Bossche

et al., 2002). Another approach is to sample from the posterior distribution. This is

the basic principle of Monte Carlo simulation. Numerical calculations are carried out

using simulation. Instead of analytically calculating exact or approximate estimates,

the Markov Chain Monte Carlo (MCMC) technique generates a stream of simulated

values for the quantities of interest (Spiegelhalter (1996), Congdon (2003)).

In general, samples should be drawn from the joint posterior distribution f(λ | x).

MCMC simulation is used when it is not possible (or not computationally efficient) to

sample directly from the joint posterior distribution. Instead, we sample iteratively
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in such a way that each step of the process we expect to draw from a distribution

that becomes closer and closer to the distribution function. More specifically, MCMC

simulation is a general method based on drawing values of λ from approximate distri-

butions and then correcting those draws to better approximate f(λ | x). The samples

are drawn sequentially, with the distribution of the sampled draws depending on the

last value drawn; hence the draws form a Markov chain. (As defined in probability

theory, a Markov chain is a sequence of random variables θ1, θ2, ..., for which, for

any t, the distribution of θt given all previous θ’s depends only on the most recent

value, θt−1). For a wide class of problems, including posterior distributions for many

hierarchical models, this approach appears to be the easiest way to get reliable re-

sults when used carefully. The key is to create a Markov Process whose stationary

distribution is the specified f(λ | x) and run the simulation long enough that the

distribution of the current draws is close enough to this stationary distribution. This

is called ‘convergence’ (Gelman et al., 1995).

3.5.3.2 Gibbs Sampling

A particular Markov chain algorithm that has been found to be useful in many multidi-

mensional problems is the Gibbs sampler, also called alternating conditional sampling,

which is defined in terms of subvectors of λ (Gelman et al., 1995).

If the vector of parameters λ consists of n sub-components, then starting values

λ
(0)
1 , λ

(0)
2 ,..., λ

(0)
n should be defined. The following sample scheme is then repeated

thousands of times, to eventually obtain a sample from f(λ | x), the stationary

distribution of the Markov chain:

Sample λ
(1)
1 from f(λ1 | λ(0)

2 , λ
(0)
3 , ..., λ

(0)
n ,x);

Sample λ
(1)
2 from f(λ2 | λ(1)

1 , λ
(0)
3 , ..., λ

(0)
n ,x);

...

Sample λ
(1)
n from f(λn | λ(1)

1 , λ
(1)
2 , ..., λ

(1)
n−1,x).

After a large number of iterations, the distribution of the value of λ for each accident

site will have been sampled. Posterior summary statistics may be calculated to infer

the newly obtained distributions.

One particular application of the Gibbs sampler is the ability to make inferences

on arbitrary functions of unknown parameters (Spiegelhalter, 1996). An example of

this feature is the computation of the rank probability for each location. The result is

a sample from the posterior distribution of the ranks (Van den Bossche et al., 2002).
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More specifically, for every iteration, the Gibbs sampler provides an estimate of the

rank for a given location i by scanning the estimated number of accidents of all other

accident locations at that iteration. The number of locations with a sampled value

for λ that is equal or lower than λi corresponds to the rank of locationi.

3.5.4 Empirical Study

3.5.4.1 Multivariate Hierarchical Bayes Approach

In this dissertation, we followed the approach of Brijs et al. (2003), who proposed a

multivariate hierarchical Bayes approach with informative priors for ranking accidents

sites. More specifically, suppose the data consist of n different sites. The number of

accidents for the i -th site for a fixed time period (here this time period equals 3

years, i.e. 1997-1999) is denoted as Xi. We assume that the number of accidents

for this site follows a Poisson distribution with parameter λi. For each site, we have

also the triplets (Di, Si, Li) that respectively correspond to the number of deadly

injured persons or fatalities, the number of seriously injured persons and the number

of lightly injured persons for the given time period for each site. We assume that

jointly and conditional on the number of accidents Xi, they follow a 3-variate Poisson

distribution.

Furthermore, in this model we allow for pairwise covariances for each pair of

variables instead of the usual model that assumes the same covariance term for all

the pairs of variables. In other words, the model allows for different correlations

between the variables Di, Si and Li, which is a more realistic assumption in the

context of traffic accident injuries.

This results is the following model:

Xi ∼ Poisson(λi)

(Di, Si, Li) | Xi = xi ∼ 3− Poisson(µ1ixi, µ2ixi, µ3ixi, λ12xi, λ13xi, λ23xi)

Hence, µi reflects the rate for fatalities, serious injuries and light injuries per acci-

dent for the site i, while λij are the covariance parameters for each pair of variables.

Brijs et al. (2003) note that empirical evidence supports the assumption that there

is a positive correlation between the three variables Di, Si and Li. They explain that

this is natural since it reflects the severity of the accidents on location i. So, instead of

assuming independence between the three variables, by imposing three independent

Poisson distributions, a model is proposed that takes into account those correlations
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between the variables, and hence it can model the interdependencies in a more realistic

way.

In order to combine all data into a single number that will be used for ranking the

sites, a weighing function can be used that measures the expected score of an accident

according to the number of fatalities, seriously and lightly injured persons. Based on

these expected scores, the posterior density for the rank of each site can be derived.

The parameters of this model are estimated via Bayesian estimation facilitated by

Markov Chain Monte Carlo (MCMC) methods (a more detailed description of this

technique can also be found in Brijs et al. (2003)).

This approach allows to investigate the effects of using the expected number of

accidents, estimated from a hierarchical Bayesian model, instead of the historic count

data to rank and select the most dangerous accidents sites. It also allows to use

several cost functions based on different weighing value combinations.

3.5.4.2 Results for the 1,014 Currently Most Dangerous Accident Loca-

tions

Table 3.11 shows the results of the comparative analysis between the location rankings

based on count values and the location rankings based on Bayesian estimates for the

1,014 accident locations that are currently considered as most dangerous.

More specifically, table 3.11 gives, for different subsets of the data set, the per-

centage deviation values which refer to the number of accident locations that differ

between the ranking based on the count values and the ranking based on the Bayesian

estimates (see equation 3.2). The values on the diagonals of this table represent the

effect of using Bayesian estimation values instead of historic count data while using

the same weight value combination to select different subsets of the 1,014 accident

locations.

These results show that using Bayesian estimation techniques instead of the his-

toric count data while using the same weight value combination can lead to the se-

lection of 3.9% to 10.6% different accident locations. These results are shown on the

diagonals of the table. When selecting the 800 most dangerous accident locations

using the 1 3 5 weighing values this leads to the selection of 8.5% or 68 different

accident locations. Translated into costs, this means that theoretically 42.5 million

EURO of the 500 million EURO investment budget for redesign is allocated partly

due to the random variation in accident counts.

Additionally, the results of table 3.11 enable to estimate the effect of a change in



70 Chapter 3. Ranking and Selecting Dangerous Accident Locations

Table 3.11: Comparative analysis between counts and Bayes estimates for the 1,014

currently most dangerous accident locations

D for top 15% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 7.3% 29.4% 27.4% 50.3%

1 1 10 31.4% 5.9% 24.2% 45.1%

1 3 5 24.8% 22.9% 5.9% 29.4%

1 10 10 45.1% 40.8% 20.3% 7.8%

D for top 40% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 5.9% 27.8% 25.9% 48.0%

1 1 10 27.1% 5.9% 24.9% 44.6%

1 3 5 19.2% 23.9% 10.6% 31.0%

1 10 10 39.9% 39.6% 17.5% 10.6%

D for top 70% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 5.5% 18.0% 23.8% 34.8%

1 1 10 16.8% 5.1% 19.1% 28.2%

1 3 5 15.8% 15.2% 10.3% 19.6%

1 10 10 31.3% 15.5% 12.8% 4.1%

D for top 800 Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 5.12% 13.0% 23.6% 25.7%

1 1 10 12.7% 5.4% 15.5% 23.7%

1 3 5 13.2% 11.4% 8.5% 15.6%

1 10 10 23.1% 21.5% 10.7% 3.9%

the parameter weights combined with the use of Bayesian estimation values instead

of count data. For example, from table 3.1 it is shown that when selecting the 15%

most dangerous accident locations a change in the parameter values from 1 1 1 to

1 10 10 can lead to a selection of 43.8% different accident locations. When also

using Bayesian estimation, table 3.11 shows that this can even result in the selection

of 45.1% different accident locations when comparing the rankings of the 1 1 1

Bayesian estimations with the ranking of the 1 10 10 count values, and even 50.3%
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Table 3.12: Total number of fatal, serious and light injuries

Top 800 DI SI LI TOTAL

1 1 1 245 2,364 13,173 15,782

1 1 10 374 2,326 12,708 15,408

1 3 5 354 2,650 12,015 15,019

1 10 10 355 2,809 11,127 14,291

different accident locations when comparing the rankings of the 1 1 1 count data

with the ranking of the 1 10 10 Bayesian estimations. Note that these percentage

deviation values will be higher that the percentage deviation values reflected on the

diagonals of the table, which naturally can be explained by the effect of changing

the weight value combinations. Conform to the results of table 3.1 the percentage

deviation values will also be smaller when more accident locations are selected.

Finally, as explained before (see table 3.2), using count data and 1 3 5 weights,

selecting and tackling the 800 most dangerous accident locations relates to 329 deadly

injured victims (DI), 2,571 seriously injured persons (SI) and 12,496 lightly injured

persons (LI). When using Bayesian estimation values instead of count data, depend-

ing on the chosen alternative weighing combination, the selection of the 800 most

dangerous sites will cover a different number of respectively fatally injured persons

(ranging from 245 to 374), seriously injured persons (ranging from 2,364 to 2,809) and

lightly injured persons (ranging from 11,127 to 13,173). The total number of injured

persons will then vary from 14,291 to 15,782 (see table 3.12. As explained before,

this choice between avoiding as much victims as possible or prioritizing more serious

injury accidents represent different attitudes from the government towards the traffic

safety problem.

3.5.4.3 Results for all 23,184 Accident Locations

In table 3.13 the results of the comparative analysis between the location rankings

based on count values and the location rankings based on Bayesian estimates for all

23,184 accident locations are presented.

Similar to the results presented in table 3.11, the values on the diagonals of this

table represent the effect of using Bayesian estimation values instead of historic count

data while using the same weight value combination to select different subsets of the

23,184 accident locations.
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Table 3.13: Comparative analysis between counts and Bayes estimates for all accident

locations

D for top 800 Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 4.6% 15.7% 15.5% 36.3%

1 1 10 34.7% 18.2% 27.0% 37.5%

1 3 5 22.7% 18.3% 8.12% 17.3%

1 10 10 46.0% 41.2% 31.0% 8.6%

D for top 15% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 5.1% 17.1% 17.4% 37.0%

1 1 10 25.9% 9.1% 21.6% 35.6%

1 3 5 23.5% 18.8% 6.8% 16.4%

1 10 10 39.1% 34.1% 22.7% 3.4%

D for top 40% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 1.7% 5.9% 19.5% 39.4%

1 1 10 5.9% 3.7% 15.6% 35.3%

1 3 5 19.9% 15.8% 0.0% 19.5%

1 10 10 39.4% 35.3% 19.9% 0.0%

D for top 70% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 10.2% 10.4% 10.1% 10.2%

1 1 10 10.2% 9.3% 9.1% 9.2%

1 3 5 10.3% 9.2% 0.1% 0.1%

1 10 10 10.3% 9.2% 0.1% 0.1%

These results show that this ranking procedure can lead to the selection of ap-

proximately 0.0% different accident locations for the 1 3 5 and 1 10 10 weighing

values when selecting the top 40% most dangerous accident locations, up to 18.2%

different accident locations for the 1 1 10 weighing value combination when select-

ing the 800 most dangerous accident locations. These results show that selecting the

800 most dangerous accident locations based Bayesian estimation values, instead of

historic count data, causes 18% or 90 million EURO of the investment budget for



3.5. Impact of Using the Expected Number of Accidents 73

Table 3.14: Total number of fatal, serious and light injuries

Top 800 DI SI LI TOTAL

1 1 1 217 2,115 13,589 15,921

1 1 10 435 2,081 12,914 15,430

1 3 5 325 2,512 12,771 15,608

1 10 10 372 3,005 10,670 14,047

redesigning these accident locations to be differently selected.

Furthermore, results of table 3.13 show the effects of change in the parameter

weights combined with the use of Bayes estimation instead of count data. The maxi-

mum percentage deviation value of this table shows that this ranking procedure can

lead to the selection of 46.0% different accident locations when comparing the 1 1

1 Bayesian ranking with the 1 10 10 counts ranking for the 800 most dangerous

accident locations. This result is slightly higher than the percentage deviation value

of table 3 for the same subset and the same weighing value combinations. Note that

again these percentage deviation values will be smaller when more accident locations

are considered in the subset.

Finally, as shown in table 3.4, using count data and 1 3 5 weights, selecting

and tackling the 800 most dangerous accident locations relates to 401 deadly injured

victims (DI), 2,636 seriously injured persons (SI) and 12,141 lightly injured persons

(LI). Analogously with table 3.12, table 3.14 shows that using Bayesian estimation

values instead of count data and depending on the chosen alternative weighing com-

bination, the selection of the 800 most dangerous sites will cover a different number of

respectively fatally injured persons (ranging from 217 to 372), seriously injured per-

sons (ranging from 2,081 to 3,005) and lightly injured persons (ranging from 10,670

to 13,589). The total number of injured persons will vary from 14,047 to 15,921.

3.5.4.4 Results for the 5,326 Accident Locations with Minimum 3 Acci-

dents

Table 3.15 presents the results of a comparative analysis between ranking based on

historic count data on the one hand and Bayesian estimation on the other hand for

the accident locations where at least 3 accidents occurred in the last 3 years.

The results on the diagonals of table 3.15 show that using Bayes estimation instead

of historic count data to rank and select the accident locations can lead to a maximum
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Table 3.15: Comparative analysis between counts and Bayes estimates for all accident

locations with minimum 3 accidents

D for top 15% (800) Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 4.1% 22.1% 22.1% 43.7%

1 1 10 27.0% 5.1% 22.0% 38.6%

1 3 5 18.4% 18.2% 4.5% 25.9%

1 10 10 39.2% 34.0% 20.2% 5.2%

D for top 40% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 5.7% 11.5% 19.3% 30.2%

1 1 10 9.7% 4.6% 15.1% 26.9%

1 3 5 17.0% 14.3% 5.4% 15.1%

1 10 10 27.1% 25.7% 12.2% 4.9%

D for top 70% Bayes

1 1 1 1 1 10 1 3 5 1 10 10

Counts 1 1 1 0.3% 1.8% 12.5% 17.8%

1 1 10 1.9% 1.5% 11.9% 17.1%

1 3 5 11.1% 10.2% 2.9% 7.9%

1 10 10 17.9% 17.0% 5.7% 2.5%

percentage deviation value of 5.7% for the 40% most dangerous accident locations

using the 1 1 1 weighing values. Note that compared to the results of table 3.11

and table 3.13 this maximum value is relatively low. However, this still means that

almost 6% of the accident locations that are considered to belong to the top 40% most

dangerous accident locations are not considered as dangerous when using Bayesian

estimation and vice versa.

Furthermore, the results of table 3.15 show that a change in the parameter weights

combined with the use of Bayes estimation can lead to even higher percentage devia-

tion values. For example, from table 3.5 it is shown that when selecting the 40% most

dangerous accident locations a change in the parameter values from 1 1 1 to 1 10

10 can lead to a selection of 26.1% different accident locations. When also using Bayes

estimation, table 3.15 shows that this can result in the selection of 27.1% different

accident locations when comparing the rankings of the 1 1 1 Bayesian estimations
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Table 3.16: Total number of fatal, serious and light injuries

Top 800 DI SI LI TOTAL

1 1 1 228 2,159 13,530 15,917

1 1 10 444 2,109 12,529 15,082

1 3 5 332 2,616 12,301 15,249

1 10 10 344 2,973 10,003 13,320

with the ranking of the 1 10 10 count values, and even 30.2% different accident loca-

tions when comparing the rankings of the 1 1 1 count data with the ranking of the

1 10 10 Bayesian estimations. Analogously to the previous results, the percentage

deviation values will decrease when more accident locations are selected in the subset.

Finally, as explained in table 3.6, using count data and 1 3 5 weights, selecting

and tackling the 800 most dangerous accident sites covers 329 deadly injured victims

(DI), 2,571 seriously injured persons (SI) and 2,496 lightly injured persons (LI). When

using Bayesian estimation values instead of count data, depending on the chosen

alternative weighing combination, the selection of the 800 most dangerous sites will

cover a different number of respectively fatally injured persons (ranging from 228

to 444), seriously injured persons (ranging from 2,109 to 2,973) and lightly injured

persons (ranging from 10,003 to 13,530) (see table 3.14). The total number of injured

persons will vary from 13,320 to 15,917.

3.5.5 Conclusions

In this research, we used a multivariate hierarchical Bayes approach for ranking and

selecting accidents sites taking into account the number of accidents, the number

of fatalities, and the number of lightly and severely injured casualties for a given

time period for each site. This approach takes into account the random variation in

accident counts by using a 3-variate Poisson distribution that allows for covariance

between the variables. In order to combine all data into a single number that will

be used for ranking the sites, a weighing value combination is used to measure the

expected score of an accident according to the number of fatalities, heavy and light

injured casualties. Based on these expected scores, the posterior density for the rank

of each site can be derived.

Results showed that depending on the chosen weighing value combination, se-
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lecting the 800 most dangerous sites using Bayesian estimation values instead of the

historic count data can lead to the selection of up to 18.2% different accident lo-

cations. These results illustrate that, in comparison with the use of accident count

data, the use of Bayesian estimation techniques can cause different accident sites to be

considered as dangerous. This will have a great impact on the ranking and selection

of dangerous accident locations, and accordingly on the allocation of the investment

budget for the most dangerous accident sites.

3.6 Probability Plots

3.6.1 Bayesian Ranking Plots

In this section, we elaborate on the technique of Bayesian estimation that was dis-

cussed in the previous section. More specifically, we propose a method to generate

Bayesian ranking plots in order to visualize the probability that a location will be

ranked as dangerous, based on estimates from a hierarchical Bayes model. We will

explore the possibility of using these probability plots as a graphical instrument to

select dangerous locations.

In particular, we will derive the estimated probability for each site i of being one

of the r most dangerous sites (with n = the total number of locations). This implies

that the expected score of location i (using the weighing value combination) is among

the r highest and hence its rank R is larger than (n - r) (since in this ranking proce-

dure the larger the value of R, the worse the site). Then, the estimated probability

Pr(i) is calculated as (3.8):

Pr(i) =

∑N
j=1 I(R(i)

j > n− r)
N

(3.8)

where I is the indicator function returning a value of 1 in case that the argument is

true and a value of 0 in case that the argument is false. N is the number of MCMC

iterations. These probabilities allow for a heuristic rule for selecting dangerous sites.

More specifically, if all sites would have the same characteristics, we expect that for all

the sites the required probabilities of belonging to the worst sites will be exactly the

same as any differences will be merely random perturbations. Accordingly, we expect

that this probability will be equal to r/n for each site. Locations with a probability

above this limit reveal a deviation from the argument about equal sites. However,

note that theoretically, due to random perturbations some probabilities will be larger
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even in the case of equal sites.

As this technique allows to estimate the probability that a location will be ranked

as belonging to the r most dangerous sites, this implies that for this research, we can

use this technique to estimate the probability that a location will be ranked as one of

800 most dangerous sites. These probabilities can then be visualized using probability

plots.

Furthermore, we can calculate ‘confidence’ intervals for these probabilities, by

repeating the above procedure for a number of times and taking into account the

minimum and maximum generated probability for each site. Indeed, in order to

take into account as much as possible the instability and variability that characterize

the accident counts, the model does not generate exactly one ranking order for each

accident location. Instead, for each location, the model produces a series of expected

ranking orders (one for each iteration), given that the number of accidents at each

location will fluctuate around a mean value that is typical for this location.

In practice, this corresponds with splitting up the total number of MCMC iter-

ations (N) in a number of batches and calculate the estimated probability for each

site after each batch. This will allow generating Bayesian confidence intervals for

each site. By considering the lower limit of these intervals (the smallest generated

value for the probability of belonging to the worst sites), this will reveal sites with a

probability above the limit in a more rigorous way, thus reducing the effect of ran-

dom perturbations. In other words, by selecting these sites, we select the locations

that, for every iteration of our model, have a higher probability than expected under

random conditions to belong to the 800 most dangerous accident locations.

3.6.2 Empirical Results

3.6.2.1 Results for all 23,184 Accident Locations

Based on the estimated score for each accident location, obtained from the hierarchical

Bayes model, we are able to estimate the probability for each accident location to

belong to the ‘r’ most dangerous locations.

For instance, the curve in figure (3.6) shows for each of the 23,184 road locations

(the X-axis) the estimated probability of belonging to the 800 most dangerous accident

locations (the Y-axis), ordered by decreasing probability.

Additionally, the horizontal line in figure (3.6) shows that if each location would

be equally dangerous, accidents would occur randomly on the different locations. In
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Figure 3.6: Bayesian ranking plot: Probability of belonging to the 800 most dangerous

of all accident locations

that case, the probability that a location belongs to the 800 most dangerous accident

locations would be equal for all accident locations, namely 800/ 23,184 = 0.034. It

can be seen that this value is relatively small due to the large number of accident

locations included in this data set.

However, the curved line in figure 2 shows that the probability of belonging to

the 800 most dangerous accident locations is not at all equal for the 23,184 locations

included in the data set. More specifically, 4,288 locations have a probability that is

larger than 0.034. These locations can be identified in figure (3.6) as those locations

for which the curve is above the horizontal cutoff line. This indicates that these

accident locations have a higher probability than expected under random conditions

to qualify as one of the 800 most dangerous accident locations.
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When comparing the 800 locations with the highest estimated probabilities based

on the results from figure (3.6) with the 800 locations that are currently considered

as the most dangerous, we found a percentage deviation value of 13.7%. This corre-

sponds with 110 accident locations that are differently selected when targeting the 800

most dangerous accident sites. Translated into costs, this means that theoretically

68.5 million EURO of the 500 million EURO investment budget for redesigning these

800 most dangerous accident locations would be differently allocated. Closer inves-

tigation of these different accident locations shows that these sites, according to the

currently used ranking criterion, are ranked between the 500th and 800th position.

In other words, the locations that are currently considered as belonging to the 500

most dangerous also have the highest estimated probabilities of belonging to the 800

most dangerous sites.

Figure (3.7) shows the results of generating ‘confidence intervals’ for each of the

23,184 locations. More specifically, the vertical lines in this picture represent for each

accident site the minimum and maximum estimated probability to belong to the 800

Figure 3.7: Bayesian ranking plot with the minimum and maximum probability of

belonging to the 800 most dangerous of all accident locations
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most dangerous locations out of the 50 MCMC batches that were included in this

analysis. Note that the mean estimated probability for each accident site from the

different iterations will equal the estimated probability depicted in figure (3.6).

These results show that selecting the locations with the lower limit of their confi-

dence interval (the minimum estimated probability) above the limit of 0.034 results

in 1,370 accident locations. This indicates that these accident locations have a higher

probability than expected under random conditions to qualify as one of the 800 most

dangerous accident locations.

Furthermore, comparing these results with the results of figure (3.6) shows that

using confidence intervals based on the estimated probabilities reduces the selection

of the candidate 800 most dangerous locations from 4,288 accident sites to 1,370.

Consequently, the use of confidence intervals results in a more conservative estimate of

the most dangerous accident locations, which for policy makers enhances the certainty

that resources are allocated to the right accident sites.

3.6.2.2 Results for the 5,326 Accident Locations with Minimum 3 Acci-

dents

Analogously to figure (3.6), figure (3.8) shows for each of the 5,326 locations where

minimum 3 accidents occurred between 1997 and 1999 (X-axis) the probability that

it belongs to the 800 most dangerous accident locations (Y-axis).

More specifically, these probabilities are depicted in a curved line, while the hor-

izontal line in figure (3.8) represents this probability under the assumption that all

sites would be equally dangerous. This assumption results in a probability value of

0.15 (800/ 5,326). Obviously, this value is larger than the probability value calculated

in figure (3.6), since now only 5,326 accident locations are included in the analysis.

Comparing this value with the probabilities estimated from the hierarchical Bayes

model, shows that 1 506 accident locations have a probability of belonging to the 800

most dangerous sites. This is higher than what would be expected in case of equally

dangerous sites.

Additionally, selecting the 800 accident locations with the highest probabilities

and comparing these sites with the currently 800 most dangerous locations results in

a percentage deviation value of 12%. This means that 96 locations that are currently

considered to belong to the 800 most dangerous accident sites will not be selected in

this group based on their estimated probabilities. Similar to the results of figure (3.6),

the accident locations that are selected differently are ranked between the 500th and
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Figure 3.8: Bayesian ranking plot: Probability of belonging to the 800 most dangerous

of the locations with minimum 3 accidents

800th position according to the currently used ranking criterion. When translating

these results into costs, this indicates that theoretically 60 million EURO of the 500

million EURO investment budget for redesigning these 800 most dangerous accident

locations would be differently allocated.

In figure (3.9), for each accident location the minimum and maximum estimated

probability of the different iterations is shown resulting in confidence intervals’. Anal-

ogously to figure (3.7), the mean estimated probability for each site will equal the

estimated probability depicted in figure (3.8).

Results of figure (3.9) show that for 863 accident locations the minimum estimated

probability value of belonging to the 800 most dangerous accident locations exceeds

the limit of 0.15. In other words, these accident sites have a higher probability than
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Figure 3.9: Bayesian ranking plot with the minimum and maximum probability of

belonging to the 800 most dangerous of the locations with minimum 3 accidents

expected under random conditions to qualify as one of 800 most dangerous accident

locations.

Furthermore, results of figure (3.8) and figure (3.9) show that using the lower

limit of the ‘confidence intervals’ to select the accident locations with an estimated

probability of belonging to the 800 most dangerous accident locations narrows down

the number of sites from 1,506 to 863. Again, these results indicate that ‘confidence

intervals’ facilitate a more rigorous estimate of the most dangerous accident locations.

Finally, note that, in contrast with the previous section, the technique of Bayesian

ranking plots is not applied to the 1,014 accident locations that are currently consid-

ered as dangerous. This is motivated by the fact that estimates for the probability of

belonging to the 800 most dangerous accident locations are not very interesting when

dealing with just 1,014 locations. More specifically, when selecting 800 locations out

of 1,014 sites, the probability of being selected (800/1,014) will be intrinsically high

(almost 80%).
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3.6.3 Conclusions

Based on estimates from a hierarchical Bayes model, Bayesian ranking plots can be

used to visualize the estimated probability that a location will be ranked as belonging

to the r most dangerous locations. These probability plots can provide policy makers

with a scientific instrument with intuitive appeal to select dangerous road locations on

a statistically sound basis. In particular, this implies that we can use this technique

to estimate the probability that a location will be ranked as one of the 800 most dan-

gerous sites. Additionally, in view of the instability and variability that characterize

the accident counts, this model is able to produce a series of ranking orders that can

be expected taking into account that the number of accidents at each location will

fluctuate around a mean value that is typical for this location.

3.7 Combining the Different Impacts: Case Study

3.7.1 Valuation of Casualties

In this study, a sensitivity analysis is performed to investigate how big the impact

would be on the ranking and selection of dangerous accident locations in Flanders

when we combine the three different selection criteria discussed above: (1) using

alternative weighing value combinations, (2) weighing the severity of the accident

instead of all the injured occupants and (3) using Bayesian estimation values instead

of historic count data. More specifically, in this case study, we will only take into

account the most serious injury per accident and use a valuation of casualties based

on direct costs, indirect costs and validation for human suffering to rank the accident

locations.

