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Chapter 1

Introduction

Logistics systems appear with uncertainties in demand, in lead times, in transporta-
tion times, in availability of resources and in quality. Dealing with uncertainty is an
important issue in supply chain modelling and in analysis of supply chain behaviour
and performance. Some of the uncertainty is due to suppliers but some is also at-
tributable to factors as customers or economic conditions. Management decisions
have to take these uncertainties in consideration.

Four clusters of sources of uncertainty can be distinguished from literature: sup-
plier performance, customer demand, manufacturing process and environmental con-
ditions.

Instead of studying the whole logistics system, this research focusses on uncer-
tainty in inventory systems, an important part of logistics systems. Two specific
aspects of uncertainty in inventory management systems are examined in more detail.

Firstly, in literature, it is mostly assumed that uncertainties in parameters, such
as the demand during lead time or the lead time itself, can be described by a proba-
bility distribution. However, information about the functional form of the probability
distribution is often limited in practice. For example, it might be that only the range,
or the first moments, or the mode of the probability distribution is known. This lim-
ited information is a problem as the shape of the distribution is important in terms
of performance of inventory control.

Secondly, a special case of limited information, intermittent demand is discussed.

1
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In literature, less attention has been paid to irregular demand. This type of demand
is characterised by a high level of variability, but may be also of the intermittent
type, i.e. demand peaks follow several periods of zero or low demand. In practice,
items with intermittent demand include service or spare parts and high-priced cap-
ital goods. A common example of such goods are spare parts for airline fleets. The
intermittent character of demand makes forecasting difficult. However, the high cost
of modern aircraft and the expense of such repairable spares constitute a large part of
the total investment of many airline operators. These parts are critical to operations
and their unavailability can lead to excessive down time costs.

Therefore, the overall objective of this thesis is twofold: on the one hand we want
to describe the demand process under the condition of limited information, on the
other hand we want to develop a framework for inventory management decision sup-
port for intermittent demand.

To develop the framework, we first investigate, using a simulation model, the per-
formance of several forecasting methods and their impact on inventory management
policies for intermittent demand, a special type of demand where information on the
demand process is often limited. We aim to determine optimal parameter settings
using several simulation optimization techniques. Finally, we investigate the impact
of uncertainty in the supply side on previous conclusions and recommendations.

These main objectives can also be found in Figure 1.1. In this figure, an outline of
the thesis is presented. In a first phase, the research topic is explored. The results of
this phase are documented in Chapters 1 and 2. The main part of this thesis (Chap-
ters 3 to 7) is divided in two subparts, as indicated in Figure 1.1. In the final phase,
the main research findings, conclusions and recommendations for further research are
presented in Chapter 8.

By fulfilling these main objectives, this thesis offers following key contributions:
(1) identify characteristics as demand shape and unimodality under the condition of
limited information on demand, (2) determine the optimal inventory level given a
desired performance level under the condition of limited information on demand, (3)
propose a best strategy in combining inventory decision making and demand forecast-
ing for intermittent demand and (4) describe the impact of uncertainty in the supply
side on the best strategy for intermittent demand.
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The first two key contributions stem from the first objective, describing the de-
mand process under the condition of limited information. Key contribution 3 and
4 follow from the second objective, developing a framework for inventory decision
making for intermittent demand.

Chapter 2 presents a literature review, in which uncertainty in inventory systems
is treated. Three main topics can be distinguished: the use of probability distribu-
tions for demand; irregular and intermittent demand; and uncertainty in the supply
side.

Most studies assume that the probability distribution of demand during lead time
is known. In chapter 3, the demand process under the condition of limited informa-
tion is described. In this chapter, as in chapters 4, 5 and 6, a deterministic lead time
is assumed. In chapter 3, we relax the assumption that the distribution of the lead
time demand is completely known and merely assume that the first two moments are
known and finite. We assume that the same mean and standard deviation can be
obtained by various patterns regarding demand frequency and size. In this chapter,
it is assumed that the frequency of demand is modelled by a Poisson process. But,
for the demand size, various types of distributions are investigated. Each experiment
leads to a single point on a two-dimensional chart representing an asymmetry mea-
sure and a kurtosis measure. Well-known are the Pearson two-dimensional charts,
indicating a range of distributions in terms of an asymmetry characteristic and a
kurtosis characteristic. In this way, it is possible to identify characteristics as asym-
metry and unimodality. The findings of this chapter are validated by generating a
large number of compound Poisson random numbers and fit a distribution to the data.

In chapter 4, bounds on performance measures of inventory systems are calculated
when only limited information on lead-time demand is available. Upper and lower
bounds are determined for performance measures, given the inventory level. Two
performance measures are considered: the expected number of stock-out units and
the probability of a stock-out. Based on these results, the decision-maker can decide
on the optimal inventory level given a desired maximum number of stock-out units
or a desired maximum stock-out probability.

A special type of demand, for which information on the demand process is often
limited, is intermittent demand. Intermittent demand is the type of demand that
does not occur in every period and, if it appears, it shows high variability. Items with
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intermittent demand include service spare parts and high-priced capital goods, such
as heavy machinery. In literature, only few studies deal with this type of demand
and the intermittent nature makes forecasting difficult. In chapters 5 and 6, we in-
vestigate several forecasting methods for intermittent demand and their impact on
inventory management policies. In chapter 5, a simulation model is used in order to
investigate the effects on costs and performance. In chapter 6, the parameters of the
simulation model are optimized using several simulation optimization techniques, in
order to obtain the best strategy in combining inventory decision making and demand
forecasting. It is assumed throughout both chapters that the lead time is determin-
istic and that there are no disruptions in the supply.

When dealing with intermittent demand, often only few items are ordered every
period and there is a high variability in order sizes between orders, which means that
the administrative order and follow-up cost and the transport cost may be relatively
high compared to the value of the product. In such a situation it might be economi-
cally interesting to place orders of several products in the assortment simultaneously,
known in the literature as joint replenishment. Therefore, in chapter 5, we elaborate
the simulation model to include joint replenishment policies.

In chapter 7, the interaction of uncertainty in the supply side with the earlier de-
fined uncertainty in demand will be investigated. Therefore the uncertainty in supply
will be incorporated in the simulation model developed in chapter 5. A new best
strategy in combining inventory decision making and demand forecasting is deter-
mined for the situation in which the supplier is unreliable.

In chapter 8, we summarize the main findings of this research. General conclusions
are given and some directions for further research are suggested.

The research in this thesis is mainly theory-driven but the outcome is also useful
in practice. Bartezzaghi, Verganti, and Zotteri (1999a) demonstrate the significant
impact of demand shape on inventories. However, a lot of authors assume that demand
in a certain period of time is continuous and follows a Normal distribution. When
characteristics of the demand distribution are identified under the condition of limited
information, it is shown that the Normal distribution is valid only in special cases. The
use of the determination of the optimal inventory level given a desired performance
level under the condition of limited information is shown in chapter 4 by an example.
The framework for inventory management decision support for intermittent demand
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leads to two policies, depending on the environmental factors, that are best used when
facing demand of the intermittent type. A classification tree is constructed to decide
which of the two strategies is best in a specific situation. Calculations also show that
a good classification is necessary because there is a considerable increase in the costs
of the inventory system when using the other strategy.



Chapter 2

Literature review

This chapter reports on the general literature review that has been carried out to
explore the research topic (Figure 2.1). The literature review starts with an overview
of sources of uncertainty in inventory systems in section 2.1. In the previous chapter,
the main objectives for this thesis were determined: describe the demand process
under the condition of limited information; investigate, using a simulation model, the
performance of several forecasting methods and their impact on inventory manage-
ment policies for intermittent demand, a special type of demand where information
on the demand process is often limited; and investigate the impact of uncertainty in
the supply side on previous conclusions. For each of these objectives, the relevant
literature for this thesis is considered in sections 2.2, 2.3 and 2.4.

2.1 Uncertainty in inventory systems

The importance and impact of uncertainty in inventory systems is widely discussed in
literature. Davis (1993) identifies three sources of uncertainty: supplier performance,
manufacturing processes and customer demand. Schwarz and Weng (2000) study the
effect of lead time uncertainty on safety stock in a supply chain. The bullwhip effect
is a very disturbing characteristic in supply chains. One of the main causes of the
bullwhip effect is the use of inadequate forecasting methods, which do not correctly
quantify the degree of uncertainty in the market demand (Chen, Drezner, Ryan, and
Simchi-Levi 2000). Wilding (1998) also defines demand amplification as one of the
effects that increases the degree of uncertainty in supply chains. Van der Vorst, Beu-
lens, De Wit, and Van Beek (1998) define four clusters of sources of uncertainty:

7
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order forecast horizon, input data, administrative and decision processes, and inher-
ent uncertainties. Vidal and Goetschalckx (2000) identify exchange rate fluctuations,
variable transportation times, stochastic demand, variability of market prices and po-
litical instability as most important sources of uncertainty.

Based on the literature, we distinguish four clusters of sources of uncertainty: de-
mand, supplier performance, manufacturing process and environmental conditions.

The first cluster of sources of uncertainty refers to demand uncertainty. This
source of uncertainty has received most attention in literature when dealing with un-
certainty in inventory systems. A second cluster relates to supplier performance. This
cluster comprises uncertainty in lead time, in transportation time, in availability of
resources, in quality and in information delays. The third cluster of sources of un-
certainty is related to the manufacturing process. Familiar examples of uncertainty
in this cluster are machine breakdowns and manufacturing yield and stochastic costs.
The last cluster of sources of uncertainty comprises environmental conditions. Price
fluctuations, customs regulations, exchange rates and the political environment are
all sources of uncertainty in logistics systems due to environmental conditions.

Figure 2.2 presents an overview of sources of uncertainty in inventory systems.
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2.2 Probability distribution of demand during lead

time

In re-order point models for inventory management the probability distribution of
demand is an important characteristic. Most textbooks assume that the demand for
an item is formed by a large number of smaller demands from individual customers.
As a result, the authors assume that the resulting demand size in a certain period of
time is continuous and follows a Normal distribution. For fast moving items a Normal
distribution is appropriate. Silver and Peterson (1985) recommend the Normal dis-
tribution for items with average lead time demand higher than 10. Using the Normal
distribution for a demand size distribution can be questioned because (1) the distri-
bution is defined both on the positive and negative axes; and (2) it is symmetrical.
While the Normal distribution could be approximately correct in many cases, it is
conceptually not. It cannot be used in computer simulation as negative demand may
be generated at random. When of relevance, one rather should look for a probabil-
ity distribution, which is defined only for non-negative values and allows for skewness.

In the literature on inventory control, many times reference is made to the Gamma
distribution. It is defined only on non-negative values and, according to the pa-
rameters of its distribution, ranges from a monotonic decreasing function, through
unimodal distributions skewed to the right, to Normal distributions. The Gamma
distribution is attractive because of the ease it can deal with fixed lead times and
how the situations can be extended to probabilistic lead times (Burgin 1975). For
items with low demand, Silver and Peterson (1985) propose the Laplace or Poisson
distributions. The Poisson distribution has been found to provide a reasonable fit
when the demand is very low (only a few pieces per year).

But when demand frequency is not too high, an alternative approach is offered
by the use of seperate distributions for the demand occurrence and for the demand
size. Dunsmuir and Snyder (1989) estimate the gap between successive demands and
assume the positive periodically demand to be Gamma distributed.

Models have been developed using the Poisson distribution for the demand occur-
rence. When the demand size is described by an arbitrary probability distribution and
the demand occurrence process is described as a Poisson process, the total demand
during a finite time period can be described by a compound Poisson distribution.
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A case study by Vereecke and Verstraeten (1994) shows that demand variance
often is a multiple of the average demand, showing that the Poisson distribution is
not a good approximation of the demand size. They propose a construction called
the ’Package Poisson’, where the average demand is expressed in numbers of packages
of fixed size. The size of the package is defined by using empirical data on both the
average and variance of the demand in terms of units. Other studies make use of
a Poisson distribution for demand occurrence and a geometric distribution for the
demand size (Hadley and Whitin 1963).

Petrovic (2001) discusses the use of probability distributions in inventory man-
agement. A probability distribution is usually derived from evidence recorded in the
past. This requires a valid hypothesis that evidence collected is complete and un-
biased, and that the stochastic mechanism generating the data recorded continues
unchanged. However, there are situations where the requirements are not satisfied.
For example, there may be a lack of evidence available or lack of confidence in evi-
dence or simply evidence may not exist, as in the case of launching a new product
(Petrovic and Petrovic 2001). In any specific problem the selection of a definite prob-
ability distribution is made on the basis of a number of factors, such as the sequence
of past demands, judgements about trends, etc. For various reasons, however, these
factors may be insufficient to estimate the future probability distribution (Scarf 1958).

This thesis deals with the case where the demand distribution during lead time
is not completely known. This situation is realistic either with products which have
been introduced recently to the market or with slow moving products. In both cases
insufficient data are available to decide on the functional form of the demand distri-
bution function. Limited but not full information might exist like the range of the
demand, its expected value, its variance and maybe some knowledge about unimodal-
ity of the distribution. In this thesis, the demand process is described under the
condition of limited information. First we identify characteristics as demand shape
and unimodality under the condition of limited information on demand. Next, we
determine the optimal inventory level given a desired performance level under the
condition of limited information on demand.
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2.3 Intermittent demand

In literature, less attention has been paid to irregular demand. This type of demand is
characterised by a high level of variability, but may be also of the intermittent type, i.e.
demand peaks follow several periods of zero or low demand. Items with intermittent
demand include service or spare parts and high-priced capital goods. Bartezzaghi,
Verganti, and Zotteri (1999b) consider five characteristics that cause demand to be
of the intermittent type: the numerousness of potential customers, the heterogenity
of customers, the frequency of customers requests, the variety of customers requests
and the correlation between customers requests.

Demand that is intermittent is often also ’lumpy’, meaning that there is also a
great variability among the nonzero values (Willemain, Smart, and Schwarz 2004). A
lumpy demand is characterised by a high level of variability, which can be measured
by the coefficient of variation. However, a lumpy demand is not only variable but
may also be nervous thus entailing great differences between successive demand ob-
servations, and sporadic, that is, demand peaks follow several periods of zero or low
demand (Ward 1978).

Demand forecasting is one of the most crucial issues in inventory management
(Willemain, Smart, and Schwarz 2004) but for intermittent demand, forecasting is
difficult and errors in prediction may be costly in terms of obsolescent stock or un-
met demand (Syntetos and Boylan 2005). The literature that proposes forecast-
ing solutions to this demand uncertainty problem, is relatively small (Ghobbar and
Friend 2003). Single exponential smoothing and Croston’s method are the most fre-
quently used methods for forecasting intermittent demands (Croston 1972; Willemain,
Smart, Shockor, and DeSautels 1994). Croston’s method builds estimates taking into
account both demand size and the interval between demand occurrences (Croston
1972). Willemain, Smart, Shockor, and DeSautels (1994) conclude that Croston’s
method is significantly superior to exponential smoothing under intermittent demand
conditions. Johnston and Boylan (1996) observe an improvement in forecast perfor-
mance using Croston’s method compared to Holt’s method. Bartezzaghi, Verganti,
and Zotteri (1999b) find in their experimental simulation that Holt’s method appears
applicable with low levels of lumpiness. Ghobbar and Friend (2003) compare 13 dif-
ferent forecasting methods when faced with intermittent demand. Weighted moving
averages, Holt’s method and Croston’s method are found superior. Verganti (1997)
proposes order overplanning as a technique to forecast intermittent demand. Another
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forecasting method is early sales, which exploits information from actual orders that
have already been received for future delivery (Bartezzaghi, Verganti, and Zotteri
1999b).

Vereecke and Verstraeten (1994) propose an inventory management model using
the Package Poisson distribution and calculate the reorder points using an iterative
procedure and the probability of no stock-out as service level. Dunsmuir and Snyder
(1989) develop an inventory model for intermittent demand which includes a compo-
nent to explicitly model the probability of positive demand and a Gamma distribution
for the size of those demands. The service level used is the proportion of requests met
directly from stock. Hollier, Mak, and Lai (2002) develop a mathematical model for
the analysis of optimal replenishment policies for intermittent demand items. They
introduce a maximum quantity such that customer demands with sizes exceeding this
quantity are filtered out of the inventory system and treated as special orders to be
satisfied by special deliveries. Sani and Kingsman (1997) indicate a periodic review
inventory control system with a re-order level and a replenishment level to be the
best for the management of intermittent demand items. Haddock, Natarajan, and
Nagar (1994) present a simple and practical heuristic to the slow-moving items prob-
lem. Snyder (2002) presents a parametric bootstrap approach that integrates demand
forecasting with inventory control. Levén and Segerstedt (2004) create a procedure
that can handle both fast-moving items with regular demand and slow-moving items.

In this thesis, several forecasting methods and inventory management policies for
intermittent demand are compared. A simulation model is built and optimised to find
a best strategy in combining inventory decision making and demand forecasting for
intermittent demand.

2.4 Supplier’s reliability

Traditionally, attention focuses on uncertainty in customer demand (Petrovic, Roy,
and Petrovic 1998) and the implicit assumption is made that the availability of supply
is uninterrupted (Parlar 1997).

Inventory managers are often faced with the challenge of incorporating the issue
of supplier’s reliability into their stocking decisions. The term ”supplier reliability”
may refer to a number of attributes ranging from availability in responding to re-
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plenishment orders, when needed, to variability in delivery lead times as well as the
quality of delivered goods. The availability of a supplier can be negatively impacted
by a variety of factors including equipment breakdowns, material shortages, capacity
constraints, price inflations, strikes, embargos and political crises thereby disrupting
the supply process (Mohebbi 2004).

Silver (1981) appears to be one of the first authors to indicate the need for models
dealing with supply uncertainty. Nahmias (1993) also discusses the importance of
incorporating this type of uncertainty in inventory models.

Models incorporating supply uncertainties are a useful tool for inventory managers
(Parlar and Perry 1995). The significance of modelling the issue of supply interruption
is due to the severity of its potential negative impact on the performance of supply
chains in every competitive business market (Mohebbi 2004).

A lot of literature on uncertainty in supply deals with uncertainty in lead times.
We focus on the literature that specifically deals with uncertain lead times in inventory
systems. Common topics in this field include order splitting, dual sourcing and order
crossover. Since these topics are not the focus of this thesis, they are not considered
here.

Kaplan (1970) studies a dynamic inventory model with stochastic lead times and
is concerned with characterizing optimal policies for a dynamic inventory problem.
Nahmias (1979) constructs simple approximations for three realistic versions of the
classical lead time lost-sales inventory problem. One of the versions is the random
lead time lost-sales inventory problem.

Bagchi, Hayya, and Chu (1986) investigate the impact of lead time variability on
stockouts and stockout risk in a reorder-point reorder-quantity system with i.i.d. de-
mands. They make calculations for accurate safety stock levels. Song (1994) studies a
continuous-time single-item inventory model where demands form a compound Pois-
son process and lead times are stochastic. The focus of this study is on the behavior
of the optimal safety stock level in response to stochastically larger or more variable
lead times. The results show that a stochastically larger lead time results in a higher
optimal safety stock level but does not necessarily lead to a higher optimal average
cost. On the other hand, a more variable lead time always leads to a higher long-run
average cost for any fixed safety stock policy.

Several authors question the assumption of normality for the distributions of lead
time, daily demand and lead time demand. Chopra, Reinhardt, and Dada (2004) also
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focus on the relationship between lead time uncertainty and safety stock when using
exact demand during the lead time instead of the normal approximation. Their results
indicate that decreasing the lead time uncertainty increases the required safety stock
and that one should focus on decreasing lead times rather than lead time variability
in order to decrease inventories. Lau (1989) assumes, instead of normality for the
distributions of an inventory item’s lead time, daily demand and lead time demand,
these distributions can be characterized and estimated in terms of their first four mo-
ments. Numerical illustrations show that if a lead time demand is nonnormal, reorder
points and service levels can differ significantly from the approximations obtained by
incorrectly assuming that the lead time demand is normal. Keaton (1995) states that
there is little likelihood that demand over a random lead time is normally distributed.
The paper shows that the continuous Gamma distribution is ideal for modeling the
demand of slow moving items, and, with appropriate scaling of the units of measure,
can easily be adapted for fast moving items as well.

Several papers deal with the optimization of the inventory policy. Sphicas (1982)
investigates the solution to an inventory model with constant noninterchangeable de-
mand and random lead times. Bounds are developed for the optimal values of the
decision variables. Ehrhardt (1984) analyzes a stochastic lead time inventory model.
Conditions for the optimality of base-stock policies and (s, S) policies are established
for both finite and infinite planning horizons. Friedman (1988) solves the special case
of the EOQ model with stochastic lead times. Eppen and Martin (1988) consider
the problem of setting safety stock when both the demand in a period and the lead
time are random variables. They consider a procedure for setting the reorder point
when both demand during a period and the lead time are random variables. Bashyam
and Fu (1998) use a simulation-based procedure to optimize an (s, S) inventory sys-
tem with stochastic lead times, where orders are allowed to cross in time. Schwarz
and Weng (2000) develop a model to study the joint effect of lead time and demand
uncertainties on safety stocks in a JIT supply chain. They derive expressions for dis-
tributor safety stocks. Bollapragada, Rao, and Zhang (2004) consider a two-echelon
serial inventory system with demand and supply uncertainty, non zero lead times and
a minimum customer service level requirement. They present solution approaches to
determine optimal base-stock levels.

A lot of research has been done on supply disruptions in production-inventory
systems. In today’s business environment, a supplier can deliver the orders in small
quantities until a certain level of inventory is reached. So the production-inventory
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models may also be useful when dealing with supply interruptions during a certain
period.

Mohebbi (2004) distinguishes two major classes in literature that treat the analy-
sis of supply disruptions within the context of production/inventory control models.
The first class consists of studies that examine the supply disruption problem in a
production-storage setting comprised of a failure-prone production facility that sup-
plies a single product at a constant known rate, while operating, into an immediate
storage facility which faces a deterministic or stochastic demand process. One of
the earlier publications on the issue of supply uncertainty is an article by Meyer,
Rothkopf, and Smith (1979). They investigate a system consisting of a production
facility subject to random failure and repair processes. They develop expressions for
the average inventory level and the fraction of time demand is met but no optimisa-
tion analysis is provided. Chao, Chapel, Clark, Morris, Sandlind, and Grimes (1989)
used stochastic dynamic programming to find optimal inventory policies for electric
utility companies which may face market disruptions.

Other work on production-inventory systems with deterministic demand and sup-
ply disruptions includes Bielecki and Kumar (1988), Groenevelt, Pintelon, and Seid-
mann (1992a), Groenevelt, Pintelon, and Seidmann (1992b) and Moinzadeh and Ag-
garwal (1997). Bielecki and Kumar (1988) show that there exist ranges of parameter
values describing an unreliable manufacturing system for which zero-inventory policies
are optimal even when there is uncertainty in manufacturing capacity. Groenevelt,
Pintelon, and Seidmann (1992a) have formulated the cost function of the production
lot sizing problem when machine time-to-failure follows a general distribution. How-
ever, a major limitation of the model is the assumption of negligible repair times.
In a follow-up paper, Groenevelt, Pintelon, and Seidmann (1992b) extend the model
so that repair times follow a general distribution and a certain fraction of the items
produced is diverted into a safety stock while the remaining fraction is used to meet
demand. Moinzadeh and Aggarwal (1997) study an unreliable bottleneck produc-
tion/inventory system with a constant production and demand rate that is subject
to random disruptions. The authors assume that the repair times are constant, the
time between breakdowns is exponential and excess demand is back-ordered.

Liu and Cao (1999) investigate a production-inventory model under the assump-
tions that demand for the product is governed by a compound Poisson process, and
the machine is subjected to random failures.

Hopp, Pati, and Jones (1989) consider a continuous flow production process sub-
ject to failures with an intermediate buffer. They gave a procedure for determining
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the optimal buffer size and control parameter.
Posner and Berg (1989) incorporated the element of machine imperfection into

a relatively simplified production situation: one machine, constant production rate
and a compound Poisson demand process for the product. They derive a closed form
solution for the steady-state distribution of the inventory level and computed system
performance measures. Berg, Posner, and Zhao (1994) extend the model of Posner
and Berg (1989) in which only one machine is considered. They studied the perfor-
mance of production systems that consist of a number of machines, each producing
the same type of item and obtained the stationary distribution of the inventory pro-
cess for different assumptions on the random behaviour of the production, demand
and reliability processes.

The second class of studies includes those that focus on an inventory system with
an unreliable supplier whose status alternates randomly between two possible states:
”available” or ”unavailable”. A substantial portion of research work in this category
corresponds to incorporating the supply disruption phenomenon into classical EOQ-
type inventory models under various characterizations of the probability distributions.
Parlar and Berkin (1991) derive expressions for optimal order quantity when the
reorder point is fixed at zero, the lead time is zero and demand is a known constant.
Parlar and Perry (1995) examine a similar problem in which orders may be placed
before the on-hand stock level reaches zero. In addition, the inventory manager incurs
a fixed cost for every attempt to determine the supplier’s state. Weiss and Rosenthal
(1992) find the optimal ordering policy in presence of supply or demand disruptions
where the start of such disruptions is known a priori. However, the length of the
disruption is assumed random. Notice that each of the studies cited above utilizes an
EOQ-type framework: it assumes deterministic demand and constant lead times.

Several studies consider the randomness of the demand process in inventory sys-
tems with unreliable suppliers and zero lead times. Özekici and Parlar (1999) consider
periodic-review inventory models with unreliable suppliers where the demand, sup-
ply and cost parameters change with respect to a randomly changing environment.
Arreola-Risa and DeCroix (1998) explore the management of (s, S) inventory systems
for stochastic demand, where the product’s supply is randomly disrupted for periods
of random duration, and demand orders that arrive when the inventory system is
temporarily out of stock become a mix of backorders and lost sales. Parlar, Wang,
and Gerchak (1995) analyse a finite-horizon periodic-review (s, S) inventory model
with backlogging and a Markovian supply and ordering cost structure.

Only a few studies exist that address the supply interruption problem within the
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context of an inventory system with stochastic demand and non-zero lead time. Gupta
(1996) presents an exact analytical cost-minimization treatment of a continuous-
review lost-sales (s, Q) inventory system with Poisson demand and constant lead time
in which the supplier’s on/off periods are exponentially distributed, and the number
of outstanding orders at any time is at most one. Parlar (1997) develops a heuristic
cost-minimization model for the supply interruption problem in a continuous-review
(s, Q) inventory system with random demand, random lead time, and backorders
where the duration of the on-period follows an Erlang distribution and the off-period
is general. More recently, Mohebbi (2003) presents an exact cost-minimization model
for a continuous-review lost sales inventory system in which demands occur according
to a compound Poisson process and lead times follow an Erlang distribution. He uses
independent non-identical exponential distributions to describe the supplier’s on/off
periods and applies an (s, Q)-type control policy while allowing for a maximum of
one order to be outstanding at any time. Mohebbi (2004) considers a similar problem
but extended the earlier analysis to a larger family of lead time distributions, using a
fairly general stochastic process to describe the supplier’s availability.

This thesis deals with the context of an inventory system with intermittent de-
mand and non-zero lead time. A best strategy in combining inventory decision making
and demand forecasting for intermittent demand with uncertainty in the supply side
is determined. The focus of this chapter is on uncertainty in availability. The sup-
plier alternates randomly between an available and an unavailable state. When the
supplier is available, the order is delivered after the usual lead time. If the supplier
is unavailable when the order arrives, the order is executed when the supplier turns
available again.

2.5 Concluding remarks

In this chapter, the literature is addressed on the research topics which are relevant
for this thesis.

