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Vázquez, J.L., Leborán, V., and Acuña, C. (2008b) Application of penalized
smoothing splines in analyzing neuronal Data. Accepted: Biometrical Journal.

Maringwa, J.T., Faes, C., Geys, H., Shkedy, Z., Molenberghs, G., Aerts, M., and Bi-
jnens, L. (2008c) Bayesian semiparametric modelling of univariate and bivariate
longitudinal data. Submitted for publication.

Maringwa, J.T., Geys, H., Shkedy, Z., Faes, C., Molenberghs, G., Aerts, M., Van
Ammel, K., Teisman, A. and Bijnens, L. (2008d) Application of semiparametric
mixed models and simultaneous confidence bands in a Cardiovascular safety
experiment with longitudinal data. Journal of Biopharmaceutical Statistics, 18,
000-000.

Maringwa, J.T., Geys, H., Shkedy, Z., Faes, C., Molenberghs, G., Aerts, M., Van
Ammel, K., Teisman, A. and Bijnens, L. (2006) Analysis of a cardiovascular
safety experiment with longitudinal data using penalized splines. In: Proceedings
of the 21st International Workshop on Statistical Modelling. Hinde, J., Einbeck,
J. and Newell, J. (Eds.). Galway, Ireland. pp 346-353.



Maringwa, J.T., Geys, H., Shkedy, Z., Faes, C., Molenberghs, G., Aerts, M., G.,
Van Ammel, K., and Bijnens, L. (2008e) Analysis of cross-over designs with
serial correlation within periods using semiparametric mixed models: Tutorial
in Biostatistics. Accepted: Statistics in Medicine.

Tilahun, A., Maringwa, J.T., Geys, H., Alonso, A., Raeymaekers, L., Molenberghs,
G., Kieboom, G.V., Drinkenburg, P., Bijnens, L. (2008) Investigating association
between behavior, Corticosterone, Heart Rate, and Blood Pressure in rats using
surrogate marker evaluation methodology. Accepted: Journal of Biopharmaceu-
tical Statistics.



1
Introduction

Development of drugs in pharmaceutical companies is a rather long and complex
process. One of the key aspects of the developmental process involves the initial
stage of testing the drugs in animals. This stage is essentially important in order to
determine the safety levels of the drugs of interest. Later stages would then involve
tests carried out in humans.

Experiments carried out in animals, the main focus in this thesis, are normally
referred to as pre-clinical or non-clinical experiments. Although pre-clinical studies
can not replace clinical trials, they have some appealing features worthy mentioning,
especially in comparison to clinical experiments. For example, pre-clinical experi-
ments enable investigators to have a greater degree of control over the structure and
size of the study as well as experimental subjects in comparison with clinical trials.
There are some important features characteristic of experiments carried out in plants
or animals which would not be associated with clinical trials. One issue is that, hu-
man response to medication tends to be more variable than in genetically identical
animals or plants or from tightly controlled chemical or physical experiments. Fur-
ther, investigators may not be able to control as many sources of variation compared
to laboratories, therefore more subjects are needed to provide control over random
error. Although still a controversial issue, ethics are rather more of an issue with
clinical trials than with non-clinical trials.

In the following, a brief introduction to the different animal studies considered in

1



2 Chapter 1

this thesis is given. The aims and objectives within each type of study will undoubt-
edly differ as will be seen shortly.

1.1 Cardiovascular Safety Experiments

A cardiovascular disease refers to the class of diseases that involve the heart or blood
vessels, that is, arteries and veins. Technically, the term would refer to any disease
that affects the cardiovascular system. As already pointed out, investigations of drugs
aimed at such diseases start in non-clinical experiments, before finding their way to
humans. Non-clinical studies involve different types of study designs. The type of
outcome, i.e., whether continuous, discrete or categorical depends on the specifics of
the study.

In this thesis, focus will be on both continuous and discrete outcomes. First, we
give a brief overview on the continuous outcomes obtained from cardiovascular safety
experiments carried out in dogs. The measurements from each subject are obtained
repeatedly over a period of time, constituting longitudinal profiles. Two types of
study design namely, the parallel and the cross-over design are considered. While
the parallel design is somewhat standard, the cross-over design considered here differs
from conventional cross-over studies due to the presence of longitudinal measurements
within each treatment period. Intricacies including the possible presence of serial
correlation within treatment periods, and carry-over effects further complicate the
analysis. These are some of the issues that will be addressed in this thesis.

There are many reasons for collecting repeated measurements and naturally, these
should influence the statistical analysis procedures. In such experiments, each subject
produces a profile of repeated measurements, and the main goal of the analysis is
usually to assess the effect of different treatment regimes on these profiles. Often, a
simple and very useful approach is to summarize the data from each subject into a
single summary statistic that is deemed relevant for the analysis. Not only does this
lead to loss information, it also makes specific assumptions about the contribution of
each subject to the summary statistic, which in certain cases, may be questionable.

Although the summary statistic approach may be convenient, the researchers’ in-
terest may be, for example, to access the effect of a compound over time. Indeed,
interest therefore lies in the behavior of profiles, i.e., following the repeated measure-
ments. In such situations, an analysis that takes into account the repeated measures
structure of the data should be called into play. Tools like the linear mixed model
(LMM, Verbeke and Molenberghs, 2000) for continuous outcomes and generalized
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linear mixed models (GLMM, Molenberghs and Verbeke, 2005) for discrete data out-
comes are obvious choices. For continuous outcomes, the normal distribution, with its
desirable properties, ensures computations can be done with relative ease. The same
is however not true when the outcome is discrete or categorical, essentially because
the analogue of the multivariate normal distribution does not exist.

Unless the full factorial structure is applied, it is imperative to specify the function
describing the evolution of profiles in time. After data exploration, one can decide
on some parametric model, for example, a linear, quadratic or any polynomial of a
specified degree. In most cases this works perfectly well. However, when data pose
some irregular profiles or exhibit heterogeneous tendencies, appropriate parametric
models may be difficult to obtain. This brings us to the issue of flexible modelling,
wherein the data themselves play an integral role in determining the ‘appropriate’
function to describe the evolution. In this thesis, special emphasis is put on the use
of semiparametric models in the form of penalized splines, primarily due to their
desirable connection with mixed models. We construct hypothetical models by ma-
nipulating the structure of the construction of penalized splines model. Such models,
would, in practice, help to define parsimonious mean structures. Special focus will
be on adjusting existing methods of constructing simultaneous confidence bands for
penalized splines (e.g., Ruppert et al., 2003), with the aim of including within and
between-subject variability, as well as variability arising from smoothing.

1.2 Electrophysiological Experiments

Neuronal data from an electrophysiological experiment carried out with a monkey
will also be considered here. Neurons carry information by means of electrical signals
(action potentials or spikes) which are transmitted across synapses. The spike is a
pulse signal of about 1 ms duration and of the same amplitude. It constitutes the rele-
vant signal for the interactions between neurons. In electrophysiological experiments,
these spikes are recorded by microelectrodes inserted in the brain as they occur in
the time course or time stamps. It is assumed that the number of spikes per time
unit, the spike rate, produced by single neurons is a relevant parameter for the coding
in the brain. Single-unit activity is irregular, both within and across trials; hence to
obtain the regularity of the response, trials are repeated several times. Furthermore,
to assess that the behavior of single neuron activity is present at population level, the
statistical analysis should be extended to the population of neurons with the same
properties (Kass et al., 2005).
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The focus in this thesis will be to appropriately describe the time evolution of
profiles from such experiments. Comparison of different experimental conditions is
also of interest. The primary analysis tool is the penalized spline model. Key issues
include the transition from single neuron analysis to population level analysis, keeping
in mind that the response considered now is of count form. Data from electrophysio-
logical experiments often show profiles with temporal heterogeneity tendencies. This
essentially means that a profile is more flat in some sections while tending to be more
steep in others. Methods that acknowledge such type of behavior in the data are not
only interesting, but sometimes necessary. Focusing on counts from the neuronal data,
we propose a Bayesian model that will ‘adaptively’ fit such data. Simulations are used
to compare the model with a closely related approach, emphasizing on non-normal
data, for which literature is scarce.

1.3 Historical Control Data

Testing of chemicals for carcinogenic effects, for example, with mice and/or rats has
produced large amounts of data. In these studies, animals in different experimental
groups are followed for a fixed period of time, and often, each animal is then labeled as
either 1/0 indicating presence/absence of a tumour or some form of defect of interest.
Because such experiments are performed with fixed protocols, accumulated data from
control groups in different experiments over time present an opportunity for use of
such historical data. While seizing the self-presenting opportunity to use historical
data in order to sharpen analysis of ‘current’ experiments, cautious use of such data
is encouraged. Such is the focus of some of the work presented in this thesis. There
is need to investigate plausible conditions for use of historical data. Issues like the
number of historical studies one needs to use or when exactly one should use historical
data require a closer look and are investigated herein.

In other settings, historical data accumulate over time, and using these data,
the primary aim is to determine limits which will be used to validate or invalidate
measurements from new studies. This in a sense, boils down to detecting which studies
should be included or excluded in the historical data base. The lesser known, and
often ignored tolerance limits (Hahn and Meeker, 1991) are one way of addressing
this issue and will be studied in this thesis.
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1.4 Organization of Subsequent Chapters

The work presented in this thesis can be considered as divided into two broad cate-
gories, the first, and larger part, dealing with flexible modelling techniques with special
inclination towards penalized spline methodology. The second category involves use
of historical information and the construction of tolerance intervals. The rest of this
thesis is therefore structured in the following way. Chapter 2 gives an overview of all
the motivating examples used in the thesis. In Chapter 3, general concepts pertaining
to smoothing are briefly reviewed. Penalized spline smoothing of longitudinal data
in the parallel design case occupies Chapter 4, while similar methodology, geared for
the cross-over setting is encountered in Chapter 5. Still within the cross-over design
setting, we combine aspects from validation of surrogate markers methodology with
some flexible modelling techniques to quantify associations in Chapter 6. Application
of the penalized spline methodology to non-normal data takes center stage in Chap-
ter 7, where the neuronal data are analyzed. In Chapter 8 we take a step back to
Chapter 4, and re-fit all the models encountered there, this time from a Bayesian per-
spective. Further, in the same chapter, joint modelling of two longitudinal responses
is investigated, with particular attention falling on correlated smoothers. Continuing
within the Bayesian framework, but shifting attention to non-normal data, adaptive
penalized splines are discussed in Chapter 9. Use of historical control information
and tolerance limits are the subjects of Chapter 10 and Chapter 11 respectively. We
wrap up with some concluding remarks and possible directions for future research in
Chapter 12.
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2
Motivating Examples

This chapter presents a detailed explanation of the motivating examples used in this
thesis. Specifically focusing on animal studies, and unless otherwise mentioned, all
the experiments dealt with here emanate from studies carried out at Johnson and
Johnson Pharmaceutical Research and Development in Beerse, Belgium.

2.1 Cardiovascular Safety Experiments Data

2.1.1 Parallel Design Case

One of the main goals of pre-clinical studies is to determine a drug’s toxicity through
animal testing. Often in vivo experiments are carried out with studies of toxicity,
focusing on which organs of the body are targeted by the drug. The focus here is on
a similar experiment, in the context of cardiovascular safety.

The data come from a two-group parallel design in a cardiovascular safety ex-
periment conducted in dogs. Twenty-eight dogs were implanted with a device for
telemetric studies and then orally dosed either with the vehicle (14 animals) or com-
pound (14 animals). The primary objective of the study was to assess the effect of the
compound on the QT, a measure of the complete electrical activity of the ventricle of
the heart. A drug-induced prolongation of the ventricular repolarization and a con-
comitant QT prolongation is known to be associated with lethal arrhythmias. Several

7



8 Chapter 2

other cardiovascular parameters of interest were recorded at 1 minute intervals for 4
hours, resulting in 240 time points per subject. For our purposes, first, attention is
given to the heart rate profiles in the control and compound groups, measured as beats
per second. In certain cases, administering such a compound may cause some kind of
abnormal heartbeat that can be dangerous. One of the primary goals is to be able to
detect specific sections, if any, where the compound group significantly differs from
the control group. Hence, in line with detecting the possible cardiovascular effects of
the compound, it is necessary to detect if the effect is in the earlier or later stages
of the experiment. The top left and top right panels in Figure 2.1 show the heart

40

60

80

100

120

140

160

180

0 50 100 150 200

Time (mins)

H
ea

r 
ra

te
 (

b/
se

c)

Heart rate: Control group

40

60

80

100

120

140

160

180

0 50 100 150 200

Time (mins)

H
ea

r 
ra

te
 (

b/
se

c)

Heart rate: Treated group

15

20

25

0 50 100 150 200

Time (mins)

A
oP

s 
(m

m
H

g)

AoPs: Control group

15

20

25

0 50 100 150 200

Time (mins)

A
oP

s 
(m

m
H

g)

AoPs: Treated group

Figure 2.1: Observed individual profiles for heart rate and AoPs in the control and
compound groups.

rate individual profiles from control and the compound groups respectively. The pro-
files show substantial between- as well as within-subject variability. These data are
used in illustrating use of penalized spline methodology in the parallel design setting
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in Chapter 4. In a later stage, another response, AoPs, which is the systolic blood
pressure in mmHG (mm mercury) will also be of interest. The individual profiles for
both groups are shown in the bottom panels of Figure 2.1. It is known that the heart
rate and blood pressure sometimes influence each other, sometimes they compensate
each other. In other circumstances they both go higher or lower. The relationship be-
tween the two is therefore not a fixed known relationship. These data are considered
in Chapter 8, where a joint model between two longitudinally measured outcomes
comes under the spotlight.

2.1.2 Cross-over Design Case

Similarly as in Section 2.1.1, the data we consider here were obtained from a car-
diovascular safety experiment carried out in dogs. Although the primary objectives
of the experiment remain essentially the same as in Section 2.1.1, it is the design of
the experiment marking the major difference. The data emanate from a cross-over

Table 2.1: Williams design for a cross-over study with four dose groups, control
(C ≡1), low (L ≡ 2), medium (M ≡ 3), and high (H ≡ 4). The design is repli-
cated twice resulting in a total of 8 animals being used.

Period

Subject 1 2 3 4

1 H M C L

2 M L H C

3 L C M H

4 C H L M

study, where a balanced Latin square Williams design of four experimental groups
and four periods is used (see Table 2.1). Eight female beagle dogs, with weights vary-
ing between 10.0 and 12.9 kg, were implanted with a device for telemetric studies.
The animals were orally dosed with the vehicle or compound (low, medium and high
doses) on four successive sessions, separated by a wash-out period of at least 3 days.

Cardiovascular parameters of interest were recorded at 5 minute intervals for 6
hours, hence 72 time points per subject per period. Several parameters were measured,
and for our purposes, the response, Tau, is a measure of the relaxation capacity of
the heart (in milliseconds) after a contraction. This is a measure of how good or bad
a heart relaxes after a contraction. The question of interest here is twofold. First,
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an overall measure of the difference between the compound groups and the control
group is required. Second, there is the wish to detect specific sections, if any, where
the compound groups significantly differ from the control group. Figure 2.2 shows the
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Figure 2.2: Observed mean profiles for each period and experimental group at each
experimental time point.

observed mean profiles in the various experimental groups for each of the treatment
periods. It appears the response tends to increase with period. There also appears
to be a relatively large difference between the highest dose group and the low dose
group in period 4. Note also that a parametric form for these mean profiles might not
be easily determined, hence the need to use more flexible, semiparametric smoothing
techniques as discussed in Chapter 5.



Motivating Examples 11

2.2 Swim-stress Study

These data come from a pre-clinical experiment with rats, investigating a compound
under development for stress-related disorders. The objective of the experiment was
to identify the effect of the compound on stress hormones and a series of physiological
variables. In the experiment, stress is induced by forcing a rat to swim for 15 minutes
in a bath of 20 cm high lukewarm water at a temperature of 25 degrees Celsius, accord-
ing to a protocol as described by De Groote and Linthorst (2007). The experiment, set
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Figure 2.3: Group-specific mean profiles for CORT values, averaged over different
treatment periods. The shaded regions indicate the time windows in which activity
was measured before and after the stress induction.

up as a cross-over study, was designed according to a Latin square with 4 periods and
4 experimental groups (vehicle without stress, vehicle with stress, compound without
stress, compound with stress). Forty-five minutes after randomization, the rats were
injected with either a vehicle or the compound under consideration. Ten minutes
later, half of the rats injected with the vehicle and half of the rats injected with
the compound were subjected to the so-called ‘swim stress’, also depending on group
membership. For all eight animals, measurements were taken in order to quantify
their stress level. Telemetry measurements (such as heart rate and blood pressure)
were recorded continuously and averaged every 5 minutes. Seventeen blood samples
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were taken in a fully automated way, leaving the animals completely undisturbed and
following a well-defined scheme to sample blood plasma from which corticosterone,
henceforth abbreviated CORT, was later extracted and quantified. And finally, rats
were also screened for their behavior in a 10 minutes interval by means of a video
monitor. For each rat, the percentage of time it has been active was thus determined.
The recording of behavior was done twice; a first time at 25 minutes after injection
and a second time at 50 minutes after the end of the swim stress. These respective
periods are indicated in Figure 2.3 as shaded bars. The graph shows mean profiles
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Figure 2.4: Group-specific mean profiles for heart rate and blood pressure, averaged
over different treatment periods. The shaded regions indicate the time windows in
which activity was measured before and after the stress induction.

for CORT in the four experimental groups, averaged over the four treatment periods.
Group-specific mean profiles for heart rate and blood pressure are shown in Figure
2.4. The need for flexible modelling is apparent, since no clear parametric structure to
model the mean easily comes into the picture. These data are revisited in Chapter 6.

2.3 Electrophysiological Experiment

The data we describe here come from an electrophysiological experiment carried out
in the Departamento de Fisiologia, Universidad de Santiago de Compostela in Spain.

One monkey was trained to discriminate between different line orientations (stim-
uli) (Vazquez et al., 2000). The stimuli (reference and test) consisted of stationary
bright line segments presented on a monitor screen in front of the monkey. Reference
stimuli were presented with three different orientations (85.5◦, 90◦, 94.5◦). Eight test
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stimuli per reference were presented rotated clockwise or counter-clockwise to the ref-
erence line in steps of 1.5◦. Two bright circles were laterally displayed to the right and
to the left of the center of the screen. A trial was initiated when the monkey fixated

Table 2.2: The sequence of events over time in each trial, starting from -500 to
4500 ms. The region of interest here is 1000-2500 ms.

Time period Event

-500-0ms Control period

0-500ms Presentation of first (reference) stimulus

500-1500ms Interstimulus interval (ISI) or delay period

1500-2000ms Presentation of second (test) stimulus (comparison/decision period)

2000ms + Subject makes a saccadic eye movement towards

one of the 2 circles for reward

on a small line centered on the screen. Then, when the fixation line disappeared,
the two stimuli, reference and test, each of 500 ms duration, appeared in sequence,
separated by a fixed inter-stimulus interval (ISI, 1000 ms). At the end of the sec-
ond stimulus, the subject had to make a saccadic eye movement towards one of the
two circles to indicate whether the orientation of the second stimulus was clockwise
(right) or counter-clockwise (left) to the reference stimulus. Monkeys were rewarded
for correct discriminations (See Table 2.2). Once trained, extra-cellular single unit
activity was recorded in the ventral premotor cortex (VPM).

Interest is in (1) determining the maximum peak activity when the monkey cor-
rectly decided that the test stimuli were to the right and to the left of the reference
line, and (2) comparing the neural response between behaviorally relevant conditions.
The data collected were summarized across the different trials in the form of spike
counts per time unit. The period of analysis was between 1000–2500 ms. This time
period occupies the last 500 ms of the ISI and the 500 ms of the comparison/decision
period (2000–2500 ms), this being the relevant period for this analysis of the correct
decisions to the left and to the right. Table 2.2 gives a summary of the events in each
trial. The data described in this section is used in Chapter 7.
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2.4 Incidences of Alopecia in Rats and Rabbits

Pre-clinical experiments are designed to investigate possible adverse effects of com-
pounds of interest. Such experiments are carried out in animals before the compounds
of interest are subjected to human beings. Similar such experiments, conducted un-
der more or less similar conditions and accumulated over time are usually available,
and constitute the so-called historical data. Historical data, in particular the control
groups from different studies, may be incorporated in the analysis of a new experiment,
which we term here the ‘current’ or ‘examined’ study. The particular current study
considered here involves investigation of the occurrence of the parameter ‘alopecia’ in
rabbits (Dom et al., 2000). Alopecia is a hair loss condition which is characterized

Table 2.3: Summary of alopecia incidence in the different dose groups of the examined
study.

Adverse events

Dose Sample size # of animals %

0 25 1 4

10 20 1 5

40 20 2 10

80 25 5 25

by round patches of complete boldness. The doses selected for the compound of in-
terest in the study were 0, 10, 40 and 80 mg/kg (of weight) with 25, 20, 20 and 25
animals randomly assigned to these dose groups, respectively. The data collected are
summarized in Table 2.3. Data on 19 historical control studies are available. The
incidence of alopecia in the historical control studies is summarized in Table 2.4. Of
these studies, 12 experiments involve rabbits and the other 7 involve rats. Note that
only incidences from dose level 0 are considered from the historical studies. In Table
2.4, the column labeled ‘Frequency’ gives the number of studies of a given sample size
and a given number of animals having alopecia (e.g., there is only 1 study of size 10
with no adverse event). These data will be analyzed in Chapter 10.

2.5 In Vitro Ames Test

The data described in this section pertain to the Ames Test, carried out in different
experiments over a period of time. The data therefore constitute an accumulation
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Table 2.4: Incidences of alopecia in the historical control studies. Frequency is the
number of occurrence of a particular pair of sample size and number of animals having
alopecia (the adverse event).

Adverse events Adverse events

Sample size # of animals Frequency Sample size # of animals Frequency

10 0 1 24 1 2

12 3 1 24 2 2

20 1 5 24 3 1

20 2 1 25 1 1

22 2 1 40 4 1

24 0 2 40 9 1

of some form of historical data. The Ames Test is used to determine the mutagenic
potential of a substance based on the mutation rate of bacteria that are exposed to
the substance. In this particular study, five strains of Salmonella Typhimurium are
used. Multiple strains are necessary because different strains mutate differently under
different classes of compounds. The revertant bacteria can grow in the absence of an
amino-acid (histidine). The bacteria are spread on an agar plate with a small amount
of histidine to allow to grow for an initial time. When the histidine is depleted,
only bacteria that have mutated to gain the ability to produce its own histidine will
survive. The mutagenicity of a substance is proportional to the number of colonies
observed. The data collected are the number of colonies on each of the three plates
available in any particular experiment.

For our purposes, focus is put on one particular strain, TA100 from the sponta-
neous mutation group. Data from a total of 153 historical experiments have been
collected. For each experiment, measurements from 3 plates, considered here as repli-
cates, were taken. The main purpose of the current exercise is to construct reference
ranges for historical control data. These ranges would then be used to validate or in-
validate future observations taken from similar experiments. As such, these ranges are
used for screening experimental data for atypical values (Amaratunga, 1997). These
data are used in Chapter 11, where the issue of reference ranges is addressed by the
less frequently used tolerance intervals.
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3
General Concepts in

Smoothing

Classical regression models are a common feature in the field of statistics. Usually,
analysis involves relating a response variable as a function of at least one determin-
istic explanatory variable, via some parametric relationship. In such circumstances,
the relationship is specifically predefined by the model, and the simplicity and inter-
pretability, especially with simple linear regression models, make such models easy
choices in practice. However, it is clear that more complex relationships between
the response and the explanatory variables may exist, and may be difficult to pick
using such parametric models. Use of higher order polynomials may, but not always,
alleviate this problem. More flexible techniques to deal with such situations exist
in literature. The list of such techniques includes but is not limited to nonparamet-
ric regression models, such as, kernel estimation (Azzalini and Bowman, 1993), local
polynomial regression (Cleveland and Devlin, 1988; Fan and Gijbels, 1996) and spline
smoothing (Freedman and Silverman, 1989). Spline smoothing related methodology
is of particular interest in this thesis.

In general, spline smoothing may be divided into three broad categories. First,
smoothing splines (see e.g., Green and Silverman, 1994) consider each of the obser-
vations as a knot point. When a fixed number of knot points is used, and the model

17
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fitted using ordinary least squares, the second category known as regression splines
surfaces. Next to regression splines, when some form of penalization of the knot co-
efficients accompanied by a roughness penalty is considered, the third class termed
penalized splines is obtained (e.g., Eilers and Marx, 1996; Ruppert et al., 2003). In
this thesis, we focus on penalized spline smoothing related methodology, tailored in
the mixed-model framework. This essentially capitalizes on the connection between
linear mixed models and the penalized spline smoother, which has greatly necessi-
tated fitting of smooth functions with relative ease and convenience using software
primarily developed for mixed models.

Several issues are of interest regarding smoothing. Particular examples include the
number and positioning of the knot points. A more subtle issue is the selection of the
smoothing parameter. Different methods have been proposed in literature towards
estimating the smoothing parameter as briefly reviewed in Section 3.1.5.

In the following section, we discuss the connection between spline smoothing and
mixed models, a concept which will be used inexorably in this thesis. An illustration
of some smoothing techniques, whose differences emanate from the way the smoothing
parameter is estimated, is given in Section 3.2.

3.1 Spline Smoothing and Mixed-model Approach

Consider a pair of data points (tj , yj) of a continuous nature, as measurements of
the explanatory and dependent variable, respectively. A nonparametric relationship
between both variables may be defined as

yj = f(tj) + εj , i = j, . . . , T, (3.1)

for some unknown function f , with the assumption that the residual errors εj follow
a normal distribution with mean 0 and variance σ2

ε . Determination of f may result
from considering the solution of an optimization problem that aims to minimize the
penalized residual sum of squares (Hastie and Tibshirani, 1990; Fan and Gijbels,
1996)

T∑

j=1

(yj − f(tj))2 + λ

∫
{f ′′(t)}2dt, (3.2)

for a second derivative function f
′′
(·) and the smoothing parameter λ > 0. The first

part in this expression penalizes the lack of fit, and the second, puts a penalty on
the roughness of the fit. Values of λ range from 0, corresponding to interpolation of
the data, to infinity, implying an ordinary linear regression model. Values in between



Concepts in Smoothing 19

provide different levels of smoothing on the function. Thus model complexity is
effectively controlled by λ. It turns out that a solution to this minimization problem
is the natural cubic spline (Hastie and Tibshirani, 1990).

Another possible way of achieving a smooth function is to allow discontinuities
of the derivative function of the approximating function of polynomial functions at
specific locations, resulting in polynomial splines. This issue is taken up further in
the forthcoming sections.

3.1.1 Polynomial Basis

The piecewise polynomial smoother (Freedman and Silverman, 1989) can be defined
as

f(tj) = β0 +
K∑

k=1

βkφk(tj),

where tj are design points, β0, . . . , βK are parameters to be estimated and, φk(·),
k = 1, . . . ,K are known functions. A special case, the piecewise linear model, assumes
that the basis function φk(t) takes the form

φk(t) = (t− κk)+ =





0, t ≤ κk

t− κk, t > κk.

The piecewise linear model consists of a set of K knot points in the range of tj ,
such that, κk is the location of knot k. The piecewise linear smoother can then be
expressed as

f(tj) = β0 + β1tj +
K∑

k=1

bk(tj − κk)+,

where, for notational convenience, bk now denote the coefficients for the knot points.
Extension to higher order polynomials is straightforward.

3.1.2 Radial Basis

Instead of the polynomial basis functions touched upon in the preceding section, one
can also use the B-spline basis functions (Eilers and Marx, 1996), which apply a
difference penalty on coefficients of adjacent B-splines. Yet another basis function,
which we shall make use of in Chapter 7, is the so-called radial basis function. For
the same set of knots defined as before, and for some univariate function r, and a
degree ℘, the radial basis function takes the form

φk(t) = |t− κk|℘ = r(|t− κk|), where r(u) = u℘. (3.3)
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Figure 3.1: Linear spline basis function (left) and linear radial basis function (right)
where the black squares indicate 9 equally spaced knot points.

The basis function then depends only on the distance |t−κk| and r, a property which
enables extension to higher dimensions with ease. Figure 3.1 illustrates, for 9 equally
spaced knots, a linear spline basis and a linear radial basis (p = 1) function. Although
in principle, different bases are not expected to give different fits, in practice, some
bases tend to be numerically more stable in certain cases compared to others. It may
therefore be worthwhile for one to experiment with a few different bases.

3.1.3 The Connection Between Penalized Splines and Mixed

Models

The popularity of penalized splines derives partly from their connection with mixed
models. Here we give a brief introduction to the synergy, a key component in the
practical usage of penalized splines. For 1 ≤ j ≤ T and 1 ≤ κ ≤ K, let us now adopt
the following matrix notation, Xj = [1 tj ]1≤j≤T , Zj = [(tj − κk)+], β = (β0, β1)

′
,

b = (b1, . . . , bK)
′
and ε = (ε1, . . . , εT ). Stacking these matrices, one below the other,

we obtain the representation

Y = Xβ + Zb + ε. (3.4)

Note that, the generic penalized spline fitting criterion, liable for minimization, may
be expressed as (Ruppert et al., 2003)

1
σ2

ε

‖ Y −Xβ −Zb ‖2 +
λ2

σ2
ε

‖ b ‖2, λ > 0.

If one uses a large number of knot points, the model may overfit the data. Further,
use of a large number of knots inherently increases the computational burden. A way
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of circumventing this problem, is to treat the coefficients bk as random, drawn from
a normal distribution such that bk ∼ N(0, σ2

b ). In that case, (3.4) corresponds to the
classical representation of the mixed model. It has been shown that the solution to
penalized spline smoother just described corresponds to the BLUP of a mixed model
(Eilers and Marx, 1996; Ruppert et al., 2003; Ngo and Wand, 2004), a link enabling
fitting penalized splines with mixed-model methodology. Although illustrated here
with polynomial basis, a similar connection exists for other basis functions as well.

3.1.4 Penalized Splines from a Bayesian Perspective

To cast the penalized spline model in the Bayesian framework, let us re-visit the
mixed-model representation in (3.4). A complete Bayesian model is obtained by
assuming prior distributions for all parameters in the model. Specifically, and in
many situations, each of the fixed-effects parameters in β can be assumed to follow
a zero-mean normal distribution with a very large variance (e.g., Crainiceanu et al.,
2005b). In a similar fashion, the distribution for the variance components is assumed
to be inverse gamma. Thus the precision parameter e.g., σ−2

b is assumed to follow a
gamma distribution. A choice of the parameters for the gamma distribution close to
zero leads to a proper prior.

In classical Bayesian methodology, inference is based on the posterior distribution
of parameters given the data. If we denote the data by Y and the vector of parameters
by θ, the posterior density of the parameters given the data can be expressed as

[θ|Y ] =
[Y |θ][θ]∫
[Y |θ][θ]dθ

, (3.5)

where [·] is used to denote a probability density. Therefore, reverting to our problem
of expressing the penalized spline model in the Bayesian framework, the posterior
distribution of the parameters given the data is such that

[β, b, σ2
ε , σ2

b |Y ] ∝ [Y |β, b, σ2
ε ][b|σ2

b ][β][σ2
ε ],

which is reflective of the numerator of (3.5). The proportionality sign used comes from
the fact that the denominator in (3.5) is a constant since it does not depend on θ.
Computation of the denominator is, however, still required for inference. The idea is
then to employ methods that can sample from a density that is known only up to a
constant and literature abound (Metropolis et al., 1953; Gelman et al., 1995; Robert
and Casella, 1999; Zhao et al., 2006). The Bayesian approach will be encountered in
Chapter 8 and 9.
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3.1.5 Estimation of the Smoothing Parameter

Several aspects ought to be considered when implementing smoothing techniques.
Some of these, and arguably the more important ones include, the number, and posi-
tioning of knot points, together with the choice of the smoothing parameter. It turns
out that selecting the smoothing parameter is a more delicate issue, a subject that
has already been extensively covered in literature. Different choices of the smoothing
parameter λ will lead to different estimated models. In the context of smoothing
splines, an automatic procedure, which leads to a data driven smoothing parameter,
is the commonly used cross-validation method (e.g., Ruppert et al., 2003), based on
the concept of leaving out a single observation in turn. Alternatively, model selection
criteria, e.g., Akaike’s Information Criterion (AIC, Akaike (1973)) may be used.

When a linear mixed model is used as a scatterplot smoother, one does not need
to use any additional procedure in order to select the smoothing parameter. The
amount of smoothing is determined by the ratio of the (restricted) maximum like-
lihood estimates for both σ2

ε and σ2
b . A similar approach follows from a Bayesian

hierarchical model, where one can obtain the posterior mean for λ together with a
density estimate for the posterior distribution of λ.

