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Preface

In this thesis we work with C∞ or analytic families of vector fields or diffeo-
morphisms. We are interested in local equivalences and conjugacies between
such families and families in a “simple” form, sometimes called a normal form.
Traditionally this normal form is chosen to be linear, but in some cases this
choice prevents us from obtaining an analytic equivalence or conjugacy. So in
such cases we will allow the presence of non-linear terms in the normal form.

A lot of work has already been done for individual vector fields and diffeo-
morphisms. It turns out that the eigenvalues of the linear part of the vector
field, resp. diffeomorphism at the singular, resp. fixed point are determining
whether the vector field or diffeomorphism is equivalent with or conjugate to its
linear part. If the eigenvalues form a hyperbolic non-resonant set then there are
celebrated results from Poincaré and Siegel telling us when an analytic conju-
gacy with the linear part can be obtained. If the eigenvalues form a hyperbolic
resonant set then sometimes it is possible to obtain a finitely smooth conjugacy.
In the non-hyperbolic case it becomes much more difficult to obtain smooth
equivalences and conjugacies.

As in this thesis we are working with families of vector fields or diffeomor-
phisms, we will encounter the same problems concerning hyperbolicity and reso-
nance as in the case of individual systems. An additional problem can be caused
by the parameters that are in play in a family. As the parameter perturbs the
eigenvalues, it can cause resonances which are absent for the unperturbed sys-
tem. This phenomenon also has its impact on the smoothness of the equivalence
or conjugacy.

This thesis is structured as follows.

In Chapter 1 we introduce the most important objects used in this thesis:
vector fields, flows, fixed points, singular points, conjugacies and equivalences.
We give a brief introduction on analytic functions in several variables. After this
we give a profound discussion on normal forms. We start with the formal and
smooth normal form for individual systems. After this we give some generalities
on families of vector fields and diffeomorphisms. The section is finished with
the normal form for families of hyperbolic vector fields and diffeomorphisms and
the normal form for a deformation of a planar singularity of center type. The
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chapter ends with a short discussion on transition maps of planar vector fields.
This way we have a natural introduction for the Ecalle–Roussarie compensator
and the Melnikov functions.

In Chapter 2 the aim is to give an explicit construction for equivalences and
conjugacies between nearly-resonant planar saddles and their linear parts. We
start by proving a lower bound on the degree of the resonant terms that appear
as the parameter varies. This bound will be crucial to obtain C1 results. After
this we discuss the explicit form for a C1 equivalence between nearly-resonant
planar saddles and their linear parts. The Ecalle–Roussarie compensator will
play a prominent role in this part. We then move on to the C1 conjugacy be-
tween nearly-resonant planar saddles and their linear parts. This time a second
Ecalle–Roussarie compensator will appear in the computations. Introducing
two new variables we prove that this conjugacy is C∞ with respect to the two
original and the two new variables. These new variables will be inspired by the
Ecalle–Roussarie compensator. Next the conjugacies between nearly-resonant
planar saddle diffeomorphisms and their linear parts are studied. To conclude
we try to repeat the calculations that were made in the saddle case for a defor-
mation of planar singularity of center type.

In Chapter 3 we consider the Poincaré map of a deformation of a planar
singularity of center type. Traditionally one studies this map by means of an
asymptotic expansion with respect to a one-dimensional parameter. The coef-
ficients of this expansion, the so-called Melnikov functions, are then expressed
by line and area integrals. We avoid the use of these integrals as they can
be very difficult to calculate and use a multi-valued normal form. To give a
good description of this multi-valued normal form we have to introduce some
auxiliary functions. Once the multi-valued normal form has been properly de-
scribed we apply it to two types of examples. The first type of examples, called
Hopf–Takens models, are used to compare our results with the results obtained
with the traditional techniques. The second type of example is the Hamiltonian
triangle. Although this system is a degenerate center, our technique based on
multi-valued normal forms can give an asymptotic expansion of the Melnikov
functions.

In Chapter 4 we study local analytic models for analytic hyperbolic families
of vector fields or diffeomorphisms. We first study the saddle situation. Here it
is not possible to extend Siegel’s Theorem to a family of systems, so we try to
obtain a normal form consisting of the linear part plus high order terms which
have a high degree in as well the stable as the unstable degree. To achieve
this result we need to exclude the existence of small divisors in these systems.
Once this result is achieved, we can prove the existence of an analytic conjugacy
between the original family and the normal form we previously described. We
also prove that if the original system admits a family of symmetries then the
conjugacy will commute with these symmetries and the normal form admits the
same symmetry. We conclude with an extension of Poincaré’s Theorem to a
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family of systems. The techniques used to treat the saddle case will make it
possible to give an elegant proof of Poincaré’s Theorem for a family of vector
fields or diffeomorphisms.

iii



iv



Contents

1 Prerequisites and technicalities 1
1.1 Conjugacy and topological classification . . . . . . . . . . . . . . 2

1.1.1 Conjugacies and equivalences . . . . . . . . . . . . . . . . 2
1.1.2 Classification based on the linear part . . . . . . . . . . . 3

1.2 Analytic functions in several variables . . . . . . . . . . . . . . . 4
1.3 Formal and smooth normal forms . . . . . . . . . . . . . . . . . . 6

1.3.1 Normal form of a vector field . . . . . . . . . . . . . . . . 7
1.3.2 Normal form of a diffeomorphism . . . . . . . . . . . . . . 11
1.3.3 Family of vector fields or diffeomorphisms . . . . . . . . . 14
1.3.4 Normal form of a (local) family of hyperbolic vector fields 16
1.3.5 Normal form of a (local) family of hyperbolic diffeomor-

phisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.6 Normal form of a local deformation of a planar singularity

of center type . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Transition maps of planar vector fields . . . . . . . . . . . . . . . 26

1.4.1 Dulac map near a saddle singularity of a planar vectorfield 26
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Chapter 1

Prerequisites and
technicalities

In this chapter we want to recall some important notions on the local study
of families of vector fields and diffeomorphisms. We classify these families de-
pending on the properties of their singular points or fixed points, this is done in
Section 1.1. It is important to make the remark that all singular points or fixed
points will be assumed to be isolated, i.e. for each of these points P there exists
an open neighbourhood U of P such that U \ {P} does not contain any singular
point or fixed point. In the neighbourhood of a singular point or a fixed point
one likes to choose local coordinates such that the vector field or diffeomorphism
obtains a “simple” form sometimes called a normal form. Techniques to obtain
these normal forms are discussed in Section 1.3. In order to investigate in which
case the local change of coordinates can be chosen to be analytic, we need some
basic results on analytic functions in several variables. These results will be
presented in Section 1.2. Special attention will be made to the transition maps
of planar vector fields. They will be a key-tool in understanding the structure
of equivalences and conjugacies between planar vector fields or diffeomorphisms
on R2. This is why Section 1.4 has claimed a separate part in this chapter. We
will always assume that the vector fields and diffeomorphisms are defined on an
open subset of Rn (although in some situations we will extend the system to
Cn), n ≥ 2.
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1.1 Conjugacy and topological classification

1.1.1 Conjugacies and equivalences

Definition 1.1 Two diffeomorphisms f and g on Rn are conjugate if there
exists a homeomorphism h on Rn such that

h∗(f) := h−1 ◦ f ◦ h = g. (1.1)

The map h∗(f) is called the pull-back of f under h.

If we want to define a conjugacy between two vector fields we need to intro-
duce the flow of a vector field.

Definition 1.2 If X is an autonomous vector field on an open subset of Rn

then the map Φ : U × I ⊂ Rn ×R → Rn : (x0, t) 7→ Φ(x0, t) where U is an open
subset of Rn and I is an open interval containing 0 as an inner point, is the
flow of X if for any fixed x0 ∈ U the following two conditions hold:

1. ∂
∂t

Φ(x0, t) = X ◦ Φ(x0, t), ∀t ∈ I and ∀x0 ∈ U

2. Φ(x0, 0) = x0.

To prevent the notations from becoming cumbersome we will denote the flow
by Φt(x0).

Definition 1.3 Two vector fields X and Y on an open subset of Rn are con-
jugate if their flows are conjugate, i.e. there exists a homeomorphism h such
that

h∗Φt = Ψt, ∀t ∈ I (1.2)

where I is an interval containing 0 as an inner point and where Φt is the flow
of X and Ψt is the flow of Y .

In the case the map h is differentiable we can replace (1.2) by an expression
containing the actual vector fields instead of their flows.

Proposition 1.1 If two vector fields X and Y on an open subset of Rn are
conjugate by a diffeomorphism h then we have that

h∗X := (Dh)−1 ·X ◦ h = Y. (1.3)

The vector field h∗X is called the pull-back of X under h.

In the case of vector fields one can weaken the notion of conjugacy to equiva-
lence. The essential difference between the two notions is that when two vector
fields are equivalent to each other, they do not have to respect the time in
which one “runs through” the orbits. To be more precise we have the following
definition.



Chapter 1. Prerequisites and technicalities 3

Definition 1.4 Two vector fields X (with flow Φt) and Y (with flow Ψt) on
an open subset of Rn are equivalent if there exists a homeomorphism h taking
orbits of Φt onto those of Ψt and preserving their orientation.

1.1.2 Classification based on the linear part

From now on we will assume that the vector fields and diffeomorphisms we are
working with are at least of class C2, i.e. they are at least two times continuously
differentiable. We now introduce the following “special points” which we want
to study throughout this thesis.

Definition 1.5 A point x0 is a fixed point of a diffeomorphism f : Rn → Rn

iff f(x0) = x0.

Definition 1.6 A point x0 is a singular point of a vector field X on Rn iff
Φ(x0, t) ≡ x0 where Φ(x0, t) is the flow of X (in other words x0 is a fixed point
of the flow of X starting in x0) or equivalently X(x0) = 0.

We now want to classify fixed points and singular points by means of the
eigenvalues of the linear parts of the diffeomorphism or vector field taken in
those points. We start with the singular points of a vector field.

Singular points

Let x0 be a singular point of the vector field X =

n∑

j=1

Xj(x)
∂

∂xj

, then the linear

part of X in x0 is the n × n matrix DX(x0). Denote the set of eigenvalues of
DX(x0) with Spec(DX(x0)). If all elements of Spec(DX(x0)) have real part
different from zero, then we say that Spec(DX(x0)) is a hyperbolic set. In
this case we say that x0 is a singularity of hyperbolic type or shortly a
hyperbolic singularity. When working in the neighbourhood of a hyperbolic
singularity, we will say that X is a hyperbolic vector field. This class of
vector fields takes a special position within the set of vector fields because of
the following result.

Theorem 1.2 (Hartman-Grobman Theorem) Let x0 be a hyperbolic sin-
gular point of the vector field X on an open subset of Rn and Y the linear vector

field given by Y =

n∑

j=1

DXj(x0) · x
∂

∂xj

, then X and Y are C0 conjugate in a

neighbourhood of x0.

Proof: We refer the reader to [BK94, Gro59, Har60b]. 2

If the conditions of Theorem 1.2 are fulfilled, then we say that X can be lin-
earised in a C0 way. For this reason we say that Theorem 1.2 gives a topological
classification of such singular points.
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If Spec(DX(x0)) forms a hyperbolic set and not all of the elements have real
parts with the same sign, then we say that the singularity x0 is of saddle type
or shortly a saddle.

Outside the class of hyperbolic singularities, there is one type of singularities
we will encounter in this thesis. In the case that all elements of Spec(DX(x0))
are pairs of complex conjugate imaginary numbers, we will say that x0 is a sin-
gularity of center type or shortly a center. As the elements of Spec(DX(x0))
appear in pairs, it is obvious that centers can only exist in vector fields where
n is even.

Fixed points

Let x0 be a fixed point of the diffeomorphism f : Rn → Rn, then the linear part
of f in x0 is the n× n matrix Df(x0). Denote the set of eigenvalues of Df(x0)
with Spec(Df(x0)). As f is a diffeomorphism, all elements of Spec(Df(x0))
will be non-zero. If all elements of Spec(Df(x0)) have modulus different from
one, then we say that Spec(Df(x0)) is a multiplicatively hyperbolic set.
In this case we say that x0 is a fixed point of hyperbolic type or shortly
a hyperbolic fixed point. When working in the neighbourhood of a hyper-
bolic fixed point, we will say that f is a hyperbolic diffeomorphism. The
class of hyperbolic diffeomorphisms takes a special position within the set of
diffeomorphisms because of the following result.

Theorem 1.3 (Hartman-Grobman Theorem) Let x0 be a hyperbolic fixed
point of the diffeomorphism f : U ⊂ Rn → Rn (where U is an open subset of
Rn) and g the linear map defined as g : Rn → Rn : x 7→ Df(x0) · x, then f and
g are C0 conjugate in a neighbourhood of x0.

Proof: We refer the reader to [BK94, Gro59, Har60b]. 2

If the conditions of Theorem 1.3 are fulfilled, then we say that f can be lin-
earised in a C0 way. For this reason we say that Theorem 1.3 gives a topological
classification of such fixed points.

If Spec(Df(x0)) forms a multiplicatively hyperbolic set and there are ele-
ments with modulus strictly greater than 1 and there are elements with modulus
strictly smaller than 1, then we say that the fixed point x0 is of saddle type
or shortly a saddle.

1.2 Analytic functions in several variables

In this section we want to introduce some important notions and results on
analytic functions in several variables. For more information and proofs we
refer to [Hör73, KK83].
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Although most of the results hold for analytic functions on an open subset
of Cn, we will restrict ourselves to analytic functions defined on a so-called
poly-disk:

D(a,R) := B(a1, R1) × · · · ×B(an, Rn)

where a = (a1, · · · , an) ∈ Cn and R = (R1, · · · , Rn) ∈ (R+ \ {0})n.

Definition 1.7 • A function f : D(a,R) → C is called partially ana-
lytic if, for each fixed (z0

1 , · · · , z0
n) ∈ D(a,R), and each j = 1, · · · , n, the

function of one variable determined by the assignment

zj 7→ f(z0
1 , · · · , z0

j−1, zj, z
0
j+1, · · · , z0

n)

is analytic on B(aj , Rj).

• A continuous partially analytic function on a poly-disk is called analytic.

In [Hör73] it is proved that every partially analytic function is continuous,
hence every partially analytic function is always analytic. We want to identify
such an analytic function with a power series expansion. Therefore we use the
following result.

Definition 1.8 A series
∑

m∈Nn am(z) converges normally on a poly-disk
D(a,R) if

∑

m∈Nn

sup
z∈K

|am(z)|

converges on every compact set K ⊂ D(a,R).

Theorem 1.4 ([Hör73]) If f is analytic on the poly-disk D(a,R), we have

f(z) =
∑

m∈Nn

∂|m|f

∂zm
(a)

(z − a)m

m!
, z ∈ D(a,R),

with normal convergence.

This definition implies that
∑

m∈Nn am(z) exists and is independent of the
order of summation and that the sum is analytic if all am are analytic. This is
an immediate consequence of

Proposition 1.5 ([Hör73]) If (uk)k∈N is a sequence of analytic functions on a
poly-disk D(a,R) and uk → u when k → +∞, uniformly on all compact subsets
of D(a,R), then u is analytic on D(a,R).

Remark 1.1 In [Hör73] Proposition 1.5 is proved for open neighbourhoods of
a instead of poly-disks.
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In what follows we want to work with functions that are analytic in a variable
z ∈ Cp and a parameter ε ∈ Cq. Equipping Cp+q with the maximum-norm, the
cartesian product of a poly-disk in Cp with a poly-disk in Cq is a poly-disk in
Cp+q. Introducing e := (1, 1, · · · , 1) ∈ Cn (with n ≥ 1) this choice of norm
gives us that B(a,R) = D(a,Re) ⊂ Cn. So by virtue of Theorem 1.4 and the
definition of normal convergence, we have for each analytic function f(z, ε) on
D(a,Re) × D(b, r) in Cp × Cq that

f(z, ε) =
∑

m∈Np

fm(ε)(z − a)m,

for each z ∈ D(a,R) and ε ∈ D(b, r), with normal convergence and each fm(ε)
is analytic in D(b, r).

Conversely if the series

∑

m∈Np

fm(ε)(z − a)m

converges normally on D(a,R) × D(b, r) and each fm(ε) is analytic on D(b, r),
then by virtue of Proposition 1.5 the function defined by the sum

f(z, ε) :=
∑

m∈Np

fm(ε)(z − a)m

is analytic on D(a,R) × D(b, r) as it is clear that fm(ε)(z − a)m is analytic on
D(a,R) × D(b, r) and we have normal convergence.

From this, it is easy to see that the following result holds.

Proposition 1.6 Let fm(ε) be an analytic function on D(b, r) for each m ∈ Np

and g(z) =
∑

m∈Np gm(z − a)m is an analytic function on D(a,R) such that

|fm(ε)| ≤ gm, ∀m ∈ Np,

then the function f : Cp+q → C with

f(z, ε) :=
∑

m∈Np

fm(ε)(z − a)m

is analytic on D(a,R) × D(b, r).

The coefficients gm in Proposition 1.6 need to be real and positive.

1.3 Formal and smooth normal forms

In this section it is our aim to give a comprehensive introduction to the theory
of normal forms. First of all we discuss normal forms for a single vector field
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or diffeomorphism. In both cases we investigate the formal normal form calcu-
lation, the influence of resonance on the formal normal form and some results
on smooth normal forms. Secondly we give the definition of a family of vector
fields or diffeomorphisms together with some important results we need in the
rest of this section. Thirdly we will discuss normal forms for a family of hyper-
bolic vector fields or diffeormorphisms. Again we investigate the normal form
calculation, the influence of resonance on the formal normal form and some re-
sults on smooth normal forms. The latter subject will require some techniques
that will be discussed in a more detailed manner. We end this section with a
discussion on the formal normal form of a family of planar vector fields arising
from a perturbed vector field of center type.

1.3.1 Normal form of a vector field

First of all we discuss the formal normal form. In this case we work on the
k-jet of the vector field where k ∈ N ∪ {∞}. In the second part we will discuss
normal forms of analytic and C∞ vector fields.

Formal normal form

Consider a vector field X on Cn with a singular point x0. First of all we will
perform a translation to obtain the singular point at the origin. So we apply
the following change of coordinates

τx0 : x 7→ x− x0

and obtain a vector field X̃ on Cn with a singular point at the origin. This way
X̃ can be written as

X̃ : ẋ = Ax+ f(x), x ∈ Cn,

where the complex n × n matrix A is the linear part at the origin of X̃, i.e.
A = DX̃(0), and we have for f : Cn → Cn that f(x) = O(|x|2) for x → 0. By
virtue of the Jordan Normal Form Theorem from Linear Algebra, we have that
by taking the eigenvectors and the generalised eigenvectors of A as basis we can
transform A into its Jordan Normal Form Â. Applying this change of basis on
X̃, we obtain the vector field

X̂ : ẋ = Âx+ f̂(x), x ∈ Cn,

where we have for f̂ : Cn → Cn that f̂(x) = O(|x|2) for x close to the origin.

Having established this result, for the rest of this subsection we will assume
we have a vector field

X : ẋ = Ax+ f(x), x ∈ Cn, (1.4)
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where A is a complex n×n matrix in Jordan Normal Form and for f : Cn → Cn

we have that f(x) = O(|x|2) for x close to the origin.
It is very natural to ask oneself if the function f appearing in (1.4) can’t be

put in a “simple” form just as we put the linear part into its Jordan Normal
Form. Therefore we will use a sequence of near identity changes of coordinates
of the form

h(y) = y + hk(y), y ∈ Uk, (1.5)

where hk : Cn → Cn is a homogeneous polynomial of order k ≥ 2 and Uk is a
neighbourhood of the origin in Cn. Applying the change of coordinates given by
(1.5) to (1.4) means we want to calculate the pull-back of (1.4) under h. Using
the Taylor expansion of f at the origin up to order k (where k ≥ 2)

f(x) = f2(x) + f3(x) + · · · + fk(x) + O(|x|k+1),

we obtain

h∗X : ẏ = Ay + f2(y) + · · · + fk−1(y) (1.6)

+
(
fk(y) − [Dhk(y)Ay −Ahk(y)]

)
+ O(|y|k+1),

where y ∈ Uk. To simplify the term fk(y) we will have to choose a suitable
hk(y) before making transformation (1.5). Let Hk

n denote the vector space of
homogeneous polynomials of order k in n variables with values in Cn, then we
can define for each k ≥ 2 the linear operator Lk

A : Hk
n → Hk

n by

(Lk
Ah

k)(y) = Dhk(y)Ay −Ahk(y), hk ∈ Hk
n. (1.7)

Then (1.6) can be rewritten as

h∗X : ẏ = f2(y) + · · · + fk−1(y) +
(
fk(y) − Lk

Ah
k(y)

)
+ O(|y|k+1). (1.8)

As Lk
A is a linear operator, we know that Lk

A(Hk
n) =: Rk is a linear subspace of

Hk
n. Let Ck be any complementary subspace to Rk in Hk

n, then we have

Hk
n = Rk ⊕ Ck, k ≥ 2. (1.9)

Using the splitting given by (1.9) one proves the following result.

Theorem 1.7 Let X : Cn → Cn be a vector field with X(0) = 0 and DX(0) =
A. Let the decomposition (1.9) be given for k = 2, · · · , r. Then there exists a
sequence of near identity transformations x = y+hk(y), y ∈ Uk, where hk ∈ Hk

n

and Uk is a neighbourhood of the origin, Uk+1 ⊆ Uk, k = 2, · · · , r, such that
(1.4) is transformed into

ẏ = Ay + g2(y) + · · · + gr(y) + O(|y|r+1), y ∈ Ur, (1.10)

where gk ∈ Ck for k = 2, · · · , r − 1.
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Proof: We refer the reader to [CLW94]. 2

In this thesis we will always work with vector fields with a linear part that
can be diagonalised over C, in that case Theorem 1.7 can be improved. Before
stating and proving this result we need to introduce the following definitions.

Definition 1.9 Let Spec(A) = {λ1, · · · , λn} where A is defined by (1.4).

• The eigenvalues of A are resonant if there exist a m ∈ Nn and k ∈
{1, · · · , n} with

|m| :=

n∑

j=1

mj ≥ 2

and

〈Λ,m〉 − λk = 0, (1.11)

where Λ := (λ1, · · · , λn) and 〈Λ,m〉 :=

n∑

j=1

λjmj.

• Let (x1, · · · , xn) be coordinates with respect to the standard basis
{e1, · · · , en} of Cn in which the matrix A is in Jordan Normal Form
where the diagonal elements are given by Λ, then a monomial xmej =∏

1≤k≤n

xmk

k ej is called resonant if (1.11) holds for the given m and j.

We will refer to (1.11) as the resonance equation on the eigenvalues of A.

We now come to the following result.

Theorem 1.8 If - under the conditions of Theorem 1.7 - we have that A =
diag(λ1, · · · , λn), then a normal form up to order r ≥ 2 can be chosen so that
its nonlinear part consists only of resonant monomials up to order r.

Proof: Even though the proof can found in [CLW94] we give it anyway because
it shows how resonance influences the formal normal form.

A direct calculation shows that for any monomial xmej with |m| ≥ 2 and
1 ≤ j ≤ n,

Lk
A(xmej) = (〈Λ,m〉 − λj)x

mej. (1.12)

Hence ker(Lk
A) is obviously a complementary subspace to Lk

A(Hk
n) and ker(Lk

A)
is spanned by all resonant monomials of order k for each k ≥ 2. Then the
desired result follows from Theorem 1.7. 2
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Smooth linearisation of a vector field

The next question that arises is if it is possible to eliminate all non-linear terms
and obtaining a linear vector field. From (1.12) it is clear why a resonant
monomial cannot be eliminated by a polynomial change of variables. So resonant
vector fields are in general not formally linearisable. When the eigenvalues of the
linear part at the singularity are not resonant there are known cases in which an
analytic vector field is not analytically linearisable. The phenomenon appearing
there is known as the problem of the small divisors: although 〈Λ,m〉 − λj 6= 0
for any j and m, we may have that 〈Λ,m〉−λj becomes very small when |m| is
large.

If one is interested in an analytic conjugacy between a vector field and its
linear part, one has the well-known results from Poincaré and Siegel which we
will discuss after introducing some definitions.

Definition 1.10 Let S be a subset of Cn, then the convex hull Conv(S) is
the intersection of all convex subsets of Cn containing S. If S = {s1, · · · , sN}
is a finite subset of Cn, then

Conv(S) =






N∑

j=1

rjsj

∣∣∣∣∣∣
rj ≥ 0 and

N∑

j=0

rj = 1




 .

Definition 1.11 If the convex hull of Spec(A) in the complex plane does not
contain the origin of C, then Spec(A) is said to be in the Poincaré domain;
otherwise we say that Spec(A) is in the Siegel domain.

So now we state the two theorems and one should note how restrictive the
demands are to obtain an analytic linearisation. This permits us to conclude
that this type of linearisation is rather exceptional.

Theorem 1.9 (Poincaré’s Theorem) Let A = diag(λ1, · · · , λn). If Spec(A)
is in the Poincaré domain and the resonance equations for A have no solutions
for |m| ≥ 2 and 1 ≤ j ≤ n, then there exists an analytic change of variables
x = y + ξ(y), y ∈ U , where ξ(y) = O(|y|2) as y → 0 and U is a neighbourhood
of the origin in Cn, which transforms the analytic vector field

ẋ = Ax+ f(x), x ∈ Cn,

with f(x) = O(|x|2) if x→ 0, into the linear system

ẏ = Ay, y ∈ Cn.

Proof: We refer the reader to [Poi79, CLW94]. 2

Remark 1.2 We will obtain Theorem 1.9 as a corollary of Theorem 4.17.
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Theorem 1.10 (Siegel’s Theorem) Let Spec(A) = {λ1, · · · , λn}. If there
exist C0 > 0 and µ > 0 such that for any m ∈ Nn with |m| ≥ 2

|〈Λ,m〉 − λj | ≥
C0

|m|µ , 1 ≤ j ≤ n, (1.13)

then the analytic vector field

ẋ = Ax+ f(x), x ∈ Cn,

with f(x) = O(|x|2) if x→ 0, can be transformed into the linear system

ẏ = Ay, y ∈ Cn

by an analytic transformation.

Proof: We refer the reader to [Sie52, CLW94]. 2

The condition (1.13) was weakened by Bruno to the so-called “Condition ω”
and “Condition A”, where Condition ω poses a restriction on the eigenvalues of
A and Condition A poses a restriction on the formal normal form of the vector
field. This way Bruno obtained a generalisation of Theorem 1.10. For more
details we refer to [Brun71].

In the case one works with a real C∞ vector field, one has the following
result from Sternberg.

Theorem 1.11 (Sternberg’s Theorem) Let

X : ẋ = Ax+ f(x), x ∈ Rn

be a C∞ vector field with a singularity at the origin and with f(x) = O(|x|2)
for x → 0. If the eigenvalues of A are non-resonant, then there exists a C∞

conjugacy between X and the linear system

Y : ẏ = Ay.

Proof: We refer the reader to [Ste58, Ste59]. 2

1.3.2 Normal form of a diffeomorphism

This subsection holds very similar results to the previous one. So we start with
a discussion on the formal normal form of a diffeomorphism and after that we
will discuss some results on smooth normal forms of diffeomorphisms.
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Formal normal form

The calculation of the formal normal form of a diffeomorphism f : U ⊂ Cn → Cn

is quite similar to the calculations we did in the case of a vector field in the
previous subsection. That is why will skip most of the details here.

So assume we have a diffeomorphism f : U ⊂ Cn → Cn with a fixed point
x0 and where U is an open subset of Cn, then after a translation and a suitable
change of variables (given by the Jordan Normal Form Theorem) we may assume
that we have a diffeomorphism

f : Cn → Cn : x 7→ Ax+ F (x), x ∈ Cn, (1.14)

where A is a complex n×n matrix in Jordan Normal Form and for F : Cn → Cn

we have that F (x) = O(|x|2) for x→ 0.
Using a sequence of near identity change of coordinates we now calculate a

formal normal form up to order k (k ≥ 2). In the case of a diffeomorphism one
encounters the linear operator Lk

A : Hk
n → Hk

n defined as:

Lk
Ah(x) = h(Ax) −Ah(x), h ∈ Hk

n. (1.15)

Therefore it is easy to see that Theorem 1.7 can be imitated for diffeomor-
phisms. As throughout this thesis we will always work with diffeomorphisms
with a linear part at the fixed point that can be diagonalised over C, we like to
have a variant of Theorem 1.8. This is possible if we use the following definition.

Definition 1.12 Let Spec(A) = {λ1, · · · , λn} where A is defined by (1.14).

• The eigenvalues of A are multiplicatively resonant if there exists a
m ∈ Nn and k ∈ {1, · · · , n} with

|m| :=

n∑

j=1

mj ≥ 2

and
Λm − λk = 0, (1.16)

where Λ := (λ1, · · · , λn) and Λm =
∏

1≤j≤n

λ
mj

j .

• Let (x1, · · · , xn) be coordinates with respect to the standard basis
{e1, · · · , en} of Cn in which the matrix A is in Jordan Normal Form where
the diagonal elements are given by Λ, then a monomial xmek is called
multiplicatively resonant if (1.16) holds for given m and k.

We will also refer to (1.16) as the resonance equation on the eigenvalues of
A. From the context it will always be clear whether we are talking about the
resonance equation on the eigenvalues of the linear part of a vector field or the
resonance equation on the eigenvalues on the linear part of a diffeomorphism.
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Smooth linearisation of a diffeomorphism

Again we ask ourselves if it is possible to eliminate all non-linear terms in order
to obtain a linear diffeomorphism. Applying the operator Lk

A defined by (1.15)
to a monomial of the form xmej gives us

Lk
A(xmej) = (Λm − λj)x

mej . (1.17)

In the multiplicatively resonant case it is obvious that the resonant terms cannot
be eliminated, but when Λm − λj becomes very small for large values of |m| we
encounter again the small divisor problem.

If one is interested in an analytic conjugacy between a vector field and its
linear part, there are variants on the results from Poincaré and Siegel.

Theorem 1.12 Let A = diag(λ1, · · · , λn). If 0 < |λj | < 1 for all j = 1, · · · , n
and the resonance equations for A have no solutions for |m| ≥ 2 and 1 ≤ j ≤ n,
then there exists an analytic change of variables x = y + ξ(y), y ∈ U , where
ξ(y) = O(|y|2) as y → 0 and U is a neighbourhood of the origin in Cn, which
transforms the analytic diffeomorphism

f : Cn → Cn : x 7→ Ax + F (x),

with F (x) = O(|x|2) if x→ 0, into the linear diffeomorphism

g : Cn → Cn : x 7→ Ax.

Proof: We refer the reader to [Mey75]. 2

Remark 1.3 We will obtain Theorem 1.12 as a corollary of Theorem 4.19.

Theorem 1.13 Let Spec(A) = {λ1, · · · , λn}. If there exist C0 > 0 and µ > 0
such that for any m ∈ Nn with |m| ≥ 2

|Λm − λj | ≥
C0

|m|µ , 1 ≤ j ≤ n, (1.18)

then the analytic diffeomorphism

f : Cn → Cn : x 7→ Ax+ F (x)

with F (x) = O(|x|2) if x→ 0, can be transformed into the linear diffeomorphism

g : Cn → Cn : x 7→ Ax

by an analytic transformation.

Proof: We refer the reader to [Zeh77]. 2

If one works with a C∞ diffeomorphism on Rn then one has the following
result from Sternberg.
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Theorem 1.14 (Sternberg’s Theorem) Let

f : Rn → Rn : x 7→ Ax+ F (x)

be a C∞ diffeomorphism with a fixed point at the origin and with F (x) = O(|x|2)
for x→ 0. If the eigenvalues of A are multiplicatively non-resonant, then there
exists a C∞ conjugacy between f and the linear diffeomorphism

g : Rn → Rn : x 7→ Ax.

Proof: We refer the reader to [Ste58, Ste59]. 2

1.3.3 Family of vector fields or diffeomorphisms

In this thesis we want to work with more than one vector field or diffeomorphism
at the time. This can be done if one works with (local) families.

Definition 1.13 • A (local) Ck family of vector fields (k ∈ N∪{∞, ω})
is the germ at (x, ε) = (0, 0) of the vector field defined by a system of
equations {

ẋ = f(x, ε)
ε̇ = 0

,

where (x, ε) ∈ (Rn+p, (0, 0)) and f is a Ck function of (x, ε).

• A (local) Ck family of diffeomorphisms (k ∈ N∪{∞, ω}) is the germ
at (x, ε) = (0, 0) of the Ck map

(x, ε) 7→ (f(x, ε), ε)

where (x, ε) ∈ (Rn+p, (0, 0).

When working with (local) families of vector fields, one usually omits the equa-
tion ε̇ = 0 from the notation.

Sometimes one constructs a (local) family of vector fields or diffeomorphisms
by perturbing a given vector field or diffeomorphism. The (local) family ob-
tained this way is called a (local) deformation.

Definition 1.14 • A (local) deformation of a vector field ẋ = g(x)
is a local family of vector fields ẋ = f(x, ε), (x, ε) ∈ (Rn+p, (0, 0)) where
f(x, 0) = g(x) for all x ∈ (Rn, 0).

• A (local) deformation of a diffeomorphism f : Rn → Rn is a local
family of diffeomorphisms

(x, ε) 7→ (g(x, ε), ε),

where (x, ε) ∈ (Rn+p, (0, 0)) and g(x, 0) = f(x) for all x ∈ (Rn, 0).
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Conjugacies (or equivalences) between (local) families or (local) deformations
of vector fields or diffeomorphisms are defined as in Subsection 1.1.1 with the
difference that now we will have a (local) family of conjugacies (or equivalences).

To end this subsection we want to give two results which we will need to
obtain useful normal forms for families of vector fields or diffeomorphisms.

Proposition 1.15 Let Aε be a real n×n matrix where the coefficients are C∞,
resp. analytic functions of a parameter ε ∈ B(0, r), resp. ε ∈ D(0, R) such that
the eigenvalues of A0 have multiplicity 1, then there exists a r̃ ∈ R+ \ {0}, resp.
r̃ ∈ (R+\{0})p such that the eigenvalues of Aε are C∞, resp. analytic functions
of ε for all ε ∈ B(0, r̃), resp. ε ∈ D(0, r̃).

Proof: First we treat the analytic case. We consider the following function

f : C × Cp : (λ, ε) 7→ det(Aε − λIn),

where In is the n-dimensional unity matrix, then f is an analytic function of
(λ, ε) as Aε is analytic in ε. The eigenvalues ν1, · · · , νn of A0 are the solutions
of the equation

f(λ, 0) = 0

and as all eigenvalues have multiplicity 1 for ε = 0 we have

f(νj , 0) = 0

∂f

∂λ
(νj , 0) 6= 0,

for j = 1, · · · , n. Now the Implicit Function Theorem permits us to conclude
that, for each j = 1, · · · , n there exist an analytic function λj and a r̃(j) ∈
(R+ \ {0})p,

λj : D(0, r̃(j)) → C : ε 7→ λj(ε)

such that f(λj(ε), ε) = 0 and λj(0) = νj . Taking

r̃k := min
1≤j≤n

r̃
(j)
k

for each k = 1, · · · , p, we obtain the r̃ we are looking for.

We now come to the C∞ case. We consider the function

f : C × Rp → C : (λ, ε) 7→ det(Aε − λIn).

We now identify C with R2, this gives us the function

f̃ : R2 × Rp → R2 : (a, b, ε) 7→ (<(f(a+ ib, ε)),=(f(a+ ib, ε))) .
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One observes that f̃ is C∞ in (a, b, ε). Now the proof is analogous to the analytic
case so we conclude that for each j = 1, · · · , n there exists C∞ functions aj , bj
and a r̃(j) > 0,

aj : B(0, r̃(j)) → R2 : ε 7→ aj(ε),

bj : B(0, r̃(j)) → R2 : ε 7→ bj(ε),

such that f̃(aj(ε), bj(ε), ε) = 0 and aj(0) + ibj(0) = νj . Taking λj := aj + ibj

and r̃ = min
1≤j≤n

r̃(j), we have that f(λj(ε), ε) = 0, λj(0) = νj and we obtain the

r̃ we are looking for. 2

We have just established that the eigenvalues of Aε are of the same class
of differentiability as Aε. We will now prove that the same result holds for the
eigenvectors associated with the eigenvalues of Aε.

Proposition 1.16 Under the same conditions of Proposition 1.15 we have that
the eigenvectors associated with the eigenvalues of Aε are C∞, resp. analytic
functions of ε for ε ∈ B(0, r̃), resp. ε ∈ D(0, r̃).

Proof: As each eigenvalue has multiplicity 1, the system

Aεv − λj(ε)v = 0

is row equivalent with




1 0 0 · · · 0 â1(ε) 0
0 1 0 · · · 0 â2(ε) 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 ân−1(ε) 0
0 0 0 · · · 0 0 0





where âj(ε) is a rational function in the coefficients of Aε hence it is a C∞,
resp. analytic function of ε. This means that the eigenvector belonging to the
jth eigenvalue is given by

v(j) = ρ(−â1(ε),−â2(ε), · · · ,−ân−1(ε), 1)

for ρ ∈ R \ {0}. This permits us to conclude that all eigenvectors are C∞, resp.
analytic functions of ε. 2

1.3.4 Normal form of a (local) family of hyperbolic vector
fields

As in Subsection 1.3.1 we start with a discussion on the formal normal form
of a (local) family of hyperbolic vector fields. After this we will discuss the
smooth normal form of a local family of hyperbolic vector fields. Besides the
main results, we will also discuss some of the techniques that are being employed
to treat this kind of problem.
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Formal normal form

We consider a C∞ or analytic family of real hyperbolic vector fields Xε : ẋ =
f(x, ε) and work on its k-jet with respect to x (k ∈ N ∪ {∞}).

From the Implicit Function Theorem we know that there exists a hyperbolic
singular point x0(ε) for Xε for any value of ε, i.e. Xεξε(x) = 0 where ξε : x 7→
x0(ε). Just as we did for a single vector field, we can make sure that this singular
point becomes the origin using the translation

τx0(ε) : x 7→ x− x0(ε).

This way we obtain a family of vector fields

X̃ε : ẋ = Aεx+ f̃(x, ε),

whereAε is a real n×nmatrix with coefficients that are analytic or C∞ functions
of ε (depending on the smoothness of Xε) and for f̃ we have that f̃(x, ε) =
O(|x|2) for x→ 0.

The next step now would be to apply the Jordan Normal Form Theorem. We
assume that all eigenvalues of A0 (or equivalently the eigenvalues of DX0(x0))
have multiplicity 1.

By virtue of Proposition 1.15 and Proposition 1.16 we can apply the Jordan
Normal Form Theorem without loss of the differentiability of the system. So
after a suitable linear change of variables, we can assume that the family of
vector fields takes the form

X̂ε : ẋ = Âεx+ f̂ε(x), (1.19)

where f̂ε(x) = O(|x|2) is a C∞, resp. analytic function of (x, ε) (on a poly-disk
D(0, R) in the analytic case) and Âε is in Jordan Normal Form.

From this point on, one can repeat the techniques with near identity trans-
formations - described in Subsection 1.3.1 - to transform (4.1) into a normal
form up to order r ≥ 2 where the nonlinear terms are resonant monomials. We
must take in account that the resonance equation will also contain the parameter
ε, i.e.

〈Λε,m〉 − λj(ε) = 0. (1.20)

It is possible to have a solution of (1.20) for only one specific value of ε, anyhow
we will still consider this to be a solution of the resonance equation as we
consider the whole family and not one of the vector fields of the family. This
situation can lead to a gigantic number of resonant monomials, that is why in
these cases ε is restricted in a “sufficiently” small neighbourhood of the origin
(in general an open ball or a poly-disk).

From now on we will omit the ˆ notation and assume that the family of
vector fields

Xε : ẋ = Aεx+ fε(x) (1.21)

is in a formal normal form up to order r ≥ 2 and the formal expansion of fε up
to order r contains only resonant monomials and fε(x) = O(|x|2) for x→ 0.
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Smooth normal form, decomposition of flat functions and the homo-
topic method

We want to give an important result on smooth normal forms for local deforma-
tions of a hyperbolic vector field. The results we present are stated and proved
in [IY91] and are generalisations of known results on smooth normal forms for
a single hyperbolic vector field.