After an overview of sources of uncertainty in inventory systems is given, the
use of probability distributions is discussed. In literature, most studies assume that
uncertainties in parameters can be described by a probability distribution. Several
distributions that are used for describing lead time demand are considered. However,
there are situations where there is not sufficient data to decide on the functional
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form of the distribution. Next, intermittent demand, a special type of demand where
information on the demand process is often limited, is discussed. The literature on
forecasting and inventory management models for intermittent demand is reviewed.
Finally, uncertainty in supply is discussed. A lot of research on uncertainty in supply
deals with uncertain lead times. Furthermore, supply disruptions in production-
inventory systems are considered.
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Chapter 3

Identify shape characteristics

of demand under the

condition of limited

information

3.1 Introduction

Inventory management systems are mostly based on the characteristics of the demand
distribution during lead-time by means of two characteristics: mean and standard
deviation. However, Bartezzaghi, Verganti, and Zotteri (1999a) show a significant
impact of the demand shape on inventories. They compare the inventories needed to
achieve a predefined service level for six different shapes of the demand distribution.
The coefficient of variation is a constant in their experiments. The analysis shows that
the demand shape is not a secondary factor in the determination of the inventories
and that the impact of different demand shapes on inventories is comparable to the
effect of doubling the coefficient of variation. For example, if, given the coefficient
of variation, the demand shape changes from a uniform distribution to a bi-modal
distribution, inventories increase more than 100%.

In this chapter, there is only limited information of the demand process, i.e. only
the first two moments are known. Bartezzaghi, Verganti, and Zotteri (1999a) indicate

21
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that it is nevertheless important to know the shape of the distribution. A procedure is
described to determine shape characteristics when only the first two moments of the
distribution of demand during lead time are known, using a compound Poisson distri-
bution and the Pearson chart. As indicated in Figure 3.1, this chapter1 is part of Part
I, in which the demand process is described under the condition of limited information.

The assumption is made that the same mean and standard deviation for demand
can be obtained by various patterns regarding demand frequency and size. The fre-
quency of demand is modelled by a Poisson process. But, for the demand size, we
investigate various types of distributions. Like this, total demand during the lead
time follows a compound Poisson distribution.

A compound Poisson distribution is the probability distribution of a Poisson-
distributed number of independent identically-distributed random variables. More
precisely, suppose i.e., N is a random variable whose distribution is a Poisson distri-
bution with expected value λ, and D1, D2, D3,... are identically distributed random
variables that are mutually independent and also independent of N . Then the prob-
ability distribution of the sum

X =
N∑

n=1

Dn (3.1)

is a compound Poisson distribution. The mean and variance of the compound
Poisson distribution are:

µ = λµD (3.2)

and

σ2 = λ(σ2
D + µ2

D) (3.3)

with µD and σ2
D the mean and variance of the distribution of the demand size.

The central moments of the compound Poisson distribution are:

µ′2 = λµD,2, (3.4)

µ′3 = λµD,3 (3.5)

1This chapter is based on Janssens and Ramaekers (2003).
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and

µ′4 = λµD,4 + 3λ2(µD,2)2 (3.6)

with µD,2, µD,3 and µD,4 the second, third and fourth raw moment of the demand
size distribution.

If the demand size distribution is a discrete distribution, Panjer and Willmot
(1992) proof that

fX(x) =
λ

x

x∑
y=1

yfD(y)fX(x− y), x = 1, 2, 3... (3.7)

with fX(0) = e−λ

can be used to define the compound Poisson distribution. If the demand size dis-
tribution is continuous, we present a method to obtain distribution characteristics as
asymmetry and kurtosis for the compound Poisson distribution in this chapter.

When only the first two moments of the distribution of demand during lead time
are known, as is assumed in this chapter, Bartezzaghi, Verganti, and Zotteri (1999a)
indicate it is nevertheless important to know distribution characteristics as asymme-
try and kurtosis. When a compound Poisson distribution is used for the demand
process, it is possible to calculate, for a given mean and variance of the demand dis-
tribution, a range of possible λ-values and for each λ, the parameters of the demand
size distribution. These outcomes can then be used to calculate the central moments
of the distribution of demand during lead time, using formulas 3.4, 3.5 and 3.6. These
moments can then be used to determine a single point on the Pearson chart, indicat-
ing a shape of the distribution of demand during lead time. In the next paragraphs,
the Pearson chart is discussed.

In statistical studies a wide class of distributions, called the Pearson family of
distributions is used, allowing for a wide variability of characteristics as asymmetry
and kurtosis. Very well-known are the Pearson two-dimensional charts, indicating
a range of distributions in terms of an asymmetry characteristic β1 and a kurtosis
characteristic β2. The Pearson two-dimensional chart is shown in Figure 3.2.

The Pearson distribution is a family of continuous probability distributions, first
published by Karl Pearson (Pearson 1895) and subsequently extended by him. The
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following types of distributions can be distinguished on the graph:

� type I: Beta-distribution. Three areas of type I can be distinguished based on
the shape of the Beta-distribution: a unimodal Beta-distribution (I), a J-shaped
Beta-distribution (I(J)) and a U-shaped Beta-distribution (I(U));

� type II-line: special case of type I, restricted to symmetric distributions;

� type III-line: Gamma or Chi-square distribution;

� type IV: Cauchy distribution;

� type V-line: reciprocal of Gamma or Chi-square distribution;

� type VI: F-distribution;

� type VII-line: Student’s t distribution;

� Normal point N: (0,3);

� Rectangular point R: (0,1.8);

� Exponential point E: (4,9).

The asymmetry and kurtosis measures , which we require for the Pearson chart
are defined as

β1 =
µ′3

2

µ′2
3 (3.8)

and

β2 =
µ′4
µ′2

2 . (3.9)

To calculate β1 and β2, the necessary information are the moments µ′2, µ′3 and µ′4,
which are, for the compound Poisson distribution, calculated using formulas 3.4, 3.5
and 3.6. Like this, any experiment, starting from a given mean and variance of the
distribution of demand during lead time (i.e. limited information on demand) and a
type of distribution for the demand size, leads to a single point on the Pearson chart
and it is possible to determine characteristics as asymmetry and kurtosis of the lead
time demand distribution.
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The chapter is organized as follows: in section 3.2 1-parameter distributions are
considered; section 3.3 deals with the 2-parameter distributions; 3-parameter distribu-
tions are discussed in section 3.4; section 3.5 discusses the results; section 3.6 describes
the validation of the results of the previous sections and in section 3.7 conclusions are
formulated.

3.2 1-parameter distributions

3.2.1 Constant demand size

In case the demand size is constant with size a, the central moments of the compound
Poisson distribution are:

µ′2 = λa2 (3.10)

µ′3 = λa3 (3.11)

µ′4 = λa4 + 3λ2[a2]2 (3.12)

When the mean and variance of the aggregated demand are given as M and V , then
a can be expressed as:

a =
M

λ
=

√
V

λ
. (3.13)

This leads to the condition that

λ =
M2

V
. (3.14)

3.2.2 Uniform demand size in [0,b]

When the demand size follows a uniform distribution with range [0, b], the central
moments of the compound Poisson distribution are:

µ′2 = λ
b2

3
(3.15)

µ′3 = λ
b3

4
(3.16)

µ′4 = λ
b4

5
+ 3λ2

[
b2

3

]2

(3.17)
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When the mean and variance of the aggregated demand are given as M and V , then
b can be expressed as:

b =
2M

λ
=

√
3V

λ
. (3.18)

This gives us the condition

λ =
4
3

M2

V
. (3.19)

3.2.3 Exponential demand size

In case the demand size is exponentially distributed with parameter α, the central
moments of the compound Poisson distribution are:

µ′2 = λ
2
α2

(3.20)

µ′3 = λ
6
α3

(3.21)

µ′4 = λ
24
α4

+ 3λ2

[
2
α2

]2

(3.22)

When the mean and variance of the aggregated demand are given as M and V , then
α can be expressed as:

α =
λ

M
=

√
2λ

V
. (3.23)

This leads to the condition that

λ =
2M2

V
. (3.24)

3.2.4 Two-point distributions

When the distribution of the demand size has more than one parameter, e.g. the
demand size follows a two-point distribution, no unique solution for the compound
Poisson distribution with given mean and variance can be found. In case the distri-
bution of the demand size is a two-point distribution, the mean and variance of the
compound Poisson distribution are:

µ = λµD (3.25)

σ2 = λ(σ2
D + µ2

D) = λµD,2 (3.26)
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with µD and σ2
D the mean and variance and µD,2 the second raw moment of the

distribution of the demand size with density function:

f(x) =





qr if x = r;

qp if x = p;

0 else.

(3.27)

The mean and variance of the two-point distribution are equal to:

µD = qrr + qpp (3.28)

σ2
D = qrr

2 + qpp
2 − µ2

D (3.29)

When the mean and variance of the aggregated demand are given as M and V , then
the mean and the second raw moment of the distribution of the demand size can be
expressed as:

µD,1 =
M

λ
(3.30)

µD,2 =
V

λ
(3.31)

If r is known, p, qr and qp can be calculated as:

p =
µD,2 − µD,1r

µD,1 − r
(3.32)

qr =
µD,1 − p

r − p
(3.33)

qp =
µD,1 − r

p− r
(3.34)

The following example shows that several solutions for the compound Poisson distri-
bution with given mean and variance are possible. Let M = 50, V = 400 and λ = 10,
then µD,1 = 5 and µD,2 = 40. If we set r1 = 2, then

p1 = 10

qr1 =
5
8

qp1 =
3
8
.
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If r2 = 4, then

p2 = 20

qr2 =
15
16

qp2 =
1
16

.

We get two different distributions of the demand size that lead to different compound
Poisson distributions but with the same mean and variance. In section 3.3 and 3.4,
two- and three-parameter distributions will be dealt with.

3.3 2-parameter distributions

3.3.1 Uniform demand size

In the case the demand size follows a uniform distribution with density function

f(x) =





1
b−a if a ≤ x ≤ b;

0 else,
(3.35)

the second, third and fourth central moment of the compound Poisson distribution
are:

µ′2 = λ
b3 − a3

3(b− a)
(3.36)

µ′3 = λ
b4 − a4

4(b− a)
(3.37)

µ′4 = λ
b5 − a5

5(b− a)
+ 3λ2

[
b3 − a3

3(b− a)

]2

. (3.38)

When the mean and variance of the aggregated demand are given as M and V , then
the lower and upper bound of the uniform distribution can be expressed in their values
as:

a =
2M
λ −

√
12V

λ − 12M2

λ2

2
(3.39)

b =
2M
λ +

√
12V

λ − 12M2

λ2

2
. (3.40)
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From the knowledge that both a and b ≥ 0 and that M2 ≤ E[X2], a valid lower and
upper bound for the value of λ can be determined as:

M2

V
≤ λ ≤ 4M2

3V
. (3.41)

3.3.2 Triangular demand size with mode = b

In the case the demand size follows a triangular distribution in [a, b] with mode=b

and thus density function

f(x) =





2(x−a)
(b−a)2 if a ≤ x ≤ b;

0 else,
(3.42)

this leads to:

µ′2 = λ
a2 + 3b2 + 2ab

6
(3.43)

µ′3 = λ
a3 + 4b3 + 2a2b + 3ab2

10
(3.44)

µ′4 = λ
a4 + 5b4 + 2a3b+3a2b2 + 4ab3

15
+ 3λ2

[
a2 + 3b2 + 2ab

6

]2

. (3.45)

When the mean and variance of the aggregated demand are given as M and V , then
a and b can be expressed in their values as:

a =
M − 2

√
2λV − 2M2

λ
(3.46)

b =
M +

√
2λV − 2M2

λ
. (3.47)

For similar reasons as above, a valid lower and upper bound for the value of λ can be
determined as:

M2

V
≤ λ ≤ 9M2

8V
. (3.48)

3.3.3 Triangular demand size with mode = a

In the case the demand size follows a triangular distribution in [a, b] with mode=a

and thus density function
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f(x) =





2(b−x)
(b−a)2 if a ≤ x ≤ b;

0 else,
(3.49)

this leads to:

µ′2 = λ
3a2 + b2 + 2ab

6
(3.50)

µ′3 = λ
4a3 + b3 + 3a2b + 2ab2

10
(3.51)

µ′4 = λ
5a4 + b4 + 4a3b+3a2b2 + 2ab3

15
+ 3λ2

[
3a2 + b2 + 2ab

6

]2

. (3.52)

When the mean and variance of the aggregated demand are given as M and V , then
a and b can be expressed in their values as:

a =
M −√2λV − 2M2

λ
(3.53)

b =
M + 2

√
2λV − 2M2

λ
. (3.54)

For similar reasons as above, a valid lower and upper bound for the value of λ can be
determined as:

M2

V
≤ λ ≤ 3M2

2V
. (3.55)

3.3.4 Symmetric triangular demand size

In case the demand size follows a symmetric triangular distribution with density
function

f(x) =





x−a
l2 if a ≤ x ≤ a + l;

2
l − x−a

l2 if a + l ≤ x ≤ a + 2l;

0 else,

(3.56)

this leads to:
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µ′2 = λ

[
7
6
l2 + 2al + a2

]
(3.57)

µ′3 = λ

[
a3 + 3a2l +

7
2
al2 +

3
2
l3

]
(3.58)

µ′4 = λ

[
a4 + 4a3l + 7a2l2 + 6al3 +

31
15

l4
]

+ 3λ

[
7
6
l2 + 2al + a2

]2

. (3.59)

When the mean and variance of the aggregated demand are given as M and V , then
the lower bound a and the distance from the bounds till the mode l of the symmetric
triangular distribution can be expressed in their values as:

a =
M −

√
6(λV −M2)

λ
(3.60)

l =

√
6
λ2

(λV −M2). (3.61)

For similar reasons as above, bounds on the value of λ can be determined as:

M2

V
≤ λ ≤ 7M2

6V
(3.62)

3.4 3-parameter distributions

3.4.1 Asymmetric triangular demand size

In case the demand follows an asymmetric triangular distribution with density func-
tion

f(x) =





2(x−a)
(b−a)(c−a) if a ≤ x ≤ c;
2
l − 2(b−x)

(b−a)(b−c) if c ≤ x ≤ b;

0 else,

(3.63)

this leads to:

µ′2 = λ

[
a2 + b2 + c2 + ab + ac + bc

6

]
(3.64)

µ′3 = λ

[
a3 + b3 + c3 + a2b + a2c + ab2 + ac2 + abc + b2c + bc2

10

]
(3.65)
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µ′4 = λ

[
a4 + a3b + a3c + a2b2 + a2bc + a2c2 + ab3 + ab2c

15

+
abc2 + ac3 + b4 + b3c + b2c2 + bc3 + c4

15

]

+3λ2

[
a2 + b2 + c2 + ab + ac + bc

6

]2

. (3.66)

When the mean and variance of the aggregated demand are given as M and V , then
the mode c and the upper bound b of the symmetric triangular distribution can be
expressed in their values, and the additional parameter a, as:

b =
3M − aλ +

√
D0

2λ
(3.67)

c =
3M − aλ−√D0

2λ
(3.68)

with

D0 = 24λV − 27M2 − 3a2λ2 + 6aλM. (3.69)

The parameter a (≥ 0) can be chosen with some freedom. Looking at D0 = D(a),
the positivity requirement of the discriminant

D1 = 288(λ3V − λ2M2) (3.70)

implies the bounds for λ:

M2

V
≤ λ ≤ 3M2

2V
. (3.71)

Real positive values for a are obtained if

max

{
0,

6λM −√288λ3V − 288λ2M2

6λ2

}
≤ a ≤

min

{
6λM +

√
288λ3V − 288λ2M2

6λ2
,

24λM −√1152λ3V − 1152λ2M2

24λ2

}
. (3.72)
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3.5 Results

In the previous sections, for several demand size distributions, the second, third and
fourth central moment of the distribution for demand during lead time are calculated
when a compound Poisson is assumed for the demand process. Using these moments
and the given mean and variance of the distribution of demand during lead time, the
parameters of the demand size distribution can be expressed in terms of the given
mean and variance of the distribution of demand during lead time and a valid range
for λ can be calculated in terms of this mean and variance.

For several combinations of mean and variance, the parameters β1 and β2 are cal-
culated, which, for every combination, leads to a single point on the Pearson chart and
it is possible to determine characteristics as asymmetry and kurtosis of the lead time
demand distribution. Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7 and A.8 in Appendix
A show the Pearson charts with results for the Poisson distributions compounded with
deterministic, uniform in [0,b], exponential, uniform, right triangular, left triangular,
symmetric triangular and asymmetric triangular distributions. The charts show all
the lines, which form the boundaries of the various types of Pearson-distributions.
The area filled with the compound distributions under study is shown between a line
marked with the symbol + and a line marked with the symbol o. For the 1-parameter
distributions (deterministic, exponential and uniform in [0,b]) there is not an area,
but a line marked with the symbol + that indicates the compound distributions under
study.

These figures show that when the mean is high with respect to the variance, the
values of β1 (resp. β2) are close to 0 (resp. 3), which means the demand distribution
is close to normal. The smaller the mean and/or the greater the variance, the more
β1 and β2 move away from their normal values. The demand follows now a unimodal
Beta-distribution. If the mean decreases further relative to the variance, β1 and β2

further increase and the distributions is now a J-shaped Beta-distribution.

This holds for all the individual demand size distributions under study. The asym-
metry and kurtosis region vary a bit when a different distribution for the individual
demand size is used. This results in a small difference in size of the possible (β1,
β2)-region but the type of distribution that is best chosen is the same. Only the
point where the transition from a unimodal Beta-distribution to a J-shaped Beta-
distribution takes place is slightly different. In general, when µ2/σ2 exceeds 15,
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the demand is close to normal. When µ2/σ2 is below 0.65, the demand follows a
J-shaped Beta-distribution. When µ2/σ2 lies between 0.65 and 15, the unimodal
Beta-distribution may be used to describe the demand.

3.6 Validation

The elaboration of this chapter is based on the assumption that the shape charac-
teristics of a Compound Poisson distribution might be similar to the shape of the
various distributions of the Pearson family. Probably the most interesting character-
istic might be the aspect of unimodality. As it is shown in the graphs in this chapter
that under certain conditions - based on the analogy with the Pearson distributions -
a Compound Poisson distribution might be bi-modal, it is important to validate this
aspect, as it is of relevance to the performance of inventory policies.

The validation procedure might be described as follows: based on a sample of
drawings from a Compound Poisson distribution, a specific type of distribution is
proposed based on the graphs produced in this chapter, e.g. a Normal or a Beta-
distribution. The hypothesis whether or not the sample fits its indicated distribution
is tested both on the Kolmogorov-Smirnov and the χ2-tests. The confirmation by the
test of the distribution indicated, offers information on the shape of the Compound
Poisson distribution and more specifically on the unimodality.

Furthermore a tool is used in which a ranking of fitness of the sample data to-
wards a finite subset of distributions is made. The candidate distributions are: Beta,
Erlang, Exponential, Gamma, Lognormal, Normal, Triangular, Uniform and Weibull.
The ranking is based on the mean square error. As a software tool to serve this pur-
pose the Arena (Rockwell Software) input analyzer has been used.

The sample is generated by the following procedure:

Let

� N : the number of sample data required

� λ : the parameter of the Poisson distribution

� Sample : vector containing the sample data
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� Depending on the used distribution of the order size, one or more parameters
have to be specified to generate the order sizes.

For Sample_counter := 1 to N do

Begin

Running_Order_Size := 0;

K := Poisson_variate (parameter value Lambda);

For Order_counter := 1 to K do

Begin

O := Order_size_distribution_variate (parameter values);

Running_Order_Size := Running_Order_Size + O;

End;

Sample_value := Running_Counter;

Sample[Sample_Counter] := Sample_value;

End;

The experimental data that are used for the validation regarding a Poisson distri-
bution compounded with a deterministic distribution are shown in Table 3.1. Tables
A.1, A.2, A.3, A.4, A.5 and A.6 in Appendix A contain the experimental data for the
validation of the Poisson distribution compounded with an exponential distribution,
a uniform distribution, a triangular distribution with mode=b, a triangular distribu-
tion with mode=a, a symmetric triangular distribution and an asymmetric triangular
distribution. Except for the deterministic and the exponential distribution, all distri-
butions for the order sizes are defined on the interval [a, b].

Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 75 3.75 0.075

a 13.3 266.67 1333.33

Table 3.1: Experimental data for the validation of the Poisson distribution com-
pounded with a deterministic distribution

The results of the validation process for each of the order size distributions are
summarized in Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8. As stated before, two tests are
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used to validate the results: the χ2 and Kolmogorov-Smirnov (KS) goodness-of-fit hy-
pothesis tests. These are standard hypothesis tests that can be used to assess whether
a fitted theoretical distribution is a good fit to the data. Corresponding p-values less
than about 0.05 indicate that the distribution is not a very good fit. A high p-value
indicates a lack of evidence against the fit. Furthermore a ranking of fitness of the
sample data towards a finite subset of distributions is made. This ranking is based on
the mean square error. The larger this square error value, the further away the fitted
distribution is from the actual data. In the results tables, the three best fitted distri-
butions are given with their square error value. If these square error values lie close to
each other, there is probably no difference in accuracy between the fitted distributions.

Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.02;3.33) Beta(0.391;7.44)

χ2-value 78.6 2000 866

p-value χ2 <0.005 <0.005 <0.005

Conclusion χ2 rejected rejected rejected

KS-value 0.0261 0.111 6.55

p-value KS >0.15 <0.01 <0.01

Conclusion KS not rejected rejected rejected

Ranking (MSE) Normal (0.00413) Normal (0.1) Weibull (0.00934)

Beta (0.00435) Beta (0.101) Beta (0.15)

Weibull (0.0044) Triangular (0.102) Exponential
(0.189)

Table 3.2: Results for the validation of the Poisson distribution compounded with a
deterministic distribution
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Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.34;5.29) Beta(0.398;7.79)

χ2-value 26.4 22.1 395

p-value χ2 0.0451 0.234 <0.005

Conclusion χ2 not rejected not rejected rejected

KS-value 0.0307 0.0356 0.602

p-value KS >0.15 >0.15 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Normal (0.00107) Weibull
(0.000731)

Weibull (0.0067)

Beta (0.00125) Beta (0.000814) Beta (0.0867)

Beta (0.00152) Gamma (0.00116) Exponential
(0.107)

Table 3.3: Results for the validation of the Poisson distribution compounded with an
exponential distribution

Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.21;4.76) Beta(0.425;9.56)

χ2-value 30.6 27.2 484

p-value χ2 0.0455 0.0782 <0.005

Conclusion χ2 not rejected not rejected rejected

KS-value 0.0253 0.0324 0.231

p-value KS >0.15 >0.15 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Normal
(0.000929)

Weibull (0.00114) Weibull (0.00558)

Beta (0.0013) Beta (0.00131) Beta (0.108)

Weibull (0.00164) Normal (0.00214) Exponential (0.12)

Table 3.4: Results for the validation of the Poisson distribution compounded with a
uniform distribution
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Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.12;3.81) Beta(0.384;7.12)

χ2-value 23.2 19 766

p-value χ2 0.287 0.522 <0.005

Conclusion χ2 not rejected not rejected rejected

KS-value 0.0199 0.0339 2.4

p-value KS >0.15 >0.15 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Normal (0.00091) Beta (0.0011) Weibull (0.00364)

Weibull
(0.000923)

Normal (0.00132) Beta (0.137)

Beta (0.00108) Weibull (0.00277) Exponential
(0.193)

Table 3.5: Results for the validation of the Poisson distribution compounded with a
triangular distribution with mode=b

Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.24;3.89) Beta(0.384;7.09)

χ2-value 18.2 44.5 688

p-value χ2 0.449 <0.005 <0.005

Conclusion χ2 not rejected rejected rejected

KS-value 0.0196 0.0394 2.39

p-value KS >0.15 0.0905 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Normal
(0.000789)

Normal (0.00207) Weibull (0.00629)

Beta (0.00108) Beta (0.00229) Beta (0.129)

Weibull (0.00108) Triangular
(0.0048)

Exponential
(0.192)

Table 3.6: Results for the validation of the Poisson distribution compounded with a
triangular distribution with mode=a
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Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.31;4.11) Beta(0.399;7.84)

χ2-value 15.9 23.9 882

p-value χ2 0.599 0.249 <0.005

Conclusion χ2 not rejected not rejected rejected

KS-value 0.0199 0.0374 1.17

p-value KS >0.15 0.122 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Normal
(0.000715)

Beta (0.00105) Weibull (0.00499)

Weibull (0.0011) Normal (0.0012) Beta (0.122)

Beta (0.00123) Triangular
(0.00414)

Exponential
(0.166)

Table 3.7: Results for the validation of the Poisson distribution compounded with a
symmetric triangular distribution
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Hypothesis Normal Unimodal Beta J-shaped Beta

Fitted distribution Normal(1000;115) Beta(2.21;4.59) Beta(0.368;6.32)

χ2-value 22.3 31.9 672

p-value χ2 0.392 0.0341 <0.005

Conclusion χ2 not rejected not rejected rejected

KS-value 0.0281 0.0405 0.446

p-value KS >0.15 0.0767 <0.01

Conclusion KS not rejected not rejected rejected

Ranking (MSE) Weibull
(0.000918)

Weibull (0.00124) Weibull (0.00738)

Normal
(0.000982)

Beta (0.00137) Beta (0.139)

Beta (0.0011) Normal (0.00156) Exponential
(0.192)

Table 3.8: Results for the validation of the Poisson distribution compounded with an
asymmetric triangular distribution
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These results indicate that for µ2/σ2 > 15 the demand process can be approxi-
mated by the normal distribution. Both the χ2- and the KS-test have p-values that
indicate that the normal distribution is a good fit for the experimental data. Further-
more, the normal distribution is, except for the asymmetric triangular distribution,
always first in the ranking of fitness. For the asymmetric triangular distribution, the
Weibull distribution provides a better fit. However, the mean square error of the
normal distribution is so close the mean square error of the Weibull distribution that
the normal distribution is probably just as accurate as the Weibull.

When 0.65 < µ2/σ2 < 15, the goodness of fit of the unimodal β-distribution is
tested. Except for the deterministic distribution, the χ2- and KS-test indicate that
the hypothesis of a unimodal Beta-distribution for demand cannot be rejected. In the
ranking of fitness, the unimodal Beta-distribution is either at the first or at the second
place. However, when the Beta-distribution is at the second place, the mean square
error of the distribution at the first place is close to the mean square error of the
Beta-distribution, indicating that both fitted distributions have the same accuracy
towards the experimental data.

Both tests indicate that for µ2/σ2 < 0.65, the hypothesis of a J-shaped Beta-
distribution for demand has to be rejected. When the ranking of fitness is considered,
the J-shaped Beta-distribution takes a second place, after the Weibull distribution,
which has a significantly better fit than the Beta-distribution.

3.7 Concluding remarks

In this chapter we assumed that the same mean and standard deviation of demand
can be obtained by various patterns regarding demand frequency and size. The fre-
quency of demand is modelled by a Poisson process and for the demand size, various
distributions were examined.

Each experiment leads to a single point on the Pearson chart, a two-dimensional
chart indicating a range of distributions in terms of an asymmetry characteristic β1

and a kurtosis characteristic β2.

Based on the results, one can say that the normal distribution is a good choice
when the mean is high with respect to the variance. Otherwise, one should better
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opt to use a Beta-distribution in inventory management systems, if a Poisson distri-
bution for the order frequency is used and the individual demand size is one of the
distributions examined in this chapter.



Chapter 4

Bounds on performance

measures in inventory

decision-making

4.1 Introduction

In the previous chapter, the demand process under the condition of limited informa-
tion was described. It was assumed that the same mean and standard deviation can
be obtained by various patterns regarding demand frequency and size. In this chap-
ter, bounds on performance measures are calculated under the condition of limited
information (Figure 4.1). Two specific cases of limited information are considered:
the case of a known range, expected value and variance and the case of a known range,
expected value, variance and unique mode.

Performance measures are an important managerial tool in inventory decision-
making (Van Landeghem and Persoons 2001). Almost every inventory system con-
tains uncertainty. Some of the uncertainty (such as lead time, quantity and quality)
depends on the suppliers. If the suppliers introduce too much uncertainty, corrective
action should be taken. Some uncertainty, however, is attributable to customers, es-
pecially demand. If insufficient inventory is held, a stock-out may occur leading to
shortage costs. Shortage costs are usually high in relation to holding costs, i.e. the
cost of keeping the goods during some time period in the warehouse. Companies are
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willing to hold additional inventory, above their forecasted needs, to add a margin of
safety.