3.2 Illustration of Different Smoothing Techniques

In this section, we will give a brief illustration of the application of some of the smooth-
ing techniques discussed in preceding sections on simulated data. We shall focus on
the simple case of independent data, i.e., a single independent variable say t with
a corresponding dependent variable y of a continuous nature. The main purpose of
this exercise is to show the effect of some of the key factors associated with smooth-
ing, namely, the smoothing parameter and the number of knot points. Following
Hart (1997) we simulate data from the model

yj = 3.0 + 0.3 sin(2πtj) + εj , j = 1, . . . , 50, (3.6)

where tj = (j−0.5)/50. The error terms, εj are assumed independently and identically
distributed as N(0, 0.062). In the left panel of Figure 3.2, the effect of varying the
smoothing parameter is illustrated using the cubic smoothing spline, based on the
generalized cross-validation technique. For a different number of knots, the linear
mixed-model approach is considered and the results are graphically depicted in the
right panel of Figure 3.2. It is clear from Figure 3.2 that the smoothing parameter
plays a more crucial role in determining the fit.
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Figure 3.2: Illustrating the effect of the smoothing parameter and the number of knots
in the context of cubic smoothing spline (left) and the linear mixed-model approach
(right).

The number of knots appears to play a less crucial role. Indeed, only a certain
minimum number of knots is required to satisfactorily describe the data, see for
example, Ruppert (2002).

In all applications considered here, the number of knots will be considered fixed.
The number will be generously chosen such that important features in the data are
captured, without underestimating the computational complexity accompanying an
excessive number of knots. Note however that computationally intensive methods,
focusing on choosing the ‘optimal’ number and positioning of knot points, exist in
literature, for example, DiMatteo et al. (2001).

Figure 3.3 illustrates fitted curves obtained from different smoothing techniques
on a single simulated data set. The methods are; the cubic smoothing splines, the lin-
ear mixed-model approach (LMM) and the Bayesian hierarchical linear mixed model
(BLMM). The LMM and the BLMM are based on the same 15 equally spaced knots,
selected as quantiles of t, while the cubic spline uses all data points as knot points.
Included also are the 95% credible intervals from the BLMM. The different smooth-
ing approaches produce almost indistinguishable fitted curves. Of course, the choice
of which method to use depends on the problem at hand, considering among many
other factors, the type and complexity of the model. A trivial example is when one
is confronted with longitudinal data, where smoothing may be warranted, the LMM
may be the first port of call. The next chapter deals with smoothing of longitudinal
data using penalized spline methodology.
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Figure 3.3: An illustration of using cubic smoothing splines, the linear mixed-model
approach and a fully Bayesian mixed model together with the 95% credible intervals
from the BLMM.)



4
Penalized Splines Smoothing

of Longitudinal Data

Several pharmacological studies involve experiments aimed at testing for a difference
between experimental groups wherein the data are longitudinal in nature, frequently
with long sequences per subject. Oftentimes, treatment effect, if present, is not con-
stant over time. This chapter focuses on the analysis of one such experiment, con-
sisting of a long sequence of repeated measurements per subject over time, as shown
in Figure 2.1. The present chapter will restrict attention to heart rate profiles in
Figure 2.1, addressing the objectives outlined in Section 2.1.1.

For inferences involving the longitudinal nature of the data, it is necessary that
one properly captures the form of the evolution of profiles over time. In certain situa-
tions, the mean profile can easily be estimated by some parametric function, for exam-
ple, Dunsmore (1981), Grender and Johnson (1994), and Putt and Chinchilli (1999).
These authors use parametric trends in time to model the mean evolution in cross-
over settings with repeated measurements. However, imposing a parametric function
may not always yield satisfactory results. Moreover, finding a suitable parametric
form may not be easy. A more flexible approach to modelling the mean, which is
situated within the mixed-model framework, is through penalized splines (Eilers and
Marx, 1996; Ruppert et al., 2003). Applications of this nature can be found, for ex-
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ample, in Zeger and Diggle (1994), Verbyla et al. (1999), Ruppert et al. (2003) and
Durbán et al. (2005). The core of the material presented in this chapter is contained
in Maringwa et al. (2007d).

While a test for a difference between the average profiles gives an overall impression
about the equality or inequality of the two functions, it may be of interest to detect
particular sections of the profiles that show significant differences between the two
groups. This can be achieved, for example, by applying the Wilcoxon- Mann-Whitney
test (Lehman and D’Abrera, 1975) at each time point or a parametric version of
such a test. However, such an approach suffers from a multiple comparisons problem,
especially with long sequences per subject. Importantly, also the correlation structure
among the observations is completely ignored.

A comparison based on confidence bands is an attractive alternative. Our ap-
proach is to formulate a series of models exhibiting how the group-specific mean
profiles could possibly differ. Once an appropriate model is chosen, interest lies in
identifying specific time points where the groups differ. For this purpose, we propose
the use of simultaneous confidence bands around the fitted models wherein the bands
take into account within and between-subject variability, as well as variability arising
from smoothing. Such confidence intervals follow as an adjustment to the confidence
bands of Ruppert et al. (2003) to accommodate the longitudinal nature of the data
at hand. Specifically, the bands include components of the variance of the subject-
specific effects, used to capture the correlation structure amongst the observations.

Confidence intervals have been used in similar applications, for example, by Lin
and Zhang (1999) who, in the context of generalized linear mixed models (Molenberghs
and Verbeke, 2005), discuss both frequentist and Bayesian confidence intervals around
fitted functions. Guo (2002) constructs Bayesian confidence intervals around the fitted
functions in the different groups, while Wood (2004) constructs confidence intervals
for generalized additive models fitted using penalized splines.

From Figure 2.1 (top left panel), one profile, in the control group, appears to
be outlying. An analysis excluding this particular subject reveals no change in the
overall conclusions, therefore the subsequent discussion is based on all data. However,
focus on this potentially outlying observation may be an intriguing topic of further
research.

Section 4.1 gives a brief review of linear mixed models and semiparametric mixed
models. Section 4.2 focuses on the formulation of the semiparametric models consid-
ered herein, whilst in Section 4.3 aspects of inference are discussed. An application
of the models under discussion is the subject of Section 4.4 with emphasis on a single
longitudinally measured response, heart rate, in this case.
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4.1 Semiparametric Mixed Models

The data considered in this chapter, described in Section 2.1.1, fall within the frame-
work of continuous longitudinal data, and hence can be modeled by use of a linear
mixed model. The general linear mixed effects model can be represented as (Verbeke
and Molenberghs, 2000)





Y i = Xiβi + Zibi + εi

bi ∼ N(0, G), εi ∼ N(0,Σi), b1, . . . , bn, ε1, . . . , εn are independent,
(4.1)

where Y i is the mi-dimensional response vector of measurements for dog i(i =
1, . . . , n), Xi and Zi are mi × p- and mi × q-dimensional matrices of known co-
variates (e.g., time), respectively, βi is a p-dimensional vector of fixed effects, bi is
q-dimensional dog specific vector of random effects and εi is an mi-dimensional vec-
tor of residuals. The matrix G is a general q × q covariance matrix and Σi is an
mi ×mi covariance matrix. Often, Σi is assumed to be equal to σ2

εImi , resulting in
the so-called conditional independence model.

Given the mean profiles in the top panel of Figure 4.1, it appears a suitable
parametric function to describe the mean evolution may not be easily deduced. An
appealing alternative is to model the mean with a semiparametric smooth function,
f(t), which can be estimated, among others, with penalized splines. Here, we build
on the foundation set in Chapter 3.

Let yij denote the response taken from dog i at time tij (j = 1, . . . , mi). The
model of interest can be expressed as Yij = f(tij) + b0i , for a smooth function f(·)
and subject-specific random intercepts b0i , accounting for the clustered nature of the
observations. The penalized spline representation, based on a truncated power basis,
can be written as

Yij = β0 + β1tij + . . . , +βpt
℘
ij +

K∑

k=1

bk(tij − κk)℘
+ + b0i + εij , (4.2)

where κ1, . . . , κK are a set of distinct knots in the range of tij , with u+ = max(0, u).
Making the assumption bk ∼ N(0, σ2

b ), and b0i ∼ N(0, σ2
b0

) gives rise to the so-called
semiparametric mixed model. The truncated lines basis (℘ = 1) is simple in for-
mulation, performs adequately in many circumstances (Ngo and Wand, 2004), and
therefore is a sensible choice, provided a sufficiently large number of knots is used.

For ease of notation, we adopt the following matrix notation (see also Durbán et al.,
2005). Let Y = [yij ]1≤i≤n,1≤j≤mi be the vector of stacked subject-specific responses,
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X =
[

1 tij

]
1≤i≤n,1≤j≤mi

the corresponding design matrix, and β =


 β0

β1


 the

vector of fixed effects to be estimated. Further, define

Zi =
[

(tij − κk)+
]
1≤j≤mi, 1≤κ≤K

, Z =




Z1 11 0 . . . 0

Z2 0 12 . . . 0
...

...
...

. . .
...

Zn

...
... . . . 1n




,

where 1 is an mi-dimensional column of ones,

b =
[

b1, . . . , bK , b01 , . . . , b0n

]′

, and ε =
[

ε11, . . . , εnmn

]′

.

Using this notation, a stacked version of (4.1) becomes Y = Xβ + Zb + ε. The
correspondence between the penalized spline smoother and the optimal predictor in a
mixed-model framework enables conventional software tools for mixed models, e.g., S-
Plus, R, or SAS, to be used for fitting the penalized spline model. In particular, we use
the function lme () in S-Plus and the MIXED procedure in SAS to fit the models as
exemplified in the appendix. Parameters are estimated through maximum likelihood
(ML). We make this choice because some of our comparisons include models with
different fixed-effects structures, precluding the use of restricted maximum likelihood
(REML, Verbeke and Molenberghs (2000)).

Fitting penalized splines by the mixed-model approach has some appealing ad-
vantages, such as the automatic determination of the smoothing parameter, a unified
framework for inference, and the flexibility with which the models can be extended.

4.2 Semiparametric Models for Mean Evolution

We are interested in investigating whether there is a difference between the two experi-
mental groups, that is, in comparing their average profiles (see top panel of Figure 4.1).
Further, we intend to investigate which specific sections of the profiles exhibit signifi-
cant differences. To test whether the means of the two groups are equal, without loss
of generality, we formulate the hypotheses

H0 : fA(t) = fB(t), for all t,

H1 : fA(t) 6= fB(t), for at least one value of t.
(4.3)

In certain situations, the null hypothesis may be composite, consisting of both tests
for fixed effects as well as variance components. The null hypothesis obviously implies
a common mean for both groups.
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The semiparametric model discussed in Section 4.1 implies that the mean response
for each treatment group can be represented by an additive model of two components,
a linear component and a smooth component. Figure 4.1 (bottom) illustrates, with
hypothetical examples, several possible scenarios related to the evolution of the means
over time. In all examples, the mean is a sum of a linear part and a smooth part.
In panel A, the two groups have the same mean, implying that the null hypothesis
in (4.3) is satisfied. Panel B reveals a pattern in which the means of the two groups
differ only by a constant, while in panel C the groups are different in the linear
part but the smooth component of the mean is identical. Finally, panel D reveals a
pattern in which the means of the two groups have different evolutions over time and
the groups are different in both the linear and smooth parts.

In what follows, we formulate linear mixed models following each of the scenar-
ios illustrated in Figure 4.1 (bottom), and in Section 4.3, we discuss corresponding
approaches to inference based on these models.

4.2.1 Model 1: Single Curve for Both Groups

Under the null hypothesis in (4.3), it is assumed that there is no difference between
the treatment groups, requiring the fit of a single, common curve only (see panel A,
Figure 4.1). The following model, based on the linear spline basis is considered:

Yij = β0 + β1tij +
K∑

k=1

bk(tij − κk)+

︸ ︷︷ ︸
f(tij)

+b0i + εij ,

where f(tij) is the semiparametric smooth function, b0i is a subject-specific ran-
dom intercept and εij are residuals. The covariance matrix for the random effects
(b1, . . . , bK , b01 , . . . , b0n) is defined as

H =


 σ2

bIK 0

0 σ2
b0

In


 , (4.4)

where σ2
b = var(bk) and σ2

b0
= var(b0i).

4.2.2 Model 2: Separate Curves With No Time Interaction

In Model 2, we fit two separate curves to the two groups, which are assumed to
be ‘parallel’. The random effects are assumed to vary at the highest level of the
model, hence there is no grouping structure in the corresponding matrix Z, defined
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Figure 4.1: Heart rate group-specific mean profiles (top) and hypothetical examples of
the semiparametric models showing the linear and nonparametric parts of the model
(bottom). The models in panels A-D illustrate how the group specific could possibly
differ.

in Section 4.1. The penalized spline formulation of this model is

Yij =





β0 + β1tij +
∑K

k=1 bk(tij − κk)+ + b0i + εij , Group A,

(β0 + β01) + β1tij +
∑K

k=1 bk(tij − κk)+ + b0i + εij , Group B.
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Here, β01 is the difference in the group-specific intercepts. Figure 4.1 (panel B) graph-
ically illustrates such a situation. The covariance matrix structure for the random
effects is equal to (4.4).

4.2.3 Model 3: Separate Curves With Different Linear Effects

but Equal Nonparametric Part

Model 3 assumes that the fixed parts (the linear trends), are different across the two
groups but the non-parametric component, responsible for the smoothing, is the same
(Figure 4.1, panel C). Hence, the random effects responsible for smoothing vary at
the highest level of the model. The models in the two groups can be expressed as

Yij =





β0 + β1tij +
∑K

k=1 bk(tij − κk)+ + b0i + εij , Group A,

(β0 + β01) + (β1 + β11)tij +
∑K

k=1 bk(tij − κk)+ + b0i + εij , Group B.

The covariance matrix for the random effects equals (4.4) as well.

4.2.4 Model 4: Separate Curves Smoothed Separately with

the Same Smoothing Parameter

In this model, the smoothed functions are different in the two groups, although the
level of smoothing is assumed common. It is further assumed that the random effects
are independent. Unlike the models discussed sofar, the matrix Z now has a grouping
structure. Suppose we have nA and nB subjects in the first and second groups,
respectively, with n = nA + nB , and represent the design matrices as follows,

ZA =




Z1 11 0 . . . 0

Z2 0 12 . . . 0
...

...
...

. . .
...

ZnA

...
... . . . 1nA




, ZB =




ZnA+1 1nA+1 0 . . . 0

ZnA+2 0 1nA+2 . . . 0
...

...
...

. . .
...

Zn

...
... . . . 1n




,

which form a block-diagonal matrix

Z =


 ZA 0

0 ZB


 .

The random-effects vector now is

b =
[
bA
1 , . . . , bA

K , bB
1 , . . . , bB

K , b01 , . . . , b0n

]′
.
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The covariance matrix is a block-diagonal matrix with different entries for the variance
components corresponding to the two groups and the random intercept, given by

H =




σ2
bIK 0 0

0 σ2
bIK 0

0 0 σ2
b0

In


 .

A convenient way to represent this model is by its penalized spline representation

Yij =





β0 + β1tij +
∑K

k=1 bA
k (tij − κk)+ + b0i + εij , Group A,

(β0 + β01) + (β1 + β11)tij +
∑K

k=1 bB
k (tij − κk)+ + b0i + εij Group B,

(4.5)
where var(bA

k ) = var(bB
k ) = σ2

b .

4.2.5 Model 5: Separate Curves Smoothed Separately with

Different Smoothing Parameter

The fixed part of Model 5 remains the same as in Model 4 but the smoothed functions
are different in the two groups, and also, the level of smoothing is allowed to differ.
Hence, the smoothing parameter differs by group. Interestingly, the matrix Z is
similar to that in Model 4. However, the covariance matrix is expressed as

H =




σ2
bAIK 0 0

0 σ2
bBIK 0

0 0 σ2
b0

In


 .

The penalized spline representation of this model is similar to (4.5) and the reference
panel is D in Figure 4.1, which also serves as the reference panel for Model 4.

4.3 Model Selection, Inference, and Confidence In-

tervals and Bands

We consider two inferential approaches. The first is based on formal hypotheses tests,
the second on the use of confidence intervals and/or confidence bands. Issues of model
selection and hypotheses testing are discussed in Section 4.3.1. Confidence intervals
and bands follow in Section 4.3.2.
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4.3.1 Model Selection and Hypotheses Testing

The null hypothesis specified in (4.3) implies a common mean for both treatment
groups. The alternative models given in Section 4.2 describe a hierarchy of more
complicated models. To test for a difference between the two groups, first select
the best fitting model among the models described in Section 4.2, by employing
a commonly used selection criterion, AIC (Akaike, 1973; Burnham and Anderson,
2002). The smaller the AIC value, the better the model. Next to this, if a formal
test is required, the model declared ‘best’ may then be compared to Model 1, the null
model, using e.g., a likelihood ratio test.

Models we consider possess differences in both fixed effects and the nonparametric
part, as reflected by the complexity of the smoothing matrix. As mentioned by Eilers
and Marx (1996), the idea behind the AIC is to correct the log-likelihood of a fitted
model for the effective number of parameters. To this end, we consider the effective
number of parameters in the model (Eilers and Marx, 1996; Ruppert et al., 2003; Lee
et al., 2006). For convenience and to distinguish it from the marginal AIC (Wager
et al., 2005) reported by the mixed-model software, denote the resulting AIC as an
adjusted AIC, abbreviated AICadj .

Let C = [X Z] be the design matrix with appropriate fixed-effects components
and the corresponding smoothing matrix, as defined in the different models. The
effective number of parameters is then defined as

Ep = trace
(
(CT C + λ̂D)−1CT C

)
, (4.6)

where λ̂ = σ̂2
ε/σ̂2

b and D = diag(0, 0, 1, 1, 1, . . . , 1), with dimension K + 2. For some
log-likelihood LL, an adjusted AIC is then

AICadj = −2LL + 2Ep.

Note that while the marginal AIC penalizes only for the number of parameters in the
model (fixed effects and variance components), the penalty term of AICadj in (4.6)
takes smoothing into account by including the design matrix for smoothing, Z via
the matrix C. Note also that for other models, for example, Model 4, a suitable
variation of D is required. Since the smoothing matrix is block-diagonal, we can
define D∗ = I2 ⊗D, where ⊗ defines a kronecker product with an identity matrix of
dimension 2.

For tests involving fixed effects only, a conventional likelihood ratio test with an
appropriate chi-square distribution is considered. Table 4.1 gives an overview of how
one can test each of the alternative models against the null model. Appropriate null
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hypotheses of interest, involving variance components in our case, focus on equality
of variance components and not on zero variances. This is a non-boundary situation
and hence conventional chi-squared null distributions apply. For example, for Model
5, involving different variance components in the two groups, a test involving both
fixed effects and variance components is required. In such a case, the null hypothesis
can be formulated as

H0 : β01 = 0, β11 = 0, σ2
bA = σ2

bB . (4.7)

For σ2
bA = σ2

bB + ∆, the hypothesis σ2
bA = σ2

bB is equivalent to testing H0 : ∆ = 0.
The distribution of the LRT statistic is then χ2

3 since (4.7) is equivalent to

H0 : β01 = β11 = ∆ = 0.

Table 4.1: Inference about the mean structure and variance components. Illustrating
the null hypotheses corresponding to testing each of the alternative models against
Model 1.

Model Model description Null hypothesis Null distribution

5 Different smoothing parameters H0 : β01 = β11 = 0, σ2
bA = σ2

bB χ2
3

4 Same smoothing parameters H0 : β01 = β11 = 0 χ2
2

3 Different linear components H0 : β01 = β11 = 0 χ2
2

2 Parallel means H0 : β01 = 0 χ2
1

1 Common model

4.3.2 Pointwise Confidence Intervals and Simultaneous Confi-

dence Bands

Consider the penalized spline model in the mixed-model form as in Section 4.1, re-
expressed as

Y = Xβ + Zbbb +

ε∗︷ ︸︸ ︷
Zb0bb0 + ε, (4.8)

such that,
Cov(ε∗i ) = M i + Σi = R∗

i , (4.9)

where Zb and Zb0 are matrices corresponding to smoothing and random intercepts,
respectively, M i = σ2

b0
J with J an mi×mi matrix of ones. Construction of pointwise



Smoothing Longitudinal Data 35

confidence intervals as well as simultaneous confidence bands requires the covariance
for the vector of contrasts between the estimated and true parameters for the fixed
and random effects such that (Ruppert et al., 2003)

Cov





 β̂ − β

b̂b − bb





 '

(
CT R̂

−1
C + B̂

)−1

, (4.10)

where C is a design matrix containing linear time effects and a truncated line basis,
R̂ is the residual covariance and B̂ is a matrix constructed from variance components
corresponding to smoothing. Assuming a conditional independence model with ran-
dom intercept only, and an equal number (m = mi) of measurements per subject, it
can be shown that

(
CT R̂

−1
C + B̂

)−1

= σ̂2
ε

[
n∑

i=1

{
CT

i

(
Im×m − σ̂2

b0

σ̂2
ε + mσ̂2

b0

Jm×m

)
Ci

}
+

σ̂2
ε

σ̂2
b

D

]−1

,

(4.11)
where

Ci ≡




1 t1 (t1 − κ1)+ . . . (t1 − κK)+
...

...
...

...
...

1 tm (tm − κ1)+ . . . (tm − κK)+


 , C ≡ [Ci]1≤i≤n,

and D = diag(0, 0, 1, . . . , 1). The simultaneous confidence bands are based on simula-
tions assuming a multivariate normal distribution for the vector of contrasts between
the estimated and true parameters for both fixed and random effects. Such bands
allow joint statements, for example, that f(t1) is contained in some interval and si-
multaneously f(t2) is contained in another interval with some level of confidence (e.g.,
95%).

Let g = (g1, . . . , gT ) be a set of values for which a simultaneous confidence band
for fg is required. It is assumed that, approximately (Ruppert et al., 2003)


 β̂ − β

b̂b − bb


 ∼ N

{
0,

(
CTR̂

−1
C + B̂

)−1
}

. (4.12)

A 100(1-α)% simultaneous confidence band for fg can be obtained as
[
f̂(gl)± h̃(1−α)ŝtdev{f̂(gl)− f(gl)}

]
1≤l≤T

,
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where h̃(1−α) is the 1− α quantile of (Ruppert et al., 2003)

supt∈χ

∣∣∣∣∣
f̂(t)− f(t)

ŝtdev{f̂(t)− f(t)}

∣∣∣∣∣ ≈ max
1≤l≤T

∣∣∣∣∣∣∣∣∣∣∣∣


Cg


 β̂ − β

b̂b − bb







l

ŝtdev{f̂(gl)− f(gl)}

∣∣∣∣∣∣∣∣∣∣∣∣

, (4.13)

with Cg constructed in a similar way to Ci above. Simulations from (4.12) and
computation of (4.13) can be repeated for N times to obtain h̃1

1−α, . . . , h̃N
1−α. The

value with rank (1− α)N becomes our h̃(1−α).

Confidence Bands on the Difference Between Both Groups

For comparison of the group-specific curves, confidence intervals on the difference
between both curves may be more informative. Let fA and fB be the respective
group-specific profiles. Using appropriately defined matrices, we can write,


 fA

fB


 = Xβ + Zb

= C


 β

b


 , where C = [X Z].

The difference fd = fA − fB can be obtained by defining an appropriate contrast
matrix L. Let IT be an T × T identity matrix. Define the contrast matrix L =
[IT − IT ] . It then follows that the difference is

fd = fA − fB = [LX LZ]


 β

b




= [X∗ Z∗]


 β

b


 ,

which takes a familiar look of the linear mixed model. The construction of pointwise
confidence intervals and simultaneous confidence bands now follows exactly as defined
for the group-specific profiles, for example, with Ci replaced with elements from
C∗ = [X∗ Z∗].
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4.4 Application to the Cardiovascular Safety Ex-

periment Parallel Design Case

The models as well as the inferential machinery discussed in this chapter are illustrated
on the data example described in Section 2.1.1. Aspects of model selection, hypotheses
testing and simultaneous confidence bands occupy the forthcoming sections of the
present chapter. Although the essence of this thesis is to focus on data driven flexible
modelling techniques, a comparison with some classical parametric models is not
harmful.

All the models are fitted with the time scale in hours. For reasons of flexibility,
smoothing is done with 40 equally spaced knots, selected as quantiles of the time
variable (Ruppert, 2002).

4.4.1 Model Fitting and Selection

In this section, without losing focus on the semiparametric models, which are of more
interest here, a brief comparison of these models with some possible parametric models
one can fit to the data is given.

The various semiparametric models fitted are shown in Figure 4.2. The fitted
models in the two groups for Model 2 practically overlap, similar in appearance to
Model 1; we therefore omit the plot of Model 1. It can be observed that the fit-
ted functions for Models 4 and 5 are very similar, suggesting that different levels of
smoothing in the two groups may not be necessary.

A formal test for this can be conducted, a point to which we will return. The
marginal and adjusted AIC values in Table 4.2 are used as exploratory tools for
discriminating amongst candidate models. We first illustrate the difference between
the AIC and AICadj . Using the marginal AIC, Model 4 and 5 have the smallest
but very similar AIC values, however, we are inclined to select Model 4, the more
parsimonious between them, as the ‘best’. Recall, in Model 4 we smooth both groups
separately, with a single smoothing parameter, while Model 5 allows for varying levels
of smoothing in the two groups. Compared with Model 3, Model 4 has a smaller
marginal AIC. However, this will always be the case since both models have the same
number of parameters while Model 4 has a higher likelihood because of the separate
smoothers for the groups. Hence, use of the marginal AIC may not be appropriate,
instead, the adjusted AIC should be used in this case. When AICadj is used, Model
5 has a slightly lower AICadj value than Model 4 (see Table 4.2) and could therefore
be preferred. A formal test between both models follows in Section 4.4.2.

Under the parametric models, a full factorial structure in time, i.e., unstructured



38 Chapter 4

Time

H
ea

rt
 R

at
e

0 50 100 150 200

40
60

80
12

0
16

0

Control
Treated

Model 2

Time

H
ea

rt
 R

at
e

0 50 100 150 200

40
60

80
12

0
16

0

Control
Treated

Model 3

Time

H
ea

rt
 R

at
e

0 50 100 150 200

40
60

80
12

0
16

0

Control
Treated

Model 4

Time

H
ea

rt
 R

at
e

0 50 100 150 200

40
60

80
12

0
16

0

Control
Treated

Model 5

Figure 4.2: Fitted models in the control and treated groups for the different models
under the alternative hypothesis.

mean, and classical polynomials up to order four are considered. The AIC and -2LL

values for the parametric models are also given in Table 4.2. In all cases, a random
intercept model is considered. While according to this example, at least a cubic poly-
nomial appears to provide a better fit than Model 4, this may not be the case in other
examples where non-linear relationships are more complex. Even in this case, it is
important to note that Model 4 tells us more about the underlying structural rela-
tionship between the two groups (in terms of smoothing) compared to, for example,
the knowledge that a cubic polynomial fits better in both groups. In general, we feel
use of semiparametric models offers more flexibility, and the formulation considered
here provides a better understanding of the underlying profiles. As such, we revert
to the main focus of this chapter, the use of semiparametric mixed models and in the
following, more focus is put on Model 4.

A random-intercept model only assumes a shift in subject-specific profiles, a rather
restrictive assumption. More complex models, for example, including subject-specific
random intercepts and slopes, can be considered. In addition to Model 4, let us
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Table 4.2: Marginal AIC values denoted by AIC and minus twice loglikelihood values
for each of the different models. AICadj gives an adjusted AIC based on the effective
number of parameters in the model.

Semiparametric models

Model 1 Model 2 Model 3 Model 4 Model 5

-2LL 52648.8 52648.8 52074.0 51947.6 51947.7

AIC 52658.8 52660.8 52088.0 51961.6 51963.7

AICadj 52664.9 52669.9 52094.7 51978.5 51977.8

Parametric models

Unstruct. mean Linear Quadratic Cubic 4th order

-2LL 51649.6 52536.0 52031.7 51935.1 51920.8

AIC 52613.6 52546.0 52047.7 51955.1 51944.8

include subject-specific random slopes b1i and express the so-obtained Model 4a as

Yij =





β0 + β1tij +
∑K

k=1 bA
k (tij − κk)+ + b0i + b1itij + εij , A,

(β0 + β01) + (β1 + β11)tij +
∑K

k=1 bB
k (tij − κk)+ + b0i + b1itij + εij B,

with covariance matrix

H =




σ2
bIK 0 0

0 σ2
bIK 0

0 0 Blockdiag(G)1≤i≤n


 ,

where

G = Cov(b0i , b1i)
′ ≡


 σ2

b0
σ2

b0b1

σ2
b0b1

σ2
b1


 .

This model will be revisited and discussed further in Section 4.4.2.

4.4.2 Hypotheses Testing and Confidence Intervals

Let us now focus on hypotheses testing and on the construction of confidence inter-
vals/bands for the selected Model 4. The conclusion that we do not require separate
smoothing parameters in both groups can be substantiated by a formal test. Fol-
lowing notation in Sections 4.2.4 and 4.2.5, the estimated variance components for
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Model 4 and Model 5 are given by

Ĥ =




7.87IK 0 0

0 7.87IK 0

0 0 245.78In


 , Ĥ =




7.36IK 0 0

0 9.39IK 0

0 0 246.13In


 ,

respectively. A likelihood ratio test for the null hypothesis of non-differential variance
components asymptotically follows a χ2

1. The associated p-value is 0.80, implying that
there is no need for separate smoothing parameters for the two groups.

The fact that we have selected a model other than Model 1 already suggests a
difference between the two groups. However, a formal test supporting this claim
may be more appealing. Thus, we test the hypothesis that we have one common
average curve against separate average curves in the two groups that exhibit the
same amount of smoothing. The difference in the double loglikelihood values between
the two models equals 701.20, which is highly significant compared to a χ2

2 (see Table
4.1). Therefore, we need separate curves in the two groups, implying the two groups
are not the same. Note that, apparently, the null hypothesis should also include the
restriction, bA

K = bB
K . However, we argue that these coefficients are not treated as

parameters in the model, only their variance is. Indeed, this is to be understood in
the same spirit as for the random intercepts b0i , where the variance of b0i is the model
parameter, not the b0i themselves.

Turning to Model 4a, the estimated random-effects covariance matrix is

H =




9.28IK 0 0

0 9.28IK 0

0 0 Blockdiag(Ĝ)1≤i≤n


 , where,

Ĝ =


 297.85 −29.09

−29.09 16.96


 .

A formal test to determine the need for the random slope can be conducted between
Models 4 and 4a, using a likelihood ratio test based on a mixture of chi-squares,
1
2χ2

2 + 1
2χ2

3 (Verbeke and Molenberghs, 2003). Note that the null Model 4 contains
two variance components. The test statistic is 1110.14, yielding a highly significant
result, implying the need for random slopes. Further, Model 4a has a relatively lower
AICadj (50870.9) compared to other models in Table 4.2. Figure 4.3 displays the
observed mean profiles in the two groups as well as fitted functions from Model 4 and
Model 4a. The fitted curves appear to describe the mean evolution rather well.
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(a) Mean and fitted profiles: Model 4
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Figure 4.3: Fitted profiles in the control and treated group and corresponding confi-
dence bands constructed with and without subject-specific random effects.

The next step involves construction of confidence bands to identify particular sec-
tions of the profiles where significant differences occur. By observing the mean profiles
in two groups (Figure 4.1), one can expect that between 50 and 200 minutes, the two
profiles would not be significantly different from each other, while earlier than 50 min-
utes, significant differences are not uncommon. However, to have a clearer picture
as well as support for such conclusions, using results in Section 4.3, 95% confidence
bands for the population profiles are constructed. Three independent simulations
yield values of h̃(1−α) taking values 2.2360, 2.2261 and 2.2256, therefore the simul-
taneous bands are estimated to be approximately 2.23/1.96 = 1.14 times wider than
the corresponding pointwise confidence intervals. Although simultaneous bands are
slightly wider (as expected), there is no major difference in conclusions between the
pointwise and the simultaneous bands in this case.

The construction of confidence bands for Model 4a requires an appropriate modi-
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fication of (4.9). For any time points q and r (1 ≤ q, r ≤ m), q ≤ r, the (q, r) element
of the matrix M i is given by:

σ2
b0 + σ2

b0b1(tq + tr) + σ2
b1(tqtr).

The resulting R∗ does not yield a readily invertible form, unlike in the random-
intercept model. However, calculations can still be done using the general form (4.10),
with the rest following the steps in the random-intercept model.
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Figure 4.4: Random intercept and slope model (Model 4a): 95% pointwise confidence
intervals and simultaneous bands for the difference between the compound and control
groups. The shaded areas indicate sections where significant differences between the
groups are observed.

Figure 4.3 (panel (b)) shows confidence bands, constructed without accounting
for the random intercept. This only serves to show the effect of underestimating
variability by not including the variance for the random intercept as indicated by
the shift in the vertical lines, approximating the start of non-overlapping sections.
It can be observed that, when the random intercept is included (panel (c)), more
overlapping sections appear and the line is shifted more to the left. Similarly, inclusion
of the random slopes results in wider bands with even more overlapping sections, as
depicted in Figure 4.3, panel (d).

Further, confidence intervals and bands for the difference between both groups
have also been calculated and displayed in Figure 4.4. The difference between the
two groups is more visible from Figure 4.4, where significant differences appear ap-
proximately within the first 35 minutes. Following the above discussion, we conclude
that the two groups appear to differ significantly only in the early stages of the ex-
periment, i.e., approximately within the first 35 minutes. It appears the heart rate



Smoothing Longitudinal Data 43

for the treated animals is higher, but only very early in the experiment, while no
significant differences are observed at any other time during the experiment. Such a
joint conclusion may only be made with reference to simultaneous confidence bands
and not pointwise intervals.