Theorem 1.17 ([IY91]) Given a C∞ local deformation (1.21) of a C∞ hy-
perbolic vector field where the eigenvalues of A0 form a non-resonant set, then
for all k ∈ N we have that (1.21) is Ck conjugate to

ẋ = Aεx

on a k-dependent neighbourhood of the origin in Rn+p.

We like to point out that Theorem 1.17 does not claim that (1.21) is C∞ conju-
gate to its linear part. As the eigenvalues are perturbed by a parameter ε, high
order resonances can appear and these resonances cannot be removed in a C∞

way.
In the resonant case a result similar to Theorem 1.17 can be proved. Before

stating this result we need to introduce the following definition.

Definition 1.15 Let Spec(A) = {λ1, · · · , λn} where A is a complex n× n ma-
trix. The eigenvalues of A are strongly one-resonant if all the resonance
equations on the eigenvalues follow from a single equality

〈Λ,m〉 = 0, (1.22)

where m ∈ Nn with |m| ≥ 1.

Remark 1.4 If n = 2 in the previous definition, then strongly one-resonance
is the same as resonance.

So if (1.21) is a strongly one-resonant system, then all resonance equations
are given by

〈Λ,m+ ej〉 = λj ,

where ej = (0, · · · , 0, 1, 0, · · · , 0) with a 1 on the jth place and where j =
1, · · · , n.

Theorem 1.18 ([IY91]) Given a C∞ local deformation (1.21) of a C∞ hy-
perbolic vector field where the eigenvalues of A0 form a strongly one-resonant
set, then (1.21) is finitely smooth conjugate to

ẋj = xjgj(u(x), ε)), 1 ≤ j ≤ n, (1.23)
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where g(u, ε) is a vector polynomial of the scalar variable u ∈ R whose coef-
ficients depend finitely smooth on ε and xju(x) is the resonant monomial of
the jth resonance equation. More precisely, given any natural number N , there
is a polynomial g̃N(u, ε) with the aforementioned properties such that (1.21) is
CN conjugate to (1.23) with g = g̃N in some N -dependent neighbourhood of the
origin in Rn+p.

Not only the actual result of Theorem 1.17 and Theorem 1.18 are interesting,
also the techniques used to obtain these results are of great importance. Tech-
niques like globalising a vector field, decomposing flat functions and applying
the homotopic method to eliminate flat functions are very important. As we
will need the latter two techniques in Chapter 2, we want to give more details
on them here.

A vector function w that is N -flat at the singular point, i.e. w has a zero
N -jet at the singular point, is not easily annihilated by the homotopic method.
The following result shows that such a N -flat function can be decomposed as
the sum of two terms each of which is N -flat at all points of one of the subspaces
in the decomposition Rn = Rn+ ⊕ Rn− .

Lemma 1.19 ([Bon97, BD84]) Assume that a C∞ vector function w : Rn ×
(Rp, 0) → Rn has a compact support and a zero N -jet at x = 0 (N ≤ ∞).
Let Rn = Rn− ⊕ Rn+ be an arbitrary decomposition of Rn into a direct sum of
subspaces (without loss of generality, the subspaces can be regarded as coordinate
planes). There is then a decomposition

w = w− + w+ (1.24)

such that the function w− has a zero N -jet at all points of Rn− and the function
w+ has a zero jet of the same order at x ∈ Rn+, and the supports of both
functions remain compact.

Now we come to the homotopic method. Actually this technique transforms
the problem of conjugacy between vector fields into the solubility problem of an
equation.

Lemma 1.20 Let Xε : ẋ = F (x, ε) and Yε : ẋ = F (x, ε) + w(x, ε) be two
local families of vector fields in Rn+p. We assume that there is a Ck smooth
vector field Zε,τ depending on an additional parameter τ ∈ [0, 1] and defined by
a differential equation ẋ = h(x, ε, τ) such that the commutation relation

[F + τw, h] = w (1.25)

is satisfied, where h(0, τ, ε) ≡ 0. The families Xε and Yε are then Ck conjugate.

Proof: We refer the reader to [IY91]. 2
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Equation (1.25) is called the homological equation. We now come to the result
that gives us that this equation always has a solution if we restrict to hyperbolic
systems. We refer to [IY91] for a proof that a local family of hyperbolic vector
fields fulfills all criterions that are posed by Lemma 1.21.

Lemma 1.21 Let Xµ : ẋ = v(x, µ) be a local family of vector fields on Rn

depending smoothly on a finite-dimensional parameter µ ∈ B ⊆ Rm. We assume
that there is a submanifold M ⊆ Rn that is invariant under all the fields Xµ

and globally exponentially stable. This means that there is a constant λ > 0
such that the action of the phase flow operator Φt of Xµ satisfies the following
estimate uniformly for all µ ∈ B:

dist(Φt(x),M) ≤ Ce−λt dist(x,M)

for all positive t > 0. Furthermore, we assume that all the trajectories of the
fields Xµ can be extended without bounds and the divergence div(Xµ) is uni-
formly bounded.

Let us consider the homological equation

[v, h] = w (1.26)

for an unknown field Zµ : ẋ = h(x, µ) depending on a parameter µ, whose
right-hand side is a compactly supported C∞ local family of vector fields on Rn.

Under the above hypotheses, given any natural number k < ∞ we can find
a finite N such that the homological equation whose right-hand side w is N -flat
at all points of M has a Ck-smooth solution whose k-jet on M is also zero (the
smoothness is with respect to the phase variables x as well as the parameters µ).

Proof: We refer the reader to [IY91]. 2

Lemma 1.21 can be generalised to N = ∞. For a proof we refer to [IY91].

Proposition 1.22 Under the conditions of Lemma 1.21 the homological equa-
tion (1.26) whose right-hand side is ∞-flat at all points of M has a C∞-smooth
solution that is ∞-flat on M .

1.3.5 Normal form of a (local) family of hyperbolic diffeo-
morphisms

As in Subsection 1.3.2 we start with a brief discussion on the formal normal
form of a (local) family of hyperbolic diffeomorphisms. After this we discuss
the smooth normal form of a local family of hyperbolic diffeomorphisms. Beside
the main results, we also discuss some of the techniques that are being employed
to prove these results.
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Formal normal form

Consider a C∞ or analytic family of diffeomorphisms fε : U ⊂ Rn → Rn

with a hyperbolic fixed point x0(ε). Combining the techniques and results
from Subsection 1.3.2 and Subsection 1.3.4 we may assume that the family of
diffeomorphisms

fε : Rn → Rn : x 7→ Aεx+ Fε(x) (1.27)

is in a formal normal form up to order r ≥ 2, Aε is in Jordan Normal Form and
the formal expansion of Fε up to order r contains only resonant monomials and
Fε(x) = O(|x|2) for x→ 0.

Smooth normal form, decomposition of flat functions and the homo-
topic method

We want to give an important result on smooth normal forms for local de-
formations of a hyperbolic diffeomorphism. The results we present are stated
and proved in [IY91] and are the “discrete versions” of the results presented in
Subsection 1.3.4.

Theorem 1.23 ([IY91]) Given a C∞ local deformation (1.27) of a C∞ hyper-
bolic diffeomorphism where the eigenvalues of A0 form a multiplicatively non-
resonant set, then for all k ∈ N we have that (1.27) is Ck conjugate to

gε : Rn → Rn : x 7→ Aεx

on a k-dependent neighbourhood of the origin in Rn+p.

In the resonant case a result similar to Theorem 1.23 can be proved. Before
stating this result we need to introduce the following definition.

Definition 1.16 Let Spec(A) = {λ1, · · · , λn} where A is defined by (1.14).
The eigenvalues of A are multiplicatively strongly one-resonant if all the
resonance equations on the eigenvalues follow from a single equality

Λm = 1, (1.28)

where m ∈ Nn with |m| ≥ 1.

Remark 1.5 If n = 2 in the previous definition, then multiplicatively strongly
one-resonant is the same as multiplicatively resonant.

So if (1.27) is a multiplicatively strongly one-resonant diffeomorphism, then
all resonance equations are given by

Λm+ej = λj ,

where ej = (0, · · · , 0, 1, 0, · · · , 0) with a 1 on the jth place and where j =
1, · · · , n.
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Theorem 1.24 ([IY91]) Given a C∞ local deformation (1.27) of a C∞ hy-
perbolic vector field where the eigenvalues of A0 form a multiplicatively strongly
one-resonant set, then (1.27) is finitely smooth conjugate to

gε : Rn → Rn : x 7→ xjgj(u(x), ε)), 1 ≤ j ≤ n, (1.29)

where g(u, ε) is a vector polynomial of the scalar variable u ∈ R whose coef-
ficients depend finitely smooth on ε and xju(x) is the resonant monomial of
the jth resonance equation. More precisely, given any natural number N , there
is a polynomial g̃N(u, ε) with the aforementioned properties such that (1.27) is
CN conjugate to (1.29) with g = g̃N in some N -dependent neighbourhood of the
origin in Rn+p.

We briefly recall the results on the homotopic method applied to a family of
diffeomorphisms.

Lemma 1.25 Let fε and fε +wε be two smooth diffeomorphisms of Rn depend-
ing on parameters ε ∈ (Rp, 0). We assume that there is a Ck-smooth diffeomor-
phism hε,τ on Rn depending on the parameters ε and also on an additional
parameter τ ∈ [0, 1] such that

∂

∂x
(fε + τwε) · hε,τ − hε,τ ◦ (fε + τwε,τ ) = −ϕ, hε,τ (0) = 0, (1.30)

holds for all ε ∈ (Rp, 0), τ ∈ [0, 1]. The diffeomorphisms fε and fε + wε are
then Ck-smoothly conjugate.

Proof: We refer the reader to [IY91]. 2

Equation (1.30) is the discrete version of (1.25) and is therefore also called
homological.

Lemma 1.26 Let f(x, µ) be a family of diffeomorphisms of Rn depending on
parameters µ ∈ B ⊆ Rm. Let there be a submanifold M ⊆ Rn invariant un-
der all f(·, µ) that is exponentially asymptotically stable in the sense that the
following uniform estimate is satisfied: ∀t ∈ N

dist(f t(x, µ),M) ≤ cλt dist(x,M), 0 < λ < 1.

Then, given any k ∈ N, we can find a N = N(k) such that the homological
equation (

∂f

∂x

)
· h− h ◦ f = w (1.31)

whose right-hand side w is compactly supported, smooth, and N -flat on M , has
a solution in the class of Ck-smooth diffeomorphisms that is k-flat at points
x ∈M .
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Proof: We refer the reader to [IY91]. 2

Lemma 1.26 can be generalised to N = ∞. For a proof we refer to [IY91].

Proposition 1.27 Under the conditions of Lemma 1.26 the homological equa-
tion (1.31) whose right-hand side is ∞-flat at all points of M has a C∞-smooth
solution that is ∞-flat on M .

1.3.6 Normal form of a local deformation of a planar sin-
gularity of center type

We start with a real planar vector field Y with a singularity (x0, y0) of center
type, i.e. DY(x0,y0) has eigenvalues ±iα with α > 0. Let Xε be a local C∞

deformation of Y (so X0 ≡ Y ) such that (xε, yε) is a singularity for Xε. We
note that in general (xε, yε) will not be a singularity of center type for all vector
fields of the local deformation, i.e. for ε = 0 we have a singularity of center type
and for ε 6= 0 we have a singularity of hyperbolic type. This will become clear
later on.

First we will perform the translation

τ(xε,yε) : R2 → R2(x, y) 7→ (x− xε, y − yε)

to obtain a local C∞ deformation X̃ε with a singularity at the origin which
is of center type for ε = 0. We will assume that ε ∈ (R, 0). By virtue of
Proposition 1.15 and Proposition 1.16 we can apply the Jordan Normal Form
Theorem without loss of differentiability and by means of a linear transformation
we obtain that X̃ε is conjugate to

X̂ε :

{
ẋ = β(ε)x− α(ε)y + f̂(x, y; ε)
ẏ = α(ε)x+ β(ε)y + ĝ(x, y; ε)

, (1.32)

where the functions appearing in (1.32) are C∞ and we have that α(0) 6= 0,

β(0) = 0, f̂(x, y; ε) = O(|(x, y)|2) and ĝ(x, y; ε) = O(|(x, y)|2) for (x, y) → (0, 0).
We will assume that ∂β

∂ε
(0) 6= 0.

Proposition 1.28 There exist a C∞ function a : (R, 0) → (R, 0) such that
(1.32) can be rewritten as

X̌δ :

{
ẋ = δx− a(δ)y + f̌(x, y; δ)
ẏ = a(δ)x+ δy + ǧ(x, y; δ)

. (1.33)

Proof: As α(0) 6= 0, β(0) = 0 and ∂β
∂ε

(0) 6= 0, we have that the curves γ±
defined by

γ± : (R, 0) → (C, 0) : ε 7→ β(ε) ± iα(ε)



24

will intersect the imaginary axis transversally in the eigenvalues ±iα(0), i.e.
∂γ±

∂ε
(0) 6= 0. We know that α and β are C∞ functions in ε so we have that

α(ε) = α(0) + O(|ε|)
β(ε) = rε+ O(|ε|2)

= rε(1 + O(|ε|))

where r = ∂β
∂ε

(0) 6= 0.
We now consider the equation

δ = β(ε) = rε(1 + O(|ε|))

for δ close to zero. As r 6= 0 we can apply the Inverse Function Theorem which
gives us the existence of a C∞ function b for which we have that ε = b(δ) for δ
sufficiently close to zero and b(δ) = r̃δ + O(|δ|2) where r̃ 6= 0.

We now have that

α(ε) = α(b(δ))

= α(0) + O(|b(δ)|)
= α(0) + O(|r̃δ + O(|δ|2)|)
= α(0) + O(|δ|.|r̃ + O(|δ|)|)
= α(0) + O(|δ|).

Defining a(δ) := α(b(δ)) we obtain that

β(ε) ± iα(ε) = δ ± ia(δ)

for δ sufficiently close to zero. We introduce the following definitions

f̌(x, y; δ) = f̂(x, y;β−1(δ))

ǧ(x, y; δ) = ĝ(x, y;β−1(δ))

for δ sufficiently close to zero. As ∂β
∂ε

(0) 6= 0 we know that β is invertible for ε
close to zero. This means that (1.32) can be written as (1.33). 2

Changing notations this means that we can work with the following C∞

local deformation

Xε :

{
ẋ = εx− α(ε)y + f(x, y; ε)
ẏ = α(ε)x+ εy + g(x, y; ε)

, (1.34)

where f(x, y; ε) = O(|(x, y)|2) and g(x, y; ε) = O(|(x, y)|2) for (x, y) → (0, 0).
The linear part of Xε is diagonal if we turn to complex coordinates given by

the linear change of variables
(
z1
z2

)
=

(
1 i

1 −i

)(
x

y

)
.
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In this complex setting we can apply Theorem 1.8 with the adaptation that the
coefficients of the transformations are C∞ functions of ε instead of constants.
This time we will apply Theorem 1.8 for all k ∈ N. This leads to a sequence
of C∞ functions and a normal form containing a series of resonant monomials.
As we know that the transformation needed to eliminate terms of degree ` does
not effect any of the terms of degree smaller than ` this limit process will lead
to a well-defined formal power series. By virtue of Borel’s Theorem we know
there exist C∞ functions P , Q, R1 and R2 such that Xε becomes

Xε(x, y) = (εx− α(ε)y + xP (x2 + y2; ε) − yQ(x2 + y2; ε))
∂

∂x

+ (α(ε)x + εy + xQ(x2 + y2; ε) + yP (x2 + y2; ε))
∂

∂y

+ R1(x, y; ε)
∂

∂x
+R2(x, y; ε)

∂

∂y
(1.35)

where

P (0; ε) = 0, Q(0; ε) = 0 and
∂j+kRi

∂xjyk
(0, 0; ε) = 0, ∀j, k ∈ N, i = 1, 2.

The functions R1 and R2 are called infinitely flat functions.
We introduce

XN
ε (x, y) = (εx− α(ε)y + xP (x2 + y2; ε) − yQ(x2 + y2; ε))

∂

∂x
(1.36)

+ (α(ε)x + εy + xQ(x2 + y2; ε) + yP (x2 + y2; ε))
∂

∂y

which is a C∞ vector field without infinitely flat terms.
Putting

x = ρ cos θ,

y = ρ sin θ,

a direct calculation shows that (1.36) is transformed into

{
ρ̇ = ερ+ ρP (ρ2; ε)

θ̇ = α(ε) +Q(ρ2; ε).
(1.37)

As α(ε) 6= 0 for all ε close to zero, the function α(ε) +Q(ρ2; ε) doesn’t change
sign for sufficiently small ε.

Dividing this function, there exists a C∞ function F such that XN
ε - in polar

coordinates - is equivalent with

XP
ε :

{
ρ̇ = ερ+ ρ3F (ρ2; ε)

θ̇ = 1
. (1.38)
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Consider now M = R+ × R the universal cover of R+ × S1 with covering

P : R+ × R → R+ × S1 : (ρ, θ) 7→ (ρ, θ mod 2π)

Since XP
ε is (obviously) periodic in θ, the vector field

X̂ε =
(
ερ+ ρ3F (ρ2; ε)

) ∂

∂ρ

is such that P∗(X̂ε) = XP
ε . Now (1.38) provides the normal form we were looking

for.

1.4 Transition maps of planar vector fields

In this section we want to introduce some results on transition maps of planar
vector fields. It is by no means our intention to give a complete introduction to
this topic as it is studied and applied in a large variety of problems. We confine
ourselves to the case of a planar vector field as we will only apply results on
transition maps in this case.

Consider a real planar vector field X with a singular point x0 and with a
flow Φt(x).

Definition 1.17 Given a curve Σ with parameterisation σ : I → R2 : t 7→ σ(t)
where I is an interval, we say that Σ is transversal to the flow Φt of a planar
vector field X if the tangent vector to Σ is not parallel to the tangent vector to
the flow Φt at each point of Σ, i.e.

∀t ∈ I, ∀k ∈ R : σ′(t) 6= kX(σ(t)).

So consider two curves Σ1 and Σ2 (in this context we will call them sections)
transversal to the flow Φt(x) of the planar vector field X such that for all
x(1) ∈ Σ1 there exists a t0 > 0 such that x(2) := Φt0(x

(1)) ∈ Σ2. The map

Σ1 → Σ2 : x(1) 7→ x(2)

is called the transition map from Σ1 to Σ2.
In the following subsections we consider two types of vector fields in which

we can define and study transition maps with special properties.

1.4.1 Dulac map near a saddle singularity of a planar vec-
torfield

Consider a local C∞ deformation of a real planar vector field with a saddle
singularity, then by virtue of the results form Subsection 1.3.4, this local defor-
mation is given by

Xε :

{
ẋ = λ1(ε)x+ fε(x, y)
ẏ = λ2(ε)y + gε(x, y),

(1.39)
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where
λ1(ε)

λ2(ε)
∈ R− \ {0},

fε(x, y) and gε(x, y) are C∞ functions with fε(x, y) = O(|(x, y)|2) and gε(x, y) =
O(|(x, y)|2) for (x, y) → (0, 0). For sufficiently small values of ε the origin will
always be a singularity of saddle type for (1.39).

Denoting

r(ε) :=

∣∣∣∣
λ1(ε)

λ2(ε)

∣∣∣∣ ,

then (1.39) is C∞ equivalent to

X̃ε :

{
ẋ = x

ẏ = −r(ε)y + g̃ε(x, y),
(1.40)

where g̃ε(x, y) is a C∞ function with g̃ε(x, y) = O(|(x, y)|2) for (x, y) → (0, 0).
If r(0) is irrational, then by Theorem 1.17 we have that for each k ∈ N

system (1.40) is Ck conjugate to

Yε :

{
ẋ = x

ẏ = −r(ε)y. (1.41)

If r(0) = p
q

(with gcd(p, q) = 1) is rational, then by Theorem 1.18 we have that

for each k ∈ N there exists an integer N(k) such that (1.40) is Ck conjugate to

Yε :






ẋ = x

ẏ = y



−r0 +

N(k)∑

j=0

αj+1(ε)(x
pyq)j



 .
(1.42)

where α1(ε) = r0 − r(ε).
This way we can define the following transition map

Dε : Σ1 → Σ2 : P1 7→ P2,

where Σ1 = [0, 1]× {1}, Σ2 = {1} × [0, 1].
The map Dε is called the Dulac map and can be extended continously by

Dε(0) ≡ 0.
In the non-resonant case we use the normal form given by (1.41), then the

Dulac map can be calculated explicitly:

Dε(x) = xr(ε),

as P1 has coordinates (x, 1). In the resonant case we use the normal form given
by (1.42), so the Dulac map cannot be calculated explicitly. Therefore we are
interested in an asymptotic expansion of the Dulac map.
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Figure 1.1: Dulac map near a saddle

Definition 1.18 Given α ∈ R, the Ecalle–Roussarie compensator is de-
fined as

ω(x, α) :=






x−α − 1

α
if α 6= 0

− lnx if α = 0.
(1.43)

By virtue of this definition one obtains the following formal expansion of the
Dulac map

Dε(x) = xr0 + α1(ε)x
r0ω(x, α1(ε))

+
∑

1≤j≤i+1≤K(k)

1≤i

αij(ε)x
(iq+1)r0ω(x, α1(ε))

j + ψk(x, ε),

where r0 = p
q

such that gcd(p, q) = 1, αij(ε) are polynomials of α1(ε), · · · ,
αN(k)+1(ε) and where K(k) is a positive integer depending on k such that

ψk(x, ε) is a Ck function which is k-flat with respect to x = 0.
For a proof of this result and more information on and applications of the

Dulac map, we refer - for instance - to [BRS96, Cau04, CR02, DMR96, DRR94,
GR99, IY95, JM94, MMR94, Mou91, Rou86, Rou97].

Anyhow, it is clear that the Ecalle–Roussarie compensator is an important
tool in order to give an explicit (asymptotic) description of the dynamics in the
neighbourhood of a saddle singularity of planar vector field.
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1.4.2 Poincaré map, Melnikov functions and Abelian in-
tegrals

Let H : R2 → R : (x, y) 7→ H(x, y) be a C∞ Hamiltonian function such that
the Hamiltonian vector field XH = ∂H

∂y
(x, y) ∂

∂x
− ∂H

∂x
(x, y) ∂

∂y
or

XH :

{
ẋ = ∂H

∂y
(x, y)

ẏ = −∂H
∂x

(x, y)

has a center type singularity at the origin.
Considering the parameter λ = (λ̄, ε), ε ∈ [0, ε0[, λ̄ ∈ (Rk, 0), then by

perturbation we obtain the following local deformation of XH :

Xλ = XH +
∑

1≤k≤n

εkX
(k)

λ̄
+ O(εn+1) (1.44)

where O(εn+1) is a C∞ vector field depending on (x, y, λ).
We take the dual 1-form of Xλ

ωλ = dH +
∑

1≤k≤n

εkν
(k)

λ̄
+ O(εn+1) (1.45)

with respect to Ω = dx ∧ dy, the standard symplectic area-form on R2, where
O(εn+1) is a C∞ 1-form depending on (x, y, λ).

We now have the following situation:

• γh is the level curve defined by H(x, y) = h,

• Σ is a transversal section to the level curves of the Hamiltonian H ,

• Γ is the part of the orbit of Xλ starting at the point denoted by h on Σ
and ending at the point of first return on Σ,

• τ is the segment on Σ between h and Pλ(h),

• ∆ is the shaded region.

In practice one always tries to choose a segment on one of the axis as transver-
sal section Σ.

We will now integrate ωλ over Γ, by (1.45) we have

∫

Γ

ωλ =

∫

Γ

dH +

∫

Γ

∑

1≤j≤n

εjν
(j)

λ̄
+ O(εn+1) (1.46)

as ωλ is the dual form of Xλ and Γ is an orbit of Xλ we have that
∫
Γ
ωλ = 0.

We also have that
∫
Γ dH = Pλ(h) − h.
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Figure 1.2: Poincaré map near a center singularity

The map Pλ : Σ → Σ : h 7→ Pλ(h) is the Poincaré map of Xλ. The
Poincaré map is - together with the Dulac map - a well-known example of
a transition map. Note that here we work with only one transversal section,
hence the Poincaré map detects the first time an orbit returns on a given section:
for this reason the Poincaré map is also known as the first return map. The
Poincaré map is very important in the study of limit cycles as the zeros of the
Poincaré map correspond to limit cycles. We remark that in practice we take
the Poincaré map Pλ : Σ0 → Σ, where Σ0 is a transversal Σ0 ⊂ Σ that is
sufficiently small such that Pλ(h) exists for all values of h under consideration.

In general it is not possible to give an explicit form of the Poincaré map,
therefore we are interested in a formal expansion of the Poincaré map. We will
calculate an expansion with respect to the parameter ε:

Pλ(h) = h+
∑

1≤j≤n

M
(j)

λ̄
(h)εj + O(εn+1). (1.47)

The function M
(j)

λ̄
appearing in (1.47) is called the jth order Melnikov func-

tion for j = 1, · · · , n. We now want to discuss how the first order Melnikov
function can be expressed by Abelian integrals.

Consider
∫
∆ dν

(1)

λ̄
, by Stokes’s Theorem we have

∫

∆

dν
(1)

λ̄
=

∫

∂∆

ν
(1)

λ̄
=

∫

Γ

ν
(1)

λ̄
+

∫

τ

ν
(1)

λ̄
−
∫

γh

ν
(1)

λ̄
(1.48)
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where the minus sign appears by choice of orientation of the curve γh.
As for ε = 0 we have that Pλ(h) ≡ h and τ is the segment between h and

Pλ(h) on the transversal section Σ we know that length of τ is O(ε). Hence∫
τ
ν

(1)

λ̄
= O(ε). Using this result it is a straightforward application of calculus

to prove that the area of ∆ is O(ε) and
∫
∆
dν

(1)

λ̄
= O(ε).

So (1.48) is reduced to

∫

Γ

ν
(1)

λ̄
=

∫

γh

ν
(1)

λ̄
+ O(ε). (1.49)

Introducing

Iλ̄(h) =

∫

γh

νλ̄, (1.50)

then Iλ̄(h) is called an Abelian integral.
Using (1.46), (1.49) and (1.50) we have the following asymptotic expansion

in ε for the Poincaré map:

Pλ(h) = h− εIλ̄(h) + O(ε2). (1.51)

So the first Melnikov function can be written as

M
(1)

λ̄
= −Iλ̄(h). (1.52)

By (1.52) we obtain the natural link between the Poincaré map and Abelian
integrals. For more information on the Poincaré map and on how to calculate
higher order Melnikov functions we refer to e.g. [BF02, Cau04, CR02, Ili98,
LLZ04, ZZ02].
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Chapter 2

Nearly-resonant saddles

2.1 Introduction

In Subsection 1.4.1 we observed how the Ecalle–Roussarie compensator appears
in the formal expansion of the Dulac map near a planar saddle singularity. So
one can expect that these compensators also can be used in the calculations of
equivalences or conjugacies between vector fields with saddle singularities. Even
in the case of conjugacies between diffeomorphisms with saddle fixed points we
can expect the involvement of Ecalle–Roussarie compensators if one considers
the results in [BRS96].

In the previous chapter we briefly discussed the Hartman–Grobman Theo-
rem. As saddles are hyperbolic systems, the Hartman–Grobman Theorem can
be applied to them and gives a C0 conjugacy between the vector field or dif-
feomorphism and its linear part. In [Har60a] it is proved that in the case of
a planar vector field with a saddle singularity or a diffeomorphism on R2 with
a saddle fixed point there exists a C1 conjugacy between the vector field or
diffeomorphism and its linear part. For saddles in higher dimensions this is no
longer true, we refer to [Har60a, BK94] for a counterexample in 3 dimensions.
Therefore we will restrict ourselves to the two-dimensional case.

Our approach will be different than in most proofs on equivalences and
conjugacies between vector fields or diffeomorphisms. Usually the change of
variables to do this is given as the solution of a functional equation or as the
fixed point of some contraction. With our “explicit” approach we can give more
information on these transformations. This way we know more than just the
fact that the transformation is C1. A similar approach in the higher dimensional
case (resulting in a C0 conjugacy) was done in [BNY03a, BNY03b].

If the eigenvalues of the saddle are non-resonant, resp. multiplicatively non-
resonant then by Theorem 1.17, resp. Theorem 1.23 we know that the family
of saddles is finitely smooth linearisable. So we suppose that the eigenvalues at

33
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the saddle singularity are close to resonance in the case of vector fields and that
the eigenvalues at the saddle fixed points are close to multiplicatively resonance.
We will specify this later on.

This chapter is structured as follows. In Section 2.2 we make clear what
we mean with “nearly-resonance” and calculate equivalences between vector
fields with saddle singularities. The topic of Section 2.2 was already discussed
in [BN02]. In Section 2.3 we generalise the results of Section 2.2 to the case
of conjugacies between vector fields with saddle singularities. In Section 2.4 we
discuss the fact that the conjugacies are actually C∞ functions if one introduces
new variables. In Section 2.5 we calculate conjugacies between diffeomorphisms
with saddle fixed points. Of course there will be similarities between the results
from Section 2.3 and the results from Section 2.5. In Section 2.6 we make an
attempt to establish a similar result on the conjugacies between vector fields
with center singularities. Therefore we will need to introduce some complex
functions which we will call complex compensators.

2.2 Equivalences between saddle vector fields

2.2.1 Settings, nearly resonance and compensators

Settings and nearly resonance

We consider a local C∞ deformation Xλ of a resonant planar saddle singularity.
By virtue of the results in Subsection 1.3.4 we can assume that Xλ(0) = 0 and
for the linear part we have that

DXλ(0) =

(
α(λ) 0

0 β(λ)

)

where β(λ) < 0 < α(λ). By virtue of Proposition 1.15 we know that the
eigenvalues α(λ) and β(λ) are C∞ functions of λ. Proposition 1.15 and Propo-
sition 1.16 assure us that DXλ can be linearised by a C∞ change of coordinates.
Using a submersion λ 7→ (α(λ), β(λ)) we can view (α, β) as new parameters and
omit λ in the notation. As we assume that the system is nearly resonant, there
exists p, q ∈ N with gcd(p, q) = 1 such that

ε =
p

q
+
β

α
, (2.1)

is close to zero, hence

β =

(
ε− p

q

)
α. (2.2)
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Looking at (2.2) it is natural to consider (α, ε) as parameters instead of (α, β)
on condition we take ε close to zero. Therefore we can assume that

DXα,ε(0) =

(
α 0

0
(
ε− p

q

)
α

)
. (2.3)

From now on we consider α as a strictly positive constant, hence we obtain
a local deformation Xε depending on the one-dimensional parameter ε ∈ (R, 0).

For ε = 0 the only resonant monomials that will appear in the formal normal
form of Xε are of the form x(xpyq)k ∂

∂x
and y(xpyq)k ∂

∂y
for k ∈ N \ {0}; this

means that all other monomials are non-resonant and thus can be eliminated
formally.

The following result will be useful in order to know which monomials are
resonant.

Proposition 2.1 There exists a constant K > 0 depending on p and q such
that for all small ε 6= 0 the resonant monomials of Xε are all of order > K

|ε| .

Proof: The linear part ofXε is given by αx ∂
∂x

+
(
ε− p

q

)
αy ∂

∂y
, so the resonance

equations are

r1 +

(
ε− p

q

)
r2 = 1, (2.4)

r1 +

(
ε− p

q

)
r2 = ε− p

q
, (2.5)

where r1, r2 ∈ N and
r1 + r2 ≥ 2. (2.6)

If ε 6∈ Q, then there aren’t any solutions for (2.4) and (2.5), so we take ε ∈ Q

and ε close to zero. This gives us ε = m
n

where n ∈ N\ {0}, m ∈ Z and |m| < n.
Now (2.4) becomes

r1 +

(
mq − np

nq

)
r2 = 1.

So necessarily we have r2 = kQ where k ∈ N \ {0} and Q = nq
γ

and γ =

gcd(mq − np, nq). Substituting this in (2.4) we have

r1 + kP = 1, (2.7)

where P = mq−np
γ

∈ Z− \ {0}. So (2.7) gives us r1 = 1 − Pk.
There is resonance iff r1 ≥ 0, r2 ≥ 0 and r1+r2 ≥ 2. The first two conditions

are trivially fulfilled, the third condition is equivalent with

1 + (Q− P )k ≥ 2 ⇔ (Q− P )k ≥ 1

⇔ k ≥ 1

Q− P

⇔ k ≥ 1,
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where we used that Q− P > 1 and k ∈ N. So the solutions of (2.4) are
{(

1 − k
mq − np

γ
, k
nq

γ

)∣∣∣∣ k ∈ N \ {0}
}
.

The solutions of (2.5) are found in the same way:
{(

−kmq − n)

γ
, 1 + k

nq

γ

)∣∣∣∣ k ∈ N \ {0}
}
.

So the formal normal form of Xε is





ẋ = αx+ x
∑

k≥1

x
np−mq

γ yk
nq
γ

ẏ = α
(
ε− p

q

)
y + y

∑

k≥1

xk
np−mq

γ yk
nq
γ .

(2.8)

We denote the lowest degree of a resonant monomial of (2.8) by

∆

(
1,−p

q
, ε

)
= 1 +

np−mq + nq

γ
,

where ε = m
n

.
First we consider the case where q = 1.

Lemma 2.2

∆(1,−p, ε) ≥ p+ 1

|ε| .

Proof: As q = 1, we have that γ = gcd(m−np, n) = 1 because gcd(m,n) = 1.
So ∆ (1,−p, ε) = 1 + np−m+ n. Hence

∆ (1,−p, ε) = 1 + np−m+ n ≥ p+ 1

|ε| = (p+ 1)
n

|m|
iff

|m|m− ((p+ 1)n+ 1)|m| + (p+ 1)n ≤ 0. (2.9)

It is clear that (2.9) describes a quadratic inequality in m which we solve sepa-
rately in the case m > 0 and m < 0.

• Assume m > 0. This means that ε = m
n
> 0. So (2.9) is reduced to

m2 − ((p+ 1)n+ 1)m+ (p+ 1)n ≤ 0. (2.10)

The solutions of this equation are (p+ 1)n and 1. So (2.10) is fulfilled iff

1 ≤ m ≤ (p+ 1)n

or equivalently
1

n
≤ m

n
= ε ≤ p+ 1.

The latter inequalities are fulfilled as 0 < ε < 1.
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• Assume m < 0. In this case (2.9) reduces to

m2 − ((p+ 1)n+ 1)m− (p+ 1)n ≥ 0. (2.11)

The equations of (2.11) are

m± =
((p+ 1)n+ 1) ±

√
((p+ 1)n+ 1)2 + 4(p+ 1)n

2
.

Clearly m+ > 0, so (2.11) is fulfilled if m ≤ m−. We now prove that
m− ≥ −1, so by the fact that m ∈ Z− \ {0} we can conclude that (2.11)
is fulfilled.

m− ≥ −1 ⇔ ((p+ 1)n+ 1) −
√

((p+ 1)n+ 1)2 + 4(p+ 1)n ≥ −2

⇔ ((p+ 1)n+ 1) + 2 ≤
√

((p+ 1)n+ 1)2 + 4(p+ 1)n

⇔ ((p+ 1)n+ 1)2 + 4((p+ 1)n+ 1) + 4

≥ ((p+ 1)n+ 1)2 + 4(p+ 1)n

⇔ 8 ≥ 0.

As the latter inequality is obviously true, we can conclude the proof.

2

We use Lemma 2.2 in order to prove the crucial Lemma 2.3.

Lemma 2.3 For sufficiently small ε we have that

∆

(
1,−p

q
, ε

)
≥

p
q

q|ε| .

Proof: With ε sufficiently small, we mean that there exists k ∈ N \ {0} such
that

−k < −p
q

+ ε < −k + 1.

If q = 1, then Lemma 2.2 gives us that

∆

(
1,−p

q
, ε

)
≥ p+ 1

|ε| ,

hence

∆

(
1,−p

q
, ε

)
≥

p
1

1.|ε| .

So we can assume that q ≥ 2. Because p
q
6∈ Z, we have

−k < −p
q
< −k + 1.
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Define the real number µ by

µ =
p

q
− k,

then µ < 0 and

−p
q

+ ε = −k − µ+ ε.

One observes that γ = gcd(q, n)ρ where ρ = 1 or ρ = 2, so γ ≤ q2. To obtain
this result we use the following arguments. We know that γ = gcd(qn,mq−np).
So we write

p = a1a2a3,

q = a4a5a6,

m = a1a4a7,

n = a2a5a8,

where

gcd(ai, aj) =

{
1 if i 6= j

ai if i = j
.

So we have that

qn = a2a4a
2
5a6a8,

mq − pn = a1a5(a
2
4a6a7 − a2

2a3a8).

Hence

gcd(qn,mq − np) =

{
a2
5 if a5| gcd

(
qn
a5
, mq−pn

a5

)

a5 otherwise
.

We now have:

∆

(
1,−p

q
, ε

)
= ∆(1,−k, ε− µ)

= 1 +Q(k + 1 − ε+ µ)

= 1 +Q(k − ε) +Q(1 + µ)

≥ 1 +
nq

γ
(k − ε)

≥ 1 +
n

q
(k − ε)

≥ 1 + n(k − ε)

q

=
1 + n(k − 1 + 1 − ε)

q

=
∆(1, k − 1,−ε)

q
,
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hence by virtue of Lemma 2.2 we have

∆

(
1,−p

q
, ε

)
≥ k

q|ε| .

As k > p
q

we have that

∆

(
1,−p

q
, ε

)
≥ p

q2|ε| .

2

We now finish the proof of Proposition 2.1. Choosing

K :=
p

q2
,

the statement follows directly from Lemma 2.3. 2

In the first stage we prefer not to eliminate the “near” resonant monomials
of low degree. More precisely: we fix a small ε0 > 0 and let N be the integer
part of K

ε0
. Using the results from Subsection 1.3.4 there exists a C∞ change of

coordinates such that Xε takes the following form:

Xε :

{
ẋ = αx(1 + Pε(x

pyq)) + O(|(x, y)|N+1)

ẏ = α
(
ε− p

q

)
y(1 +Qε(x

pyq)) + O(|(x, y)|N+1)
, (2.12)

where Pε and Qε are polynomials of degree at most N
p+q

.
As the topic of this section is equivalences, we are allowed to divide Xε by a

strictly positive function. Using invariant manifolds we can and do assume that
{x = 0} and {y = 0} are invariant. Hence we can start from a local family of
the form

Xε :

{
ẋ = x(1 + Pε(x

pyq) +Rε(x, y))

ẏ =
(
ε− p

q

)
y

(2.13)

where Rε(x, y) = O(|(x, y)|N+1). By virtue of Theorem 1.18 or [Bon97] we know
that for a given integer k > 0 and for N large enough (depending on k, p, q), i.e.
ε0 sufficiently small, there exists a Ck change of variables eliminating Rε.

Compensators

Before we start with the computations of the equivalences, we introduce the
variable

ω1 := ω(|x|−q,−ε) =
1 − |x|−qε

ε
(2.14)

where ω is the Ecalle–Roussarie compensator defined in (1.43). Of course ω1

depends on q and ε but for brevity this dependence is surpressed in the notation.
A direct calculation gives us

∂ω1

∂x
= q

1 − ω1ε

x
(2.15)
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and also

lim
ε→0

ω1 = q ln |x|, (2.16)

ω1(x1x2) = ω1(x1) + ω1(x2) − εω1(x1)ω1(x2) (2.17)

In the changes of variables in the sequel we will use monomials of the form
(xpyq)Nω

j
1; we define a partial ordering ≺ on them by putting

(xpyq)nω
j
1 ≺ (xpyq)mωk

1 (2.18)

iff

n < m or (n = m and j > k). (2.19)

We will say that the monomial on the left-hand side of (2.18) is lower order than
the right-hand side.