Determination of an inventory replenishment policy, of the quantities to order, of
the review period are typical decisions to be taken by logistics managers. Decisions
are made making use of optimisation models taking a performance characteristic into
consideration which might be cost-oriented or service-oriented. Performance charac-
teristics of the service-oriented type may be expressed relatively as a proportion of
customer demand met from inventory, or may be expressed absolutely in terms of
number of stock-out units, which is a direct indication for lost sales.

In insurance mathematics, a lot of results have been obtained for deriving bounds
on the stop-loss premium E((X − d)+) where X is allowed to vary under some con-
straints such as given first order moments, unimodality etc (Heijnen and Goovaerts
1989; De Vylder and Goovaerts 1982; Heijnen 1988). A stop-loss premium limits the
risk X of an insurance company to a certain amount d. Furthermore, several authors
deduced bounds on tail probabilities (De Schepper and Heijnen 1995).

The same formulas may be useful in the performance evaluation of inventory man-
agement in case of uncertain demand during lead time. When a company holds d units
of a specific product in inventory starting a period between order and delivery, any
demand less than d is satisfied while any demand X greater than d results in a short-
age of X − d units. A lesser number of stock-out units results in a better service to
the customer. In this way bounds on E((X−d)+) are a measure for customer service
in inventory management. Bounds on tail probabilities can be seen as bounds on the
stock-out probability in inventory management.

Let W be the number of stock-out units and d the inventory level. The relationship
between W and X is:

W =





0 if x ≤ d;

x− d if x > d.
(4.1)

If U is defined as the stock-out probability, the relationship between U and X is:

U =





0 if x ≤ d;

1 if x > d.
(4.2)
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Before we move towards the remainder of this chapter, it should be stated that the
bounds and their use in applications can be translated from any distribution defined
on [a, b] into the bounds with a distribution defined on [0, b0]. If a 6= 0 and a, b,
µ1 and µ2 are known, the parameters for the distribution defined on [0, b0] can be
calculated using the following formulas:

a0 = 0, (4.3)

b0 = b− a, (4.4)

µ1,0 = µ1 − a, (4.5)

µ2,0 = µ2 − 2aµ1 + a2. (4.6)

In the following paragraphs we will work, without loss of generalisation, with dis-
tributions defined on [0, b0].

An example is used throughout the chapter to demonstrate the use of bounds on
performance measures. In this example, limited information on demand is known:
the mean µ1 equals 20, the second moment µ2 equals 600 and the range of demand
is [0,b] with b = 50. If the unique mode m exists and is known, it equals 15. By
calculating bounds on performance measures, it is possible to calculate bounds on
the inventory level given a desired level of performance measure. Depending on the
degree of optimism of the company, the upper or lower bound on the inventory level
can be used to determine the inventory level that has to be held at the beginning of
a period. If it is known that a unique mode exists and the value of it is known, the
extra information can be used to make the bounds more tight.

The organization of the chapter is as follows: section 4.2 describes the method
used to calculate the bounds; section 4.3 presents the lemmas needed to generate
two-point and three-point distributions; in section 4.4 the number of stock-out units
is discussed; in section 4.5 the stock-out probability is dealt with and in section 4.6
conclusions are drawn.

4.2 Method

4.2.1 E(X) and E(X2) are known

This section describes the method (Heijnen and Goovaerts 1989; De Schepper and
Heijnen 1995) to calculate upper and lower bounds on the number of stock-out units
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and the stock-out probability, when only the first and second moment of the demand
distribution are known.

We define µ1 = E(X) and µ2 = E(X2). The demand X is always positive and it
has an upper bound b. From a mathematical point of view, when calculating bounds
on number of stock-out units, the problem is to find

sup
F∈Φ

∫ b

0

f(x)dF (x) (4.7)

and

inf
F∈Φ

∫ b

0

f(x)dF (x) (4.8)

where Φ is the class of all distribution functions with range [0,b] and moments µ1 and
µ2 and where f(x) = (x− d)+.

For any polynomial P(x) of degree 2 or less, the integral
∫ b

0
P (x)dF (x) only de-

pends on µ1 and µ2, so it takes the same value for all distributions in Φ. We will look
for such polynomials P such that

� P ≥ f on [0, b] (in case of upper bound) or P ≤ f on [0, b] (in case of lower
bound)

� there is some distribution G in Φ for which equality holds:

∫ b

0

P (x)dG(x) =
∫ b

0

f(x)dG(x) (4.9)

The left hand side only depends on known parameters and determines the best upper
bound. As distribution G we will use a two- or three-point distribution in Φ. In
section 4.3 one can find how to generate such distributions. For such distributions the
equality mentioned above is attained when P(x) and f(x) are equal in the masspoints
of G.

To apply this method the formula for a unique parabola g(x) taking values f(u)
and f(v) in u and v with derivative f’(v) in v (u and v any points in [0, b]) is needed:

g(x) =
1

(v − u)2
[f(v)(v − u)(x− u) + f(u)(u− v)(x− v)

+[f ′(v)(v − u)− f(v) + f(u)](x− u)(x− v)]. (4.10)

When calculating bounds on tail probabilities, the problem is to find
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sup
F∈Φ

∫ b

0

f(x)dF (x) (4.11)

and

inf
F∈Φ

∫ b

0

f(x)dF (x) (4.12)

where Φ is the class of all distribution functions with range [0, b] and with moments
µ1 and µ2 known and where

f(x) =





0 if x ≤ d;

1 if x > d.
(4.13)

The method for calculating these bounds on tail probabilities is similar to the one
explained above for bounds on the number of stock-out units.

4.2.2 E(X), E(X2) and the unique mode m are known

This section describes the method (Heijnen and Goovaerts 1989; De Schepper and
Heijnen 1995) to calculate upper and lower bounds on the number of stock-out units
and the stock-out probability, when only the first and second moment and the mode
of the demand distribution are known.

This problem will be transformed to the previous one, using a technique analogous
to the method of Brockett and Cox (1985). We need a characterisation theorem of
unimodal distributions due to Khinchine. A proof can be found in Feller (1984).

Theorem A stochastic variable Z is unimodal with mode 0 and range I if and only if
it has the same distribution as the product U*V of two independent variables U and
V such that U is distributed uniformly on [0,1] and V has range I

For X with mode m and range [0, b] we can use the theorem with Z = X −m, so V

will have range [−m, b−m]. In that case we know for any function f that

E[f(Z)] = E[f∗(V )] (4.14)

with

f∗(x) = E[f(UV )|V = x] =
1
x

∫ x

0

f(t)dt. (4.15)
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We can define Y = V + m, so Y has range [0, b]. Now is

E[f(X)] = E[f̃(Y )] (4.16)

with

f̃(x) =
1

x−m

∫ x−m

0

f(t + m)dt. (4.17)

We call f̃(x) the ”Khinchine” transform of f(x).

Using 4.17 we can calculate the moments ν1 = E(Y ) and ν2 = E(Y 2).

ν1 = 2µ1 −m (4.18)

ν2 = 3µ2 − 2mµ1. (4.19)

We will use the same method as in section 4.2.1 to determine

sup
F∈Φ′

∫ b

0

f̃(x)dF (x) (4.20)

and

inf
F∈Φ′

∫ b

0

f̃(x)dF (x) (4.21)

with Φ′ the class of the distribution functions on [0, b] with moments ν1 and ν2.

4.3 Generating two-point and three-point distribu-

tions

The following lemma is needed to find useful two-point distributions (Jansen, Haezen-
donck, and Goovaerts 1986).

Lemma 1 Suppose X is a (not constant) demand with range [0, b] and with moments
E(X) = µ1 and E(X2) = µ2. Let

r′ =
µ2 − µ1r

µ1 − r
= µ1 +

µ2 − (µ1)2

µ1 − r
(4.22)
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for every r ∈ [0, b] and r 6= µ1. Then there exists for every r ∈ [0, b′] a unique two
point distribution on [0′, b] with given moments µ1 and µ2, i.e. the distribution in
(r, r′) with masses:

qr =
µ1 − r′

r − r′
, qr′ =

µ1 − r

r′ − r
(4.23)

In addition the inequalities

0 < b′ < µ1 < 0′ < b (4.24)

hold and r′ is a strictly increasing function of r from [0, b′] upon [0′, b].
An immediate consequence of this lemma is that r′′ = r.

To find useful three-point distributions we will use the next lemma (Jansen, Haezen-
donck, and Goovaerts 1986).

Lemma 2 Suppose X is a (not constant) demand with range [0, b] and with moments
E(X) = µ1 and E(X2) = µ2. For every α ∈ [0, µ1[, for every γ ∈ [0′, b[ such that
α′ < γ (or α < γ′), for every β such that γ′ < β < α′, there exists a unique three-point
distribution in (α, β, γ) with moments µ1 and µ2 and masses

qα =
σ2 + (µ1 − β)(µ1 − γ)

(β − α)(γ − α)
> 0 (4.25)

qβ =
−σ2 − (µ1 − α)(µ1 − γ)

(β − α)(γ − β)
> 0 (4.26)

qγ =
σ2 + (µ1 − α)(µ1 − β)

(γ − α)(γ − β)
> 0 (4.27)

From the conditions it follows immediately that α < γ′ < β < α′ < γ.

4.4 Number of stock-out units

Using the results which have been obtained in insurance mathematics, upper and
lower bounds on the number of stock-out units can be obtained in inventory manage-
ment, given the safety inventory and various levels of information about the demand
distribution. However, from a production or trading company’s point of view, it is
more interesting to know, given an expected number of stock-out units the company
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wants to face, what the safety inventory should be at least or at most.

Two levels of information about the demand distribution are discussed in this
section: the case of a known range, expected value and variance and the case of
a known range, expected value, variance and unique mode. For each case, upper
and lower bounds on the number of stock-out units are determined using the results
of insurance mathematics (Heijnen and Goovaerts 1989; De Vylder and Goovaerts
1982; Heijnen 1988). Next, the optimal inventory level is calculated given the desired
maximum number of stock-out units. We consider the special case of a compound
Poisson distribution and the section is concluded with a numerical example.

4.4.1 E(X) and E(X2) are known

UPPER BOUNDS

As already stated before, the problem is to find:

sup
F∈Φ

∫ b

0

f(x)dF (x) (4.28)

where Φ is the class of all distribution functions with range [0, b] and moments µ1 and
µ2 and where f(x) = (x− d)+.

The two-point distribution that will be used depends on the position of the pa-
rameter d in the interval [0, b]. Three situations can be distinguished (Heijnen and
Goovaerts 1989):

� The parameter d is ”rather small” (see Figure 4.2). In this situation, the
parabola P is equal and tangent to (x − d)+ at 0′ and equal to (x − d)+ at
0. These three conditions determine P uniquely. A fourth condition needs to
be imposed to avoid P to become negative in [0, b]. This last condition forces d

to be ”rather small”.

� The parameter d is ”not too big and not too small” (see Figure 4.3). Now, the
parabola P is equal and tangent to (x− d)+ at r and r′, so P has to fulfill four
conditions. Because P is determined uniquely by three conditions, the fourth
condition will say in a mathematical way that d should be ”not too big and not
to small”.

� The parameter d is ”rather big” (see Figure 4.4). In this situation, the parabola
P is equal and tangent to (x − d)+ at b′ and equal to (x − d)+ at b. To make
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Figure 4.2: Upper bound on (x− d)+ if parameter d is small
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Figure 4.3: Upper bound on (x− d)+ if parameter d is not too big and not too small
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Figure 4.4: Upper bound on (x− d)+ if parameter d is big

sure P is an upper bound, a fourth condition has to be imposed and will say in
a mathematical way that d is ”rather big”.

Parabola through (0,0) and (0’,f(0’))

According to Lemma 1 there exists a two point distribution with moments µ1 and µ2

in (0,0’). Formula 4.10 can be used with u = 0, v = 0′ and f(0) = 0.

g(x) =
1

0′2
[f(0′)0′x + (f ′(0′)0′ − f(0′))x(x− 0′)]. (4.29)

To assure that g ≥ 0 on [0, d], we impose g′(0) ≥ 0 which means that

f ′(0′) ≤ 2f(0′)
0′

(4.30)

or

d ≤ 0′

2
. (4.31)

The best upper bound is q0′f(0′) or

µ1

µ2
(µ2 − µ1d). (4.32)
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Parabola through (r,0) and (r’,f(r’))

Formula 4.10 is used with v = r, u = r′, f(v) = 0 and f ′(v) = 0. This gives us:

g(x) =
f(r′)(x− r)2

(r′ − r)2
. (4.33)

The condition g′(u) = f ′(r′) leads to

2f(r′) = (r′ − r)f ′(r′) (4.34)

or
d =

r + r′

2
. (4.35)

Because of Lemma 1 a unique solution (r,r’) can be assured by imposing the condition

0′

2
≤ d ≤ b + b′

2
. (4.36)

Under this condition the best upper bound is qr′f(r′) or

µ1 − d +
√

(µ2 − µ2
1) + (d− µ1)2

2
. (4.37)

Parabola through (b’,0) and (b,f(b))

In this case we take u = b, v = b′, f(v) = 0 and f ′(v) = 0 and obtain

g(x) =
f(b)(x− b′)2

(b− b′)2
. (4.38)

To assure g ≥ f we impose g′(b) ≤ f ′(b) or

2f(b) ≤ (b− b′)f ′(b) (4.39)

or

d ≥ b + b′

2
. (4.40)

In that case the upper bound is qbf(b) or

(µ2 − µ2
1)(b− d)

(µ2 − µ2
1) + (b− µ1)2

. (4.41)

The results for the best upper bounds on number of units short when only the mean
and variance of demand are known, are summarized in Table B.1 in Appendix B.
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LOWER BOUNDS

Now, the problem is to find:

inf
F∈Φ

∫ b

0

f(x)dF (x) (4.42)

where Φ is the class of all distribution functions with range [0, b] and moments µ1 and
µ2 and where f(x) = (x− d)+.

Here, also three situations can be distinguished, depending on the position of d in
the interval [0, b] (De Vylder and Goovaerts 1982).

0 ≤ d ≤ b’

A solution is found when P is the straight line through (d, 0), (µ1,f(µ1)) and (b, f(b)).
The three-point distribution will have masses:

qd =
µ2 − µ2

1

(d− µ1)(d− b)
; qµ1 =

µ2 − µ2
1 + (µ1 − d)(µ1 − b)

(µ1 − d)(µ1 − b)
; qb =

µ2 − µ2
1

(b− d)(b− µ1)
(4.43)

The lower bound equals qµ1f(µ1) + qbf(b) or

µ1 − d. (4.44)

b’ < d < 0’

In this case, P is the parabola through (0, 0), (d, 0) and (b, f(b)). The best lower
bound is qbf(b) or

µ2 − µ1d

b
. (4.45)

0’ ≤ d ≤ b

Here, a solution is found when P is the straight line through (0, 0), (µ,0) and (d, 0).
The best lower bound is equal to 0.

The results for the best lower bounds on number of units short when only the mean
and variance of demand are known, are summarized in Table B.2 in Appendix B.
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OPTIMAL INVENTORY LEVEL

To determine the optimal inventory level given the desired maximum number of stock-
out units, using the upper and lower bounds derived in the previous sections, numer-
ical analysis can be used.

However, in the case where only the range and first two moments of the demand
distribution are known, it is possible to calculate the optimal inventory level given the
desired maximum number of stock-out units. In Table 4.1 the optimal inventory level
is expressed in terms of the desired number of stock-out units, using the upper bounds
on number of stock-out units obtained in the previous section. In Table 4.2 the lower
bounds on number of stock-out units are used to calculate the optimal inventory level
in terms of the desired number of stock-out units.

Conditions Inventory level

W ≤ µ2−µ2
1

2(b−µ1)
b− W [(µ2−µ2

1)+(b−µ1)
2]

µ2−µ2
1

µ2−µ2
1

2(b−µ1)
≤ W ≤ µ1

2
(µ2−µ2

1)−4W 2+4Wµ1
4W

W ≥ µ1
2

(µ1−W )µ2
µ2

1

Table 4.1: Optimal inventory level using the upper bounds of number of stock-out
units when E(X) and E(X2) are known

COMPOUND POISSON

In the previous chapter, the demand process is described under the condition of limited
information using a compound Poisson process. Demand frequency is modelled by
a Poisson process and various types of distributions are investigated for the demand
size. If we want to apply the formulas of this chapter to the compound Poisson
distribution with known mean and standard deviation, b has to be set to infinity. In
Table 4.3 and 4.4 the upper and lower bounds on the number of stock-out units are
given when b = ∞.



Bounds on performance measures 59

Conditions Inventory level

W ≤ µ2−µ2
1

b−µ1

µ2−bW
µ1

W ≥ µ2−µ2
1

b−µ1
µ1 −W

Table 4.2: Optimal inventory level using the lower bounds of number of stock-out
units when E(X) and E(X2) are known

Conditions Upper bound

d ≤ 0′
2

µ1
µ2

(µ2 − µ1d)

d ≥ 0′
2

µ1−d+
√

(µ2−µ2
1)+(d−µ1)2

2

Table 4.3: Upper bounds on number of stock-out units when E(X) and E(X2) are
known and b = ∞

The formulas for the optimal inventory level can also be calculated when b = ∞
and are shown in Table 4.5 and 4.6.

4.4.2 E(X), E(X2) and the unique mode m are known

As mentioned in Section 4.2.2 for unimodal X with mode m

∫ b

d

(x− d)dFX(x) =
∫ b

d

f(x)dFY (x) (4.46)

where Y has range [0, b]. If X has moments µ1 and µ2, then Y has moments ν1 and
ν2 as defined in 4.18 and 4.19. The function f(x) in 4.46 is the Khinchine transform
of (x − d)+ and is calculated using 4.17. When we impose the condition d > m the
function in 4.46 is

f(x) =
(x− d)2

2(x−m)
. (4.47)
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Conditions Lower bound

0 ≤ d ≤ b′ µ1 − d

b′ ≤ d ≤ b 0

Table 4.4: Lower bounds on number of stock-out units when E(X) and E(X2) are
known and b = ∞

Conditions Inventory level

W ≤ µ1
2

(µ2−µ2
1)−4W 2+4Wµ1

4W

W ≥ µ1
2

(µ1−W )µ2
µ2

1

Table 4.5: Optimal inventory level using the upper bounds of number of stock-out
units when E(X) and E(X2) are known and b = ∞

By imposing d > m some generality is lost, but if d ≤ m there is enough data to use
the classical estimator for E(W) so there is no need for bounds.

For technical reasons one more condition is imposed on the parameters of the
problem:

4
3
m < 0′ =

ν2

ν1
=

3µ2 − 2mµ1

2µ1 −m
. (4.48)

This condition imposes some skewness on the distribution of X, which is mostly
satisfied in practice.

The same formulas as in section 4.4.1 can now be applied (Heijnen and Goovaerts
1989; Heijnen 1988).
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Conditions Inventory level

W ≥ 0 µ1 −W

Table 4.6: Optimal inventory level using the lower bounds of number of stock-out
units when E(X) and E(X2) are known and b = ∞

UPPER BOUNDS

Parabola through (0,0) and (0’,f(0’))

Formula 4.29 and 4.30 are valid here too and lead to the following restriction on d:

d ≤ 0′2

30′ − 2m
. (4.49)

The best upper bound is q0′f(0′) or

ν1(ν2 − dν1)2

2ν2(ν2 −mν1)
. (4.50)

Parabola through (r,0) and (r’,f(r’))

Condition 4.34 gives here

d =
r′2 − 2mr + rr′

3r′ − 2m− r
. (4.51)

d is an increasing function of r and r′. Because of Lemma 1 we get as condition on d:

0′2

30′ − 2m
≤ d ≤ b2 − 2mb′ + bb′

3b− 2m− b′
. (4.52)

The best upper bound is now qr′f(r′). The upper bound can be written as a function
of r′:

(ν2 − ν2
1)(r′ − d)2

2(ν2 − 2r′ν1 + r′2)(r′ −m)
(4.53)

where r′ is the root of r′3 + Ar′2 + Br′ + C = 0 with A = −3d, B = 4ν1d + 2md −
2mν1 − ν2 and C = 2mν2 − 2mν1d− dν2.
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Parabola through (b’,0) and (b,f(b))

Condition 4.39 here implies

b2 − 2mb′ + bb′

3b− 2m− b′
≤ d (4.54)

The upper bound is qbf(b) or

(ν2 − ν2
1)(b− d)2

2(ν2 − 2bν1 + b2)(b−m)
. (4.55)

The results for the best upper bounds on number of units short when only the mean,
variance and unique mode of demand are known, are summarized in Table B.3.

LOWER BOUNDS

If 0′ ≤ d, the solution is the straight line through (0, 0) and (0′, 0). The best lower
bound is 0.

Parabola through (0,0) and (0’,f(0’))

Formula 4.10 can be used with u=0, v=0’ and f(0)=0. To assure that the best lower
bound is found, the condition g(b) ≤ f(b) needs to be imposed. This leads to:

b0′2 + 0′(0′ −m)
√

b(b−m)
b0′ + (0′ −m)(0′ + b−m)

≤ d < 0′. (4.56)

The best lower bound is q0′f(0′) or

ν1(ν2 − dν1)2

2ν2(ν2 −mν1)
. (4.57)

Parabola through (0,0), (r,f(r)) and (b,f(b))

Here, the condition g(b) = f(b) needs to be imposed and leads to

bb′2 + b′(b′ −m)
√

b(b−m)
bb′ + (b′ −m)(b′ + b−m)

≤ d ≤ b0′2 + 0′(0′ −m)
√

b(b−m)
b0′ + (0′ −m)(0′ + b−m)

(4.58)

if b′ > d. Else, the first inequality drops. The best lower bound equals qrf(r)+qbf(b)
or
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1
2(b− r)

[
(bν1 − ν2)(r − d)2

r(r −m)
+

(ν2 − ν1r)(b− d)2

b(b−m)

]
(4.59)

with

r =
d2(b−m) + d(d−m)

√
b(b−m)

b(b−m) + (b− d)2
. (4.60)

Parabola through (b’,f(b’)) and (b,f(b))

This situation is only possible when b′ > d. Formula 4.10 can be used with u = b en
v = b′. To assure that the best lower bound is found, we impose g(0) ≤ 0 which leads
to

d ≤ bb′2 + b′(b′ −m)
√

b(b−m)
bb′ + (b′ −m)(b′ + b−m)

. (4.61)

Under this condition the best lower bound is qb′f(b′) + qbf(b) or

1
2(b− b′)

[
(b− ν1)(b′ − d)2

(b′ −m)
+

(ν1 − b′)(b− d)2

(b−m)

]
. (4.62)

The results for the best upper bounds on number of units short when only the mean,
variance and unique mode of demand are known, are summarized in Table B.4.

OPTIMAL INVENTORY LEVEL

To determine the optimal inventory level given the desired maximum number of stock-
out units or the desired maximum stock-out probability, using the upper and lower
bounds derived in the previous sections, numerical analysis can be used. In the case
that the range, first two moments and mode of the demand distribution are known,
it is not possible to calculate analytical formulas for the optimal inventory level.

COMPOUND POISSON

In Table 4.7 and 4.8 the upper and lower bounds on the number of stock-out units are
given when b = ∞. These formulas can be applied to a compound Poisson distribution
with known mean, standard deviation and mode.
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Conditions Upper bound

d ≤ 0′2
30′−2m

ν1(ν2−dν1)
2

2ν2(ν2−mν1)

d ≥ 0′2
30′−2m

(ν2−ν2
1 )(r′−d)2

2(ν2−2r′ν1+r′2)(r′−m)

where

r’ root of r′3 + Ar′2 + Br′ + C = 0

with A = −3d, B = 4ν1d + 2md− 2mν1 − ν2

and C = 2mν2 − 2mν1d− dν2

Table 4.7: Upper bounds on number of stock-out units when E(X), E(X2) and m are
known and b = ∞

Conditions Lower bound

b′ ≤ d 0

d < b′ b′m+b′ν1−2b′d−mν1+d2

2(b′−m)

Table 4.8: Lower bounds on number of stock-out units when E(X), E(X2) and m are
known and b = ∞

4.4.3 Numerical example

As stated in the introduction, in the numerical example, µ1 = 20, µ2 = 600 and
b = 50. The upper and lower bounds on the number of stock-out units are presented
in Tables B.5 and B.6 in Appendix B. Figure 4.5 shows the upper and lower bounds
on the number of stock-out units for a given inventory level.

When the mode m is not known, it is possible to calculate the optimal inventory
level, given the desired level of maximum number of stock-out units. The results can
be found in Tables B.7, B.8 in Appendix B. Figure 4.6 shows the upper and lower
bounds on the inventory level for a given number of stock-out units.
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Figure 4.5: Upper and lower bounds on number of stock-out units given the inventory
level d

If we assume that the unique mode exists and equals 15, the upper and lower
bounds on the number of stock-out units are presented in Tables B.9 and B.10 in
Appendix B. To calculate the optimal inventory level analytically, given the desired
level of maximum number of stock-out units, is not possible when the unique mode
is known but numerical analysis can be used to determine the optimal inventory level
stock, given the desired level of maximum number of stock-out units.

In the following paragraphs, these results are used in some specific cases. If, for
example, the company wants to face a maximum of 5 stock-out units in a period, the
upper bound on the inventory level equals 25 and the lower bound on the inventory
level equals 17.5. This means that if the company is very risk averse, an inventory
level of 25 units is held, if the company is more risk seeking, an inventory level of
17.5 units is held. If the company only wants to face 2 stock-out units per period,
an inventory level of 39 units should be held if the company is risk averse. If the
company is more risk seeking, only 25 units of inventory should be held.

If the unique mode of demand is known in the example, tighter bounds can be cal-



66 Chapter 4

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

d

W

Figure 4.6: Optimal inventory level using upper and lower bounds on the number of
stock-out units

culated. However, no closed-form formulas exist for the optimal safety stock. Using
numerical analysis, an upper bound on the inventory level of 23 and a lower bound of
22.5 are found when the company wants to face a maximum of 5 stock-out units per
period. When only 2 stock-out units per period are allowed, a risk averse company
holds an inventory level of 33 units and a risk seeking company holds an inventory
level of 32 units.

4.5 Stock-out probability

The bounds on tail probabilities that have been obtained in insurance mathematics
can be used to determine upper and lower bounds on the stock-out probability in in-
ventory management, given the inventory level and various levels of information about
the demand distribution. These results can be found in Appendix B (De Schepper
and Heijnen 1995). However, in inventory management, it is also more interesting to
know, given an expected stock-out probability the company wants to face, what the
inventory level should be at least or at most.
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The outline of this section is as follows: two levels of information about the demand
distribution are discussed: the case of a known range, expected value and variance
and the case of a known range, expected value, variance and unique mode. For each
case, the optimal inventory level is calculated given the desired maximum stock-out
probability. Next, the special case of a compound Poisson demand distribution is
considered. For each case a numerical example is worked out.

4.5.1 E(X) and E(X2) are known

OPTIMAL INVENTORY LEVEL

To determine the optimal inventory level given the desired maximum stock-out prob-
ability, using the upper and lower bounds derived in Appendix B, numerical analysis
can be used.

However, if the mode m is not known, it is possible to calculate the optimal in-
ventory level given the desired maximum number of stock-out units or the desired
maximum stock-out probability. Table 4.9 presents the results for the optimal in-
ventory level, given the desired stock-out probability, using the upper bounds on the
stock-out probability that were derived in the previous section. Table 4.10 shows the
optimal inventory level in terms of the desired stock-out probability, using the lower
bound on the stock-out probability.