4.5 Discussion

The models fitted here make use of the correspondence between the linear mixed
model and the penalized spline smoother. We have shown that one can formulate
different possible situations, illustrating how groups can differ, under the alternative
hypothesis. From these, a ‘suitable’ model was selected based on the AIC criterion
and all inference based on that particular model.

Our aim was to compare group-averaged profiles. As such, although models in-
volving subject-specific curves may be appealing, it is not our interest to predict
subject-specific profiles. As a result, we have focused on the random-intercept model,
extending the discussion to a random-intercept and slope model.

The problem of testing for a difference in the average profiles, by first fitting an
overall common average curve under the null, may in certain cases involve testing
for both fixed effects and variance components. This can also be done by way of
simulations, as suggested by Ruppert et al. (2003) and Crainiceanu et al. (2005a), but
we have considered likelihood ratio tests based on asymptotic chi-square distributions.

The models we have considered could also be tested for in a hierarchical way,
where one would attempt to reduce the most complex Model 5 in a number of steps.
Suppose a comparison between Model 4 and Model 3 is required. It is then interesting
to note that the two models contain exactly the same number of parameters. From
a parametric point of view, although the group-specific random effects for smoothing
for Model 4 are independent, only a single variance component is estimated, as in
Model 3. Hence, in a testing problem, the fact that bA

k 6= bB
k in Model 4 is of no

consequence since these coefficients are not treated as parameters. This situation
presents a challenge in case one wants to make a formal test (e.g., a likelihood ratio
test) to move from Model 4 to Model 3. The difference in the number of parameters is 0
and a formal parametric test is not straightforward. In such situations, differentiation
between the models can be done based on information criteria adjusted for the effective
number of parameters in the model.

The detection of particular sections of the profiles showing significant differences
is achieved by constructing confidence intervals and bands. Pointwise confidence in-
tervals suffer from the drawbacks associated with multiple comparisons, wherein the
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overall significance level needs to be protected. To counterbalance this, simultaneous
confidence bands have been discussed, specifically focusing on application to the ran-
dom intercept and random intercept and slope models. Adjustments to the confidence
bands of Ruppert et al. (2003) to include the random intercept or random intercept
and slope in case of longitudinal data has been discussed. It is worth noting that more
complex models, for example, models including serial correlation (Verbeke and Molen-
berghs, 2000), can also be considered. In such a case, parametric or semiparametric
models for serial correlation would be interesting to investigate.

It is common in longitudinal studies to be confronted with missing data. A host of
methods dealing with the problem exist in literature. Among them, likelihood-based
approaches in longitudinal studies only require that the missing data mechanism
can be considered as missing at random (MAR). We refer to Verbeke and Molen-
berghs (2000), Molenberghs and Verbeke (2005) and other missing data references
cited there for an in-depth exposition.



5
Analysis of Cross-over

Designs Using

Semiparametric Mixed

Models with Serial

Correlation within Periods

Chapter 4 focuses on smoothing longitudinal data in a parallel design setting using
penalized spline methodology, couched in the mixed-model framework. In this chap-
ter, we demonstrate the versatility and extendability of such models to different study
designs, in particular, to the often used cross-over design. Application is illustrated
using the data described in Section 2.1.2. The current chapter hinges on material in
Maringwa et al. (2008e).

In a cross-over trial, each unit or subject receives a sequence of experimental
treatments, in randomized order. The main advantage of a cross-over trial is that
treatments are compared within subject such that the difference between treatment
measurements removes any subject effect from the comparison. Giving the treatments

45
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in random order helps to minimize, remove and/or estimate effects due to time period
or from carry-over treatment effect from earlier into later time periods. The theory
is well established, whether for two treatments and two periods, or for higher-order
designs (Jones and Kenward, 2003).

Here, a particular case of a cross-over design with a salient feature of a rela-
tively long sequence of repeated measurements within treatment period is considered.
Focus is put on modelling the mean evolution using semiparametric mixed models,
accounting for correlation between observations through random effects. A consider-
able amount of literature with regards to repeated measures cross-over designs already
exists, although mainly focusing on two treatment and two periods designs (see e.g.,
Wallenstein and Fisher, 1977; Patel and Hearne, 1980; Dunsmore, 1981; Grender and
Johnson, 1994).

Dunsmore (1981) uses Bayesian growth curves of Fearn (1975), with a quadratic
time effect in a two-period repeated measures cross-over design. Analyzing the same
experiment as Dunsmore (1981), Grender and Johnson (1994) discuss a two stage
approach wherein the repeated measures across time for each subject are modeled
parametrically, also using a quadratic trend, and later analyzing the parameter esti-
mates using multivariate methods. More recently, Putt and Chinchilli (1999) analyze
a two treatment and four period design using a mixed effects model which eliminates
the need for preliminary testing for nuisance factors e.g., carry-over. The response in
their case is again modelled parametrically assuming a quadratic function in time.

As already mentioned, there are many practical situations where determining an
appropriate parametric function for the mean may not be easy. As pointed out by
Dunsmore (1981), checking for the assumption of the presumed time trend (quadratic,
in that case) may be a difficult task. It is with such cases in mind that we propose
modelling the mean evolution using flexible semiparametric models, riding of the need
to specify any particular parametric form. Jones and Kenward (2003) for example,
consider a cross-over with many periods and model the period effects using natural
cubic splines.

After estimating the group mean profile using penalized splines, focus shifts to
construction of confidence bands around the fitted functions. In this thesis, adapta-
tions of the bands of Ruppert et al. (2003) are made to accommodate correlation
between measurements through random effects, as well as more complex models for
residual covariances, specifically, models including serial correlation and measurement
error (Verbeke and Molenberghs, 2000). Indeed, experiments with long sequences of
repeated measurements are bound to yield some form of residual dependencies, which,
at least, should be modelled parametrically.
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5.1 Analysis Using the AUC as Summary Statistic

In this section, we discuss application of the area under the curve (AUC) as one way
of summarizing data from a repeated measures cross-over design. This however may
be seen as loss of information. Indeed, if the aim is to compare evolution over time
across the experimental groups, such an approach is not useful. However, for an overall
profile comparison, the AUC may sometimes be a viable option. As pointed out by
Jones and Kenward (2003), the approach makes few modelling assumptions about the
joint behavior of the repeated measurements, making it robust. Also, given that in
our situation the data are completely balanced, each subject provides approximately
the same amount of information, a key assumption for the use of such a summary
statistic (Jones and Kenward, 2003).

Let us now focus on the model considered for the AUC summary statistic. As is
usually done, to uphold the ubiquitous assumption of normally distributed errors, the
model is based on a log transformation of the AUC. Let Yijv denote the log of AUC
for animal i in period j, receiving experimental group v, for i = 1, . . . , n, j = 1, . . . , p,
and v = 1, . . . , g. Taking the last period (j = 4) and the control group (v = 1) as
reference categories, define Pj , Gv, and Cj as indicator variables for period, treatment
group, and carry-over respectively, such that, for example, Pj = 1 if period = j, and 0
otherwise, for all j ≤ p−1, with a similar definition for Cj and Gv and for v = 2, 3, 4.
The model takes the form:

Yijv = β0 + αjPj + τvGv + ζjCj + b0i + εijv, (5.1)

where β0 is an intercept, αj is the effect associated with period j, τv is the effect
associated with treatment group v, ζj is the carry-over effect in period j, b0i is the
random intercept accounting for the correlation of observations from one subject,
and εijv is the random error term. Following Jones and Kenward (2003), we do not
include an interaction between period and treatment group. Such an interaction may
emanate from subjects being affected by some factors other than treatment, and/or
when the effect of a treatment level might depend on the current state of the subjects
Senn (1993). Needless to say that then the interpretation of results becomes difficult.

5.2 Analysis of the Cross-over Design Using Semi-

parametric Mixed Models

In the discussion in Section 5.1, the repeated measurements for each dog were summa-
rized using the log of AUC as a summary statistic. However, the data fall within the
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realm of continuous longitudinal data and hence can be modelled by use of a linear
mixed model (Verbeke and Molenberghs, 2000). A flexible route, situated within the
framework of mixed models, utilizes penalized splines, as already seen in the previous
chapters.

5.2.1 Formulation of the Models for the Cross-over Design

This section focuses on formulation of possible models which can be used to describe
the data at hand. The model with a full factorial structure for treatment and time as
in Jones and Kenward (2003) is a sensible starting point. We show how one can move
from this very general model to more parsimonious models, based on describing the
time evolution through penalized splines. The formulation of the models is similar in
spirit to that in Chapter 4, also presented in Maringwa et al. (2008d).

Using appropriately constructed matrices, all the models given in this section can
be represented using the matrix notation of Section 4.1. For the desired flexibility,
40 equally spaced knots, selected as quantiles of the time variable (Ruppert, 2002)
are used. Models 1-6 in Section 5.2.2 are used to model the cross-over aspects of the
experiment, i.e. Y = Xβ + Zb + ε where ε ∼ N(0, σ2

εI). In Section 5.2.3 the same
set of models are considered focusing on decomposing the covariance matrix of ε into
components of serial correlation and measurement error.

5.2.2 Modeling the Cross-over Aspect of the Design

Model 1: Full Factorial Structure for Treatment and Time

Let Yijv` denote the measurement on subject i, in period j, corresponding to treatment
group v at time point `, for i = 1, . . . , n; j = 1, . . . , p; v = 1, . . . , g; and ` = 1, . . . ,m.
Define t` as an indicator variable for time, such that t` = 1 if time is ` and 0 otherwise,
for ` ≤ m− 1. Consider a model with a full factorial structure (Jones and Kenward,
2003) for treatment group and time, expressed as

Yijv` = β0 + αjPj + τvGv + λ`t` + γvlGvt` + ψjlPjt` + ζjCj + b0i + εijv`. (5.2)

The parameter λ` refers to the effect of time, γv` denotes the interaction between
treatment group and time, ψj` is the interaction between period and time, and εijv`

are random terms. Often, Σi = Cov(εi) is assumed to be σ2
εI, resulting in a condi-

tional independence model. A more general residual covariance structure, for example
decomposing the vector εi into components of serial correlation, ε(1)i, and measure-
ment error, ε(2)i, can be considered (Verbeke and Molenberghs, 2000) and will be
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discussed in Section 5.2.3.
Given that for each subject, 72 measurements in each period are taken, Model 1 is

bound to yield a large number of parameters, hence the need for refinement. The fol-
lowing models, adjusting for possible period effects, show different possible approaches
to modeling the time evolution in the experimental groups.

Model 2: Single Curve for all Treatment Groups

In Model 2, it is assumed that the time evolution is the same in all treatment groups
(see Figure 4.1, panel A). As such, smoothing of the time trend occurs at the high-
est level of the model, thereby ignoring the treatment groups. The model can be
represented as:

Yij` = αjPj + β0 + β1tij` +
K∑

v=1

bk(tij` − κk)+ + b0i + ζjCj + εij`, (5.3)

where κk are knots, and the coefficients bk are common to all treatment groups, such
that Var(bk) = σ2

b . Model 2 can be expressed in matrix notation by adopting the
following notation: Y = [Yij`]i,j,` and X = [1, tij`, P1, P2, P3, C1, C2, C3]i,j,`. Further,
define, for each subject, a smoothing matrix

Zbi = [tij` − κk)+]1≤κ≤K , with stacked version Zb =




Zb1

Zb2

...

Zbn




. (5.4)

Model 3: Groups Curves Differ Only by a Shift

Model 3 assumes that the underlying linear trends in the treatment groups differ by
a shift only. However, the same non-parametric part is fitted to all treatment groups.
This model assumes the difference amongst the treatment groups, if present, does not
depend on time. A penalized spline representation of the model is

Yijv` = αjPj + τvGv + β0 + β1tij` +
K∑

k=1

bk(tij` − κk)+ + b0i + ζjCj + εijv`. (5.5)

This scenario corresponds to panel B of Figure 4.1. Compared with Model 2, the
current model has additional fixed effects parameters, τv. Note that the covariance
structure is the same as in Model 2.
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Model 4: Different Linear Effects with Same Smooth Part

Here, it is assumed that the linear parts of the models differ, while the same smooth
part is considered for all groups. This resembles a scenario where, relative to Model
3, profiles are tilted at some angle, such that treatment effect is no longer constant
in time. A representation of such a model is

Yijv` = αjPj+τvGv+β0+(β1+β1vGv)tiv`+
K∑

k=1

bk(tij` − κk)++b0i
+ζjCj+εijv`, (5.6)

with Var(bk) = σ2
b . Panel C of Figure 4.1 graphically illustrates such a scenario.

Model 5: Different Curves Smoothed Equally

All models considered sofar assume that the same smooth component is fitted to
the different treatment groups. It is possible to go one step further and fit a model
with different non-parametric parts of the model in the different treatment groups,
although the same smoothing parameter is used. The linear parts of the models are
assumed different and, although the random effects are assumed independent from
group to group, a single parameter is used to smooth the groups. A representation of
such a model is:

Yijv` = αjPj + τvGv +β0 +(β1 +β1vGv)tiv` +
K∑

k=1

bvk(tiv` − κk)+ + b0i + ζjCj + εijv`.

Note that part of the design matrix, Zb, corresponding to smoothing, is now block-
diagonal with each diagonal entry corresponding to a particular treatment group
and the coefficients for the truncated lines basis, bvk, are now group-specific with
Var(bvk) = σ2

b . The smoothing matrix is now given by

Zb =




Z1
b 0 0 0

0 Z2
b 0 0

0 0 Z3
b 0

0 0 0 Z4
b




,

where Z1
b, . . . , Z

4
b are group-specific smoothing matrices each constructed by stacking

the Zbi as in (5.4). This situation is similar to the illustration in panel D of Figure
4.1.
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Model 6: Different Curves with Varying Levels of Smoothing

A further step is to relax the assumption on the smoothing parameter and to assume
that the groups can be smoothed separately but with different smoothing parameters.
Hence, both the fixed effects part and the non-parametric part differ by group and
four variance components corresponding to smoothing the different treatment groups
are estimated. The penalized spline representation of this model and the Zb matrix
is the same as in Model 5, with Var(bvk) = σ2

vb. The covariance matrix pertaining to
smoothing is given by




σ2
1bIK×K 0 0 0

0 σ2
2bIK×K 0 0

0 0 σ2
3bIK×K 0

0 0 0 σ2
4bIK×K




.

The reference panel for this model is panel D, as in the previous model, since the
difference between these models cannot be seen graphically.

5.2.3 Modelling the Covariance Structure

Two types of covariance structures for measurements from a particular subject need to
be accounted for in the analysis. First, the correlations amongst measurements across
different treatment periods and then dependencies amongst measurements within one
treatment period. Assuming that the covariances applying to one period are similar
to those in other periods, the between and within-period covariance structures are
separable (Jones and Kenward, 2003). As such, accommodation of between-period
dependencies can be achieved by introducing the subject-specific random intercepts.
Commonly used models for repeated measures covariance structures, for example, an
AR(1) process can be used to model the remaining within-period dependencies. In
particular, we consider the decomposition of the residual variance into components of
serial correlation and measurement error, such that:

Cov(εi) = σ2
εI + τ2Hi,

where elements of Hi, the serial correlation matrix are modeled by some function,
particular cases of which are the exponential and Gaussian functions (Verbeke and
Molenberghs, 2000).

Let the variance of the serial process be denoted by τ2 and the rate of decay of
correlations with distance d``′ between time point ` and `

′
by θ. Table 5.1 shows the
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Table 5.1: Different covariance structures for modelling residual covariance within
periods.

AR(1) Gaussian Serial correlation Exponential Serial correlation

τ2θd
``
′ τ2exp

(−d``′/θ2
)

τ2exp (−d``′/θ)

forms of the covariance structure we consider for within-period residual covariance. As
mentioned before, owing to the length of the sequences of measurements per subject,
one would expect the residuals to be serially correlated. To gain insight into this
phenomenon, we fit an unstructured mean model that includes other fixed effects,
like period and the necessary interactions, and assess the behavior of the residuals.
Note that, at this stage, neither random effects are included nor covariance structure
is modeled. Denote the residuals at time point ` by r`ν , ν = 1, . . . , 32. At each of the
72 distinct time points, there are 32 observations. Figure 5.1 shows a plot of r1ν on the
horizontal axis against r`′ν on the vertical axis, with `

′
= 2, 6, 10, . . . , 62, a selection

of 16 time points. It is apparent from the residual plots that, after removing the mean
structure, the residuals do not appear independent and, as expected, the dependencies
tend to weaken with distance in time. As such, conditional independence models as
in Section 5.2.2 may not be appropriate in this case, hence the modeling of serial
correlation.

5.2.4 Constructing Confidence Intervals and Bands

This section focuses on the construction of confidence bands around the group-specific
fitted functions, following closely the work in Chapter 4. Such bands can be used to
compare the different treatment groups at specific time points, if necessary. Rup-
pert et al. (2003) give details for constructing such intervals or bands for smoothed
functions. Our intention is to adapt their results to accommodate the correlation
structure, as accounted for by the random intercept, and the residual covariances
allowing for presence of serial correlation.

The model for the cross-over design under consideration may be expressed in the
general formulation of a linear mixed model, whose random effects parts may well be
partitioned into components corresponding to subject-specific effects and smoothing
effects as in (4.8). Construction of pointwise confidence intervals as well as simultane-
ous confidence bands requires the covariance for the vector of contrasts between the
estimated and true parameters for the fixed and random effects (Ruppert et al., 2003).
Note, the generality of (4.10) makes it usable in different settings. For example, ex-
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Figure 5.1: Residuals at first time point plotted against residuals from other 16 selected
time points (2, 6, 10,. . . , 62).

pression (4.11) follows specifically from a random intercept model with independent
errors, implying a compound symmetry structure for R̂, which is readily invertible.
The following section focuses on how the preceding discussion can be extended to the
particular case of a cross-over design.

Adaptation of the Confidence Bands to the Cross-over Setting

Consider a random intercept model as in Section 5.2.2. Further, assume the model also
includes both components of serial correlation and measurement error in the residual
covariance structure. The resulting R̂ implies a simplified version of (4.10) may not be
straightforwardly obtained. However, the matrix can still be used in its most general
form. For illustrative purposes, consider a particular dog i. Assuming an exponential
type of serial correlation, the part of Cov(ε∗i ) in the first period corresponding to the
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first three observations is given by:

R∗
i[3] =




σ2
b0

σ2
b0

σ2
b0

σ2
b0

σ2
b0

σ2
b0

σ2
b0

σ2
b0

σ2
b0


 + τ2




1 exp(−d12/θ) exp(−d13/θ)

exp(−d12/θ) 1 exp(−d23/θ)

exp(−d13/θ) exp(−d23/θ) 1




+




σ2
ε 0 0

0 σ2
ε 0

0 0 σ2
ε


 , (5.7)

where τ2 is the variance for the serial correlation part, θ is the rate of decay of the
correlations as a function of d``′ , which is the Euclidean distance between coordinates
of the time variable, and σ2

ε is the variance of the measurement error. Therefore,
R∗

i consists of matrices of the form (5.7) as diagonal elements, corresponding to each
period, and matrices of the form σ2

b0
J in the off diagonal entries. Now, replacing R̂

with R̂
∗

in (4.10), where R̂
∗

is block-diagonal with diagonal elements R̂
∗
i , provides the

expression which can used to construct either pointwise or simultaneous confidence
bands.

5.3 Application to the Cardiovascular Safety Ex-

periment Cross-over Case

This section focuses on the application of the methodology discussed in the previous
sections to the data described in Section 2.1.2. Emphasis will be on the semipara-
metric mixed-model approach. Within the semiparametric models, a comparison of
models assuming independent residual errors with models assuming some form of
residual correlation structure will be undertaken. In addition, we briefly discuss the
issue of carry-over where, loosely, the observed response in one period could be the
result of the effect of the previously allocated treatment. Regardless of the wash-out
period used in the study, carry-over effects are not unexpected. For models that do
not require preliminary testing for carry-over, we refer to Putt and Chinchilli (1999).
The approach we take is to select one of the semiparametric models with indepen-
dent errors, based on AIC. The selected model will then be improved by modelling
the covariance structure and all further inferences will be based on the model se-
lected based on comparing covariance structures. The results from such a model are
compared with the summary statistics analysis.
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Table 5.2: Minus twice loglikelihood values and AIC values for models in Section 5.2.2,
assuming independent residual errors. For the null model (Model 2) as well as the
model with the smallest AIC (Model 4), different covariance structures are considered.
The boxed values indicate the best model under a particular covariance structure.

Model

Within-period cov. Crit. 1 2 3 4 5 6

Independent -2 loglik 9025.3 7128.7 6922.9 6893.3 6941.8 6938.3

AIC 10041.3 7150.7 6950.9 6927.3 6975.8 6978.3

AR(1) -2 loglik 5590.7 5557.1 5552.5

AIC 5614.7 5587.1 5588.5

Gaussian ser. corr. -2 loglik 5650.4 5600.2 5593.9

AIC 5670.4 5632.2 5631.9

Exp. ser. corr. -2 loglik 5544.1 5521.6 5518.4

AIC 5570.1 5553.6 5556.4

5.3.1 Model Fitting, Selection and Hypotheses Testing

Let us now focus on fitting and selection of the models discussed in Section 5.2.2. For
each of the models, the independent errors structure, a commonly used approach in
practice, is assumed and results are given in Table 5.2. A common issue with cross-
over designs is carry-over (Senn, 1993; Jones and Kenward, 2003). Models including
carry-over will be considered henceforth although a comparison with corresponding
models excluding the effects may be interesting.

The exploratory comparison of the models with independent residual errors ap-
pears to indicate Model 4, with differing linear effects by group and the same non-
parametric component is a plausible starting point. A formal likelihood ratio test
(LRT) can be performed to see if indeed there is need to move from Model 3 to
Model 4. Such a test, based on a χ2

3, and a LRT statistic of 29.6 = 6922.9 − 6893.3
yields a highly significant result (p = 0.0001). Hence, a model with different linear
effects by group fits better. Note, the test between Model 3 and 4 is based on fixed
effects only; no variance components are involved.

Different ways of modelling the residual covariance are applied and the results in
Table 5.2 indicate a substantial improvement in the fit of Model 4 upon modelling
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of the residual covariance structure. In particular, the model with exponential-type
serial correlation appears to fit better than other models. However, the group-by-
time interaction is now insignificant, implying Model 3. Note that, the group-by-time
interaction is the characteristic separating Models 3 and 4. Thus a formal test between
both models would be based on χ2

3, with a LRT statistic of 3.2 = 5521.6− 5518.4 and
p = 0.3618, corroborating that a constant difference in time suffices in this situation.
Henceforth, Model 3, with exponential serial correlation, becomes our chosen model
and any further inferences will be based upon this model.

The selection of Model 3 already suggests presence of treatment effect. However,
a formal test may be required, and that translates to testing the chosen model against
Model 2 (the null model). The hypothesis of interest then becomes, following (5.3)
and (5.5): H0 : τv = 0, v = 2, 3, 4. The null model was fitted under the various
covariance structures, such that appropriate comparisons of fixed effects against any
of the (chosen) alternative models may be effectuated. In this case, a test between
Models 3 and 2, both under the exponential serial correlation would be appropriate.
Again, there are no variance components equated to zero in this test and therefore
it is based on χ2

3. The LRT statistic is 22.5, which is significant (p < 0.0001), hence
groups differ.

We present the fixed-effects parameter estimates for Model 3, p-values from the
associated t-tests, and variance components in Table 5.3. For the sake of comparison,
we have included parameter estimates from the model with independent residual er-
rors. Focusing on the model with serial correlation in Table 5.3, it can be observed
that only the medium dose group differs from the control group (p = 0.0014). Let us
focus on comparing this model with the model assuming independent errors. While
parameter estimates do not change much, it is the standard errors that substantially
change, rendering some previously significant effects insignificant, such as, for ex-
ample, the difference between the low and high doses. This highlights the problem
of underestimating variability, often ignored when models such as the conditional
independence model are applied in practice.

Table 5.3 also gives results from the AUC analysis. Although the time dimension
is lost in this analysis, an overall comparison amongst the doses can be salvaged.
Note the parameter estimates for the AUC are not directly comparable to those
from the semi-parametric mixed models since they are on the log scale. Similar
to the conclusion made above, the results indicate a significant difference between
the medium dose and the control group, albeit with weakened evidence (p = 0.0129).
Hence, the animals receiving the medium dose group tend to have higher values of the
measure of relaxation capacity of the heart than the control group, and the difference
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is constant over time.
Returning to the issue of carry-over, although the effect (parameter estimates

not given) appears significant (p = 0.0390), no major changes are obtained in other
parameter estimates, their standard errors, or in the conclusions that would have been
reached should one have considered the model that excludes carry-over effects (see
Table 5.3).

5.3.2 Confidence Intervals and/or Bands

The model selected as the ‘best’ explicitly implies that the treatment effect is constant
in time, implying that for this situation, time point comparisons are redundant. We
proceed to construct the confidence bands around the fitted profiles.
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Figure 5.2: Group-specific fitted profiles together with the corresponding 95% simul-
taneous confidence bands around them. The points are observed mean values at each
time point.

The construction of the confidence intervals and bands requires estimation of the
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variance components pertaining to smoothing and random intercept, as well as the
parameters associated with the exponential serial correlation (see Table 5.3). Note
that smoothing is performed at the highest level of the model, and hence, one variance
component is estimated for all four treatment groups.

Following the discussion in Sections 5.2.4, and using the estimates in Table 5.3,
one can then construct the pointwise as well as simultaneous confidence bands. As
in Chapter 4, constructing simultaneous confidence bands involves estimating a value
h̃(1−α), which would replace Z(1−α/2) usually used in constructing confidence intervals
under the normal distribution assumption (see Ruppert et al., 2003).

Five independent simulations of 10 000 draws each, using results discussed in
Section 5.2.4 are performed. We obtain h̃0.95 ≈ 2.4285, 2.4608, 2.4341, 2.4819 and
2.4520. The minimum of these values, which is 2.5285, can be taken as the estimate of
h̃0.95, implying that the simultaneous confidence bands are about 2.4285/1.96 = 1.24
times wider than the pointwise confidence bands. Figure 5.2 show the group-specific
average profiles, fitted profiles and the 95% confidence bands. The model appears
to fit well. The simultaneous confidence bands constructed enable one to make joint
statements about the profiles’ evolution in time. In case the model depicted treatment
effect changing over time, such intervals could be used for example to compare each
of the other treatment groups to the control and each time point.

5.4 Discussion

We have exemplified the flexibility of nonparametric smoothing techniques in terms
of application to different types of study designs. In particular, penalized splines
fitted within the linear mixed-model framework, in the context of cross-over designs,
are used. We have illustrated that one can formulate different possible scenarios
showing how the different treatment groups could possibly differ. Such an approach
then enables one to select the model deemed ‘best’ according to some criterion, such
as, for example, the AIC used here. Although we restricted attention to random
intercepts, extension to more complicated models, including subject-specific spline
models are possible.

Particular attention has also been given to models including serial correlation,
wherein well-known functions for modelling it have been investigated for these data.
Indeed, with relatively long sequences of repeated measurements, residual correla-
tions are expected. As we have seen, ignoring such correlations can possibly lead to
misleading results. It is worthy mentioning that, for future research, flexible models
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considered here for the mean can as well be considered to model the serial correlation.
This is a relatively new area of research worthwhile pursuing.

Often, researchers require comparisons of treatment groups at specific time points.
This could possibly be done by fitting a full factorial structure in time and compare
groups using appropriate contrasts. However, the large number of time points involved
here makes such an approach prohibitive. An attractive alternative is the use of
confidence intervals and/or confidence bands constructed around the fitted profiles.

Once a suitable model has been selected, confidence bands can then be constructed
around the fitted functions. Focus has been on the adaptation of the confidence
intervals and bands of Ruppert et al. (2003) for application in this specific situation
of cross-over design. Using the confidence bands, one is able to identify specific
sections where the bands do not overlap, indicating significant differences. Other
than overcoming the disadvantages of the full factorial structure approach mentioned
above, the problem of multiple comparison is also inherently solved here. Note that, as
mentioned before, the model we have focussed on does not warrantee use of confidence
bands for time point comparisons since treatment effect is constant in time.



6
Investigating Associations in

Cross-over Designs Using

Surrogate Marker Validation

Methodology

The data considered in this chapter come from a cross-over design as in Chapter 5,
and were described in Section 2.2. Although the objectives in both chapters differ
substantially, the two chapters share common ground on study design, and the need
for flexible modelling of the mean evolution in time. This chapter focuses on blend-
ing surrogate marker evaluation methodology with flexible modelling techniques in
quantifying associations of interest.

The first step in the process of drug development is identifying promising com-
pounds. Once a compound has been isolated for further scrutiny, it enters a rigorous
testing and evaluation stage, the so-called pre-clinical phase. This stage is designed
to assess the chemical properties of the new drug as well as to determine the steps
for synthesis and purification. In this stage, the toxicological and pharmacological
effects of the drug are evaluated through in-vitro and in-vivo animal testing. There

61



62 Chapter 6

might be a variety of reasons hindering undertaking these tests directly on the clini-
cally relevant outcome, even when the studies involve animals, necessitating the use
of biomarkers.

Several challenges are encountered in the identification of biomarkers, including:
understanding the role of a specific biomarker to a clinically relevant problem; de-
veloping either an indirect or a direct readout of physiologic state; determining the
comparable pathways between animal models and humans; and finally embedding the
biomarker into a robust assay and subsequent validation and approval of the assay in
clinical applications (Pien et al., 2005). Several attempts, from both a biological and
a statistical angle, have been made to circumvent these challenges (Burzykowski et al.,
2005). Focusing on the statistical problem of identifying and validating a biomarker,
statistical expertise, in particular paradigms designed to validate surrogate markers,
might be handy tools to quantify the degree of association between the biomarker
and the clinically relevant outcome.

In surrogate marker evaluation, two possible sources of evidence can be sought
to validate a biomarker. The first is situated at the individual patient level and
is concerned with the biological pathway from the surrogate to the true endpoint.
The second possible source of evidence comes from the trial level, and quantifies
the association between the treatment effects on the marker and clinical endpoint
(Burzykowski et al., 2005).

The focus of this chapter is to adapt existing surrogate marker validation method-
ology to quantify the degree of association between behavior, as measured by alertness,
corticosterone levels, and telemetry measures such as heart rate and blood pressure of
rats, with emphasis given to the prediction of one of the outcomes given the other in
a single trial setting. In the process of adapting the surrogate marker methodology,
we also adopt the relevant terminology. For example, while the term ‘individual’ is
used to refer to a patient in the clinical trials setting, here it will be used to refer to
a particular experimental unit, i.e., an animal. Similarly, a ‘trial’ is to be understood
as referring to a particular experiment with animals. Note that, if there is an interest
in the trial-level surrogacy, there is then need for repetition of the experiment, for
example at different centers and/or by different investigators, or even through the
conduct of a sequence of altogether different experiments. Here, attention will be
primarily focused on individual level associations. The backbone of the contents of
this chapter is the work presented in Tilahun et al. (2008).
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6.1 Flexible Modelling of the Mean Using Fractional

Polynomials

The primary goal here is to quantify the association between CORT, heart rate, and
blood pressure via surrogate marker validation methods. However, a quick glance at
the mean profiles in Figures 2.3 and 2.4 suggests that proper modeling of the mean
evolution in time is necessary. One can get rid of the need to specify a parametric
model through use of flexible modeling techniques. This has been the focus of Chap-
ters 4 and 5, with emphasis on penalized splines methodology. While use of such
methodology is also advocated for in this chapter, an alternative and frequently used
approach is the so-called fractional polynomials of Royston and Altman (1994).

Fractional polynomials provide an extension to classical polynomials allowing for
non-integer powers to the time covariate, thereby adding greater flexibility in captur-
ing rather complex non-linear relationships. A brief description of fractional polyno-
mials follows.

Let t = (ti1, . . . , tim) denote the set of time points pertaining to subject i. Royston
and Altman (1994) define a fractional polynomial of degree q by

φq(t; β, p) =
q∑

r=0

βrHr(t), (6.1)

where q is a positive integer and p = (p1, . . . , pq) is a real-valued set of powers such
that p1 ≤ · · · ≤ pq and β = (β0, . . . , βq) are real-valued coefficients. First, define the
following transformation,

t(pr) =





tpr if pr 6= 0,

ln(t) if pr = 0.

For r = 0, H0(t) = 1, p0 = 0, and for r = 1, . . . , q

Hr(t) =





t(pr) if pr 6= pr−1,

Hr−1(t) ln(t) if pr = pr−1.

As mentioned in Royston and Altman (1994), polynomials of a degree higher than 2
or 3 are rarely encountered in practice. The best power transformation is frequently
found among the members of the list {−2,−1,−0.5, 0, 0.5, 1, . . . , max(3, q)}.

Note that the fractional polynomial model has been defined in its generic form and
in analogy with penalized splines models, extension to include covariates other than
time is possible. In such a situation, an extension of (6.1) may be obtained through
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adding the fixed effects for treatment, period, and carry-over, together with relevant
interactions. A more detailed treat on the analysis of cross-over designs with data of
a longitudinal nature was given in Chapter 5. The current chapter essentially focuses
on synthesizing such methodology with surrogate marker validation techniques in
order to quantify associations of interest. The following section therefore gives a brief
review of the relevant methodology from the world of surrogate marker validation
techniques.