Proposition 2.4 If (xpyq)nω
j
1 ≺ (xpyq)mωk

1 then for x, y, ε sufficiently small
one has ∣∣∣(xpyq)nω

j
1

∣∣∣ ≥
∣∣(xpyq)mωk

1

∣∣ ,

i.e. lower order terms are “more important”. For all η > 0 one also has

(xpyq)nω
j
1 = O(|x|np−η) · O(|y|nq).

Proof: We start with the proof of the first statement. By the definition of ≺
there are 2 possiblities.

• n < m. In this case we know that |yqn| ≥ |yqm| as |y| < 1. Also we have
the following equivalent statements

|x|np

∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
j

≥ |x|pm

∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
k

m

1 ≥ |x|p(m−n)

∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
k−j

m
|ε|k−j ≥ |x|p(m−n)|1 − |x|−qε|k−j . (2.20)

As n < m we have that m − n > 0 so for ε sufficiently close to zero we
have

p(m− n) − qε(k − j) > 0.

Therefore the right-hand side of (2.20) converges to zero if x→ 0, therefore
(2.20) is fulfilled for x sufficiently close to zero.
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• n = m and j > k. In this case we have the following equivalent statements

|ω1(x)|j ≥ |ω1(x)|k
m

∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
j

≥
∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
k

m
∣∣∣∣
1 − |x|−qε

ε

∣∣∣∣
j−k

≥ 1

m
|1 − |x|−qε|j−k ≥ |ε|j−k. (2.21)

As the left-hand side of (2.21) converges to 1 (for ε < 0) or +∞ (for ε > 0),
we know that (2.21) always will be fulfilled.

We now come to the proof of the second statement. As for ε = 0 we have that
ω1(x) = q ln x, the statement is true as ln x = O(x−η) for any small η > 0
if x ↓ 0. By continuity with respect to ε, we can conclude that the second
statement remains true for ε sufficiently close to the origin. 2

2.2.2 Computation of the equivalences

By virtue of (2.13) we can start from

Xε(x, y) = x
(
1 + f(ε)xpyq + g(ε, xpyq)(xpyq)2

) ∂

∂x
+

(
ε− p

q

)
y
∂

∂y
. (2.22)

We begin by eliminating the first non-linear term using ω1.

Lemma 2.5 The system given by (2.22) is locally conjugate to

{
ξ̇ = ξ

(
1 + g̃(ε, ξpyqω1(ξ))ξ

2py2q
)

ẏ =
(
ε− p

q

)
y

(2.23)

by means of a change of variables of the form

x = ξ + α(ε)ξp+1yq + β(ε)ξp+1yqω1(ξ) (2.24)

where g̃ has the same smoothness as g.

Proof: Differentiating (2.24) with respect to t gives us

ẋ = ξ̇ [1 + ((p+ 1)α(ε) + qβ(ε))ξpyq + (p+ 1 − qε)β(ε)ξpyqω1(ξ)]

+ (qε− p)α(ε)ξp+1yq + (qε− p)β(ε)ξp+1yqω1(ξ). (2.25)
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Substituting (2.24) into (2.22) gives us

ẋ = ξ [1 + (α(ε) + f(ε))ξpyq + β(ε)ξpywω1(ξ) (2.26)

+ ḡ(ε, ξpyq, ξpyqω1(ξ))(ξ
pyq)2 + ¯̄g(ε, ξpyq, ξpyqω1(ξ))(ξ

pyq)2ω1(ξ)
]
.

Equating (2.25) and (2.26) we obtain

ẋ = ξ
1 + ((p+ 1 − qε)α(ε) + f(ε))ξpyq + (p+ 1 − qε)β(ε)ξpyqω1(ξ)

1 + ((p+ 1)α(ε) + qβ(ε))ξpyq + (p+ 1 − qε)β(ε)ξpyqω1(ξ)

+ ĝ(ε, ξpyq, ξpyqω1(ξ)). (2.27)

We will obtain (2.23) iff

β(ε) = −εα(ε) +
1

q
f(ε). (2.28)

We see that there is freedom to choose, for example α(ε). Let us take α(ε) ≡ 0,

then β = f(ε)
q

. This means that our transformation is implicitly given by

x = ξ +
f(ε)

q
ξp+1yqω1(ξ). (2.29)

By virtue of the Inverse Function Theorem the map (ξ, y, ε) 7→ (x, y, ε) is
invertible. 2

Remark 2.1 The limiting behaviour of the change of variables in (2.24) is, for
ε→ 0,

x = ξ + f(0)ξp+1yq ln |ξ|

which is a well known formula for eliminating resonant monomials.

In a next step we develop g̃ in (2.23), which gives the equation

ξ̇ = ξ + g̃(ε, 0, 0)ξ2p+1y2q + g1(ε, ξ
pyqω1(ξ))ξ

3p+1y3q

+ g2(ε, ξ
pyq, ξpyqω1(ξ))ξ

3p+1y3qω1(ξ)).

Let us indicate now how to continue the elimination process in general. We must
take in account that the monomials that we want to eliminate may contain ω1.

Lemma 2.6 The system





ẋ = x

(
1 +

∑N−2
j=0 Gj(ε, x

pyq, xpyqω1(x))x
NpyNqω1(x)

j
)

ẏ =
(
ε− p

q

)
y

(2.30)
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with p, q ∈ N \ {0} and N ≥ 2 is locally conjugate to the system




ξ̇ = ξ

(
1 +

∑N−1
j=0 G̃j(ε, ξ

pyq, ξpyqω1(ξ))ξ
(N+1)py(N+1)qω1(ξ)

j
)

ẏ =
(
ε− p

q

)
y

(2.31)

by means of a change of variables of the form

x = ξ



1 +

N∑

j=0

αj(ε)ξ
NpyNqω1(ξ)

j



 (2.32)

and where the functions α0, · · · , αN are recursively calculated by the formula

αj+1(ε) =
j −N

j + 1
εαj(ε) +

Gj(ε, 0, 0)

(j + 1)q
, (2.33)

0 ≤ j ≤ N − 1. We have the freedom to choose α0(ε). The functions G̃j have
the same smoothness as the Gj’s.

Proof: Differentiating (2.32) with respect to t gives us

ẋ = ξ̇



1 +
N∑

j=0

(Np+ 1 − qjε)αj(ε)ξ
NpyNqω1(ξ)

j

+

N−1∑

j=0

q(j + 1)αj+1(ε)ξ
NpyNqω1(ξ)

j





+ N(qε− p)

N∑

j=0

αj(ε)ξ
Np+1yNqω1(ξ)

j . (2.34)

Substituting (2.32) into (2.30) we obtain

ẋ = ξ



1 +

N∑

j=0

αj(ε)(x
pyq)Nω1(ξ)

j +

N−1∑

j=0

gj(ε)(ξ
pyq)Nω1(ξ)

j





+

N−1∑

j=0

Ĝj(ε, ξ
pyq, ξpyqω1(ξ)

j)ξ(N+1)p+1y(N+1)qω1(ξ)
j . (2.35)

Equating (2.34) and (2.35) we find

ξ̇ = ξ
1 +

∑N
j=0((1 +Np−Nqε)αj(ε) +Gj(ε, 0, 0))ξNp+1yNqω1(ξ)

j

N

+

N−1∑

j=0

Ḡj(ε, ξ
pyq, ξpyqω1(ξ)

q)ξ(N+1)p+1y(N+1)qω1(ξ)
j ,
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where

N = 1 +

N−1∑

j=0

((1 +Np− jqε)αj(ε) + q(j + 1)αj+1(ε))ξ
Np+1yNqω1(ξ)

j

+ (Np+ 1 −Nqε)αN (ε)ξNpyNqω1(ξ)
N .

The Ḡj ’s have the same smoothness as the Gj ’s and GN (ε, 0, 0) ≡ 0. We will
obtain (2.31) iff

αj+1(ε) =
j −N

j + 1
εαj(ε) +

Gj(ε, 0, 0)

(j + 1)q
, (2.36)

for 0 ≤ j ≤ N−1. Choosing α0(ε) ≡ 0, we can use (2.36) as a recursive relation
and as a result we find that the αj ’s are as smooth as the Gj ’s are in ε, so

lim
ε→0

αj(ε) ∈ R,

∀j ∈ {0, 1, · · · , N}. This means that our transformation is implicitly given by

x = ξ +

N∑

j=1

αj(ε)ξ
Np+1yNqω1(ξ)

j (2.37)

where the αj ’s are defined by (2.36) with initital condition α0(ε) ≡ 0. 2

Remark 2.2 The limiting behaviour of the change of variables in (2.32) is
given by the transformation

x = ξ +

N−1∑

j=1

1

j
Gj−1(0, 0, 0)qj−1ξNp+1yNq(ln |ξ|)j .

This is in contrast to the polynomial change of variables discussed in Subsec-
tion 1.3.4 which would be divergent for ε→ 0 in the case that n

m
= p

q
.

2.2.3 Conclusions

We start with a system as in (2.22)
{
ẋ = x

(
1 + f0(ε)x

pyq + g0(ε, x
pyq)(xpyq)2

)

ẏ =
(
ε− p

q

)
y

If we apply Lemma 2.5 then we obtain the system





ẋ1 = x1

(
1 + f1(ε)x

2p
1 y

2q + g1(ε, x
p
1y

q, x
p
1y

qω1(x1))x
3p
1 y

3q

+ g2(ε, x
p
1y

q, x
p
1y

qω1(x1))x
3p
1 y

3qω1(x1)
)

ẏ =
(
ε− p

q

)
y

.
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By multiple application of Lemma 2.6 we obtain, given a positive integer N ∈
N \ {0}, a system where all nonlinear terms are of equal or lower order than
ξNp+1yNq (if we name the final variable ξ):





ξ̇ = ξ

(
1 +

∑N−1
j=0 G̃j(ε, ξ

pyq, ξpyqω1(ξ))ξ
(N+1)py(N+1)qω1(ξ)

j
)

ẏ =
(
ε− p

q

)
y

.

(2.38)
From Proposition 2.4 it follows that the nonlinear term in (2.38) is of order
O(ξ(N+1)p+1−η) · O(y(N+1)q) for any small η > 0. We want to eliminate this
term, be it in a non-explicit way, by application of the methods in [Bon97, IY91].
For that purpose we need to know that this nonlinear term is sufficiently smooth.
From elementary methods of calculus we obtain:

Lemma 2.7 Let K,L ∈ N \ {0}. The function

g(ε, x) := xKω1(x)
L for ε 6= 0

g(0, x) := xK(q ln |x|)L

is of class CK−1 in the x variable for ε sufficiently small; moreover for all
k ∈ {0, 1, · · · ,K − 1} one has

lim
ε→0

∂k

∂xk
g(ε, x) =

∂k

∂xk
g(0, x).

Moreover, if the functions G̃j in the right-hand side of (2.38) are of class
C(N+1)p then this nonlinear term in (2.38) is of class C(N+1)p.

From Theorem 3.9 in [Bon97] it follows that, given r ∈ N, if N is large
enough in (2.38) then there exists a Cr diffeomorphism h defined on a small
neighbourhood of the origin which conjugates system (2.38) to its linear part.
Due to the specific expression at hand we can give more properties of h: it is of
the form (ξ, y) = h(ε, x, y) = (x+O(y(N+1)q), y) and can be obtained as follows.
Denote

X(ξ, y) = ξ



1 +

N−1∑

j=0

G̃j(ε, ξ
pyq, ξpyqω1(ξ))ξ

(N+1)py(N+1)qω1(ξ)
j



 ∂

∂ξ

+

(
ε− p

q

)
y
∂

∂y

and let Φt be the flow of X . If we multiply the nonlinear part of X with a
cut-off function with a sufficiently small support, and rename the result again
X , then we can take h of the form

h(x, y) =

(
lim

t→+∞
π1 ◦ Φ−t

(
etx, e(ε− p

q )ty
)
, y

)
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where π1 ◦ Φ−t denotes the first component of the time −t of the flow of X .
In order to fix some ideas, let us illustrate and check the method on a concrete

simple example.

Example

Let

X(x, y) = x
(
1 + 3xy + x2y2

) ∂

∂x
+ (ε− 1)y

∂

∂y
. (2.39)

According to (2.24) we put

ω1(x1) =
1 − x−ε

1

ε

and
x = x1 + 3x2

1yω1(x1) =: ϕ(x1, y);

let X1 denote the vector field in the new coordinates (x1, y). We calculate X1,
using (2.15) and using for example a computer algebra package, and get

X1(x1, y) = (x1 + 18x3
1y

2ω1(x1) + x3
1y

2 + · · · ) ∂

∂x1
+ (ε− 1)y

∂

∂y
. (2.40)

Next we apply the transformation according to (2.32) and (2.33) and put

x1 = x2 + x3
2y

2ω1(x2) +
(
9 − ε

2

)
x3

2y
2ω1(x2)

2 =: ϕ1(x2, y);

let X2 denote the vector field written in the new coordinates (x2, y). We get

X2(x2, y) = x2 −
(

162 − 3ε3 − 198ε+
129

2
ε2

+
1

64
(−32ε2 − 864 + 624ε)(−6ε+ 12)

)
x4

2y
3ω1(x2)

3

+

(
−21ε+ 45 + 6ε2 +

1

2
(2ε− 21)(−6ε+ 12)

)
x4

2y
3ω1(x2)

2

+ (3ε− 51)x4
2y

3ω1(x2) − 3x4
2y

3

+

3∑

j=0

Gj(ε)x
5
2y

4ω1(x2)
j . (2.41)

This can be done for example using the following simple Maple code.

> restart;

> readlib(mtaylor);

> X0:=x->x*(1+3*x*y+x^2*y^2);
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> omega:=x1->(x1^(-eps)-1)/(-eps);

> phi:=(x1,y,om)->x1 +3*x1^2*y*om;

> omegax1:=(1-eps*om)/x1;

> phix1:=diff(phi(x1,y,om),x1)+diff(phi(x1,y,om),om)*omegax1;

> X11:=(X0(phi(x1,y,om))

-diff(phi(x1,y,om),y)*(eps-1)*y)/phix1;

> X12:=simplify(X11);

> mtaylor(X12,[x1,y,om]);

> X1:=unapply(X12,x1);

> phi1:=(x2,y,om)-> x2+x2^3*y^2*om

+ (9-(eps/2))*x2^3*y^2*om^2;

> omegax2:=subs(x1=x2,omegax1);

> phi1x2:=diff(phi1(x2,y,om),x2)

+diff(phi1(x2,y,om),om)*omegax2;

> X21:=(X1(phi1(x2,y,om))

-diff(phi1(x2,y,om),y)*(eps-1)*y)/phi1x2;

> X22:=simplify(X21);

> mtaylor(X22,[x2,y,om]);

Comments about this code. We have denoted:
X0 for the first component of the vector field in (2.39)

phi for the first component of the transformation

(x1,y) 7→ (x,y)

omegax1 for the derivative of omega with respect to x1

phix1 for the partial derivative of phi(x1,y,omega(x1)))

to x1

X1 for the first component of the pullback of X in (2.39)

phi1 for the first component of the transformation

(x2,y) 7→ (x1,y)

phi1x2 for the partial derivative of phi1(x2,y,omega(x2))

to x2

X21 for the first component of the pullback of (2.40)

2.3 Conjugacies between saddle vector fields

2.3.1 Settings and compensators

As in Section 2.2 we consider a local C∞ deformation of a planar saddle sin-
gularity. By virtue of the hard work that was done in Subsection 2.2.1 we can
start from (2.12). This means we have a system given by

Xε :

{
ẋ = αx

(
1 + Pε(x

pyq)) + O(|(x, y)|N+1
)

ẏ = α
(
ε− p

q

)
y
(
1 +Qε(x

pyq)) + O(|(x, y)|N+1)
) , (2.42)
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where Pε and Qε are polynomials of degree at most N
p+q

. Using invariant man-

ifolds we can and do assume that {x = 0} and {y = 0} are invariant. Hence we
can start from a local family of the form

Xε :

{
ẋ = x (1 + Pε(x

pyq) +Rε(x, y))

ẏ =
(
ε− p

q

)
y (1 +Qε(x

pyq) + Sε(x, y))
(2.43)

where Rε(x, y) = O(|(x, y)|N+1) and Sε(x, y) = O(|(x, y)|N+1). By virtue of
Theorem 1.18 or [Bon97] we know that for a given integer k > 0 and for N large
enough (depending on k, p, q) there exists a Ck change of variables eliminating
Rε and Sε.

Before we start the calculation of the conjugacies, we introduce the variables

ω1 := ω(|x|−q,−ε) =
|x|−qε − 1

−ε (2.44)

ω2 := ω

(
|y|

q
p
q
−ε
,−ε

)
=

|y|
qε

p
q
−ε − 1

−ε (2.45)

where ω is the Ecalle-Roussarie compensator defined in (1.43). Of course ω1

and ω2 depend on ε, p and q but for brevity this dependence is surpressed in
the notation. Then a direct calculation gives

∂ω1

∂x
=

q(1 − εω1)

x
(2.46)

∂ω2

∂y
=

q

ε− p
q

1 − εω2

y
(2.47)

and also

lim
ε→0

ω1 = q ln |x| (2.48)

lim
ε→0

ω2 = −q
2

p
ln |y| (2.49)

ω1(x1x2) = ω1(x1) + ω2(x2) − εω1(x1)ω1(x2) (2.50)

ω2(x1x2) = ω2(x1) + ω2(x2) − εω2(x1)ω2(x2). (2.51)

In the changes of variables in the sequel we will use monomials of the form
(xpyq)nω

j
1ω

k
2 ; we define a (partial) ordering ≺ on them by putting

(xpyq)nω
j
1ω

k
2 ≺ (xpyq)mω`

1ω
s
2 (2.52)

iff

n < m or (n = m and j > l and k ≥ s) or (n = m and j ≥ l and k > s).
(2.53)
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We will say that the monomial on the left-hand side of (2.52) is of lower order
than the right-hand side.

The proof of the following Proposition is analogous to that of Proposition 2.4
and therefore omitted.

Proposition 2.8 If (xpyq)nω
j
1ω

k
2 ≺ (xpyq)mω`

1ω
s
2 then for x,y, ε sufficiently

small one has

|(xpyq)nω
j
1ω

k
2 | ≥ |(xpyq)mω`

1ω
s
2|;

that is: lower order terms are “more important”.

For all η > 0 and µ > 0 one also has

(xpyq)nω
j
1ω

k
2 = O(|x|np−η)O(|y|nq−µ).

2.3.2 Computation of the conjugacies

By virtue of (2.43) we can start from a system of the form

Xε(x, y) = αx
(
1 + f1(ε)x

pyq + f2(ε, x
pyq)(xpyq)2

) ∂

∂x
(2.54)

+ α

(
ε− p

q

)
y
(
1 + g1(ε)x

pyq + g2(ε, x
pyq)(xpyq)2

) ∂
∂y
.

We begin by eliminating the first nonlinear term in the first component of Xε

using ω1.

Lemma 2.9 The system given by (2.54) is locally conjugate to the system





ξ̇ = αξ

(
1 + f̃0(·)ξ2py2q + f̃1(·)(ξpyq)2ω1(ξ)

)

ẏ = α
(
ε− p

q

)
y
(
1 + g1(ε)ξ

pyq +G0(·)(ξpyq)2 +G1(·)(ξpyq)2ω1(ξ)
)

(2.55)
where

· = ε, ξpyq, ξpyqω1(ξ)

by the transformation

x = ξ (1 + β0(ε)ξ
pyq + β1(ε)ξ

pyqω1(ξ)) (2.56)

where β0 and β1 are smooth functions in ε and the f̃j are as smooth as f2 and
the Gj are as smooth as g2.

Proof: Substituting (2.56) in the second equation of (2.54) immediately gives
us the second equation of (2.55). Differentiating (2.56) with respect to t gives
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us

ẋ = ξ̇ (1 + ((p+ 1)β0(ε) + qβ1(ε))ξ
pyq + (p+ 1 − qε)β1(ε)ξ

pyqω1(ξ))

+ α(qε− p)ξ



β0(ε)ξ
pyq + β1(ε)ξ

pyqω1(ξ) +

1∑

j=0

G̃j(·)(ξpyq)2ω1(ξ)
j





(2.57)

and substituting (2.56) into the right-hand side of the first equation of (2.54)
gives us

ẋ = αξ(1 + (β0(ε) + f1(ε))ξ
pyq + β1(ε)ξ

pyqω1(ξ)

+

1∑

j=0

Ǧj(·)(ξpyq)2ω1(ξ)
j). (2.58)

Equating (2.57) and (2.58) reveals the following equality

ξ̇ = αξ

(
1 + (1 + p− qε)β0(ε) + f1(ε))ξ

pyq

1 + ((p+ 1)β0(ε) + qβ1(ε))ξpyq + (p+ 1 − qε)β1(ε)ξpyqω1(ξ)

+
(1 + p− qε)β1(ε)ξ

pyqω1(ξ) +
∑1

j=0 Fj(·)(ξpyq)2ω1(ξ)
j

1 + ((p+ 1)β0(ε) + qβ1(ε))ξpyq + (p+ 1 − qε)β1(ε)ξpyqω1(ξ)

)
.

(2.59)

To obtain (2.55) β0 and β1 have to fulfill

β1(ε) + εβ0(ε) =
f1(ε)

q
. (2.60)

Choosing β0(ε) ≡ 0, we have that β1(ε) = f1(ε)
q

. This way β0 and β1 are smooth
functions of ε. Therefore our transformation is given by

x = ξ

(
1 +

f1(ε)

q
ξpyqω1(ξ)

)
. (2.61)

By virtue of the Inverse Function Theorem the map (ξ, y, ε) 7→ (x, y, ε) is
invertible. 2

Remark 2.3 We like to point out that the transformation given by (2.61) is
actually the same transformation given by (2.29) we found in the case of equiv-
alence.

We proceed by eliminating the first nonlinear term in the second equation
of (2.55). This time we will need both ω1 and ω2.
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Lemma 2.10 The system given by (2.55) is locally conjugate to the system





ξ̇ = αξ
(
1 +

∑1
j=0 F̃j(?)(ξ

pηq)2ω1(ξ)
j
)

η̇ = α
(
ε− p

q

)
η



1 +
1∑

j=0

1∑

k=0

Gjk(?)(ξpηq)2ω1(ξ)
jω2(η)

k




(2.62)

where
? = ε, ξpηq, ξpηqω1(ξ), ξ

pηqω2(η)

by the transformation

y = η (1 + γ0(ε)ξ
pηq + γ1(ε)ξ

pηqω2(η)) (2.63)

where γ0 and γ1 are smooth functions in ε and the functions F̃j are as smooth

as the functions f̃j and the functions Gjk are as smooth as the functions Gj .

Proof: Substituting (2.63) in the first equation of (2.55) gives us immediately
the first equation of (2.62). Differentiating (2.63) with respect to t gives us

ẏ = η̇

[
1 +

(
(q + 1)γ0(ε) +

q

ε− p
q

γ1(ε)

)
ξpηq

+

(
q + 1 − qε

ε− p
q

)
γ1(ε)ξ

pηqω2(η)

]

+ αpη [γ0(ε)ξ
pηq + γ1(ε)ξ

pηqω2(η)

+
2∑

j=0

1∑

k=0

ḡjk(?)(ξpηq)3ω1(ξ)
jω2(η)

k



 . (2.64)

Substituting (2.63) in the right-hand side of the second equation of (2.55) gives
us

ẏ = α

(
ε− p

q

)
η [1 + (γ0(ε) + g1(ε)) ξ

pηq + γ1(ε)ξ
pηqω2(η)

+
1∑

j=0

1∑

k=0

gjk(?)(ξpηq)2ω1(ξ)
jω2(η)

k



 , (2.65)

where g11(?) ≡ 0. Equating (2.64) and (2.65) gives us

ξ̇ = α

(
ε− p

q

)
η
1 +

((
1 − p

ε− p
q

)
γ0(ε) + g1(ε)

)
ξpηq

N

+

(
1 − p

ε− p
q

)
γ1(ε)ξ

pηqω2(η) +
1∑

j=0

1∑

k=0

g̃jk(?)(ξpηq)2ω1(ξ)
jω2(η)

k

N
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with

N = 1 +

(
(q + 1)γ0(ε) +

p

ε− p
q

γ1(ε)

)
ξpηq

+

(
q + 1 − qε

ε− p
q

)
γ1(ε)ξ

pηqω2(η).

To obtain (2.62) γ0 and γ1 have to fulfill

εγ0(ε) + γ1(ε) =

(
ε− p

q

)
g1(ε)

q
. (2.66)

We have the freedom to choose γ0(ε) ≡ 0, so we have

γ1(ε) =

(
ε− p

q

)
g1(ε)

q

which is a smooth function in ε. This means that our transformation is implicitly
given by

y = η

(
1 +

(
ε− p

q

)
g1(ε)

q
ξpηqω2(η)

)
. (2.67)

By virtue of the Inverse Function Theorem the map (ξ, η, ε) 7→ (ξ, y, ε) is
invertible. 2

We now develop F̃j and Gjk in (2.62), this gives us the following system






ξ̇ = αξ



1 +

1∑

j=0

f̄j(ε)(ξ
pηq)2ω1(ξ)

j

+

2∑

j=0

1∑

k=0

f̂jk(?)(ξpηq)3ω1(ξ)
jω2(η)

k





η̇ = α
(
ε− p

q

)
η



1 +
1∑

j=0

1∑

k=0

ḡjk(ε)(ξpηq)2ω1(ξ)
jω2(η)

k

+
2∑

j=0

2∑

k=0

ĝjk(?)(ξpηq)3ω1(ξ)
jω2(η)

k





(2.68)

where f̂21(?) ≡ 0, ḡ11(ε) ≡ 0 and ĝjk(?) ≡ 0 if j + k ≥ 3.

In order to avoid problems in the inductive part of the proof, we state the
second step of our elimination method seperately. As the proofs are analogous
to the previous ones we omit them.
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Lemma 2.11 The system






ẋ = αx



1 +

1∑

j=0

fj(ε)(x
pyq)2ω1(x)

j

+

2∑

j=0

1∑

k=0

fjk(·)(xpyq)3ω1(x)
jω2(y)

k





ẏ = α
(
ε− p

q

)
y



1 +

1∑

j=0

1∑

k=0

gjk(ε)(xpyq)2ω1(x)
jω2(y)

k

+

2∑

j=0

2∑

k=0

g̃jk(·)(xpyq)3ω1(x)
jω2(y)

k





(2.69)

with

· = ε, xpyq, xpyqω1(x), x
pyqω2(y)

and where f21(·) ≡ 0, g11(ε) ≡ 0 and g̃jk(·) ≡ 0 if j+ k ≥ 3, is locally conjugate
to the system






ξ̇ = αξ



1 +

2∑

j=0

1∑

k=0

Fjk(?)(ξpyq)3ω1(ξ)
jω2(y)

k





ẏ = α
(
ε− p

q

)
y



1 +

1∑

j=0

1∑

k=0

gjk(ε)(ξpyq)2ω1(ξ)
jω2(y)

k

+
2∑

j=0

2∑

k=0

ḡjk(?)(ξpyq)3ω1(ξ)
jω2(y)

k





(2.70)

with

? = ε, ξpyq, ξpyqω1(ξ), ξ
pyqω2(y)

and where F21(?) ≡ 0, g11(ε) ≡ 0 and ḡjk ≡ 0 if j+k ≥ 3, by the transformation

x = ξ



1 +
2∑

j=0

βj(ε)ξ
2py2qω1(ξ)

j



 (2.71)

where the βj are smooth functions in ε and the Fjk are as smooth as the fjk

and the ḡjk are as smooth as the g̃jk.

To conclude the second step of the elimination process we need the following
result.
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Lemma 2.12 The system given by (2.70) is locally conjugate to the system





ξ̇ = αξ



1 +

2∑

j=0

1∑

k=0

F̄jk(�)(ξpηq)3ω1(ξ)
jω2(η)

k





η̇ = α
(
ε− p

q

)
η



1 +

2∑

j=0

2∑

k=0

Gjk(�)(ξpηq)3ω1(ξ)
jω2(η)

k




(2.72)

with
� = ε, ξpηq, ξpηqω1(ξ), ξ

pηqω2(η)

by the transformation

y = η



1 +

1∑

j=0

2∑

k=0

γjk(ε)ξ2pη2qω1(ξ)
jω2(η)

k



 (2.73)

where F̄21(�) ≡ 0 and Gjk(�) ≡ 0 if j + k ≥ 3. We also have that the functions
γjk are smooth functions and the F̄jk are as smooth as the Fjk and the Gjk are
as smooth as the ḡjk.

If we now apply Taylor’s Theorem on (2.72) then we find





ξ̇ = αξ



1 +

2∑

j=0

1∑

k=0

F̂jk(ε)(ξpηq)3ω1(ξ)
jω2(η)

k

+

3∑

j=0

2∑

k=0

Fjk(�)(ξpηq)4ω1(ξ)
jω2(η)

k





η̇ = α
(
ε− p

q

)
η



1 +

2∑

j=0

2∑

k=0

Ĝjk(ε)(ξpηq)3ω1(ξ)
jω2(η)

k

+

3∑

j=0

3∑

k=0

Gjk(�)(ξpηq)4ω1(ξ)ω2(η)





where

• F̂21(ε) ≡ 0,

• Ĝjk(ε) ≡ 0 if j + k ≥ 3,

• Fjk(�) ≡ 0 if j + k ≥ 4,

• Gjk(�) ≡ 0 if j + k ≥ 4

• � = ε, ξpηq, ξpηqω1(ξ), ξ
pηqω2(η).
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We now come to the inductive part of the method.

Lemma 2.13 For N ≥ 2, the system given by





ẋ = αx



1 +

N∑

j=0

N−1∑

k=0

fjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+

N+1∑

j=0

N∑

k=0

f̂jk(·)(xpyq)N+2ω1(x)
jω2(y)

k





ẏ = α
(
ε− p

q

)
y



1 +

N∑

j=0

N∑

k=0

gjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+

N+1∑

j=0

N+1∑

k=0

ĝjk(·)(xpyq)N+2ω1(x)
jω2(y)

k





(2.74)

where

• fjk(ε) ≡ 0 if j + k ≥ N + 1

• gjk(ε) ≡ 0 if j + k ≥ N + 1

• f̂jk(·) ≡ 0 if j + k ≥ N + 2

• ĝjk(·) ≡ 0 if j + k ≥ N + 2

• · = ε, xpyq, xpyqω1(x), x
pyqω2(y).

is locally conjugate to the system





ξ̇ = αξ



1 +

N+1∑

j=0

N∑

k=0

f̃jk(?)(ξpyq)N+2ω1(ξ)
jω2(y)

k





ẏ = α
(
ε− p

q

)
y



1 +

N∑

j=0

N∑

k=0

gjk(ε)(ξpyq)N+1ω1(ξ)
jω2(y)

k

+

N+1∑

j=0

N+1∑

k=0

g̃jk(?)(ξpyq)N+2ω1(ξ)
jω2(y)

k





(2.75)

where

• gjk(ε) ≡ 0 if j + k ≥ N + 1

• f̃jk(·) ≡ 0 if j + k ≥ N + 2

• g̃jk(·) ≡ 0 if j + k ≥ N + 2
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• ? = ε, ξpyq, ξpyqω1(ξ), ξ
pyqω2(y).

by a transformation of the form

x = ξ



1 +

N+1∑

j=0

N−1∑

k=0

βjk(ε)ξ(N+1)py(N+1)qω1(ξ)
jω2(y)

k



 (2.76)

where the functions βjk are smooth in ε. Also we have that the functions f̃jk have

the same smoothness as the f̂jk and the functions g̃jk have the same smoothness
as the ĝjk.

Proof: Applying (2.76) to the second equation of (2.74) gives us immediately
the second equation of (2.75). Differentiating (2.76) with respect to t gives us

ẋ = ξ̇



1 +

N+1∑

j=0

N−1∑

k=0

((N + 1)p+ 1 − jqε)βjk(ε)(ξpyq)N+1ω1(ξ)
jω2(y)

k

+

N∑

j=0

N−1∑

k=0

(j + 1)qβj+1,k(ε)(ξpyq)N+1ω1(ξ)
jω2(y)

k





+ α

(
ε− p

q

)
ξ




N+1∑

j=0

N−2∑

k=0

(k + 1)q

ε− p
q

βj,k+1(ε)(ξ
pyq)N+1ω1(ξ)

jω2(y)
k

+

N+1∑

j=0

N−1∑

k=0

(
(N + 1)q − kqε

ε− p
q

)
βjk(ε)(ξpyq)N+1ω1(ξ)

jω2(y)
k

+
N+1∑

j=0

N∑

k=0

f̄jk(?)(ξpyq)N+1ω1(ξ)
jω2(y)

k



 . (2.77)

Substituting (2.76) into the right-hand side of the first equation of (2.74) gives
us

ẋ = αξ



1 +
N+1∑

j=0

N−1∑

k=0

(fjk(ε) + βjk(ε))(ξpyq)N+1ω1(ξ)
jω2(y)

k

+
N+1∑

j=0

N∑

k=0

f̃jk(?)(ξpyq)N+1ω1(ξ)
jω2(y)

k



 , (2.78)

where fN+1,k(ε) ≡ 0 for all k. Equating (2.77) and (2.78) gives us

ξ̇ = αξ
T
N
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where

T = 1 −
N+1∑

j=0

N−2∑

j=0

(k + 1)qβj,k+1(ε)(ξ
pyq)N+1ω1(ξ)

jω2(y)
k

+

N+1∑

j=0

N−1∑

k=0

(fjk(ε) + (1 + kqε− (N + 1)(qε− p))βjk(ε))

(ξpyq)N+1ω1(ξ)
jω2(y)

k

+

N+1∑

j=0

N∑

k=0

f̌jk(?)(ξpyq)N+2ω1(ξ)
jω2(y)

k,

and

N = 1 +
N+1∑

j=0

N−1∑

k=0

((N + 1)p+ 1 − jqε)βjk(ε)(ξpyq)N+1ω1(ξ)
jω2(y)

k

+

N∑

j=0

N−1∑

k=0

(j + 1)qβj+1,k(ε)(ξpyq)N+1ω1(ξ)
jω2(y)

k.

We will obtain system (2.75) iff βjk(ε) ≡ 0 for j + k ≥ N + 2 and the system
AB = F has a solution for all ε ∼ 0. Here

B = (β00, β01, . . . , β0,N−1, β10, β11, . . . , β1,N−1, . . . , βN0, βN1),

F = (f00, f01, . . . , f0,N−1, f10, f11, . . . , f1,N−1, . . . , fN0, fN1)

and

A =





A0 qIN 0 . . . 0 0
0 A1 2qIN . . . 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . NqI2 0

0 0 0 . . . AN qI1 (N + 1)qI1





where Ik is the k-dimensional identity-matrix and Am (for m 6= 0) is the follow-
ing m×m -matrix

Am =





(N + 1 −m)qε q 0 . . . 0
0 (N −m)qε 2q . . . 0
...

...
. . .

. . .
...

0 0 . . . 2qε (N −m)q
0 0 . . . 0 qε




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and A0 is the following N ×N -matrix

A0 =





(N + 1)qε q 0 . . . 0
0 Nqε 2q . . . 0
...

...
. . .

. . .
...

0 0 . . . 3qε (N − 1)q
0 0 . . . 0 2qε




.

This linear system has N degrees of freedom. We use this freedom to choose
β0k(ε) ≡ 0 for all j = 0, 1, · · · , N − 1. For ε = 0 the reduced linear system, i.e.
without consideration of β0k, is diagonal and has a non-zero determinant. So
the system has a solution for ε = 0. As the coefficients of A and F are smooth
with respect to ε we have by continuity that for ε sufficiently close to zero the
determinant of the system will be non-zero as well. Hence there exists a solution
for ε sufficiently close to zero.

By virtue of the Inverse Function Theorem the map (ξ, y, ε) 7→ (x, y, ε) is
invertible. 2

We now have reached the final step of this elimination process. As the proof
is similar to the proof of Lemma 2.13 we omit this proof.

Lemma 2.14 The system defined by (2.75) is locally conjugate to the system





ẋ = αξ



1 +

N+1∑

j=0

N∑

k=0

Fjk(�)(ξpηq)N+2ω1(ξ)
jω2(η)

k





η̇ = α
(
ε− p

q

)
η



1 +

N+1∑

j=0

N+1∑

k=0

Gjk(�)(ξpηq)N+2ω1(ξ)
jω2(η)

k





(2.79)

where

• Fjk(�) ≡ 0 if j + k ≥ N + 2

• Gjk(�) ≡ 0 if j + k ≥ N + 2

• � = ε, ξpηq, ξpηqω1(ξ), ξ
pηqω2(η),

by a transformation of the form

y = η



1 +

N∑

j=0

N+1∑

k=0

γjk(ε)ξ(N+1)pη(N+1)qω1(ξ)
jω2(η)

k



 (2.80)

where the functions γjk are smooth in ε. Also we have that the functions Fjk

have the same smoothness as the functions f̃jk and the functions Gjk have the
same smoothness as the functions g̃jk.
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2.3.3 Conclusions

We start with a system as in (2.54)

{
ẋ = αx

(
1 + f1(ε)x

pyq + f2(ε, x
pyq)(xpyq)2

)

ẏ = α
(
ε− p

q

)
y
(
1 + g1(ε)x

pyq + g2(ε, x
pyq)(xpyq)2

)
.

Applying successively Lemma 2.9, Lemma 2.10, Lemma 2.11 and Lemma 2.12
we obtain the system






ẋ2 = αx2



1 +

2∑

j=0

1∑

k=0

F̄jk(·)(xp
2y

q
2)

3ω1(x2)
jω2(y2)

k





ẏ2 = α
(
ε− p

q

)
y2



1 +

2∑

j=0

2∑

k=0

Ḡjk(·)(xp
2y

q
2)

3ω1(x2)
jω2(y2)

k





where
· = ε, x

p
2y

q
2, x

p
2y

q
2ω1(x2), x2y2ω2(y2).

By multiple successive application of Lemma 2.13 and Lemma 2.14 we obtain,
given a positive integer N ∈ N \ {0}, a system where all nonlinear terms are of
equal order or lower order than ξNp+1ηNq in the first equation and of equal or
lower order than ξNpηNq+1 in the second equation where we named the final
variables (ξ, η). This system is given by






ξ̇ = αξ



1 +

N+1∑

j=0

N∑

k=0

Fjk(·)(ξpηq)N+2ω1(ξ)
jω2(η)

k





η̇ = α
(
ε− p

q

)
η



1 +

N+1∑

j=0

N+1∑

k=0

Gjk(·)(ξpηq)N+2ω1(ξ)
jω2(η)

k



 ,

(2.81)

where Fjk(·) ≡ 0 if j + k ≥ N + 2, Gjk(·) ≡ 0 if j + k ≥ N + 2 and

· = ε, ξpηq, ξpηqω1(ξ), ξ
pηqω2(η).

From Proposition 2.8 it follows that the non-linear term in the first equation
of (2.81) is of order O(ξ(N+1)p+1−ν) · O(η(N+1)q−µ) for any small ν > 0 and
µ > 0 and the non-linear term in the second equation of (2.81) is of order
O(ξ(N+1)p−ν) · O(η(N+1)q+1−µ) for any small ν > 0 and µ > 0. We want to
eliminate those terms, be it in a non-explicit way, by applying the methods in
[Bon97, IY91]. For that purpose we need to know that these non-linear terms
are sufficiently smooth. From elementary methods of calculus we obtain:
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Lemma 2.15 Let K,L,M,N ∈ N \ {0}. The function

g(ε, x, y) := xKyLω1(x)
Mω2(y)

N for ε 6= 0

g(0, x, y) := xKyL(q ln |x|)M

(
−q

2

p
ln |y|

)N

is of class CP−1 (where P = min(K,L)) in (x, y) for ε sufficiently small; more-
over for all k, ` ∈ {0, 1, · · · , P − 1} one has

lim
ε→0

∂k+`

∂xk∂y`
g(ε, x, y) =

∂k+`

∂xk∂y`
g(0, x, y).

Moreover, if the functions Fjk and Gjk in the right-hand side of (2.81) are of
class C(N+1)p then the nonlinear terms in (2.81) are of class C(N+1)p.