In particular, the weighing values used in this section are based on accident costs

which are often used in cost-benefit analyses to value the impact of road safety mea-

sures in Norway (Elvik, 2004). These accident costs were estimated by Elvik in 1993

and are the sum of five main items: medical costs, loss of output, costs of property

damage, administrative costs, economic costs and economic valuation of lost quality

of life. This sum results in a total cost of minimum respectively 16,600,000, 3,780,000

and 500,000 per respectively fatally injured, seriously injured and lightly injured per-

son (1995 prices, Norwegian kroner). Converting these costs into cost ratios between

the different injury types results in the weighing value combination 1 7 33.

More specifically, as explained in section 3.4.1, in practice this means that the
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points per accident that are summed up in order to calculate the priority value of the

locations can vary between 1 (only light injuries), 7 (at most serious injuries) and 33

(at least one deadly injured casualty). These values represent the difference in costs

that can be avoided by preventing these injuries from happening. Therefore, we will

use these weighing values in our analysis as an alternative for the 1 3 5 weighing

values to calculate the priority score for each accident location.

Using these weighing values, we will generate probability plots, based on estimates

from a hierarchical Bayes model, in order to visualize the estimated probability that

a location will be ranked as dangerous.

For this case study, we only select the sites where at least 3 accidents occurred

between 1997 and 1999. This results in 5,326 accident locations that will be analyzed

in this research.

3.7.2 Empirical Results

Analogously to figure (3.8), figure (3.10) shows for each of the 5,326 locations where

minimum 3 accidents occurred (X-as) the probability of belonging to the 800 most

dangerous accident locations, ordered by decreasing probability. Again, if all sites

were equally dangerous and accidents would occur randomly on the different locations,

the probability that a location belongs to the 800 most dangerous accident locations

would be equal for all accident locations, namely 800/5,326 = 0.15. This is represented

by the horizontal line in figure (3.10).

However, from the curved line in figure (3.10), it can be seen that the probability

of belonging to the 800 most dangerous accident locations is not at all equal for the

5,326 locations with minimum 3 accidents. More specifically, 1,431 locations have

a probability that is larger than 0.15. These locations can be identified in figure

(3.10) as those locations for which the curve is above the horizontal cut-off line.

Remember, that this indicates that these accident locations have a higher probability

than expected under random conditions to qualify as one of the 800 most dangerous

accident locations.

When comparing the 800 accident locations that are currently considered as dan-

gerous (using 1 3 5 weights for all the casualties, based on the empirical accident

rate) with these 1,431 locations, it turns out that only 653 of the 800 current danger-

ous accident locations have a probability that is larger than 0.15. In other words, 147

accident locations are currently considered as belonging to the 800 most dangerous

locations while according to the Bayesian ranking technique, (taking into account
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Figure 3.10: Bayesian ranking plot case study: Probability of belonging to the 800

most dangerous accident sites

the most serious injury per accident and using a valuation of casualties based on di-

rect costs, indirect costs and validation for human suffering) the probability for these

locations is lower than expected under random conditions.

Furthermore, selecting the 800 locations with the highest estimated probabilities

based on the results from figure (3.10) and comparing these sites with the 800 locations

that are identified according to the Flemish selection procedure, results in a percentage

deviation value of 40.6%. This corresponds with 325 accident locations that are

differently selected when targeting the 800 most dangerous accident sites. Translated

into costs, this means that theoretically 205 million EURO of the 500 million EURO

investment budget for redesigning these 800 most dangerous accident locations would

be differently allocated when using the ranking criteria proposed in this case study.

In figure (3.11), for each accident location the minimum and maximum estimated
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Figure 3.11: Bayesian ranking plot case study: Minimum and maximum probability

of belonging to the 800 most dangerous accident sites

probability of belonging to the 800 most dangerous locations across the different

batches of MCMC iterations is shown resulting in the vertical line in the picture.

This way we create some sort of ’confidence interval’ for each location. Note that the

mean estimated probability for each accident site from the different iterations will

equal the estimated probability depicted in figure (3.10).

These results show that for 839 accident locations the minimum estimated prob-

ability value of belonging to the 800 most dangerous accident locations exceeds the

limit of 0.15. In other words, by incorporating as much variability as possible and

accordingly selecting as strict as possible, 839 accident sites have a probability that is

always higher than expected under random conditions to qualify as one of 800 most

dangerous accident locations.

When comparing these 839 locations with the 800 accident locations that are
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currently considered as dangerous, results show that only 503 of the 800 current

dangerous accident locations have a minimum estimated probability that is larger

than 0.15. This indicates that 297 accident locations are currently considered as

belonging to the 800 most dangerous locations (current rank between 66 and 800)

while according to the ranking criterion proposed in this case study, the minimum

probability for these locations is lower than expected under random conditions.

Furthermore, results of figure (3.10) and figure (3.11) show that using the lower

limit of the ’confidence intervals’ to select the accident locations with an estimated

probability of belonging to the 800 most dangerous accident locations narrows down

the number of sites from 1,431 to 839. Consequently, the use of ’confidence intervals’

results in a more rigorous estimate of the most dangerous accident locations.

3.7.3 Conclusions

In this research, we used a combination of 3 different criteria, that each were studied

in earlier sections, to identify and rank the accident locations. First, we only took into

account the most serious injury per accident and used a valuation of casualties based

on direct costs, indirect costs and validation for human suffering to give weight to the

accidents. This valuation resulted in the weighing values 1 7 33 when the most severe

injury respectively concerns a light, serious or deadly injury. Next, we generated

probability plots, based on estimates from a hierarchical Bayes model, in order to

visualize the estimated probability that a location will be ranked as dangerous.

Results showed that combining these ranking criteria will have a big impact on the

selection and ranking of dangerous accident locations. In particular, when selecting

the 800 most dangerous accident sites of all accident locations, 40.6% of these locations

will differ from the current selection. Considering this impact quantity, we want to

sensitize government to carefully choose the criteria for ranking and selecting accident

locations without stating that the criterion used in this case study should be preferred

to the currently used ranking method. It is up to the government to carefully decide

which priorities should be stressed in the traffic safety policy. Then, the according

weighing value combination can be chosen to rank and select the most dangerous

accident locations.
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3.8 An Optimization Framework for Injury Weights

3.8.1 Optimizing the Injury Weighing Values

In section 3.3 of this dissertation, we showed that changing the 1 3 5 weighing

values that are currently used in the priority value formula for respectively a lightly

injured, seriously injured and deadly injured person will have an important impact

on the selection of the most dangerous accident locations. Furthermore, we explained

that the choice for the values of these weight parameters are mainly a policy decision

depending on the government’s priorities in the traffic safety policy. Indeed, the

choice between avoiding as much victims as possible or prioritizing more serious injury

accidents represents different attitudes from the government towards the traffic safety

problem and accordingly will have an impact on the resulting future traffic safety

decisions. Government should therefore carefully decide which priorities should be

stressed in the traffic safety policy. Then, the according weighing value combination

can be chosen to rank and select the most dangerous accident locations.

In this section, we develop a constrained optimization model in order to automati-

cally generate the ‘optimal’ weighing values for the ranking and selection problem. In

general, the objective of constrained optimization models is to use mathematical or

operations research procedures to find unknown variables that maximize a particular

objective subject to a number of constraints using quantitative data. Accordingly,

assuming that the government’s objective is to select and tackle those accident lo-

cations that are primarily responsible for the human suffering on the Belgian roads,

we can develop an optimization model to find the weighing values that best fit this

objective.

3.8.2 Model Specifications

3.8.2.1 The optimization criterion

As explained in the introduction of this section, a first decision that needs to be taken

in an optimization framework is with respect to the choice of the optimization crite-

rion. Here, the objective is to select those accident sites that are primarily responsible

for the human suffering on the Belgian roads. Analogously with the current priority

value formula of the Belgian government, we take into account the number of light

injuries, serious injuries and deadly injuries per accident site in order to measure the

human suffering on these locations. However, now the different weighing values for
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each injury type are considered to be unknown variables that need to be optimized

by the model to such an extent that, given a number of constraints, the sum of the

human suffering on the accident sites that are selected for treatment is maximal.

This optimization problem leads to the following model specification:

Obj

max Z =
∑

i

(liLi + siSi + diDi) (3.9)

s.t.

li ≤ Lmax (3.10)

si ≤ Smax (3.11)

di ≤ Dmax (3.12)

Lmax = 1 (3.13)

Smax ≤ C1 (3.14)

Dmax ≤ C2 (3.15)

Lmax + Smax + Dmax = C3 (3.16)

Lmax ≤ Smax (3.17)

Smax ≤ Dmax (3.18)

li ≤ si (3.19)

si ≤ di (3.20)

∑
Xi = n (3.21)

li + si + di ≤ nXi (3.22)

This model will be explained into more detail in the following paragraphs.
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3.8.2.2 The Objective Function

On the one hand, the objective function (3.9) contains the number of lightly injured

persons Li, the number of seriously injured persons Si and the number of deadly

injured persons Di at a location i (i = 1,..., n) that are given from the data. On the

other hand, this function contains the unknown variables li, si and di which represent

the weighing values for respectively a lightly injured, seriously injured and deadly

injured person. For each location i these variables will be optimized by the model to

maximize the total amount of suffering Z on the number of locations n that will be

selected for treatment.

3.8.2.3 The constraints

As explained in the previous paragraph, the optimization model will optimize the

unknown weighing values in order to maximize the total amount of human suffering

on the selected locations. If no constraints were added to this objective function, the

model would simply set these weights to an infinite high value in order to achieve the

highest possible value for the objective function. However, this not the case. More

specifically, the constraints (3.10), (3.11) and (3.12) state that the different weighing

values per location should be less or equal than the maximum weighing value for these

injury types. These maximum weighing values are also optimized by the model but

are given an upper bound in the constraints (3.13), (3.14) and (3.15) by means of

the user defined parameter values C1 and C2. By setting the parameter value C3 in

equation (3.16) smaller than the sum of C1 and C2, we prevent the model from setting

the maximum weighing values equal to the upper bound values C1 and C2 and force

the model to optimize the maximum weighing values depending on the data. Note

that the maximum weighing value for the lightly injured persons is set at ‘1’. The

upper bound values C1 and C2 can then be chosen in proportion with this value for

the light injuries in function of ethical or economic viewpoints from the government

(see section 3.3). In this context, equations (3.17), (3.18) and (3.19), (3.20) force the

optimization model to respect the fact that most traffic safety policies will valuate

a deadly injury higher as a serious injury, and, in turn, a serious injury higher as a

lightly injury. Finally, in equations (3.21) and (3.22) a boolean variable per location

Xi is used to, analogously with the current selection of dangerous accident sites, select

from the 1,014 accident sites a subset of 800 (n = 800) accident locations (for which

Xi=1) that result in the maximum human suffering on the Belgian roads using the
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optimized weighing values.

3.8.2.4 Mixed Integer Programming

In this research, we use a General Algebraic Modeling System (GAMS) to optimize

the weighing values. Since various types of models can be solved with GAMS, the

type of model must be declared before it is solved. Here, we deal with a ‘Mixed

Integer Programming Model’. This model can contain both discrete (binary or in-

teger) variables and non discrete variables. Additionally, the discrete variables must

assume integer variables between their bounds. Indeed, we specified a discrete binary

variable Xi for each accident location i, which can only assume the values ‘1’ (if the

accident site is selected) or ‘0’ (if the accident site is not selected). Furthermore, for

the different weighing values we specified the positive variables li, si, di, Lmax, Smax

and Dmax, which are non discrete variables and can assume any value between 0 and

+∞.

In this research, we will focus on the 1,014 accident locations that are currently

considered as dangerous in Flanders. More specifically, for these accident sites we

will use the mixed integer programming model in order to select the 800 accident

locations and the corresponding weights that maximize the human suffering on the

Belgian roads.

3.8.3 Empirical Results

As explained in the introduction of this chapter, the currently used weighing values

by the Flemish government to select and treat the most dangerous accident sites

are 1 3 5 for respectively a light, serious and fatal injury. Assuming these values

reflect the government’s attitude and priorities in the traffic safety policy, we use the

optimization model to check whether these weighing values indeed select the accident

sites that are primarily responsible for the human suffering on the Belgian roads.

Therefore, respecting the magnitude of these different weighing values and the

relation between them, we set the upper bound values C1 and C2 respectively at 5

and 10. Next, we set the value for C3 at 9, which is exactly the sum of the current

weighing values (1+ 3+ 5). Given these maximum weighing values of 1 5 10 and the

constraint that the sum of the weighing values should equal the sum of the currently

used weighing values, we calculate the optimal weighing values that maximize the

total amount of human suffering for the selected sites:
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Lmax = 1, Smax ≤ 5, Dmax ≤ 10

Lmax + Smax + Dmax = 9

These model specifications give the following optimal weighing values for selecting

the most dangerous sites:

Smax = 4, Dmax = 4

li = 1, si = 4 or 1, di = 4

These results show that, in order to maximize the human suffering on the Belgian

roads, instead of choosing the 1 3 5 weighing value combination or maximizing the

weight for a deadly injury, the model chooses to maximize the weight for a seriously

injured person. Indeed, given the constraints si ≤ di and Lmax + Smax + Dmax = 9,

the maximum value the model can assign to Smax is 4. Correspondingly, the value

for Dmax then equals 4. For the 800 locations that are selected the values for li, si

and di then respectively equal the values 1 4 4. Note however, when the number of

seriously injured persons at the location is 0, the model assigns a value of 1 to si, but

this has no impact on the value of the objective function, nor on the optimal weighing

value for di.

In order to validate these results and test the impact of the constant value C3

on the optimal solution of the model, we solved two similar models using different

values for C3. More specifically, we first solved the model using the constraint Lmax +

Smax + Dmax = 10. This resulted in the following maximum and optimal weighing

values:

Smax = 4.5, Dmax = 4.5

li = 1, si = 4.5 or 1, di = 4.5

For the second alternative model we used the constraint Lmax + Smax + Dmax = 8.

This resulted in the following weighing values:

Smax = 3.5, Dmax = 3.5

li = 1, si = 3.5 or 1, di = 3.5

These figures show that obviously the value for C3 will influence the values for the

maximum weighing values Smax and Dmax and accordingly the optimal values for si

and di. However, regardless of the value of C3 and regardless of the higher value for

C2, the model will maximize the weight for a serious injury.
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Note that, if we omit from the model the constraints that Smax ≤ Dmax and

si ≤ di, for the first alternative model, the value for Smax will increase to 5 while the

value for Dmax will decrease to 4. Similarly, for the second model, the value for Smax

will increase to 4 while the value for Dmax will decrease to 3. These figures confirm

the result that the model tends to maximize the values for Smax and Si. However,

these results do not stroke with government’s attitude to higher value a deadly injury

than an serious injury.

These results can be explained by the nature of the accident data. More specif-

ically, for the 1,014 accident locations, on average per location 0.4 deadly injured

casualties, 2.9 seriously injured casualties and 14.2 lightly injured casualties occurred.

This means that the number of seriously injured persons is on average almost 8 times

higher than the number of deadly injured persons per location. Since in the objective

function these numbers Li, Si and Di will be multiplied by the optimal weights li, si,

di, it can be easily understood why the optimization model will maximize the value

for si instead of di.

3.8.4 Conclusions

In this research, we developed a constrained optimization model in order to automat-

ically generate the ‘optimal’ weighing values for the ranking and selection problem.

In particular, assuming that the government’s objective is to select and tackle those

accident locations that are primarily responsible for the human suffering on the Bel-

gian roads, we used a mixed integer programming model to find the weighing values

that best fit this objective.

Results showed that in order to select the accident sites that maximize the human

suffering on the Belgian roads, instead of choosing the 1 3 5 weighing value combi-

nation or maximizing the weight for a deadly injury, the model chooses to maximize

the weight for a seriously injured person. This can be explained by the relatively high

number of serious injuries per accident locations.

Accordingly, by choosing the weighing value combination 1 3 5, the Flemish

government does express its preference to higher value the human suffering of a deadly

injury than a serious or light injury. However, this weighing value combination does

not select the accident locations that are mainly responsible for the total amount of

human suffering on the roads. Therefore, in order to select the accident locations that

maximize the human suffering on the roads, one should not only take into account the

valuation of injury types from an economic or ethical point of view (represented by
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C1 and C2) but also the relation between the number of injury types at each location.

Note that, in this research, when optimizing for human suffering to maximize the

benefit of reducing that suffering, we are really optimizing ‘random’ suffering and

‘systematic’ suffering, the former deriving from the random fluctuation of crashes

observed at sites, the latter coming from true deficiencies at sites, both of which lead

to crashes and suffering. Accordingly, in order to optimize for true’ risk and not merely

observed risk’ we should know the underlying true safety of the locations. However, as

explained in section 3.2.3, this is not the case. One other possible solution to account

for this random suffering could be to take into account the estimated instead of the

observed number of injuries to measure the human suffering on the locations. This

should be explored in further research.

3.9 Discussion and limitations

In this chapter, a sensitivity analysis is performed on the currently used method to

rank and select dangerous accident locations in Flanders. This study is based on

the same data used to select and rank the 1,014 accident sites that are currently

considered as dangerous by the Flemish government. However, since in this research,

no simulated accident data were used, we can only estimate the effects on the current

ranking of accident locations and the locations that are currently ranked as most

dangerous, without claiming that these sites are indeed the truly most dangerous

sites. Furthermore, in order to quantify the effects of changing the ranking and

selection criteria of dangerous accident locations, we use the percentage deviation

value. This measure allows comparing the elements of two data sets of equal size

containing different locations. However, this measure only gives information about

the number of locations that do not appear in two ranked data sets and does not take

into account internal shifts in the ranking position of the common accident locations.

Accordingly, it is possible for two ranking methods to yield the same value for the

percentage deviation value but be very different in terms of their ranking. Two

methods might identify the same top 10 most dangerous sites, but rank them very

differently and also rank the remaining sites very differently. The degree of ‘how far

off’ sites are ranked compared to their true deserved ranking is not considered. As

explained in the introduction of this dissertation, this acquires the knowledge of the

true underlying safety of each location in order to know the true rank to compare

with the assigned rank via the alternative ranking methods.
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First of all, this research showed that changing the 1 3 5 weighing values that

are currently used for respectively a lightly injured, seriously injured and deadly in-

jured person will have an important impact on the selection of the most dangerous

accident locations. However, the choice for the values of these weight parameters

are mainly a policy decision depending on the government’s priorities in the traffic

safety policy. Therefore, no conclusions were made concerning which weighing crite-

rion should be preferred. This was not the objective of this research and will require

additional data and in depth analysis of the accident locations. In contrast, with

this research we want to make the government aware that choosing different weigh-

ing values will greatly influence the selection of hazardous accident locations. This

might seem straightforward, however, in Flanders no such research was yet conducted.

Accordingly, the weighing values used in this sensitivity analysis are just examples

and therefore no statement is made that one of these four alternatives is the optimal

weighing scheme.

Secondly, analysis showed that giving weight to the severity of the accident instead

of to all the injured occupants of the vehicle will also have a great impact on the

selection and ranking of dangerous accident locations. By giving weight to the severity

of the accident we can correct for the bias in the priority score that occurs when the

number of occupants of the vehicles are subject to coincidence. However, in some

cases (e.g. discotheques, entertainment centers), it can be reasoned that the number

of occupants, and accordingly the number of injured persons, is not a coincidence

but more likely a trend. For these locations, correcting for the number of passengers

would not be advisable since the number of injuries that appear at these locations

are inherent to the locations characteristics.

Next, we used a multivariate hierarchical Bayes approach for ranking the accident

sites, taking into account the number of accidents, the number of fatalities and the

number of light and severely injured casualties. This research showed that the use of

Bayesian estimation values instead of historic count data to rank the accident locations

will take into account the problem of random variation in accident counts and will also

have an important effect on the selection of the most dangerous accident locations.

Note that in this research, in order to become an estimate for the long term accident

mean per location, the Hierarchical Bayes model was fitted by applying it to the

empirical accident frequency, available from the accident data. Another interesting

approach for estimating the number of accidents could be to estimate the number of

accidents as a function of various explanatory variables by means of a multivariate
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model (see also section 3.5.2). Then Empirical Bayes could be applied to predict

the expected number of accidents for each locations. However, in this research, no

such accident prediction model was developed. The reason for this is that, in this

dissertation, we want to investigate the strengths and weaknesses of the currently used

method to identify and rank dangerous accident locations in Flanders. As explained

in section 2.3, the Flemish government first draws up a list of dangerous accident

sites, based on the number of accidents and injuries at each location. Information

on the explanatory variables for this number of accidents, such as traffic volume,

specific variables describing road design, traffic control and the surroundings of the

road are not available when drawing up this list of black spots, and are only collected

when developing a conceptual solution for enhancing the level of traffic safety as

these locations. Accordingly, a Hierarchical Bayes model was developed based on

only the empirical accident frequency to estimate the expected number of accidents

at each location. This information is taken into account by the model in the form

of the likelihood. Furthermore, prior knowledge is included to estimate the expected

number of accidents for each location. This method can handle the uncertainty and

great variability of accident data and produce a probabilistic ranking of the accident

locations.

Additionally, Bayesian ranking plots can be used to visualize the estimated prob-

ability that a location will be ranked as belonging to the most dangerous locations.

These probability plots can provide policy makers with a scientific instrument with

intuitive appeal to select dangerous road locations on a statistically sound basis. In

this research, this implied that we used this technique to estimate the probability

that a location will be selected as one of the 800 most dangerous sites, since for bud-

getary reasons this is the number of sites that the Flemish government will redesign

to enhance traffic safety. Results showed, however, that more than 800 sites qualify

to be considered as one of the 800 most dangerous locations. Therefore, we want

to sensitize government that that the choice for tackling only 800 accident locations

seems somewhat arbitrary. However, no statement was made in this research on how

many sites should be tackled by the government since this, of course, will depend on

the budget that is available to improve traffic safety.

Furthermore, we used a combination of the three different criteria that were dis-

cussed above, to identify and rank the accident locations. First, we only took into

account the most serious injury per accident. Secondly, we used a valuation of ca-

sualties based on direct costs, indirect costs and validation for human suffering to
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give weight to the accidents. This valuation resulted in the weighing values 1 7

33 when the most severe injury respectively concerns a light, serious or deadly in-

jury. Based on estimates from a hierarchical Bayes model, we generated probability

plots, in order to visualize the estimated probability that a location will be ranked

as dangerous. Results showed that combining these ranking criteria will have a big

impact on the selection and ranking of dangerous accident locations. Considering this

impact quantity, we want to sensitize government to carefully choose the criteria for

ranking and selecting accident locations without stating that the criterion used in

this paper should be preferred to the currently used ranking method. Indeed, the 1

7 33 weighing values seem a reasonable and scientifically sound alternative for the

currently used 1 3 5 weighing combination, but as explained before, it is up to the

government to decide which priorities should be stressed in their traffic safety policy.

Then, the according weighing value combination can be chosen to rank and select the

most dangerous accident locations.

Finally, we used mixed integer programming in order to automatically generate

the ‘optimal’ weighing values for the 800 accident locations that are primarily respon-

sible for the human suffering on the Belgian roads. Results showed that, given the

optimization framework, instead of choosing the 1 3 5 weighing value combination,

the model chooses to maximize the weight for a seriously injured person (1 4 4).

This can be explained by the relatively high number of serious injuries per accident

locations. Therefore, in order to select the accident locations that maximize the hu-

man suffering on the roads, the government should not only take into account the

valuation of injury types from an economic or ethical point of view (represented by

C1 and C2) but also the relation between the number of injury types at each location.
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Chapter 4

Profiling Hazardous Accident

Locations

In this chapter, dangerous accident locations are profiled in terms of accident related

data and location characteristics using different data mining and statistical techniques.

Furthermore, these techniques will be used to develop models, which will provide new

insights into the criteria that aim to explain the occurrence of a traffic accident1.

1Parts of this chapter have been published as follows:

• Geurts, K., Thomas I. and G. Wets (2005). Understanding accidents in black zones using frequent

item sets. Accident analysis and prevention 37 (4). pp.787-799

• Geurts K., Wets G., Brijs T., and Vanhoof K. (2004), Profiling of high frequency accident locations

by use of association rules. In Journal of Transportation Research Board, Vol. 1840, pp. 123-130.

ISBN: 0309085810.

• Geurts K., Wets G., Brijs T. and Vanhoof K. (2003), Clustering and profiling traffic roads by

means of accident data. Electronic proceedings of the European Transport Conference, Strasbourg,

France,October 8-10, 16 pp. ISBN 0-86050-342-9

• Geurts, K. Wets, G. and Brijs, T. (2003). Profiling high frequency accident locations using asso-

ciation rules. Electronic Proceedings of the 82th Annual Meeting of the Transportation Research

Board, Washington, January 12-16, USA, 18 pp.

• Geurts K., Wets G., Brijs T. and Vanhoof K. (2002), The Use of Rule Based Knowledge Discovery

Techniques to Profile Black Spots, the 6th Design and Decision Support Systems in Architecture

and Urban Planning Conference, Ellecom, The Netherlands, July 7-10, pp 15.
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4.1 Data Mining vs. Statistical Models

As explained in figure 1.2, after the hazardous sites are identified, it is necessary to

carefully examine the nature of the safety problem at the sites with a view to iden-

tifying whether and how those problems can be dealt with through road or traffic

remedial measures. In this context, Kononov and Janson (2002) explain that with-

out being able to properly and systematically relate accident frequency and severity

to roadway geometrics, traffic control devices, roadside features, roadway condition,

driver behavior or vehicle type it is not possible to develop effective countermeasures.

Therefore, in the past, statistical models have been widely used on accident data to

analyze road crashes in order to explain the relationship between crash involvement

and traffic on the one hand and geometric and environmental factors on the other

hand (Lee et al. (2002)). For example, Kononov and Janson (2002) have developed a

methodology to detect accident patterns at an intersection, which suggests a presence

of an element or elements in the roadway environment which triggered a deviation

from a random statistical process in the direction of reduced safety. However, Chen

and Jovanis (2002) indicate that not only the main effects of driver, vehicle, road-

way and environmental factors should be analyzed, interactions between factors are

also very likely to be significant. The authors demonstrate that the large number of

potentially important factors, combined with the complex nature of crash etiology

and injury outcome present certain challenges when using classic statistical analysis

on data sets with large dimensions such as an exponential increase in the number of

parameters as the number of variables increases and the invalidity of statistical tests

as a consequence of sparse data in large contingency tables. Furthermore, a large

number of factors need to be selected and a comprehensive but feasible set of main

factors and interactions need to be specified for testing in statistical models.

This is where data mining comes into play. Data mining can be defined as the

nontrivial process of identifying valid, novel, potentially useful, and ultimately un-

derstandable patterns in data (Fayyad et al., 1996). From a statistical perspective it

can be viewed as a computer automated exploratory data analysis of (usually) large

complex data sets (Friedman, 1997). More specifically, data mining attacks such prob-

lems as obtaining efficient summaries of large amounts of data, identifying interesting

structures and relationships within a data set, and using a set of previously observed

data to construct predictors of future observations. Statisticians have well established

techniques for attacking all of these problems as well. Indeed, a statistician might

argue that data mining is not much more than the scaling up of conventional sta-
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tistical methods to massive data sets, in effect a large scale ‘data engineering’ effort

(Smyth, 2001). However, the problems and methods of data mining have some dis-

tinct features of their own. Not only can data sets be much larger than in statistics

and are data analyses on a correspondingly larger scale, there are also differences of

emphasis in the approach to modeling: compared with statistics, data mining pays

less attention to the large-scale asymptotic properties of its inferences and more to the

general philosophy of ‘learning’, including consideration of the complexity of models

and the computations they require (Hosking et al., 1997). Furthermore, data mining

has tackled problems such as what to do in situations where the number of variables is

so large that looking at all pairs of variables is computationally infeasible (Mannilla,

2000). Additionally, opposite to statistics, data mining is typically secondary data

analysis: the data has been collected for some other purpose than for answering a

specific data analytical question.