6.2 Validation Methods

In this section, we give a concise description of the various methods used in validating
a surrogate endpoint, with emphasis on individual level surrogacy. Given the present
situation of a single experiment, it suffices to consider surrogacy at the individual
level.

6.2.1 Review of the Single Trial-based Validation Methods for

Continuous Outcomes

Several methods have been suggested for the formal evaluation of surrogate markers.
Some of these methods are based on a single trial while others, which are gaining
momentum in the present day, are based on meta-analytic concepts. The first for-
mal approach to evaluate markers is attributed to Prentice (1989), who has given a
definition of surrogate endpoints, followed by a series of operational criteria to check
whether the definition is fulfilled.

Freedman et al. (1992) have supplemented the hypothesis-testing-based criteria,
which necessarily depend on the power of the test performed, with a quantity to be
estimated. They suggested the use of the so-called proportion of treatment effect ex-
plained (PTE) by the surrogate as an alternative means of validation. The PTE faces
serious drawbacks, against the background of which Buyse and Molenberghs (1998)
have suggested the use of another quantity, the relative effect (RE), defined as the
ratio of the treatment effect on the true endpoint to that on the surrogate endpoint.
In turn, the RE is open to severe criticism as well. First, the RE’s confidence in-
tervals, like the ones for PTE, tend to be wide. While this could in principle be
overcome, there is a second, more severe problem in the sense that the RE is useful
for prediction of the true treatment effect from the surrogate treatment effect only
when the relationship between both is multiplicative. This may be rightfully viewed
as restrictive and, in any case, cannot be verified from a single trial.
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Switching to the experimental animal level, the need might arise to quantify the
association between the surrogate and the true endpoint after adjustment for the
treatment effect. To this end, Buyse and Molenberghs (1998) suggested the use of
the adjusted association.

Suppose we have a single experiment, let for subject i (i = 1, . . . , n), Si and Ti be
the surrogate and true endpoint, respectively, and let Gi be a binary treatment group
indicator. To compute the adjusted association, consider the following pair of models

Ti = µT + αGi + εTi

Si = µS + βGi + εSi
,

where (µT , µS , α, β) are intercepts and treatment effects on the true and surrogate
endpoints, respectively, and the error terms have a joint zero-mean normal distribution
with variance-covariance matrix

Σ =


 σSS σST

σT S σT T


 .

Then, the adjusted association, denoted R2 can be computed as

R2 = R2
εT i|εSi

=
σ2

ST

σSSσT T

.

Note that the individual-level surrogacy is meant to measure the degree of cor-
relation between the two endpoints after correcting for treatment and other possible
effects.

6.2.2 Variance Reduction Factor

In this section, we review the variance reduction factor, suggested by Alonso et
al. (2003) for the case of two repeatedly measured outcomes, where after we show
how this method can be adapted to the situation where one of the two outcomes is
cross-sectional. Let us assume that there are n subjects enrolled for a particular study
and further suppose that tij is the time at which the jth measurement of the ith sub-
ject is taken. Let Tij and Sij be the true and the surrogate endpoints, respectively,
and let Gi be a binary treatment indicator. Now, consider the following joint model
for the true and surrogate endpoints

Tij = µT + αGi + f(tij) + εTij

Sij = µS + βGi + f(tij) + εSij
,

(6.2)
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where f(tij) is a flexible function in time, which can be modeled by fractional poly-
nomials, penalized splines, or any flexible function in time. In principle, it is possible
for the two endpoints to depend on time through different functions, in which case we
will have fT (tij) and fS(tij) for the true and surrogate endpoint respectively. How-
ever, without loss of generality, let us assume that both depend on time through the
same function. The error terms (εTij

, εSij
) are assumed to follow a zero-mean normal

distribution with patterned variance-covariance matrix

Σ =


 ΣT T ΣT S

ΣST ΣSS


 , (6.3)

with obvious notation.
In this setting, Alonso et al. (2003) proposed to quantify the individual-level

surrogacy using the so-called variance reduction factor , which is defined as

V RF =
tr(ΣT T )− tr(ΣT |S)

tr(ΣT T )
, (6.4)

where ΣT |S denotes the conditional variance-covariance matrix of Tij given Sij , i.e.,
ΣT |S = ΣT T − ΣT SΣ−1

SS ΣST . Furthermore, these authors have shown that the V RF

satisfies a set of properties that makes it practically applicable:

(i) V RF ranges between zero and one;

(ii) V RF = 0 if and only if the true and the surrogate endpoints are independent;

(iii) V RF = 1 if and only if there exists a deterministic relationship between the
true and surrogate endpoint;

(iv) V RF = R2 in the cross-sectional setting.

Note that, at the individual level, interest lies in the prediction of the true endpoint
given the surrogate endpoint. In this regard, property (ii) shows that if the V RF

equals zero, then no sensible prediction is possible, whereas a perfect prediction is
attained if V RF equals one, as indicated by property (iii). Property (iv) establishes
the link between this approach and the one suggested by Buyse et al. (2000) for
univariate outcomes.

Let us now turn to the question as to how this approach can be used when one of
the two endpoints is cross-sectional. Assume we have m measurements per subject
for the longitudinal outcome.
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Case 1: A Longitudinal Surrogate for a Cross-sectional True Endpoint

Let us assume that the surrogate endpoint is repeatedly measured over time with m

repeated measures and that the true endpoint is cross-sectional. Model (6.2) now
takes the form

Ti = µ∗T + α∗Gi + εTi
,

Sij = µ∗S + β∗Gi + f(tij) + εSij
,

(6.5)

and the error terms (εTi
,εSij

) are assumed to follow a zero-mean normal with variance-
covariance matrix Σ, which in this setting takes the form

Σ =


 σT T ΣT S

ΣST ΣSS


 . (6.6)

Here, σT T denotes the variance of the true endpoint, ΣT S is a (1×m) vector contain-
ing the covariances between the true endpoint and the surrogate endpoint at different
time points, and ΣSS is a (m × m) variance-covariance matrix associated with the
longitudinal surrogate endpoint. Then, the V RFindiv for longitudinal surrogate and a
cross-sectional true endpoint denoted by V RFLC

ST , with a superscript ‘L’ (‘C’) remi-
niscent of ‘longitudinal’ (‘cross-sectional’), can be computed as

V RFLC
ST =

tr(σT T )− tr(σT |S)
tr(σT T )

, (6.7)

where σT |S denotes the conditional variance of T given S, that is,

σT |S = σT T − ΣT SΣ−1
SS ΣST .

Using this expression, (6.7) can be re-written as

V RFLC
ST =

tr(σT T )− tr(σT T − ΣT SΣ−1
SS ΣST )

tr(σT T )
. (6.8)

Note that all matrices involved in the computation of V RFLC
ST are of dimension (1×1)

and hence the trace reduces to the corresponding scalar, offering the opportunity to
simplify (6.8) to

V RFLC
ST =

ΣT SΣ−1
SS ΣST

σT T

. (6.9)

Notice that V RFLC
ST = 0 if and only if ΣST = 0, i.e., when S and T are independent.

Intuitively, (6.9) quantifies how much of the total variability of the true endpoint is
explained by the surrogate endpoint, after adjusting for treatment effects and repeated
measures of the surrogate endpoint.
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Case 2: A Cross-sectional Surrogate for a Longitudinal True Endpoint

Next, let us consider a role reversal, such that the true endpoint is repeatedly mea-
sured over time with m repeated measures, whilst having the surrogate endpoint in
cross-sectional form. Model (6.2) becomes

Tij = µ∗T + α∗Gi + f(tij) + εTij
,

Si = µ∗S + β∗Gi + εSi
.

(6.10)

The error terms (εTij
,εSi

) are zero-mean normally distributed with variance-covariance
matrix

Σ =


 ΣT T ΣT S

ΣST σSS


 . (6.11)

Now, the V RFindiv for this case takes the form

V RFCL
ST =

tr(ΣT T )− tr(ΣT |S)
tr(ΣT T )

=
tr(ΣT T )− tr(ΣT T ) + tr(ΣT Sσ−1

SS ΣST )
tr(ΣT T )

=
tr(ΣT SΣST )
σSStr(ΣT T )

. (6.12)

From (6.9) and (6.12), it is clear that there is asymmetry in the VRF calculations.
Results differ depending on which of the two endpoints is the cross-sectional one.
This is in line with our expectations. In the case of a longitudinal true endpoint, the
V RF measures the ability of the cross-sectional endpoint to predict the longitudinal
outcome at each time point, whereas when the longitudinal sequence is treated as
surrogate endpoint, the V RF measures the adequacy of the longitudinal sequence to
predict the cross-sectional outcome. It is therefore imperative to determine in advance
which of the two outcomes is treated as true when applying this procedure to quantify
association. Either way, a V RF value close to one indicates that the surrogate is a
‘good’ predictor of the true endpoint at the individual level, while values close to zero
indicate ‘poor’ prediction. In any case however, the values of the V RF have to be
complemented with expert opinion before passing judgment on the adequacy of the
surrogate to predict the true endpoint.

6.2.3 The Measure R2
Λ

As can be seen from (6.4), the V RF summarizes the variability of the two endpoints
using the trace of the corresponding variance-covariance matrices. In multivariate
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analysis, there is no unique way of defining a generalized variance, the trace is one of
the classical ways of doing so, while another common definition uses the determinant.
Interestingly, using the trace or the determinant to summarize the variability of the
endpoints has important ramifications for analysis and leads to two totally separate
measures with different interpretations. To this end, Alonso et al. (2006) have sug-
gested another measure, the so-called R2

Λ, which uses this alternative definition of the
generalized variance. Like the V RF , this measure can be derived based on Model
(6.2), as follows:

R2
Λ = 1− |Σ |

|ΣT T ||ΣSS | . (6.13)

The authors have shown that this measure enjoys the following desirable properties;

(i) R2
Λ is symmetric and invariant with respect to linear bijective transformations;

(ii) R2
Λ ranges between zero and one;

(iii) R2
Λ = 0 if and only if the error terms are independent;

(iv) R2
Λ = 1 if and only if there exist a and b so that aTεSij

= bTεTij
with probability

one, and;

(v) R2
Λ = R2 in the cross-sectional setting.

All of these properties, except the fourth property are shared with the V RF . The
fourth property, however, differs in important ways from the V RF . Indeed, whereas
the V RF takes the value 1 when there is a deterministic relationship between both
endpoints, R2

Λ is 1 whenever there is a deterministic relationship between two linear
combinations of both endpoints, allowing us to uncover strong association in cases
where the V RF might fail to do so. This is not a disadvantage of one or the other
proposal, but rather underscores their focusing on different aspects. The expression
for R2

Λ clearly shows that, unlike the V RF , this measure treats both endpoints sym-
metrically. To clarify this further, let us first consider the surrogate to be longitudinal
and the true endpoint cross-sectional, and thereafter reverse the roles.

Case 1: A Longitudinal Surrogate for a Cross-sectional True Endpoint

Consider Model (6.5) and the corresponding variance-covariance matrix (6.6). The
R2

Λ for a longitudinal surrogate and a cross-sectional endpoint is given by

R2,LC
Λ,ST

= 1− |Σ |
|σT T ||ΣSS | , (6.14)
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where σT T , ΣSS, and Σ are as defined in (6.6). Note that

|Σ| = |ΣSS||ΣT |S | = |ΣSS| · |σT T − ΣT SΣ−1
SS ΣST |,

and substituting this in (6.14), we obtain

R2,LC
ΛST

= 1− σT T − ΣT SΣ−1
SS ΣST

σT T

=
ΣT SΣ−1

SS ΣST

σT T

, (6.15)

since all matrices involved are of dimension one.

Case 2: A Cross-sectional Surrogate for a Longitudinal True Endpoint

Now, turning to the model in (6.10), the R2
Λ for a longitudinal true and a cross-

sectional surrogate endpoint is

R2,CL
Λ,ST

= 1− |Σ |
|ΣT T ||σSS |

= 1− |σSS − ΣST Σ−1
T T ΣT S |

|σSS |

=
ΣST Σ−1

T T ΣT S

σSS

. (6.16)

Comparing (6.15) with (6.16) establishes that R2,LC
Λ,ST

= R2,CL
Λ,ST

. In the first case, we
used σT T and ΣSS as component variances, of scalar and matrix type, respectively.
These roles are reversed in the current, second case. Nevertheless, we obtain the same
final expression for R2

Λ as is, of course, entirely in line with the original, symmetric
definition (6.13) of the quantity.

Furthermore, note that R2
Λ and V RF are equal when the surrogate is longitudinal

and the true endpoint cross-sectional. This implies that, only the VRF with the
surrogate cross-sectional and the true endpoint longitudinal will be different from all
of the others. This again highlights the feature that, for a longitudinal true endpoint,
the V RF studies prediction of the entire sequence, while the R2

Λ assesses how well
an optimal linear combination of the true endpoint profile can be predicted. Both
may be useful, but definitely are different. Moreover, one would expect the V RF to
be well below the R2

Λ in many applications, since prediction of an entire longitudinal
sequence from a cross-sectional quantity is a tall order, whereas it might well be
feasible to predict a particular linear combination.
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The choice between the two measures lies in the objective to be attained. If the
objective is to measure the strength of the surrogate to predict the entire sequence of
the true endpoint, then V RF will be an ideal choice. However, when this seems an
attainable goal or when we are rather interested in predicting some linear combination
of the true endpoint, then we can resort to R2

Λ.

6.3 Application to the Swim-stress Study

As described in Section 2.2, the focus of analysis is in two periods namely pre- and
post-stress periods. Before some animals are subjected to stress, two experimental
groups, the treatment (or compound) and vehicle groups are present, while after stress
induction, four experimental groups appear. The four groups would therefore be; (1)
vehicle alone, (2) vehicle and stress, (3) compound alone, and (4) compound and
stress.

Figure 2.3 shows the group-specific mean profiles of CORT measurements, aver-
aged over the four treatment periods. The plot depicts the average CORT values
per treatment group at each time point, essentially showing how, on average, CORT
values evolve over time in each treatment group. The need for flexible modelling tools
is apparent from Figure 2.3, hence, as mentioned before, we discuss results emanat-
ing from an application of surrogate marker validation methodology in conjunction
with flexible modelling techniques (penalized splines and fractional polynomial based),
meant to appropriately capture trends over time. The fractional polynomial and pe-
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Figure 6.1: Penalized spline and fractional polynomial fit to the data in the pre-
stress period. The dots indicate the mean values at each time point averaged over the
different periods.
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nalized splines approaches gave comparable fit to the data. For illustrative purposes,
let us show some results for CORT in the pre-stress period. This period consists of
5 unique time points, and 4 knots, selected as quantiles of time were used. For the
fractional polynomial, p1 = 0 and p2 = 0 were obtained, resulting in a quadratic
effect in log(time) appearing in the model. The results from the two approaches are
illustrated in Figure 6.1, and show a similar fit to the data.

For purposes of comparison, an unstructured mean model or a full factorial struc-
ture for time is also considered. However, this approach often yields excessively large
numbers of parameters, thereby rendering it less desirable. The researchers wished
to assess the association between the different responses before and after stress was
induced. Thus, the results for pre- and post-stress correspond to the associations
measured between the different responses before and after the stress with the treat-
ment variable (G), having two possible values for pre-stress and having four different
possible values after stress as explained above.

The V RF and R2
Λ approaches have been applied to the dataset introduced in

Section 2.2. The variance-covariance matrices, based upon which the V RF and R2
Λ

are computed, are estimated using maximum likelihood. The variance-covariance
matrices can assume general structures unless the data suggests otherwise. In such
cases, simple covariance structures, such as auto-regressive or compound symmetry,
might be considered. For the purpose of our application, a number of models with
different variance-covariance structures has been fitted. The best model, here being
an unstructured variance-covariance structure, was chosen based on the AIC.

The results of the analysis for the association of telemetry and behavior as well
as that of CORT and behavior are summarized in Table 6.1. We should like to point
out that it is not a trivial task to derive a closed-form expression for the standard
errors of V RF and R2

Λ for the particular case we have considered here. However,
fortunately, Alonso et al (2006) have shown that the V RF and R2

Λ are special cases
of the so-called Likelihood Reduction Factor , which is based on the information-theory
approach. These authors have derived an asymptotic solution for standard errors for
the LRF . Hence, by virtue of the relationship of these measures with the LRF , we
have been able to provide asymptotic standard errors based on the information-theory
approach. Standard errors for the estimates can also be obtained using bootstrap
techniques.

There are no general guidelines as to how large a V RF and R2
Λ should be in order

to be considered sufficiently large. However, since the V RF and R2
Λ are R-square

type measures, it might be possible to make some general remarks concerning the
degree of association based on their magnitude. Since such a degree of association
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arguably would vary from application to application, the final decision has to be made
in consultation with the experts, regardless of the value. Having this in mind, from
the results for the pre- and post-stress, we might infer that there is a rather weak
relationship between behavior and CORT. However, strong and moderate relation-
ships were observed between heart rate and behavior, and between blood pressure
and behavior, respectively. Recall that behavior is measured cross-sectionally while
CORT, heart rate, and blood pressure are longitudinal outcomes.

In this regard, when the cross-sectional outcome was used as a possible surrogate
for the longitudinal outcomes, the V RF produced very low values, as anticipated in
the previous section. Indeed, it is very difficult to predict the subtleties and richness
of a longitudinal sequence from a single, cross-sectional measure. We consider this
a desirable feature of the V RF . The R2

Λ on the other hand, states that, although
still small for some of the endpoints, there is better hope to predict a particular
linear combination of the longitudinal outcomes from the cross-sectional outcome. As
such, V RF and R2

Λ both provide useful but totally different pieces of information.
When there is role reversal, that is, when the longitudinal outcomes were treated as
a possible surrogates for the cross-sectional outcome, the V RF values coincides with
the R2

Λ. This underscores that the V RF does not treat both endpoints symmetrically.
The R2

Λ, however, stayed the same even when there was role reversal, as expected from
its construction.

The higher V RF and R2
Λ values obtained when the longitudinally measured heart

rate and blood pressure were used as surrogate endpoints for the cross-sectionally
measured behavior, establish the possibility of predicting behavior using some linear
combination of the longitudinal sequence.

Zooming in on the association between telemetry and CORT, both longitudinal in
nature, we learn that there is a very weak association, with a maximum R̂2

Λ = 0.2314
and maximum V̂ RF = 0.0513, between the three modelling approaches. This is an
indication that there is a very limited overlap in information between both outcomes,
inhibiting comfortable prediction of one from the other.

In conclusion, the analysis has revealed that the longitudinally measured CORT
level offers limited opportunity for prediction of activity, which is measured by the
degree of alertness expressed in terms of the percentage of minutes the rats have been
awake. We learn that heart rate and blood pressure are weakly related to CORT
but have a strong predictive ability for behavior. The results advice against the use
of activity to predict the longitudinal CORT level, heart rate, and blood pressure
at each time point. These findings, however, have to be complemented with expert
opinion before the results are to be practically used.
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6.4 Discussion

In this chapter, we have adapted surrogate marker evaluation methods, originally
designed to handle two repeated measures sequences, to the case of one cross-sectional
and one longitudinal outcome, where either of these can be used as the surrogate.
The methods have been applied to quantifying association between longitudinally
measured CORT level, heart rate, and blood pressure, with cross-sectional behavior
measured by the level of activity, expressed as the percentage of time experimental
rats have been active after exposure to treatment followed by stress. The methods
appear to work adequately for this particular mix of longitudinal and cross-sectional
endpoints.

The various theoretical properties of the methods have manifested themselves in
the results of the data analysis. In particular, it has been nicely confirmed that the
V RF focuses on the prediction of a longitudinal sequence as a whole by a cross-
sectional outcome, while R2

Λ is concerned with the prediction of an optimal linear
combination of the longitudinal outcome.

In the case of two longitudinal outcomes, the optimal linear combinations from
the two outcomes are the first canonical variates. In the context of a longitudinal
true and cross-sectional surrogate endpoint, the optimal linear combination could
be the first principal component or any other summary measure of the longitudinal
measurements, thereby maximally retaining information. Thus, optimality in this
context refers to finding a linear combination that best summarizes the repeated
measures.

The longitudinal outcomes were modeled using flexible modeling tools such as
fractional polynomials, penalized splines, and a general unstructured mean where
the time trend is not modeled but rather an analysis-of-variance type approach is
followed. This offers the possibility of fitting different models and then selecting
the best one according to some model selection tool such as, for example, AIC. It
is, indeed, important to conduct proper modelling before moving into quantifying
surrogacy, because the results may critically depend on the model’s goodness-of-fit.

In all cases, V RF or R2
Λ estimates close to one are indicative of ‘good’ surrogacy,

with the reverse holding for values close to zero. Evidently, it is difficult to provide
general advice as to how large is large enough. Arguably, the statistical evaluation of
a surrogate can be an important component in the decision making process, but at
least equally important is expert opinion coming in from pharmacological, biological,
clinical, ethical, and health economy considerations.
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7
Smoothing Neuronal Data

with Penalized Splines

Penalized spline smoothing methodology and related applications have been discussed
in the previous chapters. In all cases considered this far, the response has been as-
sumed to be normally distributed, facilitating use of the linear mixed model. The
current chapter shifts focus to non-normal data, specifically, Poisson counts, where
the generalized linear mixed model (GLMM) paradigm becomes inevitable. The mo-
tivating example, as described in Section 2.3 comes from an electrophysiological ex-
periment carried out with a monkey.

The data considered here involve the electrical activity in 20 different neurons
recorded in the ventral premotor cortex (VPM) while a monkey performs a continuous
discrimination task (CD task). In this task, the monkey reports a decision, based on
the comparison of the orientation of two visual stimuli shown sequentially, separated
by a delay. The main determinant of the neuron’s discharge was whether the second
stimulus (test) was to the left or right of the first (reference). Several trials are
performed, classified according to orientation of the second stimulus with reference
to the first (left or right) and the degree of difficulty (easy, difficult). For each trial,
within the experimental period, i.e., 1000 ms to 2500 ms, time points where electrical
activity was noted are recorded. To reduce the computational burden, the time scale
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is subdivided into 20 ms bins and each bin represented by the median time point of
that bin. Full details of the experiment are given in Section 2.3.

Usually, data from such electrophysiological experiments is summarized using a
raster plot, displaying the complete set of spikes for each of the trials (Kass et al.,
2005). Also the peristimulus histogram (Gerstein and Kiang, 1960) can be used to
summarize the overall activity and evolution in time by counting spikes in intervals of
a certain width. Several ways to smooth instantaneous firing rates have been studied
in the literature. An overview of the application of smoothing techniques in neuronal
data can be found in Kass et al. (2003). Cadarso-Suárez et al. (2006) and Roca-
Pardinas et al. (2006), for example, employ a flexible modelling technique based on
the logistic Generalized Additive Model (GAM) with local linear kernel smoothers.
Faes et al. (2007) apply a flexible method based on natural cubic splines to model
synchrony in neuronal firing. Other recent techniques in this context include the
Bayesian adaptive regression splines (DiMatteo et al., 2001; Behseta and Kass, 2005;
Behseta et al., 2005). Flexible regression-based techniques come out favorable since
they enjoy the flexibility of capturing the temporal evolution without the restriction
of parametric modelling as well as the possibility to include covariate or factor infor-
mation. We revisit this aspect in Section 7.1 where the models discussed happen to
share similar properties.

The number of spikes accumulated over the different trials can be assumed to
come from an inhomogeneous Poisson counting process (Ventura et al., 2002; Cadarso-
Suárez et al., 2006), and our interest lies in estimating the instantaneous firing rate,
denoted by λj . Estimating the instantaneous firing rate is necessary, especially in our
situation where one of the main research goals is to determine the time trend and
the time of maximal firing rate. Capturing the temporal structure with a parametric
function may prove difficult or unsatisfactory. For example, Ventura et al. (2002)
define a piecewise parametric function to describe the mean of the intensity function.
One of the problems they face is that, for some neurons, the proposed model does
not conform to the observed pattern. An attractive alternative is to model the time
evolution by a flexible semiparametric function estimated through use of penalized
splines. Molenberghs and Verbeke (2005) present an example together with SAS code
for analyzing an ordinal outcome in a clinical-trial setting.

One of the main objectives of the study is to summarize certain characteristics of
the time evolution of activity in the neurons from a population (all neurons) point
of view. The important characteristics under consideration include time at which
the maximum firing rate is observed. In addition, confidence intervals on the time
of maximum firing rate are also required. We consider modelling the data from
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two perspectives, namely, single-neuron analysis and a population-averaged approach.
Modelling of the time evolution in both perspectives essentially follows a similar route
as will be discussed shortly.

The contents of the present chapter are mainly based on the paper of Maringwa
et al. (2008b).

7.1 Single Neuron Analysis

Let us introduce the methodology, first in the context of a single neuron, followed
by the extension to the population of neurons. It should be noted that extension of
the model to several neurons, in matrix notation, simply involves stacking together
matrices corresponding to the different neurons.

7.1.1 Penalized Splines with Radial Basis

Let yj(j = 1, . . . , T ) represent the total count of activities recorded in bin j, aggre-
gated over all the trials, tj the median time point of bin j and κ1, . . . , κK be a set of
knots in the range of tj . To flexibly model the response y = (y1, . . . , yT )

′
, consider

the model
h(E[y]) = Xβ + Zkb , (7.1)

where h(·) is an appropriate link function, such as the log link, and X and Zk are
design matrices of the form

X =
[
1 tj . . . tq−1

j

]
1≤j≤T

, Zk =
[
|tj − κk|2q−1

]
1≤j≤T , 1≤k≤K

. (7.2)

The parameter vectors β and b are fixed and random effects, respectively. It is
assumed that the random-effects vector b has a zero mean vector and covariance
matrix (Ruppert et al., 2003)

Cov(b) = σ2
b (Ωk)−1/2(Ω−1/2

k )T , with Ωk =
[
|κk − κk′ |2q−1

]
1≤k,k′≤K

.

This defines the radial basis spline function of degree 2q−1, for some positive integer
q. Note that using a large number of unrestricted knots results in a wiggly fit. The
constraint mentioned above therefore diminishes the effects, resulting in a smooth
fit. To fit the model using standard mixed-model software, the transformation Z =
ZkΩk

−1/2 is applied, resulting in an equivalent model

h(E[y]) = Xβ + Zb, where Cov(b) = G = σ2
bI. (7.3)
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Estimation of the parameters in the model above are obtained through the SAS proce-
dure GLIMMIX, which uses pseudo-likelihood estimation techniques (Wolfinger and
O’Connell, 1993). In particular, estimation is based on linearization of the outcome
variable (see e.g., Molenberghs and Verbeke, 2005), resulting in the application of
weighted least squares (McCullagh and Nelder, 1989). We return to the general case
of this in Section 7.2.

Since interest is in a comparison of the time trend among different experimen-
tal conditions (e.g., left versus right, and easy versus difficult), a complex model is
assumed which considers different smooth functions in each of the experimental con-
ditions. Such a model can be said to have factor by factor by curve interactions
(Ruppert et al., 2003).

Let λj = E(yj) denote the mean at time point j. From (7.2), for q = 2, the
penalized spline model defined for each experimental condition takes the form:

log(λj) =





βLE
0 + βLE

1 tj +
∑K

k=1 bLE
k |tj − κk|3, if Left-Easy,

βLD
0 + βLD

1 tj +
∑K

k=1 bLD
k |tj − κk|3, if Left-Difficult,

βRE
0 + βRE

1 tj +
∑K

k=1 bRE
k |tj − κk|3, if Right-Easy,

βRD
0 + βRD

1 tj +
∑K

k=1 bRD
k |tj − κk|3, if Right-Difficult,

where, for example, βLE
0 , βLE

1 , and bLE
k are the intercept, slope and knot coefficients

for the left-easy combination of the experimental conditions. Note the model has been
defined in an over-parameterized form and fitting such a model requires appropriate
constraints on some of the parameters (see, e.g., Ruppert et al., 2003).

It is assumed that the random-effects vectors bLE , bLD, bRE , and bRD follow zero-
mean normal distributions with equal variance-covariance matrix σ2

bΩ
−1
k . Although

a common variance is assumed, the approach allows for different functions in each
of the experimental conditions via independent sets of random effects. The most
general model, which varies levels of smoothing by experimental condition, led to
computational problems with some neurons, hence the approach above.

Using appropriate design matrices X and Z, the model can be written as (7.3),
paving the way for implementation with mixed-model software. The model considered
can easily be extended or reduced in several ways. For example, one can assume a
constant shift in the curves, if that is considered a reasonable assumption.

For comparison of curves from different experimental conditions, we propose use of
bias-adjusted simultaneous confidence bands around the fitted curves. Construction
of such intervals requires the use of the variance-covariance matrix (see Ruppert et
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al., 2003; SAS Institute Inc., 2004):

V = Cov


 β̂ − β

b̂− b


 =


 XT S−1X XT S−1Z

ZT S−1X ZT S−1Z + G−1



−

.

Here, the matrix S is the conditional variance of the pseudo-data generated during
the fitting process. A detailed discussion about this issue can be found in Molenberghs
and Verbeke (2005).

Let g = (t1, . . . , tT ) be a set of values for which a simultaneous confidence band

for fg =




f(t1)
...

f(tT )


 is required. It can be assumed that, approximately,


 β̂ − β

b̂− b


 ∼ N(0, V ) . (7.4)

For a true function value f(tj), denote the fitted value by f̂(tj), and its bias-adjusted
standard deviation by ŝtdev{f̂(tj)− f(tj)}, which can easily be calculated using the
corresponding entries in [X Z] and V , as in (7.6). Simultaneous confidence bands
for fg can then be obtained as

[
f̂(tj)± h̃(1−α)ŝtdev{f̂(tj)− f(tj)}

]
1≤j≤T

, (7.5)

where h̃(1−α) is determined as in Chapter 4. The construction of confidence bands can
be performed on the scale of the linear predictor and then transformed to intervals
for the mean of the firing rate.

7.1.2 Derivation of the Time of Maximal Firing Rate and its

Confidence Interval

One of the goals of this research is to detect the time at which the maximal firing
rate occurs, together with the corresponding confidence interval. The derivative of λj ,
upon which construction of confidence intervals for the time of maximal firing is based,
can be obtained explicitly based on the penalized spline representation as exemplified
in Figure 7.3. First, we provide a description of how to obtain the maximal firing
time, followed by a discussion about the derivative of the firing rate.

After estimating the instantaneous firing rate, optimization and specifically, the
conjugate gradient method (Gill et al., 1981; Fletcher, 1987) is applied to determine
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the maximal firing time. The optimization of the firing rate function is implemented in
the SAS procedure IML using the NLPCG subroutine. The maximum firing rate is an
immediate by-product of the maximization procedure. As is commonly encountered
with non-unimodal optimization problems, the optimization algorithm implemented
converges towards local rather than global optima. The smallest local minimum of
an objective function is called the global minimum, and the largest local maximum
of an objective function is called the global maximum. It is therefore not unusual
that the algorithm occasionally fails to obtain the global optimum. Therefore, several
starting values within the time range of interest are used. The objective function is
evaluated over all these possible candidates, and the time that gives the maximum
function value is taken as the time resulting in the maximal firing rate.

This approach can be considered along the lines of a general concept for looking for
features such as peaks, often referred to in literature as bump hunting (e.g., Heckman,
1992). Related approaches also include tests for monotonicity of regression functions
(Gijbels et al., 2000).

Let us now shift attention to the derivative of the objective function. Denote the
derivative of h(E[y]) with respect to time by h

′
(E[y]). Further, let Xd and Zd be

matrices containing derivative elements of X and Z as defined in (7.2). In general,
Xd =

[
0 1 2tj . . . (q − 1)t(q−1)

j

]
1≤j≤T

, and

Z∗
k =

[
(2q − 1)(tj − κk)|tj − κk|2q−3

]
1≤j≤T , 1≤k≤K

.

Here we consider q = 2, and therefore,

Xd = [0 1]1≤j≤T , Zd = Z∗
kΩ

−1/2
k , where Z∗

k = [3(tj − κk)|tj − κk|]1≤j≤T , 1≤k≤K .

It then follows from Section 7.1.1 that h
′
(E[y]) = Xdβ+Zdb. The derivative function

should be zero at the time corresponding to the maximum firing rate. To construct
a confidence interval for time of maximal firing, a confidence interval for the deriva-
tive function is constructed. Defining g(λj) = h

′
(E[yj ]), the variance function at a

particular time point j is (Ruppert et al ., 2003)

var{(ĝ(λj)− g(λj))} ' CT
j V Cj , (7.6)

where Cj =
[
Xd

j Zd
j

]
. Construction of simultaneous confidence now follows the

discussion in Section 7.1.1, with appropriate adjustments involving Xd and Zd. Con-
fidence limits for the time of maximal firing rate are then taken as the points where the
so-obtained confidence limits for the derivative function cross the zero line. Note that
the first-order derivative function at the scale of the link function is readily obtained



Neuronal Data Analysis 83

by substituting the parameters by their estimates obtained from the model. Due to
the monotonicity property of the link function, confidence intervals constructed for
h
′
(·) therefore suffice in this situation.
Similar approaches, making use of the first-order derivative function have been

used in the literature. For example, Ganguli and Wand (2007) apply tests for fea-
ture significance using the significant zero crossings methodology (SiZer), owing to
Chaudhuri and Marron (1999). Harezlak et al. (2007) employ bootstrap techniques
to construct a test for bump hunting with penalized spline regression methodology.
While these authors also make use of the first derivative of the objective function in the
construction of their test, the main focus here is to determine the time corresponding
to the maximal firing rate accompanied by a confidence interval.