From Lemma 1.19 and Theorem 3.9 in [Bon97] it follows that, given r ∈ N, if
N is large enough in (2.81) then there exists a Cr diffeomorphism h defined on
a small neighbourhood of the origin which conjugates system (2.81) to its linear
part. Let us denote the system given by (2.81) by Xε and the linear part of Xε

by X0
ε . Then Xε equals X0

ε plus N -flat terms. By virtue of Lemma 1.19 we can
write these N -flat terms as the sum Xs

ε +Xu
ε where Xs

ε contains all terms that
are N -flat in the stable direction and Xu

ε contains all terms that are N -flat in
the unstable direction. Defining Yε := X0

ε +Xs
ε and denoting the flow of Xε,

resp. Yε by Φt, resp. Ψt, Theorem 3.9 from [Bon97] gives us that h = h(2) ◦h(1)

where h(1) conjugates Xε with Yε and h(2) conjugates Yε with X0
ε . We also have

that

h(1) := lim
t→+∞

Φ−t ◦ Ψt(x, y),

h(2) := lim
t→+∞

Ψ−t

(
etx, e(ε− p

q )ty
)
.

2.4 C∞ character of the obtained conjugacies

In Section 2.3 we calculated an explicit form of the conjugacies between local
families of planar vector fields with saddle singularities. We found that the
conjugacies are finitely smooth. We now want to investigate the smoothness
of these conjugacies in terms of x, y and two extra variables z and w. These
extra variables are - of course - inspired by the functions ω1 and ω2 that were
introduced in Section 2.3.

2.4.1 Introduction of new variables

The variables z and w are defined by

z := xpω1(x) (2.82)

w := yqω2(y) (2.83)
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and they have the following properties

∂z

∂x
=

(p− εq)z + qxp

x
(2.84)

∂w

∂y
=

−p
ε− p

q

w + q
ε− p

q

yq

y
(2.85)

lim
x→0

z = 0 (2.86)

lim
y→0

w = 0 (2.87)

We define a degree-function which we will denote by D:

D
(
xaybzcwd

)
= a+ b + cp+ dq, (2.88)

for all a, b, c, d ∈ N. Let us give an example:

D (xpyq) = D (yqz) = D (xpw) = D (zw) = p+ q.

So the exponents of z and w are counted with a higher “weight” than those in
x and y.

2.4.2 Reformulation of the results from Section 2.3

In Section 2.3 we calculated the transformations needed to eliminate the reso-
nant terms of a vector field with a saddle singularity. We will now reformulate
these results in terms of the variables (x, y, z, w). As we interpret z and w

as ordinary variables, we will extend our system to a 4-dimensional one. This
situation will be only temporary.

We want to indicate that all the transformations will be transformations on
x or y, the transformations on z and w will be determined by (2.82) and (2.83).

As in (2.54) we start with the following system

{
ẋ = αx

(
1 + f1(ε)x

pyq + f2(ε, x
pyq)(xpyq)2

)

ẏ = α
(
ε− p

q

)
y
(
1 + g1(ε)x

pyq + g2(ε, x
pyq)(xpyq)2

) . (2.89)

Now Lemma 2.9 is reformulated as

Lemma 2.16 The system






ẋ = αx
(
1 + f1(ε)x

pyq + f2(ε, x
pyq)(xpyq)2

)

ẏ = α
(
ε− p

q

)
y
(
1 + g1(ε)x

pyq + g2(ε, x
pyq)(xpyq)2

)

ż = α ((p− εq)z + qxp)
(
1 + f1(ε)x

pyq + f2(ε, x
pyq)(xpyq)2

)

ẇ = α(−pw + qyq)
(
1 + g1(ε)x

pyq + g2(ε, x
pyq)(xpyq)2

)
(2.90)
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is locally conjugate with the system





ẋ1 = αx1

(
1 + f̃0(·)x2p

1 y
2q + f̃1(·)xp

1y
2qz1

)

ẏ = α
(
ε− p

q

)
y
(
1 + g1(ε)x

p
1y

q +G0(·)xp
1y

2q +G1(·)xp
1y

2qz1
)

ż1 = α ((p− εq)z1 + qx
p
1)
(
1 + f̃0(·)x2p

1 y
2q + f̃1(·)xp

1y
2qz1

)

ẇ = α(−pw + qyq)
(
1 + g1(ε)x

p
1y

q +G0(·)xp
1y

2q +G1(·)xp
1y

2qz1
)

(2.91)
where

· = ε, x
p
1y

q, yqz1

by the transformation

x = x1

(
1 +

f1(ε)

q
yqz1

)
(2.92)

with
z1 = x

p
1ω1(x1)

where the f̃j are as smooth as f2 and the Gj are as smooth as g2.

The transformation (2.92) is clearly C∞ in (x1, y, z1, w). One might wonder
if the transformation from z to z1 is C∞, but by some elementary calculations
one deduces from the definition of z that

z =

(
1 +

f1(ε)

q
yqz1

)p

(z1 + (xp
1 − εz1)f1(ε)y

qz1Φ(yqz1)) (2.93)

where Φ is some C∞ function. Using the Inverse Function Theorem one con-
cludes that the map (x1, y, z1, w) 7→ (x, y, z, w) is a C∞ function.

In a similar way we can reformulate Lemma 2.10, Lemma 2.11 and
Lemma 2.12. We will omit an explicit reformulation of these results and im-
mediately move on to the inductive part that is given by Lemma 2.13 and
Lemma 2.14. So after 2N steps we can assume that the system is given by





ẋN = αxN



1 +

N∑

j=0

N−1∑

k=0

fjk(·)x(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N





ẏN = α
(
ε− p

q

)
yN



1 +

N∑

j=0

N∑

k=0

gjk(·)x(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N





żN = α((p− εq)zN + qx
p
N )

1 +

N∑

j=0

N−1∑

k=0

fjk(·)x(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N





ẇN = α(−pwN + qy
q
N )



1 +
N∑

j=0

N∑

k=0

gjk(·)x(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N





(2.94)
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where · = ε, x
p
Ny

q
N , y

q
NzN , x

p
NwN .

The transformation given by Lemma 2.13 is now written as

xN = xN+1



1 +

N+1∑

j=1

N−1∑

k=0

βjk(ε)x
(N+1−j)p
N+1 y

(N+1−k)q
N z

j
N+1w

k
N



 , (2.95)

hence

xN+1 = xN



1 −
N+1∑

j=1

N−1∑

k=0

βjk(ε)x
(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N + · · ·



 (2.96)

using the definition given by (2.88) we see that the second term has D-degree
(N +1)(p+ q) and · · · denotes term with D-degree at least (N +2)(p+ q). The
link between zN and zN+1 is now given by

zN+1 = zN − q

(
x

p
N +

(
p

q
− ε

)
zN

)
(2.97)




N∑

j=0

N+1∑

k=1

βjk(ε)x
(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N + · · ·





we see that the second term of the last factor has D-degree p+ (N + 1)(p+ q)
and · · · denotes terms with D-degree at least p+ (N + 2)(p+ q).

The transformation given by Lemma 2.14 is rewritten as

yN = yN+1



1 +

N∑

j=0

N+1∑

k=1

γjk(ε)x
(N+1−j)p
N+1 y

(N+1−k)q
N+1 z

j
N+1w

k
N+1



 , (2.98)

hence

yN+1 = yN



1 −
N∑

j=0

N+1∑

k=1

γjk(ε)x
(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N + · · ·



 (2.99)

where the second term has D-degree (N + 1)(p+ q), and

wN+1 = wN −
(

−p
ε− p

q

wN +
q

ε− p
q

y
q
N

)
(2.100)




N∑

j=0

N+1∑

k=1

γjk(ε)x
(N+1−j)p
N y

(N+1−k)q
N z

j
Nw

k
N + · · ·



 .

We see that the D-degree of the first non-linear term equals q+ (N + 1)(p+ q).
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2.4.3 Conclusions

Denoting the transformation in (2.96) by TN0 and the transformation in (2.99)
by TN1, then

TN := TN1 ◦ TN0

is the transformation that maps (xN , yN , zN , wN ) to (xN+1, yN+1, zN+1, wN+1).
We now make the composition of the first N transformations

TN := TN ◦ TN−1 ◦ · · · ◦ T1.

We have that

TN (xN , yN , zN , wN ) = (xN + D ((N + 1)(p+ q)) ,

yN + D ((N + 1)(p+ q)) ,

zN + D (p+ (N + 1)(p+ q)) ,

wN + D (q + (N + 1)(p+ q)))

so TN won’t change the coefficients of lower D-degree in the Taylor expansion
of TN−1.

This means that for N → ∞ we will have a (not necessarily convergent) for-
mal power series expansion in (x∞, y∞, z∞, w∞). By virtue of Borel’s Theorem
- see for instance [Brö75, Nel70] - we know that there exists a function T which
is C∞ with respect to (x∞, y∞, z∞, w∞) and which has the obtained formal
power series expansion as Taylor series expansion. Applying this function T to
(2.90) we obtain the system






ẋ∞ = αx∞ (1 +H1(ε, x
p
∞, y

q
∞, z∞, w∞))

ẏ∞ = α
(
ε− p

q

)
y∞ (1 +H2(ε, x

p
∞, y

q
∞, z∞, w∞))

ż∞ = α((p− εq)z∞ + qxp
∞) (1 +H1(ε, x

p
∞, y

q
∞, z∞, w∞))

ẇ∞ = α(−pw∞ + qyq
∞) (1 +H2(ε, x

p
∞, y

q
∞, z∞, w∞))

(2.101)

where H1 and H2 are C∞ and infinitely flat, i.e. we have that

∂j1+j2+j3+j4Hi

∂x
j1
∞y

j2
∞z

j3
∞w

j4
∞

(ε, x∞, y∞, z∞, w∞) = O(|(x∞, y∞, z∞, w∞)|n), ∀n ∈ N

for i = 1 or 2 and for all j1, j2, j3, j4 ∈ N.
From (2.101) we obtain the following equations (by division of the third

equation by the first equation and the fourth equation by the second equation):

dz∞

dx∞
=

(p− εq)z∞ + qxp
∞

x∞
(2.102)

dw∞

dy∞
=

−pw∞ + qyq
∞

(ε− p
q
)y∞

(2.103)
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As (2.102) is the same equation as (2.84) and (2.103) the same as (2.85) we
have that z∞ = xp

∞ω1(x∞) and w∞ = yq
∞ω2(y∞) on condition we use the

initial conditions z(1) = 0 and w(1) = 0.
It is clear that (2.101) is a hyperbolic system. In [IY91] it is proved that

this type of systems meets all requirements of Proposition 1.22 in the case that
the non-linear terms are infinitely flat. As (2.101) fulfills all these demands, by
virtue of Proposition 1.22 we can conclude there exists some C∞ function

T̃ : (x∞, y∞, z∞, w∞) 7→ (x̃, ỹ, z̃, w̃)

such that T̃ conjugates (2.101) with






˙̃x = αx̃

˙̃y = α
(
ε− p

q

)
ỹ

˙̃z = α((p − εq)z̃ + qx̃p)
˙̃w = α(−pw̃ + qỹq)

. (2.104)

As we did for z∞ and w∞ in (2.102) and (2.103) we can apply the same argu-
ments to conclude that z̃ = x̃pω1(x̃) and w̃ = ỹqω2(ỹ).

It is obvious that the first two equations of (2.104) are independent of z and
w. As we introduced these variables as temporary variables, we can delete them
from the system. This means we have proved that the system given by (2.89)
and {

˙̃x = αx̃

˙̃y = α
(
ε− p

q

)
ỹ

(2.105)

are conjugate by a function T where T : R4 → R4 is a C∞ function in the
variables (x, y, xpω1(x), y

qω2(y)) and

T(x, y, xpω1(x), y
qω2(y))i = T(x, y, xpω1(x), y

qω2(y))i

for i = 1, 2.

2.5 Conjugacies between saddle type diffeomor-
phisms

2.5.1 Settings, nearly resonance and compensators

We consider a local C∞ deformation Fλ of a multiplicatively resonant diffeo-
morphism on R2. By virtue of the results in Subsection 1.3.5 we can assume
that Fλ(0) = 0 and for the linear part we have that

DFλ(0) =

(
α(λ) 0

0 β(λ)

)
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where α(λ), β(λ) ∈ R, |α(λ)| > 1 and |β(λ)| < 1. By virtue of Proposition 1.15
we know that the eigenvalues α(λ) and β(λ) are C∞ functions of λ. Proposi-
tion 1.15 and Proposition 1.16 assure us that DFλ can be diagonalised by a C∞

change of coordinates.
Let us consider the eigenvalues of the multiplicatively resonant diffeomor-

phism F0. As in the 2-dimensional case multiplicatively resonance is the same
as multiplicatively one-resonance, we know there exists p, q ∈ N with p+ q ≥ 1
such that

α(0)pβ(0)q = 1.

This means that β(0) can be written as a function of α(0), but we have to be
aware of the signs of the eigenvalues:

• if α(0) and β(0) are positive, then β(0) = α(0)−
p
q ,

• if α(0) < 0 and β(0) > 0, then β(0) = (α(0)−p)
1
q = |α(0)|− p

q because p
will be even,

• if α(0) > 0 and β(0) < 0, then β(0) = −α(0)−
p
q because q is even,

• if α(0) < 0 and β(0) < 0, then β(0) = −|α(0)|− p
q as p and q have the

same parity.

We can summarise these 4 cases by

β(0) = σ2|α(0)|− p
q ,

where σ2 is the sign of β(0) and by σ1 we denote the sign of α(0).
As α(0)pβ(0)q = 1 we always have that

σ
p
1σ

q
2 = 1.

Using a submersion λ 7→ (α(λ), β(λ)) we can regard (α, β) as new param-
eters and omit λ in the notation. As we assume that the system is nearly
multiplicatively resonant, we have that

β = σ2|α|ε−
p
q (2.106)

where ε is sufficiently close to 0 and p, q ∈ N with p + q ≥ 1. Taking (2.106)
in consideration it is natural to regard (α, ε) as parameters instead of (α, β) on
condition we take ε close to zero. Therefore we can assume that

DFα,ε(0) =

(
α 0

0 σ2|α|ε−
p
q

)
. (2.107)

From now on we will consider α as a constant, hence we obtain a local
deformation Fε depending on the one-dimensional parameter ε ∈ (R, 0).



Chapter 2. Nearly-resonant saddles 67

For ε = 0 the only resonant monomials that will appear in the formal normal
form of Fε are of the form

(
x(xpyq)k, y(xpyq)k

)
, k ∈ N \ {0}.

This means that all other monomials are non-resonant and thus can be elimi-
nated formally.

The following result will be useful in order to know which monomials are
resonant for ε 6= 0.

Proposition 2.17 There exists a constant K > 0 depending on p and q such
that for all small ε 6= 0 the resonant monomials of Fε are all of order > K

|ε| .

Proof: Observing the resonance equation on the eigenvalues of DFε we have

αr1βr2 = 1 ⇔ αr1

(
σ2|α|ε−

p
q

)r2

= 1

⇔ |α|r1 |α|εr2−
p
q

r2 = 1

⇔ r1 + εr2 −
p

q
r2 = 0

⇔ r1 +

(
ε− p

q

)
r2 = 0. (2.108)

It is clear that (2.5) and (2.6) are equivalent with (2.108), so the statement
follows from Proposition 2.1. 2

In the first stage we prefer not to eliminate the “near” resonant monomials
of low degree. More precisely: we fix a small ε0 > 0 and let N be the integer
part of K

ε0
. Using the results from Subsection 1.3.5 there exists a C∞ change of

coordinates such that Fε obtains the following form:

Fε(x, y) =
(
αx(1 + Pε(x

pyq) + O(|(x, y)|N+1) , (2.109)

σ2|α|ε−
p
q y(1 +Qε(x

pyq) + O(|(x, y)|N+1)
)
,

where Pε and Qε are polynomials of degree at most N
p+q

. Using invariant man-

ifolds we can and do assume that {x = 0} and {y = 0} are invariant. Hence we
can start from a local family of the form

Fε(x, y) =

(
αx(1 + Pε(x

pyq) +Rε(x, y) , (2.110)

σ2|α|ε−
p
q y(1 +Qε(x

pyq) + Sε(x, y)
)
,

where Rε = O(|(x, y)|N+1) and Sε(x, y) = O(|(x, y)|N+1). By virtue of The-
orem 1.24 we know that for a given integer k > 0 and for N large enough
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(depending on k, p, q) there exists a Ck change of variables eliminating Rε and
Sε.

During the calculations we use the functions ω1 and ω2 that were defined by
(2.44) and (2.45). We give two properties of these functions that are useful when
working with conjugacies between diffeomorphisms. The proof follows from a
short straight-forward calculation.

ω1(αx) = ω1(α) + (1 − εω1(α))ω1(x), (2.111)

ω2(±|α|ε− p
q y) = ω1(α) + (1 − εω1(α))ω2(y). (2.112)

2.5.2 Computation of the conjugacies

By virtue of (2.112) we can start with

Fε(x, y) =

(
αx(1 + f0(ε)x

pyq + f1(ε, x
pyq)(xpyq)2), (2.113)

σ2|α|ε−
p
q y(1 + g0(ε)x

pyq + g1(ε, x
pyq)(xpyq)2)

)
.

We begin by eliminating the first non-linear term in the first component of Fε

using ω1.

Lemma 2.18 The system (2.113) is locally conjugate to the system

Gε(x, y) =
(
αx
(
1 + f̄0(·)(xpyq)2 + f̄1(·)(xpyq)2ω1(x)

)
, (2.114)

σ2|α|ε−
p
q y (1 + g0(ε)x

pyq+

ḡ0(·)(xpyq)2 + ḡ1(·)(xpyq)2ω1(x)
))

where
· = ε, xpyq, xpyqω1(x)

by the transformation

φε(x, y) = (x+ β0(ε)x(x
pyq) + β1(ε)x(x

pyq)ω1(x), y) (2.115)

where β0 and β1 are smooth functions in ε and the f̄j are as smooth as f1 and
the ḡj are as smooth as g1.

Proof: In order to obtain a conjugacy between Fε and Gε we need to prove
that

Fε ◦ φε = φε ◦Gε.

A short calculation and application of (2.111) and (2.112), gives us

Fε(φε(x, y)) = (α(1 + (f0(ε) + β0(ε))x
pyq + β1(ε)x

pyqω1(x)

+f̂0(·)(xpyq)2 + f̂1(·)(xpyq)2ω1(x)),

σ2|α|ε−
p
q y(1 + g0(ε)x

pyq

+ ĝ0(·)(xpyq)2 + ĝ1(·)(xpyq)2ω1(x))
)

(2.116)
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where · is taken as in the statement and

φε(Gε(x, y)) =

(
αx

(
1 +

β0(ε) + ω1(α)β1(ε)

1 − εω1(α)
xpyq + β1(ε)x

pyqω1(x)

+f̌0(·)(xpyq)2 + f̌1(·)(xpyq)2
)
,

σ2|α|ε−
p
q y (1 + g0(ε)x

pyq

+ḡ0(·)(xpyq)2 + ḡ1(·)(xpyq)2ω1(x)
) )

. (2.117)

We have that (2.116) and (2.117) are equal iff

f0(ε) = ε
ω1(α)

1 − εω1(α)
β0(ε) +

ω1(α)

1 − εω1(α)
β1(ε). (2.118)

We have the freedom to choose β0(ε) ≡ 0, so (2.118) gives us that

β1(ε) =
1 − εω1(α)

ω1(α)
.

Hence

φε(x, y) =

(
x+

1 − εω1(α)

ω1(α)
f0(ε)x(x

pyq)ω1(x), y

)
. (2.119)

2

Remark 2.4 Note that in the previous proof σ2 vanishes in our calculations as
α = σ1|α| and σp

1σ
q
2 = 1.

We continue by eliminating the first non-linear term of the second component
of Gε. This time both ω1 and ω2 are involved in the conjugacy. We will omit
the proof as it is analogous to the previous proof.

Lemma 2.19 The system given by (2.114) is locally conjugate to the system

Hε(x, y) =



αx



1 +

1∑

j=0

f̃j(?)(x
pyq)2ω1(x)

j



 , (2.120)

σ2|α|ε−
p
q y



1 +

1∑

j=0

1∑

k=0

g̃jk(?)(xpyq)2ω1(x)
jω2(y)

k









with g̃11(?) ≡ 0 and where

? = ε, xpyq, xpyqω1(x), x
pyqω2(y)

by the transformation

ψε(x, y) = (x, y + γ0(ε)y(x
pyq) + γ1(ε)y(x

pyq)ω2(y)) (2.121)

where γ0 and γ1 are smooth functions in ε and the f̃j are as smooth as the f̄j

and the g̃jk are as smooth as the ḡj.
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To avoid some technical problems with the inductive part of the proof we
will give an explicit proof for the second step in this method. The proofs are
similar to the previous ones and therefore omitted.

We now apply Taylor’s Theorem to (2.120) and rename the function to Fε.
So we can work with

Fε(x, y) =



αx



1 +

1∑

j=0

fj(ε)(x
pyq)2ω1(x)

j

+

2∑

j=0

1∑

k=0

f̄jk(·)(xpyq)3ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q y



1 +

1∑

j=0

1∑

k=0

gjk(ε)(xpyq)2ω1(x)
jω2(y)

k

+

2∑

j=0

2∑

k=0

ḡjk(·)(xpyq)3ω1(x)
jω2(y)

k







 (2.122)

where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y)

g11(ε) ≡ 0

f̄jk(·) ≡ 0 if j + k ≥ 3

ḡjk(·) ≡ 0 if j + k ≥ 3.

We continue our elimination method with the following lemma.

Lemma 2.20 The system defined by (2.122) is locally conjugate to

Gε(x, y) =



αx



1 +
2∑

j=0

1∑

k=0

f̃jk(·)(xpyq)3ω1(x)
jω2(y)

k



 , (2.123)

σ2|α|ε−
p
q y



1 +
1∑

j=0

1∑

k=0

gjk(ε)(xpyq)2ω1(x)
jω2(y)

k

+
2∑

j=0

2∑

k=0

g̃jk(·)(xpyq)3ω1(x)
jω2(y)

k








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where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y)

g11(ε) ≡ 0

f̃jk(·) ≡ 0 if j + k ≥ 3

g̃jk(·) ≡ 0 if j + k ≥ 3.

by the transformation

φε(x, y) =



x+

2∑

j=0

βj(ε)x(x
pyq)2ω1(x)

j , y



 (2.124)

where βjk is a smooth function in ε. We also have that the functions f̃jk are as
smooth as the functions f̄jk and the functions g̃jk are as smooth as the functions
ḡjk.

To conclude the second step of the elimination process we need the following
result.

Lemma 2.21 The system defined by (2.123) is locally conjugate to

Hε(x, y) =



αx



1 +

2∑

j=0

1∑

k=0

f̂jk(·)(xpyq)3ω1(x)
jω2(y)

k



 , (2.125)

σ2|α|ε−
p
q y



1 +
2∑

j=0

2∑

k=0

ĝjk(·)(xpyq)3ω1(x)
jω2(y)

k









where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y),

f̂jk(·) ≡ 0 if j + k ≥ 3

ĝjk(·) ≡ 0 if j + k ≥ 3

by the transformation

ψε(x, y) =



x, y +

1∑

j=0

2∑

k=0

γjk(ε)y(xpyq)2ω1(x)
jω2(y)

k



 (2.126)

where the functions γjk are smooth in ε. We have that the functions f̂jk have

the same smoothness as the functions f̃jk and the functions ĝjk have the same
smoothness as the functions g̃jk.
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We are now ready to begin the inductive part of the elimination process.

Lemma 2.22 Take N ≥ 2. The system

Fε(x, y) =



αx



1 +

N∑

j=0

N−1∑

k=0

fjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+

N+1∑

j=0

N∑

k=0

f̄jk(·)(xpyq)N+2ω1(x)
jω2(y)

k



 , (2.127)

σ2|α|ε−
p
q



1 +
N∑

j=0

N∑

k=0

gjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

N+1∑

j=0

N+1∑

k=0

ḡjk(·)(xpyq)N+2ω1(x)
jω2(y)

k









where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y)

fjk(ε) ≡ 0 if j + k ≥ N + 1

gjk(ε) ≡ 0 if j + k ≥ N + 1

f̄jk(·) ≡ 0 if j + k ≥ N + 2

ḡjk(·) ≡ 0 if j + k ≥ N + 2

is locally conjugate to the system

Gε(x, y) =



αx



1 +
N+1∑

j=0

N∑

k=0

f̃jk(·)(xpyq)N+2ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q



1 +

N∑

j=0

N∑

k=0

gjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

N+1∑

j=0

N+1∑

k=0

g̃jk(·)(xpyq)N+2ω1(x)
jω2(y)

k







 (2.128)

where

f̃jk(·) ≡ 0 if j + k ≥ N + 2

g̃jk(·) ≡ 0 if j + k ≥ N + 2
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by the transformation

φε(x, y) =



x+ x

N+1∑

j=0

N−1∑

k=0

βjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k, y



 (2.129)

where the functions βjk are smooth functions in ε. We also have that the func-

tions f̃jk are as smooth as the functions f̄jk and the functions g̃jk are as smooth
as the functions ḡjk.

Proof: In order to have a conjugacy between Fε and Gε we need to check

Fε ◦ φε = φε ◦Gε.

A short elementary calculation gives us

Fε(φε(x, y)) =



αx



1 +

N∑

j=0

N−1∑

k=0

f̄jk(·)(xpyq)N+1ω1(x)
jω2(y)

k

+

N+1∑

j+0

N−1∑

k=0

(βjk(ε) + fjk(ε))(xpyq)N+1ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q



1 +

N∑

j=0

N∑

k=0

gjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+

N+1∑

j=0

N+1∑

k=0

ḡjk(·)(xpyq)N+2ω1(x)
jω2(y)

k







 (2.130)

and

φε(Gε(x, y)) =



αx



1 +

N+1∑

j=0

N−1∑

k=0

cjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+
N+1∑

j=0

N∑

k=0

f̌jk(·)(xpyq)N+2ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q



1 +
N∑

j=0

N∑

k=0

gjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k

+
N+1∑

j=0

N+1∑

k=0

g̃jk(·)(xpyq)N+2ω1(x)
jω2(y)

k







 , (2.131)
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where

cjk(ε) :=

N+1∑

s=j

N−1∑

m=k

(
s

j

)(
m

k

)
βsm(ε)(1 − εω1(α))j+k−N−1ω1(α)s+m−j−k.

We have that (2.130) and (2.131) are equal iff

DB = F

where

B = (β00(ε), β10(ε), · · · , βN0(ε), β01(ε), β11(ε), · · · , βN1(ε), · · · ,
β0,N−1(ε), β1,N−1(ε), β2,N−1)

T

F = (f00(ε), f10(ε), · · · , fN0(ε), f01(ε), · · · , fN−1,1(ε),

· · · , f0,N−1(ε), f1,N−1(ε))
T

and all βjk(ε) and fjk(ε) not appearing in B or F are zero, and

D =





A0 B01 B02 . . . B0,N−1

0 A1 B11 . . . B1,N−1

...
...

. . .
. . .

...
0 0 . . . AN−1 BN−2,N−1

0 0 . . . 0 AN





with Ak being the (N + 1 − k) × (N + 2 − k) matrix with entries

(Ak)ij =






0 if i > j
1

(1 − εω1(α))N+2−k−i
− 1 if i = j

(
j − 1
i− 1

)
ω1(α)j−1

(1 − εω1(α))N+2−k−i
if i < j

and Brs the (N + 1 − r) × (N + 2 − s) matrix with entries

(Brs)ij =






(
s

r

)(
j − 1
i− 1

)
ω1(α)s+j−1

(1 − εω1(α))N+2−r−i
if i ≤ j

0 if i > j

,

where the entry Mjk of a m × n matrix M is located on the jth row and the
kth column.

The system of linear equations as N degrees of freedom which we use to
choose β0k(ε) ≡ 0 for all k = 0, 1, · · · , N − 1. We now obtain a system of
linear equations where the matrix will be upper-triangular for ε = 0 and the
determinant of that matrix equals C ln(α)p for some C 6= 0 and p ∈ N \ {0}
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when ε = 0. As the determinant of the matrix is - at least - continuous in ε, by
continuity we have that the determinant will be non-zero for ε sufficiently close
to zero. Hence we have proved the existence of the transformation φε as stated
above. 2

To finish our elimination method we proceed to the next result which is
proved in the same way as Lemma 2.22.

Lemma 2.23 The system defined by (2.128) is locally conjugate to

Hε(x, y) =



αx



1 +

N+1∑

j=0

N∑

k=0

f̂jk(·)(xpyq)N+2ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q



1 +

N+1∑

j=0

N+1∑

k=0

ĝjk(·)(xpyq)N+2ω1(x)
jω2(y)

k









(2.132)

where

f̂jk(·) ≡ 0 if j + k ≥ N + 2

ĝjk(·) ≡ 0 if j + k ≥ N + 2

by the transformation

ψε(x, y) =



x, y + y

N∑

j=0

N+1∑

k=0

γjk(ε)(xpyq)N+1ω1(x)
jω2(y)

k



 (2.133)

where the functions γjk are smooth functions in ε. We also have that the func-

tions f̂jk are as smooth as the functions f̃jk and the functions ĝjk are as smooth
as the functions g̃jk.

2.5.3 Conclusions

We start with a system as in (2.112)

Fε(x, y) =
(
αx(1 + f0(ε)x

pyq + f1(ε, x
pyq)(xpyq)2),

σ2|α|ε−
p
q y(1 + g0(ε)x

pyq + g1(ε, x
pyq)(xpyq)2)

)
.

Applying successively Lemma 2.18, Lemma 2.19, Lemma 2.20 and Lemma 2.21
we obtain

Fε(x, y) =



αx



1 +
2∑

j=0

1∑

k=0

f̂jk(·)(xpyq)3ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q y



1 +
2∑

j=0

2∑

k=0

ĝjk(·)(xpyq)3ω1(x)
jω2(y)

k








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where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y),

f̂jk(·) ≡ 0 if j + k ≥ 3

ĝjk(·) ≡ 0 if j + k ≥ 3.

By multiple successive application of Lemma 2.22 and Lemma 2.23 we obtain,
given a positive integer N ∈ N, a local family of diffeomorphisms Fε where all
nonlinear terms are of equal order or lower order than xNp+1yNq in the first
component and of equal order or lower than xNpyNq+1 in the second component.
This family of diffeomorphisms is given by

Hε(x, y) =



αx



1 +
N+1∑

j=0

N∑

k=0

f̂jk(·)(xpyq)N+2ω1(x)
jω2(y)

k



 ,

σ2|α|ε−
p
q



1
N+1∑

j=0

N+1∑

k=0

ĝjk(·)(xpyq)N+2ω1(x)
jω2(y)

k









(2.134)

where

· = ε, xpyq, xpyqω1(x), x
pyqω2(y)

f̂jk(·) ≡ 0 if j + k ≥ N + 2

ĝjk(·) ≡ 0 if j + k ≥ N + 2.

From Proposition 2.8 it follows that the non-linear term in the first component
of (2.134) is of order O(ξ(N+1)p+1−ν) · O(η(N+1)q−µ) for any small ν > 0 and
µ > 0 and the non-linear term in the second equation of (2.134) is of order
O(ξ(N+1)p−ν) · O(η(N+1)q+1−µ) for any small ν > 0 and µ > 0. We want to
eliminate those terms, be it in a non-explicit way, by applying the methods in
[IY91]. We can conclude in the same way is Section 2.3 that, given r ∈ N, if
N is large enough in (2.134) then there exists a Cr diffeomorphism h defined
on a small neighbourhood of the origin which conjugates (2.134) to its linear
part. As there is no discrete equivalent known of Theorem 3.9 in [Bon97], i.e. a
version dealing with diffeomorphisms, we cannot give a representation of h by
means of flows as we did in Section 2.2 and Section 2.3.

Remark 2.5 As the conjugacies that were calculated in this section are of the
same form as those calculated in Section 2.3, the results form Section 2.4 are
also valid for these conjugacies. The proof is almost identical to the one in the
case of the vector fields hence we omit the proof.
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2.6 Center vector fields: formal similarity

Since there are formal similarities between normal forms for centers and reso-
nant saddles, we can imitate the foregoing computations for curiosity. For the
moment we ignore the meaning of these results and don’t have any geometric
interpretation of this. We only give the results of these computations.

2.6.1 Settings and complex compensators

Settings

In this section we consider the perturbation of a planar vector field which has
a singularity of center type. By virtue of the results from Subsection 1.3.6 we
may assume that the local deformation is given by

{
ẋ = εx− αy +

(
k(ε, x2 + y2)x− `(ε, x2 + y2)y

)
(x2 + y2) + u(ε, x, y)

ẏ = αx+ εy +
(
`(ε, x2 + y2)x+ k(ε, x2 + y2)y

)
(x2 + y2) + v(ε, x, y)

(2.135)
where k and ` are C∞ functions and u and v are C∞ functions that are infinitely
flat with respect to x and y.

In Subsection 1.3.6 we deduced a normal form for a local deformation of a
planar center in polar coordinates, but it is of course also possible to give a
normal form in complex coordinates. Taking z = x+ iy, we can rewrite (2.135)
as

ż = (ε+ iα(ε))z(1 + f(ε, zz̄)zz̄ + g(ε, z, z̄)) (2.136)

where

f(ε, zz̄) = k(ε, zz̄) + i`(ε, zz̄)

and

g(ε, z, z̄) = u

(
ε,
z + z̄

2
,
z − z̄

2i

)
+ iv

(
ε,
z + z̄

2
,
z − z̄

2i

)
.

Essentially the main idea is to find transformations that will eliminate f
from (2.136) upto some order in zz̄. As f represents terms that are resonant
for ε = 0, this cannot be done with a polynomial change of variables.

Complex compensators

In the previous sections we introduced the functions ω1 and ω2 in order to
construct equivalences or conjugacies between the vector fields with a saddle
singularity or between the diffeomorphisms with a saddle fixed point. In order
to construct conjugacies between vector fields with a center singularity we will
introduce the variable

W(z) :=
1 − z

− 2ε
ε+iα(ε)

ε
(2.137)
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which is a complex-valued function and can be seen as the complex generali-
sation of the Ecalle–Roussarie compensator. For that reason we will call W a
complex compensator. In (2.137) we have used

z
2ε

ε+iα(ε) = e
2ε

ε+iα(ε)
ln z

this way it is obvious that W(z) has the same branching line as the complex
logarithm and this for all values of ε.

A direct calculation reveals

lim
ε→0

W(z) = −2i

α
ln(z) (2.138)

∂W
∂z

(z) =
2

ε+ iα(ε)

1 − εW(z)

z
. (2.139)

In the changes of variables in the sequel we will use monomials of the form

(zpz̄q)nWjWk
; we define a (partial) ordering ≺ on them by putting

(zpz̄q)nWjWk ≺ (zpz̄q)mW`Ws
(2.140)

iff

n < m or (n = m and j > l and k ≥ s) or (n = m and j ≥ l and k > s).
(2.141)

We will say that the monomial on the left-hand side of (2.140) is of lower order
than the right-hand side.

We like to remark that one has to be careful when taking the complex con-
jugate of W . Considering the definition (2.137) it is clear that in general

W(z) 6= W(z̄).

2.6.2 Computation of the conjugacies

We start the process by eliminating the term in zz̄ from (2.136).

Lemma 2.24 The system defined by (2.136) is conjugate to

ż = (ε+ iα(ε))z (2.142)
(
1 +G0(·)(zz̄)2 +G1(·)(zz̄)2W(z) +G2(·)(zz̄)2W(z) + g̃(·, z, z̄)

)

with
· = ε, zz̄, zz̄W(z), zz̄W(z)

by the transformation

z = v + β0(ε)v
2v̄ + β1(ε)v

2v̄W(v) (2.143)

where β0 and β1 are complex-valued functions that are smooth in ε and where g̃
contains all infinitely flat terms and all terms of higher order than (zz̄)2.
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Before proceding to the next step of our elimination process, we expand the
right hand side of (2.142) and again using z as variable we obtain

ż = (ε+ iα(ε))z



1 +

1∑

j=0

1∑

k=0

fjk(ε)(zz̄)2ω(z)jW(z)
k

+

2∑

j=0

2∑

k=0

gjk(·)(zz̄)3W(z)jW(z)
k



+ g̃(·, z, z̄) (2.144)

where

· = ε, zz̄, zz̄W(z), zz̄W(z)

fjk(ε) ≡ 0 if j + k ≥ 2

gjk(ε) ≡ 0 if j + k ≥ 3.

Lemma 2.25 The system defined by (2.142) is conjugate to the system

ż = (ε+ iα(ε))z



1 +

2∑

j=0

2∑

k=0

ĝjk(·)(zz̄)3W(z)jW(z)
k

+ h(·, z, z̄)



 (2.145)

by the transformation

z = v +

2∑

j=0

2∑

k=0

βjk(ε)v(vv̄)2W(v)jW(v)
k

(2.146)

where the functions βjk are smooth functions in ε and where h contains all
infinitely flat terms and all terms of higher order than (zz̄)3.

Applying Taylor’s Theorem on (2.145) gives us

v̇ = (ε+ iα(ε))v



1 +

2∑

j=0

2∑

k=0

f̃jk(ε)(vv̄)3W(v)jW(v)
k

+

3∑

j=0

3∑

k=0

g̃jk(·)(vv̄)4W(v)jW(v)
k

+ hN (·, v, v̄)



 (2.147)

We now state the inductive part of the process.

Lemma 2.26 The system defined by

ż = (ε+ iα(ε))z



1 +
N∑

j=0

N∑

k=0

fjk(ε)(zz̄)N+1W(z)jW(z)
k

+
N+1∑

j=0

N+1∑

k=0

gjk(·)(zz̄)N+2W(z)jW(z)
k

+ h(·, z, z̄)



 (2.148)



80

with · = ε, zz̄, zz̄W(z), zz̄W(z) and

fjk(ε) ≡ 0 if j + k ≥ N + 1

gjk(·) ≡ 0 if j + k ≥ N + 2

is conjugate to the system defined by

ż = (ε+ iα(ε))z



1 +

N+1∑

j=0

N+1∑

k=0

Gjk(·)(zz̄)N+2W(z)jW(z)
k

+ h̃(·, z, z̄)





(2.149)
with Gjk ≡ 0 if j + k ≥ N + 2, by the transformation

z = v +
N∑

j=0

N∑

k=0

βjk(ε)v(vv̄)N+1W(v)jW(v)
k

(2.150)

where βjk is a smooth function in ε and where h and h̃ contain the high order
terms and the infinitely flat terms.



Chapter 3

Poincaré map near a planar
center

3.1 Introduction

In Subsection 1.4.2 we introduced the Poincaré map of a local deformation
of a planar center. As in general it is not possible to calculate an explicit
form of the Poincaré map, one calculates a formal expansion with respect to
ε. The coefficients of this formal expansion are functions of a variable h which
describes the level curves of the unperturbed (Hamiltonian) system and are
called Melnikov-functions. For the first order Melnikov function we obtained an
expression by means of an Abelian integral. As the Abelian integral is a line
integral, in most cases it is very difficult to calculate this integral. When the
deformation is obtained from a non-Hamiltonian center, there is no expression
in terms of Abelian integrals for the first order Melnikov function.

To avoid these problems we introduce a new technique that gives an asymp-
totic expansion of the Melnikov functions. This technique uses “multi-valued”
functions and normal forms. Usually one avoids working with functions that
are multi-valued, but for this problem working with these functions will create
possibilities that aren’t available when working with ordinary (single-valued)
functions. The advantage of our technique is that we do not need to calculate
Abelian integrals, but a small disadvantage is that our method requires a high
number of calculations so one is in need of a computer. Another advantage is
that we can also calculate a formal expansion of the Poincaré map with respect
to the starting point instead of the parameter ε. All applications to given vector
fields were done by means of the computer programme Maple. The topics of
this chapter were also discussed in [NN05].