In literature, some examples of the use of data mining in road accidents analysis

can be found. For example, clustering techniques are used to discover frequent pat-

terns in accident data (see e.g. Ljubic et al., 2002). Additionally the data mining

technique of rule induction can be used to identify rules sets representing interesting

subgroups in accident data (see e.g. Kavsek et al., 2002). Furthermore, decision trees

(see e.g. Strnad et al., 1998) and neural networks (see e.g. Mussone et al., 1999)

are used to model and analyze road accidents. Finally, spatial data mining (see e.g.

Chelghoum and Zeitouni, 2004) can be applied.

4.2 The KDD Process

As explained in the introduction, data mining is used to discover patterns and re-

lationships in data, with an emphasis on large, observational data bases (Friedman

(1997)). According to Fayyad et al. (1996) it can be considered as a separate step of

the ‘knowledge discovery in databases’ (KDD) process (see figure 4.1).

This KDD process refers to the overall process of discovering useful knowledge

from data. The additional steps in the KDD process, such as data preparation, data

selection, data cleaning, incorporation of appropriate prior knowledge and proper

interpretation of the results of mining are essential to ensure that useful knowledge is

derived from the data. Blind application of data mining methods can be a dangerous

activity, easily leading to the discovery of meaningless and invalid patterns.

The first step of the KDD process involves the collection of the data. In this
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Figure 4.1: The KDD process (Source: Fayyad et al., 1996)

step, the data are selected or segmented according to some criteria. Next, in the pre-

processing step of the KDD process, the data that are collected in the previous data

mining step are converted into usable data in order to perform pattern discovery

techniques. Irregularities such as data inconsistencies, missing values, redundant

variables and double counts will be tracked, listed and finally removed from the data.

Additionally, some new items will be created based on existing information of the

data set. Also the data is reconfigured to ensure a consistent format, as there is a

possibility of inconsistent formats because the data are often drawn from different

sources. In the transformation step, the data are reduced and transformed so that

they can be interpreted and analyzed by the data mining algorithm. Examples of such

adjustments are changing continuous attribute values into discrete attribute values

and changing items with nominal attribute values into items with discrete attribute

values. A more detailed description of these different data preparation steps for data

mining can be found in Pyle (1999).

In the data mining step, the actual analysis of the data takes place. By means of

different software tools the data-mining algorithm will look for patterns in the data.

Depending on the objectives of the research, different data mining techniques can

be implemented. In general, the four following data mining tasks can be discerned

(Berry and Linoff, 1997): classification, estimation, affinity grouping and clustering.

These data mining tasks can be classified into two major categories, i.e. prediction and

description. Indeed, classification and estimation tasks can be seen as prediction tasks:
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the user wants to predict the (discrete or continuous) value of an unknown attribute

(e.g. using decision trees). On the other hand, affinity grouping and clustering can

be seen as description tasks: it is the objective of the analyst to gain insight into the

underlying relationships that exist between attributes or instances in the database.

However, these two categories are not mutually exclusive in the sense that some

techniques can be used for both purposes (Fayyad et al., 1996).

In this research, we will use some data mining techniques of affinity grouping

(by means of the association algorithm) and clustering to describe the accident data.

This will be explained in the following section. However, the choice for one data

mining technique or another is not always obvious. In fact, this choice is largely

dependent on the situation. Each technique has its strengths and weaknesses in

terms of representation language, classification power, descriptive abilities and expert

knowledge required. Therefore, the analyst has to evaluate what kind of problem he

is faced with to choose for the appropriate technique. For example, the association

algorithm is able to identify all the accident circumstances that frequently occur

together. However, no explanation about the causality of these accident patterns

is given. Furthermore, to evaluate and interpret the interestingness of the results

domain knowledge or the use of additional statistical techniques are essential.

This occurs in the last step of the KDD process: the patterns that are identified

by the data mining algorithm are evaluated and interpreted into knowledge which can

than be used to support human decision making.

4.3 Methods and Techniques

In this section, the two techniques that are used in this research to profile hazardous

crash locations are discussed: the association algorithm and model based clustering.

4.3.1 Association Algorithm

4.3.1.1 Frequent Item Sets

In this study, an association algorithm is used to obtain a descriptive analysis of the

accident locations. This data mining technique fulfils the task of affinity grouping

and was first introduced by Agrawal et al. (1993). It can be used to efficiently

search for interesting information in large amounts of data. Since its introduction,

the task of association mining has received a great deal of attention in the data



104 Chapter 4. Profiling Hazardous Accident Locations

mining community. Its direct applicability to business problems together with their

inherent understandability, even for non-data mining experts, made the association

algorithm a popular mining method. Today mining associations is still one of the most

popular pattern discovery methods in KDD (Hipp et al., 2000). For example, this

technique has been adopted in different contexts, such as retailing (Brijs, 2002), cross-

selling (Anand et al., 1997), finding co-occurring medical tests from a health insurance

information system (Viveros et al., 1996), reducing fall-out in telecommunications

systems (Ali et al., 1997) and identifying latently dissatisfied customers (Bloemer et

al., 2002).

In particular, the association algorithm produces frequent item sets describing

underlying patterns in data (Agrawal et al., 1993):

• Let I = i1, i2, ..., ik be a set of literals, called items.

Example: The accident characteristics in an accident database.

• Let D be a set of transactions, where each transaction T is a set of items such

that T ⊆ I. We say that a transaction T contains X, a set of some items in I,

if X ⊆ T .

Example: A data set D with 4 accidents, where each accident T contains, a

set of items X, representing different accident characteristics I.

1. Rain, intersection, traffic lights

2. Rain, intersection, traffic signs

3. Normal weather, zebra crossing, pedestrian

4. Rain, bicycle, cycle track.

In contrast to predictive accident models, the strength of the association algorithm

lies within the identification of item sets that frequently occur together. Moreover, the

association algorithm is able to generate all accident patterns taking into consideration

the minimum support value. The support of an item set indicates how frequent that

combination of items or accident characteristics occurs in the data. The higher the

support of the item set, the more prevalent the item set is. It is obvious that we are

especially interested in item sets that have a support greater than the user-specified

minimum support (minsup). These items are considered to be ‘frequent’ item sets.
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• The item set X has support s in D, if s% of the accidents in D contains X.

Example: The support expresses the fraction of accidents in D that contain

all the items in the item set. Thus a support of 20% means that the accident

characteristics in the item set occur in 20% of all accidents in the data set.

A typical approach (Agrawal et al., 1996) to discover all frequent item sets is to

use the insight that all subsets of a frequent set must also be frequent (also known as

the ‘downward closure’ principle). This insight simplifies the discovery of all frequent

sets considerably since not all item combinations need to be tested but only those for

which every subset was previously found to be frequent. This dramatically improves

the efficiency of the algorithm, i.e. first find all frequent sets of size 1 by reading

the data once and recording the number of times each item A occurs. Then, form

candidate sets of size 2 by taking all pairs {B, C} of items such that {B} and {C}
both are frequent. The frequency of the candidate sets is again evaluated against

the database. Once frequent sets of size 2 are known, candidate sets of size 3 can be

formed; these are sets {B, C, D} such that {B, C}, {B, D} and {C, D} are all frequent.

In other words, to determine the frequent item sets of size n, form candidate item sets

of size n using only frequent item sets of size n-1. Finally, evaluate the frequency of

these candidate items sets of size n against the database. This process is continued

until no more candidate sets can be formed.

Suppose we set the minimum support value (minsup) = 50%. This means that

the accident characteristics should occur in at least 50% of all the accidents in order

to be considered as frequent. For the above example, this would lead to the following

results:

• Example:

1. Frequent item sets of size 1:

s(rain) = 3/4 (75%), s(intersection) = 2/4 (50%)

2. Frequent item sets of size 2:

s(rain, intersection) = 2/4 (50%)

4.3.1.2 Association Rules

Based on the frequent sets, the association algorithm can produce a set of rules

describing underlying patterns in the data by means of the support parameter and the
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confidence parameter. Agrawal et al. (1993) provided the following formal description

of this technique: An association rule is an implication of the form X ⇒ Y , where

X ⊂ I, Y ⊂ I, and X ∩ Y = Ø.

• The rule X ⇒ Y holds in the data set D with confidence c, if c% of the accidents

in D that contains X also contains Y .

In statistical terms, the confidence is an estimator for the conditional proba-

bility of Y given X, i.e. P(Y |X) and it can be calculated as s(X ∪ Y )/s(X).

Given a set of transactions D, the problem of mining association rules is to generate

all association rules that have support and confidence greater than the user-specified

minimum support (minsup) and minimum confidence (minconf). Accordingly, gen-

erating association rules involves looking for frequent item sets in the data. Indeed,

the support of the rule X ⇒ Y equals the frequency of the item set {X,Y }. Thus by

looking for frequent item sets, we can determine the support of each rule (Manilla,

1997). The problem of discovering association rules can therefore be decomposed into

two sub-problems:

1. Generating all item sets that have a support higher than the user-defined min-

sup. These item sets are called frequent item sets.

2. Use this collection of frequent sets to generate the rules that have confidence

higher than the user-defined minimum confidence.

Once all frequent sets are known, finding association rules is easy. Namely, for

each frequent set X and each Y ∈ X, verify whether the rule X\{Y } ⇒ Y has suffi-

ciently high confidence. The given algorithm has to read the database at most K+1

times, where K is the size of the largest frequent item set.

Suppose we are interested in the association rules that are frequent with minimum

confidence value = 70%. For the above example, this would lead to the following

results:

• Example:

Candidate Rules from frequent set(rain, intersection):

c(rain ⇒ intersection) = 2/3 (66.6%)< 70%
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c(intersection ⇒ rain) = 2/2 (100%)> 70%

→ This is the only reliable association rule for this data set.

4.3.1.3 Interesting Patterns

The association algorithm generates all item sets that have support higher than the

minimum support value. However, a large number of the generated item sets and

association rules will be trivial and give no additional information towards the traffic

accident analysis. An example of such a trivial rule is:

• Wet road surface ⇒ Rain (sup= 19.91%, conf= 68.21%)

The confidence value shows that the probability of observing this kind of weather

is 68.21% if the antecedent is true (wet), meaning that 68.21% of the days that an

accident happens on a road with a wet surface it will be raining. The support of the

rule indicates that 19,91% of all the accidents that occurred, happened on a wet road

surface while it was raining. However, since it is obvious that even when no accidents

happen the probability for rain will be higher with a wet road surface, this rule does

not give an additional value towards a better understanding of the circumstances in

which these accidents have happened. Therefore, this rule will be removed from the

association rules set.

Therefore, a filter is needed to post-process the discovered item sets to retain the

interesting ones. In literature several filtering procedures for association patterns exist

(see e.g. Tan et al., 2002). In this research, we will use the following filter methods.

Lift

A first, more formal method (Brin et al., 1997) to distinguish trivial from non trivial

rules is assessing the dependence between the items in the item set by means of the

lift value (L):

L =
s(A,B)

s(A) ∗ s(B)
(4.1)

The nominator in equation (4.1), s(A,B), measures the observed frequency of the co-

occurrence of the items A and B. The denominator s(A)∗s(B) measures the expected

frequency of the co-occurrence of the two items under the assumption of conditional

independence. The more this ratio differs from 1, the stronger the dependence. Table

(4.1) illustrates the three possible outcomes for the lift value and their associated

interpretation for the dependence between the items.
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Table 4.1: Interpretation of Lift

Outcome Interpretation

+ ∝> L > 1 Positive interdependence effects between X and Y

L = 1 Conditional independence effects between X and Y

0 < L < 1 Negative interdependence effects between X and Y

For the item set (rain, intersection), the lift value is calculated as follows:

• Example:

Lift (rain, crossroad) = s(rain,crossroad)
s(rain)∗s(crossroad) = (2/4)

(3/4)∗(2/4) = 4/3 (> 1)

→ small positive interdependence between rain and crossroad.

Interest

Besides ranking the item sets on their lift value we can use a second measure, i.e. the

interest measure, to limit the accident patterns to only the discriminating or useful

ones (Anand et al. (1997)):

Int =
s1 − s2

max{s1, s2} (4.2)

This interest measure is based on the deviation in support values of the frequent

item sets discovered for two different groups (for example, two groups of accident

locations). The nominator s1− s2 measures the difference in support for the accident

characteristics group 1 (s1) and group 2 (s2). The expression max is called the

normalizing factor as it normalizes the interestingness measure onto the scale [-1, 1].

Suppose the item set (rain, crossroad) is also frequent in a second data set with:

s2(rain, crossroad) = 3/4 (75%). The interest value can than be calculated as follows:

• Example:

Interest = s1(rain,crossroad)−s2(rain,crossroad)
max(s1,s2)

= (2/4)−(3/4)
(3/4) = -1/3 (<1)

→ this value is close to ‘0’ indicating that this item set is not very discrim-

inating between the two data sets.

Statistical Rule Significance

In the case of association rules, besides the lift and interest measure, we can use a

third measure to discern trivial from non trivial rules: the statistical rule significance
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(T ). More specifically, the statistical significance of a rule is the validity of a rule,

based on the influence of statistical dependency between the rule body (antecedent)

and the rule head (consequent). T is determined using the Chi-square test for sta-

tistical independence (Brin et al., 1998), which is a widely used test for identifying

propositional rule independence (see equation 4.3). For example Liu et al. (1999)

used a chi-square test to decide whether the antecedent of a rule is independent from

its consequent or not.

The following example illustrates the calculation of the χ2 value. Suppose the

following situation. Among 5,000 road accidents:

• 3,000 occurred on an intersection

• 3,750 occurred in the rain

• 2,000 occurred on an intersection in the rain

Table 4.2 shows the contingency table that can be drived from this example.

The χ2 test for independence is calculated as follows, with OXY the observed fre-

quency and EXY the expected frequency (by multiplying the row and column total

divided by the grand total):

χ2 =
∑

X,Y

(OXY − EXY )2

EXY
(4.3)

If the χ2 value < critical χ2 value, there is statistical independency between the

rule body and the rule head and the statistical significance (T) will be neutral. If the

χ2 value > critical χ2 value, there is statistical dependency between the rule body

and the rule head. Depending on the relationship between the observed (OXY ) and

the expected (EXY ) frequencies, the algorithm determines whether the statistical

significance (T) is negative or positive. For this example χ2 will be calculated as

Table 4.2: Contingency Table

Rain No rain Total

Intersection 2,000 1,000 3,000

No intersection 1,750 150 2,000

Total 3,750 1,150 5,000
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Table 4.3: Interpretation of Statistical Rule Significance

Outcome Interpretation

T < 0 - Item Set X has a negative influence on the occurrence of item set Y

- Given item set X, item set Y occurs less frequently than expected

- Lift between 0 and 1

- Valid rule (T = -)

T is neutral - Lift = 1: Item Sets X and Y are statistically independent

→ Rule gives no extra information

- Lift 6= 1: Rule has failed the χ2 test

→ Rule is not valid

T > 0 Item Set X has a positive influence on the occurrence of item set Y

- Given item set X, item set Y occurs more frequently than expected

- Lift > 1

- Valid rule (T = +)

follows:
χ2 =

(2,000− 3,000∗3,750
5,000 )2

3,000∗3,750
5,000

+
(1,000− 3,000∗1,150

5,000 )2

3,000∗1,150
5,000

+
(1,750− 2,000∗3,750

5,000 )2

2,000∗3,750
5,000

+
(150− 2,000∗1,150

5,000 )2

2,000∗1,150
5,000

= 417.63 >> 3.84

For the p-value of 0.05 with one degree of freedom, the cutoff value equals 3.84.

Consequently, the accident characteristics rain and intersection can be considered as

highly interdependent at the 95 % confidence level.

Table (4.3) gives an overview for the possible outcomes of the statistical rule

significance test (T) and indicates its relation with the lift value of the rule.

4.3.2 Model Based Clustering

Cameron (1997) indicates that clustering methods are an important tool when an-

alyzing traffic accidents as these methods are able to identify groups of road users,

vehicles and road clusters which would be suitable targets for countermeasures.

In this dissertation, we will adopt a more statistically based approach to cluster-

ing, known as latent class clustering, or also called model-based clustering or finite
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mixture modeling, to cluster traffic roads into distinct groups based on their similar

accident frequencies. More specifically, the observed accident frequencies are assumed

to originate from a mixture of density distributions for which the parameters of the

distribution, the size and the number of clusters are unknown. It is the objective of

model based clustering to ‘unmix’ the distributions and to find the optimal parame-

ters of the distributions and the number and size of the clusters, given the underlying

data (McLachlan and Peel, 2000).

It is not within the scope of this dissertation to provide an exhaustive overview

of the domain of latent class cluster analysis, but rather to focus on the concepts

and techniques that are most relevant for the development of the cluster model in

this dissertation. This section provides an overview of the general formulation of

the latent class cluster model and is drawn from Brijs (2002), who refers to some

state-of-the-art books and review articles in this domain.

4.3.2.1 Modeling Accident Rates with Poisson Distribution

Since we do not know exactly what causes traffic accidents to happen, the approach is

based on the idea of modeling the accident frequency as a Poisson-distributed random

variable Y (see also equation (3.3)). In general, the Poisson random variable Yi(t)

represents the number of occurrences of a rare event in a time interval (t) and is,

therefore, well suited for modeling the number of accidents at location i (Nag et al.,

2002).

Formula (4.4) shows that we are given a number of locations (i =1,..., n) on which

the discrete random variable Yi is Poisson distributed and measured over a certain

period of time (t), where yi = 0,1,2,...(i.e. accident rate) and the rate parameter

λ > 0:

Poi(Yi(t) = yi | (λt)) =
e−(λt) (λt)yi

yi!
(4.4)

The mean and the variance of the Poisson distribution are E(Y ) = λt and Var(Y ) =

λt, respectively. The fact that the mean and the variance of the Poisson distribution

are identical is, however, too restrictive in many applications where the variance of

the data may exceed the mean (Cameron and Trivedi, 1986). This situation is called

‘overdispersion’ (McCullagh and Nelder, 1989) and may be due to heterogeneity in

the mean event rate of the Poisson parameter λ across the sample. Solutions to the

problem of overdispersion therefore involve accommodating for the heterogeneity in

the model. In this research, we will adopt the finite mixture specification.
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4.3.2.2 The Finite Mixture Specification

The finite mixture specification assumes that the underlying distribution of the Pois-

son parameter λ over the population can be approximated by a finite number of

support points (Wedel et al., 1993), which in the context of this study represent

different clusters or latent classes of accident locations in the data.

These support points and their respective probability masses can be estimated by

a maximum likelihood approach. For instance, in the case of a two-cluster model, we

assume that there are two support points. In other words, we assume there are two

groups of locations:

• a group of roads of size p1 whose latent accident parameter λ = θ1,

• a second group of roads of size p2 = (1−p1) whose average accident rate λ = θ2,

where pj are the mixing proportions with 0 < pj < 1 and

k∑

j=1

pj = 1

Note that the mixing proportion is the probability that a randomly selected

observation belongs to the j-th cluster.

Consequently, the two cluster model can be formulated as follows:

P (Yi(t) = yi) = P (Yi(t) = yi|group1).P (group1) + P (Yi(t) = yi|group2).P (group2)

=
e−(θ1t) (θ1t)yi

yi!
. p1 +

e−(θ2t) (θ2t)yi

yi!
. (1− p1) (4.5)

In general, the purpose of model-based clustering is to estimate the parameters

(p1, ..., pk−1, θ1, ..., θk), with k = the number of clusters, following the maximum like-

lihood (ML) estimation approach. This involves maximizing the loglikelihood. For

the two-cluster model, the loglikelihood function is then defined as :

LL(p1, θ1, θ2| data) =
n∑

i=1

ln (
e−(θ1t) (θ1t)yi

yi!
. p1 +

e−(θ2t) (θ2t)yi

yi!
. (1− p1)) (4.6)

In this research, we use a non-linear iterative fitting algorithm (nlp) to maximize

the loglikelihood. To prevent the algorithm from finding a local but not a global

optimum, we use multiple sets of starting values for the algorithm and we observe the

evolution of the final likelihood for different restarts of the algorithm.
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4.3.2.3 Determining the Number of Clusters

To decide on the number of components in a mixture model, we use the so-called

information criteria to evaluate the quality of a cluster solution. Examples include

AIC (Akaike information criterion), CAIC (Consistent Akaike information criterion)

and BIC (Bayes information criterion) (Schwarz, 1978):

AIC = −2Lk + 2.dk (4.7)

BIC = −2Lk + ln(n).dk (4.8)

CAIC = −2Lk + [ln(n) + 1]. dk (4.9)

These are goodness of fit measures, which take into account model parsimony. The

idea is that the increase of the likelihood of the mixture model (Lk) on a particular

data set of size n, is penalized by the increased number of parameters (dk) needed

to produce this increase in fit. The smaller the criterion, the better the model in

comparison with another.

4.4 Data

4.4.1 Road Accidents with Casualties

As explained in the previous chapter, a large data set of road accidents is available for

analysis. More specifically, in Belgium, the data on road accidents with casualties of

the last few decades are stored and updated in a flat file format by the National Insti-

tute of Statistics. These data are obtained from the Belgian ‘Analysis Form for Traffic

Accidents’ that should be filled out by a police officer for each road accident that oc-

curs on a public road involving casualties. In total, information on approximately 45

items is available for each accident. These data are a rich source of information on the

circumstances in which the accidents have occurred: course of the accident (type of

collision, road users, injuries,...), traffic conditions (maximum speed, priority regula-

tion,...), environmental conditions (weather, light conditions, time of the accident,...),

road conditions (road surface, obstacles,...), human conditions (characteristics of the

road user, fatigue, alcohol,...) and geographical conditions (location, rough physical

characteristics,...).

Figure (4.2) shows the structure of these data, presented in an Access database. In

particular, Appendix 1 explains the items that are included in the table ONGEVAL.

These items measure the characteristics that are unique for each accident. Next,
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Appendix 2 gives information about the items in the table WEGGEBRUIKERS. This

table describes the characteristics that are unique for each road user. This information

can be linked to the corresponding accident by means of the unique accident ID.

Furthermore, Appendix 3, Appendix 4, Appendix 5 and Appendix 6 give more detailed

information about respectively the injured passengers (PASSAGIERS), pedestrians

(VOETGANGERS), bikers (FIETSERS) and injured victims (SLACHTOFFERS).

Again the information from these first three tables can be related to the accident and

to the road user by combining the unique accident ID and the number of the road

user. Since, per definition, a victim cannot be a road user, the information on the

victims can only be related to the accident table by means of the unique accident ID.

Then, Appendix 7 explains the items of the table LOCATIE. In this table, the items

are listed that relate to the location characteristics of the accident. As explained in

the previous chapter, in Belgium, the location of an accident is accurately known for

the ‘numbered’ roads (i.e. highways, national and provincial roads linking towns).

On these roads, every hectometer there is a stone marker. Therefore, every accident

Figure 4.2: Structure of relational database on road accidents with casualties
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that occurs on a numbered road can be linked to a hectometer or kilometer mark. An

accident that occurs on a non-numbered road can be located by means of the street

name and the house numbers. Again, this table can be related to the table ONGEVAL

by means of the unique accident ID. Appendix 8 refers to the table LOCONG, which

summarizes the unique accident location identification numbers for each accident.

Finally, Appendix 9 shows the items of the table GEVAARLIJKE PROD, in which

the information is listed about any dangerous products that were transported by

road users who where involved in an accident with casualties on a public road. This

information can be linked to the accident and to the road user by means of the unique

accident ID and the road user number.

4.4.2 Additional Data

Additional traffic data are measured and collected by several research institutes in

Belgium. For example, the Administration of Roads and Traffic (AWV) regularly

measures the traffic intensities on district and province roads in Flanders. Further-

more, on these roads, AWV collects, in positive and negative direction, all visible

characteristics that are related to infrastructure and the condition of the road surface

(schools, bridges, sound walls, crah barriers, borders,...). However, the collection of

these data is still in process and these characteristics are therefore not yet available

for all district and province roads in Flanders. Furthermore, the research group Spa-

tial Applications Division Leuven (SADL) collects and analyzes satellite images to

find more detailed information on the circumstances in which an accident has taken

place. Again, this project is still in process and these data were not available for this

analysis.

Additionnally, in Belgium information on road accidents with no casualties is

collected by the insurance companies by means of the official document for ‘Accidents

with material damage’. Due to privacy and commercial reasons this information is

currently not made available for researchers outside the own company. However, the

occurrence of these accidents is also an important issue in the traffic safety problem.

For example, in comparison with accidents with casualties, material damage accidents

could give information in the difference in severity of an accident. Other data that

could give useful information on the occurrence of road accidents, such as official

police reports and the official Belgian vehicle database, are not made available either

due to the Belgian privacy law .

Finally, a number of possible interesting traffic data are not measured and collected
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in Belgium. For example, if we want to investigate the accident risk on zebra crossings,

it would be interesting to know how many pedestrians actually use a zebra crossing

to cross the street.

Efforts should be made to show the importance of additional data on road acci-

dents such as data on accidents with material damage, official police reports, traffic

intensities, etc. For example, international studies in which these data are used to

enhance the traffic safety policy can be used to lay pressure on the proper authorities

to make these data available for scientfic research. Note, however, that if, in future,

different data sources will be used for analysis, special attention should be given when

combining these data sets. These databases will not always be compatible in terms

of format, period under study or research units.

4.4.3 Implications and Limitations

For the research in this chapter, we used the data that were available for analysis,

in particular the data on accidents with casualties on a public road in Belgium (see

Appendix 1 to Appendix 9). More specifically, in the following empirical studies,

we use different subsets of this data set on road accidents with casualties to explore

accident patterns, depending on the objective of the research.

An initial analysis indicated that these traffic accident data are highly skewed.

This means that some of the attributes will have an almost constant value for each of

the accidents in the database. However, as explained in the previous section, this will

have no effect on the validity of the results since the association algorithm produces an

interest measure that corrects the interestingness of each rule by taking the frequency

of the attributes in the data set into account.

Furthermore, if we want to do research that leads to valid and reliable results,

it is important that the data are reliable. The reliability of our data set will first

of all be influenced by the objectivity of the police officer that fills out the accident

form. Indeed, some variables that are listed in this document are rather subjective to

decide on. Examples include the light conditions and the road surface characteristics.

Additionally, the emotional atmosphere that usually coincides with the occurrence of

an accident could influence the objectivity of the police officer. Therefore, we should

question the reliability of this data before making any hasty conclusions. Secondly,

persons who are involved in an accident could deliberately influence the reliability and

validity of the reported accident data. For example, people will not always admit their

faults and they will even be prepared to make a false statement about the accident
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circumstances for insurance reasons. Furthermore, the field ‘various’ referring to

safety restraint use, cell phone use or other circumstances that could have played

an important role in the accident or the related accident injuries is badly registered

on the Belgian ‘Analysis Form for Traffic Accidents’. This type of error will give a

distorted view of reality. Therefore, we should try to take these systematic errors

into account when interpreting the results and be carefull in formulating conclusions

concerning the real cause of the road accident .

Note however, that this poor quality of secondary road accident data is not just

a problem in Belgium. Efforts are being taken on an international level to improve

the quality of these data by constructing an international accident form (Workshop

Mining Official Data, Finland, August 2002).

Finally, when interpreting and evaluating the results of our analyses, we should

keep in mind that currently the total population of accidents in our research analyses

equals the accidents with casualties. Therefore, the results of these analyses can

not be generalized to all road accidents since these accidents also include accidents

with only material damage. If we want to generalize our results to all accidents with

casualties, we also have to be aware of the underregistration problem in traffic accident

data. This is especially a problem for accidents with only lightly injured persons and

small material damage. Road users will prefer to pay for the damage without any

legal interaction. Therefore, the accidents that are reported to the police are just a

selection of all accidents with casualties.