Conditions Inventory level

U ≤ µ2
1

µ2

µ1U+
√

(U2−U)(µ2
1−µ2)

U

U ≥ µ2
1

µ2

bµ1−µ2
bU−µ1

Table 4.9: Optimal inventory level using the upper bounds of the stock-out probability
when E(X) and E(X2) are known
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Conditions Inventory level

U ≥ µ2−µ2
1

b2−2bµ1+µ2

µ1(U−1)+
√

µ2
1(U−1)2−(U−1)(µ2U−µ2

1)

U−1

U ≤ µ2−µ2
1

b2−2bµ1+µ2

µ2−Ub2

µ1−Ub

Table 4.10: Optimal inventory level using the lower bounds of the stock-out proba-
bility when E(X) and E(X2) are known

COMPOUND POISSON

If the demand process is a compound Poisson process with known mean and stan-
dard deviation, in Table 4.11 and 4.12 the upper and lower bounds on the stock-out
probability are given when b = ∞.

Conditions Upper bound

0 ≤ d ≤ b′ 1

b′ < d ≤ 0′ µ1
d

0′ < d ≤ b
(µ2−µ2

1)

(µ2−µ2
1)+(µ1−d)2

Table 4.11: Upper bounds on stock-out probability when E(X) and E(X2) are known
and b = ∞

The formulas for the optimal inventory level can also be calculated when b = ∞
and are shown in Table 4.13 and 4.14.
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Conditions Lower bound

0 ≤ d ≤ b′ (µ1−d)2

µ2−µ2
1+(µ1−d)2

b′ < d ≤ b 0

Table 4.12: Lower bounds on stock-out probability when E(X) and E(X2) are known
and b = ∞

Conditions Inventory level

U ≤ µ2
1

µ2

µ1U+
√

(U2−U)(µ2
1−µ2)

U

U ≥ µ2
1

µ2

µ1
b

Table 4.13: Optimal inventory level using the upper bounds of the stock-out proba-
bility when E(X) and E(X2) are known and b = ∞

Conditions Inventory level

U ≥ 0 µ1(U−1)+
√

µ2
1(U−1)2−(U−1)(µ2U−µ2

1)

U−1

Table 4.14: Optimal inventory level using the lower bounds of the stock-out proba-
bility when E(X) and E(X2) are known and b = ∞
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4.5.2 E(X), E(X2) and the unique mode m are known

OPTIMAL INVENTORY LEVEL

To determine the optimal inventory level given the desired maximum number of stock-
out units or the desired maximum stock-out probability, using the upper and lower
bounds derived in the previous sections, numerical analysis can be used.

COMPOUND POISSON

In Table 4.15, 4.16, 4.17 and 4.18 the upper and lower bounds on the stock-out
probability are given when b = ∞. These formulas can be applied to a compound
Poisson distribution with known mean, standard deviation and mode.

Conditions Upper bound

m < d ≤ b′2
2b′−m and b′ > c1

b′−d
b′−m

m < d < 0′2
20′−m and b′ ≤ c1

µ1(r−d)
r(r−m)

or b′2
2b′−m < d < 0′2

20′−m with r = d +
√

d(d−m)

and b′ > c1

0′2
20′−m ≤ d ≤ 20′2−m0′

30′−2m
ν2
1 (ν2−dν1)

ν2(ν2−mν1)

20′2−m0′
30′−2m ≤ d 0

Table 4.15: Upper bounds on stock-out probability when E(X), E(X2) and m are
known for d > m and b = ∞
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Conditions Lower bound

0 ≤ d ≤ b′ (ν1−d)2

(ν1−m)(ν1−d)+ν2−ν2
1

b′ < d 0

Table 4.16: Lower bounds on stock-out probability when E(X), E(X2) and m are
known for d > m and b = ∞

Conditions Upper bound

0 ≤ d ≤ b′ 1

b′ < d ≤ 0′ ν1+m−d
m

0′ < d ≤ b 1
d−d′

[
(ν1 − d′) + (d−ν1)(m−d)

m−d′

]

Table 4.17: Upper bounds on stock-out probability when E(X), E(X2) and m are
known for d ≤ m and b = ∞
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Conditions Lower bound

d ≤ 0′m
2m+0′

ν2
1d+ν2(m−d)

mν2

0′m
2m+0′ ≤ d m−d

m−r ·
ν2−ν2

1
ν2−2ν1r+r2 + (ν1−r)2

ν2−2ν1r+r2

with r root of r3 + Ar2 + Br + C

with A = − 1
2 (2ν1 + m + 3d), B = 2dν1 + dm

and C = 1
2 (ν2m− ν2d− 2ν1dm).

Table 4.18: Lower bounds on stock-out probability when E(X), E(X2) and m are
known for d ≤ m and b = ∞
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Figure 4.7: Upper and lower bounds on stock-out probability given the inventory level
d

4.5.3 Numerical example

In the numerical example, µ1 = 20, µ2 = 600 and b = 50. The upper and lower
bounds on the stock-out probability are presented in Tables B.17 and B.18 in Ap-
pendix B. Figure 4.7 shows the upper and lower bounds on the stock-out probability
for a given inventory level.

When the mode m is not known, it is possible to calculate the optimal inventory
level, given the desired level of maximum number of stock-out units or the desired
maximum stock-out probability. The results can be found in Tables B.19 and B.20 in
Appendix B. Figure 4.8 shows the upper and lower bounds on the optimal inventory
level given a given stock-out probability.

If we assume that the unique mode exists and equals 15, the upper and lower
bounds on the stock-out probability are presented in Tables B.21 and B.22 in Ap-
pendix B. To calculate the optimal inventory level analytically, given the desired
level of maximum number of stock-out units, is not possible when the unique mode
is known but numerical analysis can be used to determine the optimal inventory level
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Figure 4.8: Optimal inventory level using the upper and lower bounds on the stock-out
probability

stock, given the desired stock-out probability.

In the following paragraphs, these results are used in some specific cases. For
example, if the company wants to face a maximum stock-out probability of 10% in a
period, the upper bound on the inventory level equals 62 and the lower bound on the
inventory level stock equals 23. This means that if the company is very risk averse,
an inventory level 62 units is held, if the company is more risk seeking, an inventory
level of 23 units is held. If the company only wants to have 5% stock-out probability
per period, an inventory level of 96 units should be held if the company is risk averse.
If the company is more risk seeking, only 27 units of inventory level should be held.

If the unique mode of demand is known in the example, tighter bounds can be
calculated. However, no closed-form formulas exist for the optimal safety stock. Using
numerical analysis, an upper bound on the inventory level of 43 and a lower bound
of 41 are found when the company wants to have a stock-out probability of 10%
per period. When only 5% stock-out probability per period is allowed, a risk averse
company holds an inventory level of 47 units and a risk seeking company holds an
inventory level of 44 units.
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4.6 Concluding remarks

When little information is available on the demand distribution during lead time,
which is relevant in inventory decision making, interesting results can be used from
the actuarial problem where limited information is known on the claim size distri-
bution. In this chapter, upper and lower bounds are determined for the number of
units short and the stock-out probability, given various levels of information about
the demand distribution.

In inventory decision making, the opposite question, what should be the inventory
level at least or at most given an expected number of units short or an expected stock-
out probability the company wants to face, is more interesting. Therefore, results for
the optimal inventory level given the desired maximum number of stock-out units or
the desired maximum stock-out probability are calculated for the case where E(X)
and E(X2) are known. If the mode m is known, numerical analysis has to be used to
determine the optimal inventory level given the desired maximum number of stock-out
units or the desired maximum stock-out probability.
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Chapter 5

Forecasting and inventory

management for intermittent

demand

5.1 Introduction

In the previous chapters, the demand process is described under the condition of lim-
ited information. A special type of demand, where information on the demand process
is often limited, is intermittent demand. This special type of demand is treated in
Part II of this thesis (Figure 5.1). Intermittent demand is the type of demand that
does not occur in every period and, if it appears, it shows high variability. Items with
intermittent demand include service spare parts and high-priced capital goods, such
as heavy machinery.

Demand forecasting is one of the most crucial aspects of inventory management
(Willemain, Smart, and Schwarz 2004). However, for intermittent demand, forecast-
ing is difficult, and errors in prediction may be costly in terms of obsolescent stock
or unmet demand (Syntetos and Boylan 2005). The standard forecasting method
for intermittent demand items is considered to be Croston’s method (Croston 1972).
This method builds estimates taking into account both demand size and the interval
between demand occurrences.

77
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Despite the theoretical superiority of such an estimation procedure, empirical evi-
dence suggests modest gains in performance when compared with simpler forecasting
techniques (Syntetos and Boylan 2001). In this chapter1, we study a single-product
inventory system of a wholesaler facing demand of the intermittent type. Different
forecasting methods are used in order to compare the performance of those methods.
In addition, the results are analysed to see if there is an interaction between inventory
decision making and demand forecasting.

Most of the research on inventory control is focused on the replenishment of sin-
gle items. However, in many situations, considerable savings may be achieved by
the coordination of replenishment of orders for groups of items. Therefore, at the
end of this chapter, the simulation model is expanded to include joint replenishment
to see if joint replenishment can be beneficial when dealing with intermittent demand.

The organization of the chapter is as follows: section 5.2 introduces the research
approach; section 5.3 describes the inventory system and the forecasting methods;
section 5.4 presents the experimental set-up; section 5.5 discusses the results; section
5.6 adds joint replenishment to the model and in section 5.7 conclusions are drawn.

5.2 Simulation approach

Because of the uncertainty present in the inventory system, often mathematical mod-
els cannot accurately describe the system. Therefore, simulation models will be used.
The main advantage of simulation is that most complex, real-world systems which
cannot be accurately described by a mathematical model can be evaluated analyti-
cally (Law and Kelton 1991). However, simulation results can be difficult to interpret.
Each simulation run leads to just an estimation of the model’s characteristic and, as a
result, these estimations can differ greatly from the corresponding true characteristics
of the model. Thus, appropriate statistical techniques must be used to analyze and
interpret the simulation experiments. Two main issues will be discussed for that mat-
ter: output data analysis and common random numbers. At the end of this section,
generating intermittent demand will be briefly considered.

1This chapter is based on Ramaekers and Janssens (2004).
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5.2.1 Output data analysis

As mentioned before, a single run of a simulation model can lead to serious errors
and poor decisions. In order to obtain a point estimate and confidence interval for
a simulation output, several runs of the simulation model using different random
numbers are needed. Several methods exist to estimate the outputs confidence inter-
vals. The most popular method is the replication/deletion approach because it is a
simple approach that gives good statistical performance (Law and Kelton 1991). It
can easily be used to estimate several different parameters for the same simulation
model and to compare different system configurations. Other methods that estimate
confidence intervals for simulation output are the batch means method, the autore-
gressive method the spectral method, the regenerative method and the standardized
time series method. In this chapter, we use the replication/deletion method to anal-
yse simulation output.

Suppose we make n replications of the simulation. The independence of replica-
tions is accomplished by using different random numbers for each replication. Let Yj

be the jth replication (for j=1,2,...,n) of the measure of performance of interest. An
unbiased point estimator for the mean µ = E(Y ) is given by

Y (n) =

∑n
j=1 Yj

n
. (5.1)

and an approximate 100(1− α) percent confidence interval for µ is given by

Y (n)± tn−1,1−α/2

√
S2(n)

n
(5.2)

where tn−1,1−α/2 is the upper 1 − α
2 critical point for the t distribution with n-1

degrees of freedom and S2(n) is the sample variance given by

S2(n) =

∑n
j=1 (Yj − Y (n))2

n− 1
. (5.3)

Comparing the expected responses of two alternatives

When comparing alternative systems, Law and Kelton (1991) point out that decisions
based on the output of a single simulation run can be unreliable. When comparing
only two alternative systems, a confidence interval can be constructed for the differ-
ence in the two expectations. This does not only results in a ”reject” or ”fail-to-reject”
conclusion but also quantifies how much the measures differ. When the number of
replications for each alternative is the same (n1 = n2 = n), a paired-t confidence
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interval can be built. Let Yj1 and Yj2 be the corresponding outputs of two alterna-
tives and define Zj = Yj1 − Yj2, for j=1,2,...,n. Then E(Zj) = ν is the quantity for
which we want to construct a confidence interval. Assuming that Zj ’s are IID random
variables, let

Z(n) =

∑n
j=1 Zj

n
(5.4)

and

S2(n) =

∑n
j=1 (Zj − Z(n))2

n− 1
, (5.5)

the approximate 100(1− α) percent confidence interval is

Z(n)± tn−1,1−α/2

√
S2(n)

n
. (5.6)

This is called the paired-t confidence interval. If this interval does not contain zero,
it can be concluded that the two responses are different.

Comparing the expected responses of more than two alternatives

To compare more than two alternative systems, it is still possible to use a confidence-
interval approach. One approach is to do all pairwise comparisons of responses (Law
and Kelton 1991). In this case, the individual confidence levels have to be adjusted
upward so that the overall confidence level of all intervals covering their respective
target is at the desired level (1 − α). The Bonferroni inequality is used to ensure
that the overall confidence level is at least (1−α). The all pairwise comparisons for k

responses requires k(k−1)
2 evaluations. The individual confidence level for each interval

should therefore be 1− αk(k−1)
2 in order to have a confidence level of at least (1− α)

for all the intervals together. Stoline (1981) compares several methods for all pairwise
comparisons and shows that the Tukey test is one of the best methods to perform
such comparisons. For the balanced cases, the 100(1−α) percent simultaneous Tukey
confidence intervals for k pairwise comparisons are

Y i − Y j ± (qα,k,ν)

√
S2

n
(5.7)

where qα,k,ν is the upper α point of the Studentized range distribution with parameter
k and ν = k(n− 1) and

S2 =

∑k
i=1

∑n
j=1 (Yij − Y i)2

ν
. (5.8)
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5.2.2 Common random numbers

Variance-reduction techniques can improve the statistical efficiency, measured by the
variances of the output random variables, of a simulation study. If it is possible
to reduce the variance of an output random variable of interest without disturbing
its expectation, a greater precision, e.g. smaller confidence intervals, for the same
amount of simulating can be obtained. A commonly used variance-reduction tech-
nique is common random numbers (Heikes, Montgomory, and Rardin 1976; Wright
and Ramsay 1979). Unlike the other methods for variance reduction, this method ap-
plies when comparing two or more alternative system configurations. Using common
random numbers also increases the confidence that observed differences in perfor-
mance are due to differences in the system configurations rather than to fluctuations
in the generated random variates. In this simulation study, we use multiple runs
for each alternative using the same random numbers for each corresponding pair of
alternatives.

5.2.3 Generating intermittent demand

To generate intermittent demand, demand occurrence and demand size are separately
generated. To decide on how to generate the intermittent demand, data of Alcon Cou-
vreur N.V. is used.

Alcon Couvreur N.V. is an establishment in Puurs of Alcon Laboratories, an Amer-
ican company. In the establishment in Belgium, a new assembly unit for Custom-Paks
was opened in 1998. Custom-Pak are surgical packs that contain a customized single-
use surgical procedure tray and consumable products used by eye surgeons for specific
ophthalmic procedures. Each individual Custom-Pak tray is manufactured to the
surgeon’s unique specifications and contains virtually every item needed for a single
surgery ranging from surgical devices, drugs and solutions. Additionally, the materi-
als are packed in the exact sequence requested and used by the surgeon. Demand for
Custom-Paks is intermittent because each Custom-Pak is made for a specific eye sur-
geon or team of eye surgeons. Customers alternately order small and large quantities
and the frequency of orders can differ greatly.

Each product item has a unique identification number or core. Core 06406, one
of the best sold Custom-Paks of Alcon, is used for the analysis. In Table 5.1, the ob-
served frequencies of the interarrival times between orders (in weeks) are given. These
observed frequencies have a mean equal to 2.927. This mean is used to calculate the
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expected frequencies when independent Poisson arrivals are assumed. The observed
frequencies are compared to the expected frequencies in Table 5.1.

1 2 3 4 5 6 >7

Observed 4 15 12 2 6 2 0

Expected 9.95 7.07 5.03 3.57 2.54 1.8 11.03

Table 5.1: Comparison of observed and expected frequencies of the interarrival times

To compare the observed results to the expected results, the χ2-test is used as a
goodness-of-fit test. The χ2 statistic equals

k∑

i=1

(Oi − Ei)2

Ei

where Oi is the observed frequency for class i, Ei is the expected frequency for class
i and k is the number of classes. The test statistic equals 38.59, which is above the
critical value of the χ2-distribution with 5 degrees of freedom on the 95% confidence
level, 11.07. Therefore, the assumption of Poisson arrivals is rejected and dependency
between arrivals can be assumed. In Table 5.2 the interarrival times are grouped based
on the present (n) and the previous (n− 1) interarrival time. Between brackets, the
expected frequencies are given when the assumption is made that interarrival times
are independent, i.e. the present interarrival times do not depend on the previous
interarrival times.

n

1 2 3 4 5 6

1 0 (2/30) 1 (2.5) 1 (13/6) 1 (1/3) 0 (1) 1 (1/3)

2 2 (2/30) 4 (2.5) 5 (13/6) 0 (1/3) 3 (1) 1 (1/3)

n-1 3 2 (2/30) 5 (2.5) 2 (13/6) 1 (1/3) 2 (1) 0 (1/3)

4 0 (2/30) 1 (2.5) 1 (13/6) 0 (1/3) 0 (1) 0 (1/3)

5 0 (2/30) 3 (2.5) 2 (13/6) 0 (1/3) 1 (1) 0 (1/3)

6 0 (2/30) 1 (2.5) 1 (13/6) 0 (1/3) 0 (1) 0 (1/3)

Table 5.2: Observed and expected frequencies of the interarrival times

In the matrix of the observed frequencies, there are too many classes with no
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observations which makes it impossible to perform a χ2-test. Therefore, Table 5.2
is replaced by Table 5.3, in which classes are put together to be able to perform a
χ2-test.

n

1-3 4-6

n-1 1-3 22 (15.5) 9 (5)

4-6 9 (15.5) 1 (5)

Table 5.3: Observed and expected frequencies of the interarrival times in 2 classes

The test statistic to compare the observed frequencies to the expected frequencies
equals 11.85. The critical value of the χ2-distribution with 2 degrees of freedom on
the 95% confidence level is 5.99. This means we can reject the null hypothesis that
demand arrivals are independent.

Because of the dependency of the arrivals, the demand occurrence is generated
according to a first-order Markov process with transition matrix

T =


 p00 p01

p10 p11


 ,

where p00 is the probability of no order in the next period when there has been no
order in this period and p10 is the probability of no order in the next period when
there has been an order in the current period.

Individual order sizes are generated using a Gamma distribution with shape pa-
rameter γ and scale parameter β.

If we define I as the probability of having demand in a certain period and D as
the size of an individual demand, the mean and variance of the aggregated demand
can be calculated as:

E(X) = E(I) ∗ E(D) (5.9)

and

V ar(X) = E(I) ∗ V ar(D) + E2(D) ∗ V ar(I). (5.10)



Forecasting and inventory management 85

5.3 Experimental framework

This section describes the inventory system that is used to compare the performance
of different forecasting methods for intermittent demand and to obtain some initial re-
sults on the interaction between inventory decision making and demand forecasting.
The study focuses on a single-product inventory system of a wholesaler facing de-
mand of the intermittent type. The simulation model is developed in Microsoft Excel
spreadsheets and uses VBA. The simulation model starts by generating intermittent
demand as described in the previous section. Next, the inventory system is simulated
for 52 periods. At each review-time, a demand forecast and an order decision are
made. The total costs and the performance (the number of stock-out periods and the
number of stock-out units) of the inventory system are determined.

5.3.1 Inventory system

An inventory system provides the organizational structure and the operating policies
for maintaining and controlling goods to be stocked. Silver and Peterson (1985) de-
scribe the most common classification of inventory systems. There are two general
types of inventory systems: continuous review models and periodic review models.
In continuous review models, the stock status is always known whereas in periodic
review models, the stock status is determined only every R time units. There are
a number of possible inventory control systems. The four most common ones are
described below.

The order-point, order quantity (s, Q) system involves continuous review. A fixed
quantity Q is ordered whenever the inventory position drops to the reorder point s

or lower. The order-point, order-up-to-level (s, S) system again involves continuous
review an a replenishment is made whenever the inventory position drops to the order
point s or lower. The periodic review, order-up-to-level (R, S) system is a commonly
used system in practice. The control procedure is that every R units of time enough
is ordered to raise the inventory position to the level S. The (R, s, S) system is a
combination of a (s, S) and a (R, S) system. Every R units of time, the inventory
position is checked. If it is at or below the reorder point s, enough is ordered to raise
it to S.

In this research, two periodic review models are used. The first one is the (R, s,
S) system just described. The second system is similar to the (R, s, S) system but
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uses a fixed order quantity Q instead of an order-up-to-level S.

A deterministic lead time L is assumed. Three possible review periods are consid-
ered: review period equal to lead time (R=L), review period equal to twice the lead
time (R=2L) and review period equal to half the lead time (L=2R).

When making decisions about the size of the safety stock, the order-point, the
order quantity and the order-up-to-level, the following costs must be considered: unit
holding cost per period Ch, ordering cost Co and unit shortage cost per period Cs.
The simulation starts with an initial inventory level I0.

For periodic review systems, reorders are placed at the time of review T and the
safety stock SS that must be reordered is

SS = zσR+L (5.11)

where σR+L is the standard deviation of demand over the review period and the lead
time. The value z can be obtained by solving the following equation for E(z) and
using a table provided by Robert Brown ((Chase, Aquilano, and Jacobs 1998), to
determine the corresponding z value:

E(z) =
XR(1− P )

σR+L
(5.12)

where X is the average demand per period and P is the service level desired.

The order point s is set equal to the safety stock plus the average demand during
one time period:

s = SS + X. (5.13)

The fixed order quantity Q is determined using the formula of the Economic Order
Quantity EOQ:

Q =

√
2XCo

Ch
. (5.14)

The order-up-to-level S is the sum of the safety stock and the average demand
over the vulnerable period:
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S = SS + X(R + L). (5.15)

To compare the inventory systems and forecasting methods, the total costs and
the performance (number of stock-out periods and number of stock-out units) of the
inventory system are determined.

5.3.2 Forecasting methods

The standard forecasting method for intermittent demand items is considered to be
Croston’s method. However, in practice, single exponential smoothing and simple
moving averages are often used to deal with intermittent demand. In this section,
these three forecasting methods are described. Let Xt be the observed demand in
period t (t = 1, 2, ...T ). This integer demand is often zero, and when it is nonzero it
tends to be highly variable.

Single Exponential Smoothing

Exponential smoothing (ES) is probably the most used of all forecasting techniques.
The single exponential smoothing (SES) method is easy to apply because only three
pieces of data are needed to forecast the future: the most recent forecast, the most
recent actual demand and a smoothing constant α (DeLurgio 1998). The smoothing
constant determines the weight given to the most recent past observations and there-
fore controls the rate of smoothing or averaging. It is commonly constrained to be in
the range of zero to one. The equation for SES is:

Ft = αXt−1 + (1− α)Ft−1 (5.16)

where Ft is the exponentially smoothed forecast for period t and Ft−1 the exponen-
tially smoothed forecast of the prior period.

Simple Moving Averages

The assumption of the moving average (MA) forecasting method is that a future value
will equal an average of past values (DeLurgio 1998). The number of past values used
to calculate the forecast can vary. The simple four-period moving average forecast is
calculated as:

Ft = (Xt−4 + Xt−3 + Xt−2 + Xt−1)/4. (5.17)
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Croston’s method

Croston’s method (Croston 1972) was developed to provide a more accurate forecast of
the mean demand per period. Croston’s method (CR) applies exponential smoothing
separately to the intervals between nonzero demands and their sizes. Let It be the
smoothed estimate of the mean interval between nonzero demands, and let Dt be the
smoothed estimate of the mean size of a nonzero demand. Let q be the time interval
since the last nonzero demand. Croston’s method works as follows: if Xt = 0 then

Dt = Dt−1; It = It−1; q = q + 1 (5.18)

else

Dt = αXt + (1− α)Dt−1; It = αq + (1− α)It−1; q = 1. (5.19)

where α is the smoothing parameter. Combining the estimates of size and interval
provides the forecast:

Ft = Dt/It. (5.20)

These estimates are only updated when demand occurs. When demand occurs every
period, Croston’s method is identical to single exponential smoothing.

5.4 Experimental set-up

In this section, the experimental set-up of the simulation model is discussed.

Demand occurrence is generated using a first-order Markov process with transition
matrix

T =


 0.7875 0.2125

0.85 0.15


 .

The transition matrix of a Markov process can be used to calculate the steady-
state probabilities of the Markov process using the following steady-state equations:

p0 = p0p00 + p1p10 (5.21)

and
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p1 = p0p01 + p1p11 (5.22)

Using these formulas, transition matrix T corresponds with a probability of 20%
to have demand in a certain period. The size of demand is generated using a Gamma
distribution with γ = 6 and β = 1. This corresponds to a mean and variance of the
aggregated demand of 1.2 and 6.96.

Two inventory management policies are used: the (R, s, S) system and the (R, s,
Q) system. The costs of the inventory system are: Co = 100, Ch = 2 and Cs = 5.
The initial inventory level I0 equals 5. Three possibilities for the review period R
exist: R=L; L=2R and R=2L. For each of these possibilities, the safety stock SS,
fixed order quantity Q and order-up-to-level S are calculated and shown in Table 5.4.
A desired service level of 90% is used.

R=L L=2R R=2L

Safety stock SS 6 8 6

Fixed order quantity Q 11 11 11

Order-up-to-level S 9 12 10

Table 5.4: Parameters of the inventory system

Three forecasting methods are compared: single exponential smoothing with smooth-
ing parameter α = 0.5, simple moving averages using 4 equally weighted past values
to calculate the forecast and Croston’s method with smoothing parameter α = 0.5.

The simulation run length is set to 52 periods and 10 replications are made for
each simulation run.

5.5 Results

For the experimental set-up described in the previous section, the results are sum-
marized in Table 5.5, 5.6 and 5.7. These tables show the average value and variance
of the ten replications for each experimental point. 95% confidence intervals are cal-
culated to determine the impact of the forecasting method, the impact of the review
period and the impact of the inventory management policy. The paired-t test is used
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Mean Variance

L=R Order-up-to total costs 1899 94769

Level S stock-out periods 1.4 0.27

stock-out units 3.3 5.12

Fixed order total costs 2347 78370

Quantity Q stock-out periods 0.4 0.27

stock-out units 0.7 1.12

L=2R Order-up-to total costs 2842 111053

Level S stock-out periods 0.8 0.84

stock-out units 3.3 20.01

Fixed order total costs 2675 43835

Quantity Q stock-out periods 0.4 0.71

stock-out units 1.6 14.93

R=2L Order-up-to total costs 1871 68095

Level S stock-out periods 1.4 0.71

stock-out units 3.9 26.77

Fixed order total costs 2390 73388

Quantity Q stock-out periods 0.5 0.5

stock-out units 1.2 3.96

Table 5.5: Results of the 10 simulation runs for exponential smoothing

to compare the two inventory management policies used in the simulation. To com-
pare the three forecasting methods and the three review periods, the Tukey test is
performed. The confidence intervals can be found in Table 5.8, 5.9 and 5.10.