This chapter is structured as follows. In Section 3.2 we discuss the setting in
which we will work and introduce some functions we will need to describe the

81
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multi-valued normal forms. We also prove some elementary properties of these
functions. In Section 3.3 we give a detailed exposition of the multi-valued normal
forms and the technique that arises from these normal forms. In Section 3.4 we
give an application of our technique to a local deformation of a polynomial
Hamiltonian system. This deformation will be chosen in such a way that we
can calculate the first order Melnikov function explicitly, hence we can compare
the results from both methods. In Section 3.5 we consider a deformation of
the so-called “Hamiltonian triangle”. We will show that our technique can be
adapted to this type of deformations and gives the asymptotic result that was
described by [Ili98]. Finally in Section 3.6 we give the Maple source codes of
the calculations made in Section 3.4 and Section 3.5.

3.2 Settings and preliminaries

3.2.1 Settings

Let Xε be a local C∞ deformation of a planar singularity of center type. By
virtue of the results from Subsection 1.3.6, we can assume that this local defor-
mation is written as

Xε(x, y) = (εx− α(ε)y + xP (x2 + y2; ε) − yQ(x2 + y2; ε))
∂

∂x

+ (α(ε)x + εy + xQ(x2 + y2; ε) + yP (x2 + y2; ε))
∂

∂y

+ R1(x, y; ε)
∂

∂x
+R2(x, y; ε)

∂

∂y
(3.1)

where P and Q are C∞ functions,

P (0; ε) = 0, Q(0; ε) = 0 and
∂j+kRi

∂xjyk
(0, 0; ε) = 0, ∀j, k ∈ N, i = 1, 2.

If we delete the infinitely flat functions from (3.1), then we obtain the local
deformation

XN
ε (x, y) = (εx− α(ε)y + xP (x2 + y2; ε) − yQ(x2 + y2; ε))

∂

∂x

+ (α(ε)x + εy + xQ(x2 + y2; ε) + yP (x2 + y2; ε))
∂

∂y
. (3.2)

From the results from Subsection 1.3.6 we know that (3.2) is equivalent with
the vector field

Xπ
ε :

{
ρ̇ = ερ+ ρ3f(ρ2; ε)

θ̇ = 1
, (3.3)

where f is a C∞ function.
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Consider now M = R+ × R the universal cover of R+ × S1 with covering

P : R+ × R → R+ × S1 : (ρ, θ) 7→ (ρ, θ mod 2π)

Since Xπ
ε is (obviously) periodic in θ, the vector field

X̂ε =
(
ερ+ ρ3f(ρ2; ε)

) ∂
∂ρ

defined on M is such that P∗(X̂ε) = Xπ
ε . Now (3.3) provides the normal form

we will use throughout this chapter.
As the origin is an isolated singularity, from (3.2) it follows that

Σν = {(x, y) | x ∈]0, ν[, y = 0} =]0, ν[×{0} (3.4)

is a transversal section to the flow of XN
ε (hence to the flow of Xπ

ε ) if ν is
sufficiently close to zero. Hence we can define the Poincaré map on this section

Pε : Σν → Σ1 : x 7→ Pε(x),

where - contrary to Subsection 1.4.2 - we take the starting point x as a variable
instead of the level curve parameter h. Although this not the Poincaré map we
defined in Subsection 1.4.2, we will also call this map the Poincaré map. From
the notation it will always be clear which Poincaré map we consider. We have
that these Poincaré maps are conjugate. Considering the section Σν given by
(3.4) and the Hamiltonian H , we have that the point (x0, 0) lies on the level
curve H(x, y) = h iff H(x0, 0) = h. Introducing the function H0(x) := H(x, 0),
we have that H0 conjugates Pε and Pε: H0 ◦ Pε = Pε ◦H0. Taking the larger
transversal Σ1 (which contains Σν), we are assured that for each h ∈ Σν the
Poincaré map will have an image in Σ1 if ν is taken sufficiently close to zero.

To get the asymptotics of the Poincaré map, the idea is to perform a C∞

transformation for all integers n ≥ 1 in the universal cover of the form

Φn : R+ ×R× (R, 0) → R+×R× (R, 0) : (ρ, θ, ε) 7→ (ϕn(ρ, θ; ε), θ, ε) = (ρn, θ, ε)

that conjugates X̂ε to X̂
{n}
ε where

X̂{n}
ε = ρ2n+1

n fn(ρ2
n, θ; ε)

∂

∂ρ

or in terms of ordinary differential equations

X̂{n}
ε :

{
ρ̇n = ρ2n+1

n fn(ρ2
n, θ; ε)

θ̇ = 1
, (3.5)

where fn will be defined later on. We claim that Φn is no longer 2π-periodic,
and therefore the correspondence

(ρ, θ) 7→ P ◦ Φ ◦ P−1(ρ, θ),
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does not give a well-defined function but a multi-valued function. This normal
form will be called a multi-valued normal form.

Theorem 3.1 For each integer n ≥ 2, there exists a constructive map

ϕn : R+ × R × (R, 0) → R : (ρ, θ, ε) 7→ ϕn(ρ, θ; ε)

of the form

ϕn(ρ, θ; ε) = ρ+
n−1∑

i=1

Bi(θ, ε)ρ
2i+1

such that the map

Φn : (R+, 0) × R → (R+, 0) × R : (ρ, θ) 7→ (ϕn(ρ, θ; ε), θ)

conjugates (3.3) with

{
ρ̇ = ρ2n+1f2n+1(ρ

2, θ; ε)

θ̇ = 1
(3.6)

where f2n+1 is a C∞ function.

By constructive, we mean that for each integer i, Bi(θ, ε) can be calculated
explicitly. Note again that ϕn(ρ, θ; ε) is (in general) not 2π-periodic in the
variable θ. However, from the expression of ϕn we can deduce an asymptotic
expression of the Poincaré map Pε, which takes the form

Pε(x) = x+ ϕn(x, 2π; ε) − ϕn(x, 0; ε) + O(x2n+1).

3.2.2 Angular compensator and Taylor tails

Let τ ∈ R. Define Ωτ : R → R : θ 7→ Ωτ (θ) where,

Ωτ (θ) =
1 − e−τθ

τ
, if τ 6= 0,

Ω0(θ) = θ.

This latter function is called an angular compensator. It verifies

lim
τ→0

Ωτ (θ) = θ

dΩτ

dθ
= 1 − τΩτ (θ).

It should be noted that, contrary to the Ecalle–Roussarie compensator, the
present compensator is analytic as a function of θ. Indeed, we easily see that
the following holds

Ωτ (ln |θ|) = ωτ (θ).
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We now introduce the Taylor tails of sin and cos. More precisely, we put

s0(θ) := sin(θ)

sn(θ) := sin(θ) −
n∑

j=1

(−1)j−1 θ2j−1

(2j − 1)!
, n ≥ 1

cn(θ) := cos(θ) −
n∑

j=0

(−1)j θ2j

(2j)!
, n ≥ 0.

By direct calculation one obtains

c0(θ) = cos(θ) − 1,
c′0(θ) = −s0(θ),
s′0(θ) = c0(θ) + 1,
s′n(θ) = cn−1(θ), n ≥ 1,
c′n(θ) = −sn(θ), n ≥ 1,

where ′ denotes differentiation with respect to θ. Observe that

θ = s0(θ) − s1(θ).

So for all n ≥ 1 we have

sn(θ) = s0(θ) −
n∑

j=1

(−1)j−1 (s0(θ) − s1(θ))
2j−1

(2j − 1)!
,

and for all n ≥ 1 we have

cn(θ) = c0(θ) −
n∑

j=1

(−1)j (s0(θ) − s1(θ))
2j

(2j)!
.

This means that all sn for n ≥ 2 and cn for n ≥ 1 are polynomials of s0, s1 and
c0.

In what follows Ω = Ωε.

Proposition 3.2 For any integer n > 0 and for any polynomial P : R4 → R

with coefficients that are functions of ε, we have that

∫ θ

0

P (s0(u), c0(u), s1(u),Ω(u))e2nεudu = e2nεθQ(s0(θ), c0(θ), s1(θ),Ω(θ))

where Q : R4 → R is a polynomial. The degree of Q equals either the degree of
P or the degree of P plus one.

Moreover the sequence (Un)n∈N
defined by

Un =

∫ θ2

θ1

P (s0(u), c0(u), s1(u),Ω(u))e2nεudu,
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converges to zero for any θ1 < θ2 ≤ 0 if ε > 0 and for any 0 ≤ θ1 < θ2 if
ε < 0, where θ1, θ2 are taken in a compact interval and ε in a sufficiently small
neighbourhood of the origin.

Proof: It is sufficient to give the proof for a monomial of Taylor tails and an
angular compensator, so

P (s0(u), c0(u), s1(u),Ω(u)) = s0(u)
a1c0(u)

a2s1(u)
a3Ω(u)a4 .

Using the definitions of the Taylor tails and the angular compensator and ap-
plying Newton’s Binomium we have

P (s0(u), c0(u), s1(u),Ω(u)) = sin(u)a1(cos(u) − 1)a2(sin(u) − u)a3

·
(

1 − e−εu

ε

)a4

= sin(u)a1

a2∑

j2=0

(
a2

j2

)
(−1)a2−j2 cos(u)j2

·
a3∑

j3=0

(
a3

j3

)
sin(u)j3(−1)a3−j3ua3−j3

·
a4∑

j4=0

(
a4

j4

)
(−1)j4ε−a4e−εj4u

=

a2∑

j2=0

a3∑

j3=0

a4∑

j4=0

(
a2

j2

)(
a3

j3

)(
a4

j4

)

·(−1)a2+a3−j2−j3−j4

·ε−a4ua3−j3 sina1+j3(u) cosj2(u)e−εj4u.

Using Euler formulas

sin(u) =
eiu − e−iu

2i
,

cos(u) =
eiu + e−iu

2
,

we can rewrite ∫ θ

0

P (s0(u), c0(u), s1(u),Ω(u))e2nεudu,

as a finite linear combination of integrals of the form

∫ θ

0

ume(p+iq)udu,
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where m ∈ N and p, q ∈ R. The latter integral can be calculated by induction
on m and by means of integration by parts and gives us

[
m∑

`=0

m!

(m− `)!
(−1)` um−`

(p+ iq)`+1
e(p+iq)u

]u=θ

u=0

for (p, q) 6= (0, 0).
Now the original integral can be written as a linear combination of functions

as those computed above. From there one finds again the expression with Taylor
tails and the angular compensator. As we integrated a real-valued function, we
know that the result will be real as well. The degree of Q comes from the
latter integration: if (p, q) 6= (0, 0) then the degrees of P and Q will be equal, if
however there is a term where (p, q) = (0, 0), then the degree of Q will be the
degree of P plus one.

We now come to the proof of the second statement. We will consider the case
where θ1 and θ2 are positive and ε is negative. We have that s0(u) = sin(u),
so it is known that −u ≤ s0(u) ≤ u, ∀u > 0. Integrating the latter inequalities
with respect to u over the interval [0, u] gives us

−u
2

2
≤ c0(u) = cos(u) − 1 ≤ u2

2
,

and integrating these inequalities with respect to u over the interval [0, u] gives
us

−u
3

6
≤ s1(u) = sin(u) − u ≤ u3

6
.

In other words we have proved that s0(u) = O(|u|), c0(u) = O(|u|2) and s1(u) =
O(|u|3) for all u ∈ R. As we know that the Taylor series of the exponential
function converges over R, we have for all u ∈ R that

Ω(u) =
1 − e−εu

ε

=
1 −∑∞

k=0(−ε)k uk

k!

ε

= u+

∞∑

k=2

(−ε)k−1u
k

k!
,

i.e. Ω(u) = O(|u|) for all u ∈ R. So we have that there exists positive constants
K1, K2, K3, K4, such that

|Un| ≤
∫ θ2

θ1

(K1u)
a1(K2u

2)a2(K3u
3)a3(K4u)

a4e2nεudu

= K

∫ θ2

θ1

ume2nεudu
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where K = Ka1
1 Ka2

2 Ka3
3 Ka4

4 and m = a1 + 2a2 + 3a3 + a4. By means of
integration by parts and induction on m one proves

∫
umeNεudu = eNεu

m∑

j=0

(−1)j m!

(m− j)!

um−j

(Nε)j+1
+ C,

∀m ∈ N and ∀N ∈ N \ {0}. So for N = 2n we find

∫ θ2

θ1

ume2nεudu =



e2nεu

m∑

j=0

(−1)j m!

(m− j)!

um−j

(2nε)j+1




u=θ2

u=θ1

. (3.7)

As 0 ≤ θ1 < θ2 and ε < 0, it is clear that the right-hand side of (3.7) will
converge to zero for n→ +∞. This means that the sequence (Un)n∈N converges
to zero with θ1, θ2 and ε taken in the stated domains. 2

3.3 Multi-valued normal forms

Before stating the main proposition that will describe a sequence of transfor-
mations in the universal cover and proving the main theorem, we introduce two
transformations that we have to apply in order to get the system described by
(3.3) in a suitable form.

Proposition 3.3 The system defined by (3.3) is conjugate to

ṙ = e2εθr3f(r2e2εθ; ε), (3.8)

by the transformation
r = e−εθρ. (3.9)

Proof: Differentiating (3.9) with respect to t we find that

ṙ = −εe−εθρθ̇ + e−εθρ̇,

so using (3.3) we find that

ṙ = −εe−εθρ+ εe−εθρ+ e−εθρ3f(ρ2; ε)

= e−εθρ3f(ρ2; ε)

if we use (3.9), then we have

ṙ = e2εθr3f(r2e2εθ; ε).

2
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In what follows it will be easier to work with the formal Taylor series expan-
sion of (3.8). In order to make clear that the expansion is only formal (i.e. up
to an infinitely flat function) we will use the notation

ṙ =̂ e2εθr3
∑

n≥0

kn(ε)(e2εθr2)n

ṙ =̂
∑

n≥0

kn(ε)e2(n+1)εθr2n+3. (3.10)

Corollary 3.4 Let T (ρ, θ) = e−εθρ, Pε the Poincaré return map of (3.3) de-
fined on Σν and P̃ε the Poincaré map of (3.8) defined on the same section, then
we have

P̃ε(x0) = T (Pε(x0), 2π), ∀x0 > 0. (3.11)

Proof: If ρ(θ, r0) is the solution of (3.3) with ρ(0, r0) = r0, then

Pε(r0) = ρ(2π, r0).

Similarly P̃ε(r0) = r(2π, r0) where r(θ, r0) is the solution of (3.8) with initial
condition r(0, r0) = r0. By (3.9) we have

r(θ, r0) = T (ρ(θ, r0), θ),

for all 0 ≤ θ ≤ 2π, so for θ = 2π we have P̃ε(r0) = T (Pε(r0), 2π). 2

Remark 3.1 For the other similarity transformations we will encounter we
always have relation (3.11) between the Poincaré maps of the original and the
transformed system.

In the following proposition we do not eliminate low order terms in r, but
we introduce the Taylor tail of sin θ in order to put the system in a suitable
form so we can describe the inductive part of the technique.

Proposition 3.5 The system defined by (3.10) is transformed into

ṙ1 =̂ −k0(ε)(2s0(θ)ε+ c0(θ))e
2εθr3 (3.12)

+
∑

n≥0

(kn+1(ε) − 3k0(ε)kn(ε)s0(θ))e
2(n+2)εθr2n+5

by the transformation
r1 = r − k0(ε)e

2εθs0(θ)r
3. (3.13)

Proof: Differentiating (3.13) with respect to t we find that

ṙ1 = ṙ − 2εk0(ε)e
2εθs0(θ)r

3 θ̇

− k0(ε)e
2εθs′0(θ)r

3 θ̇ − 3k0(ε)e
2εθs0(θ)r

2 ṙ,
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so using (3.10) we find that

ṙ1 =̂
∑

n≥0

kn(ε)e2(n+1)εθr2n+3 − 2εk0(ε)e
2εθs0(θ)r

3

− k0(ε)e
2εθ(c0(θ) + 1)r3

− 3k0(ε)e
2εθs0(θ)r

2




∑

n≥0

kn(ε)e2(n+1)εθr2n+3



 ,

hence

ṙ1 =̂ −k0(ε)(2s0(θ)ε+ c0(θ))e
2εθr3

+
∑

n≥0

(kn+1(ε) − 3k0(ε)kn(ε)s0(θ))e
2(n+2)εθr2n+5

which is exactly (3.12). 2

We point out that we do not introduce r1 in the right-hand side of (3.12).
This way it will be easier to describe the “induction step” - i.e. Proposition 3.6
- and as we are only working up to some finite order in r, at the end we can
always use (3.13) and (3.15) to replace O(rm

n ) by O(rm) for any m ∈ N.

Proposition 3.6 For every integer n > 0 and for every polynomial Pn : R4 →
R (with coefficients depending on ε), we consider the system defined by

Ṙ1=̂
∑

k≥n

Pk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1 (3.14)

with

R1(r) = r + r3R(e2εθr2; s0(θ), c0(θ), s1(θ),Ω(θ), ε),

where R is a polynomial in its first variable with coefficients that are functions
of the other variables.

By means of the transformation

R2 = R1 − P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθR2n+1
1 , (3.15)

where P̃n : R4 → R is a polynomial (with coefficients depending on ε), system
(3.14) is transformed into

Ṙ2=̂
∑

k≥n+1

Qk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1, (3.16)

where each Qk : R4 → R is a polynomial (with coefficients depending on ε).



Chapter 3. Poincaré map near a planar center 91

Proof: Considering the transformation given by (3.15) and applying it to
(3.16), then a straightforward calculation gives us

Ṙ2 = Ṙ1 −
d

dθ

(
P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

)
R2n+1

1

− (2n+ 1)P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθR2n
1 Ṙ1

=̂
∑

k≥n

Pk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1

− d

dθ

(
P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

)

·(r + r3R(e2εθr2; s0(θ), c0(θ), s1(θ),Ω(θ), ε))2n+1

− (2n+ 1)P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

·(r + r3R(e2εθr2; s0(θ), c0(θ), s1(θ),Ω(θ), ε))2n

·
∑

k≥n

Pk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1

Hence

Ṙ2 =̂
[
Pn(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

− d

dθ

(
P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

)]
r2n+1

+
∑

k≥n+1

Pk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1

− d

dθ

(
P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

)

·
2n+1∑

m=1

(
2n+ 1
m

)
r2n+2m+1R(e2εθr2; s0(θ), c0(θ), s1(θ),Ω(θ), ε)m

− (2n+ 1)P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

· (r + r3R(e2εθr2; s0(θ), c0(θ), s1(θ),Ω(θ), ε))2n

·
∑

k≥n

Pk(s0(θ), c0(θ), s1(θ),Ω(θ))e2kεθr2k+1. (3.17)

Our main target is to obtain Ṙ2 = O(r2n+3), so we need that

d

dθ

(
P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

)
= Pn(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ

or equivalently (if we take the initial condition P̃n(0, 0, 0, 0) = 0)

P̃n(s0(θ), c0(θ), s1(θ),Ω(θ))e2nεθ =

∫ θ

0

Pn(s0(u), c0(u), s1(u),Ω(u))e2nεudu.

(3.18)
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By Proposition 3.2 we know that the right-hand side of (3.17) is a polyno-
mial in (s0(θ), c0(θ), s1(θ),Ω(θ)) multiplied by e2nεθ. This means that P̃n is a
polynomial as well.

From (3.17) and (3.18) it is clear that Qk is a polynomial as well. 2

Proof(of Theorem 3.1): After applying Proposition 3.3 and Proposition 3.5,
we can start applying Proposition 3.6 n times, that way we obtain some rn for
which we have

ṙn = e2nεθO(r2n+1), (3.19)

which permits us to conclude the proof. 2

As we gave a constructive proof of Theorem 3.1, Proposition 3.3, Proposi-
tion 3.5 and Proposition 3.6 form the backbone of a technique that allows to
calculate an asymptotic expression of the Poincaré map. We describe briefly
how the technique works, in the next section we will apply this technique to two
illustrative examples.

First we start from a system that is written in the form given by (3.3).
Second we apply Proposition 3.3 which eliminates the first order term in the
phase variable. Next we apply Proposition 3.5 in order to introduce the Taylor
tails into the system. As Proposition 3.6 is written in an inductive form one
can choose how many times one likes to apply this result. This way one obtains
a system given by (3.19). Up to this point we have only repeated the proof of
Theorem 3.1. In order to do explicit calculations we transform (3.19) into an
equation in rn, this gives an equation of the form

ṙn = e2nεθO(r2n+1
n ), (3.20)

which we then truncate in order to obtain

ṙn = C(θ; ε)r2n+1
n (3.21)

where C(θ; ε) is a function of θ and ε which can be calculated explicitly. Now
(3.21) can by solved explicitly (even by hand). As we want to return to the
original variables, we need to invert the transformations we used. The transfor-
mation given by (3.9) is very easy to invert. The other transformations (given
by (3.13) and (3.15)) are near-identity transformations, i.e.

φ(r) = r + C(θ; ε)rm + O(rm+1)

for m ≥ 2 and some function C. So the inverse is given by

φ−1(r) = r − C(θ; ε)rm + O(rm+1),

which we will truncate to

φ−1(r) = r − C(θ; ε)rm. (3.22)

Now applying these truncated inverse transformations we obtain an asymptotic
solution of (3.3) which we use to calculate asymptotic expansions of the Poincaré
map. As written before, all this will become more clear in the next section.
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3.4 Hopf–Takens models

In this section we demonstrate on an “academic” example how our technique
works. Choosing the Hamiltonian as

H(x, y) = −1

2
(x2 + y2), (3.23)

the Hamiltonian (unperturbed) vector field is given by

X0 = −y ∂
∂x

+ x
∂

∂y
. (3.24)

The local deformation will be given by a linear perturbation of X0:

Xε = X0 + εY, (3.25)

where

Y = x

(
1 +

N∑

k=1

ak(x2 + y2)k

)
∂

∂x
+ y

(
1 +

N∑

k=1

ak(x2 + y2)k

)
∂

∂y
(3.26)

with ak ∈ R and N ∈ N \ {0}. So Xε is given by

Xε :

{
ẋ = εx− y + εx

∑N
k=1 ak(x2 + y2)k

ẏ = x+ εy + εy
∑N

k=1 ak(x2 + y2)k
, (3.27)

or written in polar coordinates we have

Xε :

{
ρ̇ = ερ+ ε

∑N
k=1 akρ

2k+1

θ̇ = 1
, (3.28)

which is a simplified form of the equation used to study the Hopf–Takens bifur-
cation of codimension N , see e.g. [BR01, CD04].

One could wonder if the system given by (3.27) is “general” enough to pass
for an academic example because the perturbation is linear with respect to ε

whilst in (3.2) the perturbation is C∞ with respect to ε. We demonstrate that
(3.26) can be transformed into a system like in (3.2) by means of the rescaling

x = εx̄,

y = εȳ.

This rescaling gives us that H(x, y) = H(εx̄, εȳ) = −ε2 1
2 (x̄2 + ȳ2), hence

∂H

∂x
(x, y) = x

= εx̄

= ε
∂H

∂x̄
(x̄, ȳ)
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and

∂H

∂y
(x, y) = y

= εȳ

= ε
∂H

∂ȳ
(x̄, ȳ).

So for ε 6= 0,

˙̄x =
1

ε
ẋ

=
1

ε

(
−y + εx(1 +

N∑

k=1

ak(x2 + y2)k)

)

=
1

ε

(
−εȳ + ε2x̄(1 + ε

N∑

k=1

akε
2k(x̄2 + ȳ2)k)

)

= εx̄− ȳ + x̄

N∑

k=1

Rk(x̄, ȳ)ε2k+1,

where Rk(x̄, ȳ) = ak(x̄2 + ȳ2)k. Likewise we obtain

˙̄y = x̄+ εȳ + ȳ

N∑

k=1

Rk(x̄, ȳ)ε2k+1.

This demonstrates that (3.27) is a natural example to consider without loss of
generality.

In order to make the calculation of the Melnikov functions less heavy to
perform, one wishes to truncate the expression given by (3.28) to obtain a poly-
nomial of a rather low degree. Naturally the question arises if after truncation
we find an exact expression of the kth Melnikov function or an asymptotic ex-
pression of the kth Melnikov function. The following result will be of great help
to conclude when the expression is exact if one calculates the Melnikov functions
of (3.28).

Lemma 3.7 The Poincaré map Pε of (3.28) has the following formal power
series expansion P̂ε with respect to ε:

P̂ε(x) = x+ x

(
1 +

N∑

k=1

akx
2k

)
∞∑

m=1

P(m−1)N (x2)εm (3.29)

where - for each integer j - PjN is a polynomial of degree jN .
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Proof: Taking in account the special form of the equations in (3.28), we can
consider the following equation

dρ

ρ+
∑N

k=1 akρ2k+1
= εdθ. (3.30)

Introducing the function

F (ρ) :=

∫ ρ

x

dr

r +
∑N

k=1 akr2k+1
(3.31)

where x 6= 0, we have that (3.30) is equivalent with

F (ρε(θ)) = εθ (3.32)

where ρε(θ) is the solution of (3.30) respecting the initial condition ρε(0) = x.
Taking θ = 2π gives us

F (Pε(x)) = 2πε. (3.33)

As we took x > 0, we have that

dF

dρ
(ρ) =

1

ρ+
∑N

k=1 akρ2k+1

exists and is non-zero for all ρ in a sufficiently small neighbourhood of x. By the
Inverse Function Theorem we know that F is invertible. We are now allowed to
transform (3.33) into

Pε(x) = F−1(2πε).

We now calculate the formal power series expansion of Pε(x) with respect to ε.
From (3.31) we get that

Pε(x)|ε=0 = F−1(0) = x.

We have

∂

∂ε
Pε(x) = 2π(F−1)′(2πε)

=
2π

F ′(F−1(2πε))

=
2π

F ′(Pε(x))

= 2π

(
Pε(x) +

N∑

k=1

akPε(x)
2k+1

)
, (3.34)

so

∂

∂ε
Pε(x)

∣∣∣∣
ε=0

= 2πx

(
1 +

N∑

k=1

akx
2k

)
. (3.35)
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We now proceed by induction, so assume that

∂m

∂εm
Pε(x) = Pε(x)

(
1 +

N∑

k=1

akPε(x)
2k

)
P(m−1)N (Pε(x)

2). (3.36)

Using (3.36) we obtain

∂m+1

∂εm+1
Pε(x) =

∂

∂ε

[
∂m

∂εm
Pε(x)

]

=
∂

∂ε

[
Pε(x)

(
1 +

N∑

k=1

akPε(x)
2k

)
P(m−1)N (Pε(x)

2)

]

=
∂

∂ε
Pε(x)

(
1 +

N∑

k=1

(2k + 1)akPε(x)
2k

)

· P(m−1)N (Pε(x)
2)

+ 2Pε(x)

(
1 +

N∑

k=1

akPε(x)
2k

)

· P ′
(m−1)N (Pε(x)

2)Pε(x)
∂

∂ε
Pε(x)

=
∂

∂ε
Pε(x)

·
[(

1 +
N∑

k=1

(2k + 1)akPε(x)
2k

)
P(m−1)N (Pε(x)

2)

+ 2

(
(1 +

N∑

k=1

akPε(x)
2k)Pε(x)

2

)
P ′

(m−1)N (Pε(x)
2)

]
.

In the latter formula one observes that in between the square brackets we have
a polynomial of degree mN in Pε(x)

2 and using (3.34) we have

∂m+1

∂εm+1
Pε(x) = Pε(x)

(
1 +

N∑

k=1

akPε(x)
2k

)
PmN (Pε(x)

2) (3.37)

which permits us to conclude the induction step. Taking ε = 0 in (3.37) gives
us

∂m+1

∂εm+1
Pε(x)

∣∣∣∣
ε=0

= x

(
1 +

N∑

k=1

akx
2k

)
PmN (x2). (3.38)

This way we can write down the formal power series expansion P̂ε of Pε with
respect to ε:

P̂ε(x) = x+ x

(
1 +

N∑

k=1

akx
2k

)
∞∑

m=1

P(m−1)N (x2)εm.
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2

Remark 3.2 From (3.29) we can conclude that the kth Melnikov function is a
polynomial of degree 2kN + 1 in x, so if we wish to have an exact expression of
the kth Melnikov function we need to be sure that the truncations we perform
will not affect the terms up to degree 2kN + 1 in x.

Remark 3.3 The fact that - by virtue of Lemma 3.7 - we can obtain the degree
of the truncated polynomial that will assure us an exact expression of the first
k Melnikov functions, is a direct consequence of the fact that we started from a
polynomial system. If we would take a more general system, then all Melnikov
functions may depend on an infinite number of powers of x. In this situation
the Melnikov functions might no longer be polynomials in x.

We now illustrate our technique by 2 explicit examples.

3.4.1 Neimark–Sacker case

For the rest of this subsection we will take N = 1 and a1 = −1 to obtain the
following family of vector fields

Xε :

{
ρ̇ = ερ− ερ3

θ̇ = 1
, (3.39)

which is the equation used to study the Neimark-Sacker bifurcation, see e.g.
[BR01]. We also take this example as it permits us to calculate the Poincaré
map directly and this way we can also compare the results of our technique with
the exact results.

We calculate the Poincaré map in 3 different ways: first we solve (3.39)
directly, this is of course not possible in more complicated systems, second we
calculate an asymptotic expansion of the Poincaré map using an Abelian integral
and finally we calculate an asymptotic expansion of the Poincaré map using our
technique.

Direct approach

Finding all solutions of (3.39) we can divide the first equation of (3.39) by the
second equation, this gives us

ρ′ :=
dρ

dθ
= ερ− ερ3. (3.40)

As we want to calculate the Poincaré map, knowing ρ as function of θ is actually
an advantage. It’s fairly easy to solve (3.40) as it is an equation of Bernoulli
type, so one finds after some elementary calculations that

ρ(θ) =
x0e

εθ

√
1 + x2

0(e
2εθ − 1)

, (3.41)
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where ρ(0) = x0.

This means that the Poincaré map of (3.40) is given by

Pε(x0) =
x0e

2πε

√
1 + x2

0(e
4πε − 1)

. (3.42)

In order to compare the 2 other approaches we give 2 asymptotic expansions of
(3.42), one with respect to ε and one with respect to x0:

Pε(x0) = x0 + 2πx0(1 − x2
0)ε+ 2π2x0(1 − 4x2

0 + 3x4
0)ε

2

+ O(ε3), (3.43)

Pε(x0) = e2πεx0 + e2πε 1 − e4πε

2
x3

0 + O(x5
0). (3.44)

We want to stress once more that the direct approach is in general not applicable.

Abelian integral approach

In (1.50) we deduced a formal expansion of the Poincaré map using Abelian
integrals. We apply this formula here, so we have

Pε(h) = h− εI(h) + O(ε2),

with

I(h) =

∮

Γh

ν,

where Γh = {H = h} and ν is the dual form of the perturbation Y , so we have

ν = y(1 − (x2 + y2))dx − x(1 − (x2 + y2))dy.

In this example Γh is given by the equation

x2 + y2

2
= h,

so

σ : [0, 2π] → R2 : t 7→ (
√

2h cos(t),
√

2h sin(t)),
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is a parametrisation of Γh. Therefore the Abelian integral can be calculated
directly and we find

I(h) =

∮

Γh

ν

=

∮

Γh

(
y(1 − (x2 + y2))dx − x(1 − (x2 + y2))dy

)

=

∫ 2π

0

(√
2h sin t(1 − 2h)(−

√
2h) sin t

−
√

2h cos t(1 − 2h)(
√

2h) cos t
)
dt

= −2h(1 − 2h)

∫ 2π

0

dt,

hence
I(h) = −4πh(1 − 2h). (3.45)

Thus the Poincaré map is given by

Pε(h) = h+ 4πh(1 − 2h)ε+ O(ε2). (3.46)

As Pε and Pε are conjugate by the transformation H0(x) =
x2

2
, we have that

Pε(x0) = x0 + 2πx0(1 − x2
0)ε+ O(ε2)

which is the asymptotic expansion we had in (3.43) but up to order 1 in ε.

Approach with our technique

We start from (3.40). Applying the first transformation then k0(ε) = −ε and

r = T (ρ, θ) = e−εθρ, (3.47)

we have
r′ = −εe2εθr3. (3.48)

Now we apply the second transformation

r1 = T1(r, θ) = r + εs0(θ)e
2εθr3. (3.49)

We get
r′1 = ε(c0(θ) + 2εs0(θ))e

2εθr3 − 3ε2s0(θ)e
4εθr5. (3.50)

By virtue of (3.18) we can calculate the next transformation. As

∫ θ

0

(c0(u) + 2εs0(u))e
2εu = e2εθ

(
s0(θ) − Ω(θ) +

ε

2
Ω(θ)2

)
,
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we have that the third transformation is given by

r2 = T2(r1, θ) = r1 − εe2εθ
(
s0(θ) − Ω(θ) +

ε

2
Ω(θ)2

)
r31 , (3.51)

and end up with

r′2 = ε2[3c0(θ)Ω(θ) − 3s0(θ) + ε(12c20(θ) (3.52)

+ 24c0(θ) + 6s0(θ)Ω(θ) − 3

2
Ω(θ)2c0(θ))

−3ε3s0(θ)Ω(θ)4]e4εθr5 + O(r7). (3.53)

Taking the composition of (3.49) and (3.51) one finds that

r2 = r + O(r3),

so using this relation between r and r2 and truncating O(r72) from (3.53) we
find

r′2 = ε2C(θ)e4εθr52 , (3.54)

where

C(θ) = 3c0(θ)Ω(θ) − 3s0(θ) + ε(12c20(θ)

+ 24c0(θ) + 6s0(θ)Ω(θ) − 3

2
Ω(θ)2c0(θ))

− 3ε3s0(θ)Ω(θ)4. (3.55)

One easily solves (3.54) to find

r2(θ) =
x0

4
√

1 − 4ε2C1(θ)x4
0

, (3.56)

where

C1(θ) =

∫ θ

0

C(u)e4εudu. (3.57)

For θ = 2π, we have the Poincaré map of (3.54)

r2(2π) =
x0

4
√

1 − 4ε2C1(2π)x4
0

. (3.58)

We use the inverse transformations of (3.47), (3.49) and (3.51). Using (3.22) we
get the inverse of (3.51):

r1 = r2 + εe2εθ(s0(θ) − Ω(θ) +
ε

2
Ω(θ)2)r32 + O(r52). (3.59)

So for θ = 2π we have

r1(2π) = r2(2π) + εe4πε(−Ω(2π) +
ε

2
Ω(2π)2)r2(2π)3 + O(r2(2π)5). (3.60)
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As for θ = 2π, (3.60) becomes

r1(2π) = r(2π),

we immediately have

r(2π) = r2(2π) + εe4πε(−Ω(2π) +
ε

2
Ω(2π)2)r2(2π)3 + O(r2(2π)5). (3.61)

Finally by (3.47), (3.58) and (3.61) we have

Pε(x0) = e2πεr2(2π) + εe6πε(−Ω(2π) +
ε

2
Ω(2π)2)r2(2π)3 + O(r2(2π)5). (3.62)

Now we substitute the result of (3.58) in (3.62) and using a computeralgebra
programme (e.g. Maple, see Subsection 3.6.1 for the Maple output), we find the
following expansions for the Poincaré map:

Pε(x0) = x0 + (2πx0 − 2πx3
0)ε+ (2π2x0 − 8π2x3

0 + 6π2x5
0)ε

2

+O(ε3), (3.63)

Pε(x0) = (1 + 2πε+ O(ε2))x0 + (−2πε− 8π2ε2 − 52

3
π3ε3 + O(ε4))x3

0

+O(x5
0). (3.64)

From Remark 3.2 we know that the degree of the polynomial which may
not be changed by truncations if we want to obtain an exact expression of the
kth Melnikov function, has to be at least 2kN + 1. In our example we have
N = 1 and in order to have an exact expression of the first and the second
Melnikov function we need to assure ourselves that we didn’t delete any terms
up to order 5 in x0 by performing trunctations. This has been done using
two transformations and deleting only terms of order O(r72), moreover one can
compare the results from (3.43) and (3.63) to conclude they are equal. In (3.64)
we get an expansion of the Poincaré map with respect to x0.

3.4.2 Chenciner case

We now take N = 2 in (3.26) and choose a1 = λ and a2 = c. This way we
obtain

Xε :

{
ρ̇ = ερ(1 + λρ2 + cρ4)

θ̇ = 1
(3.65)

which is a simplified form of one of the normal forms that are used to study the
Chenciner bifurcation, see e.g. [BR01, Che85a, Che85b, Che88].

For this system the direct approach is not a good idea. In order to use the
direct approach we need to calculate the following integral

∫
dρ

ρ(1 + λρ2 + cρ4)
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which is not easy to calculate for unknown values of λ and c. So traditionally
one turns to the Abelian integral technique. We calculate

I(h) =

∮

Γh

ν,

where Γh = {H = h} and ν is the dual form of the perturbation Y , so we have

ν = y(1 + λ(x2 + y2) + c(x2 + y2)2)dx − x(1 + λ(x2 + y2) + c(x2 + y2)2)dy.

In this example Γh is given by the equation

x2 + y2

2
= h,

so

σ : [0, 2π] → R2 : t 7→ (
√

2h cos t,
√

2h sin t),

is a parametrisation of Γh. Therefore we can calculate the Abelian integral
directly

I(h) =

∮

Γh

ν

=

∫ 2π

0

(√
2h sin(t)(1 + 2λh+ c(2h)2)(−

√
2h sin t)

−
√

2h cos(t)(1 + 2λh+ c(2h)2)(
√

2h cos t)
)
dt

= −2h(1 + 2λh+ 4ch2)

∫ 2π

0

dt

= −4πh(1 + 2λh+ 4ch2).

Thus the Poincaré map is given by

Pε(h) = h+ 4πh(1 + 2λh+ 4ch2)ε+ O(ε2).

As Pε and Pε are conjugate by the transformation H0(x) :=
x2

2
, we have that

Pε(x0) = x0 + 2πx0(1 + λx2
0 + cx4

0)ε+ O(ε2). (3.66)

We now apply our technique to (3.65), as the expressions become longer we
don’t give all the details and refer to the Maple source code in Subsection 3.6.2.
This time we apply 4 transformations. The first transformation comes directly
from Proposition 3.3 and the second transformation is given by Proposition 3.5.
The third and fourth transformation are given by Proposition 3.6 and (3.18).
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We apply the following transformations (for the calculations of the functions Co
and Co2 we refer to Subsection 3.6.2):

r = e−εθρ, (3.67)

r1 = r − ελs0(θ)e
2εθr3, (3.68)

r2 = r1 − Co(θ)r31 , (3.69)

r3 = r2 − Co2(θ)r52 . (3.70)

After application of the 4 transformations we obtain

r′3 = C(ε, θ)r73 + O(r93), (3.71)

where C(ε, θ) is a function of ε and θ that can be determined explicitly and that
in Subsection 3.6.2 is represented by r34.

We truncate (3.71) to
r′3 = C(ε, θ)r73 . (3.72)

This equation can be solved directly and gives us

r3(θ) = x0

(
1 − 6x6

0

∫ θ

0

C(ε, u)du

)− 1
6

(3.73)

if we take r3(0) = x0 as initial condition.
By virtue of (3.22) we use the following truncated inverses of (3.67), (3.68),

(3.69) and (3.70):

ρ = eεθr, (3.74)

r = r1 + ελs0(θ)e
2εθr31 , (3.75)

r1 = r2 + Co(θ)r32 , (3.76)

r2 = r3 + Co2(θ)r53 . (3.77)

So applying (3.77), (3.76), (3.75) and (3.74) to (3.73) and then taking θ = 2π,
we obtain an asymptotic expression of the Poincaré map of (3.65). Expanding
this map with respect to ε or x0 gives us

Pε(x0) = x0 + 2πx0(1 + λx2
0 + cx4

0)ε

+ 2π2x0(1 + 4λx2
0 + (6c− 3λ2)x4

0 + O(x6
0))ε

2 + O(ε3) (3.78)

Pε(x0) = (1 + 2πε+ 2π2ε2 + O(ε3))x0 + 2λπε(1 + 4πε+ O(ε2))x3
0

+ O(x5
0). (3.79)

Using the bound given by Remark 3.2 in this case (N = 2), we may not have
truncated any term up to degree 5 in order to have an exact expression of
the first Melnikov function. In order to obtain an exact result of the second
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Melnikov function we cannot truncate any term up to degree 9. As we applied
4 transformations all terms up to degree 7 are not subjected to any truncation,
so in (3.78) we find an exact result on the first Melnikov function but for the
second Melnikov function we only get an asymptotic result. A straightforward
calculation using (3.29) shows that the asymptotics of the second Melnikov
function is correct up to order 2 in x0.