4.5 Profiling Accident Types

In this empirical study, the data mining technique of association rules is used to

obtain a descriptive analysis of the accident data by identifying accident circumstances

that frequently occur together. By analyzing the produced set of rules, describing

underlying patterns in the data, we aim to discern frequently occurring accident

types and identify relevant variables that make a strong contribution towards a better

understanding of accident circumstances. Hereby, the emphasis will not only lie on

the acquired interestingness of the generated patterns, but also on the interpretation

of the results, which will be of high importance for improving traffic policies and

ensuring traffic safety on the roads.

Analogously with the KDD process, we distinguish three steps in the mining

process: a preprocessing step in which the available data are prepared for the op-
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timal use of the mining technique, a mining step for generating the association rules

and a post-processing step for identifying the most interesting association rules.

4.5.1 Preprocessing the Data Set

Although Belgium is a quite small country, densely populated and mainly urbanized

(10.3 millions inhabitants; 30,528km2), large disparities exist within the country (cf.

Merenne, 1997). Hence, our analysis is limited to one administrative region of Bel-

gium, i.e. the Brussels Capital region. This administrative region, consisting of 19

cities and municipalities among which the Belgian capital, covers an area of 161.4

km2 and counts almost one million inhabitants. Furthermore, the Brussels Capital

region covers 1,881 kilometers road which accounted for 3.18 billion vehicle kilometers

traveled in 2002 (De Groote and Truwant, 2003).

In particular, this empirical study is based on the data set of traffic accidents

obtained from the National Institute of Statistics (NIS) over a six year period (1991-

1996) for the region of Brussels (Belgium). More specifically, for this region, we

will concentrate on the accidents that can easily be located by the hectometer mark,

i.e. the numbered roads or highways, national and provincial roads linking towns.

Selecting these records from the data set resulted in a total of 10,672 traffic accident

records.

Additionally, to explore the different accident types in this data set, we did not use

all the available traffic accident records. Since our prime interest in this dissertation

lies in the identification and understanding of hazardous locations, only the traffic

accidents that occurred at a ‘high frequency accident location’ were selected for the

analysis. Taking into account the average number of accidents per location for this

data set, a criterion of minimum 10 accidents per location was used to identify these

high frequency accident locations. This resulted in a total of 1,110 traffic accident

records that were included in the analysis.

Furthermore, in the present data set, some attributes have a continuous character.

Discretization of these continuous attributes is necessary, since generating association

rules requires a data set for which all attributes are discrete. Therefore, the ob-

servations for these variables are divided into different intervals by grouping them

into partitions. For example, four new attributes were created from the continuous

variable time of accident’: morning (6h-11h), afternoon (12h-16h), evening (17h-23h)

and night (24h-5h). Another example is the discretization of the continuous variable

‘maximum allowed speed’. The intervals for this variable were created on the basis of
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our common knowledge of traffic speed regulations in Belgium: <50 km/hour, 50-65

km/hour, 70-90 km/hour, 100-120 km/hour. For those variables where no domain

knowledge for grouping the attributes could be found, we used the Equal Frequency

Binning discretization method to generate intervals containing an equal number of

observations (Holte, 1993). Furthermore, attributes with nominal values had to be

transformed into attributes with binary attribute values. This means that dummy

variables had to be created by associating a binary attribute to each nominal attribute

value of the original attributes. For example, for the variable ‘intersection’, the nom-

inal attribute values ‘near intersection’ and ‘outside intersection’ were transformed

into binary attribute values so that for each accident, one of these binary attribute

values will receive the value ‘1’ and the other the value ‘0’. Finally, irregularities such

as data inconsistencies, missing values, redundant variables and double counts are

tracked, listed and removed from the data set.

Examples of data inconsistencies are:

• The variable ‘number of persons involved’ = 1, the variable ‘number of persons

injured’ = 40.

• The variable ‘pedestrian’ = false (there was no pedestrian involved in the acci-

dent), the variable ‘type of collision’ = collision with a pedestrian.

Examples of missing values are:

• The variables ‘time of accident’, ‘location’, are not filled out in the data set.

• The variable ‘obstacle’ = true (there was no obstacle on the location of the

accident), the ‘type of obstacle’ = missing (no value was filled out).

Examples of redundant data are:

• The variable ‘code unit’: this variable indicates which unit of the police force

has reported the accident. This kind of information will not be included as an

exploratory or descriptive variable to model the occurrence of traffic accidents.

4.5.2 Generating Association Rules

A minimum support of 5 % was chosen for the analysis. This means that no item

or set of items will be considered frequent if it does not appear in at least 56 traffic

accidents. It could be argued that this choice for the support parameter is rather

subjective. This is partially true, however a trial and error experiment indicated
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that setting the minimum support too low, leads to an exponential growth of the

number of items in the frequent item sets. Accordingly, the number of rules that

will be generated, will cause further research on these results to be impossible due to

memory limitations. In contrast, by choosing a support parameter that is too high, the

algorithm will only be capable of generating trivial rules. For example, for a minimum

support of 1 % the algorithm generated more than 2 million association rules. From

this analysis, with a minsup = 5 % and minconf = 30 %, the algorithm obtained

101,861 frequent item sets of maximum size 4 (due to computational reasons) for

which 313,663 association rules could be generated. These rules are further processed

to select the most interesting rules.

4.5.3 Postprocessing the Association Rules Set

As explained in equation (4.3), the statistical rule significance (T ) measures the valid-

ity of a rule, using the χ2 test for statistical independence. This value can be negative

(negative interdependence), neutral (independence) or positive (positive interdepen-

dence). Selecting the rules with a positive or a negative statistical significance from

the association rules set narrowed down the results from 313,663 rules to 1,337 asso-

ciation rules.

These rules were further post-processed by ranking them on their Lift value and

assessing the additional information of the rules towards this traffic accident analysis.

An example of a rule that has no additional value is:

Wet⇒ Rain (sup = 19.91%, conf = 68.21%, T = +, L = 3.43).

This rule has an interest value of 3.43 and a positive rule significance indicating that

whenever an accident happens, the probability of observing rain increases strongly if

the road surface is wet. The confidence value shows that the probability of observing

this kind of weather is 68.21% if the antecedent is true (wet), meaning that 68.21% of

the days that an accident happens on a road with a wet surface it will be raining. The

support of the rule indicates that 19.91% of all the accidents that occurred, happened

on a wet road surface while it was raining. However, since it is obvious that even

when no accidents happen the probability for rain will be higher with a wet road

surface, this rule does not give an additional value towards a better understanding of

the circumstances in which these accidents have happened.
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4.5.4 Results

This section will give an overview of the most important results from the association

analysis. More specifically, five topics highlighting different aspects of traffic accidents

will be discussed: collision with a pedestrian, collision in parallel, sideways collision,

week/weekend accidents and weather conditions. For each topic, the results will refer

to the rule numbers [N] of the concerning rule table in which the rules are presented

on the basis of a rank ordering of their lift value.

4.5.4.1 Collision with a Pedestrian

Table (4.4) illustrates that in 60.78% of all accidents involving pedestrians, collisions

occur on intersections with traffic lights [7]. Moreover, accidents with pedestrians

have a higher probability than expected of occurring at daylight [9], during the week

[8] and in the afternoon [5].

Additionally, the results show that the pedestrian is often not coming unexpectedly

from behind an obstacle through which he would not be visible at the moment of

impact [1]. In 49.02%, he crosses the road on a zebra crossing with traffic lights

for pedestrians [2] and his walking distance between sheltered places will more than

expected lie between 6 and 12 meter [3]. This distance could relate to the length of

the zebra crossing.

At first sight, these results may look surprising, since under these circumstances

the pedestrian should be well visible for the other road users. Only in 13.07% of the

accidents, the pedestrian will come from behind an obstacle through which he is not

visible for the other road users at the moment of impact. Moreover, only 4.5% of the

Table 4.4: Rules for collision with a pedestrian
N BODY HEAD T L sup conf

1 pedestrian ⇒ visible + 7.25 8.65 62.75

2 pedestrian ⇒ zebra crossing with traffic lights + 7.25 6.76 49.02

3 pedestrian ⇒ unsheltered walking distance be-

tween 6 and 12 meter

+ 7.25 5.59 40.52

4 pedestrian ⇒ 1 road user upwards, 1 transverse + 3.16 5.50 39.87

5 pedestrian ⇒ afternoon + 1.29 5.50 39.87

6 pedestrian ⇒ 1 roadway + 1.26 10.99 79.74

7 pedestrian ⇒ intersection with traffic lights + 1.24 8.38 60.78

8 pedestrian ⇒ week + 1.20 11.53 83.66

9 pedestrian ⇒ daylight + 1.19 10.00 72.55

10 pedestrian ⇒ driving in a straight direction - 0.82 10.00 72.55

11 pedestrian ⇒ constant speed - 0.75 8.11 58.82
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collisions with a pedestrian occur while the pedestrian is crossing the street on a road

with no zebra crossing, 13.72% while he is walking on a zebra crossing without traffic

lights and 16.34% when he crosses the road walking next to a zebra crossing with

traffic lights. A possible explanation for these results could be the large number of

children that head for school, and therefore will be on the Belgian roads, around these

times. These results can be linked with the results from Lee and Abdel-Aty (2005)

who found that higher average traffic volume at intersections increases the number of

pedestrian crashes.

Furthermore, the rules show that collisions with pedestrians mainly occur on roads

with just one roadway [6] and one road user is more frequently than expected moving

upwards in the street whereas the other road user is moving transversal on this direc-

tion [4]. The latter rule will probably relate to the walking direction of the pedestrian

in relation to the moving direction of the driver since the Belgian Analysis Form for

Traffic Accidents states that when the pedestrian is crossing the street while being

involved in an accident, the pedestrian is moving in a transverse direction.

Finally, a collision with a pedestrian occurs less often than expected in the presence

of a road user that drives at a constant speed [11] or when at least one vehicle is

driving in a straight direction [10]. This arouses the suspicion that pedestrians will

have a higher probability of getting hit by a vehicle when the road user is making a

manoeuvre.

In conclusion, in the region of Brussels, collisions with pedestrians are a frequently

occurring accident pattern. More specifically, these accidents will have a higher prob-

ability of occurring on crossroads with traffic lights, more specifically when the pedes-

trian is crossing the street on a zebra crossing with traffic lights, being well visible,

at daylight, in the afternoon, during the week and when the road user is making a

manoeuvre. These results can be linked with the results obtained by LaScala et al.

(2000), who found that injuries in pedestrian-involved collisions are most likely to

occur in areas of the city with a great population density. Ali (2001) adds that both

pedestrians and drivers bear the responsibility equally for being involved in pedestri-

anvehicle crashes. More specifically, not paying attention is one of the most common

causes among pedestrians while many drivers often do not respect the right-of-way of

pedestrians.
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4.5.4.2 Collision in Parallel

Table (4.5) shows that when an accident happens as a consequence of not respecting

the distance between the different road users, the collision will almost inevitably take

place between vehicles driving in the same direction [12]. From the definition of the

Belgian Analysis Form for Traffic Accidents, this type of accident usually relates to a

collision at the back of a vehicle but it can also be a collision between vehicles driving

next to each other following the same direction. Additionally, the rule stated above

is also valid in the opposite case [13] and in 42.36% of the collisions in parallel, one

of the road users will have used his brakes with the intention to stop [14]. This type

of accident will probably occur mostly in case of a collision at the back of a vehicle.

Furthermore, a collision in parallel will occur less frequently than expected when

only two people are involved in the accident [18] and not respecting the distance

between different road users will often lead to more than one collision [17]. Finally, a

collision in parallel will less often than expected coincide with a road user driving at

a constant speed [16] and will have a smaller probability than expected of happening

at a crossroad [15].

To summarize, collisions in parallel will often be related with not respecting the

distance between road users and with using the breaks with the intention to stop.

However, this type of collision will have a smaller probability than expected of occur-

ring on crossroads, at constant speed, with only two persons involved. To minimize

the likelihood of being involved in this type of accident, Abdel-Aty and Abdelwahab

(2004) suggest that a driver should maintain a space cushion that is appropriate for

the driving conditions. A proper space cushion must provide a driver time to see and

recognize a hazard and make a decision regarding what should be done. Then, there

must be adequate space to bring the vehicle to a stop.

Table 4.5: Rules for collision in parallel
N BODY HEAD T L sup conf

12 distance ⇒ parallel + 6.28 5.95 81.48

13 parallel ⇒ distance + 6.28 5.95 45.83

14 parallel ⇒ brake + 3.27 5.50 42.36

15 parallel ⇒ near intersection - 0.95 11.98 92.36

16 parallel ⇒ constant speed - 0.83 8.38 64.58

17 distance ⇒ 1 collision - 0.84 5.13 70.37

18 parallel ⇒ 2 persons involved - 0.81 8.56 65.97



124 Chapter 4. Profiling Hazardous Accident Locations

4.5.4.3 Sideways Collision

The rules in table (4.6) indicate that when a sideways collision occurs, the road user

will often not have respected the priority regulation of the crossroad [30]. Most of the

times he will also drive at a constant speed [33]. These sideways collisions where the

priority regulation of the intersection is not respected, have a higher probability than

expected of happening on intersections where the road users should give way to the

vehicles coming from the right [25]. When the priority on the intersection is regulated

by traffic lights, the sideways collision will often occur when a road user makes a left

Table 4.6: Rules for sideways collision
N BODY HEAD T L sup conf

19 no priority + intersection

with priority to the right

⇒ local road + 3.02 10.54 43.82

20 no priority + intersection

with traffic lights

⇒ left turn + 2.48 14.00 75.24

21 intersection with traffic

lights + road users opposite

direction

⇒ left turn + 2.12 7.84 64.44

22 no priority + intersection

with priority to the right +

local road

⇒ equal road functions + 2.48 14.00 75.24

23 intersection with traffic

lights + sideways collision

⇒ left turn + 1.73 14.41 52.63

24 left turn ⇒ intersection with traffic

lights

+ 1.45 21.53 70.92

25 no priority + sideways colli-

sion

⇒ intersection with prior-

ity to the right

+ 1.43 19.46 49.43

26 intersection with traffic

lights + night with public

lighting

⇒ sideways collision + 1.34 5.77 80.00

27 intersection with priority to

the right

⇒ no priority + 1.34 24.05 69.35

28 left turn ⇒ no priority + 1.29 20.36 67.06

29 no priority ⇒ sideways collision + 1.27 39.37 75.87

30 sideways collision ⇒ no priority + 1.27 39.37 66.01

31 1 road user upwards, 1 down-

wards

⇒ sideways collision + 1.25 17.75 74.34

32 left turn ⇒ sideways collision + 1.18 21.35 70.33

33 sideways collision ⇒ constant speed + 1.09 50.63 84.89

34 1 road user upwards, 1 trans-

verse

⇒ sideways collision - 0.83 6.22 49.29

35 intersection with traffic

lights + sideways collision

⇒ daylight - 0.80 5.95 48.53

36 intersection with traffic

lights

⇒ no priority - 0.73 18.60 37.87

37 break ⇒ sideways collision - 0.65 5.05 38.89
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turn [23].

These results refer to the relation between not respecting the priority regulation

of the intersection and the type of the priority regulation. An accident that occurs on

an intersection where the road users should give way to the vehicles coming from the

right, often coincides with a road user that does not respect this priority regulation

[27]. An accident that occurs on an intersection with traffic lights will on the contrary

less frequently coincide with not respecting this priority regulation [36]. In 75.24% of

the accidents where this violation does occur with traffic lights, a road user will also

have made a left turn [20]. Moreover, 70.92% of all accidents that occur when a road

user makes a left turn, take place on an intersection with traffic lights [24].

Unfortunately, there is no information about which road user made the traffic

violation, but it could be expected that the road user that turns left will not have

respected the priority regulation. Additionally, not giving priority to the right has

a higher probability than expected of occurring on intersections where at least one

of the roads is local [19] or where both of the roads have a local character [22].

These results could indicate that the local character of a road could lead towards a

misplaced feeling of traffic safety, whereas bigger, more important roads could enhance

the concentration of the road users.

In general, 70.33% of the accidents where a road user turns left will lead to a

sideways collision [32] and often when making a left turn, a priority violation will be

the cause of the accident [28]. Not respecting the priority regulation of the intersection

will lead in 75.87% of the accidents to a sideways collision (29).

Furthermore, when an accident occurs at night with public lighting and the road

user approaches the traffic lights; the accident will often be a sideways collision [26].

This type of collision near the traffic lights will less frequently occur at daylight [35].

These results will probably relate to visibility that will be smaller at night.

A remarkable result is that when one road user is moving upwards in the street

and another road user is moving in the opposite direction, the occurring accident

will most of the times be a sideways collision [31]. We would rather expect that

this road situation would lead to a frontal collision. However, a possible explanation

could be that most drivers dry to avoid a head-on collision with a rapid correction,

putting the vehicle into a sideways collision. Furthermore, these accidents will occur

on intersections with traffic lights where the road users will drive in opposite directions

and at least one of them will make a left turn [21].

Finally, when one of the road users uses his brakes with the intention to stop [37]
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or when one vehicle is driving upwards in the street and another vehicle is driving

transversal on this direction [34] the accident will less frequently be a sideways colli-

sion.

In conclusion, there are two types of sideways collisions. The first type takes place

at intersections where road users should give priority to the right. These accidents will

most of the times be caused by not respecting this priority regulation. The second type

of sideways collisions occurs on intersections with traffic lights. This type of accident

will often be related with a road user making a left turn and will also frequently occur

when the road users are moving in an opposite direction. These results can be linked

with the results obtained by Larsen and Klines (2002) who showed that in left-turn

collisions, some of the problems are related to unconscious, attention errors when

approaching and entering an intersection.

4.5.4.4 Week/Weekend Accidents

Weekend: from Friday 21h- Monday 6h

Morning: 6h-11h; Afternoon: 12h-16h; Evening: 17h-23h; Night: 24h-5h

As shown in table (4.7), most accidents that occur at night, will take place during the

weekend [38]. Moreover, the accidents that take place in the weekend will more often

than expected occur at night with public lighting [39] and will less frequently occur

at daylight [48]. Similarly, the accidents that happen on a Sunday will have a higher

probability than expected of occurring at night with public lighting [40], in spite of

the fact that on this day a lot of people will also be on the roads in the morning and

in the afternoon, making so-called day trips or family excursions.

However, accidents that happen at night do less frequently than expected coincide

with a driver whose physical condition is normal [47]. He will have a higher probability

of being drunk, under the influence of drugs or just being exhausted or unwell.

In contrast, accidents that occur during the week with one road user driving

upwards in the street and another road user driving in the transverse direction, usually

take place at daylight [41]. In general, accidents that occur at daylight will most of

the times take place during the week [44].

These results can be linked with the many studies that show that driving at night

is more risky in terms of crash involvements per distance traveled than driving during

the day (Keall et al., 2005). The reasons for this include the more prevalent use of

alcohol by drivers at night, the effects of fatigue on the driving task and the risk
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Table 4.7: Rules for week/weekend accidents
N BODY HEAD T L sup conf

38 night ⇒ weekend + 1.92 7.38 58.57

39 weekend ⇒ night with public lighting + 1.45 14.59 47.93

40 Sunday ⇒ night with public lighting + 1.36 5.77 45.07

41 week + 1 road user upwards,

1 transverse

⇒ daylight + 1.33 8.01 80.91

42 pedestrian ⇒ week + 1.2 11.53 83.66

43 crossing important local

road

⇒ week + 1.14 11.17 78.98

44 daylight ⇒ week + 1.11 46.76 76.89

45 afternoon ⇒ week + 1.1 23.6 76.61

46 week ⇒ afternoon + 1.11 23.6 33.94

47 night ⇒ normal physical condition - 0.92 10.72 85.00

48 weekend ⇒ daylight - 0.76 14.05 46.15

associated with reduced visibility.

As mentioned earlier, a collision with a pedestrian will also often occur during

the week [42]. Even more, accidents that happen during the week will have a higher

probability than expected of occurring in the afternoon [44]. The number of accidents

that take place in the afternoon is accordingly smaller during the weekend than during

the week [45,46].

Finally, 78.98% of the accidents that occur on crossroads where the crossing street

is an important local road, take place during the week [43].

4.5.4.5 Weather conditions

Table (4.8) illustrates that accidents on a wet road surface will have a higher prob-

ability than expected of occurring at night with public lighting [50] and a smaller

probability of occurring at daylight (58). Accordingly, accidents that happen at night

with public lighting will coincide more frequently than expected with a wet road

surface [51] and less frequently with a dry road surface [56].

Similarly, accidents that take place in the rain will have a higher probability of

occurring at night with public lighting [49] and a smaller probability of occurring at

daylight [59]. These results can be linked with the results of Andrey et al. (2001) who

found that much of the elevated risk during rainfall appears to be related to visibility,

since collision rates quickly return to near-normal after the rain has stopped, even if

roads continue to be wet.

Furthermore, accidents that happen on a wet road surface [52], when it rains [54]

or that occur at night with public lighting will less frequently coincide with a driver



128 Chapter 4. Profiling Hazardous Accident Locations

Table 4.8: Rules weather conditions
N BODY HEAD T L sup conf

49 rain ⇒ night with public lighting + 1.48 79.73 48.87

50 wet ⇒ night with public lighting + 1.36 13.15 45.06

51 night with public lighting ⇒ wet + 1.36 13.15 39.78

52 wet ⇒ normal physical condition - 0.96 25.77 88.27

53 rain ⇒ no alcohol - 0.96 18.56 93.21

54 rain ⇒ normal physical condition - 0.95 17.39 87.33

55 night with public lighting ⇒ normal physical condition - 0.94 28.65 86.65

56 night with public lighting ⇒ dry - 0.84 19.64 59.4

57 >2 lightly injured persons ⇒ dry - 0.82 5.13 57.58

58 wet ⇒ daylight - 0.81 14.41 49.83

59 rain ⇒ daylight - 0.74 8.92 44.8

whose physical condition is normal. Moreover, accidents in the rain have a smaller

probability of occurring with a driver of whom the alcohol test will be negative or not

required [53]. Finally, when more than two people are lightly injured, the accident

will less frequently than expected have occurred on a dry road surface [57].

In conclusion, accidents that happen in the rain or on a wet surface will more

frequently occur at night with public lighting. These accidents will also have a higher

probability of occurring with a driver whose physical condition is not normal and

a smaller probability of coinciding with a driver of whom the alcohol test will be

negative or not required [53].

4.5.5 Conclusions

In this empirical study, the technique of association rules was used on a data set of

traffic accidents for the region of Brussels for the period 1991-1996. The analysis

showed that by generating association rules the identification of accident circum-

stances that frequently occur together is facilitated, leading to a strong contribution

towards a better understanding of the occurrence of traffic accidents.

Furthermore, the results indicate that the use of the association algorithm allows

to discern different accident types, each with different relevant accident conditions. In

particular, zebra crossings with traffic lights and pedestrian visibility are important

aspects of pedestrian collisions. Distance between the road users is an important

aspect for collisions in parallel. Next, priority to the right and making a left turn are

the most important factors in sideways collisions. Additionally, most accidents that

occur at night, will take place during the weekend and finally, accidents that happen

in the rain or on a wet surface will more frequently occur at night with public lighting.
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4.6 Profiling High Frequency Accident Locations

In this section, the technique of association rules is used to perform a comparative

analysis between high frequency and low frequency accident locations. The objective

of this empirical study is to determine the discriminating character of the accident

characteristics of dangerous accident locations.

4.6.1 Preprocessing the Data Set

This study is based on the large data set of traffic accidents obtained from the National

Institute of Statistics (NIS) for the region of Flanders (Belgium) for the year 1999.

As explained earlier, these data are obtained from the Belgian ‘Analysis Form for

Traffic Accidents’ that should be filled out by a police officer for each traffic accident

that occurs with injured or deadly wounded casualties on a public road in Belgium.

Given the limitation that this one year period is not long enough to limit random

fluctuations, the period under study does limit changes in road and traffic conditions.

In total, for this period 34,353 traffic accident records are available for analysis. On

average, 45 attributes are available for each accident in the data set.

To discern high frequency accident locations from low frequency accident locations,

each accident needs to be linked with a location parameter that corresponds to a

unique geographical location. Therefore, the accidents that occurred at a highway

or a district or province road are located by means of the road identification number

and the hectometer mark. The accidents that took place at a non-numbered road are

located using the street name and the name of the city in which the accident occurred.

Next, two different data sets were selected to explore association relationships

between traffic accident attributes. Since our prime interest lies in the profiling and

understanding of dangerous accident locations, only the traffic accidents that occurred

at a high frequency accident location were selected for the first analysis. This allows

us to give a descriptive analysis of frequently occurring accident patterns on highly

concentrated accident locations. To identify these locations, a criterion of minimum

five accidents per location was used. This resulted in a total of 3,368 traffic accident

records that were included in the first analysis. This number of accidents corresponds

with the fact that in Flanders 15% of all the traffic accidents occur on so-called

‘dangerous spots’ (Ministry of the Flemish Community, 2001). The second association

analysis is carried out on the remaining low frequency accident locations, including

30,985 accidents. By comparing the results from these two analyses, we can determine
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the discriminating character of the accident characteristics of high frequency accident

locations.

As explained in the previous empirical study, discretization of the continuous at-

tributes is necessary, since generating association rules requires a data set for which

all attributes are discrete. Therefore, the observations for these variables are di-

vided into different intervals by grouping them into partitions. on the basis of expert

knowledge. For those variables where no domain knowledge for grouping the at-

tributes could be found, we used the Equal Frequency Binning discretization method

to generate intervals containing an equal number of observations (Holte, 1993). Fur-

thermore, attributes with nominal values had to be transformed into attributes with

binary attribute values. Finally, irregularities are removed from the data sets.

4.6.2 Generating Association Rules

A minimum support value of 5 % was chosen for the analysis. This means that no item

or set of items will be considered frequent for the first analysis if it does not appear

in at least 165 traffic accidents. Obviously the same threshold will be used for the

second analysis since the main purpose of this research involves a comparative analysis

between the rules sets of the high frequency accident locations and the low frequency

accident locations. Again, it could be argued that the choices for the values of these

parameters are rather subjective. As explained in the previous study, this is partially

true, however a trial and error experiment indicated that setting the minimum support

too low, leads to exponential growth of the number of items in the frequent item sets.

Accordingly, the number of rules that will be generated will cause further research on

these results to be impossible due to computer memory limitations. In contrast, by

choosing a support parameter that is too high, the algorithm will only be capable of

generating trivial rules. Analogously, the minimum confidence value was set at 30 %.

This means that a rule is considered reliable when the consequent of the rule occurs

at least one out of three times that the antecedent appears. By choosing different

confidence values, a trial and error experiment showed that this parameter value gives

rather stable results concerning the amount of rules generated by the algorithm.

From the high frequency accident locations, with a minsup = 5 % and minconf

= 30 %, the algorithm obtained 187,829 frequent item sets of maximum size 4 (due

to computational reasons) for which 598,584 association rules could be generated.

Although these results relate to a relatively small number of accident records, they

are quite reasonable since an average of 40 items is available per accident, allowing
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the algorithm to generate multiple combinations of size 4 item sets. With the same

parameters the second analysis resulted for the low frequency accident locations in

183,730 frequent item sets of maximum size 4 for which 575,974 association rules

could be generated. These rules are further processed to select the most interesting

rules.

4.6.3 Postprocessing the Association Rules Set

As explained earlier, the purpose of postprocessing the association rules set is to iden-

tify the subset of interesting (i.e., non-trivial) rules in a generated set of association

rules. Selecting the rules with a positive or a negative statistical significance (see

equation 4.3) from the association rules set narrowed down the results to 14,690 as-

sociation rules for the high frequency accident locations and 77,282 association rules

for the low frequency accident locations.