7.2 Population-averaged Model: Combining Infor-

mation from Different Neurons

Our discussion until this far has focused on data from a particular neuron. However, it
is the goal to combine the information from different neurons, resulting in a so-called
population based analysis. We propose the use of a marginal or population-averaged
model (Molenberghs and Verbeke, 2005).
Formally, let yi denote the vector of outcomes for neuron i (i = 1, . . . , 20), Xi the
matrix with covariate information, and Zi the smoothing matrix. Stacking these
matrices, a representation of the model for all neurons takes matrix form (7.3). For
the current case of data assumed to follow a Poisson distribution, the distribution
of the stacked data vector y is assumed to come from the 1-parameter exponential
family distribution (McCullagh and Nelder, 1989) such that

f(y|b) = exp
{
[yT (Xβ + Zb)]− 1T η(Xβ + Zb) + 1T ϑ(y)

}
, (7.7)

where, for the Poisson case, η(x) = exp(x), and ϑ(·) is a function of the data. Pe-
nalizing the likelihood according to the distribution of the random effects b leads to
estimates for (β, b) being the values maximizing

yT (Xβ + Zb)− 1T η(Xβ + Zb)− 1
2
bG−1b, (7.8)

which is the penalized log-likelihood (Green, 1987). Parameter estimates are then
obtained by using a linearized version of the response, y∗ = Xβ + Zb + ε∗, where
the pseudo-errors ε∗ are assumed to be normally distributed with zero mean and a
constant variance. Estimation proceeds by repeatedly fitting linear mixed models to
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the pseudo-data (Wolfinger and O’Connell, 1993; Molenberghs and Verbeke, 2005)
until convergence.

Note that the general case of the GLMM is of course a useful paradigm. Thus,
one can consider a random-effects model, where neuron-specific random effects are
used to account for the association. Such models are also handled by the procedure
GLIMMIX. The marginal average evolution can then be obtained by averaging the
conditional means over the random effects (Molenberghs and Verbeke, 2005), essen-
tially integrating over them. Here, the random effects implied are neuron-specific
effects, e.g., random intercepts, and not the random coefficients for smoothing. The
former approach, which directly results in a population-averaged fit, is preferred in
this situation. Within that approach, correlation between neurons can be directly
specified in the modelling process.

Information from different experimental conditions from the different neurons
is therefore combined to obtain condition-specific population-averaged profiles from
which aspects of interest will be calculated. Since for each neuron, the number of
trials per experimental condition varies, we fit the model with the number of trials as
an offset variable.

7.3 Application to the Electrophysiological Experi-

ment

Let us now turn to the application of the penalized splines methodology to the data
described in Section 2.3. First, single neuron analysis is encountered in Section 7.3.1,
followed by the population-averaged model in Section 7.3.2.

7.3.1 Single Neuron Analysis

Figure 7.1 displays data from a particular neuron, selected from the 20 neurons per-
forming the CD task. The graph shows a raster plot from 176 trials as well as the
fitted curves for each experimental condition, obtained using the penalized spline
model. The model was fitted with 25 knots, obtained as equally spaced quantiles of
the time (Ruppert, 2002; Ngo and Wand, 2004). For this particular neuron, one can
observe the increased activity around 2000 ms into the experiment. The maximum
firing rate occurs in this period. For inference, first, pointwise confidence intervals,
followed by the simultaneous bands, are constructed. The pointwise confidence inter-
vals are constructed using (7.5), with h̃1−α replaced by z1−α/2. The more relevant
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Figure 7.1: Raster plot (left panel) and the corresponding fitted profiles by experimental
condition (right) for a particular selected neuron.
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Figure 7.2: Pointwise confidence intervals and simultaneous bands comparing the left
and right orientation for a fixed level of difficulty.
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comparison of the left and right decisions, for a fixed level of difficulty, is based on
pointwise confidence intervals and simultaneous confidence bands. Other than the
small section between about 1750 and 2000 ms, which appears to show a difference,
the pointwise confidence intervals appear to suggest no significant differences between
the left and right decisions in this case. Using the simultaneous confidence bands,
which are expected to be wider than the pointwise counterparts, the apparent differ-
ence mentioned above is absorbed and the hypothesis of no difference between left
and right is upheld. These comparisons are graphically presented in Figure 7.2.
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Figure 7.3: First-order derivative functions (continuous line) for each condition to-
gether with corresponding 95% pointwise and simultaneous confidence intervals. The
vertical dashed line indicates the time of maximal firing rate and the shaded regions
indicate its corresponding confidence interval, approximated by the pointwise intervals.

Figure 7.3 shows the first-order derivative function corresponding to the fitted
profiles in Figure 7.1, together with their 95% pointwise confidence intervals and
simultaneous bands. One can then approximate the confidence intervals for the time
of maximal firing rate as suggested by the shaded areas in Figure 7.3. We return to the
use of the derivative function and its confidence interval in the following section, where
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a marginal model that combines information from different neurons is considered.

Table 7.1: Maximal firing times and the corresponding approximate 95% derivate-
based and bootstrap-based confidence limits. Limits from the Bayesian approach are
obtained from the appropriate 95% credible intervals.

Tmax(ms) Derivative-based Bayesian derivative-based Bootstrap-based

Left Difficult 1943 (1885; 2020) (1890; 2030) (1927; 1965)

Easy 1939 (1885; 2010) (1880; 2020) (1920; 1965)

Right Difficult 1990 (1945; 2035) (1950; 2040) (1970; 2010)

Easy 1984 (1935; 2040) (1935; 2040) (1960; 2014)

To compare our confidence intervals with other approaches, a fully Bayesian hier-
archical model (Gelman et al., 1995; Ruppert et al., 2003), as well as a nonparametric
bootstrap approach (Efron and Tibshirani, 1993) have been applied. Attention is re-
stricted to the first-order derivative function, focusing on limits of the maximal firing
time. The bootstrap approach is based on resampling trials from each experimental
condition and neuron. Aggregating activities from the obtained samples produces a
bootstrap sample reminiscent of the original data, to which the penalized spline model
is fitted. A total of 1000 bootstrap samples were used. The results from the pointwise
intervals have been summarized in Table 7.1. The results show a close comparison
between the limits on the time of maximal firing from the approach proposed here,
and a fully Bayesian approach. The bootstrap technique appears to yield narrower
limits compared to the other two approaches. It should be noted that the simplest
case of percentile bootstrap intervals was applied here, and ways of improving such
intervals are detailed in Efron and Tibshirani (1993).

To give an overview on individual neurons, a similar analysis has been performed
on each of the other neurons. There appears to be relatively large variability between
neurons (see also Figure 7.6). A comparison of left and right orientations based on
confidence intervals for each neuron separately is performed and the resulting plots
are given in Figures 7.4 and 7.5. The results indicate that although in most neurons,
differences between left and right occur in the region 1500-2000 ms, for some neurons,
differences occur elsewhere. Moreover, the maximal firing rates in the sections showing
differences are highly variable, suggesting that different neurons have different peaks.
As such, in a population analysis, it may be difficult to detect differences between left
and right with differences in different places tending to cancel each other.
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Figure 7.4: Confidence intervals comparing left vs right decisions in individual neuron
data: 1 (D represents ”difficult” and E represents ”Easy”).

7.3.2 Overall Average Profile

In this section, focus is put on the marginal or population-averaged model. Essentially,
all data from the different neurons have been combined to produce condition-specific
profiles. The top panel of Figure 7.6 shows individual neuron profiles for each of the
experimental conditions wherein within-neuron variability appears substantial.

The model fitted assumes independent sets of random effects for smoothing for
each experimental condition, albeit with the same variance component. This effec-
tively produces different curves for different experimental conditions. Although the
random effects are different, a single smoothing parameter is used, implying similar
amount of smoothing in all experimental conditions.

Different types of correlation structures, for example, compound-symmetry struc-
ture or AR(1), can be specified. We present results based on the compound-symmetry
structure, under which the model could converge. Note that an unstructured variance-
covariance matrix would yield a computationally prohibitive number of parameters,
and therefore, may not be a good choice.
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Figure 7.5: Confidence intervals comparing left vs right decisions in individual neuron
data: 2.

The fitted profiles in each of the experimental conditions are given in Figure 7.6
(bottom panel). The plot shows that curves from the same decision (left or right)
look rather similar, suggesting no differences between levels of difficulty for a fixed
decision.

From Figure 7.6, one can observe increased firing activity for decisions to the left
in the time period 1500 to 2000 ms. However, for decision to the right, no clear peak is
evident, rather an overall increase is apparent between approximately 1500 and 2250
ms. The plot suggests that the time of maximal firing occurs earlier for decisions to
the left compared to the right with the maximal firing rate being higher for decisions
to the left.

Based on pointwise confidence intervals, apart from a small section between 1500
and 2000 ms, no differences between left and right are apparent in either of the levels
of difficulty. Again, as one might expect, this apparent difference disappears as one
considers simultaneous confidence bands. The simultaneous confidence bands used
were found to be about 1.54 times wider than their pointwise counterparts. Note that
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Figure 7.6: Observed firing rates for all neurons in the different experimental con-
ditions (top) and fitted curves in each condition obtained from the penalized spline
model (bottom).

the simultaneous confidence bands allow us to reach overall conclusions regarding
differences or equality between the curves under comparison. Figure 7.8 shows the
first-order derivative and its 90% pointwise and simultaneous confidence intervals,
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Figure 7.7: Overall comparison of left and right orientations for a fixed level of diffi-
culty using 95% pointwise and simultaneous confidence bands.

together with an indication of the time of maximal firing. Since we already know
the time of maximal firing, one would expect that its confidence interval may be
deduced from the confidence interval of the derivative function, as exemplified by the
shaded region in Figure 7.8. Note that in some experimental conditions, such as, for
example, decisions to the right (see Figure 7.6), the time of maximal firing rate is
not clear and may occur in a relatively wide region. In such instances, the upper and
lower limits of the interval do not cross the zero line, leading to open-ended intervals.
Here, we illustrate use of the proposed methodology using 90% confidence intervals.
Such an interval can be interpreted as an interval such that in an indefinite repeat
of similar experiments, 90% of the calculated confidence intervals for the maximal
firing time will contain the true value of the time of maximal firing time. Table
7.2 displays the maximal firing times for each of the experimental conditions and
the corresponding 90% pointwise and simultaneous confidence bands. The results in
Table 7.2 suggest that for a fixed decision, there are no drastic differences between
the levels of difficulty, neither in terms of the maximal firing rate nor the time of its
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Table 7.2: Maximal firing times and corresponding 90% pointwise and simultaneous
confidence bands. Also given are the maximal firing times (in milli seconds) and
maximal firing rates for the different experimental conditions.

Approximate 90% confidence intervals

Tmax(ms) Pointwise Simult. Firing rate

Left Difficult 1703 (1668; 1765) (1635; ∞) 15

Easy 1712 (1668; 1795) (1630; ∞) 14

Right Difficult 2222 (1637; 2340) (1550; ∞) 12

Easy 2264 (1637; ∞) (-∞; ∞) 12
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Figure 7.8: First-order derivative functions (continuous line) for each condition to-
gether with corresponding 90% pointwise and simultaneous confidence bands. The
vertical dashed line indicates the time of maximal firing rate and the shaded region
indicates its corresponding pointwise confidence interval.

occurrence. A similar conclusion may be drawn for the comparison between the left
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and right-oriented decisions.
It is important to note the relatively wide confidence intervals/bands, especially

for decision to the right. It is clear from the fitted curves in Figure 7.6 that for
this condition, the maximum or peak may not be clearly determined, hence the wide
confidence intervals on the time of maximal firing rate. The observed wide confidence
intervals could be attributed to the large variability among the neurons, as mentioned
before.

7.4 Discussion

We have considered an application of a flexible modelling technique, penalized splines,
in smoothing neuronal data. This approach is convenient; it can be applied by means
of widely available commercial software for mixed models. The models can also be
fitted in the Bayesian framework, and consequently, WinBUGS, a publicly available
free software package can be used. The models we have discussed are so general
that they can be extended in several ways, exactly as required by the researcher.
In particular, several possible scenarios depicting the evolution of curves in different
experimental conditions, can be assumed. Differences or similarities can be assumed
in the linear part of the models, the non-parametric part, or in both parts of the
model. Extension of these models may also include variation of levels of smoothing
in the different experimental conditions.

Focus has been on detecting the time of maximal firing rate and the maximal firing
rate in a population of neurons, subjected to different experimental conditions. More-
over, we were also interested in comparing the temporal evolution across the experi-
mental conditions, the comparison between the left- and right-oriented decisions being
the main focus. The model we focused on is of a marginal or population-averaged
type, wherein correlations of observations from independent subjects, neurons in this
case, is specified. Different types of correlation structures can be used in this context.
However, with the number of time points encountered in such electrophysiological ex-
periments, some structures like the unstructured correlation are simply computation-
ally infeasible. As a result, less computationally demanding structures, for example
the compound-symmetry or the simple structure, can be used. To compare the curves
in a moment by moment sense (Cardárso-Suarez et al., 2006), simultaneous confidence
around the fitted instantaneous firing rates are constructed. This effectively solves
the problem of testing for a difference at multiple time points and therefore allows
global conclusions in the time domain.
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For the time of maximal firing one can fit the model and obtain the time corre-
sponding to the maximum firing rate. However, the time of maximal firing rate does
not necessarily have to be one of the design points, and therefore we implemented
an optimization procedure based on the penalized spline model fitted, and confidence
intervals on the time of maximal firing determined via the first order derivative func-
tion. It is clear that a number of properties of our proposed approach need to be
investigated. For example, it is useful to assess the impact of the form of the un-
derlying function, since it makes a difference whether it is constant, exhibits a single
and small maximum, or features two local maxima. Also, the coverage probability
of the confidence intervals need to be investigated. In addition, a comparison with
alternative estimators at the population level is worth undertaking. Also, it is worth
exploring further to what extent results depend on the choices made for the grid on
the time variable. This is topic of further research.

The analysis performed here suggests no significant difference between the exper-
imental conditions under consideration, both in terms of temporal evolution and the
occurrence of the time of maximal firing rate. Three possible causes for the result in
the population analysis may be anticipated: (1) there is temporal variation between
neurons and this jittering provokes the lack of significance; (2) the different heights of
discharge rate at single neuron level damped the differences at population level. If this
were the case, perhaps normalizing the firing rates could solve it; (3) the firing rate
maximum peaks for left and right are almost of the same height but occur at different
times; as a consequence there is no statistical difference between the two peaks. In
our situation the data may be considered as heterogeneous in some sense. This means
that events occur at different times so peaks tend to cancel the possible differences.
It would be interesting to compare the results with a population of neurons known to
be homogeneous or in the same ‘phase’.

It is important to mention that inference in general and hypothesis testing in
particular is not straightforward due to the use of the pseudolikelihood. In general,
conventional tools like the likelihood ratio test do not apply to semi-parametric models
as discussed here (Ruppert et al., 2003; Crainiceanu et al., 2005a).



8
Bayesian Semiparametric

Modelling of Univariate and

Bivariate Longitudinal Data

In this chapter, we revisit the aspects discussed in Chapter 4 from another perspec-
tive, the Bayesian approach. Since penalized splines can be considered as BLUPS in
the mixed-model framework, the models can be fitted using software developed for
Bayesian analysis of mixed models. Some examples of work applying this methodol-
ogy include Balandayuthapani et al. (2005), Crainiceanu et al. (2005b, 2007). The
Bayesian approach becomes more attractive in this setting because one can directly
monitor the difference between the groups, thereby rendering ‘exact’ inference. More-
over, the credible intervals derived thereof account for variability in all parameters in
the model. In terms of modelling, similar settings, i.e., the same number and location
of knots used in Chapter 4 will also be used here.

Within the context of smoothing longitudinal data, we also consider bivariate mod-
els for longitudinal processes. Several approaches may be considered for accounting
for correlation between the responses (e.g., Thiebaut et al., 2002; Molenberghs and
Verbeke, 2005; Fieuws and Verbeke, 2006). In this chapter, we propose a bivariate
model, wherein among other ways of accounting for correlation, correlation can be

95
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imposed on the smoothers of the respective responses. This will be taken up further
in Section 8.2. The work in the present chapter is also presented in Maringwa et
al. (2008c).

8.1 Bayesian Approach to Semiparametric Mixed

Models

8.1.1 Methodology

Unlike in frequentist and likelihood based statistics, where parameters are regarded as
fixed but unknown quantities, a Bayesian approach treats the parameters as random.
The classical mixed-model formulation (4.1), which already considers some parts as
random, can be extended to a fully Bayesian model by taking all parameters in the
model as random. Prior distributions are assumed on all parameters, thereby ex-
pressing some degree of knowledge about any particular parameter before data are
available. The joint posterior distribution of the parameters given the data forms the
basis for inference. When the dimension of the parameter vector grows, evaluating in-
tegrals appearing in the posterior density becomes non-trivial. Markov Chain Monte
Carlo (MCMC) techniques can be applied to sample from the posterior distribution
(Gelman et al., 1995; Robert and Casella, 1999). The Bayesian inference for nonpara-
metric models enjoys the flexibility of nonparametric models and the exact inferences
provided by the Bayesian inferential machinery (Crainiceanu et al., 2005b).

To provide a complete Bayesian specification of the model in (4.1), prior distribu-
tions on the parameters are required. Usually an improper uniform prior is considered
for β and an inverse gamma distribution is assumed for the variance components. Re-
verting to the series of models defined in Chapter 4, a possible specification of the
prior distributions for the parameters of Model 5, as an example, is as follows





β0 ∼ N(0, σ2
β0

), β1 ∼ N(0, σ2
β1

), β01,∼ N(0, σ2
β01

), β11 ∼ N(0, σ2
β11

)

bA
k ∼ N(0, σ2

bA), bB
k ∼ N(0, σ2

bB ), b0i ∼ N(0, σ2
b0

)

σ−2
bA , σ−2

bB , σ−2
b0

, σ−2
ε , σ−2

β0
, σ−2

β1
, σ−2

β01
, σ−2

β11
∼ Gamma(10−6, 10−6).

(8.1)

While we intend to fully apply the concepts of Bayesian inference, it is not our inten-
tion to discuss full details of the theory behind this wide subject here (see e.g., Gelman
et al., 1995; Robert and Casella, 1999). Extension to models discussed in Section 8.2
involves specification of the multivariate normal distribution on the effects, allowing
correlated data structures. The models considered herein are all fitted in WinBUGS
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(Lunn et al., 2000), a freely available software package.
Out of the set of models discussed in Section 4.2, a single model is selected based

on the Deviance Information Criterion (Spiegelhalter et al., 2002), the smaller the
DIC value, the better the model. Of particular interest in this study is determining
differences, if present, between the group-specific profiles at each time point. As
mentioned earlier, this can possibly be done in two ways, first based on credible
intervals for the fitted functions in the two groups. The second approach is more
direct and involves credible intervals for the population difference.

The Bayesian approach enables one to directly monitor the difference between the
two functions and the resulting credible intervals can be used for inference. Such
intervals emanate from the MCMC analysis. For example, the lower limit is the α/2
sample quantile of the chain for the parameter of interest and the upper limit is
the 1 − α/2 sample quantile. An appealing feature of this approach is that credible
intervals allow for variability of each of the parameters, and do not use a so-called
‘plug-in’ approach (Crainiceanu et al., 2005b).

Use of the Bayesian methodology depends on simulations from a presumed sta-
tionary distribution. As such, one needs to assess convergence properties. Here,
we consider the diagnostic tool of Gelman and Rubin (1992), suitable for at least 2
chains. Basically, the method reports the ratio of the between-chain to within-chain
variability. The comparison estimates the factor R̂, by which the scale parameter of
the marginal posterior distribution of each variable might be reduced if the chain were
run to infinity (Best et al., 1995). A factor of approximately 1 suggests that effective
convergence may be assumed. Gelman et al. (1992) point out that a cut-off value of
1.2 works well for most cases, although, in other situations, a higher threshold may
still be acceptable.

8.1.2 Application to the Cardiovascular Safety Experiment Par-

allel Design Case

For the single-variable longitudinal setting, we will focus on heart rate, applying the
models discussed in Chapter 4. For clarity, the models are summarized in Table 8.1.
Each of the five models is fitted and of particular importance is the DIC value for each
model, used as an exploratory tool for discriminating amongst candidate models.

Based on 2 chains, each of 50 000 MCMC simulations, Table 8.2 gives the DIC
values for the different models in the selection stage. The results indicate that Mod-
els 4 and 5 yield the lowest but very close DIC values, implying close similarity in
the fit between the two models. For reasons of parsimony, one can focus mainly
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Table 8.1: Formulation of different semiparametric mixed models and the correspond-
ing reference panel in Figure 4.1.

Model Description Figure 4.1, panel

Model 1 Single curve for both groups A

Model 2 Separate curves with no time

interaction B

Model 3 Separate curves with different linear C

effects but equal non-parametric part

Model 4 Separate curves smoothed separately D

with the same smoothing parameter

Model 5 Separate curves smoothed separately D

with different smoothing parameter

on Model 4, although it may also be interesting to compare results with those from
Model 5. In particular, variation of the smoothing parameters between both models
is investigated. For each of the models, it is safe to assume convergence since the R̂

values obtained for all parameters in the model lie between 1.0 and 1.3. Figure 8.1
illustrates the fitted profiles from Model 4, which has lowest DIC value, as well as
the 95% credible intervals for the fitted profiles. The model assumes separate curves
for the two groups, which are smoothed separately with the same smoothing param-
eter. The credible intervals for Model 4 overlap in most sections of the experimental
time period except the early stages of the experiment where a difference between the
groups may not be unexpected. However, differences between the two profiles at each
time point can be more easily noted in the profile of the difference, as illustrated
in Figure 8.1 (right panel). The graph suggests significant differences between both
groups in approximately the first 25 minutes of the experiment. The two models
we have focused on involve smoothing the groups independently, first with the same
smoothing parameter in the case of Model 4 and then varying the level of smoothing

Table 8.2: DIC values for each of the five models.

Model 1 Model 2 Model 3 Model 4 Model 5

DIC 52489.7 52493.9 51917.6 51776.8 51779.0
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Figure 8.1: Observed group-specific mean and fitted profiles for heart rate together
with the difference between the groups.

by group in Model 5. It may be enlightening to take a closer look at some parameters
of interest from the two models. Of particular interest will be the residual variance
as well as the variance of the random effects, responsible for smoothing, which can be
used to determine the smoothing parameter using the relationship λ = σ2

ε/σ2
b . For

purposes of comparison, we have also included parameter estimates obtained with the
same data in the frequentist linear mixed-model approach (LMM). Both approaches
lead to very similar results. The results in Table 8.3 show that when the groups are

Table 8.3: Posterior mean and 95% credible intervals for parameters of interest in
Model 4 and Model 5 from the Bayesian linear mixed models (BLMM) and parameter
estimates and their standard errors for the same models obtained from the LMM. The
LMM standard errors for λ, λA, and λB are obtained using the delta method.

Model 4 Model 5

BLMM LMM BLMM LMM

Param. Mean 2.5% 97.5% Estim. s.e Param. Mean 2.5% 97.5% Estim. s.e

σ2
b0 272 161.77 508.61 245.78 65.82 σ2

b0 270.25 166.39 522.76 245.34 65.59

σ2
b 9.52 3.86 26.4 7.87 4.08 σ2

bA
8.84 0.54 79.94 5.32 5.39

σ2
bB

9.21 3.64 26.97 8.99 6.03

σ2
ε 129.10 124.7 133.80 129.06 2.23 σ2

ε 129.00 124.8 133.60 129.09 2.24

λ 3.67 2.22 5.79 4.05 1.10 λA 3.81 1.28 15.54 4.93 7.79

λB 3.74 2.19 6.00 3.79 1.30
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Figure 8.2: The distributions of the smoothing parameters obtained from the Bayesian
approach (BLMM) for Model 4 and 5 are shown, including values from the frequentist
mixed-model approach (LMM).

smoothed with varying levels, the corresponding variance components do not differ
much. Indeed, such a conclusion was reported in Maringwa et al. (2008d), where
a chi-square based test is used to test for the need to vary the amount of smooth-
ing by group. However, the distribution of the variance component responsible for
smoothing the control group appears more variable than for the compound group.

Figure 8.2 shows the distribution of the smoothing parameter(s) for models 4
and 5, complementing the similarity between the Bayesian and frequentist results.
From Model 5, it is apparent that the smoothing parameter distribution for the control
group is much more variable comparable to the compound group, resulting from the
more widely varying distribution of σ2

bA , the variance component for smoothing the
control group.

8.2 Joint Modelling of Bivariate Longitudinal Data

8.2.1 Methodology

Section 8.1.2 focuses on a single response measured in two independent experimental
groups wherein smoothing in both groups may be assumed to be the same or varying.
In this section we go a step further and consider bivariate smoothing. Specifically,
we consider two longitudinal responses measured simultaneously on each subject in
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the two experimental groups. Since the responses are recorded simultaneously, and to
keep things relatively simple, we have decided to use the same number and location
of knots for both responses in the two groups. The knots used are in fact the same as
in Section 8.1.2. For each response separately, it is assumed the groups are smoothed
independently, albeit the same smoothing parameter, as in Model 4 in Chapter 4. It is

Time
j j∗

Y1

Y2

Response ρY1Y2(j) ρY1Y2(j
∗)

ρY 1

ρY 2

Figure 8.3: Graphical illustration of the correlation structures of interest for two
responses Y1 and Y2 at different time points j and j∗; ρY denotes correlation of
measurements within a particular response and ρY1Y2 denotes correlation between both
responses.

expected that the two responses in a particular experimental group will be correlated
and as such, the correlation ought to be accounted for. There are several ways of
accounting for the correlation between the responses. Correlation can be imposed on
residual errors across the responses, for example Molenberghs and Verbeke (2005) who
jointly model a binary outcome and a continuous outcome in the context of surrogate
markers for a clinical trials setting.

In the mixed-model framework, both responses may be jointly modelled by speci-
fying a joint distribution for the random subject-specific effects. Examples of such an
approach can be found in Thiebaut et al. (2002), Molenberghs and Verbeke (2005) and
Fieuws and Verbeke (2006). In the same spirit, we propose another possible way of
accounting for the correlation between both responses via the random effects respon-
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sible for smoothing. It sounds logical that if responses evolve in a similar pattern, the
knot coefficients for smoothing both groups will be correlated. This therefore yields
the idea of imposing a correlation between the smoothers of both groups. Such a cor-
relation may then be indicative of how strong the relationship between two responses’
evolution over time is.

To formalize this discussion, let Y1ij and Y2ij (i = 1, . . . , n, j = 1, . . . , mi) be two
different responses measured on the same subjects. For example, let Y1ij denote the
heart rate and Y2ij , AoPs as discussed in Section 2.1.1. These two responses are
measured simultaneously on each subject. Let us first consider Y1ij and Y2ij in one
particular group, for example the control group. It is interesting to assess how the
two responses jointly evolve in time, thereby capturing the time-varying relationship
between the two. Earlier we have mentioned three possible ways of accounting for the
correlation between the responses namely via correlated residual errors, correlated
subject-specific random effects and correlated smoothers. We consider a number
of models ranging from a model including at least one of these ways of accounting
for correlation between responses to one having all three ways at the same time.
For comparison purposes we also fit a model where no correlation is accounted for.
A schematic representation of the possible correlations one can look at is given in
Figure 8.3.

Suppose for each response, a random-intercept model is assumed. Further, response-
specific residual errors are considered. Now consider a specific subject i with mea-
surements for Y1 and Y2 at a particular time point j. The various penalized spline
models at the fixed time point j can be expressed as:





Y1ij = β01 + β11tij +
∑K

k=1 b1k(tij − κk)+ + b01i + ε1j ,

Y2ij = β02 + β12tij +
∑K

k=1 b2k(tij − κk)+ + b02i
+ ε2j ,

(8.2)

where b01i , b02i are response-specific random intercepts, b1k and b2k are knot coeffi-
cients for smoothing the different responses. Let

Z1j = Z2j =
[
(tij − κ1)+ (tij − κ2)+ . . . (tij − κK)+

]
, b1 = (b11, . . . , b1K)

and b2 = (b21, . . . , b2K). Further, define matrices

Zb
j =


 Z1j 0

0 Z2j


 , Zb0 =


 1 0

0 1


 , b =


 b1

b2


 , b0 =


 b01i

b02i


 .

Using matrix notation, (8.2) can easily be written as Y = Xβ + Zb + ε. From the
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matrix definitions above, it then follows

D = Var(b) =


 σ2

1IK σ2
12IK

σ2
12IK σ2

2IK


 , G = Var(b0) =


 σ2

b01
σ2

b012

σ2
b012

σ2
b02


 ,

where G specifies the variance-covariance matrix of the subject-specific random effects
and D represents the variance-covariance matrix corresponding to the smoothing
terms. The variance-covariance matrix for the vector of measurements

Y i =


 Y1ij

Y2ij


 ,

at a particular time point is

Var(Y i) = Zb
jDZb

j

′
+ Zb0GZb0

′
+ Σ

=


 σ2

1Z1jZ
′
1j σ2

12Z1jZ
′
2j

σ2
12Z2jZ

′
1j σ2

2Z2jZ
′
2j


 +


 σ2

b01
σ2

b012

σ2
b012

σ2
b02


 +


 σ2

ε1
σ2

ε12

σ2
ε12

σ2
ε2


 ,

where Σ is the variance-covariance matrix for residual errors. The correlation function
is therefore given by

ρ∗Y1Y2
(t) =

σ2
12

∑K
k=1 (tij − κk)2+ + σ2

b012
+ σ2

ε12√
σ2

1

∑K
i=1 (tij − κk)2+ + σ2

b01
+ σ2

ε1

√
σ2

2

∑m
i=1 (tij − κk)2+ + σ2

b02
+ σ2

ε2

.

This expression is a general correlation function form for data from two responses,
and therefore, represents a family of curves. The derived correlation function always
depends on time via the spline formulation. In fact, since the spline coefficients are
treated as random in this model, a particular correlation structure is implied.

Interpretation of this correlation is not straightforward. Note the dependence of
the correlation function on time, a result of the ‘sharing effect’ at the level of the knot
points. This correlation can be interpreted in two stages, in some hierarchical way.
First, consider the correlation between the two splines, which reflects some sharing
of knot penalties within and between both splines. This purely serves construction of
both splines. Next, given the mean profiles, the correlation structure ρY1Y2(t) takes
the form

ρY1Y2(t) =
σ2

b012√
σ2

b01
+ σ2

ε1

√
σ2

b02
+ σ2

ε2

,

which is similar to the correlation in the usual random-intercepts model. Note that the
addition of higher order subject-specific effects, for example, random slope, induces a
time-dependent correlation function.
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8.2.2 Application to the Cardiovascular Safety Experiment Par-

allel Design Case

Let us now turn to our application. Of particular interest would be the correlation
between the two responses of interest as well as the correlation between the smoothers.
We consider correlated response-specific residual errors, correlated random intercepts
and correlated smoothers. Our focus is to investigate how using one or a combination

Table 8.4: DIC values from different models, where ρb, ρα and ρε indicate presence
(or absence) of correlation between smoothers, random intercepts and residual errors
respectively. The estimated correlation between the two responses in the two experi-
mental groups is denoted by ρ̂bAand ρ̂bB while ρ̂b0 and ρ̂ε estimate correlation between
random intercepts and residual errors respectively.

Model ρb ρb0 ρε DIC ρ̂bA ρ̂bB ρ̂b0 ρ̂ε

I 0 0 0 75248.4

II 0 1 0 75243.3 -0.34

III 1 0 0 75250.3 0.54 0.71

IV 1 1 0 75245.3 0.39 0.84 -0.34

of these ways of accommodating correlated responses affects the implied or modelled
correlation structure. Therefore a set of models ranging from a model with no corre-
lation at all to a model including correlation between smoothers, random intercepts
and residual errors is investigated. Table 8.4 shows all the different models under
consideration together with their DIC values.

Based on the DIC values as shown in Table 8.4, we are inclined to consider Model II
as the one describing the data best, based on DIC values. In this model, only the
random intercepts are assumed to be correlated. Inclusion of a correlation between
smoothers does not improve the fit. Table 8.5 gives estimates of some parameters of
interest for Model II for the two responses considered. The estimates for heart rate
do not differ much from those given in Table 8.3 for the univariate case.

For Model II, an indication of the correlation between heart rate and AoPs comes
from the estimate of the correlation between the random intercepts, which is -0.23,
the estimate of ρ (see also Table 8.5). The correlation is rather small.

Figure 8.4 shows plots of differences between experimental groups for each of the
two responses obtained from the joint model. Differences between both groups can
only be observed in heart rate and, moreover, only in the early stages of the profiles,
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Table 8.5: Posterior mean and 95% credible intervals for parameters for both responses
from selected joint model. The correlation between the random intercepts for both
responses is denoted ρb0 , while ρ denotes the marginal correlation of the observations.