For this experimental set-up, there is no significant difference in costs and perfor-
mance between the forecasting methods when the order-up-to-level inventory manage-
ment policy is used. When the fixed order quantity policy is used, Croston’s method
is significantly more expensive than single exponential smoothing and simple moving
averages when the review period is half the lead time. When the review period is equal
to the lead time or equal to twice the lead time, Croston’s method is also more ex-
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Mean Variance

L=R Order-up-to total costs 1899 94769

Level S stock-out periods 1.4 0.27

stock-out units 3.3 5.12

Fixed order total costs 2263 57646

Quantity Q stock-out periods 0.4 0.27

stock-out units 0.7 1.12

L=2R Order-up-to total costs 2842 111052

Level S stock-out periods 0.8 0.84

stock-out units 3.3 20.01

Fixed order total costs 2555 91053

Quantity Q stock-out periods 0.4 0.71

stock-out units 1.6 14.93

R=2L Order-up-to total costs 1871 68095

Level S stock-out periods 1.4 0.71

stock-out units 3.9 26.77

Fixed order total costs 2359 54967

Quantity Q stock-out periods 0.4 0.49

stock-out units 1.1 4.1

Table 5.6: Results of the 10 simulation runs for moving average
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Mean Variance

L=R Order-up-to total costs 1899 94769

Level S stock-out periods 1.4 0.27

stock-out units 3.3 5.12

Fixed order total costs 2508 112963

Quantity Q stock-out periods 0.4 0.27

stock-out units 0.7 1.12

L=2R Order-up-to total costs 2834 104907

Level S stock-out periods 0.8 0.84

stock-out units 3.3 20.01

Fixed order total costs 3011 124530

Quantity Q stock-out periods 0.4 0.71

stock-out units 1.6 14.93

R=2L Order-up-to total costs 1871 68094

Level S stock-out periods 1.4 0.71

stock-out units 3.9 26.77

Fixed order total costs 2639 196648

Quantity Q stock-out periods 0.5 0.5

stock-out units 1.2 3.96

Table 5.7: Results of the 10 simulation runs for Croston’s method
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ES-MA ES-CR MA-CR

L=R S total costs -341.31;341.31 -341.31;341.31 -341.31;341.31

stock-out periods -0.57;0.57 -0.57;0.57 -0.57;0.57

stock-out units -2.51;2.51 -2.51;2.51 -2.51;2.51

Q total costs -235.7;403.1 -480.1;158.7 -563.8;75

stock-out periods -0.57;0.57 -0.57;0.57 -0.57;0.57

stock-out units -1.17;1.17 -1.17;1.17 -1.17;1.17

L=2R S total costs -366.04;366.04 -358.84;373.24 -358.84;373.24

stock-out periods -1.02;1.02 -1.02;1.02 -1.02;1.02

stock-out units -4.96;4.96 -4.96;4.96 -4.96;4.96

Q total costs -205.92;446.12 -661.82;-9.78 -781.92;-129.88

stock-out periods -0.93;0.93 -0.93;0.93 -0.93;0.93

stock-out units -4.28;4.28 -4.28;4.28 -4.28;4.28

R=2L S total costs -289.31;289.31 -289.31;289.31 -289.31;289.31

stock-out periods -0.93;0.93 -0.93;0.93 -0.93;0.93

stock-out units -5.74;5.74 -5.74;5.74 -5.74;5.74

Q total costs -333.42;396.42 -613.82;116.02 -645.32;84.52

stock-out periods -0.68;0.88 -0.78;0.78 -0.88;0.68

stock-out units -2.12;2.32 -2.22;2.22 -2.32;2.12

Table 5.8: Confidence intervals for comparing the forecasting methods
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R=L-L=2R R=L-R=2L L=2R-R=2L

ES S total costs -1277.31;-607.29 -306.81;363.21 635.49;1305.51

stock-out periods -0.26;1.46 -0.86;0.86 -1.46;0.26

stock-out units -4.61;4.61 -5.21;4.01 -5.21;4.01

Q total costs -611.09;-44.91 -326.29;239.89 1.07;567.89

stock-out periods -0.78;0.78 -0.88;0.68 -0.88;0.68

stock-out units -3.76;1.96 -3.36;2.36 -2.46;3.26

MA S total costs -1277.31;-607.29 -306.81;363.21 635.49;1305.51

stock-out periods -0.26;1.46 -0.86;0.86 -1.46;0.26

stock-out units -4.61;4.61 -5.21;4.01 -5.21;4.01

Q total costs -580.47;-2.73 -384.27;193.47 -92.67;485.07

stock-out periods -0.78;0.78 -0.78;0.78 -0.78;0.78

stock-out units -3.77;1.97 -3.27;2.47 -2.37;3.37

CR S total costs -1266.33;-603.87 -303.03;359.43 632.07;1294.53

stock-out periods -0.26;1.46 -0.86;10.86 -1.46;0.26

stock-out units -4.61;4.61 -5.21;4.01 -5.21;4.01

Q total costs -924.86;-81.34 -553.16;290.36 -50.06;793.46

stock-out periods -0.78;0.78 -0.88;0.68 -0.88;0.68

stock-out units -3.76;1.96 -3.36;2.36 -2.46;3.26

Table 5.9: Confidence intervals for comparing the review periods
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Q-S

ES R=L total costs -571.67;-323.93

stock-out periods 0.52;1.48

stock-out units 0.94;4.26

L=2R total costs -16.69;349.69

stock-out periods -0.1;0.9

stock-out units -0.69;4.09

R=2L total costs -656.03;-382.38

stock-out periods 0.27;1.53

stock-out units 0.15;5.25

MA R=L total costs -517.98;-210.22

stock-out periods 0.52;1.48

stock-out units 0.94;4.26

L=2R total costs 112.61;460.59

stock-out periods -0.1;0.9

stock-out units -0.69;4.09

R=2L total costs -594.44;-380.96

stock-out periods 0.42;1.58

stock-out units -0.28;5.32

CR R=L total costs -733.42;-483.58

stock-out periods 0.52;1.48

stock-out units 0.94;4.26

L=2R total costs -415.94;62.94

stock-out periods -0.1;0.9

stock-out units -0.68;4.09

R=2L total costs -969.03;-567.17

stock-out periods 0.27;1.53

stock-out units 0.15;5.25

Table 5.10: Confidence intervals for comparing the inventory management systems
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pensive but the difference is not significant. No significant differences in performance
can be found. Since Croston’s method is the most accurate of the three forecasting
methods, it could be expected that this forecasting method is the most expensive one
and has a better performance. However, the results do not show a significantly better
performance when Croston’s method is used.

The impact of the review period on costs is significant. A review period equal to
half the lead time is significantly more expensive than the other two choices of the
review period. A possible explanation is the fact that for this choice of the review pe-
riod orders can be placed more frequently, leading to higher order costs. Difference in
costs are more distinct if the order-up-to-level inventory management policy is used.
The impact of the review period on performance is not significant.

There are significant differences in costs and performance between the inventory
management policies. If the review period is equal to the lead time or equal to twice
the lead time, the fixed order quantity policy is significantly cheaper but the order-
up-to level policy has a significantly better performance. When the review period is
equal to half the lead time, no significant differences can be detected between the two
inventory management policies. Only when moving averages is used as forecasting
method, the order-up-to-level policy is significantly cheaper.

5.6 Joint replenishment

Joint replenishment is used whenever a number of items are involved in a replen-
ishment and it is possible to share the fixed cost associated with it. In inventory
management, this fixed cost is that part of the ordering cost which is independent
of the number of items on order. Ordering items jointly may also enable the utiliza-
tion of the same transportation facility and/or may lead to a group quantity discount.

Both deterministic and stochastic models exist for inventory systems with joint
replenishment (Goyal and Satir 1989). An often used stochastic model is the can-
order system. Balintfy (1964) was the first to propose the use of this system. In such
a system, whenever item i’s inventory position drops to its must-order point si or
lower, it triggers a replenishment action that raises the item’s level to its order-up-
to-level Si. At the same time any other item j (within the associated family) with
its inventory position at or below its can-order point cj is included in the replenish-
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ment. If item j is included, a quantity is ordered sufficient to raise its level to Sj .
This system does not necessarily minimize the total costs of replenishment, inventory
carrying and shortage but it does achieve a solution that is close to the best attainable.

When dealing with intermittent demand, there are often periods of zero demand.
Therefore, a replenishment order is not frequently placed and it might not be useful
to jointly replenish several items. In order to investigate if joint replenishment is
beneficial for products with intermittent demand, the simulation model is extended.
An inventory system with two products is considered. The situation of joint replen-
ishment is compared to the situation where both products are replenished separately.

For product 1, the same experimental set-up as for the single-item inventory sys-
tem is used. For product 2, demand occurrence is generated using a first-order Markov
process with transition matrix

T =


 0.7875 0.2125

0.85 0.15


 .

This corresponds with a probability of 20% to have demand in a certain period.
The size of demand is generated using a Gamma distribution with γ = 12 and β = 1.
This corresponds to a mean and variance of the aggregated demand of 2.4 and 25.44.

The two inventory management policies and the costs of the inventory system
remain the same. The initial inventory level I0 equals 5 for product 1 and 10 for
product 2. Again, three possibilities for the review period R are considered. The
desired service level remains 90%. For each of these possibilities, the safety stock SS,
fixed order quantity Q and order-up-to-level S are calculated and shown in Table 5.4
for product 1 and in table 5.11 for product 2.

R=L L=2R R=2L

Safety stock SS 11 13 11

Fixed order quantity Q 16 16 16

Order-up-to-level S 16 21 19

Table 5.11: Parameters of the inventory system for product 2
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When using joint replenishment, can order points need to be determined. On the
one hand, joint replenishment makes it possible to share the order cost Co. But on
the other hand, more units have to be kept in stock which leads to a higher inventory
cost. The can order point is determined as the quantity for which the extra inventory
cost equals the order cost that is saved. For product 1, the extra inventory cost is
calculated in Table 5.12. The average demand during a period is 1.2 units. So the
first 1.2 units that are ordered are on average one period in inventory which costs 2.4,
the second 1.2 units that are ordered are on average two periods in inventory which
costs 4.8,... For 10.8 units, the extra inventory cost is 108 which is more than the
saved order cost of 100. This means the can order point lies between 9.6 and 10.8
units. For 9.6 units, the extra inventory cost equals 86.4. The number of units for
which the extra inventory cost equals exactly 100 is:

9.6 +
100− 86.4

9 ∗ 2
= 10.36,

which is rounded to a can order point of 11. If the can order point is set higher
than this value, the extra inventory cost is higher than the order cost that is saved
by joint replenishment.

Demand Number of Extra Total extra

periods inventory cost inventory cost

1.2 1 2.4 2.4

2.4 2 4.8 7.2

3.6 3 7.2 14.4

4.8 4 9.6 24

6 5 12 36

7.2 6 14.4 50.4

8.4 7 16.8 67.2

9.6 8 19.2 86.4

10.8 9 21.6 108

Table 5.12: Calculation of the can order point for product 1

The can order point of product 2 can be calculated using exactly the same proce-
dure. The extra inventory cost is calculated in Table 5.13. The number of units for
which the extra inventory cost equals exactly 100 is:
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12 +
100− 72

6 ∗ 2
= 14.33,

which is rounded to a can order point of 15.

Demand Number of Extra Total extra

periods inventory cost inventory cost

2.4 1 4.8 4.8

4.8 2 9.6 14.4

7.2 3 14.4 28.8

9.6 4 19.2 48

12 5 24 72

14.4 6 28.8 100.8

Table 5.13: Calculation of the can order point for product 2

Again, three forecasting methods are compared: single exponential smoothing
with smoothing parameter α = 0, 5, simple moving averages using 4 equally weighted
past values to calculate the forecast and Croston’s method with smoothing parameter
α = 0, 5.

The simulation run length is set to 52 periods and 10 replications are made for
each simulation run.

The results of the inventory system with joint replenishment are compared to the
sum of the results of the two individual inventory systems. These results are sum-
marized in Table 5.14 and 5.15 and 5.16. These tables show the average value and
variance of the ten replications for each experimental point. To compare the perfor-
mance of the inventory systems, only the number of stock-out units is used here since
it is impossible to sum the number of stock-out periods. 95% paired-t confidence
intervals are calculated to determine the effect of joint replenishment on total costs
and performance. The confidence intervals can be found in Table 5.17.

The confidence intervals in Table 5.17 indicate that when using the order-up-to-
level inventory management policy, joint replenishment is significantly cheaper than
replenishing the two products individually. When the fixed order inventory manage-
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Individual Joint

Mean Variance Mean Variance

L=R S total costs 4413 79402 4143 58944

stock-out units 5 18.44 5 18.44

Q total costs 5736 108356 5748 87339

stock-out units 2.2 8.4 1.9 7.43

L=2R S total costs 6563 146883 6161 95384

stock-out units 10.5 115.17 9.7 119.34

Q total costs 6445 101666 6468 64888

stock-out units 7.4 107.82 7.4 107.82

R=2L S total costs 4518 35387 4213 100007

stock-out units 9.3 20.01 8.2 27.96

Q total costs 5877 52491 5931 264039

stock-out units 3.3 18.23 3.2 18.84

Table 5.14: Results of the 10 simulation runs for individual and joint replenishment
using single exponential smoothing
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Individual Joint

Mean Variance Mean Variance

L=R S total costs 4413 79402 4143 58944

stock-out units 5 18.44 5 18.44

Q total costs 5550 77536 5498 118731

stock-out units 2.2 8.4 1.9 7.43

L=2R S total costs 6474 154929 6120 70178

stock-out units 10.6 114.27 9.8 118.62

Q total costs 6149 167852 6037 121606

stock-out units 9 106.44 8.8 109.51

R=2L S total costs 4518 35387 4118 5809

stock-out units 9.3 20.01 9.3 20.01

Q total costs 5671 66146 5573 70112

stock-out units 4 18 4 18

Table 5.15: Results of the 10 simulation runs for individual and joint replenishment
using simple moving averages
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Individual Joint

Mean Variance Mean Variance

L=R S total costs 4413 79402 4143 58944

stock-out units 5 18.44 5 18.44

Q total costs 6579 160682 6346 180769

stock-out units 1.9 7.43 1.9 7.43

L=2R S total costs 6620 116997 6245 151311

stock-out units 10.5 115.17 9.7 119.34

Q total costs 7607 163876 7412 98602

stock-out units 6.8 107.96 6.8 107.96

R=2L S total costs 4518 35387 4118 5809

stock-out units 9.3 20.01 9.3 20.01

Q total costs 6805 172583 6528 166657

stock-out units 2.9 19.21 2.9 19.21

Table 5.16: Results of the 10 simulation runs for individual and joint replenishment
using Croston’s method
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ES MA CR

L=R S total costs 202.14;337.86 202.14;337.86 202.14;337.86

stock-out units 0;0 0;0 0;0

Q total costs -119.25;95.25 -53.79;157.39 139.12;326.48

stock-out units -0.38;0.98 -0.38;0.98 0;0

L=2R S total costs 200.84;602.36 195.67;511.53 177.63;571.97

stock-out units -0.58;2.18 -0.58;2.18 -0.58;2.18

Q total costs -290.05;243.65 -12.05;236.85 100.42;289.98

stock-out units 0;0 -0.25;0.65 0;0

R=2L S total costs 15.69;594.31 273.83;526.17 273.83;526.17

stock-out units -1.39;3.59 0;0 0;0

Q total costs -401.93;292.92 -81.14;276.74 205.10;348.5

stock-out units -0.13;0.33 0;0 0;0

Table 5.17: Confidence intervals for comparing individual and joint replenishment

ment policy is used, joint replenishment is only significantly cheaper when Croston’s
method is used to make the forecasts. No differences in performance can be found.

Overall, it can be concluded that joint replenishment leads to significantly lower
total costs without worsening the performance of the inventory system, except when
exponential smoothing is used in combination with a fixed order quantity. The highest
cost savings are achieved when the order-up-to-level inventory management policy is
used.

5.7 Concluding remarks

In this chapter, the performance of several forecasting methods and inventory sys-
tems for intermittent demand is compared. A simulation model is built to obtain
some initial results on the interaction between inventory decision making and de-
mand forecasting.

The results of this chapter indicate a rather small impact of the forecasting
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method. There is a significant difference in costs and performance between the in-
ventory management policies. The impact of the review period is significant on total
costs, not on performance.

When joint replenishment is added to the models, total costs decrease without
changing the performance of the system. When the fixed order quantity inventory
management policy is used, this decrease is only significant when using Croston’s
forecasting method. Although there is only a demand in some periods and it might
seem not so useful to coordinate the replenishment of several products, these results
demonstrate that joint replenishment can be beneficial, when dealing with intermit-
tent demand.

Since we can conclude, based on the results of this chapter, that there is an
interaction between the forecasting methods and inventory management policies for
intermittent demand, it is useful to study this interaction in more detail. Therefore,
in the next chapter, the impact of several parameters of the inventory management
policies and forecasting method is investigated and the simulation model is optimized
to obtain the best strategy in combining inventory decision making and demand
forecasting.



Chapter 6

Determining a best strategy

in combining forecasting and

inventory management for

intermittent demand

6.1 Introduction

In the previous chapter, the presence of an interaction between demand forecast-
ing and inventory decision making for intermittent demand is demonstrated using a
simulation model to study a single-product inventory system facing demand of the
intermittent type. Therefore, in this chapter1, this interaction is studied in more
detail (Figure 6.1). Again, the two inventory systems and three forecasting methods
described in the previous chapter are used to study the interaction.

The impact of several parameters of the inventory system and forecasting method
is investigated and the simulation model is optimized to obtain the best strategy
in combining inventory decision making and demand forecasting. It is important to
determine this best strategy since considerable savings can be done when using this
strategy as will be demonstrated further on in this chapter.

1This chapter is based on Ramaekers and Janssens (2006).
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The chapter is organized as follows: section 6.2 presents the experimental design;
in section 6.3 a research approach is described to optimise the simulation model
in order to obtain the best strategy in combining inventory decision making and
demand forecasting; the experimental environment is described in section 6.4; section
6.5 discusses the results and in section 6.6 conclusions are formulated.

6.2 Experimental design

The experimental design includes three qualitative factors: the forecasting method,
the inventory management policy and the review period. In addition, depending on
the choice of the qualitative factors, a set of quantitative factors are part of the ex-
perimental design. If the (R, s, Q) inventory management policy is used, the safety
stock SS and order quantity Q are the parameters to optimise. If the (R, s, S) inven-
tory management policy is used, the safety stock SS and order-up-to-level S are the
optimising parameters. For single exponential smoothing and Croston’s method, the
smoothing parameter α is optimised and for moving averages, the weights of the past
values are optimised.

In this chapter, we aim to decide on the optimal2 combination of forecasting
method, inventory management policy and review period. Furthermore, the optimal
settings for the safety stock, the fixed order quantity or order-up-to-level and the
parameter(s) of the forecasting method are determined.

6.3 Research approach

Because of the dependence of the quantitative factors on the choice of the qualitative
factors, we use the research approach described in this section.

For every combination of forecasting method, inventory management policy and
review period, the optimal values of the quantitative factors are determined. Because
of the random outcome of a simulation, there is an additional problem of uncertainty
in replication. The combination of simulation-optimisation however offers some an-
swers to this type of problems. Section 6.3.1 gives a general overview of simulation-
optimisation methods.

2In chapter 6 and chapter 7, by optimal solution, the best solution found by the simulation

optimisation method is meant.
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In this thesis, three simulation-optimisation methods are compared to determine
the optimal values of the quantitative factors: design of experiments, tabu search
and response surface methodology. These three methods are chosen because they
each belong to a different class of simulation optimisation methods. The methods are
described in more detail in sections 6.3.2, 6.3.3 and 6.3.4. The results of the three
methods are compared to determine which method works best to optimise the simu-
lation model. Next, the best strategy will be used throughout the remainder of this
chapter.

Once the optimal values of the quantitative factors are determined for each com-
bination of forecasting method, inventory management policy and review period, the
optimal combination of forecasting method, inventory management policy and review
period can be determined.

6.3.1 Simulation optimisation

Simulation and optimisation were often seen as two separate disciplines in the area
of operations research. However, in recent years, the combination of simulation and
optimisation has developed steadily and has increased in popularity. Simulation op-
timisation is the practice of linking an optimisation method with a simulation model
to determine appropriate settings of certain input parameters so as to maximize the
performance of the simulated system (Carson and Maria 1997).

Simulation models have specific features that make the application of classical
optimisation methods difficult, or even impossible. Paul and Chanev (1998) list the
following features:

� Model behaviour is very complex - a result of the highly non-linear interaction
of the model parameters.

� Noisy model output - simulation models are stochastic in nature and their out-
put is not deterministic with respect to the model parameters.

� Inverse problems are often incorrect or ill posed in the sense that small changes
in the parameter space can lead to dramatic changes in the behaviour of the
model. In this case it is better to attack the problem with a method, which is
as robust as possible.
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� The parameter space is not continuous - often there is a need for discrete pa-
rameters such as integer, logical or linguistic.

� The search space is not compact - there are zones of parameter values that are
forbidden or impossible for the model.

� Performance measures can have several extrema. Local extrema may have values
close to the global one, or multiple global solutions with the same value may
exist.

Bowden and Hall (1998) identify six domains that are common to any simulation
optimisation tool. These domains, which they call the cornerstones for a unified strat-
egy for simulation optimisation, are Problem Formulation, Methods, Classification,
Strategy and Tactics, Intelligence, and Interfaces.

The Problem Formulation Domain addresses the construction of the objective
function(s) and constraints to guide the optimiser. This domain considers tools to
assist the user in designing appropriate objective functions and constraints.

The Classification Domain addresses the analysis and classification of a given op-
timisation problem. Accurate classification is important for the optimisation tool to
select the appropriate optimisation method and strategy. Classification can depend
on the types of decision variables, number of decision variables, the variance of the
simulation model’s output, and number of available runs of the simulation model.

The Strategy and Tactics Domain addresses the employment of simulation opti-
misation in order to make the most efficient use of computing resources and increase
the accuracy of the observed optimal solution. Strategic issues may consider the opti-
misation method or methods selected for a class of problems. Tactical issues consider
the use of metamodeling techniques, variance reduction techniques, multiple compar-
ison test, etc. to enhance the efficiency or accuracy of the search.

The Intelligence Domain considers the intelligence embedded in the solver to se-
lect the strategic approach that will be used for an optimisation study.

The Interfaces Domain addresses both the interface between the optimiser and
the user and the interface between the optimiser and the simulation model.
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The Methods Domain addresses those optimisation methods used to optimise sim-
ulated systems. Techniques for simulation optimisation vary greatly depending on the
exact problem setting.

We present a review of methods that can be used to determine the values of
the system parameters that will yield optimal performance of the system. We con-
sider both the case in which the parameters of the system can take a continuous
range of values and the case in which the parameter values belong to a discrete set.
Four major classes of simulation-optimisation methods can be distinguished: design
of experiments, guided search methods, indirect optimisation and statistical methods.

A first class of simulation optimisation methods are Design of Experiments tech-
niques. These techniques provide a way to set up the complete experimental design
before the experimentation process begins. Design of experiment methods can in gen-
eral only be applied to discrete variables. Several schemes for setting up experimental
designs are known from the literature. Some examples are one factor at a time, full
factorial experimental design and the Taguchi method (Ross 1988).

Guided search methods are a second class of simulation optimisation methods. In
guided search methods, the result of the previous experiment is used to decide on
the factor values that will be changed to run the following experiment. The general
idea behind this principle is that by using information from previous runs, we will be
able to set up the experiments in a more intelligent way so that parts of the search
space which are not interesting in terms of optimum seeking are not used for running
experiments. Three classes of guided search methods are distinguished. Numerical
methods like the Hooke and Jeeves method (Hooke and Jeeves 1961) are based on the
idea that if a direction has produced a favourable change in the optimal value, then
one should continue to move in this direction (Jacobson and Schruben 1989). Gradi-
ent based methods are based on the calculation of gradients in order to move through
the search space. Several techniques can be used to estimate the response gradient:
finite differences, likelihood ratios, perturbation analysis and frequency domain exper-
imentation (Andradottir 1995; Andradottir 1996). Random search methods include
metaheuristics such as tabu search, genetic algorithms and simulated annealing. Al-
though these methods are generally designed for combinatorial optimisation in the
deterministic context, they have been quite successful when applied to simulation
optimisation (Olafsson and Kim 2002). Paul and Chanev (1998) demonstrate the
capability of genetic algorithms to solve problems in the area of complex simulation
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model optimisation. Haddock and Mittenthal (1992) investigate the feasibility of us-
ing a simulated annealing algorithm in conjunction with a simulation model to find
the optimal parameter levels at which to operate a system. Dengiz and Alabas (2000)
use a tabu search algorithm in conjunction with a simulation model to find the opti-
mal parameter levels.

A third class are the statistical methods (Goldsman, Kim, Marshall, and Nelson
2002; Ho, Cassandras, Chen, and Dai 2000; Pichitlamken and Nelson 2001). These
methods are mostly used when the optimisation process involves selecting the best
of a finite number of alternatives and the parameters are discrete. Some examples
of statistical methods are ranking and selection, selection with memory and multiple
comparison procedures.

The fourth class of simulation optimisation methods, indirect optimisation or re-
sponse surface methodology (RSM), is useful when input factors are quantitative and
continuous. A response surface is a meta-model, i.e. it is a regression model which
models the output results of a simulation model (Myers, Khuri, and Carter 1989).

6.3.2 Design of experiments: Taguchi’s method

Design of Experiment (DOE) Techniques provide a way to set up the complete ex-
perimental design before the experimentation process begins. Van Landeghem and
De Backer (1996) demonstrate the use of a Taguchi design of experiments methodol-
ogy in a simulation based optimisation.

The experimental points are chosen in order to cover the search space as com-
pletely as possible. Design of experiment methods can in general only be applied to
discrete variables, so the first step before applying a DOE-method consists of choosing
a limited number of discrete values in the domain of each continuous variable.

Several schemes for setting up experimental designs are known from literature.
The first step is to rank the n relevant values of each decision variable and give them
a level number from 1 to n.

Three discrete values are chosen in the domain of each of the three quantitative,
continuous factors. These values are shown in Table 6.1, where SS, S and Q are
calculated using the following formulas:
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SS = zσR+L (6.1)

where σR+L is the standard deviation of demand over the review period and the lead
time. The value z depends on the desired service level.

The fixed order quantity Q is determined using the formula of the Economic Order
Quantity EOQ:

Q =

√
2XCo

Ch
. (6.2)

The order-up-to-level S is the sum of the safety stock and the average demand
over the vulnerable period:

S = SS + X(R + L). (6.3)

Variable 1 2 3

α 0.2 0.5 0.8

Safety Stock SS-2 SS SS+2

Weights 0.1;0.2;0.3;0.4 0.25;0.25;0.25;0.25 0.4;0.3;0.2;0.1

Order-up-to-level S-5 S S+5

Fixed order quantity Q-5 Q Q+5

Table 6.1: Discrete values of the variables in the Taguchi method

The next stage is to set up the experiments. This is usually done using spe-
cially constructed orthogonal arrays containing a number of rows. Orthogonal arrays
are factorial designs, that are usually highly fractional. In every pair of columns of
such an array every combination of levels appears the same number of times. This
guarantees that the averaged effect of each factor can be determined while the levels
of all other factors are varied. If every level-combination for all the factors occurs,
then the design is called a full factorial design. If at least one level-combination does
not appear, then we have a fractional factorial design (Logothetis and Wynn 1989).
Fractional factorial designs provide a way to get good estimates of only the main
effects and some interactions at a fraction of the computational effort required by a
full factorial design (Law and Kelton 1991). The only drawback of these designs is
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Experiment Factor 1 Factor 2 Factor 3

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2

Table 6.2: Taguchi design: L9 Array

the need to assume that certain interactions can be ignored. However, in many situ-
ations, higher interactions are not so important and the fractional designs can be used.

Taguchi has developed a family of fractional factorial design matrices. The selec-
tion of which of the orthogonal arrays to use depends on the number of levels for the
factors of interest and the number of factors and interactions of interest (Ross 1988).

In this experiment, three factors with each three levels are considered. Six degrees
of freedom are needed for the main effects of the factors. An L9 orthogonal array,
developed by Taguchi and shown in Table 6.2, can be used because this design has
8 degrees of freedom, which is more than the 6 degrees of freedom that are required.
When the two-way interaction effects are also important, another 12 degrees of free-
dom are needed, which gives a total of 18 degrees of freedom. In this case an L27
orthogonal array, developed by Taguchi and shown in Table 6.3, is needed. Each
row defines one experiment to be carried out with the corresponding levels for the
variables.