However, after ranking the association rules on their lift value and removing the

non-significant rules from the rules set, one important problem still remains. The

discovered accident patterns for the high frequency accident locations will give a

description of the frequently occurring accident circumstances, but they may also be

characteristic for the accidents that occur at low frequency accident locations as they

represent the necessary but not the sufficient condition for the membership of a high

frequency accident location. Therefore, we use the interestingness measure to limit

the association rules to only the discriminating or useful ones (see equation 4.2). This

interestingness measure is based on the deviation of the characteristic rules discovered

for the accidents that occurred on high frequency accident locations (with support sh)

from the accidents that occurred on low frequency accident locations (with support

sl). Since in this research we are mainly interested in profiling the high frequency

accident locations, we will pay special attention to the rules with a positive interest

value, i.e. approximating ‘1’.

4.6.4 Results

As stated earlier, the emphasis in this study lies on the identification and profiling

of frequently occurring accident patterns at high frequency accident locations and

the degree in which these accident characteristics are discriminating between high

frequency and low frequency accident locations. Selecting the association rules that

appear in both the high frequency accident rules set and the low frequency accident
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Figure 4.3: Association rules ranked on descending interest values

rules set results in 3,670 statistically significant association rules. These can be further

post-processed by means of the interestingness measure. When ranking the associa-

tion rules on their interest value, figure (4.3) shows, for the 50 most discriminating

rules, that a high interestingness value does not inseparably correlates with a strong

lift value. Note that we do not use the term ‘high’ for the lift value, since a very small

lift value, i.e. considerably differing from 1, also indicates a strong (negative) depen-

dency between the rule body and the rule head. These results show that accident

characteristics that have the most discriminating power to identify high frequency

accident locations are not necessarily the most interesting rules according to their lift

values.

Accordingly, when ranking the association rules on the lift value, figure (4.4) and

figure (4.5) indicate that although the association rules identify frequently occurring

patterns that are descriptive for the occurrence of accidents on high frequency accident

locations, they are not necessarily discriminating between the profile of high frequency

accident locations and low frequency accident locations.

When looking at the association rules with the highest lift values, figure (4.4)

shows that the majority of these rules have a small interestingness value. Also for

the very small lift values, figure (4.5) indicates that the strong dependencies between
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Figure 4.4: Association rules ranked on descending lift values

Figure 4.5: Association rules ranked on ascending lift values

different accident characteristics do not always correspond with high interestingness

values. In general, these rules with a strong lift value and a low interestingness

value are characteristic for both high frequency accident locations and low frequency

accident locations.
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When looking at the interpretation of the association rules, table (4.9) shows that

the rules with the 10 highest interestingness values mostly relate to location char-

acteristics of the accidents. This means that the most discriminating characteristics

between high frequency accident locations and low frequency accident locations are

related to infrastructure or location features. For example, when an accident occurs

on a roadway with separated lanes (by means of a guard-rail or a roadside), it will

less frequently than expected take place outside a crossroad [1-3]. Additionally, an

accident occurring on this type of roadway will have a higher probability than ex-

pected of occurring outside the inner city [4-6]. Since the accidents analyzed in this

research all occurred in the region of Flanders, these results seems quite reasonable

since in this part of Belgium most roadways with separated lanes are located outside

the inner city. In total 46.4 % of all accidents that occur at high frequency accident

Table 4.9: Rules with highest interest value for high and low frequency accident

locations
N BODY HEAD Int T L sh sl conf

1 Belgian road user +

roadway separated

lanes

⇒ outside crossroad 0.76 - 0.90 36.46 8.51 70.62

2 road user nor-

mal condition +

roadway separated

lanes

⇒ outside crossroad 0.76 - 0.91 37.32 8.77 70.93

3 roadway separated

lanes

⇒ outside crossroad 0.76 - 0.92 39.81 9.54 71.60

4 daylight + roadway

separated lanes

⇒ outside inner city 0.75 + 1.21 30.87 7.81 81.91

5 Belgian road user +

roadway separated

lanes

⇒ outside inner city 0.74 + 1.27 44.12 11.40 85.45

6 roadway separated

lanes

⇒ outside inner city 0.73 + 1.24 46.40 12.34 83.45

7 road user nor-

mal condition +

roadway separated

lanes

⇒ age 30-45 0.72 + 1.11 31.79 8.91 60.58

8 roadway separated

lanes

⇒ age 30-45 0.72 + 1.08 32.98 9.31 59.32

9 roadway separated

lanes

⇒ passenger car 0.69 + 1.04 47.86 15.02 86.07

10 road user nor-

mal condition +

roadway separated

lanes

⇒ Belgian road user 0.68 + 1.05 49.02 12.52 93.38
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locations take place on a roadway with separated lanes outside the inner city [6].

In comparison with the low frequency accident locations, where only 12.34 % of the

accidents can be attributed to this sort of location, these roadways with separated

lanes outside the inner city are very characteristic for the occurrence of black spots

and black zones. Although these results seem quite reasonable, they do indicate that

roadways with separated lanes outside the inner city are an important problem for

traffic safety. Therefore, further research on the cause of the unsafe character of these

roads will be necessary. A high traffic intensity would seem the logical explanation

for the high number of accidents that occur on these roads, but another possible

explanation could also be the infrastructure of these roads. Indeed, several authors

have demonstrated that dangerous accident sites often correspond to places where

improvements could be made in terms of road geometry (see e.g. Agent and Deen,

1975; Wong and Nicholson, 1992; Taber, 1998; Martin, 2002; Greibe, 2003). Depend-

ing on the results, government could consider restructuring these roads or changing

their traffic regulation.

Furthermore, when an accident takes place on a roadway with separated lanes, the

road user will more frequently than expected be of the age 30 until 45 [7,8]. Finally,

a characteristic pattern for high frequency accident locations is the involvement of at

least one passenger car among the road users when the accident occurs on a roadway

with separated lanes [9]. Accordingly to the previous results, this kind of accident

accounts for 47.86 % of all accidents on high frequency accident locations, whereas

the same accident circumstances only occur in 15.02 % of the low frequency accident

locations.

Table (4.10) gives the 10 most important rules for the high frequency accident lo-

cations based on the descending lift values. The negative interest values of these rules

indicate that the accident circumstances described in these patterns have a higher oc-

currence on the low frequency accident locations than on the high frequency accident

locations, although the differences in support values are very small. Furthermore, the

results show that the strongest positive dependencies between accident characteris-

tics are not as strongly location related. Most of these association rules refer to the

number of persons involved in the accident and the number of casualties following

the accident [11-15,18-20]. This can be explained by the very small interestingness

values of the rules, referring to the occurrence of the accident characteristics at both

low frequency accident locations and high frequency accident locations. As a result,

these rules will identify patterns that will be less geographical or location related
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Table 4.10: Rules with highest lift value for high and low frequency accident locations
N BODY HEAD Int T L sh sl conf

11 0 passengers + 1 se-

riously injured

⇒ 0 lightly injured -0.31 + 8.28 7.33 10.56 85.76

12 0 deadly injured +

0 passengers + 0

lightly injured

⇒ 1 seriously injured -0.31 + 8.05 7.21 10.49 96.05

13 0 deadly injured + 0

deaths after serious

injury + 0 seriously

injured

⇒ 1 seriously injured -0.29 + 7.36 7.69 10.79 87.80

14 0 deadly injured + 0

lightly injured

⇒ 1 seriously injured -0.29 + 7.31 7.69 10.80 87.21

15 0 passengers + 0

lightly injured

⇒ 1 seriously injured -0.31 + 7.14 7.33 10.56 85.17

16 marked cycle track ⇒ one-way cycle track -0.08 + 7.00 5.78 6.31 82.98

17 one-way cycle track ⇒ marked cycle track -0.08 + 7.00 5.78 6.31 48.87

18 1 seriously injured ⇒ 0 lightly injured -0.28 + 6.41 7.92 11.02 66.42

19 0 lightly injured ⇒ 1 seriously injured -0.28 + 6.41 7.92 11.02 76.50

20 outside inner city +

1 seriously injured

⇒ 0 lightly injured -0.10 + 6.06 5.81 6.49 62.82

and more human or vehicle related. Two exceptions can be made. The association

rules concerning cyclists do refer to frequently occurring infrastructure characteris-

tics. These patterns state that when an accident occurs with a cyclist who is riding

on a cycle track that is marked on the roadway, the type of this cycle track will more

frequently than expected be a one-way track and vice versa [16,17]. This kind of

accident accounts for 7% of all accidents on high frequency accident locations but

also for 5.78% of all accidents on low frequency accident locations. Therefore, these

accident characteristics are not very discriminating between high and low frequency

accident locations, but they do however identify an important problem in the traffic

safety of cyclists in general.

The results for the 10 strongest negative dependency rules are shown, based on

the ascending lift values, in the lower part of table (4.11). The association rule with

the smallest lift value indicates that when an accident occurs on a wet road surface,

the weather will less frequently than expected be normal [21]. Obviously this is a

very strong dependency that is valid for most accidents, whether they occur on high

frequency accident locations or not. The second most important rule of this table

indicates that when a road user crashes into an obstacle outside the roadway, he was

less frequently than expected continuing his driving direction [22]. Furthermore, when

losing control over the steering wheel, there is a smaller probability than expected
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Table 4.11: Rules with highest lift value for high and low frequency accident locations
N BODY HEAD Int T L sh sl conf

21 wet road surface ⇒ normal weather 0.10 - 0.48 11.19 10.09 38.47

22 collision obstacle

outside roadway

⇒ continuing

driving direc-

tion

0.28 - 0.50 7.77 5.56 38.87

23 loss control steering

wheel

⇒ 2 road users 0.22 - 0.50 7.92 6.17 32.40

24 Belgian road user +

2 lightly injured

⇒ 0 passengers 0.13 - 0.51 5.84 5.08 36.21

25 Belgian road user +

loss control steering

wheel

⇒ 2 road users 0.26 - 0.52 7.42 5.47 34.01

26 passenger car +

loss control steering

wheel

⇒ 2 road users 0.26 - 0.54 6.91 5.10 35.30

27 male road user +

loss control steering

wheel

⇒ 2 road users 0.19 - 0.54 6.97 5.63 34.92

28 no alcohol + loss

control steering

wheel

⇒ 2 road users 0.19 - 0.54 6.35 5.17 34.97

29 Belgian road user +

0 seriously injured +

2 lightly injured

⇒ 0 passengers 0.14 - 0.54 5.84 5.03 38.33

30 road user normal

condition + loss

control steering

wheel

⇒ 2 road users 0.24 - 0.56 7.74 5.89 36.20

that two road users be involved in the accident [23,25-28,30]. Corresponding with

the results for the positive rule dependencies, these patterns relate mainly to human

characteristics and less to location related circumstances. However, a small difference

in interpretation can be noted since the negative dependency rules mainly describe

behavioral aspects of traffic accidents indicating different accident types. It seems

that losing control over the steering wheel and crashing into an obstacle outside

the roadway are frequently occurring accident patterns, each with different accident

circumstances. Indeed, run-off-roadway accidents have already often been studied (see

e.g. Lee and Mannering) and are often related to an inadequacy of the speed and/or

behavior of the user to the driving circumstances. Accordingly, these association

rules are more descriptive for the occurrence of accidents in general and they are less

discriminating between high frequency accident locations and low frequency accident

locations.

When looking at the results of the tables (4.9),(4.10) and (4.11) a final remark
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concerning the interest value of the rules should be made. One can see that the

support values for the patterns in the low accident locations remain quite stable

over the three tables. However, the support values for the rules concerning the high

frequency accident locations are considerably high for table (4.9) and considerably

smaller for the tables (4.10) and (4.11). Therefore, the increase in the interest value

of the rules and consequently the increase in the discriminating character of the rules

are mainly related to the strong occurrence of the accident circumstances in the high

frequency accident locations and not as much by the weak occurrence of these patterns

in the low frequency accident locations.

Special attention should also be given to the association rules that do appear in

the rules set of the high frequency accident locations but not of the low frequency

accident locations. Table (4.12) shows the results for these association rules with the

10 highest lift values. The rules are mainly related with the number of casualties of

the accident [31-34] but also with one specific accident type: collision with an obstacle

Table 4.12: Rules for high frequency accident locations
N BODY HEAD T L sh conf

31 0 deaths after serious injury + 0

passengers + 0 lightly injured

⇒ 1 seriously injured + 7.19 7.33 85.76

32 normal weather + 1 seriously in-

jured

⇒ 0 lightly injured + 6.73 6.65 69.78

33 normal physical condition + 0

deaths after serious injuries + 1

seriously injured

⇒ 1 seriously injured + 6.71 7.30 80.13

34 normal physical condition + 0

lightly injured

⇒ 1 seriously injured + 6.67 7.30 79.61

35 roadway separated lanes + 0 seri-

ously injured + collision obstacle

outside roadway

⇒ crash barrier + 6.51 5.52 52.39

36 roadway separated lanes + out-

side crossroad + collision obsta-

cle outside roadway

⇒ crash barrier + 6.34 6.74 51.01

37 roadway separated lanes + out-

side inner city + collision obsta-

cle outside roadway

⇒ crash barrier + 6.31 6.77 50.78

38 roadway separated lanes + 0

deaths + collision obstacle out-

side roadway

⇒ crash barrier + 6.21 6.68 50.00

39 outside inner city + 0 seriously

injured + collision obstacle out-

side roadway

⇒ crash barrier + 6.05 6.56 48.68

40 roadway separated lanes + colli-

sion obstacle outside roadway

⇒ crash barrier + 6.03 6.80 48.52
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outside the roadway. When this kind of collision occurs on a roadway with separated

lanes outside a crossroad or outside the inner city, the obstacle will more frequently

than expected be a crash barrier (iron or concrete) [35-40].

In the most favorable situation, these rules are not characteristic for the low fre-

quency accident locations (sl=0, Interest=1) and consequently these patterns op-

timally discriminate between high frequency accident locations and low frequency

accident locations. However, in the most pessimistic situation these patterns do exist

for the low frequency accident locations but they do not appear in the association

rules set due to the value of the minimum support parameter (5%). Moreover, the

choice of the minimum confidence parameter (30%) could inhibit the algorithm from

generating a number of rules although the frequent item sets exceed the minimum

support parameter. Consequently, although these association rules could give some

valuable information on the occurrence of traffic accidents in general, no conclusion

can be made towards the discriminating character of these rules between high an low

frequency accident locations. Furthermore, the support value (or the occurrence) of

these accident circumstances is relatively low for the high frequency accident locations

and therefore we will no further go in to detail about the interpretation of these rules.

4.6.5 Conclusions

In this study, the technique of association rules was used on a large data set of

traffic accidents for the region of Flanders for the year 1999. The objective of this

empirical study was to identify and profile frequently occurring accident patterns at

high frequency accident locations and determine the degree in which these accident

characteristics are discriminating between high frequency and low frequency accident

locations.

First of all, we found that the most discriminating characteristics between high

frequency accident locations and low frequency accident locations are related to in-

frastructure or location related circumstances. More specifically, results indicate that

roadways with separated lanes outside the inner city are an important problem for

traffic safety. However, further research on the cause of the unsafe character of these

roads will be necessary. Next, results showed that the accident characteristics that

occur frequently both at low frequency accident locations as at high frequency acci-

dent locations are less geographical or location related and more human or vehicle

related indicating that human and behavioral characteristics play an important role

in the occurrence of all traffic accidents. In particular, most of these association rules
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refer to the number of persons involved in the accident and the number of casualties

following the accident. Furthermore, although these accident characteristics are not

very discriminating between high and low frequency accident locations, we identi-

fied that losing control over the steering wheel, crashing into an obstacle outside the

roadway and cyclists are important issues in the traffic safety problem in general.

In conclusion, this analysis shows that a special traffic policy towards high fre-

quency accident locations should be considered, since these accident locations are

characterized by specific accident circumstances, which require different measures to

improve the traffic safety.

4.7 Profiling Black Zones

As explained in the introduction of this dissertation, methods developed for identifying

accidents concentrations often apply to hot spots (also called black spots, hazardous

locations, sites with promise etc.) which are pinpoint concentrations of road accidents

that often migrate over time (see e.g. Silcock and Smyth, 1985; Maher, 1990; Nguyen,

1991; Joly et al., 1992; Hauer, 1996; Thomas, 1996 or Vandersmissen et al., 1996).

More recently, the identification of ‘black zones’ or hazardous road segments has

been reconsidered in the literature (see Flahaut et al., 2003 for a review); they arise

from the awareness of the spatial interaction existing between contiguous accident

pinpoint locations. The existence of such road sections on which the number of

accidents is high reveals spatial concentrations and hence suggests spatial dependence

between individual accidents’ occurrences. In fact, these studies focus on a well-known

exploratory spatial data analysis problem: the definition and the explanation of hot

spots (see e.g. Levine, 2002 or Vistisen, 2002).

In this research, the location and the length of the black zones are defined by means

of local spatial autocorrelation indices and they are considered as given in our problem.

Therefore, the problem tackled here is not the definition of the black zone, but its

exploration, i.e. to understand how road accidents cluster in hazardous road segments.

More specifically, we are interested in finding out which factors are associated to the

accidents in black zones by generating frequent item sets. In particular, accident

circumstances that frequently occur together inside black zones will be identified.

Furthermore, these patterns are compared with accident characteristics occurring

outside those black zones. This allows the investigation of the differences between

accident patterns inside and outside black zones, and hence to understand why spatial
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concentrations are observed. This way, we expose a number of hypotheses, which we

then try to explain using other research studies and domain knowledge.

4.7.1 Preprocessing The Data Set

4.7.1.1 Description of the Data

Here, our analysis is here limited to one administrative region: the Walloon Brabant,

which is a province extending South of Brussels. It is 1,100 km2 large and counts

almost 350,000 inhabitants and 4,604 kilometers of numbered roads. It is mainly

characterized by urban sprawl, but also by the existence of some former small market

towns like Nivelles, Braine-l’Alleud, Wavre or Jodoigne (Dekeersmaecker et al, 2004;

Thomas et al., 2004). The Eastern part is still rural, the Western part more industrial.

Limiting the extent of the studied area enables one to better control for other sources

of variations (mobility habits, friction of distance, mobility policies, etc).

Analogously with the previous study, for this region, traffic accidents data are

obtained from the ‘Belgian Analysis Form for Traffic Accidents’ for each road accident

with casualties on numbered roads. Furthermore, the period under study is 1997-1999:

it is long enough to limit random fluctuations in the accident counts and short enough

to limit changes in road and traffic conditions. Several other researchers also used the

same period of crash history records to address different road safety issues (Cheng

and Washington, 2005).

These data indicate that for the region of Walloon Brabant, 1,861 injury accidents

occurred between 1997 en 1999. In these accidents, 81 persons were deadly injured,

333 seriously and 2,374 lightly injured.

4.7.1.2 Definition of the Black Zones

The location and the extension of hazardous locations are here defined in a preceding

study (Flahaut et al., 2003). Simply said, the hectometer (100 meters) is the smallest

spatial unit for which road accident data are spatially available (stone markers on

the numbered roads). This unit is very small and a source of many location errors;

moreover, at this level of aggregation, black spots only refer to less than 10% of the

total number of accidents and they are known to migrate over time.

We want to know if accidents are concentrated in space, if hectometers with large

accidents records are scattered or clustered together. We therefore used the concept

of local spatial autocorrelation. We know that spatial independence is an arrange-
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ment of accidents such that there are no spatial relationships between them. The

intuitive concept is that the location of an accident is unrelated to the location of any

other accident. The opposite condition - spatial autocorrelation - is an arrangement

of accidents where the locations of the hectometers are related to each other, that

is they are not statistically independent of one another. In other words, spatial au-

tocorrelation is a spatial arrangement where spatial independence has been violated

(Levine, 2002). When accidents are clustered together, we refer to this arrangement

as positive spatial autocorrelation. Conversely, an arrangement where accidents are

dispersed is referred to as negative spatial autocorrelation. Global autocorrelation

gives then a rough idea of the general spatial arrangements of accidents.

The Moran’s I statistic is one of the oldest indicators of spatial autocorrelation

(Moran, 1948). We here used a local index developed as a local indicator of spatial

autocorrelation (LISA) by Anselin in 1995. It takes high values for hectometers

located close to each other and having large numbers of accidents. Closeness is here

measured in terms of distance measured on the road network. Sensitivity analyses

were performed to the way distance is measured (Flahaut and Thomas, 2002); the

technique of local Moran I has also been compared to kernel methods for defining

road accidents black zones (Flahaut et al., 2003). Moreover, stability of the spatial

structure put forward with Local Moran I has been analyzed over time and space in

the same studied area: the locations of the black zones remain comparable from one

year to the other (Eckhardt, Flahaut and Thomas, 2004). These sensitivity analyses

confirm the performance of the technique as well as a strong spatial structure of the

road accidents in the Brabant Wallon area. This means that the location of the road

accidents concentrations is not or only slightly dependent upon the method used and

the period of time chosen. The spatial structure is strong; the methodological choices

made for defining the hazardous locations should not affect the conclusions of this

research. We refer to former studies for a critical analysis of the method (Flahaut,

2004a and 2004b; Flahaut et al., 2003; Flahaut and Thomas, 2002).

From a former analysis on the same studied area (Eckhardt, Flahaut and Thomas,

2004), we know that 47% of the road hectometers did never register any accidents.

Furthermore, black zones represent 38% of the total number of accidents, but only

12% of the total number of hectometers. Between 1997 and 1999, 476 kilometers of

black zones have been defined by local autocorrelation indices in the Walloon Brabant.

Selecting the accidents that occurred inside the black zones results in a total of 553

road accidents. The second data set, containing the accidents that took place outside
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a black zone involves 1,287 road accidents. (Note: the belonging or not of an accident

location to a black zone could not be defined for 21 accidents).

4.7.1.3 Transforming the Data Set

Two data sets are defined according to whether an accident belongs to a black zone

or not. For each accident, the official form provides several variables related to the

accident, the road-users and the place of the accident. Some variables have a continu-

ous character. As explained in the previous sections, discretization of these variables

is necessary, since generating frequent item sets requires a data set for which all items

are discrete. Furthermore, attributes with nominal values have been transformed into

binary attribute values and irregularities such as data inconsistencies, missing values,

redundant variables and double counts are tracked, listed and removed from the data

sets (Casaer et al., 2003).

In total, 292 items (characteristics of the accidents) are included in the analysis.

These items give information on 45 variables of the accidents (see appendix 10). Since

not every one of these variables is filled out for each accident, on average 40 of the

292 accident characteristics are available per accident.

4.7.2 Mining for Frequent Item Sets

A minimum support value of 5% was chosen for determining the frequent item sets.

This means that no item or set of items will be considered frequent for the analysis

of black zones if it does not appear in at least 27 road accidents. Obviously the same

threshold will be used for analyzing the non-black zones since the main purpose of this

research involves a comparative analysis between the accident patterns characterizing

black zones and non-black zones. This means that an accident characteristic must

appear in at least 64 accidents to be considered as frequent for the non-black zones. It

could be argued that the choice of the values of these parameters is rather subjective.

This is partially true, however a trial and error experiment indicated that setting the

minimum support too low, leads to exponential growth of the number of items in the

frequent item sets. In contrast, by choosing a support parameter that is too high, the

algorithm will only generate trivial accident patterns.

From the data set containing the accidents that occurred inside a black zone, with

a minsup of 5%, the algorithm obtained 187 761 frequent item sets of maximum size

4 (due to computational reasons). Although these results relate to a relatively small
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number of accident records, they are quite reasonable since an average of 40 items is

available per accident, allowing the algorithm to generate multiple combinations of

size 4 item sets. With the same parameters the analysis of the accidents that took

place outside a black zone resulted in 181,066 frequent item sets of maximum size 4.

4.7.3 Postprocessing the Frequent Item Sets

As stated in the introduction of this empirical study, the emphasis in this study lies

on the profiling of hazardous road segments in terms of accident related data and

the degree in which these accident characteristics are discriminating between black

zones and non-black zones. Therefore, we will first discuss the item sets that are

unique for the accidents that occurred inside a black zone. Selecting these item

sets resulted in 40,731 frequent accident patterns. These item sets represent very

characteristic combinations of accident circumstances for hazardous road segments

and can be considered as very discriminating between black zones and non-black

zones. Next, we will discuss the items sets that are unique for the accidents that took

place outside the black zones. In total, these correspond with 34,036 frequent item

sets. Again, these unique accident patterns are good discriminators between black

zones and non-black zones.

When discussing these accident patterns, we are mainly interested in the frequent

item sets with lift values strongly differing from 1 since these item sets represent

strong dependencies between the different items of the item set. However, note that

we should not compare the absolute lift values of the item sets of different sizes, since

the more items the item set consists of, the higher the lift value will become (see

equation (4.1)). Accordingly, we will use different cut-off values for the lift parameter

to determine the most interesting rules.

Finally, we will discuss the item sets that are frequent for both groups of accidents

(in and out black zones). Selecting these frequent item sets resulted in 147,030 acci-

dent patterns. To determine the discriminating character of these accident patterns,

these can be further post-processed by means of the interestingness measure.

4.7.4 Results

4.7.4.1 Accident Patterns inside Black Zones

Selecting the frequent item sets that are unique for accidents occurring inside a black

zone and with very strong lift values results in 50 item sets of size 2 (lift <0.5 or lift
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>5), 108 item sets of size 3 (lift <0.5 or lift >5) and 240 item sets of size 4 (lift <0.5

or lift >15). Table (4.13) gives an overview of the most interesting of these frequent

item sets. In the remainder of this research, we will refer to the number of these item

sets [N] when discussing the results.

A first result shows that intersections covered by traffic lights are often associated

with hazardous road segments [see N=1 in table (4.13)]. More specifically, accidents

on intersections covered by traffic lights frequently coincide with a road user making

a left turn [2-5]. Accordingly, side impact collisions after making a left turn and

giving no priority is a frequently occurring type of collision between two road users

[6]. Note that this type of accident really characterizes black zones and absolutely

Table 4.13: Frequent item sets for accidents inside black zones
N Item 1 Item 2 Item 3 Item 4 sup L

1 near intersec-

tion

intersection

traffic lights

9.4% 4.09

2 left turn intersection

traffic lights

5.4% 3.54

3 near intersec-

tion

intersection

traffic lights

left turn 5.4% 14.51

4 district or

province road

intersection

traffic lights

left turn 5.2% 5.87

5 straight direc-

tion

intersection

traffic lights

left turn 5.1% 5.17

6 2 road users no priority sideways colli-

sion

left turn 5.9% 15.36

7 rain aqua planning 5.1% 3.42

8 wet road surface rain aqua planning 5.1% 7.88

9 built up area pedestrian colli-

sion

5.6% 2.74

10 1 road lane speed 50 KMH built up area pedestrian colli-

sion

5.6% 16.80

11 built up area age road user

0 17

5.4% 2.73

12 1 road user loss control to

the left

against crash

barrier

5.2% 7.96

13 1 road user collision obsta-

cle outside road-

way

loss control to

the left

against crash

barrier

5.2% 26.37

14 speed 120 KMH loss control to

the left

against crash

barrier

5.1% 6.53

15 speed 120 KMH collision obsta-

cle outside road-

way

loss control to

the left

against crash

barrier

5.1% 21.65

16 road user nor-

mal condition

car speed 50 KMH loss control

steering wheel

5.2% 0.49
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not other locations. Moreover, accidents with left-turning vehicles can be divided

into quite different accident situations. Consequently, the accident attribute ‘left

turn’ will cover various problems. As explained before, these results can be linked

with the results obtained by Larsen and Klines (2002) on the basis of an in-depth

analysis of 17 left-turn collisions: they showed that in left-turn collisions, some of the

problems are related to unconscious, attention errors when approaching and entering

an intersection. Environmental factors such as uneven views when one approaches

an intersection appear to exacerbate the problem. Accordingly, we could conclude

that better signalized intersections could be a short-term solution for these types of

accidents. In the long term, after taking into account additional information such as

traffic circulation, one could consider the use of roundabouts to increase traffic safety

in these black zones.