We point out that in practice, since we already know that the first Melnikov
function does not vanish, we usually do not need to compute the second Melnikov
function. In the next section, this problem is treated on a particular example.

3.5 The Hamiltonian triangle

3.5.1 Properties of the Hamiltonian triangle

We consider the Hamiltonian triangle, which is given by the complex ordinary
differential equation

ż = −iz + z̄2, (3.80)

or equivalently by the system of real ordinary differential equations

{
ẋ = y + x2 − y2

ẏ = −x− 2xy
. (3.81)

The Hamiltonian of (3.81) is given by

H(x, y) =
x2 + y2

2
+ x2y − y3

3
. (3.82)

As (3.81) is a Hamiltonian system, the level curves of H contain the orbits of
(3.81).

In Figure 3.1 one sees 3 level curves that are straight lines. These lines are
the level curves for H(x, y) = 1

6 and they have the following cartesian equations

y = −1

2
,

x =
y − 1√

3
,

x = −y − 1√
3
.

Inside this “triangle” the level curves of (3.82) seem to be closed. This is equiv-
alent with the fact that the Poincaré map of (3.81) coincides with the identity
map in the neighbourhood U of the origin bounded by the “triangle”. To prove
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Figure 3.1: Level curves of (3.82).

this we transform (3.81) into an equivalent system in polar coordinates as we
did in (1.37). So we obtain

{
ρ̇ = ρ2 cos(3θ)

1−ρ sin(3θ)

θ̇ = 1
. (3.83)

Lemma 3.8 The Poincaré map of (3.83) coincides with the identity map in
the - previously defined - neighbourhood U of the origin.

Proof: From (3.83) we have:

dρ

dθ
= ρ2 cos(3θ)

1 − ρ sin(3θ)
. (3.84)

Taking u = sin(3θ) and v =
1

ρ
, (3.84) becomes:

du

dv
= 3

u

v
− 3. (3.85)

Solving (3.85) one finds

u = Cv3 +
3

2
v
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where C is some real constant, so returning to polar coordinates (ρ, θ) we have

sin(3θ) =
C

ρ(θ)3
+

3

2ρ(θ)
. (3.86)

Using the initial condition ρ(0) = x0 gives us

0 =
C

x3
0

+
3

2x0
,

so

C = −3

2
x2

0,

thus giving

sin(3θ) =
3

2

(
1

ρ(θ)
− x2

0

ρ(θ)3

)
. (3.87)

For θ = 2π, we have ρ(2π) = P(x0) and (3.87) becomes

0 =
3

2

(
1

P(x0)
− x2

0

P(x0)3

)
. (3.88)

This means that P(x0) = ±x0. But as x0 > 0, the only possible solution to
(3.88) is P(x0) = x0. In other words the Poincaré map of (3.83) is the identity
map in U . 2

Corollary 3.9 The Poincaré map of a C∞ local deformation of (3.83) is given
by

Pε(x0) = x0 +
k∑

j=1

Mj(x0)ε
j + O(εk+1). (3.89)

In the next subsection we will introduce the deformation of (3.83) on which we
want to apply our technique.

3.5.2 “Essential perturbation” of the Hamiltonian trian-
gle

In [Ili98] the following local deformation of (3.83) is considered (we kept the
same notations)

ż = (λ1ε
3 − i)z + (λ2ε

2 + iλ3ε)z
2 + iλ5ε|z|2 + z̄2 (3.90)

where λ1, λ2, λ3 and λ5 are real constants independent of ε. In [Ili98] the system
given by (3.90) is called an “essential perturbation” of (3.83).
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In real coordinates (3.90) becomes

{
ẋ = λ1ε

3x+ y + (λ2ε
2 + 1)(x2 − y2) − 2λ3εxy

ẏ = −x+ λ1ε
3y + (λ3 + λ5)εx

2 + ε(λ5 − λ3)y
2 + 2(λ2ε

2 − 1)xy
.

(3.91)
According to [Ili98] the first and the second order Melnikov functions in the

formal expansion of the Poincaré map of (3.91) are zero and the third order
Melnikov function is given by

M3(h) =

∫ ∫

H(x,y)<h

[
µ1 + µ2x

−1 + µ3h
−1 + µ4h

−1(x− 1) lnx
]
dxdy

where H is the Hamiltonian (3.82) and µ1, µ2, µ3 and µ4 are cubic polynomials
of λ1, λ2, λ3 and λ5.

In the next subsection we apply our technique to (3.91) and refind the asymp-
totics of the Poincaré map that are given by [Ili98].

3.5.3 Application of our method to the essential pertur-
bation of the Hamiltonian triangle

Before applying our method to (3.91) it is necesarry to remark that (3.91) is not
written in the form that is given by (3.2), which is the form we need to apply
Theorem 3.1. We could of course use results on normal form theory to obtain a
form like (3.2) for (3.91) but as the system is already written in a polynomial
normal form we will not perform any normal form results in order to preserve
this polynomial normal form. Therefore we will need to extend our technique
to this type of normal form.

Using once again polar coordinates and (1.37), one has that (3.91) is equiv-
alent with




ρ̇ = ρ

λ1ε
3 +

(
λ2ε

2 cos θ + λ3ε sin θ − λ5ε sin θ + cos(3θ)
)
ρ

1 + (λ2ε2 sin θ − λ3ε cos θ − λ5ε cos θ − sin(3θ)) ρ
θ̇ = 1

. (3.92)

The presence of cos(3θ) and sin(3θ) in (3.92) forms no obstruction to our
technique as it is straightforward to prove

cos(3θ) = (c0(θ) + 1)(c0(θ)
2 − 3s0(θ)

2 + 2c0(θ) + 1)

sin(3θ) = s0(θ)(3c0(θ)
2 − s0(θ)

2 + 6c0(θ) + 3).

A minor obstacle is that if we take the Taylor series of (3.92) for ρ = 0, then
the coefficient of ρ is λ1ε

3 and not ε, that is why during the application of our
technique we will use the parameter δ instead of ε where

δ = λ1ε
3. (3.93)
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Substituting (3.93) into (3.92) we have

ρ̇ = ρ

δ +

(
λ2

3

√(
δ

λ1

)2

cos θ + λ3
3

√
δ

λ1
sin θ − λ5

3

√
δ

λ1
sin θ + cos(3θ)

)
ρ

1 +

(
λ2

3

√(
δ

λ1

)2

sin θ − λ3
3

√
δ
λ1

cos θ − λ5
3

√
δ
λ1

cos θ − sin(3θ)

)
ρ

θ̇ = 1. (3.94)

On (3.94) we apply the following transformation (cfr. Proposition 3.3)

r = e−δθρ. (3.95)

This leads to

ṙ = C1(θ, δ)r
2 + O(r3), (3.96)

where

C1(θ, δ) = λ2

(
δ

λ1

) 2
3

cos(θ)eδθ + (λ3 − λ5)

(
δ

λ1

) 1
3

sin(θ)eδθ

− λ2

(
δ

λ1

) 2
3

δ sin(θ)eδθ +

(
δ

λ1

) 1
3

δ(λ3 + λ5) cos(θ)eδθ

+ cos(3θ)eδθ + δ sin(3θ)eδθ. (3.97)

Similar to Proposition 3.6 we now apply the transformation

r1 = r −
(∫ θ

0

C1(u, δ)du

)
r2. (3.98)

This gives us

ṙ1 = C2(θ, δ)r
3 + O(r4), (3.99)

where one can find an explicit expression for C2(θ, δ) with aid of a computeral-
gebra programme. For a Maple output we refer to Subsection 3.6.3. We know
that r1 = r+O(r2), so also r = r1 +O(r21) holds. Using the latter equality and
deleting all terms of O(r41) in (3.99) by truncation, we obtain:

ṙ1 = C2(θ, δ)r
3
1 . (3.100)

The solution of (3.100) with initial condition r1(0) = x0 is given by

r1(θ) =
x0√

1 − 2x0

∫ θ

0 C2(u, δ)du
. (3.101)



Chapter 3. Poincaré map near a planar center 109

Inverting (3.98) gives us (see (3.22))

r = r1 +

(∫ θ

0

C1(u, δ)du

)
r21 + O(r31), (3.102)

and as the inverse of (3.95) is given by

ρ = eδθr, (3.103)

applying (3.102) and (3.103) to (3.101) gives us an asymptotic expansion of
the solution of (3.94). Replacing δ by λ1ε

3 and filling in θ = 2π, gives us an
asymptotic expansion of the Poincaré map of (3.92). After two steps we found
the following asymptotic expression

Pε(x0) = x0 + 2πx0(
1

3
x2

0λ1 + x2
0λ2λ5 − λ1)ε

3 (3.104)

+ 2x2
0λ1π(λ5 − λ3)ε

4 + O(ε5).

One should notice that in (3.104) we find that the first and second order
Melnikov functions are zero and the asymptotic expression of the third order
Melnikov function is non-zero.

A few remarks on this result need to be made. As the Hamiltonian triangle
doesn’t meet the criterions of Lemma 3.7, we cannot apply Remark 3.2 and thus
cannot decide if we have obtained an exact expression of the Melnikov functions.
We also do not know up to which order in x0 the calculated Melnikov function
is equal to the exact - but unknown - Melnikov function. Also looking at (3.104)
one might think that the third order Melnikov function will vanish if λ1 and
λ2 are zero. But as we only obtain an asymptotic expansion of this Melnikov
function (up to an order which remains unspecified) it would be very unwise to
jump to such conclusions. Also starting from a system that is not in Poincaré–
Dulac normal form has the disadvantage that we need to eliminate much more
terms. This leads to more calculations which can have a considerable negative
effect on our resulting asymptotic expansion of the Poincaré map. For instance,
if one should decide to perform three steps of the method - which is theoretically
possible as the method is clearly applicable for any finite number of steps - one
has to take in account that the expression of Cn(θ, δ) for large values of n
becomes extremely long. For C3(θ, δ) Maple found that it already contained
over 7000 terms. So if one wishes to perform more steps, it will be necessary
to have access to more developped software and sufficiently strong computer
equipment.

3.6 Maple source codes

3.6.1 Neimark-Sacker case

> restart:
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> c0:= t-> cos(t) -1:

> s0:=t-> sin(t):

> s1:=t-> sin(t)-t:

> omega:= t-> (1-exp(-e*t))/e:

> C:=t-> 3*c0(t)*omega(t) - 3*s0(t) + e*(12*c0(t)^2 + 24*c0(t)

+ 6*s0(t)*omega(t) - 3/2 *omega(t)^2 *c0(t))

- 3*e^3*s0(t)*omega(t)^4:

> C1:=int(C(u)*exp(4*e*u),u=0..2*Pi):

> P2:= x-> x/(1-4*e^2 *C1*x^4)^(1/4):

> Poin:= x -> exp(2*Pi*e) * P2(x)+ e*exp(6*Pi*e)

*(-omega(2*Pi) + e/2 * omega(2*Pi)^2) *P2(x)^3:

> Poine:=taylor(Poin(x),e=0,10):

> Poinx:=taylor(Poin(x),x=0,10):

> Poine1:=unapply(convert(Poine,polynom),e):

> Poinx1:=unapply(convert(Poinx,polynom),x):

> readlib(coeftayl):

> for i from 0 to 4 do

taylor(expand(coeftayl(Poine1(e),e=0,i)),x=0, 2*i+2); od:

> for i from 0 to 4 do

taylor(expand(coeftayl(Poinx1(x),x=0,i)),e=0, 2*i+2); od:

3.6.2 Chenciner case

> restart:

> readlib(coeftayl):

> s0:= t-> sin(t):

> c0:= t -> cos(t) - 1:

> s1:= t-> sin(t) -t:

> r:= t-> exp(-e*t) * rho(t):

> r01:= diff(r(t),t):

> r02:=subs(diff(rho(t),t) =

e * rho(t) *(1 + l1 * rho(t)^2 + c*rho(t)^4), r01):

> r03:=simplify(r02):

> r04:=subs(rho(t) = exp(e*t)*R(t), r03):

> r05:=simplify(r04):

> k0:= e-> l1 * e:

> r1:= t-> R(t) - k0(e)*exp(2*e*t)*s0(t)*R(t)^3:

> r11:=diff(r1(t),t):

> r12:=subs(diff(R(t),t)= r05,r11):

> r13:=sort(simplify(r12),R(t)):

> r14:=unapply(simplify(coeftayl(subs(R(t)=X,r13),X=0,3)),t):

> Co:=unapply( int(r14(u), u=0..t),t):

> r2:= t -> r1(t) -Co(t)*r1(t)^3:
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> r21:=diff(r2(t),t):

> r22:=subs(diff(R(t),t)= r05, r21):

> r23:=simplify(coeftayl(subs(R(t)=X,r22),X=0,3)):

> r24:=simplify(coeftayl(subs(R(t)=X,r22),X=0,5)):

> r25:=unapply(r24,t):

> Co2:=unapply(int(r25(u),u=0..t),t):

> r3:= t -> r2(t) - Co2(t)*r2(t)^5:

> r31:=diff(r3(t),t):

> r32:=subs(diff(R(t),t) = r05, r31):

> r33:=simplify(expand(coeftayl(subs(R(t)=X,r32),X=0,5))):

> r34:=unapply(simplify(coeftayl(subs(R(t)=X,r32),X=0,7)),t):

> r3_trunc:= t -> x0/(1 - 6 * x0^6 *int(r34(u),u=0..t))^(1/6):

> r2inv:= r3_trunc(2*Pi) + Co2(2*Pi)*r3_trunc(2*Pi)^5:

> r1inv:= r2inv+Co(2*Pi)*r2inv^3:

> rhoinv:= exp(2*Pi*e)*r1inv:

> poin:= unapply(rhoinv, (e,x0)):

> taylor(poin(e,x0),e=0, 3):

> taylor(poin(e,x0), x0=0, 5):

> Te:=convert(taylor(poin(e,x0),e=0,5),polynom):

> Tx:=convert(taylor(poin(e,x0),x0=0,7), polynom):

> for i from 0 to 4 do taylor(coeftayl(Te, e=0, i),x0=0,8) od:

> for i from 0 to 6 do taylor(coeftayl(Tx,x0=0,i), e=0, 5) od:

3.6.3 Hamiltonian triangle

> restart;

> readlib(coeftayl):

> s0:= t-> sin(t):

> c0:= t -> cos(t) - 1:

> s1:= t-> sin(t) -t:

> r:= t-> exp(-delta *t)*rho(t):

> r01:=diff(r(t),t):

> r02:=subs(e= (delta/l1)^(1/3),subs(diff(rho(t),t)=

(l1*e^3*rho(t) + (l2*e^2*cos(t) + l3*e*sin(t) - l5*e*sin(t)

+ cos(3*t))*rho(t)^2)/ (1 + (l2*e^2*sin(t) - l3*e*cos(t)

- l5*e*cos(t) - sin(3*t))*rho(t)), r01)):

> r03:=subs(rho(t)=exp(delta*t)*R(t), r02):

> r04:= taylor(subs(R(t)=X, r03),X=0,3):

> Co1:=unapply(simplify(coeftayl(r04, X=0,2)),t):

> r1:= t-> R(t) - int(Co1(u),u=0..t)*R(t)^2:

> r11:=diff(r1(t),t):

> r12:=subs(diff(R(t),t) = r03, r11):

> r13:=subs(R(t)=X, r12):
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> coeftayl(r13,X=0,1):

> expand(simplify(coeftayl(r13,X=0,2))):

> Co2:= unapply(simplify(coeftayl(r13,X=0,3)),t):

> r1_trunc:= t-> x/sqrt(1 -2* x^2 *int(Co2(u),u=0..t)):

> r_trunc:=unapply(r1_trunc(t)

+ int(Co1(u),u=0..t)*r1_trunc(t)^2,t):

> rho_trunc:=unapply(r_trunc(t)* exp(-delta*t),t):

> Poin:= simplify(subs(delta = l1*e^3,rho_trunc(2*Pi))):

> T:=taylor(Poin,e=0,7):

> TT:=convert(T,polynom):

> for j from 0 to 6 do simplify(coeftayl(TT,e=0,j)) od:



Chapter 4

Local analytic models for
hyperbolic families

4.1 Introduction

In Subsection 1.3.1 we discussed the linearisation of a hyperbolic vector field.
If the hyperbolic vector field is analytic, then Poincaré’s Theorem and Siegel’s
Theorem are telling us when the linearisation is analytic as well. In Subsec-
tion 1.3.2 we discussed the analogous situation for a hyperbolic diffeomorphism.
The main difference between the two theorems is that Poincaré’s Theorem deals
with systems that are either repelling in all directions (called a source), either
attracting in all directions (called a sink), while Siegel’s Theorem deals with
saddles.

We now want to look at analytic families of hyperbolic vector fields or dif-
feomorphisms. First we consider with the saddle case. Given an analytic family
of hyperbolic vector fields Xε or diffeomorphisms Fε where X0 is non-resonant
or F0 is multiplicatively non-resonant, it cannot be expected that the analytic
family Xε or Fε can be linearised analytically. This is caused by the lower
bound given by (1.13) for vector fields and (1.18) for diffeomorphisms. Even
if (1.13) is valid for X0, it is possible that the lower bound is no longer valid
for Xε as a small perturbation in the eigenvalues of a saddle can cause very
high order resonances. We remind that we encountered a similar situation for
planar resonant saddles in Proposition 2.1. Analogous remarks can be made for
a family of diffeomorphisms.

Here we propose not to linearise the vector field or diffeomorphism in the
neighourhood of the singular point or fixed point, but we will prove that it is
conjugate to its linear part plus some high-order terms which have high order in
as well the stable as the unstable directions. This conjugacy will be proven to be
analytic. A similar approach for vector fields was done in [Tuc99, Tuc04] in the
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case that all eigenvalues are real and in [Hom02] for a three-dimensional saddle
with 1 real eigenvalue and a pair of complex conjugate eigenvalues (with high-
order terms of order 3). The advantage of this approach is that the normal form
will be robust, i.e. under a small perturbation of the system the normal form
will remain valid in the analytic category. We will “model” this perturbation by
adding a parameter to the vector field or diffeomorphism and demanding that
this family of vector fields or diffeomorphisms is analytic in its variables and the
parameter.

The techniques and results that we will use in the saddle case, will also
be very useful to prove Poincaré’s Theorem for a family of vector fields or
diffeomorphisms. As in this case we will work with sinks or sources, it will be
possible to obtain an analytic linearisation.

The rest of this chapter is organised as follows. In Section 4.2 we introduce
the necessary concepts in order to give a good description of the results we
want to prove. In Section 4.3 we demonstrate why - contrary to Section 1.3 and
Section 1.4 - we don’t have to worry about the possible appearance of small
divisors in our calculations. Although this section may seem very technical it is
one of the key-elements to obtain the results that are presented in Section 4.2.
In Section 4.4 we prove the main result for vector fields and in Section 4.5 we
do the same for diffeomorphisms. It is natural to expect that both proofs will
have similarities. In Section 4.6 we consider the case where symmetry appears
in the family of vector fields or diffeomorphisms. We will prove that our analytic
model respects the symmetry of the original system. Finally in Section 4.7 we
apply the techniques used in Section 4.4 and Section 4.5 to prove Poincaré’s
Theorem for a family of vector fields or diffeomorphisms (see also Theorem 1.9
and Theorem 1.12). In our opinion the method we use to prove this result is
easier than the ones found in the literature.

4.2 Settings and preliminaries

4.2.1 Choice of basis

Family of vector fields

Consider a family of n-dimensional real vector fields Xε with a singularity of
hyperbolic type. We assume that the vector field can be written as a convergent
power series in its variables and the parameter ε such that if we extend this
vector field to Cn, i.e. we replace each real variable by a complex one, we
obtain a complex power series that converges on a poly-disk D(0, R)×D(0, r) ⊂
Cn×Cp. We will say that this type of vector field is real analytic. The complex
extension of a real analytic function is of course a (complex) analytic function.
We also assume that all eigenvalues of the linear part at the singularity have
multiplicity 1 for ε = 0. By virtue of Proposition 1.15, Proposition 1.16 and
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the results from Subsection 1.3.4 we may assume that the singular point is the
origin and that Xε is given by

Xε : ẋ = Aεx+ fε(x), (4.1)

where fε(x) = O(|x|2) is an analytic function of (x, ε) on a poly-disk D(0, R)
and Aε is in Jordan Normal Form:

Aε =





A
(1)
ε 0 0 0

0 A
(2)
ε 0 0

0 0 A
(3)
ε 0

0 0 0 A
(4)
ε




(4.2)

where

A(1)
ε =





ν1(ε) 0 · · · 0
0 ν2(ε) · · · 0
...

...
. . .

...
0 0 · · · νa(ε)





where ν1(ε) < ν2(ε) < · · · < νa(ε) < 0 are the negative real eigenvalues of Aε;

A(2)
ε =





α1(ε) −β1(ε) 0 0 · · · 0 0
β1(ε) α1(ε) 0 0 · · · 0 0

0 0 α2(ε) −β2(ε) · · · 0 0
0 0 β2(ε) α2(ε) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · αb(ε) −βb(ε)
0 0 0 0 · · · βb(ε) αb(ε)





is the matrix containing all complex eigenvalues with negative real part such
that α1(0) ≤ α2(0) ≤ · · · ≤ αb(0) < 0 and βj(ε) > 0 for all j = 1, · · · , b;

A(3)
ε =





µ1(ε) 0 · · · 0
0 µ2(ε) · · · 0
...

...
. . .

...
0 0 · · · µc(ε)





where 0 < µ1(ε) < µ2(ε) < · · · < µc(ε) are the positive real eigenvalues of Aε;

A(4)
ε =





γ1(ε) −δ1(ε) 0 0 · · · 0 0
δ1(ε) γ1(ε) 0 0 · · · 0 0

0 0 γ2(ε) −δ2(ε) · · · 0 0
0 0 δ2(ε) γ2(ε) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · γd(ε) −δd(ε)
0 0 0 0 · · · δd(ε) γd(ε)




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is the matrix containing all complex eigenvalues with positive real part such
that 0 < γ1(0) ≤ γ2(0) ≤ · · · ≤ γd(0) and δj(ε) > 0 for all j = 1, · · · , d. We
have that a+ 2b+ c+ 2d = n.

In order to calculate the formal normal form it would have been more conve-
nient to have a diagonal linear part at the origin, therefore we will use complex
coordinates. We define the matrix

Q =

(
1 i

1 −i

)
,

then we obtain the change of coordinates z = Px where P is the n× n matrix
defined by

P =





Ia 0 0 0

0

Q · · · 0
...

. . .
...

0 · · · Q

0 0

0 0 Ic 0

0 0 0

Q · · · 0
...

. . .
...

0 · · · Q





. (4.3)

Applying this change of coordinates (4.1) is transformed into

Yε : ż = Bεz + Fε(z) (4.4)

where

Bε = diag(ν1(ε), · · · , νa(ε), α1(ε) + iβ1(ε), α1(ε) − iβ1(ε), · · · ,
αb(ε) + iβb(ε), αb(ε) − iβb(ε), µ1(ε), · · · , µc(ε),

γ1(ε) + iδ1(ε), γ1(ε) − iδ1(ε), · · · , γd(ε) + iδd(ε), γd(ε) − iδd(ε)).

As fε already is a real analytic function with a complex extension converging
on a poly-disk D(0, R), we have that Fε is an analytic function of (z, ε) where z
has the following properties:

• if λj(ε) is a real eigenvalue of Aε, then zj = zj = xj , in other words zj is
a real variable,

• if λj(ε) and λj+1(ε) form a pair of complex conjugate eigenvalues of Aε,

then zj = zj+1. So xj =
zj+zj+1

2 and xj+1 =
zj−zj+1

2i
.

Therefore Fε will be analytic for

• |zj | = |xj | < Rj , if zj is real,



Chapter 4. Local analytic models for hyperbolic families 117

• |zj + zj+1| = 2|xj | < 2Rj and |zj − zj+1| < 2Rj+1, if zj = zj+1.

This immediately gives the following properties of Fε:

• if zj is real, then Fε,j(z) = Fε,j(z),

• if zj = zj+1, then Fε,j(z) = Fε,j+1(z).

Family of diffeomorphisms

Consider a real analytic family of diffeomorphisms fε with a hyperbolic fixed
point. We assume that the eigenvalues of the linear part at the origin have
multiplicity 1 for ε = 0. In an analogous way to the case of the vector fields we
may assume that we can obtain - without loss of analyticity - that the origin is
the fixed point and

fε : Rn → Rn : x 7→ Aεx+ Fε(x) (4.5)

where Aε is analytic in ε, Fε(x) is real analytic in x and Fε(x) = O(|x|2) for

x → 0, and Aε is in Jordan Normal Form given by (4.2) where A
(1)
ε and A

(2)
ε

contain all eigenvalues with modulus strictly smaller than 1 and A
(3)
ε and A

(4)
ε

contain all eigenvalues with modulus strictly greater than 1. Employing the
change of coordinates given by (4.3) we obtain the complexified diffeomorphism
f?

ε given by
f?

ε : Cn → Cn : z 7→ Bεz + F ?
ε (z) (4.6)

where Bε is the same matrix is in the case of the vector fields and F ?
ε is analytic

in (z, ε) with the same remarks on z as we made for the vector field case.

4.2.2 Resonance conditions

In Chapter 1 we already encountered the impact of resonance on the normal
form of a vector field or diffeomorphism. Here we want to relax the notion of
non-resonance and multiplicatively non-resonance a bit. Therefore we consider
a complex n×n matrix A with Spec(A) = {λ1, · · · , λn}. In the case of a vector
field we have that λ1, · · · , λs have negative real part and λs+1, · · · , λn have
positive real part. In the case of a diffeomorphism we have that λ1, · · · , λs have
modulus strictly smaller than 1 and λs+1, · · · , λn have modulus strictly larger
than 1. We now introduce (for any integer ` ≥ 1):

S`,n,s :=




m ∈ Nn|min




s∑

j=1

mj ,

n∑

j=s+1

mj



 < `




 (4.7)

T`,n,s :=




m ∈ Nn|min




s∑

j=1

mj ,

n∑

j=s+1

mj



 ≥ `




 (4.8)
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so Nn = S`,n,s ∪ T`,n,s and S`,n,s ∩ T`,n,s = ∅. For any formal power series
F (x) =

∑
m∈Nn Fmx

m we have

F (x) =
∑

m∈S`,n,s

Fmx
m +

∑

m∈T`,n,s

Fmx
m

=: [F (x)]
S`,n,s + [F (x)]

T`,n,s .

We recall that Spec(A) is a resonant set if there exists a m ∈ Nn with |m| ≥ 2
such that

n∑

j=0

mjλj = λk, (4.9)

with k = 1, · · · , n. Spec(A) is a multiplicatively resonant set if there exists
a m ∈ Nn with |m| ≥ 2 such that

n∏

j=0

λ
mj

j = λk, (4.10)

with k = 1, · · · , n.
In what follows we will fix an integer ` (which one wants to take as large as

possible in applications) and demand that no element of S`,n,s is a solution of
(4.9), resp. (4.10), if we work with a vector field, resp. diffeomorphism. In such
a case we will say that S`,n,s causes no resonances in Spec(A). It is obvious
that if Spec(A) is non-resonant or multiplicatively non-resonant then S`,n,s will
cause no resonance in Spec(A). To make this more clear we give an example of
a hyperbolic singularity which is resonant but no element of S`,n,s (for given `

and n) satisfies (4.9). Take ` = 19, n = 3, s = 1 and eigenvalues −11, 9 + i and
9 − i, then the first resonance equation becomes

−11m1 + (9 + i)m2 + (9 − i)m3 = −11.

The solution with smallest “length” (i.e. with minimal |m| ≥ 2) of this equation
is (19, 11, 11) so m1 = 19 and m2 + m3 = 22 so even though the system is
resonant, S19,3,1 causes no resonances in {−11, 9 + i, 9 − i}.

4.2.3 Results

Before stating the results of this chapter we introduce the following norms:

|y| = max
1≤j≤n

|yj |, ∀y ∈ Cn

‖F‖r = max
|x|≤r

|F (x)|

for any continuous function F on D(0, re).
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Theorem 4.1 Consider a fixed integer ` ≥ 1 and an n-dimensional real vector
field

Xε : ẋ = Aεx+ fε(x) (4.11)

such that Aε is a real n×n matrix in Jordan Normal Form, fε(x) = O(|x|2) for
x→ 0 where fε is a real analytic function of x and ε such that f�

ε , the complex
extension of fε(x), is analytic on a poly-disk D(0, R)×D(0, r) and S`,n,s causes
no resonances in Spec(A0), where s denotes the number of eigenvalues of A0

that have a negative real part. Then there exists positive constants r0, r1, K0,
K1, ρ and a change of coordinates

x = y + φε(y) (4.12)

which is real analytic in (y, ε) such that φ�ε is analytic on D(0, r1e) × D(0, ρe),
such that ‖φε‖q ≤ K0q

2 for q < r0 and ε ∈ D(0, ρe), and (4.12) conjugates
(4.11) to

Yε : ẏ = Aεy + gε(y), (4.13)

where gε(y) is real analytic in (y, ε), [gε(y)]
S`,n,s = 0 and

|gε(y)| ≤ K1|(y1, · · · , ys)|`|(ys+1, · · · , yn)|`

for y ∈ D(0, r1e).

Theorem 4.2 Consider a fixed integer ` ≥ 1 and a diffeomorphism

fε : Rn → Rn : x 7→ Aεx+ Fε(x) (4.14)

such that Aε is a real n × n matrix in Jordan Normal Form, Fε(x) = O(|x|2)
for x → 0, fε is a real analytic function of x and ε such that f�

ε , the complex
extension of fε, is analytic on a poly-disk D(0, R)×D(0, r) and S`,n,s causes no
resonances in Spec(A0), where s denotes the number of eigenvalues of A0 with
modulus strictly smaller than one. Then there exist positive constants r0, r1,
K0, K1, ρ and a change of coordinates

x = y + φε(y) (4.15)

which is real analytic in (y, ε) such that φ�ε is analytic on D(0, r1e) × D(0, ρe),
such that ‖φε‖q ≤ K0q

2 for q < r0 and ε ∈ D(0, ρe), and (4.15) conjugates
(4.14) to

gε : Rn → Rn : x 7→ Aεx+Gε(x), (4.16)

where Gε(y) is real analytic in (y, ε), [Gε]
S`,n,s = 0 and

|Gε(y)| ≤ K1|(y1, · · · , ys)|`|(ys+1, · · · , yn)|`

for y ∈ D(0, r1e).
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From the properties of gε in (4.13) and Gε in (4.16) and the fact that the
transformations given by (4.12) and (4.15) are analytic in the variable and
the parameter gives us the following results as corollaries of Theorem 4.1 and
Theorem 4.2.

Corollary 4.3 Under the conditions of Theorem 4.1 we have that the stable
and unstable manifold of Xε at the origin are real analytic manifolds depending
in a real analytic way on the parameter ε.

Corollary 4.4 Under the conditions of Theorem 4.2 we have that the stable
and unstable manifold of fε at the origin are real analytic manifolds depending
in a real analytic way on the parameter ε.

If the original family admits symmetry, then we have the following results.

Theorem 4.5 If - under the conditions of Theorem 4.1 - the family of vector
fields Xε admits an analytic family of symmetries Sε (i.e. Sε is an analytic
family of linear maps such that (Sε)∗Xε = Xε), then the transformation given
by (4.12) commutes with Sε and the resulting family of vector fields given by
(4.13) admits the same family of symmetries.

Theorem 4.6 If - under the conditions of Theorem 4.2 - the family of diffeo-
morphisms fε admits an analytic family of symmetries Sε (i.e. Sε is an analytic
family of linear maps and Sε ◦ fε = fε ◦ Sε), then the transformation given by
(4.15) commutes with Sε and the resulting family of diffeomorphisms given by
(4.16) admits the same family of symmetries.

4.3 Absence of small divisors

In this section we want to show that if S`,n,s causes no resonances in Spec(A0),
then there exists a constant ρ > 0 such that for all ε ∈ B(0, ρ) ⊂ Cp we have
that S`,n,s causes no resonances in Spec(Aε). Although the proofs for vector
fields and diffeomorphisms are similar, we prefer to give both proofs separately
to avoid confusions.

4.3.1 Family of vector fields

We consider the kth resonance equation (for k = 1, · · · , n):

a∑

j=1

rjνj(0) +
b∑

j=1

sj(αj(0) + iβj(0)) +
b∑

j=1

s̃j(αj(0) − iβj(0)) + (4.17)

c∑

j=1

tjµj(0) +

d∑

j=1

uj(γj(0) + iδj(0)) +

d∑

j=1

ũj(γj(0) − iδj(0)) = λk(0)
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where λj(ε) is the jth component of Λε. Looking more closely at this equation,
one should note that there are actually 2 equations to consider: one coming from
the real parts and one coming from the imaginary parts. It would of course be
much easier to solve the equation if one shouldn’t worry about the imaginary
parts. That is why we prove the following result that says that we only have to
consider the real parts of the eigenvalues if one is concerned about the existence
of resonance in the system.

Proposition 4.7 Let Aε be as in (4.11). Then the eigenvalues of A0 are res-
onant iff the eigenvalues of Ã0 are resonant, where Ãε is the (a+ b + c+ d) ×
(a+ b+ c+ d) matrix defined by

Ãε =





A
(1)
ε 0 0 0

0 Ã
(2)
ε 0 0

0 0 A
(3)
ε 0

0 0 0 Ã
(4)
ε





where A
(1)
ε and A

(3)
ε are defined in (4.1) and A

(2)
ε = diag(α1(ε), · · · , αb(ε)) and

A
(4)
ε = diag(γ1(ε), · · · , γd(ε)).

Proof: The eigenvalues of A0 form a resonant set iff (4.9) has a solution.
Looking at the real and the imaginary part of this equation, we obtain the
following two equations

a∑

j=1

rjνj(0) +

b∑

j=1

(sj + s̃j)αj(0) +

c∑

j=1

tjµj(0)

+

d∑

j=1

(uj + ũj)γj(0) = <(λk(0)), (4.18)

b∑

j=1

(sj − s̃j)βj(0) +

d∑

j=1

(uj − ũj)δj(0) = =(λk(0)). (4.19)

If =(λk(0)) = 0, a solution of (4.19) is given by taking s̃j = sj for j = 1, · · · , b
and ũj = uj for j = 1, · · · , d. If =(λk(0)) 6= 0, then we have to look at the
sign of <(λk(0)). In the positive case there is a q ∈ {1, · · · , d} such that we
take ũq(0) = ũq(0) ± 1 (the ± is determined by the sign of =(λk(0))). Taking
s̃j = sj for j = 1, · · · , b and ũj = uj for j 6= q, we find a solution of (4.19). In
the negative case there is a q ∈ {1, · · · , d} such that we take s̃q(0) = s̃q(0) ± 1
(the ± is determined by the sign of =(λk(0))). Taking s̃j = sj for j 6= q and
ũj = uj for j = 1, · · · , d, we find a solution of (4.19). In all of these cases (4.18)
is reduced to

a∑

j=1

rjνj(0) +

b∑

j=1

sj(2αj(0)) +

c∑

j=1

tjµj(0) +

d∑

j=1

uj(2γj(0)) = <(λk(0)).
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This latter equation is equivalent with saying that there is resonance between
the eigenvalues of

Â =





A
(1)
0 0 0 0

0 2Ã
(2)
0 0 0

0 0 A
(3)
0 0

0 0 0 2Ã
(4)
0




.

We now prove that the eigenvalues of Ã0 are resonant iff the eigenvalues of Â
are resonant. So, resonance between the eigenvalues of Ã0 can happen iff there
exists a solution of

a∑

j=1

rjνj(0) +

b∑

j=1

sjαj(0) +

c∑

j=1

tjµj(0) +

d∑

j=1

ujγj(0) = λ̃k(0).

This equation is obviously equivalent with

a∑

j=1

(2rj)νj(0) +

b∑

j=1

sj(2αj(0)) +

c∑

j=1

(2tj)µj(0) +

d∑

j=1

uj(2γj(0)) = 2λ̃k(0).

If λ̃k(0) equals one of the αj(0) or γj(0) then we introduce r̃j = 2rj and t̃j = 2tj;

if λ̃k(0) = νq(0) for some q ∈ {0, · · · , a} then we introduce r̃q = 2rq−1, r̃j = 2rj
for j 6= q and t̃j = 2tj ; if λk(0) = µq(0) for some q ∈ {0, · · · , c} then we introduce
r̃j = 2rj , t̃q = 2tq − 1 and t̃j = 2tj if j 6= q, then in all of these cases the latter
equation is equivalent with

a∑

j=1

r̃jνj(0) +

b∑

j=1

sj(2αj(0)) +

c∑

j=1

t̃jµj(0) +

d∑

j=1

uj(2γj(0)) = λ̃k(0),

which is the resonance equation on the eigenvalues of Â. 2

From the proof of Proposition 4.7 we obtain the following result.

Corollary 4.8 Let Aε be as in (4.11). Then S`,n,s causes no resonances in

Spec(A0) iff S˜̀,ñ,s̃ causes no resonances in Spec(Ã0), where Ãε is defined in
Proposition 4.7 and

ñ = a+ b+ c+ d,

s̃ = a+ b,

`

2
− max

1≤k≤n

λ̃k(0)

2
≤ ˜̀≤ `

2
− min

1≤k≤n

λ̃k(0)

2
.

The exact value of ˜̀ depends on Spec(Ã0).
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Let us give some examples of this situation:

• Consider Spec(A0) = {−3, 5 + i, 5 − i}, then S6,3,1 causes no resonances
in Spec(A0) (and 6 is the maximal value of ` with this property). As
Spec(Ã0) = {−3, 5}, we have that S3,2,1 causes no resonances in Spec(Ã0),

hence ˜̀= 3 = `
2 .

• Consider Spec(A0) = {−2, 5 + i, 5 − i}, then S2,3,1 causes no resonances

in Spec(A0). As Spec(Ã0) = {−2, 5}, we have that S2,2,1 causes no reso-

nances in Spec(Ã0), hence ˜̀= 2 = `
2 − (−2)

2 .

To facilitate the notations, we use the constants ˜̀, ñ and s̃ defined in Corol-
lary 4.8, this way we can write that Ãε is an ñ× ñ matrix and that there are s̃
stable directions. Also we introduce Λ̃ε as the ñ-tuple of eigenvalues of Ãε.

Now we look at the kth resonance equations on the eigenvalues of Ã0:

a∑

j=1

rjνj(0) +

b∑

j=1

sjαj(0) +

c∑

j=1

tjµj(0) +

d∑

j=1

ujγj(0) = λ̃k(0). (4.20)

As we assume that the eigenvalues are non-resonant, (4.20) has no non-trivial
solutions in S˜̀,ñ,s̃. We can interpret this non-resonance in the following geo-
metrical way. Consider the ñ-tuple

(r1, · · · , ra, s1, · · · , sb, t1, · · · , tc, u1, · · · , ud)

as a point on the grid Zñ, then the non-resonance of the eigenvalues of Ã0 means
that the hyperplane H with equation given by (4.20) contains only one of the
“grid points” in S˜̀,ñ,s̃. This point is the intersection of H with the xk-axis (the

kth axis in Rñ) and it has coordinates ek := (0, · · · , 0, 1, 0, · · · , 0) with a 1 on
the kth position. The hyperplane H will intersect the xj-axis (for j 6= k) in

the point λ̃k(0)

λ̃j(0)
ej. For each point P of S˜̀,ñ,s̃ (with |P | ≥ 2) we consider the

hyperplanes through the points P and ek. These hyperplanes will intersect each

axis in a point of the form
(

λ̃k(0)

λ̃j(0)
+ ηH′,P

)
ej where ηH′,P ∈ R\{0} depends on

the hyperplane H ′ and the point P . As we are working in S˜̀,ñ,s̃ we know that
min

P∈S˜̀,ñ,s̃

|ηH′,P | > 0, so there exists a θ > 0 such that θ = min
P∈S˜̀,ñ,s̃

|ηH′,P | > 0.