6.3.3 Response surfaces

The goal of response surface methodology (RSM) is to obtain an approximate func-
tional relationship between the continuous input variables and the output objective
function. When this is done on the entire domain of interest, the result is often called
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Experiment Factor 1 Factor 2 Factor 3

1 1 1 1

2 1 1 2

3 1 1 3

4 1 2 1

5 1 2 2

6 1 2 3

7 1 3 1

8 1 3 2

9 1 3 3

10 2 1 1

11 2 1 2

12 2 1 3

13 2 2 1

14 2 2 2

15 2 2 3

16 2 3 1

17 2 3 2

18 2 3 3

19 3 1 1

20 3 1 2

21 3 1 3

22 3 2 1

23 3 2 2

24 3 2 3

25 3 3 1

26 3 3 2

27 3 3 3

Table 6.3: Taguchi design: L27 Array
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a metamodel. Once a metamodel is obtained, appropriate deterministic optimisation
procedures can be applied to obtain an estimate of the optimum (Fu 2002; Myers,
Khuri, and Carter 1989; Safizadeh and Thornton 1984). However, in the context of
optimisation, RSM usually takes the form of a sequential procedure whereby, through
successive experimental stages, one attempts to zoom in on the optimal region where
a final polynomial is fitted and the optimum determined through the usual determin-
istic means. Instead of exploring the entire feasible region, which may be impractical
or computationally prohibitive, small subregions are explored in succession, where
successive subregions are selected for their potential improvement (Fu 1994).

The basic algorithm for the sequential procedure can be described as follows (Fu
1994):

� In the first phase, first-order experimental designs are used to obtain a linear
least-squares fit. Then, a steepest ascent/descent direction is estimated from
the model in order to define a new subregion to explore. This process is repeated
until the linear fit is deemed inadequate, at which juncture additional points
are simulated. Inadequacy is indicated when the slope is approximately zero,
by which the interaction effects become larger than the main effects.

� In the second phase, a quadratic response surface is fitted using a more de-
tailed second-order experimental design, and then the optimum is determined
analytically from this fit.

RSM has the advantage of having an arsenal of well-known and well-studied sta-
tistical tools such as regression analysis and the analysis of variance at its disposal.
The method is founded on a statistical theory that is easy to understand and is easy
to implement (Jacobson and Schruben 1989).

6.3.4 Tabu search

Tabu search uses a local or neighbourhood search procedure to iteratively move from
one solution to the next in the neighbourhood of the first, until some stopping cri-
terion has been satisfied. To explore regions in the search space that would be left
unexplored by the local search procedure and escape local optimality, tabu search
modifies the neighbourhood structure of each solution as the search progresses. The
solutions admitted to the new neighbourhood are determined through the use of spe-
cial memory structures. Tabu search uses both long-term and short-term memory,
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and each type of memory has its own special strategies (Glover 1989; Dengiz and
Alabas 2000).

One type of short-term memory is the tabu list. This list contains solutions that
have been visited in the recent past. Other tabu list structures prohibit solutions
that have certain attributes or prevent certain moves. This last type of tabu list
contains the moves that are not allowed at the present iteration in order to exclude
backtracking moves. Subsequent to each move, the opposite move is appended to the
list and the oldest move in the list is removed. To prevent this short-term memory
from preventing excellent solutions from being found, aspirations levels are commonly
introduced. The tabu status of a solution can be overruled if its solution quality ex-
ceeds a certain aspiration level. Long-term memory is used for both diversification
and intensification of the search process. Diversification strategies are used to force
the search into previously unexplored regions of the solution space. Intensification
strategies are used to encourage move combinations that have worked well in the
past, or to return the search to attractive regions that have been insufficiently ex-
plored (Glover 1989).

Tabu search is a heuristic optimisation technique developed specifically for combi-
natorial problems. Very few works deal with the application to the global minimiza-
tion of functions depending on continuous variables. Hu (1992) is the first to adapt
tabu search to continuous optimisation. However, the algorithm of Hu is rather far
from original tabu search. Siarry and Berthiau (1997) propose an adaptation of tabu
search to the optimisation of continuous functions where the purpose is to keep as
close as possible to original simple tabu search. As neighbourhood of the current
solution, they perform a partition of the space around the current solution using a
set of concentric balls. Inside each crown, a random neighbour is selected. The tabu
list contains m balls, corresponding to the immediate neighbourhoods of the m last
retained solutions. Chelouah and Siarry (2000) improve the algorithm of Siarry and
Berthiau (1997) and propose an Enhanced Continuous Tabu Search for the global
optimisation of continuous functions. They replace the balls by hyperrectangles for
the partition of the current solution neighbourhood and add diversification and in-
tensification concepts to the algorithm. The method we propose here is based on
(Siarry and Berthiau 1997) and (Chelouah and Siarry 2000). In Figure 6.2, a general
flowchart of the TS algorithm is shown. Two issues must be examined: the generation
of current solution neighbours and the elaboration of the tabu list.
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GENERATION OF NEIGHBOURS

select a solution s as initial current point

INITIAL SOLUTION

apply to s available moves to generate
k neighbours not belonging to the tabu list
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SELECTION

the best known point
current point; update the tabu list; update
select the best neighbour of s as the new

exhibit the best point found

condition reached?
is the stopping

yes

no

STOP

Figure 6.2: General flow chart of tabu search
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Figure 6.3: Partition of current solution neighbourhood

To define a neighbourhood of the current solution, a set of hyperrectangles is used
for the partition of the current solution neighbourhood. The k neighbours of the
current solution are obtained by selecting one point at random inside each hyperrect-
angular zone. In Figure 6.3, a two-dimensional example of such a partition for k = 4
neighbours of the current solution is given.

Once a new current solution is determined, the immediate neighbourhood of the
previous solution is added to the tabu list. This immediate neighbourhood is also a
hyperrectangle. The tabu list containts m hyperrectangles corresponding to the m

last retained solutions. A solution belonging to the tabu list can loose its tabu status
if its aspiration level is high enough. A solution becomes non-tabu if its objective
value is better that the best value obtained at that moment.

As a starting point, the safety stock SS, fixed order quantity Q and order-up-to-
level S are calculated using the formulas of the design of experiments (section 6.3.2).
A neighbourhood consists of 5 neighbours and the tabu list contains 5 tabu areas. 10
simulation runs are made for each experimental choice. The tabu search is stopped
after 200 iterations. The robustness of the results of the tabu search was tested
by repeating the algorithm several times. Each replication led to the same optimal
values.
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6.4 Experimental environment

The experimental environment contains the costs of the inventory system and the
parameters for generating intermittent demand. The research approach described
above, is executed using a single combination of the costs of the inventory system and
demand. However, these factors can have an effect on the results that are obtained.
An experimental design is set up for these factors and the optimisation phase is re-
peated for each experimental point.

Demand occurrence is generated using a first-order Markov process with transition
matrices:

T1 =


 0.7875 0.2125

0.85 0.15




or

T2 =


 0.5667 0.4333

0.65 0.35


 .

They correspond with a probability of 20% to have demand in a certain period for
the first matrix and a probability of 40% to have demand in a period for the second
matrix. The size of demand is generated using a Gamma distribution with 4 different
combinations of the scale parameter γ and the shape parameter β. These values are
summarized in Table 6.4. In this table, the mean and variance of the demand size
that correspond to each of the parameter combinations are also given.

Combination γ β Mean Variance

1 6 1 6 6

2 12 1 12 12

3 3 2 6 12

4 24 0.5 12 6

Table 6.4: Parameters of the Gamma distribution

The levels of the costs of the inventory system are given in Table 6.5. The initial
inventory level I0 equals 5.
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Level Co Ch Cs

1 100 2 5

2 200 4 10

Table 6.5: Levels for the costs of the inventory system

A fractional factorial design is set up for these six environmental factors. The
experimental design is shown in Table 6.6. This design makes it possible to determine
the impact of uncontrollable factors as the cost structure and the demand on the
optimal strategy in inventory decision making and demand forecasting for intermittent
demand. Although only a limited number of experimental points are investigated, the
results can be generalised to draw conclusions with respect to an optimal strategy in
combining inventory decision making and demand forecasting for intermittent demand
since the levels of costs can be seen in relation to each other instead of as absolute
values.

6.5 Results

The basic configuration of the factors of the experimental environment is set as follows:
demand occurrence is generated using a first-order Markov process with transition
matrix

T1 =


 0.7875 0.2125

0.85 0.15


 .

For the demand size, a gamma distribution with scale parameter 6 and shape pa-
rameter 1 is used. The ordering cost equals ¿ 100 per order, the unit shortage cost
¿ 5 per period and the unit holding cost ¿ 2 per period.

When Taguchi’s method is used as optimisation method, the optimal solution for
this experimental environment is an order-up-to-level inventory management system
with a review period equal to the lead time. Moving Averages is best used as forecast-
ing method. The weights of the past values do not have a significant impact on the
optimal solution. The safety stock SS and the order-up-to-level S are both equal to 4
units in the optimal solution. This means an order is placed every time the inventory
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Experiment Co Ch Cs Markov γ β

1 200 4 10 0.4 12 1

2 100 4 5 0.4 12 1

3 200 2 5 0.4 24 0.5

4 100 2 10 0.4 24 0.5

5 200 2 5 0.4 3 2

6 100 2 10 0.4 3 2

7 200 4 10 0.4 6 1

8 100 4 5 0.4 6 1

9 200 2 10 0.2 12 1

10 100 2 5 0.2 12 1

11 200 4 5 0.2 24 0.5

12 100 4 10 0.2 24 0.5

13 200 4 5 0.2 3 2

14 100 4 10 0.2 3 2

15 200 2 10 0.2 6 1

16 100 2 5 0.2 6 1

Table 6.6: Experimental design for uncontrollable factors
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level drops below the order-up-to-level S and enough is ordered to raise it again to
the order-up-to-level S.

When Response Surface Methodology is used as optimisation method, no optimal
solution can be found. The surface of the objective function is not suitable for ap-
plying the iterative procedure explained above. Therefore, this method is not used
anymore in the remainder of this chapter.

When Tabu Search is used as optimisation method for the quantitative factors,
the optimal strategy for the basic configuration of the factors of the experimental en-
vironment is an order-up-to-level inventory management policy with a review period
equal to the lead time. Exponential smoothing is the forecasting method that leads
to the lowest costs. The smoothing parameter α does not have significant impact on
the results. The order-up-to-level S is equal to 1, the safety stock SS is negative and
the reorder point is 0.

In Table 6.7, the results for Taguchi’s method and Tabu Search are compared
for the 16 experimental points of the environment. When there is more than one
forecasting method shown in the table, it means that both forecasting methods lead
to the same result. The results for both methods are quite similar. When using
Tabu Search, the safety stock SS is negative, leading to a reorder point of 0. When
Taguchi’s method is used, the safety stock SS is mostly equal to its lowest value.
When the order-up-to-level S is equal to 1 for Tabu Search, the order-up-to-level S or
fixed order quantity Q and the safety stock SS are also close together for Taguchi’s
method, leading to the same inventory management policy i.e. refill the inventory
every time a demand occurs. Only for experiments 8 en 9, a completely different
result is found for the two optimisation methods. If we examine the results of the two
optimisation methods in more detail, the result of the Tabu Search has always lower
costs than the Taguchi result. For 11 of the 16 experimental points, this difference
in total costs is significant on the 95% confidence level. Confidence intervals for the
difference in total costs between the two optimisation methods are shown in Table
6.8. Because Tabu Search leads to better and more accurate results since continuous
values are used, in the remainder of the discussion of the results, the results of Tabu
Search are used.

Based on these results, it can be concluded that the parameters of the forecasting
method have no impact on the results. The impact of the review period is also rather
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Experiment Taguchi Tabu

1 ES-MA/OUL/R=2; L=1 MA/FOQ/R=L=1

SS=9; S=21 ROP=0; Q=25

2 ES-MA-CR/OUL/R=L=1 ES/OUL/R=L=1

SS=13; S=16 ROP=0; S=1

3 ES/OUL/R=2; L=1 MA/OUL/R=L=1

SS=9; S=21 ROP=0; S=30

4 ES-MA-CR/OUL/R=L=1 MA/OUL/R=L=1

SS=9; S=16 ROP=0; S=25

5 MA/FOQ/R=L=1 MA/FOQ/R=L=1

SS=5; Q=22 ROP=0; Q=20

6 CR/OUL/R=2; L=1 MA/OUL/R=L=1

SS=5; S=10 ROP=0; S=15

7 ES-MA-CR/OUL/R=2; L=1 MA/FOQ/R=L=1

SS=4; S=9 ROP=0; Q=15

8 ES-MA/OUL/R=2; L=1 ES/OUL/R=2; L=1

SS=4; S=9 ROP=0; S=1

9 ES-MA-CR/OUL/R=2; L=1 MA/FOQ/R=L=1

SS=13; S=14 ROP=0; Q=20

10 ES-MA-CR/OUL/R=L=1 ES/OUL/R=L=1

SS=11; S=11 ROP=0; S=1

11 ES-MA-CR/OUL/R=L=1 CR/OUL/R=L=1

SS=13; S=11 ROP=0; S=1

12 MA/OUL/R=L=1 ES/OUL/R=L=1

SS=9; S=11 ROP=0; S=1

13 ES-MA/OUL/R=L=1 MA/OUL/R=L=1

SS=5; S=5 ROP=0; S=1

14 ES/OUL/R=L=1 MA/OUL/R=L=1

SS=5; S=5 ROP=0; S=1

15 MA/FOQ/R=L=1 MA/OUL/R=L=1

SS=4; Q=16 ROP=0; S=15

16 MA/OUL/R=L=1 ES/OUL/R=L=1

SS=4; S=4 ROP=0; S=1

Table 6.7: Comparison of the results of Taguchi’s method and Tabu search
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Experiment Taguchi-Tabu

1 814.99;2091.01

2 382.46;1495.54

3 943.74;1688.26

4 394.77;1009.23

5 621.28;1170.72

6 253.45;1166.55

7 576.90;1717.1

8 83.85;760.15

9 -288.81;1248.81

10 -268.47;580.47

11 190.98;1809.02

12 456.13;1495.87

13 383.42;1702.58

14 -146.34;916.34

15 -612.23;522.23

16 -360.28;398.28

Table 6.8: Confidence intervals for comparing Taguchi’s method and Tabu search



Best strategy in combining forecasting and inventory management 125

small. For 8 experimental points, the best strategy is an order-up-to-level inventory
management policy with S = 1. For the other 8 experimental points, the best strat-
egy is an order-up-to-level inventory management policy with S ≥ 15 or a fixed order
quantity model with Q ≥ 15. When the fixed order quantity inventory management
policy is best, the best forecasting method is always moving averages. When the
order-up-to-level inventory management policy with S ≥ 15 is best, the best forecast-
ing method is also always moving averages. When the order-up-to-level equal to 1 is
the best inventory management policy, no preference for a specific forecasting method
can be found. In the next paragraphs, the influence of the uncontrollable factors on
the results is examined.

In Table 6.9, results are compared for the two levels of the demand frequency.
When the demand frequency is generated using matrix P1, corresponding to a prob-
ability of 20% of having demand in a certain period, an order-up-to-level S of 1
unit is optimal. When the demand frequency is generated using matrix P2, which
corresponds to a probability of 40% of having demand in a certain period, the order-
up-to-level S or fixed order quantity Q is a value between 15 and 30. This can be
explained because the intermittent character of demand is more distinct when the
probability of demand is equal to 20%, leading to an optimal order-up-to-level S of 1
unit. When the intermittent character of demand is less distinct (40%), it is better
to order a quantity of at least 15 units. The only exception to this order-up-to-level
S of 1 unit for a demand probability of 20% can be found when both the ordering
cost and the unit shortage cost are high and the unit holding cost is low. In these
circumstances it is better to order a bigger quantity because it is less costly to hold
inventory than to have a stock-out or to order a small quantity every time. Inversely,
when a demand probability of 40% is used, it is better to use an order-up-to-level S
of 1 unit when both the ordering cost and the unit shortage cost are low and the unit
holding cost is high. The same reasoning as above can be made here. It can also be
noted that when the demand frequency is doubled, Croston’s method becomes less
useful as forecasting method.

In Table 6.10 and Table 6.11, results are compared for changing the parameters
of the demand size. No significant impact of these changes on the results can be
detected. This means the only impact of demand on the results is due to the demand
frequency, in other words, only the intermittent character of demand has an influence
on the strategy that is best chosen, the size of demand has no influence.
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Changes in the cost structure of the inventory system have a significant impact
on the results. Table 6.12 compares the results of the two possible levels of the or-
dering cost. When the ordering cost is equal to 100, an order-up-to-level inventory
management policy is used with the order-up-to-level S equal to 1, except when the
unit holding cost is low, the unit shortage cost is high and the demand probability
of a certain period is 40%. The level of these three factors all favour holding more
units in inventory. The combination of these three levels therefore changes the best
policy to a policy with an order-up-to-level or fixed order quantity between 15 and
30, although the order cost is low. When the ordering cost is equal to 200, the order-
up-to-level S or fixed order quantity Q is between 15 and 30, except when the unit
holding cost is high, the unit shortage cost is low and the demand probability of a pe-
riod equals 20%. Here, as an explanation, the opposite reasoning of above can be used.

In Table 6.13, the results for changes in the unit holding cost are compared. When
the unit holding cost is equal to 2, an order-up-to-level S or fixed order quantity Q
between 15 and 30 is used, unless both the ordering cost and the unit shortage cost are
also low and the demand probability of a period equals 20%. When this combination
of factor levels occurs, an inventory policy with an order-up-to-level S equal to 1 is
better used because all these factor levels give preference to a lower inventory level.
When the unit holding cost equals 4, an order-up-to-level S of 1 is the best choice, un-
less the ordering cost and unit shortage cost are also high and the demand probability
of a period is 40%. This combination of factor levels favours a higher inventory level
and thus an order-up-to-level or fixed order quantity between 15 and 30 is better used.

Table 6.14 summarizes the results for the two levels of the unit shortage cost. A
unit shortage cost of 5 implies an order-up-to-level S of 1 unit, except when the unit
holding cost is also low and the probability of demand for a certain period equals 40%.
When the shortage cost is low, it is not necessary to keep a lot of units in inventory.
Therefore, an order-up-to-level equal to 1 is the best policy. However, if the holding
cost is also low and the intermittent character of demand is not so distinct, it is better
to have more units in inventory even though the shortage cost is low. Doubling the
unit shortage cost leads to an order-up-to-level S or fixed order quantity Q between
15 and 30, except when the unit holding cost is high and the demand frequency is
equal to 20%. The same reasoning as before can be used to explain this exception.

Overall, it can be concluded that the uncontrollable factors have an impact on
the best strategy for combining inventory decision-making and demand forecasting
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Factor 1 0.4 0.2

1 MA/FOQ/R=L=1 9 MA/FOQ/R=L=1

ROP=0; Q=25 ROP=0; Q=20

2 ES/OUL/R=L=1 10 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

3 MA/OUL/R=L=1 11 CR/OUL/R=L=1

ROP=0; S=30 ROP=0; S=1

4 MA/OUL/R=L=1 12 ES/OUL/R=L=1

ROP=0; S=25 ROP=0; S=1

5 MA/FOQ/R=L=1 13 MA/OUL/R=L=1

ROP=0; Q=20 ROP=0; S=1

6 MA/OUL/R=L=1 14 MA/OUL/R=L=1

ROP=0; S=15 ROP=0; S=1

7 MA/FOQ/R=L=1 15 MA/OUL/R=L=1

ROP=0; Q=15 ROP=0; S=15

8 ES/OUL/R=2; L=1 16 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

Table 6.9: Comparison of results for the two levels of factor 1, the Markov matrix

for intermittent demand. Furthermore, there is interaction between these factors.

To study this interaction in more detail, a classification tree is constructed using
the C4.5 algorithm, a well-known algorithm in data mining ((Quinlan 1993)). The
classification three can be found in Figure 6.4. Using this tree, it can be decided
which of the two strategies is best: an order-up-to-level inventory management policy
with S = 1 or an order-up-to-level inventory management policy with S ≥ 15 or a
fixed order quantity model with Q ≥ 15. Three factors are needed to determine the
best strategy in combining inventory decision making and demand forecasting: the
frequency of demand, the order cost and the inventory cost. If one of these three
factors is not known, the knowledge of the stock-out cost is also sufficient to make
a classification. This leads to three other classification trees which can be found in
Appendix C. Summarizing, it can be said that if three factors of the four just men-
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Factor 2 6 12

5 MA/FOQ/R=L=1 1 MA/FOQ/R=L=1

ROP=0; Q=20 ROP=0; Q=25

6 MA/OUL/R=L=1 2 ES/OUL/R=L=1

ROP=0; S=15 ROP=0; S=1

7 MA/FOQ/R=L=1 3 MA/OUL/R=L=1

ROP=0; Q=15 ROP=0; S=30

8 ES/OUL/R=2, L=1 4 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=25

13 MA/OUL/R=L=1 9 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=20

14 MA/OUL/R=L=1 10 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

15 MA/OUL/R=L=1 11 CR/OUL/R=L=1

ROP=0; S=15 ROP=0; S=1

16 ES/OUL/R=L=1 12 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

Table 6.10: Comparison of results for the two levels of factor 2, the mean of the
Gamma distribution
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Factor 3 6 12

3 MA/OUL/R=L=1 1 MA/FOQ/R=L=1

ROP=0; S=30 ROP=0; Q=25

4 MA/OUL/R=L=1 2 ES/OUL/R=L=1

ROP=0; S=25 ROP=0; S=1

7 MA/FOQ/R=L=1 5 MA/FOQ/R=L=1

ROP=0; Q=15 ROP=0; Q=20

8 ES/OUL/R=2; L=1 6 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=15

11 CR/OUL/R=L=1 9 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=20

12 ES/OUL/R=L=1 10 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

15 MA/OUL/R=L=1 13 MA/OUL/R=L=1

ROP=0; S=15 ROP=0; S=1

16 ES/OUL/R=L=1 14 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

Table 6.11: Comparison of results for the two levels of factor 3, the variance of the
Gamma distribution
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Factor 4 100 200

2 ES/OUL/R=L=1 1 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=25

4 MA/OUL/R=L=1 3 MA/OUL/R=L=1

ROP=0; S=25 ROP=0; S=30

6 MA/OUL/R=L=1 5 MA/FOQ/R=L=1

ROP=0; S=15 ROP=0; Q=20

8 ES/OUL/R=2; L=1 7 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=15

10 ES/OUL/R=L=1 13 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=20

12 ES/OUL/R=L=1 11 CR/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

14 MA/OUL/R=L=1 13 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

16 ES/OUL/R=L=1 15 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=15

Table 6.12: Comparison of results for the two levels of factor 4, the ordering cost
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Factor 5 2 4

3 MA/OUL/R=L=1 1 MA/FOQ/R=L=1

ROP=0; S=30 ROP=0; Q=25

4 MA/OUL/R=L=1 2 ES/OUL/R=L=1

ROP=0; S=25 ROP=0; S=1

5 MA/FOQ/R=L=1 7 MA/FOQ/R=L=1

ROP=0; Q=20 ROP=0; Q=15

6 MA/OUL/R=L=1 8 ES/OUL/R=2; L=1

ROP=0; S=15 ROP=0; S=1

9 MA/FOQ/R=L=1 11 CR/OUL/R=L=1

ROP=0; Q=20 ROP=0; S=1

10 ES/OUL/R=L=1 12 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

15 MA/OUL/R=L=1 13 MA/OUL/R=L=1

ROP=0; S=15 ROP=0; S=1

16 ES/OUL/R=L=1 14 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

Table 6.13: Comparison of results for the two levels of factor 5, the unit holding cost
per period
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Factor 6 5 10

2 ES/OUL/R=L=1 1 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=25

3 MA/OUL/R=L=1 4 MA/OUL/R=L=1

ROP=0; S=30 ROP=0; S=25

5 MA/FOQ/R=L=1 6 MA/OUL/R=L=1

ROP=0; Q=20 ROP=0; S=15

8 ES/OUL/R=2; L=1 7 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=15

10 ES/OUL/R=L=1 9 MA/FOQ/R=L=1

ROP=0; S=1 ROP=0; Q=20

11 CR/OUL/R=L=1 12 ES/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

13 MA/OUL/R=L=1 14 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=1

16 ES/OUL/R=L=1 15 MA/OUL/R=L=1

ROP=0; S=1 ROP=0; S=15

Table 6.14: Comparison of results for the two levels of factor 6, the unit shortage cost
per period
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LOW HIGH
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Figure 6.4: Classification tree

tioned (frequency of demand, order cost, inventory cost and stock-out cost) are fixed,
the best strategy can be determined.

A good classification is necessary because there is a considerable increase in the
costs of the inventory system when using the other strategy. When a fixed order
quantity inventory management policy with Q = 15 is used instead of an order-up-
to-level inventory management policy with S = 1, total costs are on average 20%
higher. In the opposite case, when an order-up-to-level inventory management policy
with S = 1 is used instead of an order-up-to-level inventory management policy with
S ≥ 15 or a fixed order quantity model with Q ≥ 15, total costs increase with more
than 40% on average.

6.6 Concluding remarks

In this chapter, the simulation model of the previous chapter is optimised to obtain
the best strategy in combining inventory decision making and demand forecasting for
intermittent demand. Three different optimisation methods were used to optimise
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the simulation model: Taguchi’s method, Response Surface Methodology and Tabu
Search. Only Taguchi’s method and Tabu Search were suitable to optimise the quan-
titative factors.

Based on the results obtained in this chapter, it can be concluded that both op-
timisation methods lead to roughly similar results but when tabu search is applied,
continuous values are used which leads to more accurate results.

The factors of the experimental environment have an impact on the best strategy
for combining inventory decision-making and demand forecasting and there is also
interaction between these uncontrollable factors.

In general, for intermittent demand, two best policies are found: an order-up-
to-level inventory management policy with S = 1 or an order-up-to-level inventory
management policy with S ≥ 15 or a fixed order quantity model with Q ≥ 15. When
the fixed order quantity inventory management policy is best, the best forecasting
method is always moving averages. When the order-up-to-level inventory management
policy with S ≥ 15 is best, the best forecasting method is also always moving averages.
When the order-up-to-level equal to 1 is the best inventory management policy, no
preference for a specific forecasting method can be found. The choice between these
two policies depends on the uncontrollable factors.
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Forecasting and inventory

management for intermittent

demand: Uncertainty in

supply and demand

7.1 Introduction

In chapter 5 and 6, forecasting and inventory management for intermittent demand
is examined using a simulation model. In chapter 5, it is concluded that there is an
interaction between the forecasting methods and inventory management systems for
intermittent demand. In chapter 6, the simulation model is optimised and a best
strategy in combining inventory decision making and demand forecasting for inter-
mittent demand is obtained.

Until now, it is assumed that there is only uncertainty in demand. This means
among other things that the lead time is deterministic and that there are no dis-
ruptions in the supply. However, uncertainty is also present at the supply side. This
type of uncertainty occurs in delivery time, in interruption of delivery during a certain
period, or in mismatches in order and delivery in terms of quality or quantity.

In this chapter, the same simulation model is used but the assumption of no un-
certainty in supply is relaxed (Figure 7.1). First, the results of the optimal policies

135
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found in chapter 6 for a reliable supplier are compared to results when applying the
same policies for an unreliable supplier. Next, a new best strategy in combining in-
ventory decision making and demand forecasting is determined for the situation of an
unreliable supplier.

Chapter 6 indicates that there is almost no impact of the choice of the review pe-
riod on the optimal strategy. Furthermore, the parameters of the forecasting method
also have no impact on the optimal strategy. Therefore, in the remainder of this
chapter, these factors are left out of consideration. This results in an experimental
design which includes three forecasting methods, two inventory management policies
and two quantitative factors, the safety stock and the order quantity or order-up-to-
level. The experimental design remains the same: 6 uncontrollable factors are studied
using a fractional factorial design.

The organization of the chapter is as follows: section 7.2 discusses uncertainty in
supply in the simulation model, in section 7.3 results for a reliable and an unreliable
supplier are compared, in section 7.4 an optimal policy is determined when dealing
with uncertainty in supply and section 7.5 formulates some conclusions.

7.2 Uncertainty in supply

As already indicated in the literature review, a lot of literature on uncertainty in
supply deals with uncertainty in the lead time. However, next to uncertainty in lead
time, supplier reliability also comprises uncertainty in transportation times, in infor-
mation delays, in quality and in availability of resources.

The focus of this chapter is on uncertainty in availability. The supplier alternates
randomly between an available and an unavailable state. When the supplier is avail-
able, the order is delivered after the usual lead time. When the supplier is unavailable,
the order is executed when the supplier turns available again.