A second characteristic for accidents occurring in black zones are the rainy condi-

tions. We know from other studies that there is a marked but complex relationship

between the incidence of weather hazards and road accidents reported under such con-

ditions (Edwards, 1996). Event if obvious, there is however no simple cause and effect

relationship. It has already widely been demonstrated that during wet conditions ac-

cident numbers increase (see e.g. Brodsky and Hakkert, 1988). This is partly due

to the slippery roads, but also to the fact that recent vehicle technical improvements

(anti-lock brakes, four-wheel drive, traction control) have improved vehicle handling

in poor conditions. Hence, drivers may take greater risks than they might have done

otherwise, as they feel more confident when driving vehicles equipped with these safety

features (Edwards, 1996). This phenomenon is also known as ‘risk homeostasis’ or

‘moral hazard’. Table (4.13) mentions rain as well as aqua planing and a wet road

surface [7,8]. This result is not surprising since aquaplaning can only occur when the

road surface is wet! We kept all 3 attributes into account as ‘rain’ refers to weather

conditions and ‘wet road surface’ to road surface conditions: an accident may occur

after a shower, under fine weather conditions but with a still wet road surface. These

aquaplaning patterns do not occur frequently when accidents are reported outside

black zones and one should investigate whether and why the infrastructure character-

istics do not prevent aquaplaning in black zones. In black zones, wet conditions seem

to be not manageable by road users, for one reason or another (infrastructure related

and/or behavioral).

Next, table (4.13) shows that accidents involving a pedestrian inside a built up area

are also typical for black zones [9,10]. These collisions inside the built up environment
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frequently involve young road users (0 17 years) [11]. This probably indicates that

black zones often correspond to road segments close to schools, playgrounds or other

activities characterizing densely built areas. This confirms former papers showing that

pedestrian injury collisions often occur when and where large numbers of pedestrians

travel within complex roadway systems with high traffic flows (see e.g. Baker, Waller

and Langlois, 1991; Braddock et al., 1994; LaScala et al., 2000 or Julien and Carr,

2002). Educational as well as environmental prevention efforts should hence focus

on the harmonization of the road function and aspects such as traffic flow and local

neighborhood as well as raising community awareness about the risks associated with

them. This is especially true in Brabant Wallon (peri-urban) and for numbered roads:

this road type is a relevant risk factor for pedestrians especially outside large urban

centers where separate paths, sidewalks and pedestrian crossing with traffic lights are

rare.

Furthermore, for some hazardous road segments, road users frequently lose control

over the steering wheel to the left and hit a crash barrier as a result [12]. As expected,

this type of accident often involves just one road user [12,13], and it also frequently

takes place on a road with a speed limit of 120 km/hour [14,15] and less frequently on

a road with a speed limit of 50 kilometers an hour [16]. Given the 120 km/hr limit,

these accidents are located on highways. Run-off-roadway accidents have already

often been studied (see e.g. literature review in Lee and Mannering, 2002). They are

often related to an inadequacy of the speed and/or behavior of the user to the driving

circumstances. The problem is then to identify cost-effective countermeasures that

improve highway designs by reducing the probability of vehicles leaving the roadway

and the severity of accidents when they do (roadside features). Lee and Mannering

(2002) show that run-off-roadside features is a complex interaction of roadside features

such as the presence of guardrails, miscellaneous fixed objects, sign supports, tree

groups and utility poles along the roadway.

In-depth analysis of each sub-type of accidents should increase the understanding

of each type of circumstances. This is, however, beyond the scope of this exploratory

research. However, all these associations show that black zones often correspond to

places where improvements could be made in terms of road design, signalization and

better land-use planning. This corroborates other studies about road accidents and

road geometry (see e.g. Agent and Deen, 1975; Wong and Nicholson,1992; Taber,

1998; Martin, 2002; Greibe, 2003).

Note that the accident patterns described in this section are limited to patterns
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that are discriminating black zones from non-black zones. More specifically, these

accident patterns occur frequently inside black zones while they do not occur at all

outside black zones. Hence, not all accident patterns that are characteristic for black

zones are put forward in this section since they will not be able to uniquely describe

the accidents in black zones.

4.7.4.2 Accident Patterns outside Black Zones

Although we are mainly interested in profiling black zones, describing the frequent

accident patterns outside black zones can also give some useful information on the

understanding of the spatial occurrence of traffic accidents. Therefore, we select the

frequent item sets that are unique for accidents occurring outside a black zone and

with very strong lift values. This results in 8 item sets of size 2 (lift <0,5 or lift >5),

84 item sets of size 3 (lift <0,5 or lift >5) and 238 item sets of size 4 (lift <0,5 or lift

>15). Table (4.14) gives an overview of the most interesting of these frequent item

sets.

In contrast to the results for accidents in black zones, table (4.14) shows that when

an accident occurs outside a black zone, it frequently occurs on an intersection covered

by traffic signs while making a left turn [17-19]. More specifically, these intersections

are frequently located on roads with a speed limit of 50 kilometers an hour where

no priority is given, resulting in a side impact collision [20-22]. In combination with

the results of table (4.13), these patterns indicate that there exists a strong difference

Table 4.14: Frequent item sets for accidents outside black zones
N Item 1 Item 2 Item 3 Item 4 sup L

17 intersection

traffic signs

left turn 7.4% 2.09

18 near intersec-

tion

intersection

traffic signs

left turn 7.4% 12.42

19 2 road users near intersec-

tion

intersection

traffic signs

left turn 6.5% 20.48

20 speed 50 KMH no priority intersection

traffic signs

5.6% 6.45

21 speed 50 KMH near intersec-

tion

no priority intersection

traffic signs

5.6% 27.59

22 speed 50 KMH sideways colli-

sion

near intersec-

tion

intersection

traffic signs

6.1% 20.41

23 head on collision negative way 8.6% 1.65

24 positive way negative way wet road surface 6.1% 0.49

25 car positive alcohol

test

drunken road

user

6.9% 7.42
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in the type of intersection on which the accidents take place, depending on whether

the accident occurred inside or outside a black zone. This difference in type of in-

tersections could also be explained by the traffic intensity on these locations. When

there is less traffic, the probability of an accident is smaller and these locations are

accordingly less often included in a black zone. Less traffic also means less public

expenditures and hence less often modern traffic lights or roundabouts.

Next, table (4.14) also shows that the head-on collision is a frequently occurring

accident type outside black zones with one road user driving in a negative way (re-

lated to the hectometer mark) [23]. Again, this pattern is not very surprising, since

head-on collisions coincide with 2 road users driving in an opposite direction. This

type of collision occurs frequently outside black zones while it does not appear at all

as a frequent item set in the results of the previous section. Furthermore, no other

association concerning this type of collision was clearly put forward. Hence, it indi-

cates that risk-taking may play a dominant role in head-on collisions. This confirms

former results (see e.g. Rajalin, 1994; Larsen and Kline, 2002). In-depth analysis of

the accidents is here needed to further understand the frontal accidents. Addition-

ally, with one road user driving in a positive way and another road user driving in a

negative way, the accident will less frequently than expected take place on a wet road

surface [24]. These results can probably be explained by the fact that aquaplaning

does not frequently occur outside black zones (see previous section). Accordingly,

head-on accidents are less frequently related to rainy weather but more to risk-taking

behavior on the road leading to spatially scattered frontal accidents.

Finally, table (4.14) also indicates that accidents where at least one car is involved

outside black zones frequently involve a drunken road user and a positive alcohol test

[25]. This pattern is not very surprising, since a positive alcohol test is an indication

for a drunken road user. However, we should bear in mind that this accident pattern

does not emerge for black zones. A possible explanation could be that outside black

zones accidents are less related to infrastructure characteristics but more to behavioral

aspects such as drinking and driving. Accidents are then more scattered and hence

spatially occur at random. There is indeed a priori no reason for alcohol related

accident to be more clustered than others. Again, further research is needed to

confirm or invalidate the results put forward in this analysis.
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4.7.4.3 Common Accident Patterns

In the previous sections, we respectively discussed the accident patterns for accidents

occurring inside black zones and outside black zones. In this section, a number of

frequent item sets are discussed that occur in both data sets and accordingly they

describe hazardous as well as non hazardous road segments. However, the occurrence

of these patterns will not be equally as strong in both data sets. Therefore, we can

use the interest value Int (see definition (4.2)) to identify the accident patterns that

occur more frequently inside than outside the black zones.

Accordingly, selecting the item sets with Int > 0.5 resulted in 14 item sets of size

2, 208 item sets of size 3 and 167 item sets of size 4. However, at the same time,

we will use the lift values to determine the item sets that are not only discriminating

between black zones and non black zones but that are also very descriptive. Selecting

these item sets resulted in 14 item sets of size 2, 9 item sets of size 3 (lift>2) and 19

item sets of size 4 (lift>2).

Table (4.15) gives an overview of the most interesting frequent item sets. Note that

the lift values in this table correspond to the values for the black zones, since these are

Table 4.15: Frequent item sets inside and outside black zones
N Item 1 Item 2 Item 3 Item 4 sb Lb sn Ln Int

26 night highway 12.3% 1.39 5.6% 1.39 0.54

27 public light-

ing

night road with

separated

lanes

13.4% 3.78 6.2% 3.77 0.54

28 highway weekend 16.8% 1.15 7.4% 1.15 0.56

29 parallel col-

lision

highway 13.4% 1.18 6.3% 1.18 0.53

30 parallel col-

lision

road with

separated

lanes

highway 13.4% 2.09 6.1% 2.09 0.54

31 rain 120 KMH 10.8% 1.09 5.0% 1.09 0.53

32 wet road

surface

road with

separated

lanes

rain 17.9% 2.66 5.9% 2.66 0.67

33 wet road

surface

outside

built up

area

road with

separated

lanes

rain 16.9% 3.73 5.7% 3.74 0.66

34 car wet road

surface

road with

separated

lanes

rain 5.1% 3.04 17.2% 3.04 0.70

34 car public light-

ing

road with

separated

lanes

rain 14.2% 2.34 5.2% 2.34 0.63
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the main interest of this research. This table shows that accident patterns that are

typical for all accidents, and that also have a high interestingness value (pointing out

that they occur more frequently inside than outside black zones) are mostly related to

accidents on highways or roads with separated lanes. More specifically, these accidents

occur more frequently than expected at night [26,27]. This confirms the results of

other researchers that showed that accident rates vary on different types of roads

depending on day and night conditions (see e.g. Martin, 2002). Furthermore, these

accidents frequently take place during weekends [28]. Once again, previous studies

have demonstrated that the time of the day and week is an important risk factor,

especially for young drivers (see e.g. Doherty et al., 1998). The type of accident

is often a parallel collision [29,30]. These accident patterns respectively occur in

more than 12% (Sb=12.3%) [26], 13% [27], 16%[28], 13% [29] and 13% [30] of all

accidents in black zones while outside black zones these types of accidents only occur

in approximately 5% (Sn=5,6%) [26], 6% [27,29,30] or 7% [28] of all accidents.

Furthermore, accidents in black zones are more often related to the rainy weather

and/or a wet road surface than accidents that take place outside black zones. More

specifically, these accidents frequently occur on roads with separated road lanes [31-

35] with a speed limit of 120 kilometers an hour [30] and outside the built up area

[31]. These results can be related to the figures in table (4.13), which indicate that

aquaplaning is an important problem in black zones. Since we can assume that (for

this empirical study) the weather conditions and accordingly the amount of rain inside

black zones and outside black zones will not be significantly different, accidents caused

by rain will obviously also play an important role outside black zones, explaining the

occurrence of this accident factor in both data sets. However, as explained before,

wet conditions are less manageable by road users in black zones, for one reason or

another (infrastructure related or behavioral).

4.7.5 Conclusions

In this research, we aimed at understanding why road accidents tend to cluster in

specific road segments. More particularly, the technique of frequent item sets is

applied for automatically identifying accident circumstances that frequently occur

together, for accidents located in and outside black zones. Our analysis here is limited

to one administrative region: the Walloon Brabant, for the period 1997-1999.

The most important results of this research are that road accidents concentrations

in black zones correspond to specific frequent items. Taking a left turn is an important
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accident factor as well inside as outside black zones. However, in black zones, these

accidents frequently take place on intersections covered by traffic lights while outside

black zones, this accident type frequently occurs on intersections with traffic signs,

which could be explained by the traffic on these accident locations. Better signalized

intersections could be a short-term solution for these types of accidents, however, in

the long term, one should also consider the use of roundabouts to increase traffic

safety in these black zones.

A second important accident circumstance as well inside as outside a black zone

is the rainy weather conditions. However, inside black zones this factor frequently

coincides with aquaplaning, which is not the case outside these black zones. These

results suggest that black zones and non black zones are characterized by different

infrastructure specifications, explaining the occurrence of the clustering of accidents

in black zones.

Furthermore, a collision with a pedestrian involving young road users inside the

built up area is a typical accident pattern that frequently occurs inside a black zone.

This confirms common sense and former papers showing that pedestrian injury colli-

sions often occur when and where large numbers of pedestrians travel within complex

roadway systems with high traffic flows. Education and environmental prevention ef-

forts should hence focus on aspects of traffic flow as well as raising local neighborhood

community awareness about the risks associated with them.

Additionally, loss of control over the steering wheel and the resulting collision

with a crash barrier is a frequently occurring accident pattern in black zones. These

run-off-roadway accidents often occur on freeways and are related to an inadequacy

of the speed and/or behavior of the user to the driving circumstances. The problem

is then to identify cost-effective countermeasures that improve highway designs by

reducing the probability of vehicles leaving the roadway and the severity of accidents

when the do (roadside features).

The findings of this research are rather suggestive and limited to one data set.

Furthermore, in this research the location and the length of the black zones are

defined by means of local spatial autocorrelation indices and are considered as given

in our problem. Results of this research show, however, the usefulness of the frequent

item sets in analyzing the combination of patterns associated with road accidents

occurrences in these black zones. More specifically, these results show that a special

traffic policy towards accidents in black zones and accidents outside these zones should

be considered. Indeed, these spatial concentrations of accidents are characterized by
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specific accident circumstances, which require different countermeasures to reduce

their number such as improvements in terms of road design, signalization, and local

environment. Accordingly, infrastructure and land-use can enhance traffic safety but

is not an answer to all problems. Finally, one should also mention that there is no

unique combination of characteristics associated to road accident occurrences: it is a

complex phenomenon for which only some aspects are reported here.

4.8 Profiling High Risk Road Clusters

In this empirical study, we will illustrate the possibility of identifying geographical

locations with high accident risk by means of clustering techniques and profiling them

in terms of accident related data by means of data mining techniques using a small

but complex data set of traffic accidents.

In particular, in the first part of this research, we will use model based clustering

to cluster traffic roads into distinct groups based on their similar accident frequencies.

In the second part of this research, the data mining technique of frequent item sets

is used to profile each cluster of traffic roads in terms of the available traffic accident

data.

Analogously with the previous empirical studies, the data for this research orig-

inate from the National Institute for Statistics and are obtained from the Belgian

‘Analysis Form for Traffic Accidents’ that should be filled out by a police officer for

each traffic accident that occurs with injured or deadly wounded casualties on a pub-

lic road in Belgium. More specifically, this analysis will focus on 19 central roads

in the city of Hasselt for three consecutive time periods of 3 years each: 1992-1994,

1995-1997, 1998-2000. In total, 142 accidents are included in the analysis.

4.8.1 Clustering Traffic Roads

4.8.1.1 Model Formulation

As explained in the previous section, the number of accidents on 19 (n = 19) similar

roads in Hasselt (Belgium) are considered for three following time periods of each

three years. The idea is to cluster the traffic roads in groups based on the similarities

in the number of accidents that occurred on the roads during each time period.

Therefore, a 3-variate Poisson distribution (Y1, Y2, Y3) with one common covari-

ance term is defined for each cluster (Li et al., 1999):
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Y1 = X1 + X123 (period1 = 1992− 1994) (4.10)

Y2 = X2 + X123 (period2 = 1995− 1997) (4.11)

Y3 = X3 + X123 (period3 = 1998− 2000) (4.12)

with Yi = the number of accidents on a traffic road in period i and all X’s independent

univariate Poisson distributions with respective parameters (λ1, λ2, λ3, λ123).

Since a large number of variables that influence the number of road accidents in

a certain time period will be time specific (e.g. traffic intensities), we will use one

Poisson distribution for each time period to approximate the number of accidents in

period i (Xi). Furthermore, it can easily be seen that the occurrence of accidents on

a traffic road over several time periods may be related (e.g. due to bad infrastruc-

ture). Therefore, correlations between the observations in each cluster are allowed by

identifying the parameter λ123, which can be considered as a covariance factor that

measures the risk of the area common to all time periods (Karlis, 2000).

4.8.1.2 Model estimation

The algorithm is sequentially applied to the data for 1 to 5 clusters (k =1,...,5).

Furthermore, in order to overcome the dependence on the initial starting values for

the model parameters, resulting in a local optimum instead of a global optimum value,

different sets of starting values for pi and λi are chosen. However, results show that

dependencies on the initial starting values only occur for large values of k, while

for smaller values of k the algorithm terminates at the same solution with the same

parameter values, indicating that the global optimum has very likely been achieved.

Figure (4.6) shows the evolution of respectively the loglikelihood and the informa-

tion criteria for different clusters (k=1,...,5) of the 3-variate Poisson Mixture Model

with common Covariance. Note that the depicted values for the AIC, BIC and CAIC

are re-scaled in order to be comparable to the loglikelihood. This figure indicates the

use of the goodness of fit measures to determine the number of clusters: although

the loglikelihood of the model increases when the number of clusters increases, the

information criteria will not choose the maximum possible clusters to cluster the data.

Considering the model complexity, the AIC selects three clusters whereas the CAIC

and the BIC select only two clusters. This difference can be explained by the fact

that the AIC does not consider the size of the data set, whereas the CAIC and the
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Figure 4.6: LL, AIC, BIC and CAIC against the number of clusters k

BIC do penalize for this factor. However, note that the difference between the AIC

value for two clusters and for three clusters is very small.

For the remainder of this research, we will focus on the results of the 2-components

common covariance model, which groups the traffic roads in two clusters.

4.8.1.3 Parameter Estimates

Table (4.16) contains the parameter estimates and the size of each cluster (p) for the

model with 2 clusters.

In this model, the average number of accidents increases per period for the first

cluster and decreases per period for the second cluster. Furthermore, the observed

average accident rate per period for cluster 1 is mainly dependent on the average

Table 4.16: Parameters for the 2-components model

Parameters

Cluster λ1 λ2 λ3 λ123 p

1 0.631 0.930 1.089 0.005 0.688

2 4.149 3.490 1.790 3.726 0.312
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accident frequency of the concerning period (λi) and less on the covariance factor

(λ123). For cluster 2, the covariance term does play an important role in the observed

average accident rate per period. This can be explained as for this cluster there is a

strong common factor in all periods that has to do with the accident risk on these

roads, for example due to bad infrastructure, constant high traffic volume. However,

note that for this second cluster there is a strong decrease in the average number

of accidents from period 2 (λ2) to period 3 (λ3). This could be an indication of

infrastructure changes between these two periods.

4.8.2 Profiling Traffic Roads

4.8.2.1 Preprocessing the Data Set

In the second part of this research, we will use frequent item sets to profile the two

clusters of traffic roads. Therefore, two data sets of traffic accidents are defined

according to the traffic roads belonging to cluster 1 and cluster 2. This is determined

by estimating the posterior probability wij , i.e. the posterior probability for location

i to belong to cluster j. This probability can be obtained for each observation vector

yi according to Bayes’ rule (see equation 3.5). Indeed, after estimation, we know

the density distribution f(yi|θj) with θj is vector of parameters for cluster j, and we

know the cluster size pj of each component such that we can calculate the posterior

distribution as follows:

wij =
pjf(yi|θj)∑k

j=1 pjf(yi|θj)
(4.13)

Assigning the accident locations to the cluster with the highest posterior probability

resulted in a total of 35 traffic accident records that were included for the analysis of

cluster 1 (13 traffic roads) and 107 traffic accidents that were included for the analysis

of cluster 2 (6 traffic roads). Figure (4.7) gives an overview of these clusters.

After preprocessing the available data to prepare them for the use of the mining

technique (discretize variables and remove irregularities such as data inconsistencies,

missing values, redundant variables and double counts), two steps can be distinguished

in the mining process: a mining step for generating the frequent item sets and a post-

processing step for evaluating and interpreting the most interesting patterns.

4.8.2.2 Generating Frequent Item Sets

A minimum support value of 30% was chosen for the analysis by means of frequent

sets. From cluster 1, the algorithm obtained 29,415 frequent item sets of maximum size
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Figure 4.7: Traffic roads belonging to cluster 1 (...) and cluster 2 (in bold)

4. Although these results relate to a relatively small number of accident records, they

are quite reasonable since an average of 40 items is available per accident, allowing

the algorithm to generate multiple combinations of size 4 item sets. With the same

support parameter the second analysis resulted for cluster 2 in 28,541 frequent item

sets of maximum size 4. These rules are further processed to select the most interesting

rules.

4.8.3 Results

4.8.3.1 Common Accident Patterns

First, we will discuss the frequent item sets that are descriptive for both clusters

of accident locations. Selecting these frequent item sets resulted in 24,562 accident

patterns. However, in this research, we will pay special attention to the item sets

with a positive interest value, i.e. approximating ‘1’ since these accident patterns are

stronger for cluster 2, i.e. the cluster with the highest accident risk. Accordingly,

selecting the item sets with Int > 0.3 resulted in 12 item sets of size 2, 75 item sets

of size 3 and 309 item sets of size 4. Table (4.17) gives an overview of the most

interesting of these frequent item sets.

These results show that the accident patterns that occur more frequently in cluster

2 than cluster 1 often occur on a weekday, inside the built up area with 2 road users
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[N=1], with one road user’s age being between 18 and 29 [2]. These accidents often

involve a female road user [3], driving a car [4].

Furthermore, one road user is frequently driving in a straight direction with a speed

limit of 50 kilometers per hour in daylight [5]. These accidents frequently result in a

sideways collision [6,7,8] with at least one road user in a normal condition [9]. The

relatively young age (between 18 and 29) of the road users involved in the accidents

on the traffic roads of cluster 2 could indicate that in this high risk cluster young

parents are involved who drive their children to school. Indeed, schools are one stable

geographic feature associated with regular, often concentrated periods of complex and

congested traffic patterns (LaScala et al., 2004). However, additional information on

the traffic roads shows us that the schools are located on the traffic roads of cluster

1. On the traffic roads of cluster 2 the church, music academy, cultural center and

most important shops (e.g. bakeries, newspaper shops, hairdressers, laundry services,

banks) are located. This information indicates that these accident patterns do not

occur in the immediate environment of the schools but will most likely occur on the

roads leading to and from the schools where the shops are located. Indeed, when

looking at the time of accident, 14.5% of the accidents take place between 7am and

Table 4.17: Frequent item sets for both clusters
N Item 1 Item 2 Item 3 Item4 s2 L2 s1 L2 Int

1 weekday Inside built

up area

2 road users 0.72 1.02 0.45 0.94 0.37

2 weekday age 18-29 0.59 1.02 0.39 0.92 0.35

3 weekday inside built

up area

female 0.52 1.01 0.32 0.99 0.38

4 weekday inside built

up area

female car 0.54 1.01 0.32 0.75 0.40

5 straight di-

rection

50 KMH daylight 0.47 1.06 0.32 1.10 0.30

6 sideways

collision

50 KMH 0.49 1.01 0.32 1.05 0.33

7 sideways

collision

inside built

up area

weekday car 0.58 1.09 0.39 1.03 0.33

8 sideways

collision

inside built

up area

weekday 2 road

users

0.58 1.09 0.39 1.03 0.33

9 sideways

collision

female normal con-

dition

0.55 1.02 0.35 0.88 0.35

10 dry road

surface

inside built

up area

weekday 0.58 0.99 0.39 0.84 0.33

11 normal

weather

inside built

up area

weekday straight

direc-

tion

0.52 0.97 0.32 0.74 0.38



4.8. Profiling High Risk Road Clusters 159

9am and 18.3% of the accidents take place between 4pm and 6pm. Furthermore,

29% of the accidents take place between 10am and 12am and 23.7% between 1pm

and 3pm, which correspond with the opening hours of most shops. Remarkably fewer

accidents occur in the evening (5,3% between 7pm and 9pm) and at night (9.2%

between 10pm and 6am) when the shops are closed. Additionally, the accidents

occurring on a weekday, inside the built up area and resulting in a sideways collision

mostly occurred on a crossroad (71.6%).

Additionally, results of table (4.17) show that compared to cluster 1 the accidents

on traffic roads belonging to cluster 2 occur more frequently on a dry road surface [10]

and with normal weather [11]. However, note that for both clusters these accident

patterns have a lift value smaller than ‘1’. This means that although in cluster 2

more accidents occur under normal weather conditions and on dry road surfaces than

in cluster 1, these accident patterns still occur less frequently than expected for both

clusters. All these accident patterns indicate that most accidents that occur on a

traffic road belonging to the high-risk cluster (cluster2) take place under no special

variable environmental circumstances (e.g. rain, alcohol).

Therefore, it can be expected that the high number of accidents on these traffic

roads can be explained by an unsafe infrastructure or a high traffic volume for all

time periods, confirming our previous results of a high common covariance factor for

this cluster. Indeed, several authors have described the relationship between accident

involvement on the one hand and road geometry and traffic volume on the other hand

(see e.g. Abdel-Aty and Radwan, 2000).

4.8.3.2 Accident Patterns for High Risk Cluster

Next, we will discuss the accident patterns that are frequent for cluster 2 but not

for cluster 1. These item sets represent very characteristic combinations of accident

circumstances for the traffic roads with a high accident risk. More specifically, we

are interested in the frequent item sets with lift values differing from ‘1’ since these

item sets represent strong dependencies between the different items of the item set.

However, note that we should not compare the absolute lift values of the item sets of

different sizes, since the more items the item set consists of, the higher the lift value

will become.

Selecting the item sets that are unique for cluster 2 resulted in 3,943 frequent

accident patterns (table (4.18)). Conform with the previous results, the results of

table (4.18) show that sideways collisions involving female road users are a typical
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Table 4.18: Frequent item sets for the high risk cluster

N Item 1 Item 2 Item 3 Item4 sup L

12 sideways collision female no priority 0.41 1.23

13 sideways collision female no priority crossroad 0.35 1.38

14 50 KMH brakes no priority 0.31 1.40

15 50 KMH car age 18-29 0.39 1.19

16 weekday bicycle 0.34 1.09

17 weekday bicycle 2 road users 0.31 1.14

18 0 deadly injured bicycle 0.36 1.13

accident pattern for traffic roads with a high accident risk [12,13]. Again, these results

indicate that this type of accident occurs frequently while the maximum speed limit

was 50 kilometers per hour for these accidents, while no priority is given [12,13,14]

and the age of at least one road user was between 18 and 29 [15].

A second important accident type that is reflected in the results of table (4.18)

are the accidents involving a bicycle. These accidents often take place on a weekday

[16] with 2 road users [17] and frequently coincide with 0 deadly injured victims [18].

Note that these accident patterns are not very surprising as such, but remark that

they do not appear for the accidents of cluster 1. Again, this could be explained by

the proximity of shops, the cultural center, music academy, church etc. on the traffic

roads of cluster 2. The intensity of bicyclists will probably be much higher on these

roads compared to majority of the roads of cluster 1 where in general none of these

centers or stores is located. Since this traffic intensity of bicyclists will more or less

be the same over all time periods, this factor will probably contribute to the high

common covariance term for cluster 2. However, since the schools are located on the

traffic roads of cluster 1 and accordingly the intensity of bicyclists will also be high

in these specific streets, it is surprising that these accident patterns with bicyclists

do not occur at all in cluster 1. Again, this indicates that accidents with bicycles do

not frequently occur in the immediate environment of the schools but will most likely

occur on the roads leading to and from the schools.