Heart Rate AoPs

Parameter Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

σ2
b0 272.970 160.380 460.800 3.700 2.160 6.340

ρb0 -0.340 -0.620 -0.230

ρ -0.230 -0.430 0.000

σ2
bA

13.180 1.380 56.030 0.150 0.002 1.010

σ2
bB

8.910 3.300 20.660 5.720 2.260 11.560

σ2
ε 129.180 125.000 133.500 1.910 1.850 1.970

in line with results in Section 8.1.2. A closer look at Table 8.4 reveals that not all the
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Figure 8.4: Difference between group-specific profiles for heart rate and AoPs from the
joint model, together with corresponding 95% credible intervals.

anticipated eight models were fitted to the data. All the models including correlation
between response-specific faced computational difficulties. This can be attributed to
several things. The models considered are fairly complicated, and compounded by
the relatively long sequences of measurements per-subject, computational difficulties
may not be unexpected. To further investigate these models, a simulation study is
set up as described in the following section.
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8.2.3 Simulation Study

Simulation Settings

This section presents a simulation study aimed at assessing the plausibility of fitting
the different models under consideration. In particular, it is investigated how well
different parameter values are estimated, in light of the different forms of correlations
specified. The setting of a longitudinal study is retained, although a relatively small
number of time points is considered. Some of the models considered here involve com-

0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

t

f

Figure 8.5: The two functions used for generating data. The continuous line represents
f1j and the dashed line is for f2j.

plex combinations of correlations at different levels. The most complex model would
include residual correlations between responses, correlations of the subject-specific
random effects, as well correlations of the smoothers for the two responses. The main
purpose of this exercise is to investigate how parameter estimates are affected by
inclusion or exclusion of some of these types of correlations.

First, some convenient notation is introduced. The models considered here are
denoted by M followed by three digits, each being either 1 or 0, indicating presence
or absence of a certain correlation type in the model. The first digit represents



Bayesian Semiparametric Modelling 107

correlation between smoothers, the second, correlation between random intercepts of
the two responses and the last denotes correlation between response-specific residuals.
Thus, model M000 would represent the independence model, while M011 represents
a model with correlated subject-specific effects as well as correlated residuals and so
on. Note that all the different combinations result in eight models in total.

For purposes of this simulation study, data will be generated from model M011,
and models M001, M011, and M111 are fitted to these data. Essentially, fitting models
M001 and M111 is a way of investigating the effect of mis-specifying the model by;
(1) exclusion of certain correlation types present in the data, i.e., in the case of M001
or (2) inclusion of a certain correlation, which is not there, in the case of M111.

Let us now provide some more detail on how data for two jointly measured longi-
tudinal responses Y1ij and Y2ij (i = 1, . . . , n, j = 1, . . . , m) is generated. It is assumed
that n = 20 subjects are available, each with m = 20 measurements for each of the
two responses. Let tij ∈ [1/m, 1]. Define two functions

f1(tij) = sin(2π(1− tij)2)

f2(tij) =





0.5 + sin(2π(1− tij)2), if j ≤ 10,

−(0.5 + f1j) + 2f1(10), if 11 ≤ j ≤ 20.

The two functions are graphically depicted in Figure 8.5. Let variances be fixed such
that σ2

ε1
= 0.10, σ2

ε2
= 0.10, σ2

b01
= 0.50, and σ2

b02
= 0.50. Further let the correlations

take on values ρε = (0.50, 0.80) and ρb0 = (0.50, 0.80), reflecting moderate and high
levels of correlation. A combination of these settings results in four different cases to
be investigated as shown in Table 8.6. Thus, as an example, for a particular subject
i, ε1ij and b01i are generated from multivariate normal distributions with zero-mean
vectors, and respective covariance matrices

Σ =


 σ2

ε1
ρεσε1σε2

ρεσε1σε2 σ2
ε2


 , and G =


 σ2

b01
ρb0σb01

σb02

ρb0σb01
σb02

σ2
b02


 .

Thus data for the two responses is generated as Y1ij = f1(tij) + b01i + ε1ij and
Y2ij = f2(tij) + b02i + ε2ij . Note that, due to the way data is generated, imposing
a correlation structure on the smoothers for both responses when generating data is
not possible. However, when fitting the model, one can impose and estimate such a
correlation structure, although of course there is no true value to compare with.

For a particular setting, 100 data sets are generated as described above and the
model is fitted with 10000 iterations with a burn-in period of 1000 iterations. The
results of interest include parameter estimates for specific components of the model.
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Further, mean square error values split into squared bias and variance are also calcu-
lated.

Simulation Results

For each of the settings described in Section 8.2.3, it is investigated how parameter
estimates would be affected under different model assumptions. Particular interest is
on variance-covariance parameters as well as some correlations. As already mentioned,
data are generated from model M011 and models M000, M011 and M111 are fitted
to the same data. Table 8.6 shows the parameter estimates obtained for the different
models. The results indicate that parameter estimates do not differ extensively from

Table 8.6: Parameter estimates for models M001, M011 and M111 fitted from data
generated using model M011. Gaps indicate parameters which need not be estimated
or which do not appear in the particular model being fitted.

σ2
b01

σ̂2
b01

σ2
b02

σ̂2
b02

ρb012
ρ̂b012

σ2
ε1 σ̂2

ε1 σ2
ε2 σ̂2

ε2 ρε12 ρ̂ε12 ρ̂b

Fit model M001

0.50 0.5446 0.50 0.5529 0.10 0.1044 0.10 0.1043 0.50 0.4973

0.50 0.5686 0.50 0.5458 0.10 0.1073 0.10 0.1075 0.80 0.7865

0.50 0.5421 0.50 0.5483 0.10 0.1051 0.10 0.1046 0.50 0.5017

0.50 0.5573 0.50 0.5291 0.10 0.1074 0.10 0.1079 0.80 0.7895

Fit model M011

0.50 0.5563 0.50 0.5863 0.50 0.4221 0.10 0.1032 0.10 0.1028 0.50 0.4864

0.50 0.5845 0.50 0.5768 0.50 0.4245 0.10 0.1059 0.10 0.1061 0.80 0.7859

0.50 0.5721 0.50 0.5625 0.80 0.6788 0.10 0.1045 0.10 0.1050 0.50 0.4959

0.50 0.6012 0.50 0.6242 0.80 0.7098 0.10 0.1038 0.10 0.1049 0.80 0.7803

Fit model M111

0.50 0.5865 0.50 0.5952 0.50 0.4474 0.10 0.1027 0.10 0.1027 0.50 0.4547 0.8808

0.50 0.5999 0.50 0.5598 0.50 0.4688 0.10 0.1037 0.10 0.1040 0.80 0.8086 0.9034

0.50 0.6191 0.50 0.6152 0.80 0.7179 0.10 0.1026 0.10 0.1040 0.50 0.4717 0.8815

0.50 0.6068 0.50 0.6099 0.80 0.7233 0.10 0.1038 0.10 0.1049 0.80 0.7676 0.9076

the true values for all models. It appears there is no drastic influence on parameters
estimated in the mis-specified models. However, variances of different components
tend to be overestimated while correlations between effects tend to be underestimated.
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For an in-depth assessment of how parameter are affected under different models,
mean square error values split into its components of squared bias and variance are
calculated and presented in Table 8.6. The results suggest that it is feasible to fit a
model with all the three different forms of correlation discussed above. There appears
to be no indication of large differences in mean square error values in comparison with
other models. Hence, although in this particular case, M111 is a mis-specified model,
parameter estimates tend to be estimated appropriately. Thus, one can actually fit
such a complicated model without seriously affecting the different parameters in the
model. The level of correlation either between random intercepts or between response-
specific residuals also does not appear to have any bearing on bias, variance or the
mean square error.

8.3 Discussion

This chapter has illustrated an application of the Bayesian inference methodology in
the context of smoothing longitudinal data. The approach enables one to account for
uncertainty associated with estimating all parameters in the model. Different models
hypothesizing how the profiles in different groups can possibly evolve were considered.
To narrow down the scope of the models, selection of the best model describing the
data is done based on DIC values, readily obtained as part of the MCMC results.
Focus turns to the selected model for inference. Note that selection of any other
model other than the null already suggests difference between the groups, the form of
which is determined by the model selected. Since our main aim was to detect specific
time points exhibiting differences, attention is put on credible intervals around both
the fitted functions and the difference between the group-specific profiles.

In the same context of smoothing longitudinal data using penalized spline smooth-
ing, formulated as fully Bayesian hierarchical models, the possibility of jointly mod-
elling two longitudinal profiles via imposition of correlated smoothers was investi-
gated. Ideally, if profiles in a bivariate model tend to evolve in the same way, this
should be captured by including a correlation between smoothers of both responses.
Our simulations have shown that models with such type of correlation, on top of
other types of correlation in the same model, are feasible, especially with relatively
short sequences of repeated measurements. Although the approach sounds logically
motivated, it is not short of pitfalls. Including such type of correlation obviously com-
plicates models. While addressing the issue of correlation, the approach lands itself
in problems of interpretation. By default, due to the construction of the penalized
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spline model, a time dependent correlation always comes out. One possible route to
circumvent this problem, as we have already seen, would to be to base conclusions on
the conditional correlation. The possibility of including correlation on smoothers in
tandem with higher order subject-specific random effects is also interesting to inves-
tigate. We believe further research along these lines is worthy indulging in.
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9
Bayesian Adaptive Penalized

Splines for Non-normal Data

As already pointed out, flexible modelling techniques have become a common feature
in statistical analysis. In particular, the use of penalized spline methodology has
received wide attention in different applications requiring nonparametric smoothing.

Some of the key issues associated with smoothing literature include the positioning
and the number of knot points to be used as well as the selection of the smoothing
parameter. It turns out that choosing the smoothing parameter is a more subtle
aspect (Ruppert, 2002). Regarding the knots, it is generally believed that with a
certain minimum number of knots, an acceptable fit can always be obtained. The
basic idea behind the penalized splines methodology is to shrink the coefficients of
the knot points towards zero using some common variance, an aspect which can be
referred to as global smoothing. Essentially one assumes all coefficients are drawn
from a common distribution. This is exactly what we have been doing with penalized
splines in all the previous chapters. However, with data exhibiting heterogenous
tendencies, assuming a global smoothing parameter may be restrictive. Indeed, global
smoothing tends to ignore the spatial variability in the data.

A host of methods have appeared in literature addressing this issue. Some of the
work relates to juggling around with the number of knots and their positioning, for ex-
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ample, the computationally intensive Bayesian Adaptive Regression Splines (BARS)
of DiMatteo et al. (2001). A broad section of methods has mainly focused on re-
laxing the common variance assumption on the knot coefficients, for example, Lang
and Brezger (2004). Some of the proposed methods focus on modelling the resul-
tant knot-specific variances (penalty parameters) as a function of the independent
variable. In this context, Ruppert and Carroll (2000) developed spatially adaptive
penalty parameters in a frequentist setting with normal data. Baladandayuthapani
et al. (2005) address the same problem but from a Bayesian perspective. Also from a
Bayesian perspective, Crainiceanu et al. (2007) develop spatially adaptive parameters,
extending the methods by further modelling of the error terms, also using penalized
splines. Krivobokova et al. (2008) consider spatially adaptive parameters with an
approximation to the marginal likelihood based on the Laplace transformation for
non-normal data. This chapter proposes using the Bayesian inferential tools aiming
at filling the gap of Bayesian spatially adaptive penalized splines for non-normal data.
To the best of our knowledge, only the work of Krivobokova et al. (2008) addresses
a similar problem with the Laplace approximation approach. The case for normal
data from a frequentist approach has been studied for example by Ruppert and Car-
roll (2000). For normally distributed data in the Bayesian framework, we refer to
Baladandayuthapani et al. (2005).

The work presented here follows closely that of Baladandayuthapani et al. (2005)
and Krivobokova et al. (2008). The latter provide a fast way of fitting adaptive pe-
nalized splines for non-normal data by the use of a pseudo-quasi likelihood. However,
it is well known that crude approximations to the marginal likelihood, especially for
binary data, often give inaccurate results (Zhao et al., 2006). The use of Markov
Chain Monte-Carlo (MCMC) methodology (see e.g., Gelman et al., 1995; Robert and
Casella, 1999), which provides a source for ‘exact’ inference, is an appealing alter-
native. One can simultaneously estimate the function of interest, the penalty curve
as well as their uncertainty bounds. Such methodology also provides tools for model
comparison, e.g., the Deviance Information Criteria (DIC, Spiegelhalter et al., 2002),
which is not available in the penalized quasi-likelihood methodology.

The methodology is illustrated via an application to real data coming from the
electrophysiological field. Further, some simulations to compare our proposed model
with models already existing in literature are performed. For ease of exposition, at-
tention will be restricted to cross-sectional data. It goes without saying that the
methodology can seamlessly be used with longitudinal data as in the previous chap-
ters. The contents of this chapter can also be found in Maringwa et al. (2008a).
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9.1 Formulation of the Adaptive Penalized Spline

Model

The main purpose here is to focus on adaptive smoothing in the case of non-normal
responses. As such, consider a pair of data points (yj , tj), j = 1, . . . , T , where yj

denotes the response variable and tj is the independent variable. The model of interest
can be expressed as h(E(yj)) = f(tj), for a smooth function f(·), where h(·) is an
appropriate link function, for example, the log link in the case of poisson counts. The
penalized spline representation for f(·), based on a truncated linear basis, can be
written as

f(tj) = β0 + β1tj +
K∑

k=1

bk(tj − κk)+,

where κ1, . . . , κK are K distinct knots in the range of tj (j = 1, . . . , T ), with u+ =
max(0, u), and the knot coefficients, bk, are assumed normally distributed with mean
0 and common variance σ2

b , i.e., bk ∼ N(0, σ2
b ). The normality assumption on the

parameters bk assures that the data is not overfitted, but rather a smooth function is
obtained.

The knots used here are selected using the quantile spacing approach (Ruppert,
2002) and a certain minimum number of knots is required to obtain an acceptable fit.
The truncated lines basis, which is simple in formulation is used for explaining the
methodology.

As before, we adopt the following matrix notation. Let

Y =
[

yj

]
1≤j≤T

, X =
[

1 tj

]
1≤j≤T

, and β =
[

β0 β1

]′
.

Further, define

Z =
[

(tj − κk)+
]
1≤j≤T, 1≤κ≤K

, b =
[

b1, . . . , bK

]′

.

The model may then be expressed in matrix notation as

h(E(Y )) = Xβ + Zb,

with b ∼ N(0, σ2
b ). Note that, a common variance σ2

b is assumed for the different
knot coefficients. This essentially shrinks the knot coefficients to zero, using a global
variance component. This however, in certain cases, turns out to be restrictive. In-
deed, often, profiles tend to have sharper turns or curves in some parts compared to
other sections. A global smoothing parameter, which tends to combine information
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borrowed from different sections of the profile obviously ignores such spatial variabil-
ity. A way out is to relax this assumption and assume variable variance components
for each knot point. The variance components, numbering up to the number of knot
points K, are then modelled, again with a penalized spline model. The basis function
for the spline model modelling the variance components can either be the same or
different from the one for modelling the mean.

To fix ideas, let us explicitly formulate the model under consideration. The start-
ing point to spatially adaptive smoothing is to assume a non-constant variance for the
knot coefficients, such that, bk ∼ N(0, σ2

b [κk]), clearly emphasizing the dependence of
the smoothing parameter on knot location. The K knots now define a new set of de-
sign points, denoted tc1, . . . , t

c
K . In a similar way as above, another set of (sub) knots,

numbering Kc and denoted κc
s, s = 1, . . . , Kc, is selected. The variances responsible

for smoothing the mean are then related to the independent variable using another
penalized spline model,

log(σ2
b [κk]) = log(σ2

b [tck])

= βc
0 + βc

1t
c
k +

Kc∑
s=1

cs(tck − κc
s)+.

Similarly as above, define the following matrices

Y c =
[

log(σ2
b [κk])

]
1≤k≤K

, Xc =
[

1 tck

]
1≤k≤K

, and βc =
[

βc
0 βc

1

]′
.

Further, also define

Zc =
[

(tck − κc
s)+

]
1≤k≤K, 1≤s≤Kc

, c =
[

c1, . . . , cKc

]′

,

resulting in a similar mixed-model representation, Y c = Xcβc+Zcc. The coefficients
cs for the subknots κc are assumed to be normally distributed with mean zero and
a constant variance σ2

c , i.e., cs ∼ N(0, σ2
c ). The complete list of all parameters to be

estimated to implement the spatially adaptive penalized spline model is β, βc, b, c, σ2
c .

The simplicity of the linear basis makes them conceptually easier to understand
and implementation is rather straightforward. However, the models considered here
are fitted using the radial basis (Ruppert et al., 2003), which tends to be more nu-
merically stable (Crainiceanu et al., 2005b). Needless to mention that the basic idea
remains exactly the same. The construction of radial basis functions was given in
Chapter 7.

Consider a distribution from the exponential family with the canonical link func-
tion, for example, the Poisson distribution. In general, the distribution of Y is

[Y |β, b] = exp{Y ′
(Xβ + Zb)− 1

′
η(Xβ + Zb) + 1

′
ϑ(Y )},
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where 1 is the unit vector and the distribution of the random effects b is assumed
to be distributed as N(0, G). The expression η(·) depends on the type of response
where for example, in the Poisson case η(x) = ex and η(x) = log(1 + ex) for the
Bernoulli distribution. In a traditional penalized spline model with a global smoothing
parameter, G will be diagonal with equal entries. However for the adaptive case,
the issue is further complicated by the fact that diagonal entries of G are not only
different, but also dependent on the independent variable X.

9.2 Implementation as a Bayesian Model

The model proposed here is applicable in both the normal and non-normal cases. The
main focus here is to specifically address the issue of Bayesian adaptive penalized
splines (BAPS) for non-normal data, an area in which literature is not in abundance.
To fully describe the model discussed Section 9.1 in the Bayesian framework, prior
distributions for all parameters i.e., the fixed effects vectors β, βc as well as the
variance component σ2

c . The fixed effects are assumed to be independently normally
distributed with a large variance, suggesting noninformative priors. For the variance
components, an inverse gamma (IG) is considered for each variance component.

The model discussed here is a particular case of the general design Bayesian gen-
eralized linear mixed models of Zhao et al. (2006). Let us combine some parameters
of interest in a single vector θ = [β b]

′
. Further, let C = [X Z], and define V

as a block diagonal matrix containing variances from fixed effects and variance com-
ponents. The posterior distribution of the parameters given the data can then be
written as (Zhao et al.; 2006)

[θ|Y ] =

∫
exp

(
Y
′
Cθ − 1

′
η(Cθ)− 1

2 (log|G|+ θ
′
V −1θ)

)
[G]dG

∫ ∫
exp

(
Y
′
Cθ − 1′η(Cθ)− 1

2 (log|G|+ θ
′
V −1θ)

)
[G]dGdθ

.

Evaluating such integrals analytically is an insurmountable task. Instead, alternative
ways have been developed, making use of the MCMC methodology. In particular,
one would employ algorithms that obtain samples from the required distribution.
An example of such procedures is the so-called Gibbs sampler, based on conditional
distributions of certain parameters given the other parameters in the model. For
example, the conditional distribution of θ is

[θ|G, Y ] ∝ exp(Y
′
Cθ)− 1

′
η(Cθ − 1

2
θ
′
V −1θ).

This conditional distribution does not resemble any standard distribution and there-
fore sampling from it becomes difficult (Ruppert et al., 2003; Zhao et al., 2006). The
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Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is one tech-
nique of obtaining samples from a distribution only known up to a certain constant.
In brief, the technique generates samples from some distribution convenient to sample
from and in comparison with the target distribution, the new sampled values are either
accepted or rejected. The Bayesian models considered here are all fitted in WinBUGS
(Lunn et al., 2000). WinBUGS uses the Gibbs sampling technique, a technique that
hinges on availability of full conditionals. Therefore Gibbs sampling becomes impossi-
ble when some or all of the required conditionals are difficult to sample from, which is
the case for non-normal responses. In such cases, the Metropolis-Hastings algorithm
may be called into play to provide approximations. Note that the Gibbs sampling
technique is a special case of the Metropolis-Hastings algorithm. From a practical
point of view, fitting Bayesian models in WinBUGS only requires one to correctly
define and specify the model, estimation of parameters will be done automatically.

9.3 Application to the Electrophysiological Experi-

ment Data Example

From the data described in Section 2.3, a single neuron with which a total of 185
trials were conducted, is selected and is the focus of interest in this chapter. The

Table 9.1: Comparison of the Bayesian P-splines, Bayesian Adaptive P-Splines and
KCK methods. The three methods are evaluated based on MSE and the Bayesian
models are compared based on DIC.

Bayesian P-splines Bayesian Adaptive P-splines KCK

MSE 19.6444 19.4183 19.8178

DIC 1598.74 1591.19

raw data for the particular neuron, in the form of raster plot, are shown in the left
panel of Figure 9.1. The raster plot displays the complete set of spikes for each of
the trials (Kass et al., 2005). The right panel of Figure 9.1 shows the peristimulus
time histogram (PSTH), which displays the number of spikes per second occurring
in every 20 ms bins, averaged over all trials. Both plots show increased activity just
after 1500 ms and also between 2000 and 2500 ms, possibly suggesting the need for
differential smoothing in the time domain. Indeed, the profile appears flat in the
beginning, sharply rising to a peak around 1500 ms. The intention is to illustrate the
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use of Bayesian adaptive penalized spline methodology for smoothing complex data
structures like the present situation. Data from the selected neuron, summarized
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Figure 9.1: Left: Raster plot showing the observed times at which activity was recorded.
The plot shows for each single trial, the time at which an activity was recorded. Right:
Peristimulus time histogram for the same data showing activity in 20 ms bins, averaged
over all the different trials.

over the different trials is shown in Figure 9.2 where the number of spike counts with
time is shown. The adaptive Bayesian penalized spline methodology is illustrated on
these data. Although the Bayesian adaptive spline model described in Section 9.1
is formulated based on the polynomial linear basis, the models fitted here are based
on the radial basis. The basic concepts however remain the same regardless of the
basis used. Following experimentation with a few different bases, it turns out that,
for practical implementation, the radial basis is preferred due to numerical stability.

To achieve the desired flexibility, we use K = 25 and Kc = 5 where the knots
are selected as quantiles of the time variable. The model is fitted with 4 MCMC
chains, each with 50 000 iterations and a burn-in period of 10 000. The top left panel
in Figure 9.2 shows the fit obtained from the Bayesian adaptive penalized spline
model, together with the corresponding 95% credible intervals in the top right panel.
Example WinBUGS code for fitting the model is given in the appendix.

For comparison, results of the method of Krivobokova et al. (2008), which for
convenience, shall sometimes be referred to as the KCK method, are also presented.
The KCK method was implemented using the R package AdaptFit written by the
authors of that article and the results are presented in the bottom left and right panels
of Figure 9.2. The top right and bottom right panels of Figure 9.2 show plots of the
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Figure 9.2: Top: Fitted Bayesian Adaptive P-splines model together with 95% credible
intervals as well as the variance function of the random effects for smoothing. Bottom:
Fitted curve based on the KCK method and the corresponding variance of random
effects function.

random effects variance for the two approaches. The peak between 1500 ms and
2000 ms is associated with high random effects variances relative to other sections
suggesting differential levels of smoothing. The differences in the range of values
for random effects variances between both approaches is attributed to the difference
in formulation of the basis functions. To compare these approaches on the current
data, the mean squared error (MSE) is computed for each method. This is done by
simply squaring the difference between the observed and the model predicted values
averaged over the number of time points. Also considered for comparison purposes
is the traditional Bayesian penalized spline model without modeling of the penalty
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Figure 9.3: Assessing convergence of knot coeffients b, their variances σ2
b [κk] and sub-

knots coefficients c using the R̂ measure, which should be close to 1 if convergence is
to be assumed.

parameters (e.g., Crainiceanu et al., 2005b). The results obtained from applying the
different models are given in Table 9.1. The results indicate the adaptive methods
give comparable results although the Bayesian approach appears to have a slight
edge in terms of MSE values. The superiority of the Bayesian adaptive modelling
in comparison with the traditional Bayesian penalized splines, which does not model
penalty parameters, is evident from the MSE and DIC values. However, for a more
informed comparison and or evaluation, a simulation study is required.

The DIC provides a way of formally checking for the need of an adaptive as
compared to the simple Bayesian penalized spline. This is not possible in the KCK
method, since the penalized quasi-likelihood cannot be used for comparison with
other models. Note that one can also compare profiles based on confidence intervals
or credible intervals in the Bayesian realm. Although this can be done, confidence
intervals are not readily available from the method of KCK. On the other hand,
credible intervals are inherently obtained from the Bayesian analysis. Figure 9.3

Table 9.2: Assessing convergence status of the fixed effects parameters and the vari-
ance component for the sub-knots using the R̂, which should be close to 1 for conver-
gence to be safely assumed.

β0 β1 βc
0 βc

1 σ2
c

R̂ 1.22 1.25 1.05 1.03 1.02

and Table 9.2 show an assessment of convergence using R̂ for all model parameters
for the Bayesian adaptive penalized spline model. Note that the vector of random
effects b is of length 25 (left panel of Figure 9.3), resulting in the same number of
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variance components (center panel of Figure 9.3). For the sub-knots vector c (right
panel of Figure 9.3), the length is 5 but the corresponding variance components is a
single value whose R̂ value, together with the corresponding values for fixed effects
parameters, are given in Table 9.2. Note that each and every parameter in the model
has a value for R̂. The results in Figure 9.3 and Table 9.2 suggest that convergence
can reasonably be assumed since all R̂ values do not deviate substantially from the
reference value of 1. Gelman et al. (1992) suggest an umbrella cut-off value of 1.2,
although they mention that, in complicated models, a higher threshold may still be
acceptable.

The next section focuses on a simulation study focusing on comparing the proposed
Bayesian adaptive method with similar methods currently existing in literature.

9.4 Simulation Study

To evaluate and compare the BAPS method with other existing methods, a simulation
study is performed. For the sake of completeness, the case for normally distributed
data is considered first, and in a second step, a similar exercise for non-normal data
follows. For evaluation of the performance of the models, the squared bias, variance
and the mean squared error for the estimated function are calculated. At each point
tj , one can define the local versions of the three quantities mentioned above. The
mean of the estimated values at a particular point is ¯̂

f(tj) =
∑N

ı=1 f̂ı(tj)/N , where N

is the number of simulation runs. The local squared bias, variance and mean squared
error can then be obtained in a straightforward way as

bias2j = (f(tj)− ¯̂
f(tj))2, varj =

N∑
ı=1

(f̂ı(tj)− ¯̂
f(tj))2/N, and msej = bias2j +varj ,

where f(·) and f̂(·) denote the true and model predicted values respectively. The
global versions of the squared bias, variance and mean squared error are obtained by
averaging the local values over the number of time points.

9.4.1 Simulation Settings

Let us give a description of the simulation settings considered here. The most com-
monly encountered data distributional assumptions namely the normal, bernoulli and
the poisson are investigated.
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The Normal Case

The function we consider for generating the data has already been used by several
authors including Ruppert and Carroll (2000), Crainiceanu et al. (2007) as well as
Krivoboka et al. (2008). Assume the model

yj = f(tj) + εj , for 1 ≤ j ≤ T,

where εj ∼ N(0, σ2
ε) and

f(t) =
√

t(1− t) sin
(

2π(1 + 2(9−4)/5

t + 2(9−4)/5

)
, (9.1)

with  controlling the level of spatial heterogeneity. For 400 values of tj , assumed to
be fixed and equally spaced on [0, 1], it is assumed that σ2

ε = 0.04 and  is taken to
be 3, allowing moderate spatial variability.

For the ordinary Bayesian penalized spline model, the number of knots is fixed
at K = 40, selected as equally spaced quantiles of t. The same number of knots is
also used in the adaptive version of the model, with the number of knot points for
smoothing the variance components fixed at Kc = 4. Whilst we make an attempt to
obtain a desired fit, it is also apparent that Kc should be much smaller than K for
obvious reasons of computational complexity. For each simulated data, the Bayesian
models are fitted with 10 000 iterations with a burn-in period of 1000. For the same
data, the method proposed by Krivobokova et al. (2008) is also considered, using
the same values of K and Kc. In all cases, 100 data sets are simulated, keeping the
sample size at 400. Results of the simulation exercise are given in Section 9.4.2.

The Binary Data Case

Let us now shift attention to the case of non-normal data, and in particular, for
this section, consider binary data. We seek to evaluate the proposed method using
a simulation study, in comparison to the other existing methods already mentioned.
Generation of the data follows the following simple procedure. Let p denote some
proportion and, making use of (9.1), one can define p(t) = exp(f(t))/(1 + exp(f(t))),
which is considered a true known function of the proportion. The next step then
involves generating data, i.e., either 1 or 0 at each value of t, from a bernoulli distri-
bution with probability p(t), thereby generating a sequence of binary outcomes.

The proposed method is first illustrated, in comparison to the method of Krivobokova
et al. (2008). We generate a single data set with a binary response as explained above.
The true function generating the data is shown in Figure 9.4. For two different sample
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sizes (T = 400 and T = 3000), the model proposed in this chapter as well as that
of Krivobokova et al. (2008) are fitted and graphically presented in Figure 9.4. The
number of knots are kept the same as in the previous section.
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Figure 9.4: Illustrating adaptive fitting methods on a single simulated data set. The
methods are compared on two different sample sizes of T = 400 (left panel) and
T = 3000 (right panel).

With regards to smoothing of binary data, it appears the gain or the use of the
adaptive methods largely depends on sample size. While Krivobokova et al. (2008)
mention that their method does not necessarily require large samples, our application
of the method shows poor performance in relatively small samples. This is evident
in the left panel of Figure 9.4, which is based on a sample size of 400. Although the
model gives a similar fit to the Bayesian model proposed here, both models appear to
perform poorly in estimating the true function. The situation however improves when
the sample size is taken up to T = 3000, albeit the same setting for the knots. As can
be observed in the right panel of Figure 9.4, a more pleasing fit from both models is
obtained. Of course, a proper simulation exercise can enlighten this situation. It is
important to note that simulations involving such Bayesian models, especially with
large sample sizes, can be computationally hard and time consuming.

Let us now discuss a proper simulation study to compare the different models.
Here we assume T = 1000, which relatively, reduces the computational burden whilst
still large enough to guarantee the possibility of an acceptable estimate of the true
function. Indeed, we have seen that sample sizes as low as 400 can result in poor
estimation of the true function, while relatively large sample sizes render a simulation
study infeasible.

Again as above, consider p as the true function on the logit scale. We generate 100
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data sets, each with a binary response generated at each time point using probabilities
p(t). For each data set, the ordinary Bayesian and the Bayesian adaptive models,
together with the approach of Krivobokova et al. (2008) are fitted and the results are
summarized in Table 9.3.

The Poisson Case

As a follow-up to the binary data case, this section extends the discussion to the case
of Poisson distributed data. Once again, we make use of the function in (9.1). At each
point tj , a Poisson variate with mean exp(f(tj)) is generated. A total of 100 data sets
are simulated. Similarly as in the normal and binary cases, we compare the Bayesian
adaptive splines proposed here with the traditional Bayesian penalized splines without
spatial adaptation, as well as the method of Krivobokova et al. (2008). The knot
settings are kept the same as in the two preceding sections. Figure 9.5 illustrates
the adaptive methods considered here on a single simulated data set with Poisson
data for T = 1000. Also shown are the variance functions for the random effects for
smoothing. The random effects variances suggest more curvature at the beginning,
reducing with the increasing values of t. Note the difference in the range of the random
effects variances between both approaches is due to differences in formulation of the
basis functions.

9.4.2 Simulation Results

In this section, results obtained from fitting the model proposed in this chapter, in
comparison to related methods in the literature, are summarized. In particular, the
mean square error values, split into squared bias and variance, for the different models
under the different response distributional assumptions are calculated. Results are
summarized in Table 9.3 for the normal, binary and the Poisson cases. A graphical
presentation of all the fitted values from the simulation runs is shown in Figure 9.6,
where, for each scenario, the results are summarized in the form of a boxplot. One
can observe the similarity of the results between the BAPS and the KCK method
especially for the normal and binomial cases.

First, a comparison between the BAPS model with the method of Krivobokova et
al. (2008) shows very comparable results in all three cases. The BAPS however tends
to have smaller mean square values, although for the normal and binary cases, the
approach is associated with more bias while the approach of Krivobokova et al. (2008)
shows more variability of the estimates. This phenomenon is however not evident in
the Poisson case and as such, a more extensive simulation exercise may be necessary
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Figure 9.5: Left: Illustrating adaptive fitting methods on Poisson count data on a
single simulated data set. The continuous line shows the true generating function and
the dotted line is the fitted model. The dots show the simulated data points. Right:
Variances of random effects responsible for smoothing as a function of t for the two
adaptive smoothing approaches.

to ascertain or clarify the issue. The superiority of both adaptive methods compared
to the non-adaptive version is clear from the mean square values in the normal and
binary cases. A comparison between the BAPS and the non-adaptive version of the
models can be obtained using the DIC. The results point to a better performance of
the adaptive methods.