In the simulation model, uncertainty in supply is randomly generated. In every
period, there is 20% chance that the supplier is unavailable. If the supplier is un-
available, the order is delivered one lead time after the supplier becomes available
again.
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7.3 Comparison of results with and without uncer-

tainty in supply

In this section, results are compared for a reliable and an unreliable supplier. For 16
combinations of uncontrollable factors, the best strategy in combining inventory de-
cision making and demand forecasting for a reliable supplier is determined in chapter
6. Here, this optimal strategy will also be used to determine output measures for the
inventory system with an unreliable supplier.

Table 7.1 shows the results for the reliable case, table 7.2 the results for the un-
reliable case. For each of the output measures (costs, number of stock-out periods
and number of stock-out units) the mean and variance is given. Tables 7.3; 7.4 and
7.5 contain 95% confidence intervals for the difference in costs, number of stock-out
periods and number of stock-out units respectively.
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Experiment Costs Periods Units

Mean Variance Mean Variance Mean Variance

1 5369 472.86 4.38 1.37 22.44 9.86

2 3326 469.71 20.42 3.08 218.14 37.57

3 3657 317.57 3.83 1.09 18.82 5.93

4 2746 209.61 4.28 1.45 18.34 6.15

5 2582 357.48 2.61 1.25 9.3 6.46

6 1913 215.77 3.28 1.37 12.56 7.55

7 3768 390.78 2.93 1.42 8.7 5.72

8 2679 419.11 19.68 3.47 98.57 20.12

9 2854 418.13 3.61 1.25 18.91 8.6

10 1709 364.67 10.35 2.45 109.7 26.54

11 2940 636.06 10.67 2.53 112.76 28.93

12 2391 528.32 10.47 2.63 110.67 28.86

13 2507 633.19 9.53 2.97 49.46 18.89

14 1702 407.39 9.33 2.75 48.86 17.31

15 1919 323.32 2.02 1.05 5.8 4.65

16 1385 315.11 9.8 2.64 48.29 15.14

Table 7.1: Results for a reliable supplier
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Experiment Costs Periods Units

Mean Variance Mean Variance Mean Variance

1 5370 556.41 6.21 2.02 42.29 27.76

2 3709 542.57 21.06 3.36 226.98 44.34

3 3646 362.07 5.06 1.83 31.92 18.81

4 2817 259.67 5.71 2.22 33.74 18.01

5 2522 311 3.25 1.59 13.51 10.68

6 1909 263.15 4.34 1.84 18.47 12.48

7 3750 463.48 3.89 2.18 13.36 10.86

8 2937 381.39 20.25 3.47 106.67 24.27

9 2847 429.51 4.7 1.83 25.77 13.07

10 1951 498.46 11.12 2.8 118.69 36.76

11 3420 857.57 11.38 3.27 117.09 33.02

12 2835 667.06 11.62 2.85 120.89 32.81

13 2791 691.47 9.74 3.31 50.8 21.01

14 2087 532.55 10.56 3.54 54.04 20.95

15 1923 315.09 2.63 1.63 8.19 7.66

16 1518 331.52 10.37 3 51.4 16.47

Table 7.2: Results for an unreliable supplier
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Experiment Reliable-Unreliable

1 -150.68;149.88

2 -516.98;-248.38

3 -74.65;97.89

4 -135.08;-5.64

5 -25.81;144.886

6 -65.95;74.03

7 -103.07;139.35

8 -369.92;-144.44

9 -117.4;131.08

10 -359.4;-124.36

11 -679.87;-279.44

12 -597.74;-290.24

13 -459.96;-108.36

14 -507.49;-263.19

15 -100.16;91.3

16 -232.57;-33.19

Table 7.3: Confidence intervals for comparing costs of a reliable and an unreliable
supplier
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Experiment Reliable-Unreliable

1 -2.33;-1.33

2 -1.53;0.25

3 -1.67;-0.79

4 -1.96;-0.9

5 -1.06;-0.22

6 -1.51;-0.61

7 -1.49;-0.43

8 -1.53;0.39

9 -1.54;-0.64

10 -1.5;-0.04

11 -1.48;0.06

12 -1.87;-0.42

13 -1.08;0.66

14 -2.04;-0.41

15 -0.99;-0.22

16 -1.44;0.3

Table 7.4: Confidence intervals for comparing stock-out periods of a reliable and an
unreliable supplier
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Experiment Reliable-Unreliable

1 -25.96;-13.74

2 -19.8;2.12

3 -17.21;-8.99

4 -19.03;-11.77

5 -6.58;-1.84

6 -8.79;-3.03

7 -7.08;-2.24

8 -14.09;-2.11

9 -10.02;-3.7

10 -17.58;-0.4

11 -12.52;3.86

12 -18.35;-2.09

13 -6.67;3.99

14 -10.15;-0.21

15 -4.19;-0.59

16 -7.85;1.63

Table 7.5: Confidence intervals for comparing stock-out units of a reliable and an
unreliable supplier
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Experiment Co Ch Cs Markov γ β

2 100 4 5 0.4 12 1

8 100 4 5 0.4 6 1

10 100 2 5 0.2 12 1

11 200 4 5 0.2 24 0.5

12 100 4 10 0.2 24 0.5

13 200 4 5 0.2 3 2

14 100 4 10 0.2 3 2

16 100 2 5 0.2 6 1

Table 7.6: Experimental points with significant difference in costs

For eight of the experimental points, the difference in costs between the reliable
and the unreliable case is significant. The alternative with the unreliable supplier
has higher total costs than the one with the reliable supplier. For these experimental
points, there is no significant difference in the number of stock-out periods and the
number of stock-out units.

The other eight experimental points indicate no significant difference in costs when
comparing a reliable supplier to an unreliable one. When comparing the performance
measures, the reliable alternative has significantly better performance measures than
the unreliable alternative.

The experimental points with a significant difference in costs are those experimen-
tal points for which the best strategy obtained in chapter 6 has an order-up-to-level
of 1. For the other experimental points, the best strategy of chapter 6 has an order-
up-to-level or fixed order quantity of 15 or more.

Because, as in chapter 6, the optimisation in the next section uses the output
measure costs, only the experimental points with a significant difference in costs be-
tween the reliable and the unreliable case are considered. These experimental points
are listed in Table 7.6.
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Experiment Best strategy

2 ES/OUL; ROP=0; S=1

8 ES/OUL; ROP=0; S=1

10 ES/OUL; ROP=0; S=1

11 CR/OUL; ROP=0; S=1

12 ES/OUL; ROP=0; S=1

13 MA/OUL; ROP=0; S=1

14 MA/OUL; ROP=0; S=1

16 ES/OUL; ROP=0; S=1

Table 7.7: Results of Tabu search for a reliable supplier

7.4 Optimal policy with uncertainty in supply

In this section, a new optimal combination of forecasting method, inventory manage-
ment policy is determined for the inventory management system with intermittent
demand and an unreliable supplier. Furthermore, the optimal settings for the safety
stock and the fixed order quantity or order-up-to-level are determined.

The same research approach as in chapter 6 is used. For every combination of
forecasting method and inventory management policy, the optimal values of the quan-
titative factors are determined. This is done using tabu search. Once the optimal
values of the quantitative factors are determined for each combination of forecasting
method and inventory management policy, the optimal combination of forecasting
method and inventory management policy can be determined.

In Table 7.7, the results of the optimisation for a reliable supplier are given for
the eight experimental points of interest. Table 7.8 shows the best strategy for the
inventory system with an unreliable supplier.

The best strategy for the inventory system with intermittent demand and no un-
certainty in supply is an order-up-to-level inventory management policy with S = 1.
When the results in Table 7.8 are compared to the results in Table 7.7, the exper-
imental points can be divided in two categories. For the experimental points 2, 8,
13 and 16, the best strategy is an inventory management policy with a fixed order
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Experiment Best strategy

2 MA/FOQ; ROP=0; Q=18

8 MA/FOQ; ROP=0; Q=12

10 ES/OUL; ROP=0; S=1

11 CR/OUL; ROP=0; S=1

12 MA/OUL; ROP=0; S=1

13 MA/FOQ; ROP=0; Q=10

14 ES/OUL; ROP=0; S=1

16 MA/FOQ; ROP=0; Q=10

Table 7.8: Results of Tabu search for an unreliable supplier

quantity Q equal to 10 or more. As also noticed in chapter 6, when a fixed order
quantity inventory management policy is used, moving averages is always the best
forecasting method. For the experimental points 10, 11, 12 and 14, the best strategy
is an order-up-to-level inventory management policy with S=1, which is the same
strategy as found for the inventory system with a reliable supplier. When the order-
up-to-level equal to 1 is the best inventory management policy, no preference for a
specific forecasting method can be found.

In Table 7.9 the levels of the uncontrollable factors are given for the eight exper-
imental points. Based on the information in this table, it is difficult to draw some
conclusions on the impact of the uncontrollable factors or to construct a classification
tree. When the demand frequency is generated using the matrix, corresponded to a
probability of 40% of having demand in a certain period, it is always better to use a
fixed order quantity equal to 10 or more. In the previous chapter, the results of the re-
liable case already indicated a strong preference for an order-up-to-level of fixed order
quantity equal to 15 or more when a probability of 40% of having demand in a certain
period was used. Only for one specific combination of costs, an order-up-to-level of
1 was better used. When the supplier becomes unreliable, it is for this frequency of
demand, always better to use an inventory policy with an order-up-to-level or fixed
order quantity bigger than 10.
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FOQ with Q ≥ 10 OUL with S = 1

Exp Co Ch Cs Markov γ β Exp Co Ch Cs Markov γ β

2 100 4 5 0.4 12 1 10 100 2 5 0.2 12 1

8 100 4 5 0.4 6 1 11 200 4 5 0.2 24 0.5

13 200 4 5 0.2 3 2 12 100 4 10 0.2 24 0.5

16 100 2 5 0.2 6 1 14 100 4 10 0.2 3 2

Table 7.9: Comparison of the uncontrollable factors for the two categories of results

7.5 Concluding remarks

In this chapter, the simulation model developed in Chapter 5 is extended to include
uncertainty in the supply side. Uncertainty in supply consists of many aspects, the
focus of this chapter is on uncertainty in availability. The supplier alternates ran-
domly between an available and an unavailable state. When the supplier is available,
the order is delivered after the usual lead time. When the supplier is unavailable, the
order is executed when the supplier turns available again.

When the best strategy for the inventory system with a reliable supplier is used
for the system with an unreliable supplier, 8 of 16 experimental points show a signifi-
cant difference in total costs. For these 8 experimental points, a new optimal strategy
in combining demand forecasting and inventory management decision making is de-
termined using Tabu Search. For four of these points, no better strategy could be
determined. For the other four experimental points, it is better to use a fixed order
quantity Q of 10 or more instead of an order-up-to-level S equal to 1.
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Chapter 8

Conclusions and further

research

In this thesis, we described the demand process under the condition of limited infor-
mation in demand and developed a simulation-optimisation framework for inventory
decision support when dealing with intermittent demand. In this chapter, we sum-
marise the main findings and contributions and give directions for future work (Figure
8.1).

8.1 Conclusions

As stated in the introduction, this thesis has four key contributions: (1) to identify
characteristics as demand shape and unimodality under the condition of limited in-
formation on demand, (2) to determine the optimal safety inventory given a desired
performance level under the condition of limited information on demand, (3) to pro-
pose a best strategy in combining inventory decision making and demand forecasting
for intermittent demand and (4) to describe the impact of uncertainty in the supply
side on the best strategy for intermittent demand. Each of these contributions is
discussed in more detail in the next paragraphs.

In inventory management, situations exist in which it is realistic to assume that
the demand distribution is not completely known (e.g. slow moving products or prod-
ucts recently introduced to the market) because of a lack of sufficient data to decide
on the functional form of the demand distribution function. However, in literature
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a significant impact of the demand shape on inventory management performance is
shown so demand shape is not a secondary factor in the determination of inventories.
A different demand shape can increase inventories with more than 100%, given the
coefficient of variation. Therefore, it is important to identify characteristics as de-
mand shape and unimodality under the condition of limited information on demand,
i.e. only the first two moments are known. A procedure is developed to determine
shape characteristics when only the first two moments of the distribution of demand
during lead time are known, using a compound Poisson distribution and the Pearson
chart. If a compound Poisson distribution is used for modelling demand during lead
time, any experiment, choosing a specific frequency of demand, a type of distribution
for the demand size, and the first two moments of the distribution, leads to a sin-
gle point on the Pearson chart, a two-dimensional chart representing an asymmetry
measure and a kurtosis measure. Like this, shape and unimodality of the distribu-
tion may be recognised. If the mean of the demand distribution during lead time is
high with regard to the variance, the normal distribution is a good approximation.
If the proportion between the mean of the demand distribution during lead time and
the variance decreases, the distribution can be approximated by a unimodal Beta-
distribution. When the proportion decreases even further, the demand is similar to
a J-shaped Beta-distribution. In literature, the assumption that demand in a certain
period of time is continuous and follows a Normal distribution is often made but our
results indicate that the Normal distribution is only valid in special cases.

Inventory management decisions make use of optimisation models taking a per-
formance characteristic into consideration. When only limited information is known
on the demand distribution, bounds on performance measures, given the inventory
level, can be calculated using bounds derived in insurance mathematics. However,
in inventory management, it is more interesting to determine which inventory level
should be kept at least or at most given a desired level of performance measure. This
optimal inventory level is calculated using two performance measures: the number
of stock-out units and the stock-out probability in a lead time period. Two cases
of limited information are considered: the case of a known range, expected value
and variance and the case of a known range, expected value, variance and unique
mode. Furthermore, the special case of a compound Poisson demand distribution is
discussed. These bounds can be used by an inventory decision maker to calculate the
inventory level that has to be held at the beginning of a period, given the desired
performance level and the degree of risk aversion of the company. If it is known that
the unique mode exists and the value of it is known, the extra information leads to
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tighter bounds on the inventory level.

A special type of demand, where information on the demand process is limited,
is intermittent demand. When demand is of the intermittent type, a best strategy
in combining inventory decision making and demand forecasting is proposed, using a
simulation model. An experimental design is set up to determine the impact of the
cost structure and the demand. Depending on the experimental environment, two
options for optimal strategies can be distinguished: an order-up-to level inventory
management policy with an order-up-to level equal to 1 and a reorder point equal
to 0 or an inventory management policy with a fixed order quantity Q > 1 or an
order-up-to level S > 1 and a reorder point equal to 0. Four factors of the experi-
mental environment have an influence on which of the two strategies is best chosen:
the frequency of demand, the inventory holding cost, the order cost and the stock-out
cost. When the level of three factors out of these four are fixed, it is possible to
determine the optimal strategy. It is important to know which of both strategies is
best because there is a significant increase in total costs of the inventory system if
the wrong strategy is chosen. Although only a limited number of experimental points
are investigated in this thesis, the results can be generalised to draw conclusions with
respect to an optimal strategy in combining inventory decision making and demand
forecasting for intermittent demand since the levels of costs can be seen in relation to
each other instead of as absolute values.

In the last part of the thesis, the impact of uncertainty in the supply side is inves-
tigated. One specific type of uncertainty in supply is considered: uncertainty in avail-
ability. This uncertainty in availability causes a significant difference in performance
measures compared to the reliable situation. For intermittent demand, uncertainty
in availability leads to significantly higher total costs for those experimental points
that led to the optimal policy of an order-up-to level equal to 1 without uncertainty
in availability. A new best strategy in combining inventory decision making and de-
mand forecasting is determined for these points: a fixed order quantity inventory
management policy with a fixed order quantity Q > 1 and a reorder point of 0.
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8.2 Further research

Like any research, this thesis has its limitations in scope. These limitations offer some
suggestions for further research.

A best strategy in combining inventory decision making and demand forecasting
for intermittent demand is determined using the objective of minimising total costs.
However, there are many situations in which total costs are not the most important
decision criterion. For example, in Defence or in non-profit organisations, availability
is more important than total costs. In future work, the optimisation can be done
using service-oriented performance characteristics. In addition, multi-objective opti-
misation, including total costs and service-oriented performance characteristics, can
be used to determine the optimal solution. But since total costs take into account
the cost of a stock-out, minor changes in the best strategy are expected.

Three optimisation methods are compared to determine a best strategy in com-
bining inventory decision making and demand forecasting for intermittent demand,
using a simulation model. Since a simple Tabu Search gives the best results for this
simulation optimisation problem, it may be interesting to enhance this Tabu search
or to use other metaheuristics to perform the optimisation of the simulation model.

Depending on the experimental environment, two options for optimal strategies
can be distinguished. It is important to know which of both strategies is best be-
cause there is a significant increase in total costs of the inventory system if the wrong
strategy is chosen. Four factors of the experimental environment have an influence
on which of the two strategies is best chosen and a decision tree is constructed to
decide which of the two strategies is best chosen, given the levels of the experimental
factors. Although the results can be generalised by looking at the proportion of the
costs. However, more experiments are required to fine-tune the strategy for a specific
situation and to determine a more accurate distinction between the two strategies by
means of a cut-off point between the two strategies.

In this thesis, uncertainty in availability is used as uncertainty in the supply side.
However, other types of uncertainty in supply, such as uncertainty in quantity or qual-
ity, may influence the results differently and therefore deserve further investigation.
Next to uncertainty in supply, other types of uncertainty may also have an impact on
the best strategy in inventory decision-making for intermittent demand. These types
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of uncertainty also need to be investigated to test the robustness of the best strategy.
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Compound Poisson as a

demand process

A.1 Results: graphs
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Figure A.1: Pearson chart with values of compound Poisson with deterministic dis-
tribution
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Figure A.2: Pearson chart with values of compound Poisson with uniform distribution
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Figure A.3: Pearson chart with values of compound Poisson with exponential distri-
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Figure A.4: Pearson chart with area of compound Poisson with uniform distribution
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A.2 Validation

Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 150 7.5 0.15

a 0.15 0.0075 0.0015

Table A.1: Experimental data for the validation of the Poisson distribution com-
pounded with an exponential distribution

Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 100 5 0.1

a 0 0 111

b 20 400 1994

Table A.2: Experimental data for the validation of the Poisson distribution com-
pounded with a uniform distribution
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Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 80 4 0.08

a 3.37 67.43 337.13

b 17.06 341.29 1706.44

Table A.3: Experimental data for the validation of the Poisson distribution com-
pounded with a triangular distribution with mode=b

Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 80 4 0.09

a 7.94 158.71 568.94

b 21.63 432.57 2391.52

Table A.4: Experimental data for the validation of the Poisson distribution com-
pounded with a triangular distribution with mode=a

Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 80 4 0.09

a 4.59 91.89 124.2

b 20.41 408.11 2228.72

Table A.5: Experimental data for the validation of the Poisson distribution com-
pounded with a symmetric triangular distribution
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Hypothesis Normal Unimodal

Beta

J-shaped Beta

First moment 1000 1000 100

Second moment 13333 266666 133333

λ 100 5 0.1

a 1 0 0

b 26.3 523.61 2618.03

mode c 2.7 76.39 381.97

Table A.6: Experimental data for the validation of the Poisson distribution com-
pounded with an asymmetric triangular distribution
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Bounds on performance

measures

B.1 Stock-out units: Tables

Conditions Upper bound

d ≤ 0′
2

µ1
µ2

(µ2 − µ1d)

0′
2 ≤ d ≤ b+b′

2

µ1−d+
√

(µ2−µ2
1)+(d−µ1)2

2

d ≥ b+b′
2

(µ2−µ2
1)(b−d)

(µ2−µ2
1)+(b−µ1)2

Table B.1: Upper bounds on number of stock-out units when E(X) and E(X2) are
known

177
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Conditions Lower bound

0 ≤ d ≤ b′ µ1 − d

b′ < d < 0′ µ2−µ1d
b

0′ ≤ d ≤ b 0

Table B.2: Lower bounds on number of stock-out units when E(X) and E(X2) are
known

Conditions Upper bound

d ≤ 0′2
30′−2m

ν1(ν2−dν1)
2

2ν2(ν2−mν1)

0′2
30′−2m ≤ d ≤ b2−2mb′+bb′

3b−2m−b′
(ν2−ν2

1 )(r′−d)2

2(ν2−2r′ν1+r′2)(r′−m)

where

r’ root of r′3 + Ar′2 + Br′ + C = 0

with A = −3d, B = 4ν1d + 2md− 2mν1 − ν2

and C = 2mν2 − 2mν1d− dν2

d ≥ b2−2mb′+bb′
3b−2m−b′

(ν2−ν2
1 )(b−d)2

2(ν2−2bν1+b2)(b−m)

Table B.3: Upper bounds on number of stock-out units when E(X), E(X2) and m
are known
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Conditions Lower bound

0′ ≤ d 0

b0′2+0′(0′−m)
√

b(b−m)

b0′+(0′−m)(0′+b−m) ≤ d < 0′ ν1(ν2−dν1)
2

2ν2(ν2−mν1)

b′ > d and bb′2+b′(b′−m)
√

b(b−m)

bb′+(b′−m)(b′+b−m)
1

2(b−r)

[
(bν1−ν2)(r−d)2

r(r−m) + (ν2−ν1r)(b−d)2

b(b−m)

]

≤ d ≤ b0′2+0′(0′−m)
√

b(b−m)

b0′+(0′−m)(0′+b−m)

or where r = d2(b−m)+d(d−m)
√

b(b−m)

b(b−m)−(b−d)2

b′ ≤ d and d ≤ b0′2+0′(0′−m)
√

b(b−m)

b0′+(0′−m)(0′+b−m)

b′ > d and d <
bb′2+b′(b′−m)

√
b(b−m)

bb′+(b′−m)(b′+b−m)
1

2(b−b′)

[
(b−ν1)(b

′−d)2

(b′−m) + (ν1−b′)(b−d)2

(b−m)

]

Table B.4: Lower bounds on number of stock-out units when E(X), E(X2) and m are
known

Conditions Upper bound

0 ≤ d ≤ 15 20− 2
3d

15 ≤ d ≤ 31.667 10− 1
2d + 1

2

√
200 + (d− 20)2

31.667 ≤ d ≤ 50 100−2d
11

Table B.5: Numerical example of upper bounds on the number of stock-out units
when E(X) and E(X2) are known
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Conditions Lower bound

0 ≤ d ≤ 13.333 20− d

13.333 ≤ d ≤ 30 12− 2
5d

30 ≤ d ≤ 50 0

Table B.6: Numerical example of lower bounds on the number of stock-out units when
E(X) and E(X2) are known

Conditions Inventory level

W ≤ 3.333 50− 11
2 W

3.333 ≤ W ≤ 10 50−W 2+20W
W

W ≥ 10 60−3W
2

Table B.7: Numerical example of the optimal inventory level using the upper bounds
on number of stock-out units when E(X) and E(X2) are known

Conditions Inventory level

W ≤ 6.667 30− 5
2W

W ≥ 6.667 20−W

Table B.8: Numerical example of the optimal inventory level using the lower bounds
on number of stock-out units when E(X) and E(X2) are known
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Conditions Upper bound

15 ≤ d ≤ 20.2 (1200−25d)2

79200

20.2 ≤ d ≤ 21.5 575(r′−d)2

2(1200−50r′+r′2)(r′−15)

where

r’ root of r′3 − 3dr′2 + (130d− 450)r′ +
36000− 1950d = 0

21.5 ≤ d ≤ 50 575(50−d)2

84000

Table B.9: Numerical example of upper bounds on the number of stock-out units
when E(X), E(X2) and m are known

Conditions Lower bound

15 ≤ d ≤ 35.3 1
2(50−r)

[
50(r−d)2

r(r−15) + (1200−25r)(50−d)2

1750

]

where r = 35d2+41.83d(d−15)
1750−(50−d)2

35.3 ≤ d ≤ 48 (1200−25d)2

79200

48 ≤ d ≤ 50 0

Table B.10: Numerical example of lower bounds on the number of stock-out units
when E(X), E(X2) and m are known
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B.2 Bounds on tail probabilities

B.2.1 E(X) and E(X2) are known

When calculating bounds on tail probabilities (De Schepper and Heijnen 1995), the
problem is to find:

sup
F∈Φ

∫ b

0

f(x)dF (x) (B.1)

and

inf
F∈Φ

∫ b

0

f(x)dF (x) (B.2)

where Φ is the class of all distribution functions with range [0, b] and with moments
µ1 and µ2 known and where

f(x) =





0 if x ≤ d;

1 if x > d.
(B.3)

UPPER BOUNDS

0 ≤ d ≤ b’

A solution is found when P is the straight line through (b′, 1) and (b, 1). The upper
bound is equal to qb′f(b′) + qbf(b) = 1.

b’ < d ≤ 0’

In this case, P is the parabola through (0, 0), (d, 1) and (b, 1). According to Lemma
2, the three-point distribution in (0, d, b) will have masses:

qd =
bµ1 − µ2

d(b− d)
, qb =

µ2 − µ1d

b(b− d)
, q0 = 1− qd − qb. (B.4)

The upper bound is qdf(d) + qbf(b) or

(b + d)µ1 − µ2

bd
. (B.5)

0’ < d ≤ b

Here, the solution is the parabola through (d′, 0) and (d, 1) and tangent to f(x) in d′.
The best upper bound is qdf

′(d) + qd′f(d′) or

µ2 − µ2
1

µ2 − µ2
1 + (µ1 − d)2

. (B.6)
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The results for the best upper bounds on the stock-out probability when only the
mean and variance of demand are known, are summarized in Table B.11.

Conditions Upper bound

0 ≤ d ≤ b′ 1

b′ < d ≤ 0′ (b+d)µ1−µ2
bd

0′ < d ≤ b
(µ2−µ2

1)

(µ2−µ2
1)+(µ1−d)2

Table B.11: Upper bounds on stock-out probability when E(X) and E(X2) are known

LOWER BOUNDS

0 ≤ d ≤ b’

In this case, P is the parabola through (d, 0) and d′, 1) and tangent to f(x) at d′. The
lower bound equals qdf(d) + qd′f(d′) or

(µ1 − d)2

µ2 − µ2
1 + (µ1 − d)2

. (B.7)

b’ < d ≤ 0’

A solution is found when P is the parabola through (0, 0), (d, 0) and (b, 1). Lemma 2
provides the masses of the three-point distribution which gives a lower bound of

µ2 − µ1d

b(b− d)
. (B.8)

0’ < d ≤ b

Here, P is the line through (0, 0) and (0′, 0). The lower bound is 0.
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The results for the best lower bounds on the stock-out probability when only the
mean and variance of demand are known, are summarized in Table B.12.

Conditions Lower bound

0 ≤ d ≤ b′ (µ1−d)2

µ2−µ2
1+(µ1−d)2

b′ < d ≤ 0′ µ2−µ1d
b(b−d)

0′ < d ≤ b 0

Table B.12: Lower bounds on stock-out probability when E(X) and E(X2) are known

B.2.2 E(X), E(X2) and the unique mode m are known

To solve B.1 and B.2 in case the first two moments and the unique mode is known,
the Khinchine transform of the function in B.3 is needed. Therefore, the procedure
described in 4.2.2 is used. Since the position of d with respect to m is important to
determine the shape of the Khinchine transform, the computations will be split up in
two cases:

� d > m:

f(x) =





0 if 0 ≤ x ≤ d;
x−d
x−m if d < x ≤ b.

(B.9)

� d ≤ m:

f(x) =





d−m
x−m if 0 ≤ x ≤ d;

1 if d < x ≤ b.
(B.10)

For each of the two cases, upper and lower bounds can be determined (De Schepper
and Heijnen 1995).
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I d > m

UPPER BOUNDS

In this section, the best upper bounds for distributions which fulfill the skewness
condition

µ1 > m (B.11)

will be derived. Results in case µ1 ≤ m can be derived using some elementary
transformations. The details of this transformation will be explained in section B.2.3.