4.8.3.3 Accident Patterns for Low Risk Cluster

Finally, we will discuss the item sets that are unique for the accidents related to

cluster 1. These item sets represent very characteristic combinations of accident

circumstances for the traffic roads with a low accident risk. Again, we are interested
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Table 4.19: Frequent item sets for the low risk cluster

N Item 1 Item 2 Item 3 Item4 sup L

19 crossroad priority to

the right

0.62 1.40

20 crossroad priority to

the right

daylight 0.42 1.47

21 normal weather priority to

the right

age 30-45 0.32 1.16

22 normal weather dry road

surface

crossroad age 46-60 0.35 1.07

23 car age 46-60 0.35 1.07

24 inside built up area weekend 0.32 1.14

in the frequent item sets with lift values differing from ‘1’. Selecting the item sets

that are unique for cluster 1 resulted in 4,879 frequent accident patterns. The most

interesting of these frequent item sets can be found in table (4.19).

These results show that an important accident type for the traffic roads with low

accident risk are the accidents on crossroads with priority to the right [19,20]. These

accidents take up 61,61% of all accidents on these roads. However, in contrast with

the previous results, these accidents more frequently than expected involve a road

user with age between 30 and 45 [21].

Additionally, when an accident occurs on a crossroad with normal weather on a

dry road surface, at least one road user of the age between 46 and 60 is involved

[22,23]. These results show that the age of the road user is not as pronounced for the

accidents occurring on the low accident risk traffic roads.

Finally, an important accident pattern involves the accidents that occur inside the

built up area in the weekend [24]. Note that these weekend accidents did not appear

for the traffic roads with high accident risk.

4.8.4 Conclusions

In the first part of this research, model based clustering is used to cluster traffic roads

into two groups based on their similar accident frequencies. Results show that the

observed average accident rate per period for cluster 1 is mainly dependent on the

average accident frequency of the concerning period and less on the covariance factor.

For cluster 2, the covariance term does play an important role in the observed average

accident rate per period. This can be explained as for this cluster there is a strong
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common factor in all periods that has to do with the accident risk on these roads.

In the second part of this research, the association algorithm was used on a data

set of traffic accidents to profile the two clusters of traffic roads. Results showed

that, in contrast with the results for cluster 1, the accident patterns for cluster 2

confirm that the roads belonging to this cluster should be considered as dangerous at

all times resulting in a high number of accidents in all time periods. Furthermore, a

special traffic policy towards these clusters should be considered, since each cluster is

characterized by specific accident circumstances.

4.9 Discussion and limitations

In this chapter, the association algorithm was used on a data set of road accidents

to profile hazardous accident locations in terms of accident related data and loca-

tion characteristics. More specifically, frequent item sets and association rules are

generated to identify accident circumstances that frequently occur together. The use

of this technique is of an explorative character since it describes the co-occurrence

of accident circumstances but it does not give any explanation about the causality

of these accident patterns. Therefore, its role is to give direction to more profound

research on the causes of these accident patterns and explanation which will require

the use of some additional techniques or expert knowledge. These patterns represent

interesting interactions in accident factors, which accordingly can be used to test in

statistical models. Furthermore, the use of frequent item sets not only allows to give

a descriptive analysis of accident patterns and discern different accident types, it also

creates the possibility to find the accident characteristics that are discriminating be-

tween groups such as high frequency accident locations and low frequency accident

locations, black zones and non black zones or clusters of traffic roads.

However, although the analyses carried out in this research revealed several inter-

esting patterns which, in turn, provide valuable input for purposive government traffic

safety actions, some final remarks are in place. First, according to Elvik (2006), the

role of accident analysis should also be to identify false positives, these being black

spots at which no clearly interpretable pattern in accidents can be found. Indeed, no

way of identifying black spots is perfect, so there will always be a few false positives

amongst the black spots identified. Accordingly, the author proposes a new approach

to the analysis of accidents at hazardous road locations, designed to make these analy-

ses more effective in discriminating between true and false positives, i.e. sites whose
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true expected number of accidents is high and sites where a high recorded number

of accidents is predominantly the result of chance variation. However, since in this

research, we use data mining to find accident patterns that frequently occur at an

aggregated level of accident locations and not at the level of the individual location, it

is impossible to single out these false postives. Therefore, no conclusions were made

on the existence of false positives among the identified hazardous locations and this

techniqe should merely be seen as an exploratory tool to identfy accident patterns for

a specific group of accident locations such as black spots.

Next, the skewed character of the accident data limits the amount of information

contained in the data set and will therefore restrict the number of circumstances that

will appear in the results. Moreover, the choice for the minimum support parame-

ter can prevent the association algorithm from generating rules on the less frequent

accident conditions. However, this information on rare accident types could be very

useful since the circumstances in which these accidents occur, will probably not be

trivial and more difficult to discern.

Additionally, the inclusion of domain knowledge (e.g. traffic intensities, a priori

infrastructure distributions) in the association algorithm would improve the mining

capability of this data mining technique and would facilitate the post-processing of

the association rules set to discover the most interesting accident patterns. Moreover,

the variables used here are restricted to those collected by the police. Ideally, our

range of variables should therefore be extended to other sources (traffic, land-use,

accessibility, etc.) in order to better approach the explanation process.

Finally, considering the large number of attributes in the traffic accident data set,

it seems interesting to explore the potential of techniques that generate rules with

longer patterns to uncover more complex associations in traffic accidents. Indeed, in

this research, using the apriori algorithm and the chosen minimum support values,

we were only able to generate accident patterns of maximum size 4. Accordingly,

in order to generate all frequent item sets in the data, we adopted an algorithm of

Grahne and Zhu (2003), who focussed their work on the mining of frequent item sets

in large databases. More specifically, the authors introduced a novel technique to

mine for frequent item sets by using an array to greatly improve the performance

of the algorithms operating on FP-trees. As a test case, we used this algorithm to

generate all frequent item sets for the accidents that occurred inside and outside black

zones (see section (4.7)). Table 4.20 gives an overview of the results when using the

same minimum support value of 5%.
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Table 4.20: All item sets for accidents inside and outside black zones

Number of Item Sets

Size of the Item Set Inside Black Zones Outside Black Zones

<=4 181,761 181,066

5 585,012 527,506

6 1,503,629 1,303,513

7 2,821,858 2,327,294

8 3,985,326 3,061,149

9 4,299,310 2,955,907

10 3,555,297 2,060,841

11 2,246,180 1,015,737

12 1,077,804 346,898

13 390,096 80,945

14 105,006 12,776

15 20,221 1,342

16 2,555 85

17 177 2

18 4 0

These results show that, indeed, there exist long patterns in the accident data

(maximum size of the item set = 18). On the one hand, these patterns could reveal

some new and surprising information on the accident data given the large number

of accident characteristics that are combined. On the other hand, the size of these

item sets also implies that the patterns will be more difficult to understand. This

will, in turn, render it more difficult for policy makers to find an explanation and

decide on suitable actions to prevent these accident patterns. Additionally, note that

although the accidents that occurred inside black zones represent only 30.05% of

the total number of accidents (553/1840), the number of frequent item sets that are

generated for this group of accidents is almost equally as large as for the accidents

outside black zones. In other words, although this group of accidents is much smaller,

an equal number of accident patterns is found to describe these accidents, indicating

the complexness of accidents occurring inside black zones.

Given this information and the fact that we are mainly interested in accident

patterns inside black zones, we examined into more detail the item sets of size 8 for
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the black zone accidents. We compared these item sets with the results of section

(4.7.4.1) to find out whether the increased complexity of these longer patterns is

compensated by the more explanatory power of these item sets.

First, we selected the item sets of size 8 with the highest lift values. More specif-

ically, we looked at the 110 item sets with a lift value > 80 and a support value of

approximately 5% (remember that the more items the item set consists of, the higher

the lift value will become). However, results showed that these item sets describe

the same accident patterns as the 4-item sets that we discussed in section (4.7.4.1).

The additional items in the item sets do not give more surprising information on the

circumstances in which these accident patterns occurred. Next, given the relatively

low support value of the 110 item sets discussed above, we also selected the item sets

of size 8 with the highest support values. More specifically, we selected the item sets

with a support value of 25% and a lift value >=2. However, as the the relatively

small lift values indicate, these item sets do occur frequently but do not reveal any

surprising or interesting accident patterns.

In conclusion, we can state that although it is possible to generate a large number

of item sets with more than 4 items, for this research the increased complexity of

these longer patterns is not compensated by the more explanatory power of these

item sets.
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Chapter 5

Evolution of Dangerous

Accident Sites over Time

In this section, dangerous accident locations based on the data from 1997-1999 are

compared with the accidents that should be considered as dangerous based on the

data from 1999-2001. More specifically, we will we will apply the currently used

ranking and selection criterion in Flanders on the data from 1999-2001 to investigate

whether dangerous accident locations, based on the priority values, tend to migrate

over time in the region of Flanders.

167
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5.1 Introduction

As explained in chapter 3 of this dissertation, the 1,014 accident locations that are

currently considered as dangerous by the Flemish government are selected using the

large data set of traffic accidents from the National Institute of Statistics for the region

of Flanders (Belgium) for the period 1997-1999. To improve the traffic safety on these

locations, the Flemish government will each year, starting in 2003 for a period of five

years, invest 100 million EURO to redesign the infrastructure of the 800 accident

locations with the highest score.

However, although the Flemish government is still focussed on tackling the dan-

gerous accident sites of 1997-1999, the accident data of 1999-2001 are currently also

available for analysis. Accordingly, instead of using the data from 1997-1999 and

performing a sensitivity analysis on the currently used ranking and selecting crite-

rion, in this chapter we use the data from 1999-2001 to make a comparison between

the locations of the dangerous sites in 1997-1999 and 1999-2001 in Flanders. As ex-

plained in section 2.1.5, a relation has been observed between a hazardous accident

site disappearance and the development of a new dangerous accident location near

the previous one. This phenomenon of accident migration occurs when a dangerous

accident site is not managed properly: on the one hand the accident number on the

existing hazardous site decreases, while, on the other hand, usually in a road section

nearby, the accident number suddenly increases. Accordingly, we will apply the cur-

rently used ranking and selection criterion in Flanders on the data from 1999-2001

to investigate whether the dangerous accident locations indeed tend to migrate over

time in the region of Flanders by comparing the locations of the dangerous accident

sites between the periods 1997-1999 and 1999-2001.

5.2 Comparative analysis

5.2.1 Mapping the Dangerous Accident Sites

In accordance with the 1,014 currently selected dangerous accident locations based

on the data from 1997-1999, we used equation (3.1) to calculate the priority score for

the accident sites of the accident data of 1999-2001. This resulted in 991 accident

locations where at least 3 accidents occurred and with a priority score that equals 15

or more. Accordingly, these accident sites should be considered as dangerous for this

period.
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Figure 5.1: Dangerous accident locations Flanders 1997-1999

Figure 5.1 shows the 1,014 dangerous accident locations that are currently consid-

ered as dangerous based on the data of 1997-1999 (diamond shaped black dots) and

the 991 accident sites that should be considered as dangerous based on the data of

1999-2001 (rectangular shaped grey dots).

Comparing these dangerous accident locations of 1997-1999 and 1999-2001 in a

Geographical Information System (GIS) shows that the location of 315 dangerous

accident sites is exactly the same in the two periods. This means that 31.07% of the

1,014 accident sites that are currently considered as dangerous should still be con-

sidered as dangerous based on the data from 1999-2001. Furthermore, this indicates

that 68.21% of the dangerous accident sites from 1999-2001 were not considered as

dangerous in 1997-1999.

However, although the identification of dangerous accident locations is in theory

related to intersections with a radius of 50 meters or roadway segments of numbered

roads with a length of 100 meters, this location information in GIS is collected on a

more detailed level than the hectometer. Accordingly, due to improved measuring and

calibration techniques the reference to the exact location of the dangerous sites can

differ between the two periods. Consequently, by comparing these exact locations of
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the dangerous accident sites in the two periods, we obtain an underestimation of the

actual number of dangerous accident sites that correspond between the two periods.

To correct for this underestimation, we rounded down the location data of the

dangerous accident sites on road segments for the two periods to 100 meters. This

corresponds with the definition of dangerous accident locations in Flanders. Compar-

ing these location references resulted in 470 dangerous accident sites that correspond

between 1997-1999 and 1999-2001. Analogously, 46.36% of the dangerous accident

locations in 1997-1999 should still be considered as dangerous based on the data from

1999-2001. On the other hand, 47.43% of the dangerous accident sites from 1999-2001

were not considered as dangerous in 1997-1999.

5.2.2 Analyzing the Different Rankings

A closer investigation of the 470 accident sites that are common in the two periods

shows that the ranking of these accident locations based on the data from 1997-1999

varies between 1 and 1,014. This means that the dangerous accident sites that are

still dangerous based on the data from 1999-2001 are not only the 470 most dangerous

ones.

More specifically, table (5.1) shows for different subsets of the 1,014 accident lo-

cations from 1997-1999 the number of accident sites that are also dangerous in 1999-

2001.

When analyzing the top 15% most dangerous accident sites of 1997-1999 (152

sites), table (5.1) shows that 71.05% of these accident sites are still dangerous in

1999-2001. Even more, when closer investigating these sites, results show that 9

accident sites that were ranked in the top 10 of most dangerous accident locations in

1997-1999 are also dangerous in the period 1999-2001. For the top 40%, top 70% and

top 800 these figures diminish respectively to 61.33%, 53.80% and 52.12% accident

Table 5.1: Dangerous accident sites in both periods

1997-1999 1999-2001

top 15% (152 sites) 71.05 %(108 sites)

top 40% (406 sites) 61.33% (249 sites)

top 70% (710 sites) 53.80% (382 sites)

top 800 (800 sites) 52.12% (417 sites)
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Table 5.2: New dangerous accident sites

1999-2001 1997-1999

top 15% (149 sites) 24.16 % (36 sites)

top 40% (397 sites) 35.01% (139 sites)

top 70% (694 sites) 45.24% (314 sites)

top 800 (800 sites) 47.87% (383 sites)

sites that are dangerous in both periods.

Conversely, table (5.2) shows for different subsets of the 991 accident locations that

should be considered as dangerous based on the data from 1999-2001, the number of

accident sites that were not belonging to the most dangerous accident sites in 1997-

1999.

Results from table (5.2) show that from the top 15% most dangerous accident

sites in 1999-2001, 24.16% accident locations were not even considered as dangerous

based on the data from 1997-1999. Additionally, the larger the subset, the higher

the number of accident sites that are not considered as dangerous based on the data

from 1997-1999, but should be considered as dangerous sites based on the data from

1999-2001 (respectively 35.01%, 45.24% and 47.87% for the top 40%, top 70% and

the top 800).

5.2.3 Comparing Results with Bayes

In section 3.5.1, we explained that when identifying hazardous locations, the actual

count of accidents are subject to random variation and to the regression to the mean

problem. Accordingly, locations that in one period recorded ‘x’ accidents do not have,

on the average, ‘x’ accidents in the subsequent period. By using Bayesian estimation

values we could handle this uncertainty and the great variability of accident data and

produce a probabilistic ranking of the accident locations.

Analogously with the research in section 3.5.1, we should take into account this

variability in the accident data when comparing the rankings of the dangerous ac-

cident sites in 1997-1999 and 1999-2001. Indeed, as explained in section 2.1.2, it is

possible that the high crash rates observed at some sites in 1997-1999 may be due

to chance, or a combination of both chance and a moderately hazardous nature. In

that case, a dangerous accident site may be nothing more than a meaningless cluster
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of accidents which occurs randomly and has no intrinsic meaning. These sites are

likely to have fewer crashes in 1999-2001 because the number of crashes will tend to

gravitate towards the long-term mean value.

Therefore, in this section, we use the probabilistic rankings that were calculated in

section 3.5.4.2 for the 1,014 accident locations that are currently considered as most

dangerous. These results showed that in comparison with the use of accident count

data, the use of Bayesian estimation techniques caused a different ranking order for

the accident sites in term of dangerousness. Accordingly, when investigating different

subsets of the 1,014 dangerous accident sites, this will also involve different accident

sites and can give different results.

In particular, table 5.3 shows for different subsets of the 1,014 accident locations

from 1997-1999, based on the probabilistic rankings, the number of accident sites that

were also dangerous in 1999-2001.

These results show that when analyzing the top 15% most dangerous accident sites

of 1997-1999 (152 sites), based on the probabilistic rankings, 69.08% of these accident

sites are still dangerous in 1999-2001. Closer investigation of these sites showed that

8 accident sites that were ranked in the top 10 of most dangerous accident locations

in 1997-1999 based on their probabilistic ranking are also dangerous in the period

1999-2001. For the top 40%, top 70% and top 800 these figures diminish respectively

to 59.36%, 50.98% and 49.25% accident sites that are dangerous in both periods.

Comparing these results from table (5.3)with the results from table (5.1) shows

that using Bayesian estimation values to determine the subsets of most dangerous

accident sites lightly decreases the number of accident locations that are considered

as dangerous in both periods for the defined subset. In other words, the use of

probabilistic rankings will alter the accident sites that are considered as belonging to

the subset of most dangerous accident sites.

Table 5.3: Common dangerous accident sites based on Bayes estimates

1997-1999 Bayes 1999-2001

top 15% (152 sites) 69.08%(105 sites)

top 40% (406 sites) 59.36% (241 sites)

top 70% (710 sites) 50.98% (362 sites)

top 800 (800 sites) 49.25% (394 sites)
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Table 5.4: New dangerous accident sites based on Bayes estimates

1999-2001 1997-1999

top 15% (149 sites) 26.17 % (39 sites)

top 40% (397 sites) 40.55% (161 sites)

top 70% (694 sites) 48.55% (337 sites)

top 800 (800 sites) 50.62% (405 sites)

Indeed, as explained in section 2.1.2, it is possible that the high crash rates ob-

served at some sites in 1997-1999 may be due to chance, or a combination of both

chance and a moderately hazardous nature. In that case, a dangerous accident site

may be nothing more than a meaningless cluster of accidents which occurs randomly

and has no intrinsic meaning. These sites are likely to have fewer crashes in 1999-

2001 because the number of crashes will tend to gravitate towards the long-term mean

value.

Conversely, table (5.4) shows for different subsets of the 991 dangerous accident

locations from 1999-2001, based on the probabilistic rankings, the number of accident

sites that were not belonging to the most dangerous accident sites in 1999-2001.

Results from table (5.4) show that from the top 15% most dangerous accident sites

(based on the probabilistic rankings) in 1999-2001, 26.17% accident locations were not

even considered as dangerous based on the data from 1997-1999. Analogously with the

results from table (5.2), the larger the subset, the higher the number of accident sites

that are not considered as dangerous based on the data from 1997-1999, but should be

considered as dangerous sites based on the data from 1999-2001 (respectively 40.55%,

48.55% and 50.62% for the top 40%, top 70% and the top 800).

Again, comparing these results from table (5.4)with the results from table (5.2)

shows that using Bayesian estimation values to determine the subsets of most danger-

ous accident sites lightly decreases the number of accident sites that are considered

as dangerous in both periods for the defined subset.

5.2.4 Buffering Dangerous Locations

As explained in section 5.2.1, the identification of dangerous accident locations in

Flanders in theory is related to intersections with a radius of 50 meters or roadway

segments of numbered roads with a length of 100 meters. Since measuring and calibra-
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tion techniques continuously improve between periods, comparing the exact locations

of the dangerous accident sites in the two periods would result in an underestimation

of the actual number of dangerous accident sites that correspond between the two pe-

riods. Therefore, we rounded down the location data of the dangerous accident sites

on road segments for the two periods to 100 meters. This resulted in 470 dangerous

accident sites that correspond between 1997-1999 and 1999-2001. We concluded that

this indicated that 68.21% of the dangerous accident sites from 1999-2001 were not

considered as dangerous in 1997-1999.

However, in order to investigate whether these accident sites should in fact be

considered as completely ‘new’ hazardous locations, we should examine whether these

dangerous sites are not the result of accident migration factors. As explained in section

2.1.5, a relation has been observed between a hazardous accident site disappearance

and the development of a new dangerous accident location near the previous one.

This phenomenon of accident migration occurs when a dangerous accident site is not

managed properly: on the one hand the accident number on the existing hazardous

site decreases, while, on the other hand, usually in a road section nearby, the accident

number suddenly increases.

Therefore, in order to investigate whether the dangerous accident locations indeed

tend to migrate over time in the region of Flanders, we used a buffering technique

to analyze whether the ‘new’ hazardous accident locations in 1999-2001 are not just

accident sites that migrated from one dangerous site (based on the accident data of

1997-1999) to a neighboring location.

More specifically, we used a Geographical Information System to create buffers

around the 1,014 dangerous accident sites from 1997-1999. In particular, we used

the exact locations of the dangerous accident sites for 1997-1999 to create the buffers

around these pinpoint locations. Next, we calculated how many of the 991 dangerous

accident sites from 1999-2001 lie within at least one of these buffers. Table 5.5 shows

the results for this research, depending on the value we chose for the buffer radius.

Results from table 5.5 show that when considering a buffer of 50 meters around the

1,014 dangerous accident sites from 1997-1999, 538 accident locations from the 991

dangerous accident sites from 1999-2001 correspond with at least one of these buffers.

Comparing this value of 538 with the 470 accident sites we calculated before shows

that, although both calculations rounded down the exact locations of the dangerous

accident sites up to 50 meters, the buffering technique aggregates all the locations

that lie in a circle with a radius of 50 meters and not just the accident sites that are
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Table 5.5: Buffering the dangerous accident sites from 1997-1999

radius 1999-2001

50 meters 54.28 % (538 sites)

100 meters 57.41 % (569 sites)

150 meters 60.14 % (596 sites)

200 meters 62.16 % (616 sites)

250 meters 63.16 % (626 sites)

300 meters 64.48 % (639 sites)

350 meters 65.99 % (654 sites)

400 meters 67.10 % (665 sites)

450 meters 68.42 % (678 sites)

500 meters 70.23 % (696 sites)

1,000 meters 79.72 % (790 sites)

segments of the same road. Obviously, the larger the radius that is considered for

buffering, the more dangerous accident sites from 1999-2001 will fall within one of

these buffers (up to 79.92% when constructing buffers with a radius of 1,000 meters).

Based on the figures from table 5.5, one could argue that it does seem that accident

locations tend to migrate over time in Flanders. Indeed, the construction of buffers

shows that by taking into account the neighboring accident sites when comparing the

locations of the dangerous sites in 1997-1999 and 1999-2001, the number of accident

sites that should be considered as dangerous in both periods increases.

More specifically, table 5.6 shows for the 521 ‘new’ dangerous accident locations

from 1999-2001 the number of sites that now fall within at least one of the buffers of

dangerous sites for 1997-1999. These figures show that for a radius of 50 meters 13.6%

of the dangerous sites that are ‘new’ in 1999-2001 actually lie within the neighborhood

of 50 meters of an accident site that is considered as dangerous based on the data

from 1997-1999. Similar with the results from table 5.5, the larger the radius that is

considered for buffering, the more ‘new’ dangerous accident from 1999-2001 will fall

within one of these buffers (up to 61.61% when constructing buffers with a radius of

1,000 meters).

However, one should be careful when interpreting these results. As explained

before, the buffering technique aggregates all the locations that lie with a certain
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Table 5.6: Accident migration based on buffers

radius 1999-2001

50 meters 13.6 % (71 sites)

100 meters 19.19 % (100 sites)

150 meters 24.37 % (127 sites)

200 meters 28.21 % (147 sites)

250 meters 30.13 % (157 sites)

300 meters 32.63 % (170 sites)

350 meters 35.51 % (185 sites)

400 meters 37.62 % (196 sites)

450 meters 40.12 % (209 sites)

500 meters 43.57 % (227 sites)

1,000 meters 61.61 % (321 sites)

radius of the exact location and not just the accident sites that are segments of

the same road. This technique has the advantage that it allows to identify dangerous

accident locations that migrated from one road segment to a neighboring road segment

that is located on a different road. When studying the effect of accident migration,

this could be a correct result when the neighboring road segment now has an increased

number of accidents as a direct result of the management of the previous dangerous

accident site. However, this is not always necessarily the case. Therefore, more

profound research on the road functions, road directions, road characteristics and

management measures of the concerning road segments is necessary before any definite

conclusions on accident migration can be made.

5.3 Conclusions

In this research, we used the accident data from 1997-1999 and 1999-2001 of the region

of Flanders to investigate whether the dangerous accident sites in these periods, based

on the priority values, tend to migrate over time.

First of all, by mapping the dangerous locations up to 100 meters precision, (this

corresponds with the definition of dangerous accident locations in Flanders), we found

that 470 dangerous accident are considered as dangerous in both periods. This in-



5.3. Conclusions 177

dicates that 46.36% of the dangerous accident locations in 1997-1999 should still be

considered as dangerous based on the data from 1999-2001 while 47.43% of the dan-

gerous accident sites from 1999-2001 were not considered as dangerous in 1997-1999.

A closer investigation of the 470 accident sites that are common in the two periods

shows that the ranking of these accident locations based on the data from 1997-1999

varies between 1 and 1,014.

Next, results showed that using probabilistic rankings based on Bayesian estima-

tion values to determine the subsets of most dangerous accident sites lightly decreases

the number of accident locations that are considered as dangerous in both periods

for the defined subset. Indeed, it is possible that the high crash rates observed at

some sites in 1997-1999 may be due to chance, or a combination of both chance and

a moderately hazardous nature. In that case, a dangerous accident site may be noth-

ing more than a meaningless cluster of accidents which occurs randomly and has no

intrinsic meaning. These sites are likely to have fewer crashes in 1999-2001 because

the number of crashes will tend to gravitate towards the long-term mean value.

Furthermore, in order to investigate whether the dangerous accident locations in-

deed tend to migrate over time in the region of Flanders, we used a buffering technique

to analyze whether the ‘new’ hazardous accident locations in 1999-2001 are not just

accident sites that migrated from one dangerous site (based on the accident data of

1997-1999) to a neighboring location. These results showed that by taking into ac-

count the neighboring accident sites when comparing the locations of the dangerous

sites in 1997-1999 and 1999-2001, the number of accident sites that should be consid-

ered as dangerous in both periods increases. However, although this technique has the

advantage that it allows to identify dangerous accident locations that that are located

in the neighborhood of a different dangerous accident location, one should be careful

when interpreting these results. More profound research on the road functions, road

directions, road characteristics and management measures of the concerning road seg-

ments is necessary before any definite conclusions on accident migration can be made.

Therefore, as explained before (see section 2.1.5) to prevent accident migration, gov-

ernment should be careful to determine the target accidents for a treatment. These

target accidents are all those that can be affected by the treatment. It follows that a

convincing evaluation of the safety effect of a treatment requires a good understanding

of the process by which the accidents are generated and avoided.

Finally, note that in this research, due to limitations in the availability of the

data, the data are not independent, as the year 1999 is included in both data sets
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(1997-1999 and 1999-2001). Inclusion of the same year in both data sets is bound to

create dependence between them, which reduces variance and makes the black spots

appear more stable than they actually are. Secondly, this research was based on the

counted accident data in the two periods. As explained before, this is very sensitive to

random variation in accident counts and to the regression to the mean problem (see

section 2.2.1). Further research is necessary in order to account for this regression to

the mean problem and controlling spatial dependency of the accident counts.



Chapter 6

Final conclusions

In this chapter, an overview of the main research contributions of this dissertation

is presented. More specifically, we will present the most important conclusions from

this research and discuss the limitations and topics for future research. This chapter

will mainly be based on the chapters 3, 4 and 5 of this dissertation.