Let us denote the hyperplane that gives this θ by Ĥ , the intersection of this
hyperplane with the axis will give us the “closest” resonance. This way we have
obtained a bound for the ratio of the eigenvalues of Ãε:

λ̃k(0)

λ̃j(0)
− θ <

λ̃k(ε)

λ̃j(ε)
<
λ̃k(0)

λ̃j(0)
+ θ, (4.21)
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for j = 1, · · · , ñ. The region U of Rñ defined by the bounds

λ̃k(0)

λ̃j(0)
− θ <

xk

xj

<
λ̃k(0)

λ̃j(0)
+ θ,

for j = 1, · · · , ñ, is an open subset of Rñ containing Λ̃0. We know that for
each k = 1, · · · , ñ, ε 7→ λ̃k(ε) is a continuous map that is either strictly positive
either strictly negative in a neighbourhood of the origin. As U is open, the

continuity of the mappings ε 7→ λ̃k(ε)

λ̃j(ε)
gives us the existence of a ρk > 0 such

that (4.21) is fulfilled for all ε ∈ B(0, ρk). Taking ρ as minimum of all ρk (as
there only a finite number of ρk, we have that ρ > 0), we have that S˜̀,ñ,s̃ causes

no resonances on the eigenvalues of Ãε for all ε ∈ B(0, ρ) = D(0, ρe). By virtue
of Proposition 4.7 we have that S`,n,s causes no resonances on the eigenvalues
of Aε if ε ∈ B(0, ρ) = D(0, ρe).

Remark 4.1 During the argumentation we did up until now, we never used
that the eigenvalues of Ã0 have multiplicity 1. Actually the result remains valid
if some eigenvalues have multiplicity higher than 1 as long as Spec(Ã0) is a
non-resonant set.

We now prove that small divisors cannot appear.

Proposition 4.9 If S`,n,s causes no resonances in Spec(A0), then there exists
a positive constant κ such that ∀m ∈ S`,n,s and ∀ε ∈ B(0, ρ) = D(0, ρe) (where
ρ was determined in the previous argumentation):

| 〈Λε,m〉 − λj(ε)| ≥ κ|m| (4.22)

where 1 ≤ j ≤ n and λj(ε) denotes the jth eigenvalue of Aε.

As we have that

| 〈Λε,m〉 − λj(ε)| ≥ |<(〈Λε,m〉 − λj(ε))|
≥

∣∣∣
〈
Λ̃ε, m̃

〉
−<(λj(ε))

∣∣∣

where m̃ ∈ S`,ñ,s̃ is related to m as follows:

m̃j = mj for 1 ≤ j ≤ a

m̃a+j = ma+2j−1 +ma+2j for 1 ≤ j ≤ b

m̃a+b+j = ma+2b+j for 1 ≤ j ≤ c

m̃a+b+c+j = ma+2b+c+2j−1 +ma+2b+c+2j for 1 ≤ j ≤ d,

and
|m̃| = |m|.

Proposition 4.9 will be a consequence of
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Proposition 4.10 There exists a positive constant K such that for the eigen-
values of Ãε we have that ∀ε ∈ B(0, ρ) = D(0, ρe):

∣∣∣
〈
Λ̃ε,m

〉
− λ̃j(ε)

∣∣∣ ≥ K|m| (4.23)

for all m ∈ S˜̀,ñ,s̃ and j = 1, · · · , ñ.
To prove Proposition 4.10 we need another result. To make the proof a bit

clearer, we will assume that the eigenvalues of Ãε meet

λ̃1(0) ≤ · · · ≤ λ̃s̃(0) < 0 < λ̃s̃+1(0) ≤ · · · ≤ λ̃ñ(0).

This can be achieved by a permutation of the basis vectors, so it won’t effect
the result given in (4.23).

Before stating and proving the lemma, we need to introduce the following
notations

q0(ε) :=






max
1≤j≤s̃

λ̃j(ε) if min
1≤j≤s̃

|λ̃j(ε)| < min
s̃+1≤j≤ñ

|λ̃j(ε)|
min

s̃+1≤j≤ñ
λ̃j(ε) if min

1≤j≤s̃
|λ̃j(ε)| > min

s̃+1≤j≤ñ
|λ̃j(ε)|

q+(ε) :=






min
1≤j≤s̃

λ̃j(ε) if q0(ε) < 0

max
s̃+1≤j≤ñ

λ̃j(ε) if q0(ε) > 0

q−(ε) :=






max
s̃+1≤j≤ñ

λ̃j(ε) if q+(ε) < 0

min
1≤j≤s̃

λ̃j(ε) if q+(ε) > 0

dxe := min{k ∈ Z|x ≤ k}.
We remark that q0, q+ and q− are always continuous functions of ε but not
necessarily analytic functions of ε.

For eachm ∈ S`,n,s we use the following notations which denotes the splitting
with respect to the stable and the unstable directions:

Ms := (m1, · · · ,ms)

Mu := (ms+1, · · · ,mn).

Lemma 4.11 As S˜̀,ñ,s̃ causes no resonances in Spec(Ãε), we have for all m ∈
S˜̀,ñ,s̃ satisfying

|m| ≥
⌈
q+(ε)

q0(ε)
− (˜̀− 1)

q−(ε)

q0(ε)
+ (˜̀− 1)

⌉
:= Ξ(ε, ˜̀) (4.24)

the following inequality
∣∣∣
〈
Λ̃ε,m

〉
− λ̃j

∣∣∣ ≥ |(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε) − q+(ε)| (4.25)

for all j = 1, · · · , ñ.
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Proof: First we establish the inequality for those m for which |m| is “suffi-
ciently” large, afterwards we show that these |m| are bounded below by Ξ(ε, ˜̀).

First we consider the case where |Ms̃| < ˜̀. For |Mũ| sufficiently large〈
Λ̃ε,m

〉
− λ̃j(ε) will be positive. So taking |Ms̃| = ˜̀− 1, we have

〈
Λ̃s̃

ε,Ms̃

〉
≥ (˜̀− 1)λ̃1(ε),

〈
Λ̃ũ

ε ,Mũ

〉
≥ λ̃s̃+1(ε)(|m| − ˜̀+ 1),

−λ̃j(ε) ≥ −λ̃ñ(ε),

where

Λ̃s̃
ε := (λ̃1(ε), · · · , λ̃s̃(ε)),

Λ̃ũ
ε := (λ̃s̃+1(ε), · · · , λ̃ñ(ε)).

So we can conclude
〈
Λ̃,m

〉
− λ̃j(ε) ≥ (˜̀− 1)λ̃1(ε) + λ̃s+1(ε)(|m| − ˜̀+ 1) − λ̃ñ(ε) > 0. (4.26)

Second we consider the case where |Mũ| < ˜̀. For |Ms̃| sufficiently large〈
Λ̃ε,m

〉
− λ̃j(ε) will be negative. So taking |Mũ| = ˜̀− 1, we have

〈
Λ̃s̃

ε,Ms̃

〉
≤ (|m| − ˜̀+ 1)λ̃s̃(ε),

〈
Λ̃ũ

ε ,Mũ

〉
≤ (˜̀− 1)λ̃ñ(ε),

−λ̃j(ε) ≤ −λ̃1(ε).

So we can conclude
〈
Λ̃,m

〉
− λ̃j(ε) ≤ (˜̀− 1)λ̃ñ(ε) + λ̃s(ε)(|m| − ˜̀+ 1) − λ̃1(ε) < 0. (4.27)

Combining (4.26) and (4.27) we find the inequality stated in (4.25).
We now come to the point where we determine a lower bound on |m| such

that (4.25) is valid. One observes that the right-hand side of (4.25) is actually
linear in |m| if one forgets about the absolute value sign. The absolute value
sign gives that the right-hand side of (4.25) will be increasing after the unique
zero of this function. From (4.25) it is a very short, straightforward calculation
to deduce this unique zero which will give us the lower bound Ξ(ε, ˜̀) as stated
in (4.24). 2

Proof(of Proposition 4.10): From (4.25) we deduce that there exists a constant

K∗ for all m ∈ S˜̀,ñ,s̃ with |m| ≥ Ξ(ε, ˜̀) such that
∣∣∣
〈
Λ̃ε,m

〉
− λ̃j(ε)

∣∣∣ ≥ K∗|m|.
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Starting from the right-hand side of (4.25) we have that

|(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε) − q+(ε)| =

|q0(ε)|m| + (˜̀− 1)q−(ε) + (1 − ˜̀)q0(ε) − q+(ε)| ≥
|q0(ε)|.|m| − |(˜̀− 1)q−(ε) + (1 − ˜̀)q0(ε) − q+(ε)|.

The latter expression will be positive for |m| ≥ Ξ1(ε, ˜̀). Take |m| ≥ ξε,˜̀ :=

max{Ξ(ε, ˜̀),Ξ1(ε, ˜̀)}, then

|q0(ε)| − |(˜̀−1)q−(ε)+(1−˜̀)q0(ε)−q+(ε)|
|m| ≥

|q0(ε)| − |(˜̀−1)q−(ε)+(1−˜̀)q0(ε)−q+(ε)|
ξε,˜̀

≥

K∗ := inf
ε∈B(0,ρ)

(
|q0(ε)| −

|(˜̀− 1)q−(ε) + (1 − ˜̀)q0(ε) − q+(ε)|
ξε,˜̀

)
,

hence
|(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε) − q+(ε)| ≥ K∗|m|

and
K∗ ≤ inf

ε∈B(0,ρ)
|q0(ε)|.

For each r with 1 ≤ |m| < Ξ(ε, ˜̀) we can find a constant Km > 0 such that∣∣∣
〈
Λ̃ε,m

〉
− λ̃j(ε)

∣∣∣ ≥ Km|m|: we just take

Km := inf
ε∈B(0,ρ)

∣∣∣
〈
Λ̃ε,m

〉
− λ̃j(ε)

∣∣∣
|m| .

Defining

K := min
(
{Kr | |r| < Ξ(ε, ˜̀)} ∪ {K∗}

)
,

we have the wanted constant. K will be strictly positive as it is the minimum
of a finite set of strictly positive numbers. 2

4.3.2 Family of diffeomorphisms

We look at the kth resonance equation (1 ≤ k ≤ n):

∏

1≤j≤n

λj(ε)
mj = λk(ε). (4.28)

As not all eigenvalues are real, we will work with the modulus of each eigenvalue.
This way we obtain: ∏

1≤j≤n

|λj(ε)
mj | = |λk(ε)|. (4.29)
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Equation (4.29) is equivalent with

n∑

j=1

mj ln |λj(ε)| = ln |λk(ε)|. (4.30)

Now (4.30) is the resonance equation one would obtain when studying a vector
field Xε on Rn where the linear part has eigenvalues

{ln |λ1(ε)|, · · · , ln |λn(ε)|}
at the origin. This means that the vector field we obtain has the origin as a
hyperbolic singularity. As some eigenvalues can have the same modulus, it is
possible that the set of eigenvalues contain (for some value of ε) an eigenvalue
with multiplicity greater than 1. But as the set of eigenvalues of the diffeomor-
phism was multiplicatively non-resonant, it is clear that the eigenvalues of the
vector field will be non-resonant. This is the situation described in Remark 4.1.
Therefore we can apply the results we obtained in Subsection 4.3.1 to conclude
the existence of a ρk > 0 for which (4.28) will have no solutions if ε ∈ B(0, ρk).
For each resonance equation we obtain a ρj > 0, so taking

ρ := min
1≤j≤n

ρj

provides the radius we are looking for. We now prove that small divisors cannot
appear.

Proposition 4.12 If S`,n,s causes no resonances in Spec(A0), then there exist
positive constants K, C1, C2 with C1 < 1 and C2 < 1 such that ∀m ∈ S`,n,s

and ∀ε ∈ B(0, ρ) (where ρ was determined in the previous argumentation):

|Λm
ε − λj(ε)| ≥ C1 −KC

|m|
2 > 0 (4.31)

where 1 ≤ j ≤ n and λj(ε) denotes the jth eigenvalue of A(ε).

In (4.31) we used the notation

Λm
ε :=

∏

1≤j≤n

λj(ε)
mj .

To prove Proposition 4.12 we need another lemma. But before stating and
proving this lemma, we need to introduce the following constants:

µ−− := inf
ε∈B(0,ρ)

min
1≤j≤s

|λj(ε)|,

µ−+ := sup
ε∈B(0,ρ)

max
1≤j≤s

|λj(ε)|,

µ+− := inf
ε∈B(0,ρ)

min
s+1≤j≤n

|λj(ε)|,

µ++ := sup
ε∈B(0,ρ)

max
s+1≤j≤n

|λj(ε)|,
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obviously we have
µ−− < µ−+ < µ+− < µ++.

Now we state and prove a crucial lemma

Lemma 4.13 As S`,n,s causes no resonances in Spec(Aε), there exists a N` ∈ N

such that ∀m ∈ S`,n,s satisfying |m| ≥ N` we have that

|Λm
ε − λj(ε)| ≥ µ−− −

(
µ++

µ−+

)`

µ
|m|
−+ (4.32)

for j ∈ {1, 2, · · · , n}.

Proof: First of all we like to point out that we have the following inequality

|Λm
ε − λj(ε)| ≥

∣∣∣∣∣∣

∏

1≤k≤n

|λk(ε)|mk − |λj(ε)|

∣∣∣∣∣∣

for all j = 1, · · · , n. We will work with the right-hand side of the latter inequality
throughout the rest of the proof.

We start by establishing the bound for those m for which |m| is “sufficiently
large”, afterwards we will show how N` can be determined.

To make the proof more clear we adopt the following notations: for given
m ∈ Nn we have

Ms := (m1, · · · ,ms),

Mu := (ms+1, · · · ,mn),

so m = (Ms,Mu).
First we consider the case where |Ms| < `. For |Mu| sufficiently large∣∣(Λs
ε)

Ms

∣∣ ·
∣∣(Λu

ε )Mu

∣∣ − |λj(ε)| will be positive. So taking |Ms| = ` − 1, we

have that |Mu| = |m| − ` + 1. From this it follows that
∣∣(Λs

ε)
Ms

∣∣ ≥ µ`−1
−− and∣∣(Λu

ε )Mu

∣∣ ≥ µ
|m|−`+1
+− . It is obvious that |λj(ε)| ≤ µ++. From these results one

obtains that

|Λm
ε | − |λj(ε)| ≥

(
µ−−

µ+−

)`−1

µ
|m|
+− − µ++. (4.33)

Second we consider the case where |Mu| < `. For |Ms| sufficiently large∣∣(Λs
ε)

Ms

∣∣ ·
∣∣(Λu

ε )Mu

∣∣ − |λj(ε)| is negative. Taking |Mu| = ` − 1, we have that

|Ms| = |m|−`+1. From this it follows that
∣∣(Λs

ε)
Ms

∣∣ ≤ µ
|m|−`+1
−+ and

∣∣(Λu
ε )Mu

∣∣ ≤
µ`−1

++ . It is obvious that |λj(ε)| ≥ µ−−. From these results one obtains that

|Λm
ε | − |λj(ε)| ≤

(
µ++

µ−+

)`−1

µ
|m|
−+ − µ−−. (4.34)
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As µ+− > 1 the right-hand side of (4.33) will diverge for |m| → ∞ and as
0 < µ−+ < 1 the absolute value of the right-hand side of (4.34) will be increasing
and converging to µ−− as |m| → ∞. Thus there exists a N` ∈ N such that for
|m| ≥ N` (4.32) is fulfilled. 2

Proof(of Proposition 4.12): From Lemma 4.13 we have that there exists a
constant K∗ for all m ∈ Nn with |m| ≥ N` such that

|Λm
ε − λj(ε)| ≥ µ−− −K∗µ

|m|
−+,

we simply take

K∗ =

(
µ++

µ−+

)`

.

For each m with 0 < |m| < N` we can find a constant Km > 0 such that

|Λm
ε − λj(ε)| ≥ µ−− −Kmµ

|m|
−+ > 0 :

we simply take

Km := sup
ε∈B(0,ρ)

µ−− − |Λm
ε − λj(ε)|

µ
|m|
−+

.

Take

K := min{Km| |m| < N`} ∪ {K∗}
then we have the wanted constant. K will be strictly positive as the minimum
is taken over a finite set of strictly positive numbers. 2

4.4 Proof of Theorem 4.1

The proof of Theorem 4.1 consists of 3 parts: first we determine 2 equations
that will give us (4.12), second we show that there exists a formal solution and
finally we show that the formal solution converges, i.e. there exists an analytic
solution.

4.4.1 Determining the change of coordinates

In this subsection we want to establish an equation which will allow us to de-
termine the transformation (4.12) we are seeking. From now on we will work in
the complexified setting given by (4.4), this will make it easier to determine a
formal solution. This means that we will need to “complexify” the function φε

given by (4.12).
So we have a vector field given by

ż = Bεz + Fε(z)
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where z = Px with P given by (4.3), which we want to transform into a vector
field

ẇ = Bεw +Gε(w)

where P−1w ∈ Rn (as we wish to return to a real vector field at the end) and

[Gε(w)]S`,n,s = 0, by a transformation

z = w + ϕε(w).

Of course we want that this transformation puts the vector field into a vector
field that is also the complexification of a real vector field. The following result
gives us that an analytic transformation will put an analytic complexified real
vector field into a complexified real vector field.

Proposition 4.14 Given the analytic complexified real vector field






ż = f(z, z̄, r)
˙̄z = f(z, z̄, r)
ṙ = g(z, z̄, r)

, (4.35)

with z, z̄ ∈ Cp (p ≥ 1), r ∈ Cq (q ≥ 1) and g(z, z̄, r) = g(z, z̄, r), and given an
analytic transformation

(z, z̄, r) = Φ(w, w̄, s),

with
Φ(w, w̄, s) = (ϕ(w, w̄, s), ϕ̄(w, w̄, s), ψ(w, w̄, s))

in which we denoted ϕ̄(w, w̄, s) = ϕ(w, w̄, s) and where ψ(w, w̄, s) = ψ(w, w̄, s),
then the transformed system






ẇ = F1(w, w̄, s)
˙̄w = F2(w, w̄, s)
ṡ = F3(w, w̄, s)

(4.36)

is a complexified real vector field.

Proof: Straightforward. 2

So if we can obtain an analytic transformation, we are assured of the fact
that the complexified real vector field is transformed into a complexified real
vector field.

In order to return to a real vector field we will have

φε(w) = P−1 · ϕε(Pw) (4.37)

and

Gε(w) = P−1 · gε(Pw)



132

where P is the matrix defined by (4.3), that gives the change of basis.
Performing this transformation we find the following two equalities

ż = (In +Dwϕε(w))(Bεw +Gε(w))

ż = Bε(w + ϕε(w)) + Fε(w + ϕε(w))

If we introduce the operator LBε

LBε
ϕε(w) = Dwϕε(w)Bεw −Bεϕε(w) (4.38)

then these equations can be combined to obtain

LBε
ϕε(w) = Fε(w + ϕε(w)) −Gε(w) −Dwϕε(w)Gε(w) (4.39)

We split (4.39) up into two separate equations. This splitting up will be done
with respect to S`,n,s and T`,n,s. Thus we will solve

LBε
ϕε(w) = [Fε(w + ϕε(w))]

S`,n,s (4.40)

[Fε(w + ϕε(w))]
T`,n,s = (In +Dwϕε(w))Gε(w) (4.41)

If we can solve (4.40), then we can determine Gε(w) directly as (In +
Dwϕε(w)) is invertible in a sufficiently small neighbourhood of the origin. We
know that the formal expansion of ϕε starts with terms of degree 2 in w, so
multiplying [Fε(w + ϕε(w))]

T`,n,s with (In +Dwϕε(w))−1 will only increase the
degree of each term in w, hence

[
(In +Dwϕε(w))−1 [Fε(w) + ϕε(w))]

T`,n,s

]S`,n,s

= 0,

so [Gε(w)]
S`,n,s = 0.

Also from (4.41) we immediately have that |Gε(w)| ≤ K1|Ws|`|Wu|`, where
Ws = (w1, · · · , ws) and Wu = (ws+1, · · · , wn). Hence by virtue of (4.37) we
have the same bounds for gε(y).

In the next subsections we will solve (4.40) and show that the solution has
all properties as stated in Theorem 4.1.

4.4.2 Formal solution of (4.40)

A direct calculation shows that

LBε,j
(vwm) = v(〈Λε,m〉 − λj(ε))w

m,

1 ≤ j ≤ n, for any m ∈ Nn and any v ∈ Cn. This means that if we want to
have a formal solution ϕε(w) =

∑
|m|≥2 am(ε)wm, then (4.40) becomes

∑

|m|≥2

am,j(ε)(〈Λε,m〉−λj(ε))w
m =




∑

|m|≥2

Fm,j(ε)



w +
∑

|k|≥2

ak(ε)wk




m


S`,n,s

(4.42)
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where 1 ≤ j ≤ n and

Fε(w) =
∑

|m|≥2

Fm(ε)wm.

We now show how (4.42) can be solved formally. First we take the coefficient
of wM for M ∈ Nn with |M | = 2, then (4.42) gives

aM,j(ε) =
FM,j(ε)

〈Λε,M〉 − λj(ε)

thus aM,j(ε) is an analytic function as in the right-hand side both the numerator
and the denominator are analytic functions and by non-resonance we know that
the denominator is bounded away from zero. Each aM,j(ε) will be analytic on
the same poly-disk as Fε(w) is analytic on a poly-disk, so by Theorem 1.4 its
coefficients in the formal power series expansion with respect to w are analytic
on a fixed poly-disk. We now proceed by induction, so assume that am,j is an
analytic function of ε for all m ∈ Nn with 2 ≤ |m| ≤ N −1. Now take a m ∈ Nn

with |m| = N . Taking the coefficients of wm in (4.42) we find

am,j(ε) = σm

Fm,j(ε) +
∑

r∈Nn

|r|≤N−1

Pm
r ( (ak(ε))||k|≤N−1)Fr,j(ε)

〈Λε,m〉 − λj(ε)
(4.43)

where σm is defined by

σm :=

{
1 if m ∈ S`,n,s

0 if m ∈ T`,n,s

and where Pm
r is polynomial with positive integer coefficients. Before proving

this, we need the following definition.

Definition 4.1 Consider two formal power series
∑

m∈Nn amz
m and∑

m∈Nn bmz
m where am, bm ∈ C, ∀m ∈ Nn and z ∈ Cn, then the product of

these two series is defined as

(
∑

m∈Nn

amz
m

)(
∑

m∈Nn

bmz
m

)
=
∑

m∈Nn

(a ∗ b)mz
m

where

(a ∗ b)m =

m1∑

r1=0

· · ·
mn∑

rn=0

arbm−r.

The expression of am,j in (4.43) will follow from the following result.
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Proposition 4.15 Assume (ak)k∈Nn is a sequence in C, p ∈ N \ {0, 1} and
z ∈ Cn, then



zj +
∑

|k|≥2

akz
k




p

=
∑

|k|≥p

P
p
k

(
(ar)||r|<|k|

)
zk

where 1 ≤ j ≤ n and P p
k is a polynomial with positive integer coefficients.

Proof: First we consider the case where p = 2. We now have



zj +
∑

|k|≥2

akz
k




2

=



zj +
∑

|k|≥2

akz
k







zj +
∑

|k|≥2

akz
k



 .

Taking the convention that aes
= δsj for s = 1, · · · , n where es is the vector

with a 1 on the sth place and zeros elsewhere, we obtain



zj +
∑

|k|≥2

akz
k




2

=
∑

|k|≥2

(
k1∑

m1=0

· · ·
kn∑

mn=0

amak−m

)
zk (4.44)

where the coefficient of zk in the right-hand side of (4.44) does not contain the
terms for m = 0 or m = k as a0 = 0. This means that

P 2
k

(
(ar)||r|<|k|

)
=

k1∑

m1=0

· · ·
kn∑

mn=0

amak−m

is a polynomial with positive integer coefficients.
We proceed by induction. Assume that the result holds for p = q − 1, then

we have



zj +
∑

|k|≥2

akz
k




q

=



zj +
∑

|k|≥2

akz
k




q−1

zj +
∑

|k|≥2

akz
k





=




∑

|k|≥q−1

P
q−1
k ( (ar)||r|<|k|)z

k








∑

|k|≥1

akz
k







zj +
∑

|k|≥2

akz
k




q

=
∑

|k|≥q

(
k1∑

m1=0

· · ·
kn∑

mn=0

P q−1
m ( (ar)||r|<|k|)ak−m

)
zk (4.45)

where the coefficient of zk in the right-hand side of (4.45) does not contain the
terms for m = 0 or m = k as a0 = 0. We also used the notations aes

= δsj for
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s = 1, · · · , n. This means that

P
q
k ( (ar)||r|<|k|) =

k1∑

m1=0

· · ·
kn∑

mn=0

P q−1
m ( (ar)||r|<|k|−1)ak−m

is polynomial with positive integer coefficients. 2

As we know that all Fr,j are analytic on the same poly-disk and the de-
nominator is non-zero, the induction hypothesis will give us that aM,j(ε) is an
analytic function of ε in a poly-disk independent of M and j.

4.4.3 Convergence of the formal solution

We now want to prove that this formal solution converges, i.e. we have an
analytic solution in w. For this we will use the technique of majorants, this
technique is very common in the study of complex systems, see for instance
[Mos56, Sto94]. Using this technique in combination with Proposition 1.6 will
give us that ϕε(w) is analytic in (w, ε).

Definition 4.2 Given two formal power series f(z) =
∑

m∈Nn

fmz
m and g(z) =

∑

m∈Nn

gmz
m, we say that g is a majorant of f if we have that |fm| ≤ gm,

∀m ∈ Nn.

One should note that in the latter definition the coefficients of g(z) must be real
and positive whilst the coefficients of f(z) may be complex.

Given m ∈ S`,n,s with |m| ≥ 2, we have that

ν(m) := inf
ε∈B(0,ρ)

min
1≤k≤n

| 〈Λε,m〉 − λk(ε)|

is bounded away from zero by virtue of Proposition 4.9. If we use the notation

c̃m := sup
ε∈B(0,ρ̃)

max
1≤k≤n

|Fm,k(ε)|,

for a fixed ρ̃ with 0 < ρ̃ < ρ, then we can define

F̃ (w) =
∑

|m|≥2

c̃mw
me

so F̃1 = · · · = F̃n and F̃j is a majorant of Fε,j for j = 1, · · · , n.

We know that Fε(w) is analytic on D(0, R) × D(0, ρe), so by Theorem 1.4
its Taylor series is normally convergent on D(0, R)×D(0, ρe). Writing Fε(w) =
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∑

|m|≥2

|m̃|≥0

fm,m̃ε
m̃wm, we have

∑

|m|≥2

|m̃|≥0

sup
(w,ε)∈K

|fm,m̃ε
m̃wm| < +∞ (4.46)

for all compact subsets K in D(0, R) × D(0, ρe). The normal convergence gives
us that for all ρ∗ and R∗ with ρ∗ < ρ and |R∗| < |R| we have that

∑

|m|≥2

|m̃|≥0

|fm,m̃|ρ|m̃|
∗ Rm

∗ <∞.

As Fε(w) =
∑

|m|≥2 Fm(ε)wm, we have that

|Fm(ε)| ≤
∑

|m̃|≥0

|fm,m̃|ρ̃|m̃| <∞, ∀ε ∈ D(0, ρ̃e),

hence
c̃m = sup

ε∈B(0,ρ̃)

|Fm(ε)| ≤
∑

|m̃|≥0

|fm,m̃|ρ̃|m̃|.

Define R̃ = min
1≤j≤n

Rj , then for each compact K̃ ⊂ D(0, R̃e) we have

∑

|m|≥2

sup
w∈K̃

|c̃mwme| ≤
∑

|m|≥2

|c̃m|R|m|
?

≤
∑

|m|≥2

|m̃|≥0

|fm,m̃|ρ̃|m̃|R
|m|
?

< ∞

by virtue of (4.46) where R? is the radius of the smallest closed ball for which we
have that K̃ ⊂ B(0, R?) ⊂ D(0, R̃e). This means that the series

∑
|m|≥2 c̃mw

m

converges normally on D(0, R̃e). As c̃mw
m is clearly analytic in w for each m

we now have that F̃ is analytic on D(0, R̃e).
Let ϕ̃(w) =

∑
|m|≥2 ãmw

m be the solution of

∑

|m|≥2

m∈S`,n,s

ν(m)ãmw
m =

[
F̃ (w + ϕ̃(w))

]S`,n,s

. (4.47)

As the coefficients on the right-hand side of (4.40) are majorised by the coeffi-
cients on the right-hand side of (4.47) and the moduli of the coefficients on the
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left-hand side of (4.40) are majorising the coefficients on the left-hand side of
(4.47), hence by division and (4.43) we obtain that ϕ̃ is a majorant of ϕε for all
ε ∈ B(0, ρ̃), in other words

|am,j(ε)| ≤ ãm,j, j = 1, · · · , n (4.48)

we also have that ϕ̃1 = · · · = ϕ̃n.
We would like to reduce the problem of convergence to a 1-dimensional

problem. Therefore we will need another majorant. We define

ck :=
∑

|m|=k

c̃m

and
F̂ (Z) :=

∑

k≥2

ckZ
k, Z ∈ C

then F̂ (Z) equals F̃j(Ze) for each j = 1, · · · , n, so F̂ (Z) is obviously a majorant

for each component of F̃ (Ze). As F̂ (Z)e = F̃ (Ze), F̂ is analytic iff |Z| ≤ Rj

for all j = 1, · · · , n. Hence F̂ (Z) is analytic on B(0, R̂) = D(0, R̂e) where
R̂ = min

1≤j≤n
Rj . In the same line of arguments we introduce

νk := min
|m|=k

m∈S`,n,s

ν(m)

then by Proposition 4.9 we know there exists a constant κ > 0 for which we
have

νk ≥ κk.

We can look at the solution ϕ̂(Z) =
∑

k≥2 âkZ
k of

∑

k≥2

κkâkZ
k = F̂ (Z + ϕ̂(Z)). (4.49)

As the coefficients on the right-hand side of (4.47) are majorised by the coeffi-
cients on the right-hand side of (4.49) and the coefficients on the left-hand side
of (4.47) are majorising the coefficients of the left-hand side of (4.49), hence by
division, (4.43) and (4.46) we obtain that ϕ̂(Z) is a majorant of each component
of ϕ̃(Ze), i.e.

ãm,j ≤ âk

for all m ∈ S`,n,s with |m| = k and 1 ≤ j ≤ n.
As k ≥ 2, it is obvious that

∑
k≥2 κkâkZ

k is a majorant for
∑

k≥2 κâkZ
k.

We know that F̂ is analytic on B(0, R̂), so we have that

lim
k→∞

k
√
ck =

1

R̂
. (4.50)
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Take a small but fixed δ > 0, then (4.50) implies that there exists a K ∈ N such
that for all k ≥ K we have

k
√
ck ≤ 1 + δ

R̂
,

whence

ck ≤
(

1 + δ

R̂

)k

, ∀k ≥ K.

For 2 ≤ k ≤ K − 1 we obviously have

ck ≤ ck

(
R̂

1 + δ

)k (
1 + δ

R̂

)k

.

Defining Ř = R̂
1+δ

and

č := max








ck



 R̂

1 + δ

)k
∣∣∣∣∣∣
2 ≤ k ≤ K − 1




 ∪ {1}



 ,

we have that

ck ≤ č

(
1

Ř

)k

, ∀k ≥ 2.

As F̌ (Z) := č
∑

k≥2

(
Z

Ř

)k

is a geometrical series, we know that F̌ (Z) is analytic

on B(0, Ř) and F̌ is a majorant of F̂ .
Let Φ(Z) =

∑
k≥2 ǎkZ

k be the solution of

κΦ(Z) = F̌ (Z + Φ(Z)), (4.51)

then Φ will be a majorant of ϕ̂.
As F̌ is given by a geometrical series (4.51) becomes

κΦ(z) = č

(
Z + Φ(Z)

Ř

)2∑

k≥2

(
Z + Φ(Z)

Ř

)k−2

=
č

Ř2

(Z + Φ(Z))2

1 − Z+Φ(Z)

Ř

,

which gives the following quadratic equation in Φ(Z):
(
č+ κŘ

)
Φ(Z)2 +

((
2č+ κŘ

)
Z − κŘ2

)
Φ(Z) + čZ2 = 0. (4.52)

The discriminant of (4.52) is given by

D(Z) =
((

2č+ κŘ
)
Z − κŘ2

)2 − 4
(
č+ κŘ

)
čZ2.
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Now Φ is given by

Φ(Z) =
Ř2κ−

(
2č+ κŘ

)
Z −

√
D(Z)

2
(
č+ κŘ

) ,

where we take the solution with −
√
D(Z) as we need the solution without

constant and linear terms in its formal series expansion. Now it is clear that Φ
is analytic in B(0, Ř). From the series expansion it is clear that ‖Φ‖r ≤ K0r

2

for any r < r0 := Ř, and by virtue of the majorisation we have the same bound
for ϕε. Writing down everything in its real components we obtain the properties
stated in Theorem 4.1.

4.5 Proof of Theorem 4.2

The proof of Theorem 4.1 consisted of three parts and also the proof of The-
orem 4.2 will consist of three parts. First we determine the 2 equations that
determine φε as given in (4.15), second we show that these equations have a
formal solution and finally we show that this formal solution is convergent, i.e.
there exists an analytic solution.

4.5.1 Determining the change of coordinates

In this subsection we want to establish an equation which will allow us to de-
termine the transformation (4.15) we are seeking. From now on we will work
in the complexified setting given by (4.6), this will make it easier to determine
a formal solution. This means that we will need to “complexify” the function
φε given by (4.15), but as we started in a real-valued setting, we can always get
the “real” form of φε by returning to the real coordinates x.

So we have a diffeomorphism given by

f?
ε (z) = Bεz + F ?

ε (z) (4.53)

where z = Px with P given by (4.3), which we want to conjugate to a diffeo-
morphism

g?
ε(w) = Bεw +G?

ε(w) (4.54)

where P−1w ∈ Rn (as we wish to return to the real diffeomorphism at the end)

and [G?
ε ]

S`,n,s = 0, by a transformation

z = w + ϕε(w). (4.55)

Of course we want that (4.55) transforms the diffeomorphism into a diffeo-
morphism that is the complexication of a real diffeomorphism. It is straightfor-
ward to prove that the following result.
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Proposition 4.16 Given the analytic complexified real diffeomorphism

F : Cn → Cn : (z, z̄, r) 7→
(
f(z, z̄, r), f(z, z̄, r), g(z, z̄, r)

)

with z ∈ Cp, r ∈ Cq, 2p+ q = n and g(z, z̄, r) = g(z, z̄, r), and given an analytic
transformation

Φ : Cn → Cn : (w, w̄, s) 7→
(
φ(w, w̄, s), φ(w, w̄, s), ψ(w, w̄, s)

)

with φ(w, w̄, s) ∈ Cp, ψ(w, w̄, s) ∈ Cq, then the diffeomorphism G = Φ−1 ◦F ◦Φ
is a complexified real diffeomorphism.

In order to return to a real diffeomorphism we will have

φε(x) = P−1 · ϕε(Px)

and
G?

ε(w) = P−1 · gε(Pw)

where P is the matrix defined by (4.3), that gives the change of basis.
(4.53) and (4.54) are conjugate by (4.55) iff

f?
ε ◦ Φε = Φε ◦ g?

ε (4.56)

where Φε(z) = z + ϕε(z). A direct calculation gives us that (4.56) is equivalent
with

Bεϕε(y) + F ?
ε (z + ϕε(z)) = G?

ε(z) + ϕε(Bεz +G?
ε(z)), (4.57)

If we introduce the operator LBε

LBε
ϕε(z) = ϕε(Bεz) −Bεϕε(z) (4.58)

then (4.57) can be written as

LBε
ϕε(z) = F ?

ε (z + ϕε(z)) −G?
ε(z) − (ϕε(Bεz +G?

ε(z)) − ϕε(Bεz)) . (4.59)

We will first split (4.59) up into two separate equations. This splitting will be
done with respect to S`,n,s and T`,n,s. Thus we will solve

LBε
ϕε(z) = [F ?

ε (z + ϕε(z))]
S`,n,s (4.60)

[F ?
ε (z + ϕε(z))]

T`,n,s = G?
ε(z) + (ϕε(Bεz +G?

ε(z)) − ϕε(Bεz)) . (4.61)

First we will discuss the solution of (4.60). This discussion is analogous to the
one we did in Subsection 4.4.3, so we will be very brief. Once we have established
the analytic nature of ϕε we will tackle (4.61) and prove that

[G?
ε(z)]

S`,n,s = 0,

[ϕε(Bεz +G?
ε(z)) − ϕε(z)]

S`,n,s = 0

and that G?
ε is an analytic function with the stated properties.
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4.5.2 Solution of (4.60)

Formal solution

First we prove that (4.60) has a formal solution. A direct calculation shows that

LBε,j(vz
m) = v (Λm

ε − λj(ε)) z
m,

1 ≤ j ≤ n, for any m ∈ Nn and any v ∈ Cn. This means that if we want to
have a formal solution ϕε(z) =

∑
|m|≥2 am(ε)zm, then (4.60) becomes

∑

|m|≥2

am,j(ε)(Λ
m
ε − λj(ε))z

m =




∑

|m|≥2

F ?
m,j(ε)



z +
∑

|k|≥2

ak(ε)zk




m


S`,n,s

(4.62)
where 1 ≤ j ≤ n and

F ?
ε (z) =

∑

|m|≥2

F ?
m,j(ε)z

m.

As (4.42) and (4.62) are almost equal, we can repeat the technique used to solve
(4.42) on (4.62) and obtain the same conlusions.

Convergence of the formal solution

We now want to prove that the formal solution converges, i.e. we have an
analytic solution. Therefore we will use the technique of the majorants as we
did in Subsection 4.4.3. As the proofs are very similar, we skip most of the
details and focus on the main differences.

Given m ∈ S`,n,s with |m| ≥ 2, we have that

ν(m) := inf
ε∈B(0,ρ)

min
1≤j≤n

|Λm
ε − λj(ε)|

is bounded away from zero by virtue of Proposition 4.12. If we use the notation

c̃m := sup
ε∈B(0,ρ)

max
1≤j≤n

|F ?
m,j(ε)|

then we can define

F̃ (y) =
∑

|m|≥2

c̃mz
me

so F̃1 = F̃2 = · · · = F̃n and F̃j is a majorant of F ?
ε,j for j = 1, · · · , n.

We know that F ?
ε (w) is analytic on D(0, R)×D(0, ρe). Repeating the proof

of the vector field case we conclude that F̃ is analytic on D(0, R̃e) where R̃ =
min

1≤j≤n
Rj .



142

Let ϕ̃(z) =
∑

|m|≥2 ãmz
m be the solution of

∑

|m|≥2

m∈S`,n,s

ν(m)ãmz
m =

[
F̃ (z + ϕ̃(z))

]S`,n,s

. (4.63)

We have that ϕ̃ is a majorant of ϕε for all ε ∈ B(0, ρ̃), in other words

|am,j | ≤ ãm,j (4.64)

for j = 1, · · · , n, we also have that ã1 = · · · = ãn.
We want to reduce the problem of convergence to a 1-dimensional problem.

Therefore we need another majorant. We define

ck :=
∑

|m|=k

c̃m

and
F̂ (Z) :=

∑

k≥2

ckZ
k, Z ∈ C

then F̂ (Z) = F̃j(Ze) for each j = 1, · · · , n, so F̂ is obviously a majorant for

each component of F̃ (Ze). As F̂ (Z)e = F̃ (Ze), F̂ is analytic iff |Z| < Rj

for all j = 1, · · · , n. Hence F̂ (Z) is analytic on B(0, R̂) = D(0, R̂e) where
R̂ = min

1≤j≤n
Rj . In the same line of arguments we introduce

νk := min
|m|=k

m∈S`,n,s

ν(m)

then by Proposition 4.12 we know there exists a constant K > 0 for which we
have

νk ≥ µ−− −Kµk
−+ > 0.