The results in Table 9.3 appear to suggest a better fit for the non-adaptive Bayesian
method compared to the adaptive counter parts in the case of the Poisson distribution.
In general, for non-normal data, a relatively large sample size is required to realize the
full benefit of the adaptive methods. Indeed, as already seen in Section 9.4.1, small
sample sizes can lead to poor estimation of the underlying function. Thus, in this case,
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Table 9.3: Comparison of the Bayesian P-splines, Bayesian Adaptive P-Splines and
KCK methods based in simulated data. The three methods are evaluated based on
MSE and the Bayesian models are compared based on the DIC.

Bayesian P-splines Bayesian Adaptive P-splines KCK

Normal case

bias2 0.00051 0.00017 0.00006

var 0.00184 0.00077 0.00088

MSE 0.00235 0.00094 0.00095

DIC -126.55 -146.43

Binary case

bias2 0.00140 0.00144 0.00140

var 0.00066 0.00032 0.00046

MSE 0.00206 0.00176 0.00186

DIC 1366.98 1359.19

Poisson case

bias2 0.00696 0.00887 0.01362

var 0.02567 0.02854 0.02385

MSE 0.03263 0.03741 0.03747

DIC 1085.36 1086.89

it is difficult to clearly see the advantage of the adaptive methods. Krivobokova et al.
(2008) also mention the need for large sample sizes to achieve optimal results with
adaptive methods in the case of non-normal data. It is worthy mentioning that for
purposes of simulations, very large sample sizes become computationally prohibitive
with Bayesian methods involving complicated models.

9.5 Discussion

Adaptive penalized splines in a Bayesian framework were considered in this chapter.
Such models are useful in nonparametric regression settings when data tend to show
heterogeneous tendencies, i.e., in some regions, the mean changes rapidly yet remains
rather smooth in other regions. Particular interest was on Bayesian adaptive penalized
splines for non-normal data; the case for normal data having been studied in detail
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Figure 9.6: For each of the methods and each distributional assumption, the fitted
values across all simulation runs are summarized by boxplots.

in literature. This chapter illustrates use of such models for binary and Poisson
counts, in comparison to a related method based on a Laplace approximation of the
likelihood. The two approaches give comparable results. It is important to mention
that, while the Bayesian models considered here come in with some advantages, such
as, accounting for variability in all parameters estimated in the model, the models
can be computationally demanding. Obviously, the computational burden grows with
sample size and complexity of the models. A major advantage with the formulation of
the Bayesian models considered here is the extendability to more complex situations.
For example, in an experiment with three experimental groups, smoothing can be
done adaptively at different levels of smoothing for each of the experimental groups.
It is envisaged that extendability of the model can also be taken into the direction of
additive models as in Baladandayuthapani et al. (2005) or spatial smoothing as in
Krivobokova et al. (2008). Further, the Bayesian models considered offer a readily
available platform for model comparison in the form of the DIC. Other than using
the mean square error, it may be difficult to compare two models using the approach
of, for example, Krivobokova et al. (2008). In any case, a comparison based on mean
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square error does not take into account model complexity. Useful tools for inference,
easily obtainable from Bayesian methodology machinery, are the credible intervals.
Such intervals can be used to compare or assess moment-by-moment differences in
experimental groups. Note that, although one can still calculate such intervals, they
are not readily available in the software package developed by Krivobokova et al.
(2008).

A possible topic of further research would be to consider model selection at the
level of smoothed variance components. As we have seen, one can employ the same
or different basis function to model the mean and the penalty parameters. A closer
look at how different basis functions for the penalty parameters would influence the
results may be interesting.

Several aspects are of interest with electrophysiological experiments. For example,
interest may lie in determining the maximum peak activity when the monkey correctly
decided that the test stimuli were to the right and to the left of the reference line.
Further, one may also be interested in comparing neuronal response between behav-
iorally relevant condition. Following the discussion of Chapter 7, such objectives can
be tackled using the methodology of the current chapter.
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10
On the Use of Historical

Control Data in Pre-clinical

Safety Studies

Typical pre-clinical safety experiments involve a study of a control group of untreated
animals, and groups of animals exposed to increasing doses. The ultimate aim is to
test for a dose related trend in the response of interest (e.g., a tumor of a certain
type). Usually one would focus on one particular experiment. However, since such
experiments are conducted in genetically homogeneous animal strains, historical con-
trol data from previous similar experiments can be helpful in interpreting results of a
current study (Ibrahim and Ryan, 1996). For example, if a defect has never occurred
in control animals, its occurrence even in only a few exposed animals may be a cause
of concern although statistical tests may not yield a significant treatment effect in
that study (Ryan, 1993). The issue of when one may use historical control data is
still not clear. It is argued that one can gain efficiency from historical controls when
the dose effect is not clear-cut (Dempster et al., 1983; Ibrahim et al., 1988) and when
the control rates are low (Ibrahim et al., 1988). Historical control data are also used
to demonstrate that some tumors are species-specific and thus not compound related.
Should one be in a position to use historical control data, it is also of interest to know
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whether one should use all the available studies or possibly select only a subset of
studies.
Our intention is to investigate these aspects and possibly provide general recommenda-
tions regarding the use of historical control data. We will focus on the logistic-normal
model (Dempster et al., 1983; Parise et al., 2001) while monitoring the precision, bias
and power (based on a likelihood ratio test) associated with estimation of treatment
effect. Computer simulations are used for this purpose.

In Section 10.1, a brief description of the logistic-normal model is given and an
application of the model is illustrated on a data example in Section 10.2. Section 10.3
focuses on the simulation study and in Section 10.4 we investigate the idea of using
a selected subset of historical control studies. The contents of this chapter are based
on the paper of Maringwa et al. (2007).

10.1 Incorporating Historical Controls Using a Logistic-

Normal Model

Consider an experiment with dose groups d0 < d1 < · · · < dk where d0 = 0 is the
control group and k is the number of other dose levels. Suppose we are interested
in determining presence or absence of a certain feature in the different dose groups.
Hence we aim to investigate whether the proportion of animals having the abnor-
mality of interest increases with increasing dose. A common approach to model the
proportion of animals developing the abnormality is by use of a logistic regression
model. Let pi denote the response probability of an animal in group i. A simple
logistic model to describe the relationship between pi and di can be written as

logit(pi) = β0 + β1di,

where β0 and β1 are parameters to be estimated, representing the background effect
and the dose effect, respectively.

Suppose we intend to include historical control information in the analysis. If it
can be assumed that the current control group as well as the historical controls are
a random sample from the same population, one can pool the control rates together.
However, to account properly for study to study variability, one can incorporate the
historical control studies as random effects in the model. This provides a compromise
between completely ignoring the historical controls and pooling together all the his-
torical controls. Let nij denote the number of animals in group i of study j and yij

denote the number of animals developing the abnormality in group i of study j for
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j = 0, 1, 2, . . . , ns. The current experiment will be indexed by j = 0 and the historical
controls are indexed j = 1, 2, . . . , ns where ns is the total number of historical studies
included. Note that for historical studies, only the control group (d0 = 0) is consid-
ered. Let b0j

denote the random study component which is assumed to be normally
distributed with mean 0 and variance σ2

b0
. Conditional on the random intercept b0j

we have:

yij |b0j ∼ Binomial(nij , pij) and logit(pij) = β0 + β1di + b0j , (10.1)

for i = 0, . . . , k and j = 0, . . . , ns.
Parameters in this model can be obtained through maximum likelihood estimation

using for example PROC NLMIXED in SAS. To obtain starting values for this model,
the model (for the current study only) is fitted using PROC LOGISTIC and estimates
obtained thereof are used as starting values in PROC NLMIXED. For the variance
of the random effects, several different starting values including default settings are
used to come to stable estimates.

To assess the adequacy of the model under consideration, it is advised to check the
plausibility of the model assumptions. As such, we need to check whether the normal
assumption assigned on the random effects is appropriate. Since interpretation of
histograms and scatterplots of unstandardized Empirical Bayes (EB) estimates of the
study-specific random intercepts is questionable (see Verbeke and Moleberghs, 2000),
we follow Degruttola, Lange and Dafni (1991) in first standardizing the EB estimates
and then constructing normal quantile plots to assess the normality assumption for
the random effects. For the general fit of the model, we plot the fitted probabilities
against the observed proportions at the different dose levels.

Our main interest is to determine the gains if any from the incorporation of his-
torical controls. To that effect, we propose to assess the precision, bias as well as
the power associated with the estimation of β1, the main parameter of interest. For
example, if inclusion of historical controls substantially improves the precision, with
relatively low bias in the estimate as compared to the situation where no historical
control information is used then it may be worthwhile including such information.

10.2 Application to Incidences of Alopecia Data

Example

As an example, we consider data involving investigation of the occurrence of the
parameter ‘alopecia’ in rabbits described in Section 2.4. These data involve historical
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data from two different species. The occurrence of alopecia in these two species of
animals is not expected to differ much and can therefore both be used as historical
controls for the current or examined study. This is confirmed by a Wilcoxon Mann
Whitney test applied to the proportions in two groups (p-value=0.2990). We will
however include a variable in the model to account for possible species effects hence
we have

yij |b0j
∼ Binomial(nij , pij) and logit(pij) = β0 + β1di + βSSj + b0j

where Sj identifies species and βS is the corresponding coefficient.
Two logistic regression models, one ignoring the historical control studies and the

other including them as random effects are fitted. The likelihood ratio test is used to
test for species and treatment effects. The results are displayed in Table 10.1.

While the current study indicates a borderline treatment effect (p-value=0.0418),
inclusion of historical control studies under the logistic-normal model appears to fur-
ther weaken the evidence for treatment effect (p-value=0.0886). It can also be ob-
served that the effect of species is non-significant (p-value=0.2207).

Note that parameter estimates and their standard errors have changed upon in-
clusion of historical controls. While the precision for estimation of treatment effect
appears to have improved, the issue of bias needs to be investigated by use of simu-
lations.

Figure 10.1 shows some diagnostic plots for the logistic-normal model considered.
The top figures show the observed and fitted probabilities based on the current study
only (left) and based on the logistic-normal model including historical control data
(right). The model appears to fit well in the current study (Figure 10.1, top left). The
effect of the random intercept for study is apparent in Figure 10.1 (top right) where the
fitted values appear slightly shifted up, with the fitted proportion in dose 0 appearing
to have been ‘pulled’ towards the relatively higher proportions in the historical studies.

The normal quantile plot for the standardized EB seems to suggest deviation from
normality. However, this can possibly be attributed to one particular study identified
as outlying (see Section 10.4.2). Indeed, removal of this study suggests no deviation
from normality (see Figure 10.1, bottom right). The Shapiro-Wilk test (Shapiro and
Wilk, 1965) fails to reject normality (p-value=0.1524) when the study is removed
while it rejects the normality assumption (p-value=0.0045) when all historical studies
are used. Results obtained from fitting models with and without this particular study
are discussed in Section 10.4.2.
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Figure 10.1: Diagnostic plots: Top left panel shows the observed and fitted proportions
(continuous line) in the current study while the top right panel shows the fitted pro-
portions in the logistic normal model (i,e including historical studies). Proportions
of Alopecia in historical studies are indicated by the diamonds and the bottom panel
shows the normal quantile plot for standardized EB estimates for the logistic normal
model.

10.3 Simulation Study

To investigate the aspects discussed in Section 10.3.1, the study on occurrence of
alopecia described in Section 10.2 is used to obtain realistic parameter settings for
the simulations.

10.3.1 Monitoring Precision, Bias and Power

We are mainly interested in assessing how the precision associated with estimating
treatment effect, power and bias are affected by use of historical control studies relative
to considering only the current study. To that effect, some terminology is introduced.
Using simulated data, we obtain the ratio of the standard error for the parameter of
interest obtained by fitting the logistic-normal model to the combined data (current
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study plus historical control studies) to the standard error obtained using only the
examined study, which we define as relative efficiency (RE). In a similar way we
calculate relative squared bias (RB) and relative power (RP). So, in summary, the
lower the RE and RB (smaller than 1), and the higher the RP (larger than 1), the
more beneficial the use of historical controls.

10.3.2 Simulation Settings

Using parameter estimates given in Table 10.1 as guidelines, we consider incidences
of alopecia in the control group of approximately 2% (β0 = −4.0), 12% (β0 = −2.0)
and 20% (β0 = −1.4) representing low, medium and high background rates. We
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Figure 10.2: Hypothesized models for simulations: probability of occurrence of alopecia
as a function of dose for specified β0 and β1.

assign values for β1 equal to 0.005, 0.020 and 0.040 reflecting a low, borderline and
high treatment effect respectively. Figure 10.2 graphically illustrates the hypothetical
situations under consideration. To simulate historical control data, we use the logistic-
normal model ( 10.1) with di = 0 and the control rates fixed as above. For variance
of the random effects, we allow σ2

b0
taking values of 0.10, 0.30 and 0.90. The normal

variate simulated for each study accounts for the study to study variation in the
assumed background rate of alopecia. A fixed sample size of 30 animals in each
group, both in the ‘examined study’ as well as historical control studies is assumed.
For any fixed setting (see Figure 10.2), 200 data sets are randomly generated and the
logistic regression model is fitted to the ‘examined’ study while the logistic-normal
model is fitted to the combined data. The parameter values used to generate the data
are used as starting values in fitting the models.
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10.3.3 Simulation Results

For each specified level of treatment effect we investigate how the relative efficiency,
bias and power change with increasing number of historical control studies, different
background rates and variability amongst the historical studies (denoted by V ).

Low Treatment Effect

Let us first assume a low treatment effect, β1 = 0.005 (see Figure 10.2). From the left
column of Figure 10.3, it can be observed that inclusion of historical control studies
tends to improve precision since all RE values are below 1.0. The effect of variability
amongst the studies on precision is evident from Figure 10.3 and is as expected. The
more homogeneous the studies are, the more precise the estimation for treatment
effect. However, for fixed variability amongst historical control studies the precision
tends to decrease with increasing control rates.

It can also be observed that really large numbers of historical control studies do
not necessarily lead to increased precision since the RE tends to level with increasing
number of historical studies. Inclusion of historical studies also leads to bias reduction
when the control rate is low (Figure 10.3, right column). For higher control rates
however there is a price to pay for higher precision in terms of some bias.

From Figure 10.6 we further observe, particularly for a fairly homogeneous set
of studies and a low background rate, an increase in power by about 50% as more
historical control studies are incorporated. When 10 or more studies are taken into
account, the power fluctuates around that same value and does not increase any
further. For increasing background rates, this power advantage is less pronounced.

Borderline Treatment Effect

Let us now consider a borderline treatment effect where β1 = 0.02. As in the previous
section, variability amongst historical control studies plays an important role in the
precision of estimating treatment effect (see Figure 10.4). It can however be observed
that for a fixed β0 and V , almost the same precision is gained as for the case of
low treatment effect. Notice however the trade off between precision and bias in this
case. As the precision improves with increasing number of historical studies, bias
increases especially when the control rate is low. This increase in bias is however
smaller for larger control rates. It can also be observed from Figure 10.6 that the
incorporation of historical control studies in the model leads to a power advantage.
Again we notice the leveling of the relative power which implies that continuously
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Figure 10.3: Low treatment effect: Relative efficiency (left column) and Relative
squared bias (right column).

increasing the number of historical studies does little to further improve the power.
We also notice that the increase in power decreases as the control rate increases and
as the heterogeneity amongst the historical control studies increases.
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Figure 10.4: Borderline treatment effect: Relative efficiency (left column) and Relative
squared bias (right column).

Strong Treatment Effect

Let us finally assume a strong treatment effect represented by β1 = 0.040. The
background rates are kept as before. As for the other two cases above, we vary
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Figure 10.5: Strong treatment effect: Relative efficiency (left column) and Relative
squared bias (right column).

variability amongst the historical studies and increase the number of studies. The
results for precision and bias are summarized in Figure 10.5. The leveling of the
precision as the number of historical control studies increases can also be observed in
this case. An increase in precision is again associated with a decrease in bias. Figure
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10.6 shows that there is no gain in power when treatment effects are strong. This is
not surprising since when treatment effect is strong, it will be difficult not to detect it
even without additional (historical) data since the examined study already has high
power. However, for studies with low or borderline effect, the gain can be large.

10.3.4 Summarizing Gains from Incorporation of Historical

Control Studies

Low variability amongst the historical controls is a key factor if we intend to maximize
the gains from historical controls. Focusing on the lowest value of the variability
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Figure 10.6: Relative power: Low treatment effect (left column), Borderline effect
(center column) and Strong treatment effect (right column).



142 Chapter 10

amongst studies considered, we can observe that including historical studies in general
may lead to reduced standard errors for estimating treatment effect.

When treatment effect is low and control rate is low, other than gaining precision,
there appears to be a substantial reduction in bias as well as gain in power. However,
as the control rate increases, power decreases and bias increases also.

While we observe both an increase in precision and reduction in bias, we also
observe that including historical data when treatment effect is high barely improves
power (see Figure 10.5 and Figure 10.6).

In summary, one tends to gain more from historical data when control rates are
low and when treatment effect is borderline although in the latter our simulations
show that moderate control rates would be associated with less bias compared to low
control rates. It is clear that continuously increasing the number of historical control
studies will not offer any further improvement in terms of precision, bias or power.

One possible conclusion from the foregoing discussion is that one may use a rel-
atively low number of historical control studies (e.g., 15 studies) provided that they
are considered a homogeneous set of studies. This brings us to the issue of making a
selection from the set of the historical control studies available. This will be discussed
further in the next section.

10.4 Selection of a Subset of Historical Control Stud-

ies

While it may be ideal to have a large number of historical control studies, a leveling
of profiles for precision, bias and power with increasing number of historical control
studies could be observed. This implies we might possibly work with relatively fewer
historical control studies. Therefore, the effect of using a selected subset of historical
control studies is investigated .

10.4.1 Criterion for Selection

Selecting a subset of historical control studies may be performed in a number of
ways. We propose use of the estimates for the study-specific random effects thereby
remaining within the logistic-normal model framework. Therefore we fit the logistic-
normal model in (10.1) to the historical control studies only, i.e, di = 0. Estimates for
the study-specific random effects, which are termed Empirical Bayes (EB) estimates
(Verbeke and Molenberghs, 2000) can be obtained from the model.
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It is assumed that the study-specific random effects are in fact samples from a
normal distribution with mean 0 and some variance, σ2

b0
. As such, one can therefore

use the estimated variance for the random effects, σ̂2
b0

, to construct selection bounds.
One can make a selection of studies such that their Empirical Bayes estimates range
between −δσ̂b0 and +δσ̂b0 for some δ > 0.

10.4.2 Application to Incidences of Alopecia Data Example

The left panel of Figure 10.7 shows the distribution of the proportions of animals with
alopecia in the 19 historical control studies. It can be observed that the distribution
is skewed to the right with a possibility of outlying studies. The distribution of the
estimates for the study specific random effects is shown in the right panel of Figure
10.7. Since the estimates are expected to be centered around 0, values greater than

Table 10.1: Fitting the logistic regression model to the examined study and the logistic-
normal model to combined data (i.e., examined study and all historical control stud-
ies). The parameter βS represents the species effect.

H0 : β = 0

Model for Parameter Estimate ŝe p-value

Examined study β0 -3.1428 0.6903

β1 0.0221 0.0113 0.0418

Examined study and all β0 -2.9270 0.3787

historical studies β1 0.0141 0.0086 0.0886

βS 0.5202 0.4354 0.2207

σb0 0.3594 0.2638

Examined study and selected historical β0 -2.8717 0.3426

studies with EB estimate β1 0.0146 0.0069 0.0483

within (−σ̂b0 , σ̂b0) βS 0.2584 0.4171 0.5271

σb0 2.203E-7 0.1415

0.4 (see right panel of Figure 10.7) could possibly represent outlying studies. In
Table 10.1 a set of models fitted under different scenarios is presented. First the
logistic regression model is fitted to the examined study (Table 2.3) and then the
logistic-normal model fitted to the examined study combined with historical control
studies data (Table 2.4). Finally the logistic-normal model is fitted to the examined
study combined with only a subset of historical control studies whose random effects
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estimates fall within the specified limits (δ = 1). The estimate for the standard
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Figure 10.7: Distribution of proportions (left) and distribution of study-specific ran-
dom effects (right)

deviation of the random effects is found to be σ̂b0 = 0.3594. Only one study with a
proportion of adverse events (in the control group) of 9/40 was found to have its EB
estimate absolute value larger than σ̂b0 . The results corresponding to the selection of
studies in Table 10.1 are therefore obtained with 18 historical control studies.

The effect of including or excluding this particular ‘outlying’ study is outlined
in Table 10.1. Analysis of the examined study only suggests presence of treatment
effect although borderline (p-value=0.0418). Inclusion of selected historical control
studies provides a similar conclusion (p-value=0.0483) with more precision in the
estimation of treatment effect. However, including all the available historical studies
tends to dilute the treatment effect (p-value=0.0886). Inclusion of the ‘outlying’ study
potentially elevates the overall control mean, deviating further from the control mean
in the current study (see also Figure 10.4 top right panel). The effect of omitting
the outlying study can also be seen from the change of the estimate for the random
effects. Omitting one particular study leads to the variance for random effects to be
very small. This model is still to be preferred since even after removal of the outlying
study, the heterogeneity amongst the remaining studies is still accounted for.

10.4.3 Simulation Study

We have seen from the previous section that excluding certain studies deemed out of
range can influence conclusions. A simulation study is set up to further investigate
this phenomenon. Data for the ‘examined’ study as well as for historical control
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studies are generated using the estimates obtained from the examined study (Table
10.1) as the actual parameters. Values for the variance amongst the historical control
studies were kept as in Section 10.3.

Assuming that the number of animals in the historical control studies follows a
poisson distribution with mean λ, this model is fitted to the data in Table 2.4 and the
maximum likelihood estimate for the mean (λ̂ = 23) is used to generate data. Keeping
as close as possible to the data example, 20 historical control studies are generated.
As in Section 10.3 we assume a fixed sample size of 30 animals in each dose group
in the ‘examined’ study. For each of the 200 simulation runs performed, the models
corresponding to the three situations as described in Table 10.1 are considered.

We assess how bias, precision and the mean squared error (MSE) can be affected
by the selection procedure. For each simulation setting we also present the median p-
value since the distribution of p-values is highly skewed. The results are summarized
in Table 10.2. Note that when considering the selection of a subset of historical
studies in the simulations (δ = 1), some or none of the studies will be dropped and
therefore we indicate the average number (nmean

s ) and the minimum (nmin
s ) of studies

that is used. As expected, the more heterogeneous studies are, the more the number

Table 10.2: Selecting historical studies: Model 1-Examined study only (β1 = 0.0221),
Model 2-Examined study plus all historical studies and Model 3-Examined study plus
a selected subset of studies with EB estimates within (−σ̂b0 , σ̂b0).

Median

V Model Bias s.e(β1) MSE p-value nmin
s nmean

s

1 0.00089 0.01231 0.00015 0.0494 0 0

0.1 2 -0.00066 0.00809 0.00007 0.0111 20 20

3 0.00005 0.00798 0.00006 0.0087 16 19.560

0.3 2 -0.00121 0.00848 0.00007 0.0204 20 20

3 -0.00023 0.00802 0.00006 0.0131 16 19.075

0.9 2 -0.00052 0.00953 0.00009 0.0339 20 20

3 0.00011 0.00866 0.00007 0.0116 15 18.105

of studies left out as ‘outlying’. The results also show that for any fixed variability,
making a selection of studies performs better than using all studies available in terms
of precision and bias. Overall, the mean square error tends to decrease with the
selection of studies. Moreover making a selection of studies tends to provide more
evidence for the apparently borderline treatment effect in the examined study (median
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p-value=0.0494). A similar analysis based on historical control studies with EB within
two standard deviations of the mean has also been carried out. The average numbers
of studies used are 19.995, 19.985 and 19.905 for V = 0.10, 0.30 and 0.90, respectively.
Essentially almost all the available studies are used and the result is close to using all
the historical control studies.

The treatment effect in the examined study could already be considered as border-
line significant and the effect of historical studies may not be that pronounced. Let us
now show an example in which the use of historical control studies can really alter the
conclusion. A relatively lower treatment effect is obtained by fixing the value of β1 to
0.0175 and keeping β0 as in Table 10.1. The same models as defined in Table 10.2 are
fitted and the results obtained are summarized in Table 10.3. The results show a non-

Table 10.3: Selecting studies: Illustrating how use of historical control studies can
alter conclusion. Model 1-Examined study only (β1 = 0.0175), Model 2-Examined
study plus all historical studies and Model 3- Examined study plus a selected subset of
studies with EB estimates within (−σ̂b0 , σ̂b0).

Median

V Model Bias s.e(β1) MSE p-value nmin
s nmean

s

1 -0.00246 0.01459 0.00022 0.08645 0 0

0.1 2 -0.00364 0.00961 0.00011 0.03100 20 20

3 -0.00300 0.00963 0.00010 0.02541 17 19.480

0.3 2 -0.00347 0.01087 0.00013 0.04594 20 20

3 -0.00236 0.01099 0.00013 0.02891 16 19.145

0.9 2 -0.00393 0.01222 0.00017 0.07302 20 20

3 -0.00236 0.01178 0.00014 0.02787 15 18.195

significant treatment effect in the examined study (median p-value=0.0864) which is
subsequently turned to a significant effect by use of historical studies except when
using all historical studies with large variability amongst them (V = 0.90). For a
fixed variability amongst historical control studies, more evidence for treatment effect
arises from using a selection of historical control studies. We observe in both examples
(i.e β1 = 0.0221 and β1 = 0.0175) that the mean squared error associated with a se-
lected subset of studies is less than when considering all studies. Therefore, although
we reduce the number of studies, it is evident that no serious bias is anticipated. In
terms of decision making, selection of historical studies becomes more influential on
the result for relatively low treatment effect and as the variability amongst historical
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control studies increases. For example, in Table 10.3, the difference in the median
p-values associated with a selection of studies and all available studies increases as
variability amongst studies increases. For heterogeneous set of studies, two different
conclusions can arise from the two approaches (see Table 10.3).

In a similar way as above, we also perform some simulations under the null hy-
pothesis of no treatment effect (β1 = 0) to assess how making a selection of historical
studies may affect the Type 1 error. We therefore perform a simulation exercise for
the three scenarios specified in Table 10.1, i.e using only the current study (Model 1),
using all available historical studies (Model 2) and finally using a selected subsample
of historical studies (Model 3). The results obtained using 200 simulated data sets
for each scenario are summarized in Table 10.4. As in the previous two scenarios

Table 10.4: Assessing the how use of a selected subset of historical control studies may
influence Type 1 error. Model 1-Examined study only (β1 = 0), Model 2-Examined
study plus all historical studies and Model 3- Examined study plus a selected subset of
studies with EB estimates within (−σ̂b0 , σ̂b0).

Median

V Model Bias s.e(β̂1) MSE p-value nmin
s nmean

s Type 1 error

1 -0.00696 0.02614 0.00073 0.49810 0 0 0.07143

0.1 2 -0.00781 0.01894 0.00042 0.52986 20 20 0.06316

3 -0.00674 0.01833 0.00038 0.52178 16 19.515 0.05789

0.3 2 -0.00857 0.02117 0.00052 0.48588 20 20 0.07895

3 -0.00739 0.02006 0.00046 0.47937 16 19.195 0.06842

0.9 2 -0.00875 0.02303 0.00060 0.50815 20 20 0.07368

3 -0.00700 0.02097 0.00049 0.51610 15 18.175 0.07895

discussed above, no serious bias is induced by reduction in the number of historical
studies. The mean square error also tends to decrease when using a selection of more
homogenous set of studies.

The results in Table 10.4 suggest that when variability is low, the Type 1 error
does not deviate much from its nominal value of 0.05. When sampling studies with
larger variability, an inflation in Type 1 error is noted. Our simulations indicate that
the difference in Type 1 error when using all historical control studies compared to a
selected subset of studies is relatively small.
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10.5 Discussion

We have considered homogeneity amongst and number of historical control studies,
differing background effects as well as varying treatment effect levels on the estimation
and testing for treatment effect. As would be expected, variability amongst historical
studies plays a pivotal role. Our results seem to concur with the notion that historical
studies are more useful when treatment effect is borderline and when background rates
are low. In general, precision for estimating treatment effect can be improved by using
historical studies. The issue of how many and which studies to include in the analysis
is a subject of debate. The number of studies to be used often depends on availability.
Our simulations show that only a modest number of studies (e.g., 15) is sufficient since
not much gain is realized by continuously increasing the number of historical studies.
Note that we did not focus of the effect of sample size within historical control studies
or within the ‘examined’ study. We assumed a sufficiently large number of 30 animals
per group. However, when historical control studies are small one would probably
need to select more than the suggested number of 15 studies.

Part of the judgement of which studies to include should obviously be decided by
subject matter experts. The other part can be played by the statistician. Indeed, as
shown from the use of study-specific random effects, studies considered to be outlying
can be eliminated. As the data example shows, the conclusion one is bound to make
can be altered. Our simulation results appear to corroborate this idea. Although a
selection of studies results in reduction in number, we have seen through simulations
that the use of large numbers of studies is not likely to be of any substantial benefit
compared to a modest number of well selected homogeneous set of studies.

In conclusion we would recommend the use of historical studies when treatment
effect is low or borderline and when the control rate is low. When using the logistic-
normal model, it may be preferred to make a selection of a subset of historical studies
based on the Empirical Bayes estimates. Our conclusions are based on the normality
assumption for the random effects. In principal, other distributions can also be as-
sumed and further investigation will be required. Other approaches for example the
Empirical Bayes method of Tarone (1982) based on the Beta-Binomial distribution
assumption for the historical controls can also be used.

While this paper focuses on several simulation settings to study the change in bias
and precision when using the historical control data, it would be interesting to also
analytically derive the differences among the two approaches. This is a challenging
research question, since we are not in the (simple) continuous normally distributed
setting. To this end, we should analytically derive the bias and precision of the dose-
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parameter in case of a logistic regression (Cordeiro and McCullagh, 1991) and in case
of a random-effects logistic regression (Breslow and Lin, 1995). This is a topic of
further research.

One of the assumptions made is the absence of a trend in the occurrence of the
parameter of interest in the control animals over the years. Should there be some
trend, appropriate techniques incorporating such information would then be required.
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11
Tolerance Intervals and Their

Use in Pre-clinical Studies

Many practitioners have been exposed to some extent to confidence and prediction in-
tervals for regression models. These, however, are only a few of the statistical intervals
required in practice. Unfortunately, many important intervals, such as intervals for
population percentiles and/or tolerance limits, are ignored in standard texts (Hahn
and Meeker, 1991).

In pre-study method validation, tolerance limits are of utmost importance. Before
an analytical procedure is used routinely on unknown samples, it is normal practice
to perform a more or less extensive set of experiments to evaluate whether it will
be able to meet the desired criteria. Those experiments are usually called ‘pre-study
validation’ experiments. Since the bias and the precision of the intrinsic performance
parameters are unknown, experiments are required so that the user can obtain esti-
mates of these quantities before the method is used routinely. The objective of the
pre-study validation phase is to evaluate whether, given the estimates of bias and
standard deviation obtained, the proportion of measures of new unknown samples
that will fall within the acceptance limits is greater than a predefined acceptance
level.

151
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11.1 Background

The intention in this chapter is to dwell upon the less known but often useful type
of intervals, the tolerance intervals. Use of tolerance intervals dates back to the
1940s. Some of the earliest works emerge from Wilks (1941), Wald (1942, 1943) and
Wald and Wolfowitz (1946), focusing mainly on simple random samples. More recent
work in the same context include Hahn and Merker (1991), giving a detailed treat of
parametric and distribution-free intervals. Amaratunga (1997) shows how to improve
traditional ways of constructing tolerance intervals on simple random samples based
on the normal distribution to use of distribution-free intervals.

Extensions to more complex designs have found their way into the literature. Mee
and Owen (1983) derived one-sided (β, γ) content tolerance limits for balanced one-
way ANOVA models, considering the case where the ratio of the between to within
variance is known and estimated from the sample. Also in the context of balanced
one-way ANOVA models, Mee (1984) discusses procedures for one- and two-sided β-
expectation tolerance limits and extends the procedure of Mee and Owen (1983) to
two-sided (β, γ) content tolerance intervals.

Some extensions to unbalanced data have also been considered, for example, Bhau-
mik and Kulkarni (1996) and Bagui et al. (1996). Beckman and Tietjen (1989) extend
towards multi-way ANOVA models and construct two-sided approximate β-content
tolerance limits for multiway balanced random-effects models. Liao and Iyer (2004)
proposed a generalized two-sided tolerance interval for the normal distribution with
several variance components.

Wolfinger (1998) addresses the same issue from a Bayesian standpoint, focusing
on tolerance intervals for the so-called variance component models. Hoffmann and
Kringle (2005) consider a procedure to construct two-sided (β, γ) tolerance intervals
for general random effects models, in both balanced and unbalanced data scenarios.