To distinguish concave and convex parabolas the unique point c1 in [d, +∞[ such
that the tangent to f at c1 contains the origin, plays an important role. This point c1

can be calculated as

c1 = d +
√

d(d−m). (B.12)

If 0′ < c1 convex parabolas are used, if 0′ > c1 concave ones are used. If 0′ = c1 one
can use the tangent at c1 and the two-point distribution in (0, 0′). The best upper
bound is q0′f(0′) or

ν2
1(ν2 − dν1)

ν2(ν2 −mν1)
. (B.13)

0′ < c1

Parabola through (0,0) and (0’,f(0’)

Formula 4.10 is used with u = 0, v = 0′. To assure that g ≥ 0 on [0, d], the condition
g′(0) ≥ 0 is imposed, which leads to

d ≤ 20′2 −m0′

30′ − 2m
. (B.14)

The best upper bound equals q0′f(0′) or

ν2
1(ν2 − dν1)

ν2(ν2 −mν1)
. (B.15)

Parabola through (r,0) and (r’,f(r’))

Here we use formula 4.10 with v = r, u = r′, f(v) = 0 and f ′(v) = 0. This gives us

g(x) =
f(r′)(x− r)2

(r′ − r)2
. (B.16)
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The condition g′(r′) = f ′(r′) leads to

d =
2r′2 − r′m− rm

3r′ − r − 2m
. (B.17)

This function is increasing in r and r′. Because of Lemma 1 a unique solution (r, r′)
can be assured by imposing the condition

20′2 − 0′m
30′ − 2m

≤ d ≤ 2b2 − bm− b′m
3b− b′ − 2m

. (B.18)

Under this condition the best upper bound is qr′f(r′) or

ν2 − ν2
1

r′2 − 2ν1r′ + ν2
· r′ − d

r′ −m
, (B.19)

where r′ is the unique root of the polynomial r′3 +Ar′2 +Br′+C with A = − 1
2 (2ν1 +

m + 3d), B = 2dν1 + dm and C = 1
2 (ν2m− ν2d− 2ν1dm).

Parabola through (b’,0) and (b,f(b))

Formula 4.10 with u = b, v = b′, f(v) = 0 and f ′(v) = 0) provides us with the
parabola

g(x) =
f(b)(x− b′)2

(b− b′)2
. (B.20)

To assure g ≥ f on [d, b] we impose g′(b) ≤ f ′(b) which leads to the condition

2b2 − bm− b′m
3b− 2m− b′

≤ d. (B.21)

The best upper bound is qbf(b) or

ν2 − ν2
1

b2 − 2ν1b + ν2
· b− d

b−m
. (B.22)

0′ > c1

Parabola through (0,0) and (0’,f(0’))

Formula 4.10 is used with u = 0 and v = 0′. To assure that g ≥ f on [d, b], we impose
g(b) ≥ f(b), which gives us

b0′2

(0′ −m)2 + b(20′ −m)
≤ d. (B.23)

The best upper bound is q0′f(0′) or
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ν2
1(ν2 − dν1)

ν2(ν2 −mν1)
. (B.24)

Parabola through (0,0), (r,f(r)) and (b,f(b))

According to Lemma 2, we need r such that b′ < r < 0′. Formula 4.10 is used with
u = 0 and v = r. The condition g(b) = f(b) will determine r. This leads to

d =
br2

b(2r −m) + (r −m)2
. (B.25)

d is a strictly increasing function of r on ]m,+∞[. To get a solution r in ]b′, 0′[ it is
required that

b′2b
b(2b′ −m) + (b′ −m)2

< d <
0′2b

b(20′ −m) + (0′ −m)2
(B.26)

under the condition that b′ > c1. Else, the first inequality drops. The solution is then
one of the roots of

r2(b− d)− 2rd(b−m) + md(b−m) = 0 (B.27)

or

r =
d(b−m) +

√
d(b−m)b(d−m)
b− d

. (B.28)

The best upper equals qrf(r) + qbf(b) or

1
b− r

[
(bν1 − ν2)(r − d)

r(r −m)
+

(ν2 − ν1r)(b− d)
b(b−m)

]
. (B.29)

Parabola through (b’,f(b’)) and (b,f(b))

This case is only valid when b′ > c1. The parabola goes through (b’,f(b’)) and
(b,f(b)), touching f in b′. So formula 4.10 is used with u = b and v = b′. To assure
that g(x) ≥ f(x) on [0, d] we impose g(0) ≥ 0 which can be computed as

d ≤ b′2b
b(2b′ −m) + (b′ −m)2

. (B.30)

The best upper bound is qb′f(b′) + qbf(b) or

1
b− b′

[
(ν1 − b′)(b− d)

b−m
+

(b− ν1)(b′ − d)
b′ −m

]
. (B.31)
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The results for the best upper bounds on the stock-out probability when only the
mean, variance and unique mode of demand are known for d > m, are summarized
in Table B.13.

LOWER BOUNDS

0 ≤ d ≤ b’

A solution is found when the parabola goes through (d,0) and (d’,f(d’)), touching f

in d′. The best lower bound equals qd′f(d′) or

(ν1 − d)2

(ν2 − ν2
1) + (ν1 −m)(ν1 − d)

. (B.32)

b’ < d ≤ 0’

The parabola through (0, 0), (d, 0) and (b, f(b)) is smaller than f(x) on [0, b]. So the
best lower bound is qbf(b) or

ν2 − ν1d

b(b−m)
(B.33)

0’ < d ≤ b

Now the straight line through (0, 0) and (0′, 0) gives us the solution, which is 0.

The results for the best lower bounds on the stock-out probability when only the
mean, variance and unique mode of demand are known for d > m, are summarized
in Table B.14.

II d ≤ m

UPPER BOUNDS

0 ≤ d ≤ b’

The straight line through (b′, 1) and (b, 1) immediately gives the solution. The best
upper bound is 1.
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Conditions Upper bound

m < d ≤ bb′2
(b′−m)2+b(2b′−m) and b′ > c1

1
b−b′

[
(ν1−b′)(b−d)

b−m + (b−ν1)(b
′−d)

b′−m

]

m < d < b0′2
(0′−m)2+b(20′−m) and b′ ≤ c1

1
b−r

[
(bν1−ν2)(r−d)

r(r−m) + (ν2−ν1r)(b−d)
b(b−m)

]

or
bb′2

(b′−m)2+b(2b′−m) < d with r = d(b−m)+
√

bd(b−m)(d−m)

b−d

< b0′2
(0′−m)2+b(20′−m) and b′ > c1

b0′2
(0′−m)2+b(20′−m) ≤ d ≤ 20′2−m0′

30′−2m
ν2
1 (ν2−dν1)

ν2(ν2−mν1)

20′2−m0′
30′−2m ≤ d ≤ 2b2−bm−b′m

3b−b′−2m
ν2−ν2

1
r′2−2ν1r′+ν2

· r′−d
r′−m

where r’ root of r′3 + Ar′2 + Br′ + C

with A = − 1
2 (2ν1+m+3d), B = 2dν1+

dm

and C = 1
2 (ν2m− ν2d− 2ν1dm).

2b2−bm−b′m
3b−b′−2m ≤ d ≤ b

ν2−ν2
1

b2−2ν1b+ν2
· b−d

b−m

Table B.13: Upper bounds on stock-out probability when E(X), E(X2) and m are
known for d > m



190 Appendix B

Conditions Lower bound

0 ≤ d ≤ b′ (ν1−d)2

(ν1−m)(ν1−d)+ν2−ν2
1

b′ < d ≤ 0′ ν2−ν1d
b(b−m)

0′ < d ≤ b 0

Table B.14: Lower bounds on stock-out probability when E(X), E(X2) and m are
known for d > m

b’ < d ≤ 0’

The parabola through (0, f(0)), (d, 1) and (b, 1) is always bigger than f on [0, b]. The
best upper bound equals q0f(0) + qdf(d) + qbf(b) or

b(m− d) + (b + d)ν1 − ν2

bm
. (B.34)

0’ < d ≤ b

In this case, the parabola goes through (d, 1) and (d′, f(d′)), touching f in d′. The
best upper bound equals qdf(d) + qd′f(d′) or

ν1 − d′

d− d′
+

ν1 − d

d′ − d
· m− d

m− d′
. (B.35)

The results for the best upper bounds on the stock-out probability when only the
mean, variance and unique mode of demand are known for d ≤ m, are summarized
in Table B.15.

LOWER BOUNDS

In this section, the skewness condition µ1 > m is imposed. Results in case the
condition is not fulfilled can be derived using some elementary transformations. This
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Conditions Upper bound

0 ≤ d ≤ b′ 1

b′ < d ≤ 0′ b(m−d)+(b+d)ν1−ν2
bm

0′ < d ≤ b 1
d−d′

[
(ν1 − d′) + (d−ν1)(m−d)

m−d′

]

Table B.15: Upper bounds on stock-out probability when E(X), E(X2) and m are
known for d ≤ m

will be explained in detail in section B.2.3.
To distinguish concave and convex parabolas the point c2 where the tangent to f

contains the point (b, 1) is important. This unique point can be calculated as

c2 = d−
√

(m− d)(b− d). (B.36)

If b′ < c2 convex parabolas are used, if b′ > c2 concave ones are used. If b′ = c2 one
can use the tangent line in c2 and the two-point distribution in (b, b′). The best lower
bound is qb′f(b′) + qbf(b) or

(d− c2)ν1 + (b− c2)m− bd + c2
2

(b− c2)(m− c2)
. (B.37)

b′ < c2

Parabola through (b’,f(b’)) and (b,1)

Formula 4.10 is used with u = b and v = b′. To assure that g(x) ≤ f(x) on [0, d] the
condition g(0) ≤ f(0) is imposed. This leads to

d ≤ bm(m− 2b′ + b)
(m− b′)2 + b(m− 2b′ + b)

(B.38)

under the condition that b′ < m. The best lower bound is equal to qb′f(b′) + qbf(b)
or

1
b− b′

[
(ν1 − b′) +

(b− ν1)(m− d)
m− b′

]
. (B.39)
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Parabola through (0,f(0), (r,f(r)) and (b,1)

According to Lemma 2, we need r such that b′ < r < 0′. Formula 4.10 is used with
u = b and v = r. The condition g(0) = f(0) will determine r. This leads to

d =
bm(m− 2r + b)

(m− r)2 + b(m− 2r + b)
. (B.40)

d is a strictly increasing function of r on ]−∞,m[. To get a solution r in ]b′, 0′[ it is
required that b′ < m and

bm(m− 2b′ + b)
(m− b′)2 + b(m− 2b′ + b)

< d ≤ m. (B.41)

The solution is then one of the roots of

r2 + 2(bm−md− bd)r + (m2d + bmd + b2d− bm2 − bm2) = 0 (B.42)

or

r =
bd + md− bm−

√
mb(b− d)(m− d)

d
. (B.43)

The best lower bound is q0f(0) + qrf(r) + qbf(b) or

m− d

m
· ν2 − ν1(b + r) + br

br
+

m− d

m− r
· bν1 − ν2

r(b− r)
+

ν2 − rν1

b(b− r)
. (B.44)

b′ > c2

Parabola through (b’,f(b’)) and (b,f(b))

Formula 4.10 is used with u = b and v = b. To assure that g(x) ≤ f(x) on [0,d], the
condition g′(b) ≥ 0 is imposed. This gives us

mb + mb′ − 2b′2

2m− 3b′ + b
≤ d <

mb− b′2

m + b− 2b′
(B.45)

on the condition that b′ < m. The best lower bound is equal to qb′f(b′) + qbf(b) or

ν1 − b′

b− b′
+

ν1 − b

b′ − b
· m− d

m− b′
. (B.46)
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Parabola through (r,f(r)) and (r’,1)

Here the solution is a parabola touching f in r and r′. Formula 4.10 is used with
u = r and v = r′. The condition g′(r) = 0 will determine r. This leads to

d =
mr′ + mr − 2r2

2m− 3r + r′
. (B.47)

d is a strictly increasing function of r and r′. To get a solution (r, r′) it is required
that b′ < m and

m0′

2m + 0′
≤ d <

mb + mb′ − 2b′2

2m− 3b′ + b
. (B.48)

or b′ ≥ m and

m0′

2m + 0′
≤ d ≤ m (B.49)

The best lower bound is qrf(r) + qr′f(r′) or

ν2 − ν2
1

ν2 − 2ν1r + r2
· m− d

m− r
+

(ν1 − r)2

ν2 − 2ν1r + r2
(B.50)

where r is the root of the polynomial r3 +Ar2 +Br +C with A = − 1
2 (2ν1 +m+3d),

B = 2dν1 + dm and C = 1
2 (ν2m− ν2d− 2ν1dm).

Parabola through (0,f(0)) and (0’,f(0’))

Again, formula 4.10 is used. To assure that g(x) is always smaller than f , the condition
g′(0) ≤ f ′(0) is imposed. This leads to

d ≤ 0′m
2m + 0′

. (B.51)

The best lower bound is q0f(0) + q0′f(0′) or

ν2
1d + ν2(m− d)

mν2
. (B.52)

The results for the best lower bounds on the stock-out probability when only the
mean, variance and unique mode of demand are known for d ≤ m, are summarized
in Table B.16.
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Conditions Lower bound

d ≤ 0′m
2m+0′

ν2
1d+ν2(m−d)

mν2

0′m
2m+0′ ≤ d ≤ m and b′ ≥ m m−d

m−r ·
ν2−ν2

1
ν2−2ν1r+r2 + (ν1−r)2

ν2−2ν1r+r2

or
0′m

2m+0′ ≤ d < mb+mb′−2b′2
2m−3b′+b and b′ < m with r root of r3 + Ar2 + Br + C

with A = − 1
2 (2ν1+m+3d), B = 2dν1+

dm

and C = 1
2 (ν2m− ν2d− 2ν1dm).

mb+mb′−2b′2
2m−3b′+b ≤ d 1

b−b′

[
(ν1 − b′) + (b−ν1)(m−d)

m−b′

]

≤ bm(m−2b′+b)
(m−b′)2+b(m−2b′+b) and b′ < m

bm(m−2b′+b)
(m−b′)2+b(m−2b′+b) < d ≤ m m−d

m · ν2−ν1(b+r)+br
br

+m−d
m−r · bν1−ν2

r(b−r) + ν2−rν1
b(b−r)

and b′ < m

where r = bd+md−bm−
√

mb(b−d)(m−d)

d

Table B.16: Lower bounds on stock-out probability when E(X), E(X2) and m are
known for d ≤ m
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B.2.3 Transformation

The transformation described in this section can be used when µ1 ≤ m and the best
upper bound for the tail probability if d > m has to be derived or the best lower
bound if d ≤ m (De Schepper and Heijnen 1995).
Denoting this distribution as F , a new distribution function H will be defined as

H(x) = 1− F (b− x). (B.53)

Using the notations mH , µH
1 and µH

2 for the mode and the first two moments of this
new distribution, the following relations are valid:

mH = b−m (B.54)

µH
1 = b− µ1 (B.55)

µH
2 = b2 − 2bµ1 + µ2 (B.56)

Since µ1 < m, we have µH
1 > m. This means that the results of section B.2.2 can be

used for H. The only question remaining is how to transform the results. Therefore
we use the following identities. The first one is

sup
F

∫ b

0

f(x)dF (x) = 1− inf
H

∫ b

0

f∗(x)dH(x) (B.57)

where

f∗(x) =





dH−mH

x−mH if 0 ≤ x ≤ dH ;

1 if dH < x ≤ b.
(B.58)

if we define dH as b− d.

The second identity is

inf
F

∫ b

0

f(x)dF (x) = 1− sup
H

∫ b

0

f∗(x)dH(x) (B.59)

where

f∗(x) =





0 if 0 ≤ x ≤ dH ;
x−dH

x−mH if dH < x ≤ b.
(B.60)
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B.3 Stock-out probability: Numerical example: Ta-

bles

Conditions Upper bound

0 ≤ d ≤ 13.333 1

13.333 ≤ d ≤ 30 40+2d
5d

30 ≤ d ≤ 50 200
200+(20−d)2

Table B.17: Numerical example of upper bounds on the stock-out probability when
E(X) and E(X2) are known

Conditions Lower bound

0 ≤ d ≤ 13.333 (20−d)2

200+(20−d)2

13.333 ≤ d ≤ 30 600−20d
50(50−d)

30 ≤ d ≤ 50 0

Table B.18: Numerical example of lower bounds on the stock-out probability when
E(X) and E(X2) are known
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Conditions Inventory level

U ≤ 0.667 20U+
√

200(U−U2)

U

U ≥ 0.667 400
50U−20

Table B.19: Numerical example of the optimal inventory level using the upper bounds
on the stock-out probability when E(X) and E(X2) are known

Conditions Inventory level

U ≤ 0.182 60−250U
2−5U

U ≥ 0.182 20(U−1)+
√

400(U−1)2−(U−1)(600U−400)

U−1

Table B.20: Numerical example of the optimal inventory level using the lower bounds
on the stock-out probability when E(X) and E(X2) are known
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Conditions Upper bound

0 ≤ d ≤ 2 1

2 < d ≤ 15 32−d
30

15 ≤ d < 22.4 1
50−r

[
50(r−d)
r(r−15) + (1200−25r)(50−d)

1750

]

where r = 35d+
√

1750d(d−15)

50−d

22.4 ≤ d ≤ 34.1 1200−25d
1584

34.1 ≤ d ≤ 35.8 575(r′−d)
(r′2−50r′+1200)(r′−15)

where

r’ root of r′3 + 2415+3d
2 r′2 + 65dr′ + 9000 −

1575d
2 = 0

35.8 ≤ d ≤ 50 23(50−d)
1680

Table B.21: Numerical example of upper bounds on the stock-out probability when
E(X), E(X2) and m are known
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Conditions Lower bound

0 ≤ d ≤ 9.2 720−23d
720

9.2 ≤ d < 10.4 575(15−d)
(r2−50r+1200)(15−r) + (25−r)2

r2−50r+1200

where

r root of r3− 1
2 (65 + 3d)r2 + 65dr + 9000− 975d = 0

10.4 ≤ d ≤ 14.2 674−25d
624

14.2 < d ≤ 15 15−d
15

1200−25(50+r)+50r
50r + 15−d

15−r
50

r(50−r) + 1200−25r
50(50−r)

where r = 61d−750−
√

750(50−d)(15−d)

d

15 < d ≤ 48 48−d
70

48 < d ≤ 50 0

Table B.22: Numerical example of lower bounds on the stock-out probability when
E(X), E(X2) and m are known
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Classification trees
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Stock−out costS=1 S/Q>=15

S=1 S/Q>=15 S=1 S/Q>=15

Stock−out cost

Order costOrder cost

Frequency of
demand

LOW HIGH

LOW HIGH LOW HIGH

LOW HIGH
LOW HIGH

Figure C.1: Classification tree - frequency of demand, order cost and stock-out cost

S/Q>=15

S=1 S/Q>=15

S/Q>=15

Stock−out cost Stock−out cost

Inventory cost

Frequency of
demand

LOW HIGH

LOW HIGH
LOW HIGH

Inventory cost

HIGH LOW HIGH LOW

S=1 S=1

Figure C.2: Classification tree - frequency of demand, inventory cost and stock-out
cost
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Order cost

S=1 S/Q>=15

S/Q>=15

Stock−out cost Stock−out cost

Inventory cost

LOW HIGH

LOW HIGH
LOW HIGH

Inventory cost

HIGH LOW HIGH LOW

S=1 S=1 S/Q>=15

Figure C.3: Classification tree - order cost, inventory cost and stock-out cost



204 Appendix C



Samenvatting

Logistieke systemen bevatten onzekerheden in vraag, in levertermijn, in transporttij-
den, in beschikbaarheid van middelen en in kwaliteit. In het modelleren van distribu-
tieketens en het analyseren van het gedrag en de prestatie van distributieketens is het
dan ook belangrijk met deze onzekerheid rekening te houden. Omdat het bestuderen
van de volledige distributieketen te uitgebreid zou zijn voor dit doctoraatsonderzoek,
ligt de focus van dit onderzoek op het bestuderen van onzekerheid in voorraadsyste-
men. In de literatuur gaat men er meestal vanuit dat onzekerheden in parameters
kunnen beschreven worden met behulp van een kansverdeling. In de praktijk is de
informatie waarover men beschikt echter dikwijls beperkt. In een eerste deel van deze
thesis zal het vraagproces beschreven worden wanneer men over beperkte informatie
omtrent de vraag beschikt. Na het beschrijven van het vraagproces met beperkte in-
formatie, wordt er aandacht besteed aan een speciaal geval van beperkte informatie:
intermitterende vraag. Weinig studies behandelen onregelmatige vraag waarbij er niet
elke periode een bestelling geplaatst wordt en, indien er besteld wordt, er een grote
variabiliteit is in de hoeveelheid. Daarom zal in het tweede deel van deze thesis de
prestatie van verschillende voorspellingsmethoden en de impact van deze methoden
op verschillende politieken voor voorraadbeheer onderzocht worden met behulp van
een simulatiemodel. Voor de optimalisatie van de parameters van dit simulatiemodel
zullen verschillende simulatie-optimalisatie technieken gebruikt en vergeleken worden.

In voorraadbeheer bestaan er heel wat situaties waarvoor de kansverdeling van
de vraag tijdens de levertermijn niet volledig gekend is, zoals producten die weinig
verkopen of producten die recent op de markt gebracht zijn. Voor deze producten is
dikwijls enkel het gemiddelde en de variantie gekend en is er niet voldoende informatie
beschikbaar om de vorm van de verdeling te bepalen Nochtans wordt in de literatuur
aangetoond dat ook de vorm van de verdeling belangrijk is bij het bepalen van de
grootte van een voorraad. Een verschillende vorm van de kansverdeling van de vraag
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kan leiden tot een verhoging van de voorraad met 100%. Daarom wordt in hoofdstuk
3 een procedure uitgewerkt voor het bepalen van karakteristieken van de kansverdel-
ing van de vraag die de vorm van de verdeling bepalen zoals de scheefheid en de
unimodaliteit, wanneer enkel het gemiddelde en de variantie van de vraag tijdens de
levertermijn gekend zijn. De procedure veronderstelt dat de vraag tijdens de leverter-
mijn kan beschouwd worden als een compound Poisson proces, waarbij de frequentie
van de vraag en de grootte van de vraag apart gemodelleerd worden. De frequentie
van de vraag volgt een Poisson proces, terwijl voor de grootte van de vraag verschil-
lende verdelingen onderzocht worden. Er wordt gebruik gemaakt van de grafiek van
Pearson om op basis van de resultaten de vormkarakteristieken van de verdeling te
bepalen. Uit de resultaten van dit hoofdstuk blijkt dat, voor de onderzochte verdelin-
gen voor de grootte van de vraag, best gekozen wordt voor een Betaverdeling, tenzij
de verhouding tussen gemiddelde en variantie erg groot is.

In voorraadbeheer wordt dikwijls ook gebruik gemaakt van prestatiemaatstaven,
zoals het verwachte aantal eenheden tekort in een periode of de kans op een tekort
in een periode, om beslissingen te nemen. In hoofdstuk 4 worden grenzen voor
prestatiemaatstaven berekend voor een gegeven voorraad, uitgaande van slechts beperk-
te beschikbare informatie omtrent de vraag tijdens de levertermijn. In voorraadbeheer
is het echter interessanter om, gegeven een gewenst niveau voor een prestatiemaatstaf,
grenzen te bepalen voor het optimale voorraadniveau. De grenzen worden bepaald
voor twee verschillende situaties van beperkte informatie: een gekend bereik, gemid-
delde en variantie of een gekend bereik, gemiddelde, variantie en modus. De grenzen
kunnen dan door de beleidsvormer gebruikt worden om het niveau van voorraad aan
het begin van een periode te bepalen, gegeven het serviceniveau dat men wenst te
behalen.

In het tweede deel van het proefschrift wordt dieper ingegaan op een speciaal geval
van beperkte informatie, namelijk intermitterende vraag. Bij intermitterende vraag
wordt er slechts sporadisch een bestelling geplaatst en bovendien kan de grootte van
de bestelling sterk verschillen. Voorbeelden van producten met een intermitterende
vraag zijn wisselstukken van vliegtuigonderdelen en kapitaalgoederen. Vooral het
voorspellen van intermitterende vraag is moeilijk. Veelgebruikt is de methode van
Croston, die afzonderlijk het voorkomen van vraag en de grootte van de vraag gaat
voorspellen. Toch wordt deze methode in de literatuur in vraag gesteld omdat een-
voudige voorspellingmethodes zoals Simple Exponential Smoothing en Moving Aver-
ages, dezelfde resultaten zouden opleveren. In hoofdstuk 5 wordt een simulatiemodel
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gebouwd om drie verschillende voorspellingsmethodes en twee verschillende voorraad-
politieken met elkaar te vergelijken. Zowel het effect op totale kosten als op enkele
prestatiemaatstaven wordt bekeken.

In hoofdstuk 6 wordt een optimale strategie bepaald voor het voorraadbeheer van
producten met een intermitterende vraag. Hierbij wordt gekeken naar de combinatie
van voorspellingsmethode en voorraadpolitiek en worden de kwantitatieve parameters
van zowel de voospellingsmethode als de voorraadpolitiek geoptimaliseerd. Drie ver-
schillende optimalisatiemethodes worden hiervoor gebruikt en vergeleken: Taguchi’s
methode, responsie-oppervlakken en Tabu search. Deze laatste methode blijkt de
meest accurate resultaten te leveren. Afhankelijk van de omgevingsfactoren (kosten
van het voorraadsysteem en de parameters van de vraag) kunnen twee verschillende
optimale strategieë onderscheiden worden. De eerste optimale strategie is een voor-
raadsysteem waarbij periodiek de vooraadpositie herzien wordt. Wanneer het aantal
eenheden in voorraad lager is dan het bestelpunt, wordt een order geplaatst om de
voorraad aan te vullen tot het maximale niveau S = 1. Dit komt er eigenlijk op neer
dat telkens er zich een vraag voordoet, het voorraadniveau opnieuw wordt aange-
vuld tot 1. De tweede optimale strategie is een voorraadsysteem waarbij een vaste
bestelhoeveelheid of een maximaal voorraadniveau gebruikt wordt dat groter is dan
1. Er is met andere woorden een grotere voorraad aanwezig en er moet niet elke
keer dat er zich een vraag voordoet, bijbesteld worden. Wanneer gebruik gemaakt
wordt van een vaste bestelhoeveelheid, wordt best Moving Averages gebruikt als voor-
spellingsmethode. Welke van de twee strategieën moet gekozen worden, hangt af van
de omgevingsfactoren. Vier factoren spelen hierin een beslissende rol: de frequentie
van de vraag, de voorraadkost, de bestelkost en de tekortkost. Op basis van deze vier
factoren kan er bepaald worden welke van beide strategieën best gebruikt wordt.

In hoofdstuk 7 wordt het simulatiemodel van hoofdstuk 5 en 6 verder uitgebreid
met onzekerheid in de aanbodzijde. Het effect van deze onzekerheid op de optimale
strategie wordt bekeken. Onzekerheid in de aanbodzijde kan variëren van onzeker-
heid in levertermijn of transporttijd over onzekerheid in kwaliteit van de geleverde
goederen tot onzekerheid in beschikbaarheid. In dit hoofdstuk wordt gekozen voor
deze laatste vorm van onzekerheid in de aanbodzijde. Dit betekent dat de leverancier
sommige periodes niet beschikbaar is. Indien er een bestelling wordt geplaatst in
zo’n periode, wordt de bestelling pas geleverd een levertermijn nadat de leverancier
opnieuw beschikbaar is. Wanneer deze onzekerheid aan het simulatiemodel wordt
toegevoegd, leidt dit tot een significante stijging van de totale kosten wanneer de op-
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timale strategie met maximaal voorraadniveau gelijk aan 1 dient gebruikt te worden.
Als een nieuwe optimale strategie voor deze situatie bepaald wordt met behulp van
Tabu search, blijkt dat het nu beter is gebruik te maken van een vaste bestelhoeveel-
heid die groter is dan 1.

Het proefschrift sluit af met een kijk naar de toekomst. De huidige beperkingen
van het onderzoek zijn weergegeven en aanbevelingen voor verder onderzoek zijn
geformuleerd.