We look at the solution ϕ̂(Z) =
∑

k≥2 âkZ
k of

∑

k≥2

(µ−− −Kµk
−+)âkZ

k = F̂ (Z + ϕ̂(Z)). (4.65)

We have that ϕ̂(Z)e is a majorant of ϕ̃(Ze), i.e.

ãm,j ≤ âk

for all m ∈ S`,n,s with |m| = k and 1 ≤ j ≤ n. As k ≥ 2 and the sequence
(µ−−−Kµk

−+)k≥2 increases monotone, we have that
∑

k≥2(µ−−−Kµk
−+)âkZ

k

is a majorant for
∑

k≥2 κâkZ
k where κ = µ−− −Kµ2

−+.
From this point on we can repeat the techniques from Subsection 4.4.3 to

conclude that the formal solution of (4.60) converges, i.e. (4.60) has an analytic
solution.
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4.5.3 Solution of (4.61)

In the previous subsection we have proved that ϕε is analytic in (z, ε). Contrary
to the case of the vector fields where the second equation - given by (4.41) - was
easily solved, we have to do a greater effort to solve (4.61). We start by proving
that

[ϕε(Bεz +G?
ε(z)) − ϕε(Bεz)]

S`,n,s = 0.

Therefore we will use the power series expansion of ϕε(z) =
∑

|m|≥2 amz
m, this

gives us

ϕε(Bεz +G?
ε(z)) − ϕε(Bεz) =

∑

|m|≥2

am ((Bεz +G?
ε(z))

m − (Bεz)
m) . (4.66)

We now look at the right-hand side of (4.66) on the level of the components,
this gives (for j = 1, · · · , n):

(Bε,jz +G?
ε,j(z))

mj − (Bε,jz)
mj =

mj∑

kj=0

(
mj

kj

)
(Bε,jz)

kj (G?
ε,j(z))

mj−kj

−(Bε,jz)
mj

=

mj−1∑

kj=0

(
mj

kj

)
(Bε,jz)

kj (G?
ε,j(z))

mj−kj

= G?
ε,j(z)

mj−1∑

kj=0

(
mj

kj

)

(Bε,jz)
kj (G?

ε,j(z))
mj−kj−1.

Applying this result to (4.66) gives us

ϕε(Bεz +G?
ε(z)) − ϕε(Bεz) = G?

ε(z)
eH(Bεz,G

?
ε(z)), (4.67)

where H is an analytic function that is defined as

H(X,Y ) :=
∑

|m|≥2

am

m1−1∑

j1=0

· · ·
mn−1∑

jn=0

XjY m−j−e (4.68)

for X,Y ∈ Cn. From (4.67) and (4.68) it now is clear that the series expansion
of G?

ε will contain terms of a lower degree than those in the series expansion of

ϕε(Bεz +G?
ε(z)) − ϕε(Bεz), so (4.61) gives that [G?

ε(z)]
S`,n,s = 0, hence

[ϕε(Bεz +G?
ε(z)) − ϕε(Bεz)]

S`,n,s = 0,

because [G?
ε(z)]

S`,n,s = 0 implies that [G?
ε(z)

e]
S`,n,s = 0.
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Next we prove that Gε is an analytic function. Therefore we apply (4.67)
on (4.61) to obtain

G?
ε(z) +G?

ε(z)
eH(Bεz,G

?
ε(z)) = [F ?

ε (z + ϕε(z))]
T`,n,s . (4.69)

Introducing
H̃(X,Y ) := Y eH(X,Y ),

we can rewrite (4.69) as

(Id+ H̃(Bεz, ·)) ◦G?
ε(z) = [F ?

ε (z + ϕε(z))]
T`,n,s . (4.70)

As the function between brackets in the left-hand side of (4.70) is invertible, we
have that

G?
ε(z) = (Id+ H̃(Bεz, ·))−1 ◦ [F ?

ε (z + ϕε(z))]
T`,n,s . (4.71)

As all functions in the right-hand side of (4.71) are analytic functions of (z, ε)
also G?

ε(z) is analytic in (z, ε).
From (4.71) one easily deduces

|G?
ε(z)| ≤ C

∣∣∣[F ?
ε (z + ϕε(z))]

T`,n,s

∣∣∣

for some C > 0. So there exist a r1 > 0 and K1 > 0 such that

|G?
ε | ≤ K1|(z1, · · · , zs)|`|(zs+1, · · · , zn)|`, for r < r1,

hence
‖G?

ε‖r ≤ K1r
2`, for r < r1.

This implies
‖Gε‖r ≤ K1r

2`, for r < r1.

4.6 Symmetric case

In this section we want to prove Theorem 4.5 and Theorem 4.6. First we consider
the case of a family of symmetries of a family of vector fields and after that we
consider the case of a family of symmetries of a family of diffeomorphisms.

4.6.1 Proof of Theorem 4.5

Consider an analytic family of linear maps Sε : Rn → Rn (so the components of
Sε are analytic functions of ε), then Sε is a symmetry of the family of vector
fields Xε if (Sε)∗Xε = Xε.

Consider a family of real vector fields Xε with a symmetry Sε. First of all
we put DXε(0) in its Jordan Normal Form Aε, this can be done with a suitable
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matrix Mε such that Aε = M−1
ε DXε(0)Mε, hence the vector field becomes

X̃ε = M−1
ε · Xε ◦Mε. It is well-known, see for instance [CLW94], that under

a linear change of coordinates the symmetry Sε of Xε is transformed into the
symmetry S̃ε = M−1

ε · Sε ·Mε.

So from now on we will assume that DXε(0) = Aε is already in its Jordan
Normal Form. As Sε is a symmetry of the family of real vector fieldsXε, we have
that Tε := P−1SεP is a symmetry of the complexified system where P is given
by (4.3). Given the fact that Tε is a symmetry of ż = Bεz+Fε(z), we necessarily
have that Tε commutes with Bε and Fε. As Bε is diagonal and all its eigenvalues
are non-zero and have multiplicity 1, Tε will be diagonal as well. Therefore Tε

cannot “mix up” stable directions with unstable directions. This gives us that
Tε also commutes with [·]S`,n,s and [·]T`,n,s : let hε(z) =

∑
m∈Nn hm(ε)zm be a

formal power series, as Tε := diag(t1(ε), · · · , tn(ε)) we have

Tε [hε(z)]
S`,n,s = Tε

∑

m∈S`,n,s

hm(ε)zm

=
∑

m∈S`,n,s

Tεhm(ε)zm

=




∑

m∈S`,n,s

t1(ε)hm,1(ε)z
m, · · · ,

∑

m∈S`,n,s

tn(ε)hm,n(ε)zm





and

[Tεhε(z)]
S`,n,s =

[
Tε

∑

m∈Nn

hm(ε)zm

]S`,n,s

=

[
∑

m∈Nn

Tεhm(ε)zm

]S`,n,s

=

[(
∑

m∈Nn

t1(ε)hm,1(ε)z
m, · · · ,

∑

m∈Nn

tn(ε)hm,n(ε)zm

)]S`,n,s

=




∑

m∈S`,n,s

t1(ε)hm,1(ε)z
m, · · · ,

∑

m∈S`,n,s

tn(ε)hm,n(ε)zm





so

Tε [hε(z)]
S`,n,s = [Tεhε(z)]

S`,n,s ,

hence Tε and [·]S`,n,s commute. The proof that Tε and [·]T`,n,s commute is
analogous.



146

φε commutes with Sε

First we show that Tε commutes with ϕε. To obtain this result we need to
look at (4.40). We know that ϕε is the unique solution of (4.40), so if we prove
that T−1

ε ◦ ϕε ◦ Tε is also a solution of (4.40) then by unicity we have that
ϕε = T−1

ε ◦ ϕε ◦ Tε or in other words Tε ◦ ϕε = ϕε ◦ Tε.
Let us define ψε := T−1

ε ◦ ψε ◦ Tε, then ψε is a solution of (4.40) iff

Dψε(w)Bεw −Bεψε(w) = [Fε(w + ψε(w))]
S`,n,s

or equivalently

D
(
T−1

ε ◦ ϕε ◦ Tε

)
(w)Bεw − Bε

(
T−1

ε ◦ ϕε ◦ Tε

)
(w)

=
[
Fε(w + (T−1

ε ◦ ϕε ◦ Tε)(w)
]S`,n,s

. (4.72)

As Tε commutes with Bε, Fε and [·]S`,n,s , (4.72) is equivalent with

T−1
ε ·Dϕε(Tεw)TεBεw − T−1

ε Bεϕε(Tεw) = T−1
ε [Fε(Tεw + ϕε(Tεw))]

S`,n,s .

(4.73)
As Tε is invertible, it is also bijective. This means we can put Tεw =: z for all
z ∈ Cn. Hence (4.73) is equivalent with

Dϕε(z)Bεz −Bεϕε(z) = [Fε(z + ϕε(z))]
S`,n,s . (4.74)

Obviously (4.74) is equivalent with the demand that ϕε is a solution of (4.40).
So if ϕε is a solution of (4.40) also ψε will be a solution of (4.40) and vice versa.
As we have proved that (4.40) has a unique solution, necessarily ψε = ϕε.

From this it is easy to prove that φε and Sε commute. We know that
Tε = P−1 ◦Sε ◦P and ϕε = P−1 ◦φε ◦P , so Tε ◦ϕε = ϕε ◦Tε is equivalent with

(P−1 ◦ Sε ◦ P ) ◦ (P−1 ◦ φε ◦ P ) = (P−1 ◦ φε ◦ P ) ◦ (P−1 ◦ Sε ◦ P )

which is equivalent with Sε ◦ φε = φε ◦ Sε, hence φε and Sε commute.

gε commutes with Sε

To obtain the desired commutation result we need (4.41) and prove that Gε

commutes with Tε. We use the same line of arguments as in the previous
section. So define Γε := T−1

ε ◦Gε ◦ Tε, then Γε is a solution of (4.41) iff

[Fε(w + ϕε(w))]
T`,n,s = (In +Dϕε(w))Γε(w)

or equivalently

[Fε(w + ϕε(w))]
T`,n,s = (In +Dϕε(w))(T−1

ε ◦Gε ◦ Tε)(w). (4.75)
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As Tε commutes with ϕε we have by differentiating both sides of ϕε ◦ Tε(w) =
Tε ◦ ϕε(w) that Dϕε(Tεw)Tεw = TεDϕε(w), which is equivalent with

T−1
ε Dϕε(Tεw)Tεw = Dϕε(w). (4.76)

Applying (4.76) on (4.75) gives us

[Fε(w + ϕε(w))]
T`,n,s = (In + T−1

ε Dϕε(Tεw)Tε)(T
−1
ε Gε(Tεw)). (4.77)

As Tε commutes with Bε, ϕε, Fε and [·]T`,n,s , (4.77) is equivalent with

T−1
ε [Fε(Tεw + ϕε(Tεw))]

T`,n,s = T−1
ε (In +Dϕε(Tεw))Gε(Tεw). (4.78)

Tε is invertible, so it is also bijective. This means we can put Tεw =: z for all
z ∈ Cn. Hence (4.78) is equivalent with

[Fε(z + ϕε(z))]
T`,n,s = (In +Dϕε(w))Gε(w). (4.79)

Obviously (4.79) is equivalent with the demand that Gε is a solution of (4.41).
This means that Γε is a solution of (4.41) iff Gε is a solution of (4.41). As (4.41)
has a unique solution, necessarily Γε = Gε, hence Tε ◦Gε = Gε ◦ Tε. As we did
before one derives that this latter equality is equivalent with Sε ◦ gε = gε ◦ Sε.

This means we have proved Theorem 4.5.

4.6.2 Proof of Theorem 4.6

Consider a family of linear maps Sε : Rn → Rn (so the components of Sε are
analytic functions of ε), then Sε is a symmetry of the family of diffeomorphisms
fε if Sε ◦ fε = fε ◦ Sε.

As in Subsection 4.6.1 we put Dfε(0) in its Jordan Normal Form. This
transforms the symmetry Sε into another symmetry S̃ε. The relation between
Sε and S̃ε is the same as in Subsection 4.6.1.

So from now on we will assume that Dfε(0) = Aε is already in its Jordan
Normal Form. As Sε is a symmetry of the family of real diffeomorphisms fε,
we have that Tε := P−1SεP is a symmetry of the complexified family of diffeo-
morphisms f?

ε where P is given by (4.3). Given the fact that Tε is a symmetry
of f?

ε (z) = Bεz + F ?
ε (z), we necessarily have that Tε commutes with Bε and

F ?
ε . As Bε is diagonal and its eigenvalues are non-zero and have multiplicity

1, Tε will be diagonal as well. Therefore Tε cannot “mix up” stable directions
with unstable directions. This gives us that Tε also commutes with [·]S`,n,s and

[·]T`,n,s . The proof has already been given in Subsection 4.6.1 and is therefore
omitted here.
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φε commutes with Sε

First we show that Tε commutes with ϕε. To obtain this result we need to
look at (4.60). We know that ϕε is the unique solution of (4.60), so if we prove
that T−1

ε ◦ ϕε ◦ Tε is also a solution of (4.60) then by unicity we have that
ϕε = T−1

ε ◦ ϕε ◦ Tε or in other words Tε ◦ ϕε = ϕε ◦ Tε.
Let us define ψε := T−1

ε ◦ψε◦Tε, then analogous as in the previous subsection
we prove that ψε is a solution of (4.60) iff ϕε is a solution of (4.60). So if ϕε

is a solution of (4.60) also ψε will be a solution of (4.60) and vice versa. As we
have proved that (4.60) has a unique analytic solution, necessarily ψε = ϕε.

From this it is easy to prove that φε and Sε commute.

Gε commutes with Sε

To obtain the desired commutation result we need (4.61) and prove that G?
ε

commutes with Tε. We use the same line of arguments as in the previous
section. So define Γε := T−1

ε ◦ G?
ε ◦ Tε, then we find that Γε is a solution of

(4.61) iff G?
ε is a solution of (4.61). This means that Γε is a solution of (4.61) iff

G?
ε is a solution of (4.61). As (4.61) has a unique solution, necessarily Γε = G?

ε,
hence Tε ◦ G?

ε = G?
ε ◦ Tε. As in the previous subsection one derives that the

latter equality is equivalent with Sε ◦Gε = Gε ◦ Sε.
This means that we have proved Theorem 4.6.

4.7 Poincaré’s Theorem for a family of vector
fields or diffeomorphisms

In this section we want to illustrate that the method we used to prove Theo-
rem 4.1 and Theorem 4.2 also works in the proof of Poincaré’s Theorem for an
analytic family of vector fields or diffeomorphisms. We will be able to prove that
the transformation is analytic and that it depends analytically on the parameter.
This way we will also cover the case of one vector field, i.e. Theorem 1.9, or one
diffeomorphism, i.e. Theorem 1.12. In comparison with the original statements
our version will be weaker on one point: in order to be able to put the linear
part at the singularity or fixed point into its Jordan Normal Form we need to
assume that all eigenvalues have multiplicity 1 for ε = 0. The reason of this is
given by Proposition 1.15.

It needs to be mentioned that this version of Poincaré’s Theorem is not new
at all. In [Brus71] a similar result is proved. The main difference lies in the
method that is used: in [Brus71] the existence of an analytic transformation is
given by means of a contraction in a suitably chosen Banach space while we give
a proof using the method of the majorants.

First we will the case of a family of vector fields and afterwards we look into
the case of a family of diffeomorphisms.
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4.7.1 Family of vector fields

Consider a family of vector fields Xε on Cn that is analytic in its variables and
the parameter ε having a hyperbolic singularity x0. Assuming that the eigenval-
ues ofDX0(x0) have multiplicity 1, we can use the results from Subsection 1.3.4.
This gives us the following normal form

Xε : ẋ = Aεx+ fε(x),

where x ∈ Cn, ε ∈ Cp, Aε = diag(λ1(ε), · · · , λn(ε)) and fε(x) = O(|x|2).
We state the main result of this subsection.

Theorem 4.17 Let Aε = diag(λ1(ε), · · · , λn(ε)). If Spec(A0) forms a non-
resonant set that lies in the Poincaré domain, then there exist positive constants
ρ0, R0 and an analytic change of variables

x = y + ξε(y), (y, ε) ∈ D(0, R0) × D(0, ρ0), (4.80)

where ξε(y) = O(|y|2) as y → 0, which transforms the analytic vector field

ẋ = Aεx+ fε(x), (x, ε) ∈ D(0, R) × D(0, ρ), (4.81)

with fε(x) = O(|x|2) if x→ 0, into the linear system

ẏ = Aεy, y ∈ Cn.

One should note that in Theorem 4.17 we assume that Spec(A0) forms a
non-resonant set that lies in the Poincaré domain. So in order to linearise
(4.81) it will be crucial to prove that there exists a ρ̂ > 0 such that for all
ε ∈ B(0, ρ̂) ⊂ Cp we have that Spec(Aε) forms a non-resonant set that lies in
the Poincaré domain. We prove this in the following lemma.

Lemma 4.18 Given Aε = diag(λ1(ε), · · · , λn(ε)). If Spec(A0) forms a non-
resonant set that lies in the Poincaré domain, then there exist positive constants
ρ, C such that for all ε ∈ B(0, ρ) we have that Spec(Aε) forms a non-resonant
set that lies in the Poincaré domain and for all m ∈ Nn with |m| ≥ 2 we have

|〈Λε,m〉 − λj(ε)| ≥ C|m|. (4.82)

Proof: The proof consists of 3 parts: first we prove that Spec(Aε) is in the
Poincaré domain, second we prove that for sufficiently large |m| there are no
resonances and (4.82) is fulfilled and finally we prove that for all m with |m| ≥ 2
there are no resonances and (4.82) is fulfilled.

As Spec(A0) is in the Poincaré domain, 0 6∈ Conv(Spec(A0)), i.e. for all

m ∈ Rn with

n∑

j=1

mj = 1 and all mj ≥ 0:

n∑

j=1

mjλj(0) 6= 0. (4.83)
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As λj(ε) is analytic in ε, we have that

ε 7→
n∑

j=1

mjλj(ε)

is (at least) a continuous function of ε. Combining this with (4.83) we know
there exists a ρ̂ > 0 such that for all ε ∈ B(0, ρ̂) we have that

n∑

j=1

mjλj(ε) 6= 0,

hence for all ε ∈ B(0, ρ̂) we have that 0 6∈ Conv(Spec(Aε)), i.e. Spec(Aε) is in
the Poincaré domain.

As 0 6∈ Conv(Spec(Aε)) for all ε ∈ B(0, ρ̂) we know that

dε := dist(0,Conv(Spec(Aε))) > 0, ∀ε ∈ B(0, ρ̂),

hence for a fixed ρ1 with 0 < ρ1 < ρ̂ we have

δ := inf
ε∈B(0,ρ1)

dε > 0.

For all m ∈ Nn with |m| ≥ 2 we have that

〈Λε,m〉
|m| ∈ Conv(Spec(Aε)),

hence ∣∣∣∣
〈Λε,m〉
|m|

∣∣∣∣ ≥ δ.

Introducing the constant µ

µ := sup
ε∈B(0,ρ1)

max
1≤j≤n

|λj(ε)|,

we have for all m ∈ Nn with |m| ≥ 2µ
δ

and for all j = 1, · · · , n:

| 〈Λε,m〉 − λj(ε)|
|m| ≥ | 〈Λε,m〉 |

|m| − |λj(ε)|
|m|

≥ δ

2
,

hence

|〈Λε,m〉 − λj(ε)| ≥
δ

2
|m|, (4.84)
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for all m ∈ Nn with |m| ≥ 2µ
δ

. From (4.84) we also obtain that there are no

resonances with |m| ≥ 2µ
δ

.
We know that Spec(A0) is non-resonant, so for all m ∈ Nn with |m| ≥ 2

we have that 〈Λ0,m〉 − λj(0) 6= 0. Obviously we have for all m ∈ Nn with
2 ≤ |m| < 2µ

δ
that 〈Λ0,m〉−λj(0) 6= 0. Now consider the set M := {m ∈ Nn|2 ≤

|m| ≤ 2µ
δ
}. For eachm ∈ M there exists a ρm > 0 such that 〈Λε,m〉−λj(ε) 6= 0,

∀ε ∈ B(0, ρm) and ρm is maximal with this property. As M is a finite set, we
have that

ρ2 := min
m∈M

ρm > 0.

So for all m ∈ M and for all ε ∈ B(0, ρ2) we have that

〈Λε,m〉 − λj(ε) 6= 0,

hence
| 〈Λε,m〉 − λj(ε)|

|m| ≥ Cm > 0.

Thus
| 〈Λε,m〉 − λj(ε)| ≥ Cm|m| > 0.

Taking

ρ := min(ρ1, ρ2),

C := min

(
{Cm|m ∈ M} ∪

{
δ

2

})
,

we obtain for all m ∈ Nn with |m| ≥ 2 and for all ε ∈ B(0, ρ) that

| 〈Λε,m〉 − λj(ε)| ≥ C|m|.
This inequality implies that Spec(Aε) is non-resonant for all ε ∈ B(0, ρ). 2

We now will establish an equation which will allow us to determine the
transformation (4.80) we are seeking. Performing the transformation (4.80) on
(4.81) we find the following two equalities

ẋ = Aεy +Dϕε(y)Aεy,

ẋ = Aεy +Aεϕε(y) + fε(y + ϕε(y)).

If we introduce the operator LAε

LAε
ϕε(y) = Dϕε(y)Aεy −Aεϕε(y) (4.85)

then these equalities can be combined to obtain

LAε
ϕε(y) = fε(y + ϕε(y)). (4.86)

We now want to prove that (4.86) has a formal solution which converges
on a poly-disk D(0, R) × D(0, ρ) ⊂ Cn × Cp for some R ∈ (R+ \ {0})n and
ρ ∈ (R+ \ {0})p. As (4.40) and (4.86) are essentially the same equations we can
repeat the same proof as given in Subsection 4.4.2 and Subsection 4.4.3 up to
some minor changes in notations. Hence we have proved Theorem 4.17.
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4.7.2 Family of diffeomorphisms

Consider a family of diffeomorphisms Fε : Cn → Cn that is analytic in its
variables and the parameter ε having a hyperbolic fixed point x0. Assuming
that the eigenvalues of DF0(x0) have multiplicity 1, we can use the results from
Subsection 1.3.5. This gives us the following normal form

Fε(x) = Aεx+ fε(x),

where x ∈ Cn, ε ∈ Cp, Aε = diag(λ1(ε), · · · , λn(ε)) and fε(x) = O(|x|2).
We state the main result of this subsection.

Theorem 4.19 Let Aε = diag(λ1(ε), · · · , λn(ε)). If Spec(A0) forms a multi-
plicatively non-resonant set and 0 < |λj(ε)| < 1 for all j = 1, · · · , n, then there
exist positive constants ρ0, R0 and an analytic change of variables

x = y + ξε(y), (y, ε) ∈ D(0, R0) × D(0, ρ0), (4.87)

where ξε(y) = O(|y|2) as y → 0, which transforms the analytic family of diffeo-
morphisms

Fε : Cn → Cn : x 7→ Aεx+ fε(x), (x, ε) ∈ D(0, R) × D(0, ρ), (4.88)

with fε(x) = O(|x|2) if x→ 0, into the linear family of diffeomorphisms

Gε : Cn → Cn : y 7→ Aεy, y ∈ Cn.

Corollary 4.20 Let Aε = diag(λ1(ε), · · · , λn(ε)). If Spec(A0) forms a multi-
plicatively non-resonant set and |λj(ε)| > 1 for all j = 1, · · · , n, then there exist
positive constants ρ0, R0 and an analytic change of variables

x = y + ξε(y), (y, ε) ∈ D(0, R0) × D(0, ρ0), (4.89)

where ξε(y) = O(|y|2) as y → 0, which transforms the analytic family of diffeo-
morphisms

Fε : Cn → Cn : x 7→ Aεx+ fε(x), (x, ε) ∈ D(0, R) × D(0, ρ), (4.90)

with fε(x) = O(|x|2) if x→ 0, into the linear family of diffeomorphisms

Gε : Cn → Cn : y 7→ Aεy, y ∈ Cn.

Proof: The family of inverse diffeomorphisms F−1
ε fulfills all criteria that are

posed by Theorem 4.19. Hence there exists an analytic change of variables that
conjugates F−1

ε to G−1
ε . As the transformation given by (4.87) is bijective its

inverse will be the transformation (4.89) we were looking for. 2

It is important to note that in Theorem 4.19 we assume that Spec(A0) forms
a multiplicatively non-resonant set and the modulus of each eigenvalue of A0

lies strictly between 0 and 1. So if we want to linearise (4.88) we need to prove
that Aε has these properties for ε in some sufficiently small ball in Cp. We prove
this in the following lemma.
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Lemma 4.21 Given Aε = diag(λ1(ε), · · · , λn(ε)). If Spec(A0) forms a multi-
plicatively non-resonant set such that 0 < |λj(0)| < 1, then there exist positive
constants ρ, C such that for all ε ∈ B(0, ρ) we have that Spec(Aε) forms a
multiplicatively non-resonant set such that 0 < |λj(ε)| < 1 and for all m ∈ Nn

with |m| ≥ 2 we have
|Λm

ε − λj(ε)| ≥ C. (4.91)

Proof: As all eigenvalues of Aε are analytic functions of ε, they are clearly
also continuous. As for all j = 1, · · · , n we have that 0 < |λj(0)| < 1 the
continuity of λj(ε) assures us the existence of a constant ρ1 > 0 such that for
all ε ∈ B(0, ρ1) we obtain that

0 < |λj(ε)| < 1. (4.92)

From (4.92) it follows immediately that

lim
|m|→+∞

Λm
ε = lim

|m|→+∞

n∏

j=1

λj(ε)
mj = 0.

Hence there exists an integer M such that for all m ∈ Nn with |m| ≥ M we
have that

|Λm
ε − λj(ε)| ≥

µ(ε)

2
, (4.93)

where
µ(ε) := min

1≤j≤n
|λj(ε)| > 0.

From (4.93) we also obtain that there are no resonances for |m| ≥M .
The rest of the proof is analogous to the proof of Lemma 4.18 and therefore

omitted. 2

We now will establish an equation which will allow us to determine the
transformation (4.87) we are seeking. The transformation (4.87) will conjugate
(4.88) with its linear part if the following two expressions are equal

Fε ◦ (Id+ ϕε)(y) = Aεy +Aεϕε(y),

(Id+ ϕε) ◦Gε(y) = Aεy + ϕε(Aεy).

If we introduce the operator LAε

LAε
ϕε(y) = ϕε(Aεy) − Aεϕε(y) (4.94)

then these equalities can be combined to obtain

LAε
ϕε(y) = fε(y + ϕε(y)). (4.95)

We now want to prove that (4.95) has a formal solution which converges
on a poly-disk D(0, R) × D(0, ρ) ⊂ Cn × Cp for some R ∈ (R+ \ {0})n and
ρ ∈ (R+ \ {0})p. As (4.60) and (4.95) are essentially the same equations we can
repeat the same proof as given in Subsection 4.5.2 up to some minor changes in
notations. Hence we have proved Theorem 4.19.
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Locale equivalentie en
conjugatie van families van
vectorvelden en
diffeomorfismes

In deze thesis werken we met C∞ of analytische families van vectorvelden of
diffeomorfismes. We zijn gëınteresseerd in locale equivalenties en conjugaties
tussen dergelijke families en families in een “eenvoudige” vorm. Deze vorm
wordt soms een normaalvorm genoemd. Gewoonlijk kiest men voor een lin-
eaire normaalvorm, maar soms verhindert deze keuze ons tot het bereiken van
een analytische equivalentie of conjugatie. Daarom zullen we in deze gevallen
toestaan dat er niet-lineaire termen voorkomen in de normaalvorm.

Er zijn al veel resultaten bereikt voor individuele vectorvelden en diffeomor-
fismes. Het blijkt dat de eigenwaarden van het lineair deel van het vectorveld,
resp. diffeomorfisme in het singulier, resp. vast punt bepalen of het vectorveld
of diffeomorfisme equivalent of geconjugeerd is met zijn lineair deel. Als de
eigenwaarden een hyperbolische niet-resonante verzameling vormen dan zijn er
de gekende resultaten van Poincaré en Siegel, die ons zeggen wanneer een ana-
lytische conjugatie met het lineair deel mogelijk is. Als de eigenwaarden een
hyperbolische resonante verzameling vormen, dan bestaan er soms eindig gladde
conjugaties. In het niet-hyperbolische geval wordt het stukken moeilijker om
het bestaan van gladde equivalenties en conjugaties aan te tonen.

We werken in deze thesis met families van vectorvelden en diffeomorfismes.
Bijgevolg zullen we dezelfde problemen ontmoeten aangaande hyperboliciteit
en resonantie als bij de individuele systemen. Een bijkomend probleem kan
veroorzaakt worden door de parameters die de familie bepalen. Aangezien de
parameter de eigenwaarden verstoord, kan er een resonantie opduiken die niet
bestaat voor het onverstoorde systeem. Hierdoor wordt de gladheid van de
equivalentie of de conjugatie sterk bëınvloed.
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Vereiste voorkennis en technische eigenschappen

We beginnen met een definitie van de objecten die we het vaakst zullen gebruiken
in deze thesis: vectorveld, stroom, singulariteit (ook singulier punt genoemd),
vast punt, conjugatie en equivalentie. Een eerste (topologische) classificatie op
basis van het linear deel in het singulier of vast punt wordt gegeven. We geven
een korte inleiding over analytische functies in verscheidene veranderlijken.

Hierna volgt een grondige bespreking van normaalvormen. Eerst worden
zowel de formele als de gladde normaalvorm van een vectorveld en een diffeo-
morfisme besproken. Dit wordt gevolgd door een paar algemene definities van fa-
milies en deformaties van vectorvelden en diffeomorfismes. Ook twee resultaten
in verband met de gladheid van de eigenwaarden en eigenvectoren ten opzichte
van de parameter worden aangetoond. Deze resultaten zijn noodzakelijk om de
normaalvorm van een familie van hyperbolische vectorvelden en diffeomorfismes
te bespreken. Belangrijk is dat de normaalvormen worden bepaald zonder ver-
lies aan gladheid. De laatste normaalvorm, die gedetailleerd besproken wordt,
is die van een locale deformatie van een vlakke centrum-singulariteit.

Het hoofdstuk wordt afgesloten met een korte bespreking van transitie-
afbeeldingen van vlakke vectorvelden. De klemtoon ligt hier vooral op de
toepassing. Als eerste toepassing bespreken we de Dulac-afbeelding. Deze is
de transitie-afbeelding in de omgeving van een zadel. In de formele ontwikkel-
ing van de Dulac-afbeelding vinden we de Ecalle–Roussarie compensatoren terug
die een belangrijke rol zullen spelen in Hoofdstuk 2. Een tweede toepassing is de
Poincaré-afbeelding in de omgeving van een vlak centrum. Indien de Poincaré-
afbeelding van de deformatie van een vlak centrum wordt bestudeerd, ziet men
dat een formele ontwikkeling van de Poincaré-afbeelding ten opzichte van de
parameter kan gegeven worden. De coëfficiënten van deze formele machtreeks
zijn functies van het beginpunt x0 en worden de Melnikov-functies genoemd. Er
wordt kort aangetoond hoe de Melnikov-functie van eerste orde kan geschreven
worden als een Abelse integraal.

Bijna-resonante zadels

In dit hoofdstuk is het de bedoeling een expliciete beschrijving van equivalenties
en conjugaties tussen bijna-resonante zadels en hun lineaire delen te geven. We
zullen dit doen door de equivalentie of conjugatie te schrijven als de samen-
stelling van een eindig aantal transformaties, waarbij enkel de laatste op een
niet-expliciete manier zal gegeven worden. We beperken ons tot vlakke vec-
torvelden en diffeomorfismes op R2, aangezien in [BK94, Har60a] door middel
van een tegenvoorbeeld wordt aangetoond dat enkel in het tweedimensionale
geval er C1 equivalenties en conjugaties verwacht mogen worden.

We beginnen met het bewijs van een ondergrens op de graad van de resonante
termen die ontstaan door verstoring van de eigenwaarden door de parameter.
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Dit resultaat is van groot belang opdat de laatste - niet-expliciete - transfor-
matie C1 zal zijn. Hierna beginnen we met het geval van een C1 equivalentie.
In tegenstelling tot de formele normaalvorm waarbij alle transformaties de som
waren van de identieke afbeelding met een homogene veelterm, zullen de trans-
formaties hier de som van de identieke afbeelding met een homogene veelterm in
x, y en een Ecalle–Roussarie compensator in x zijn. Hierdoor is de afbeelding C1

en gedefinieerd voor ε→ 0. Dit resultaat wordt daarna uitgebreid voor C1 con-
jugaties. In dit geval zal met homogene veeltermen in x, y en Ecalle–Roussarie
compensatoren in x en y gewerkt worden. De bewijstechnieken zijn gelijkaardig
met die voor een C1 equivalentie en vergen enkel wat meer rekenwerk.

Door twee extra veranderlijken in te voeren, kunnen we bewijzen dat deze
C1 conjugatie eigenlijk C∞ is ten opzichte van de twee oorspronkelijke veran-
derlijken en de twee extra veranderlijken. Deze extra veranderlijken zullen
gëınspireerd zijn door de Ecalle–Roussarie compensatoren. Om dit resultaat
aan te tonen zullen de stelling van Borel en de homotopische methode gebruikt
worden.

Hierna beschouwen we het geval van een C1 conjugatie tussen bijna-
resonante zadel-diffeomorfismes en hun lineair deel. We bewijzen een analoog
resultaat als in het geval van de vectorvelden en ook de bewijzen zijn analoog.
Enkel de interpretatie van de laatste transformatie als de limiet van een samen-
stelling van twee stromen is afwezig daar er geen versie van [Bon97] voor diffeo-
morfismes bekend is.

Wegens de formele gelijkenissen tussen het berekenen van de formele nor-
maalvorm van een zadel en een centrum proberen we de berekeningen te her-
halen voor een deformatie van een vlak centrum. Enkel de resultaten van de
berekeningen worden gegeven. Een meetkundige interpretatie van deze resul-
taten is niet gekend.

Poincaré-afbeelding nabij een vlak centrum

In Hoofdstuk 1 voerden we de Poincaré-afbeelding nabij de deformatie van een
vlak centrum in en we gaven een uitdrukking van de Melnikov-functie van eerste
orde door middel van een Abelse integraal. Aangezien deze Abelse integraal een
lijnintegraal is die over het algemeen erg moeilijk te berekenen is, proberen we
een andere methode te vinden om deze Melnikov-functies te berekenen. De
manier waarop dit aangepakt is, is via meerwaardige normaalvormen. Om deze
normaalvormen op een goede manier te beschrijven, hebben we een aantal hulp-
functies ingevoerd. De eerste hulpfunctie is de hoekcompensator die op natuurli-
jke manier verwant is met de Ecalle–Roussarie compensator. De andere hulp-
functies zijn de Taylor-staarten van sin en cos. Nadat een aantal elementaire
eigenschappen van deze functies zijn aangetoond, beschrijven we de techniek
van de meerwaardige normaalvormen. De hele methode, alsook het bewijs, is
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algoritmisch. Hierdoor kunnen we de methode toepassen op een aantal voor-
beelden.

Het eerste voorbeeld dat besproken wordt, zijn de Hopf–Takens modellen.
Dit zijn vereenvoudigde versies van de vectorvelden waarin de Hopf–Takens bi-
furcatie voorkomt. We hebben voor deze vectorvelden gekozen aangezien deze
ons de unieke kans geven om onze resultaten te vergelijken met de traditionele
techniek via de Abelse integraal. Voor deze modellen is de Abelse integraal
relatief eenvoudig uit te rekenen. Het blijkt dat we met onze methode dezelfde
resultaten terugvinden. Daarenboven kunnen we ook asymptotische uitdrukkin-
gen berekenen voor de Melnikov-functies van hogere orde. Het berekenen van
een asymptotische ontwikkeling van de Poincaré-afbeelding ten opzichte van het
beginpunt x0 is eveneens mogelijk via onze methode.

Het tweede voorbeeld dat besproken wordt, is de Hamiltoniaanse driehoek.
Gëınspireerd door [Ili98] bekijken we een “essentiële perturbatie” van de Hamil-
toniaanse driehoek. Daar dit een deformatie van een ontaard centrum is, bieden
de traditionele rechtstreekse technieken maar weinig soelaas. Door kleine aan-
passingen te doen aan onze methode met meerwaardige normaalvormen kunnen
we de Poincaré-afbeelding van dit systeem berekenen en vinden we dezelfde
asymptotische ontwikkeling terug als in [Ili98].

Tot slot worden de Maple-broncodes gegeven die gebruikt werden bij de
berekeningen in verband met de Hopf–Takens modellen en de Hamiltoniaanse
driehoek.

Locale analytische modellen voor hyperbolische
families

In Hoofdstuk 1 kwamen de stellingen van Poincaré en Siegel ter sprake. Deze
stellingen geven weer wanneer er een analytische conjugatie tussen een ana-
lytisch hyperbolisch vectorveld en zijn linear deel mogelijk is. Voor analytische
hyperbolische diffeomorfismes werden varianten van deze stellingen besproken.
Het is nu onze bedoeling om deze stellingen uit te breiden naar analytische fami-
lies van vectorvelden en diffeomorfismes. Voor de stelling van Siegel is dit niet
mogelijk omdat een van de voorwaarden die cruciaal zijn voor deze stelling, in
het algemeen niet bewaard blijft onder verstoring van de eigenwaarden. Daarom
zullen we geen analytische conjugatie met het lineair deel proberen te bewijzen,
maar wel een analytische conjugatie met een analytisch systeem bestaande uit
het lineaire deel plus hogere orde termen die zowel in de stabiele als in de in-
stabiele richting van voldoende hoge graad zijn. De stelling van Poincaré is wel
uitbreidbaar voor families van vectorvelden en diffeomorfismes op voorwaarde
dat we kunnen aantonen dat er geen kleine noemers optreden.

Dit “kleine noemer”-probleem is een dermate groot probleem om analytische
conjugaties te verkrijgen dat we daar eerst grondig op in gaan. We bewijzen: als
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de parameter voldoende klein is, dan kunnen er geen kleine noemers optreden
binnen de deelverzameling S`,n,s van Nn waarbij ` op voorhand vastgelegd wordt
en s de dimensie van de stabiele eigenruimte is. Het bewijs voor de vectorvelden
verloopt algoritmisch en is meetkundig gëınspireerd.

Hierna volgen de bewijzen van de analytische conjugaties voor analytische
families van hyperbolische vectorvelden en diffeomorfismes. Eerst wordt een
vergelijking bepaald waarvan de conjugatie een oplossing is. In tegenstelling tot
de formele normaalvormen zullen we deze vergelijking opsplitsen in 2 vergelijkin-
gen door de componenten te nemen van de formele machtreeksen ten opzichte
van S`,n,s en T`,n,s. Eerst wordt een formele oplossing van de eerste vergelijking
gezocht en via de methode van de majoranten wordt dan bewezen dat de formele
oplossing convergent is. Dit betekent dat er een analytische oplossing is. Voor
vectorvelden volgt hier bijna onmiddellijk uit dat de oplossing van de tweede
vergelijking eveneens analytisch is. In het geval van de diffeomorfismen volgt
dit ook na aanzienlijk meer moeite. Een onmiddellijk gevolg van deze resultaten
is dat de stabiele en instabiele variëteiten van deze systemen analytisch zijn en
analytisch afhangen van de parameter.

Tevens wordt een uitbreiding van dit resultaat naar symmetrische systemen
gegeven. Daar we enkel met niet-resonante systemen werken en de opslitsing
ten opzichte van S`,n,s en T`,n,s niet wordt verstoord door de symmetrie (want
deze is lineair), kunnen we op een vrij eenvoudige manier aantonen dat het
resulterende systeem dezelfde symmetrie heeft en dat de analytische conjugatie
commuteert met de symmetrie.

Als toepassing van de bewijsmethode tonen we de stelling van Poincaré voor
een familie van vectorvelden en diffeomorfismes aan. Dit resultaat werd reeds
eerder bewijzen, onder andere in [Brus71], maar met onze methode krijgen we
een elegant bewijs waarin het gebruik van contracties en Banach-ruimten ver-
meden wordt.
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