In what follows, we intend to apply the approach of Wolfinger (1998) and that of
Hoffman and Kringle (2005) on a data example. The two methods address the same
issue from two very different perspectives. Next to that, a nonparametric method due
to Hahn and Meeker (1991) is discussed. The nonparametric method adds a further
dimension to the problem, and therefore provides an interesting comparison platform
with the other two approaches. Thus the main focus here is to apply, in a comparative
context, different methods of constructing tolerance intervals.
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11.2 Approaches to Constructing Tolerance Inter-

vals

In this section, a review of some particular methods of constructing tolerance limits
is given. First, a brief introduction to the framework in which the methods are
considered is given. The focus here is on the random ANOVA model, which can be
written as

Yij = β0 + b0i
+ εij , (11.1)

where Yij is the response of subject i (i = 1, . . . , n) for repeated measurement j (j =
1, . . . , m); β0 is an overall mean; b0i and εij represent subject-specific deviations from
the overall mean and residual errors respectively. It is assumed that b0i ∼ N(0, σ2

b0
)

and εij ∼ N(0, σ2
ε). This particular model is used in the analysis of the data example

in Section 11.3. A brief review of the methods of interest follows.

11.2.1 Wolfinger Approach

Wolfinger (1998) distinguishes between (β, γ) tolerance intervals, β-expectation tol-
erance intervals, and fixed-in-advance tolerance intervals. An interval (l, u) is termed
a two-sided β-content, γ-confidence tolerance interval if, for some cumulative distri-
bution function F ,

P [F (u)− F (l) ≥ β] = γ.

It can therefore be claimed that at least a proportion β of the population will lie
within the interval (l, u) with a confidence coefficient of γ (Hoffman and Kringle,
2005). This type of interval is typically used in cases requiring long-run prediction
about numerous observations from a process assumed to be in a state of statistical
control (Wolfinger, 1998). The β-expectation type of intervals focus on prediction of
one or a few observations from the process. The fixed-in-advance tolerance intervals
start from predetermined limits, and will not be discussed further here. More details
can be obtained in Wolfinger (1998).

Wolfinger (1998) describes ways for constructing all of the above mentioned types
of tolerance intervals within the Bayesian framework, using a procedure termed Bayesian
simulation. Here, we are interested mainly in the first two types of intervals, primarily
because they relate more to the objectives of our data example.

Let us give a brief review of the approach by Wolfinger (1998) and refer to the
article for a detailed account on the subject. Consider the model in (11.1), expressed
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in the usual formulation of a linear mixed model already seen in previous chapters,

Y = Xβ + Zb + ε, (11.2)

with the vectors retaining their obvious meanings. The Bayesian simulation method-
ology hinges on sampling from the posterior density of the mixed model parameters.
Let θ be a vector containing all the variance components in (11.2), which, based on
(11.1) contains the elements σ2

b0
and σ2

ε . The posterior density may then be factorized
as

[β, b, θ|Y ] = [β, b|θ,Y ][θ|Y ], (11.3)

which is a product of the conditional posterior density of β and b, given the variance
components and the marginal posterior density of the variance components. Accord-
ing to Wolfinger (1998), based on the factorization, one can obtain samples from the
posterior using a rejection sampling algorithm. Based on the sampled values, one can
then construct (β, γ) tolerance intervals as well as β-expectation tolerance intervals.
A closer look at the construction of both types of intervals is taken up in the ensuing
discussion.

(β, γ) Tolerance Intervals

Let us expound a bit on the construction of the (β, γ) tolerance intervals as discussed
in Wolfinger (1998). As mentioned earlier, one can generate a sample from the pos-
terior density in (11.3) and denote each of the sampled outcomes by (β∗, b∗, θ∗),
representing estimates for fixed effects, random effects parameters and variance com-
ponents respectively. Note that following from (11.2), the idea is to make inference
based on some normal distribution with mean xT β+zT b and variance tT θ for certain
fixed quantities x, z and t. For the tolerance intervals under discussion, two quantiles
for each of the sample values can be defined by

q∗l = xT β∗ + zT b∗ − q[(1+β)/2]

√
tT θ∗

q∗u = xT β∗ + zT b∗ + q[(1+β)/2]

√
tT θ∗,

where qπ denotes the probit of a probability π. The next step involves forming a
scatterplot of q∗l against q∗u, followed by construction of the reference line

q∗l = −q∗u + 2(xT β̄∗ + zT b̄∗),

where β̄∗ and b̄∗ are the respective averages of the β∗ and b∗ values. Next, two lines,
parallel to the axes and intersecting at the reference line are drawn. One then slides
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the intersection point along the reference line until 100(1 − γ)% of the observations
remain in the lower right portion of the graph. The coordinates of the obtained
intersection point form the two-sided required (β, γ) tolerance limits. An illustration
of this method follows in the application in Section 11.3.

β-expectation Tolerance Intervals

Construction of this type of intervals follows in a more straightforward manner by
using the samples generated as discussed in the previous section. Specifically, sim-
ulations from the predictive distribution of some future observation yz is required.
Having already the posterior distribution [β, b, θ|Y ], simulations from the predictive
distribution [yz|Y ] of some future observation yz, may be done by generating obser-
vations from [yz|β, b, θ, Y ]. From (11.1) it follows that the distribution for a future
observation [yz|β, b, θ, Y ] is N(β0, σ

2
b0

+σ2
ε). Observations from this distribution can

therefore be generated from N(β∗0 , σ∗2b0 + σ∗2ε). Note that the values (β∗0 , σ∗2b0 , σ
∗2
ε)

would have already been generated as in Section 11.2.1, with the variance components
contained in θ∗. The (1− β)/2 and (1 + β)/2 quantiles of the generated values form
the two-sided β-expectation limits. For more details we refer to Wolfinger (1998).

11.2.2 Hoffman and Kringle (HK) Approach

This approach is designed for general random effects models including balanced and
unbalanced designs and addresses the issue of (β, γ) tolerance intervals. The HK
method is based on the concept of effective sample size applied in conjunction with the
Graybill and Wang (1980) method for constructing confidence intervals for variance
components. Key aspects, necessary for the application of the method are briefly
mentioned here, focusing on the balanced design case.

Let q denote the number of variance components in the model being considered
and S2

j the sum of squares of the jth component from a general ANOVA table for
a random effects model. Note that for the model under consideration, q = 2, the
length of vector θ. Further, denote the total variance of an arbitrary observation Y

by σ2
Y and variance for the mean overall Ȳ , by σ2

Ȳ
. For appropriate values of cj and

hj , let σ2
Y =

∑q
j=1 cjS

2
j and σ2

Ȳ
=

∑q
j=1 hjS

2
j . Further, define the effective number

of observations as Ne =
∑q

j=1 cjS2
j∑q
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where Hj = 1
F1−γ,nj,∞

and F1−γ,nj ,∞ is a value from the F distribution with cumula-
tive probability 1− γ and degrees of freedom nj and ∞.

11.2.3 Distribution-Free Tolerance Intervals

The methods discussed in Section 11.2.1 and 11.2.2 depend of some distributional
assumptions. When such assumptions can not be met, applicability of such method-
ology becomes questionable. This often happens for example in cases where sample
sizes are relatively small. With the advent of distribution-free or the so-called non-
parametric methods, one is spared the risk of mis-specifying a particular distribution.
In this section, focus is put on one such method due to Hahn and Meeker (1991),
applicable in the case of independent observations.

Let t1, . . . , tn be a random sample from any continuous distribution and t(1), . . . , t(n)

be the ordered sample. Hahn and Meeker (1991) define a two-sided tolerance interval
designed to contain at least a proportion β of the sample with confidence coefficient
γ. This therefore resonates with the idea of the (β, γ) tolerance intervals discussed
in Section 11.2.1 and 11.2.2. The interval may be defined as [t(l), t(u)], for particular
values l and u. Let the probability that the interval from a sample of size n, defined
by the order statistics, will cover at least 100β% of the population be defined by
P (n, l, u, β). The values l and u are chosen such that (Hahn and Meeker, 1991)

P (n, l, u, β) = B(u− l − 1;n, β) ≥ γ, (11.4)

for 0 ≤ l < u ≤ n + 1 and 0 ≤ p ≤ 1, with B(u − l − 1; n, β) denoting the binomial
based probability of observing at least u− l−1 elements from a sample of size n with
probability β. Thus, determination of the nonparametric interval, hence obtaining
values for l and u essentially involves evaluating (11.4).

11.3 Application to the Ames Test Data Example

In this section, focus is put on illustrating some of the methods of constructing toler-
ance intervals. Particular attention will be given to the method of Wolfinger (1998),
the approach of Hoffman and Kringle (2005) and the nonparametric method of Hahn
and Meeker (1991). The data set described in Section 2.5 will be used for this purpose.

The example we consider involves 153 experiments and in each of the experiments,
replicated measurements from three plates are available. One can therefore consider
this example as an experiment involving repeated measures Yij , for subject i(i =
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1, . . . , n) and measurement j(j = 1, . . . , m). Here subject refers to the experiment
and the repeated measurements refer to values from the different plates.

qu

ql

145 150 155 160 165

60
65

70
75

80 Reference line

Figure 11.1: Illustrating construction of the (β, γ) = (0.90, 0.95) content tolerance
interval of Wolfinger (1998) based on 1000 samples. The horizontal and vertical lines
mark the required lower and upper limits respectively.

Note that while the other two methods are suitable for repeated measures analysis,
the nonparametric method deals with independent observations in a single sample.
Therefore, an application of the nonparametric method in this case calls for sum-
marizing the information from a particular subject into a single measurement, for
example, using the mean.

The main question of interest was to determine, using the available historical
data, limits which could be used to validate or invalidate measurements from future
experiments. Using this data example, we will illustrate the different methods of
constructing tolerance intervals as discussed earlier.

First, an illustration of the Bayesian simulation approach of Wolfinger (1998) is
given. The process of constructing (β, γ) content tolerance intervals described in
Section 11.2.1 is graphically shown in Figure 11.1. The shaded area in the right hand
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bottom corner of the graph contains 100(1− γ)% of the observations as described in
Section 11.2.1. The dashed horizontal and vertical lines shown demarcate the two-
sided end limits, that is, the respective lower and upper limit of the (β, γ) content
tolerance interval, actual values of which are given in Table 11.1.

Limits from the other two methods under consideration are also given in Table
11.1. The choice for the values of β and γ follows traditionally used values. Other
choices can as well be made. Although the different types of intervals are constructed

Table 11.1: A comparison of the different intervals from the different approaches. For
the parametric methods, a logarithmic transformation of the response is also used.

Method Transformation β γ Lower limit Upper limit

(β, γ) interval (Wolfinger) 0.90 0.95 68.57 151.21

(β, γ) interval (Wolfinger) log 0.90 0.95 73.88 156.12

(β, γ) interval (HK) 0.90 0.95 68.17 151.61

(β, γ) interval (HK) log 0.90 0.95 73.64 156.63

(β, γ) interval (Nonparametric) 0.90 0.95 73.00 157.00

β-expectation (Wolfinger) 0.90 62.18 157.11

β-expectation (Wolfinger) log 0.90 70.24 164.56

from different perspectives, and in the case of (β, γ) and β-expectation, have different
interpretations, for this example, the results in Table 11.1 do not indicate dramatic
differences between the intervals. Thus, for each particular method, one would ex-
clude observations that do not fall within the corresponding limits as per Table 11.1.
Note that for the parametric methods, we have included interval calculation based
on the logarithmic transformation of the response, aimed at upholding the normality
assumption. It is also interesting to note the similarity between the intervals obtained
under the log transformation and the nonparametric interval. However, note that,
the non-parametric method is based on a summary of the data, hence does not take
into account the repeated measures structure inherent in the data. Even though, an
interesting observation is how closely the non-parametric approach compares with
the other methods that take into account the structure in the data, especially for the
transformed data.
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11.4 Simulation Study

This section presents a simulation study to investigate how the different methods
considered react to changes of certain factors. Of particular interest is the effect of
correlation and the sample size on β and γ values in the (β, γ) tolerance intervals. We
focus on the two methods that account for the clustering nature of the observations,
i.e., the method due to Wolfinger (1998) and that of Hoffman and Kringle (2005).

To set up the simulation study, staying as close as possible to the data example,
a linear mixed model is fitted to the data and resultant parameter estimates are used
to generate data. In particular, data is generated from the model in (11.1), with the
required inputs being the estimates from the data. Based on results from fitting the
LMM to the data, it is assumed that β0 = 110 and σ2

ε = 180. Values of σ2
b0

are chosen
such that the intra-class correlation ρ = σ2

b0
/(σ2

b0
+ σ2

ε) takes on values 0.10, 0.50,
and 0.80 reflecting low, medium, and high correlation. Also varied is the number
of subjects, which is assumed to take on values of 20, 50, and 150. The number of
repeated measurements per subject is kept fixed at 3, as in the data set. Of course
this can be factored in as variable and its effect investigated in conjunction with the
other factors mentioned above.

For a particular setting, a (β, γ) tolerance interval (l, u) is constructed. Following
Hoffmann and Kringle (2005), the content of each interval is obtained by evaluating
Φ(u) − Φ(l), where Φ(·) defines the cumulative distribution function of a standard
normal distribution. The process is repeated for 10 000 times and the proportion of
times the calculated content is at least β is obtained and represents the confidence
level. The mean of the different content levels gives an estimate of the content level.

Simulation Results

In this section results of the simulation exercise described in the preceding section
are summarized. A comparison between the method of Hoffman and Kringle (2005)
and that of Wolfinger (1998) is conducted, focusing on (β, γ) tolerance intervals. The
respective nominal values are taken to be β = 0.90 and γ = 0.95, values often used
in the literature. For different values of ρ and sample sizes n, estimated values for β

and γ are calculated and tabulated in Table 11.2.
First, from the method of Hoffman and Kringle (2005) it is evident that the

estimated values for β and γ do not deviate much from their corresponding nominal
values of 0.90 and 0.95 respectively. In general, the intervals tend to maintain their
nominal content and confidence levels. It however appears that for relatively small
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Table 11.2: Investigating the effect of ρ and sample sizes on content (β) and confidence
(γ) levels in the (β, γ) tolerance intervals. The indicated values for β and γ are the
given nominal values.

Hoffmann and Kringle method

β = 0.90 γ = 0.95

ρ ρ

n 0.10 0.50 0.80 0.10 0.50 0.80

20 0.9483 0.9483 0.9483 0.9703 0.9688 0.9689

50 0.9311 0.9312 0.9312 0.9592 0.9624 0.9632

150 0.9183 0.9183 0.9184 0.9569 0.9574 0.9582

Wolfinger method

β = 0.90 γ = 0.95

ρ ρ

n 0.10 0.50 0.80 0.10 0.50 0.80

20 0.9120 0.9060 0.9140 0.9353 0.9351 0.9360

50 0.8980 0.9100 0.9190 0.9227 0.9257 0.9309

150 0.9710 0.8670 0.8900 0.9211 0.9124 0.9138

sizes, n = 20 in the simulation study, the intervals tend to be conservative in the
sense that the content and confidence levels exceed the corresponding nominal values.
The effect of ρ is not clear from the results in Table 11.2. However, increasing the
sample size appears to draw estimates closer to their nominal values. For the method
of Wolfinger (1998), our simulations indicate that estimates for the content (β) are
closer to their nominal level compared to the estimates for the confidence (γ) value.
Further, content estimates tend to lie on both sides of β, implying no systematic
under or overestimation of the nominal value. There however appears to be a clear
underestimation of the confidence level. Our simulations therefore suggest that, in
terms of the confidence level, the method of Wolfinger (1998) can be considered liberal,
i.e., it tends to underestimate the nominal confidence level. Again, as in the Hoffman
and Kringle (2005) method mentioned above, the effect of the correlation ρ is not
evident here. A more elaborate simulation study may shade more light on this issue.
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11.5 Discussion

This chapter has focused on application of tolerance limits in the context of historical
data. In particular, limits which would in practice be used to validate or invalidate
measurements were constructed. This was done under the notion that one requires
certain limits which would contain a specified proportion of the population with a
specified confidence. Three different methods addressing the same problem from dif-
ferent angles were considered. From the results obtained on the data example, the
methods produced very comparable results. One of the methods considered is a non-
parametric approach method, which normally, would be applied on independent data.
In our case, the method was applied on a summary statistic of the repeated measures.
The results from the nonparametric approach indicated comparable conclusions with
the other methods which take into account the repeated measures nature of the data.

A simulation study to investigate the performance of the two methods that take
into account the correlation structure in the data was set up. In general, the two
methods tend to maintain their content nominal levels. The Bayesian simulation
approach of Wolfinger (1998) was however found to be rather liberal in terms of
confidence level. Of course the simulation settings considered here are not exhaustive,
other effects as the number of replicated measurements could as well be investigated.
The choice of the values for β and γ may be important, depending on the setting.
Varying these values may also be interest. In general, a more detailed simulation
study may be worthwhile pursuing to address some of the pertinent issues arising in
this setting.
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12
Concluding Remarks and

Future Research

This thesis has touched upon two broad sections, the main part being flexible mod-
elling techniques, with an in-depth focus on penalized spline methodology and the
use of historical data in animal studies. We have demonstrated the versatility of the
penalized spline based methodology. In particular, the use of the same basic model
in different study designs and different intricacies is quite appealing. This follows
the application of the methodology with continuous data to the parallel design case
in Chapter 4, and also for the cross-over design in Chapter 5 and Chapter 6. The
intermingling of the penalized spline methodology with surrogate marker validation
techniques in Chapter 6 demonstrates its widespread applicability. Use of similar
methodology with non-normal data was illustrated in Chapter 7 and Chapter 9.

The different models we proposed, coming from manipulating how penalized splines
are constructed are applicable in many different scenarios. While the main inferential
tool for data of a longitudinal nature was simultaneous confidence bands, accounting
for various sources of variability, it will be interesting to compare the results obtained
with other methods, for example, the approach of Behseta and Kass (2005). These
authors propose a method for testing equality between functions, which they term
a Gaussian test process. The approach is based on Hotelling’s T 2 statistic, and, in-
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terestingly, the method can be applied in conjunction with any smoothing technique,
including penalized splines.

Particular attention has also been given to models including serial correlation,
wherein time honored functions, such as exponential and Gaussian, have been con-
sidered. It is worth mentioning that flexible models considered here for the mean
can be considered to model the serial correlation as well. This is something that has
received limited attention thus far in the literature and could constitute a possible
line of research.

In Chapter 8 we extended the discussion of smoothing of longitudinal data to
the case of bivariate longitudinal outcomes in the Bayesian framework. Among other
forms of correlation, imposition of correlation on response-specific smoothers was pro-
posed. Further research in this area may be pursued in the direction of more than two
longitudinally measured outcomes. This will inevitably increase the computational
burden. Although not straightforward how it would fare with Bayesian models, the
pairwise modelling approach of Fieuws and Verbeke (2006) could be a very useful
route or starting point for this cause.

We have also proposed a Bayesian model for adaptive smoothing in Chapter 9,
mainly geared for non-normal data. This is an extension to the conventional penalized
spline model with global smoothing and has been studied quite in detail, especially
for normally distributed data. However, at the moment, the only method known to
us that deals with the exact problem we considered in Chapter 9 is based on an ap-
proximation to the likelihood. Our approach advocates for a fully Bayesian model. It
will be interesting to perform extensive simulations expected to show the gain from
the use of the Bayesian approach in view of the well documented problems associ-
ated with approximations to the likelihood. A couple of issues can be studied in this
context. An investigation into the basis for the mean structure as well as for the
penalty parameters can be considered. Specifically, one can investigate the perfor-
mance of a combination of different bases as applied at the level of the mean and the
penalty-parameter level. Although we demonstrated the approach on cross-sectional
data, it is anticipated that extension to, for example, longitudinal data settings is
straightforward. Extension of the approach to accommodate additive models as well
spatial smoothing can also be considered.

The use of historical data has also been considered in this thesis. While in general,
historical control data are expected to sharpen the estimation in current experiments,
care should be taken in using them. Our simulations have shown that one make an
informed selection of the historical control studies and use only those selected, instead
of using all available historical studies. Scenarios where it would be encouraged to
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make us of historical control information have also been suggested. Having focused
on one particular model here, it is encouraged to consider other different types of
models and investigate how different aspects play out. Extension in the direction
of more complex designs, for example, clustered data can be considered. One can
think of toxicity studies with animals where investigations are carried out on fetuses
carried in wombs of their mothers. Here, various hierarchies exist and use of historical
control data with such data maybe interesting to investigate. A different direction of
research in this context would be to focus on more mathematical derivation of, for
example, bias in the estimation of treatment effect. With the type of data normally
encountered with such studies, the problem would reside outside the realm of the
computationally friendly normal distribution, presenting a challenge.

A less frequently used type of intervals, known as tolerance intervals was also
considered here. These are often used to detect if samples of interest lie within
acceptable limits. Special focus was on reviewing available methods for implementing
tolerance intervals as well illustrating some of the available methods. In line with this,
we believe some extensive simulations focusing on some key properties of the intervals
can enlighten on which particular methods are suitable under which conditions.
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Appendix: Software

Programs

Fitting Penalized Splines in SAS and S-Plus

Let us illustrate how the models discussed in Chapter 4 can be fitted using the MIXED
and GLIMMIX procedures in SAS, as well as in S-Plus. In general, the concepts
discussed here apply to other related models in the other chapters.

Selection of knots and knots location in SAS can be done using a SAS macro
provided by Ruppert et al. (2003). In our SAS programs, we assume the matrix
Z has been properly added to the data set, thedata, containing other variables of
interest.

Model Fitting in SAS

Let us focus on Model 4a, a random-slope model where the two groups smoothed
separately with the same smoothing parameter. The following SAS codes may be
used to fit the model.

proc mixed data=thedata method=ml;

class dog group;

model hr=group time group*time/ solution;

random z1-z40/type=toep(1) subject=group s ;

random intercept time/type=un subject=dog;

run;

The linear part or the fixed effects part of the model is specified under the MODEL
statement. The first RANDOM statement fits the non-parametric part of the model,
with the option subject=group ensuring independent random effects by group but
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with the same variance. Changing the option to group=group fits Model 5, with
different smoothing parameters by group. The other models are more straightforward
to fit. Should one opt to use the GLIMMIX procedure, the option type=rsmooth,
implementing a radial basis, may be used. If the knots are already in a data set say
knotsdata, the following option may be used: type=rsmooth knotmethod=data();.
The complete code would then appear like:

proc glimmix data=thedata method=mmpl;

class dog group;

model hr=group time group*time/ solution;

random time/type=rsmooth knotmethod=data(knotsdata)

subject=group solution;

random intercept time/type=un subject=dog;

run;

To specify 40 equally spaced knots knotmethod=equal(40); can be used. One can
also use the so-called kd-tree method of selecting knot points wherein one specifies a
‘bucket size’, for example knotmethod=kdtree(bucket=50 knotinfo). The second
RANDOM statement specifies the subject-specific random intercept and slope. All
output of interest, especially for constructing confidence intervals and bands can be
kept using the ODS OUTPUT statement.

Model Fitting in S-Plus

Here, we illustrate how the five models could be fitted in S-plus.

K<-40

knots<-quantile(unique(time),probs=seq(from=0.01,to=0.99,length=K))

Z<-outer(time,knots,"-")

Z<-Z*(Z>0)

indic<-factor(rep(1,length(hr)))

#No grouping structure in the observations,

#used for Models 1-3.

model.1<-lme(hr~time,random=list(indic=pdIdent(~Z-1),

dog=pdSymm(~time)),method="ML")

model.2<-lme(hr~group+time,random=list(indic=pdIdent(~Z-1),

dog=pdSymm(~time)),

method="ML")
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model.3<-lme(hr~group*time,random=list(indic=pdIdent(~Z-1),

dog=pdSymm(~time)),

method="ML")

model.4<-lme(hr~group*time,random=list(group=pdIdent(~Z-1),

dog=pdSymm(~time)),

method="ML")

# In Model 4, ‘group=pdIdent(~Z-1)’ specifies independent random

effects by group, with the same smoothing parameter.

Model 5 requires a blocked structure for the matrix Z. We can achieve this through
the matrix zmat, obtained from,

k1<-k2<-length(knots)

timegrp<-time[grp==0]

z11<-z22<-outer(timegrp,knots,"-") z11<-z22<-z11*(z11>0)

d0<-matrix(0,nrow(z11),ncol(z11))

z1<-rbind(z11,d0)

z2<-rbind(d0,z11)

zmat<-cbind(z1,z2)

re.block.inds<-list(1:k1,(k1+1):(k1+k2)) z.bloc<-list() for(i in

1:length(re.block.inds))

z.bloc[[i]]<-as.formula(paste("~zmat[,c(",paste(re.block.inds[[i]],

collapse=","),")]-1"))

model.5<-lme(hr~group*time,random=list(group=pdBlocked(z.bloc,

pdClass="pdIdent"),dog=pdIdent(~1)),method="ML")

Fitting Adaptive Penalized Splines in WinBUGS

The following WinBUGS code illustrates how one may fit the adaptive penalized spline
model discussed in Chapter 9. Fitting the non-adaptive version of the penalized spline
model is also evident from these codes.

model{

for (i in 1:T){Y[i] ~dpois(mu[i])

mu[i] <-exp(linp[i])

linp[i]<-fix1[i]+s1[i]+s2[i]+s3[i]
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fix1[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]

s1[i]<-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+b[5]*Z[i,5]

+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+b[9]*Z[i,9]+b[10]*Z[i,10]

s2[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]

+b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+b[19]*Z[i,19]

+b[20]*Z[i,20]

s3[i]<-b[21]*Z[i,21]+b[22]*Z[i,22]+b[23]*Z[i,23]+b[24]*Z[i,24]

+b[25]*Z[i,25]

}

for (j in 1:2){

beta[j]~dnorm(0,1.0E-6)

alpha[j]~dnorm(0,1.0E-6)}

for (j in 1:nknots)

{b[j]~dnorm(0,taub[j])

sigma2b[j]<-1/taub[j]

taub[j]<-exp(-fx[j])

fx[j]<-fix2[j]+s21[j]

fix2[j]<-alpha[1]*X1[j,1]+alpha[2]*X1[j,2]

s21[j]<-d[1]*Z1[j,1]+d[2]*Z1[j,2]+d[3]*Z1[j,3]+d[4]*Z1[j,4]

+d[5]*Z1[j,5]

}

for (k in 1:nknots1)

{d[k]~dnorm(0,taud)}

taud~dgamma(1.0E-6,1.0E-6)

sigma2d<-1/taud

}

SAS Macro to Calculate β-expectation and (β, γ) tol-

erance limits

In this section we present SAS codes illustrating how, in practice, one can implement
the β-expectation and (β, γ) tolerance limits of Wolfinger (1998) seen in Chapter 11.
The programs are run in a macro called by the call
FitWolf(data=,nsamp=,seed=,update=,alpha=);

.
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Key inputs here are the number of samples to be generated nsamp and alpha=1− γ,
assuming the data in dat follow the usual longitudinal format of stacking measure-
ments from the different subjects.

%macro FitWolf(data=,nsamp=,seed=,update=,alpha=);

proc mixed data=dat;

class subject;

model resp=/s;

random subject/s;

prior /nsample=&nsamp update=&update seed=&seed out=myout;

run;

/******************************/

/* Beta-expectation limits */

/******************************/

data tol(keep=beta1 ql qu y);

set myout;

q90 = probit(.9);

q95 = probit(.95);

sd = sqrt(covp1+covp2);

q = beta1 - q90*sd;

ql = beta1 - q95*sd;

qu = beta1 + q95*sd;

y = beta1 + sd*rannor(1284703);

output;

run;

proc univariate data=tol;

var y;

output pctlpts=2.5 97.5 pctlpre=pp out=outlimit;

run;

data outlim;

set outlimit;

lower=exp(pp2_5);

upper=exp(pp97_5);

run;
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/***************************/

/* Beta-Content limits */

/***************************/

proc means data=tol;

var beta1;

output out=mout mean=m;

run;

data _null_;

set mout;

call symput(’m’,m);

run;

proc iml;

use tol;

read all var{ql} into ql;

read all var{qu} into qu;

qtemp=qu[1];

do until (f<=&alpha);

qtemp=qtemp+0.0001;

qlow=-qtemp+2*&m;

qup=qtemp;

f=abs((sum(ql<qlow & qu>qup)/&nsamp));

end;

lower=qlow;

upper=qup;

print lower upper;

quit;

%mend;

%FitWolf(data=dat,nsamp=10000,seed=1975,update=1e3,alpha=0.05);
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Samenvatting

In deze thesis staan twee onderwerpen centraal. Enerzijds worden flexibele modeller-
ingstechnieken behandeld, met een diepgaande focus op de penalized spline method-
ologie; anderzijds wordt het gebruik van historische data in dierenstudies bespro-
ken. In deze thesis hebben we de veelzijdigheid van de penalized splines gebaseerde
methodologie aangetoond. In het bijzonder toonden we dat hetzelfde basismodel erg
aantrekkelijk is in studies met toch verschillende designs en/of verschillende complex-
iteiten. De penalized spline methodologie voor continue gegevens werd onderzocht in
zowel de parallel design setting in hoofdstuk 4, als in de cross-over design in hoofd-
stukken 5 en 6. Het vermengen van de penalized spline methodologie met surrogaat
respons validatie technieken in hoofdstuk 6 toont eveneens de brede toepasbaarheid
van de methode. Het gebruik van gelijkaardige methodes voor niet-normale gegevens
kwam aan bod in hoofdstukken 7 en 9.

De modellen die in deze thesis vooropgesteld worden vinden hun oorsprong in de
manier waarop penalized splines geconstrueerd worden, en zijn toepasbaar in vele
scenario’s. In de thesis werd het gebruik van gezamenlijke betrouwbaarheidsbanden
voor inferentie bij longitudinale gegevens onderzocht. In toekomstig onderzoek is het
interessant om de verkregen resultaten te vergelijken met andere methodes, waaronder
de methode van Behseta en Kass (2005). Deze auteurs stellen een methode voor om
gelijkheid van twee functies te testen met behulp van een Gaussische test procedure,
welke gebaseerd is op de Hotelling’s T 2 statistiek. Deze methode kan eveneens worden
toegepast bij het gebruik van smoothing methodes, waaronder penalized splines.

In de thesis werd ook bijzondere aandacht gegeven aan modellen met seriële cor-
relatie, waarin de traditionele functies zoals de exponentiele en Gaussische functies
werden onderzocht. Naast flexibele modellen voor de gemiddelde structuur kunnen
ook flexibele modellen voor de seriële correlaties onderzocht worden, wat tot zover
slechts weinig aandacht gekregen heeft in de literatuur.

In hoofdstuk 8 werd de bespreking van smoothing methodes voor longitudinale
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gegevens uitgebreid naar het bivariaat modelleren van longitudinale uitkomsten in een
Bayesiaanse setting. De correlatie tussen de verschillende uitkomsten werd opgelegd
door onder meer een correlatie tussen de uitkomst-specifieke smoothing termen, en
werd onderzocht. Verdere uitbreiding naar meerdere responsen is mogelijk maar
vraagt verder onderzoek omwille van de toenemende computationele vereisten. Mo-
gelijks is een oplossing de paarsgewijze modelleringsmethode voorgesteld door Fieuws
en Verbeke (2008).

In deze thesis werd ook een Bayesiaan model voor adaptive smoothing voorgesteld
(hoofdstuk 9), hoofdzakelijk in de context van niet-normale gegevens. De voorgestelde
methode is een uitbreiding van de conventionele penalized spline modellen met globale
smoothing. Een gelijkaardige methode werd voorgesteld in de literatuur, gebaseerd
op een benadering van de likelihood. Uitgebreide simulaties welke de voordelen van
de voorgestelde Bayesiaanse methode tonen in vergelijking met de bestaande meth-
ode is een belangrijk onderzoeksonderwerp, en moet nog worden uitgevoerd. We
verwachten een voordeel van de Bayesiaanse methode ten opzichte van de methode
gebruik makend van een benadering van de likelihood, omwille van de gekende prob-
lemen van deze benadering. Verscheidene onderwerpen kunnen verder onderzocht
worden in deze context. Het zoeken naar de best geschikte basis functie gebruikt voor
de hoofdstructuur en voor de penalizatie-parameters; het onderzoeken van de werking
van een combinatie van basis functies op het niveau van het gemiddelde en het niveau
van de penalizatie-parameter; het tonen van de toepasbaarheid van de methode in,
bijvoorbeeld, de context van longitudinale data; het uitbreiden van de methode om
zowel additieve modellen als spatiale smoothing toe te laten.

Tot slot werd het gebruik van historische gegevens onderzocht in deze thesis. Ter-
wijl historische controle-gegevens in het algemeen de schatting in het huidige experi-
ment verscherpen, moet men toch omzichtig omgaan met het gebruik van historische
data. Het aantal beschikbare historische controle studies en de variabiliteit tussen
deze studies hebben een belangrijk effect op de schatting. Het effect van het aantal
historische studies, van de gelijkaardigheid van de historische studies, van de sterkte
van het dosis effect en van het achtergrond-effect op de precisie van de schatting van
een dosis effect werd onderzocht, en is beschreven in hoofdstuk 10. Uitbreiding van
de methode in meer complexe settings, zoals bijvoorbeeld, geclusterde gegevens, kan
worden beschouwd. Een voorbeeld is een ontwikkelings-toxicologische studie waar de
foetussen van moederdieren worden onderzocht. Verscheidene hierarchieën zijn hier-
bij van belang, en het gebruik van historische data met dergelijk type data is niet
vanzelfsprekend en moet verder worden onderzocht. Een ander mogelijk onderzoek-
sonderwerp is de mathematische afleiding van, bijvoorbeeld, de fout in de schatting
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van het dosis-effect in een dergelijke studie.
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