179
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6.1 Research Objectives

In general, typical procedures for hazardous site correction can be divided into three

basic tasks (Schlüter (1997), Vistisen (2002)) :

1. The identification and ranking of hazardous locations. This results in a list of

sites with promise (‘Identification Phase’).

2. Prioritizing these sites by diagnosing the problems at identified locations and de-

termining potential remedial treatments in order to identify cost-effective safety

improvement projects(‘Investigation Phase’).

3. The appraisal of alternative treatments followed by implementation of the best

treatment if sufficiently cost-effective. To evaluate the effect of treatment, before

and after studies need to be conducted. (‘Program Implementation Phase’)

In this dissertation, we focus on the first and second element of these steps, namely

the identification and investigation of hazardous accident locations. Accordingly, in

this research, we had two main research objectives.

First, we wanted to investigate how hazardous accident locations are currently

identified and ranked in Flanders (the Flemish speaking community of Belgium).

More specifically, the objective was to perform a sensitivity analysis, based on the

same data used to select and rank the 1,014 accident sites that are currently con-

sidered as dangerous by the Flemish government, to investigate the strengths and

weaknesses of this approach to rank and select dangerous accident sites. Second, in

order to develop effective countermeasures to reduce the number of accidents at dan-

gerous locations, one should properly and systematically relate accident frequency

and severity to a large number of variables. Accordingly, the second objective of

this research was to investigate how data mining and statistical techniques can be

implemented to identify and profile dangerous accident locations in terms of acci-

dent related data and location characteristics. Additionally, we aimed to develop new

models, using these techniques, which will provide new insights into the criteria that

aim to explain to probability of the occurrence of a traffic accident. Finally, we were

also interested in investigating whether the dangerous accident sites in Flanders tend

to migrate over time using accident data from different time periods.
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6.2 Ranking and Selecting Dangerous Accident Lo-

cations

In chapter 3 of this dissertation, we showed that changing the 1 3 5 weighing values

that are currently used for respectively a lightly injured, seriously injured and deadly

injured person will have an important impact on the selection of the most dangerous

accident locations. However, the choice for the values of these weight parameters are

mainly a policy decision depending on the government’s priorities in the traffic safety

policy. Therefore, no conclusions were made concerning which weighing criterion

should be preferred. This was not the objective of this research and will require

additional data and in depth analysis of the accident locations.

Furthermore, we explained that by giving weight to the severity of the accident we

can correct for the bias in the priority score that occurs when the number of occupants

of the vehicles are subject to coincidence. However, one should investigate whether

the number of occupants, and accordingly the number of injured persons, is not a

coincidence but more likely a trend. For these locations, correcting for the number of

passengers would not be advisable since the number of injuries that appear at these

locations are inherent to the locations characteristics.

Next, we introduced the use of Bayesian estimation values instead of historic count

data to rank the accident locations in order to take into account the problem of random

variation in accident counts. Additionally, we developed Bayesian ranking plots that

can be used to visualize the estimated probability that a location will be ranked

as belonging to the most dangerous locations. These probability plots can provide

policy makers with a scientific instrument with intuitive appeal to select dangerous

road locations on a statistically sound basis. In particular, using this tool, we showed

that the choice for tackling only 800 accident locations, as the government currently

does, seems somewhat arbitrary. However, no statement was made in this research

on how many sites should be tackled since this, of course, will depend on the budget

that is available to improve traffic safety.

As a conclusion, we presented the results of using a valuation of casualties based

on direct costs, indirect costs and validation for human suffering to give weight to

the accidents. This valuation resulted in the weighing values 1 7 33 when the

most severe injury respectively concerns a light, serious or deadly injury. Based on

estimates from a hierarchical Bayes model, we generated probability plots, in order

to visualize the estimated probability that a location will be ranked as dangerous.
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Results showed that combining these ranking criteria will have a big impact on the

selection and ranking of dangerous accident locations. Therefore, considering this

impact quantity, we want to sensitize government to carefully choose the criteria for

ranking and selecting accident locations without stating that the criterion used in

this paper should be preferred to the currently used ranking method. Indeed, the 1

7 33 weighing values seem a reasonable and scientifically sound alternative for the

currently used 1 3 5 weighing combination, but it is up to the government to decide

which priorities should be stressed in their traffic safety policy. Then, the according

weighing value combination can be chosen to rank and select the most dangerous

accident locations.

In this context, we developed a mixed integer programming model in order to

automatically generate the ‘optimal’ weighing values for the 800 accident locations

that are primarily responsible for the human suffering on the Belgian roads. These

results showed that in order to select the accident locations that maximize the human

suffering on the roads, the government should not only take into account the valuation

of injury types from an economic or ethical point of view but also the relation between

the number of injury types at each location.

As a final remark, we want to point out that, although this was the main focus

of this dissertation, in practice one should not only rank the accident locations based

on the benefits that can be achieved from tackling these locations. One should also

incorporate the costs of infrastructure measures and other actions that these accident

sites require in order to enhance the safety on these locations. By balancing these costs

and benefits against each other, the accident locations can then be ranked according

to the order in which they should be prioritized.

6.3 Profiling Hazardous Accident Locations

In chapter 4 of this dissertation, we used an association algorithm used on a data set of

road accidents to profile hazardous accident locations in terms of accident related data

and location characteristics. We showed that frequent item sets and association rules

can be generated to identify accident circumstances that frequently occur together.

More specifically, we used this technique to discern frequently occurring accident

types, each with different relevant accident conditions. Furthermore, we were able to

identify and profile frequently occurring accident patterns at high frequency accident

locations and determine the degree in which these accident characteristics are discrim-
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inating between high frequency and low frequency accident locations. Additionally,

we found that spatial concentrations of accidents are characterized by specific acci-

dent circumstances, which require different countermeasures to reduce their number

such as improvements in terms of road design, signalization, and local environment.

From this research, we concluded that a special traffic policy towards accidents inside

black zones and accidents outside these zones should be considered.

Note however that the use of this technique is of an explorative character since

it describes the co-occurrence of accident circumstances but it does not give any

explanation about the causality of these accident patterns. Its role is to give direction

to more profound research on the causes of these accident patterns and explanation

which will require the use of some additional techniques or expert knowledge. These

patterns represent interesting interactions in accident factors, which accordingly can

be used to test in statistical models. Furthermore, the use of frequent item sets not

only allows to give a descriptive analysis of accident patterns and discern different

accident types, it also creates the possibility to find the accident characteristics to

find the accident characteristics that are discriminating between groups such high

frequency accident locations and low frequency accident locations or black zones and

non black zones.

Although the analyses carried out in this research revealed several interesting

patterns which, in turn, provide valuable input for purposive government traffic safety

actions, we pointed out some limitations of this research. First, the skewed character

of the accident data limits the amount of information contained in the data set and

will therefore restrict the number of circumstances that will appear in the results.

Moreover, the choice for the minimum support parameter can prevent the association

algorithm from generating rules on the less frequent accident conditions. However,

this information on rare accident types could be very useful since the circumstances in

which these accidents occur, will probably not be trivial and more difficult to discern.

Additionally, the inclusion of domain knowledge in the association algorithm would

improve the mining capability of this data mining technique and would facilitate the

post-processing of the association rules set to discover the most interesting accident

patterns. Moreover, the variables used here are restricted to those collected by the

police. Ideally, our range of variables should therefore be extended to other sources

(traffic, land-use, accessibility, etc.) in order to better approach the explanation

process. Finally, considering the large number of attributes in the traffic accident

data set, we showed that, although it is possible to generate a large number of item
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sets with more than 4 items, for this research the increased complexity of these longer

patterns is not compensated by the more explanatory power of these item sets.

6.4 Evolution of Dangerous Accident Sites over Time

Finally, in chapter 5 of this dissertation, we used the accident data from 1997-1999

and 1999-2001 of the region of Flanders to investigate whether the dangerous accident

sites in these periods, based on the priority values, tend to migrate over time.

First of all, we found that 46.36% of the dangerous accident locations in 1997-1999

should still be considered as dangerous based on the data from 1999-2001 while 47.43%

of the dangerous accident sites from 1999-2001 were not considered as dangerous in

1997-1999. A closer investigation of the 470 accident sites that are common in the

two periods shows that the ranking of these accident locations based on the data

from 1997-1999 varies between 1 and 1,014. Next, we illustrated, using probabilistic

rankings based on Bayesian estimation values, that the high crash rates observed

at some sites in 1997-1999 may be due to chance, or a combination of both chance

and a moderately hazardous nature. These sites are likely to have fewer crashes in

1999-2001 because the number of crashes will tend to gravitate towards the long-term

mean value. Finally, we used a buffering technique to analyze whether the ‘new’

hazardous accident locations in 1999-2001 are not just accident sites that migrated

from one dangerous site (based on the accident data of 1997-1999) to a neighboring

location. However, although this technique has the advantage that it allows to identify

dangerous accident locations that that are located in the neighborhood of a different

dangerous accident location, one should be careful when interpreting these results.

More profound research on the road functions, road directions, road characteristics

and management measures of the concerning road segments is necessary before any

definite conclusions on accident migration can be made. Accordingly, to prevent

accident migration, government should careful to determine the target accidents for a

treatment. These target accidents are all those that can be affected by the treatment.

It follows that a convincing evaluation of the safety effect of a treatment requires a

good understanding of the process by which the accidents are generated and avoided.
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Appendix1
List of variables included in table ONGEVAL.

Variable Description Attribute Values

Volgnummer Unique accident

ID

numeric

Prov Province Numeric

Jaar Year Numeric

RP Police unit Text

Eenheid Police code Numeric

Pvnr Police report

number

Numeric

Nis City code Numeric

Tijdstip Hour, day, month,

year

Numeric

Kruispunt Intersection 1=near intersection, 2=out-

side intersection

In bbkom Built-up area 1=inside built-up area,

2=outside built-up area

Kprgl1,2 Intersection traffic

regulation

1=police officer, 2=traffic

lights, 3=flashing light,

4=traffic signs, 5=priority to

the right

Licht Light conditions 1=daylight, 2=twilight,

3=public lighting, 4=night

Plakar1,2 Local characteris-

tics

1=road works, 2=bridge,

3=tunnel, 4=railroad,

5=roundabout

Staatw1,2 Road surface

characteristics

1=dry, 2=wet, 3=snow,

4=clean, 5=dirty, 9=un-

known
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Factorenw1,2 Road factors 1=bad road surface, 2=faulty

signals, 3=faulty lighting,

4=road works, 5=queue,

6=downhill, 7=curve, 8=bad

visibility

Varia1,2,3,4 Varia 1...14 For example: 1=acci-

dent, 2=aquaplaning, 3=sun-

blinded, 4=school, 6=bus

stop, 8=no seat belt, 9=no

helmet, 10=no child seat

Weer1,2 Weather condi-

tions

1=normal, 2=rain, 3=fog,

4=wind, 5=snow, 6=hail,

7=other, 9=unknown

Aantweggebrs Number of road

users

Numeric

Aantpass Number of dead or

injured passengers

Numeric

Aantslachtoffers Victims (no road

users)

Numeric

Totaal betrokken Number of per-

sons involved

Numeric

Totaaldoden Number of deaths Numeric

Totaalligew Number of lightly

injured

Numeric

Totaalzwgew Number of seri-

ously injured

Numeric

Dodenlg Number of deaths

due to light in-

juries

Numeric

Dodenzg Number of deaths

due to serious in-

juries

Numeric
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Appendix2

List of variables included in table WEGGEBRUIKERS.

Variable Description Attribute Values

Volgnummer Unique accident

ID

Numeric

Gebruiker Road user Numeric

Locid Unique location

ID

Numeric

Zinverplaatsing Direction 1=positive, 2=negative,

3=transverse, 4=not applica-

ble, 5=unknown

Aard Type of road user 1,...24 For example: 1=car,

6=truck, 10=bus, 13=motor-

bike, 14=moped, 18=bike,

20=pedestrian

Aantpass Number of passen-

gers

Numeric

Alcohol Alcohol test 1=no, 2=refused, 3=positive,

4=negative

Geslacht Gender 1=male, 2=female

Gevolgen Consequences 1=dead, 2=seriously injured,

3 lightly injured, 4=unin-

jured

Land Country of vehicle

registration

Text

Leeftijd Age Numeric

Nrplaat License plate Text

Toest1,2 Condition 1=normal, 2=drunk, 3drugs,

4=ill
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Typeaanrijding Type of collision 1=multiple, 2=frontal,

3=parallel, 4=sideways,

5=pedestrian, 6=obstacle on

roadway, 7=obstacle outside

roadway, 8=one driver, no

obstacle, 9=other, unknown

Tegenhindernis Obstacle type 50...67 For example: 50=an-

imal, 51=train, 52=tram,

59=tree

Tegenweggebr Number of col-

lided road user

Numeric

Beweging Movement 1=straight direction, 2=op-

posite direction, 3=loss

control to the left 4=loss

control to the right, 5=left

turn, 6=right turn, 7=pass

left, 8=pass right, 9=u-turn,

10=drive backwards, 11=car

breakdown, 12=standstill

opening door, 13=standstill,

14=parking, 15=private

property, 16=other move-

ment

Dynamica Dynamics 1=constand speed, 2=brake,

3=accelerate, 4=standstill,

5=unknown

Factorengebr1,2 Factors road user 1=ignored red light, 2=no

priority, 3=over white line,

4=incorrect passing, 5=side-

step maneuver, 6=incorrect

position on roadway, 7=loss

control steering wheel, 8=no

distance, 9=fall
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Factorenv1,2 Factors vehicle 1=incorrect lighting, 2=bad

tires, 3=broken tire, 4=defect

trailer/cargo
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Appendix3

List of variables included in table PASSAGIERS.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Gebruiker Road user Numeric

Passagier Passenger Numeric

Geslacht Gender 1=male, 2=female

Leeftijd Age Numeric

Gevolgen Consequences 1=dead, 2=seriously injured,

3=lightly injured

Plaats Position in the vehicle 1=front, 2=back, 3=unknown
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Appendix4

List of variables included in table VOETGANGERS.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Gebruiker Road user Numeric

Afstand Unsheltered walking

distance

Numeric

Overst Visibility to other

road users

1=visble, 2=not visible, 9=un-

known

Plaats Position 10=footpath, 11=cycle track,

20=out of vehicle, 30=right side

roadway, 31=left side roadway,

40=zebra crossing with traffic

lights, 41=zebra crossing with

police officer, 42=zebra cross-

ing, 43=next to zebra crossing

with traffic lights, 44=next to

zebra crossing with police offi-

cer, 45=next to zebra crossing,

46=no zebra crossing in 30m,

50=pedestrian not moving on

roadway, 99=unknown
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Appendix5

List of variables included in table FIETSERS.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Gebruiker Road user Numeric

Plaats Position 1=separated cycle track,

2=marked cycle track on

roadway, 3=other

Fietspad Cycle track path 1=one way, 2=two way driving

in normal direction, 3=two way

driving in opposite direction
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Appendix6

List of variables included in table SLACHTOFFERS.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Slachtoffer Victim Numeric

Geslacht Gender 1=male, 2=female

Leeftijd Age Numeric

Gevolgen Consequences 1=dead, 2=seriously injured,

3=lightly injured
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Appendix7

List of variables included in table LOCATIE.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Locid Unique Location ID Numeric

Type Type of numbered

road

1=motorway, 2=district or

province road

Ident Unique road ID Letter (A,B,N,R,P,T) + number

Wegtype Type of numbered

road

Letter (A,B,N,R,P,T)

Wegindex Road index Numeric

Kmp Kilometer mark Numeric

Nrgebouw House number Numeric

Snelheid Maximum speed al-

lowed

Numeric

Soort Type of numbered

road

1=one road lane, 2=separated

road lanes

Straatnaam Street name Text

Straattype Type of non-

numbered road

Text
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Appendix8

List of variables included in table LOCONG.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Locatie1,2 Unique location ID Numeric
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Appendix9

List of variables included in table GEVAARLIJKE PROD.

Variable Description Attribute Values

Volgnummer Unique accident ID Numeric

Gebruiker Road user Numeric

Borden Signs 1=blank orange sign, 2=num-

bered sign

Opschrift1,2 Numbers on sign Numeric

Staatlading Condition of the load 1=empty, 2=leakage, 3=noleak-

age
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Appendix10

List of items included in the analysis.

Variable Item

Built-up area inside built up area; outside built-up

area

Type of road highway; district or province road

Type of road lanes road with one road lane; road with sep-

arated road lanes

Intersection near intersection; outside intersection

Intersection traffic regulation intersection police officer; signalized in-

tersection; signalized intersection flash-

ing light; intersection traffic signs; in-

tersection priority to right

Location characteristics road works; bridge; tunnel; railroad;

roundabout

Road factors bad road surface; faulty signals; faulty

lighting; road works; queue; downhill;

curve; bad visibility

Miscellaneous accident following accident; aquaplan-

ing; sun blinded; school; recreation cen-

ter; bus stop; person swung out of vehi-

cle; no safety belt; no helmet; no child

seat; cargo on roadway before accident;

cargo on roadway because of accident;

fire after accident; comments

Weather conditions normal weather; rain; fog; wind; snow;

hail; other weather

Road conditions: road surface : dry; wet; snow; clean;

dirty

Light conditions daylight; twilight; public lighting; night

Week week; weekend

Day of week Monday; Tuesday; Wednesday; Thurs-

day; Friday; Saturday; Sunday
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Part of the day morning rush hour (7-9 am); morn-

ing (10-12 am); afternoon (1pm-3pm);

evening rush hour (4-6pm); evening (7-

9pm); night (10pm-6am)

Type of road user car; car double use; minibus; light

truck; camper; truck; truck and trailer;

truck; tractor; bus; trolley bus; motor

coach; motorbike under 400cc; motor-

bike over 400cc; moped A; moped B;

moped 3-4 wheels; bike; span; wheel

chair; pedestrian with bike; pedestrian;

horseman; other road user

Direction positive way; negative way; transverse

way; way not applicable

Movement straight direction; opposite direction;

loss control to the left; loss control to

the right; left turn; right turn; pass

left; pass right; u-turn; drive back-

wards; car breakdown; standstill open-

ing door; standstill; parking; private

property; other movement

Dynamics constant speed; brake; accelerate;

standstill

Alcohol no alcohol test; refused alcohol test;

positive alcohol test; negative alcohol

test

Gender road user male road user; female road user

Consequences road user dead; seriously injured; lightly injured;

uninjured

Age road user 0-17; 18-29; 30-45; 46-60; over 60

Condition road user normal condition; drunken; sedated; ill
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Factors road user ignored red light; no priority, over white

line; incorrect passing; sidestep maneu-

ver; incorrect position on roadway; loss

control steering wheel; no distance; fall

Factors vehicle incorrect vehicle lights; bad tires; flat

tire; defect trailer or cargo

Type of collision multiple collision; frontal collision; par-

allel collision; sideways collision; pedes-

trian collision; collision obstacle on

roadway; collision obstacle outside

roadway; collision no obstacle

Type of obstacle animal; train; streetcar; load on road-

way; container; road works; street bor-

der; speed ramp; excavation; tree; pub-

lic lighting; post; over crash barrier;

against crash barrier; wall; fence; canal;

other obstacle

Position pedestrian on footpath pedestrian on cycle track; pedestrian

out of vehicle; pedestrian right side

roadway; pedestrian left side roadway;

zebra crossing with traffic lights; zebra

crossing with police officer; zebra cross-

ing; next to zebra crossing with traffic

lights; next to zebra crossing with po-

lice officer next to zebra crossing; no

zebra crossing; pedestrian not moving

on roadway

Visibility pedestrian visible; not visible

Walking distance pedestrian 1-4 m; 5-10m; 11-15 m; over 16 m

Position cyclist separated cycle track; marked cycle

track on roadway; other cycle track

Cycle track one way cycle track; two way cycle track

normal direction; one way cycle track

opposite direction
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Gender passenger male passenger; female passenger

Injuries passenger dead; seriously injured; lightly injured

Position passenger front seat; Back seat

Age passenger 0-17; 18-29; 30-45; 46-60; over 60 years

old

Gender victim male victim; female victim

Age victim 0-17; 18-29; 30-45; 46-60; over 60 years

old

Injuries victim dead; seriously injured; lightly injured

Number of road users 0; 1; 2; 3; 4; 5; 6; 7; 8

Number of passengers 0; 1; 2; 3; 4; 5

Number of victims 0; 1; 2; 3; 4; 5

Total number of lightly injured 0; 1; 2; 3; 4; 5; 6; 7

Total number of seriously injured 0; 1; 2; 3; 4; 5

Total number of deaths 0; 1; 2; 3; 4; 5



Samenvatting

In Vlaanderen worden momenteel 1014 ongevallocaties als ‘gevaarlijk’ beschouwd.

Deze gevaarlijke plaatsen of zogenoemde ‘zwarte punten’ worden geselecteerd op basis

van hun historische ongevallendata. Meer bepaald wordt voor elke locatie waar in de

voorbije 3 jaar, 3 of meer letselongevallen plaats vonden een combinatie van gewichten

gebruikt om de gevaarlijke ongevallenlocaties te rangschikken en te selecteren: respec-

tievelijk 1 voor elke licht gewonde, 3 voor elke zwaar gewonde en 5 voor elke dode

(combinatie 1 3 5). Indien de resulterende score minstens 15 bedraagt, wordt een

ongevallenlocatie als een gevaarlijk punt beschouwd.

In dit doctoraat wordt aan de hand van een sensitiviteitsanalyse onderzocht wat

de implicaties zijn van het gebruik van deze ranking methode op de selectie van de

meest gevaarlijke ongevallocaties. Daarnaast worden, met behulp van data mining

en statistische technieken, ongevallocaties geprofileerd in termen van ongevaldata en

locatiekarakteristieken. Dit laat toe ongevalpatronen te identificeren en vervolgends

gevaarlijke ongevallocaties aan te pakken met gerichte maatregelen. Daarnaast wor-

den een aantal nieuwe modellen ontwikkeld die meer inzicht geven in de verschillende

factoren die het al dan niet gebeuren van verkeersongevallen trachten te verklaren.

Tot slot wordt in dit onderzoek nagegaan of gevaarlijke ongevallocaties in Vlaanderen

zich verplaatsen in de tijd.

In hoofdstuk 3 leggen we uit dat verschillende prioriteiten ten aanzien van het ver-

keersveiligheidsbeleid kunnen vertaald worden in verschillende wegingsfactoren. De

resultaten van een sensitiviteitsanalyse tonen aan dat er wel degelijk belangrijke gevol-

gen zijn voor het selecteren en rangschikken van gevaarlijke punten wanneer andere

combinaties van gewichten worden gehanteerd. Bovendien heeft een verandering in

de wegingsfactoren niet alleen een effect op het aantal ongevallocaties dat wijzigt bij

de selectie van de meest gevaarlijke punten, het heeft ook een invloed op het type van

locatie dat geselecteerd wordt en bijgevolg ook op toekomstige acties om deze locaties
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verkeersveilig te maken. Naast de impact van de gewichten wordt onderzocht welke

impact het aantal passagiers in een voertuig heeft op de rangschikking van ongevallo-

caties. Deze resultaten tonen aan dat het toekennen van gewichten aan de ernst van

het ongeval in plaats van aan alle gewonde inzittenden een belangrijk effect heeft op

de selectie en rangschikking van gevaarlijke ongevallocaties. De overheid moet dan

ook zorgvuldig beslissen of ze locaties willen rangschikken aan de hand van de ernst

van het ongeval of de ernst en het aantal van alle gewonde inzittenden. Bovendien

wordt in dit hoofdstuk nagegaan wat het effect is op de rangschikking van de ongeval-

locaties wanneer gewerkt wordt met het verwacht aantal ongevallen, geschat op basis

van een hiërarchisch Baysiaans model, in plaats van met de historische ongevallen-

data. Immers, wanneer locaties geselecteerd worden als zijnde gevaarlijk op basis

van hun aantal geobserveerde ongevallen dan kan ‘bias by selection’ verwacht worden.

Dit houdt in dat bepaalde locaties, die op basis van hun historisch aantal ongevallen

schijnbaar gevaarlijk zijn, misschien onterecht geselecteerd worden voor behandeling

terwijl echte gevaarlijke locaties over het hoofd worden gezien. Verder ontwikkelden

we een model om Baysiaanse ranking plots te genereren die gebruikt kunnen worden

door het beleid om aan de hand van een grafisch instrument gevaarlijke ongevallocaties

te selecteren op basis van een statistisch onderbouwde methode. Tot slot, bekijken

we in een case study het gezamelijk effect van bovenstaande aspecten door enkel de

ernstigste graad van verwonding per ongeval in rekening te brengen en gebruiken we

gewichten voor deze type verwondingen die gebaseerd zijn op directe kosten, indirecte

kosten en de waardering van een mensenleven. Dit resulteert respectievelijk in de

gewichten 1 7 33 wanneer het ergste slachtoffer een licht, zwaar of dodelijk gewonde

betreft. Daarnaast maken we gebruik van ranking plots, om de kans dat een locatie

als gevaarlijk wordt gerangschikt visueel voor te stellen. Resultaten tonen aan dat

de combinatie van deze 3 alternatieve rangschikkingcriteria een groot effect heeft op

de selectie en rangschikking van gevaarlijke ongevallocaties. Op basis van deze resul-

taten willen we het beleid dan ook sensibiliseren om de criteria om ongevallocaties

te rangschikken en selecteren zorgvuldig uit te kiezen. In deze context ontwikkelden

we ook een mixed integer programming model om de optimale gewichten te gener-

eren voor de 800 ongevallocaties die in de eerste plaats verantwoordelijk zijn voor het

menselijk leed op de wegen. De resultaten van dit onderzoek tonen aan dat om de

ongevallocaties te selecteren die het menselijk leed op de wegen maximaliseren het

niet enkel voldoende is om de verschillende letselstypes te wegen, hetzij uit een ethish

of economisch oogpunt, maar dat ook de relatie tussen het aantal verwondingen van
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de verschillende letseltypes moet in rekening genomen worden.

In hoofdstuk 4 maken we gebruik van een associatie algoritme op een data set

van verkeersongevallen om gevaarlijke ongevallocaties te profileren in termen van

ongevaldata en locatiekarakteristieken. We tonen aan dat frequent item sets en

associatieregels gegenereerd kunnen worden om ongevalomstandigheden te identfi-

ceren die vaak samen voorkomen. Meer bepaald wordt deze techniek hier gebruikt

om vaak voorkomende ongevaltypes te onderscheiden, elk met verschillende relevante

ongevalkarakteristieken. Daarnaast identificeren we aan de hand van deze techniek

ongevalpatronen die vaak voorkomen op locaties waar veel ongevallen gebeuren en

vergelijken deze met locaties waar weinig ongevallen gebeuren. Bovendien tonen we

aan dat ruimtelijke concentraties van verkeersongevallen gekarakteriseerd worden door

specifieke omstandigheden, welke bijgevolg ook specifieke maatregelen vereisen om het

aantal ongevallen op deze locaties te doen verminderen.

Tot slot gebruiken we in hoofdstuk 5 van deze thesis de Vlaamse ongevaldata van

1997-1999 en 1999-2001 om te onderzoeken of de gevaarlijke punten zijn verschoven

in de tijd. Resultaten tonen aan dat, op basis van de huidige gebruikte Vlaamse

definitie van een gevaarlijk punt, bijna de helft van de gevaarlijke punten uit de periode

1997-1999 nog steeds als gevaarlijk moet beschouwd worden in 1999-2001. Bovendien

tonen we aan de hand probabilistische rankings aan dat bij de interpretatie van deze

resultaten rekening moet gehouden worden met het regression to the mean effect en

verschuiving van gevaarlijke locaties naar nabijgelegen locaties.


