
 
CHAPTER 1 

 
INTRODUCTION 

 
 
 
The World Wide Web creates a universal space of information that can be 
accessed by individuals, companies, government, universities, students, 
teachers and business people. In this chapter, the World Wide Web is 
introduced by describing its origin, growth and how it became one of the 
world’s largest databases. Web Mining studies discover and analyze useful 
information from the World Wide Web. An overview of different topics in 
Web Mining studies is given. Finally, we describe and motivate our research 
statement, followed by the outline of this dissertation. 
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1.1 The World Wide Web 
 
1.1.1 History 
 
The World Wide Web (WWW or Web) originated in the 1980s at the ‘Conseil 
Européenne pour la Recherche Nucleaire’ (CERN), European Organization for 
Nuclear Research in Geneva, Switzerland (W3C, 2003). Here, Tim Berners-
Lee worked as a researcher at the European High-Energy Particle Physics Lab. 
During that time there was an urgent need for collaboration between physicists 
and other researchers in the high-energy physics community. However, there 
was a great variety of computer and network systems, with hardly any common 
systems. Different types of information had to be accessed in different ways, 
systems were inconsistent and complicated leading to a big investment of effort 
by users. Information sharing resulted in frustration and inefficiency. 

In 1989, Tim Berners-Lee wrote a proposal called Hypertext and CERN in 
order to create a solution by introducing a networked information project at 
CERN (W3C, 2003). Hypertext is a special type of database system, invented 
by Ted Nelson in the 1960’s, in which objects (text, pictures, music, programs) 
can be creatively linked to each other. When you select an object, you can see 
all the other objects that are linked to it. The proposal incorporated many new 
ideas and features like HyperText Markup Language (HTML), HyperText 
Transfer Protocol (HTTP) (Webopedia, 2002) and a web browser client 
software program. An important concept of the proposal included the 
consistence across all types of computer platforms of the client software’s 
program so that all users could access information from many types of 
computers. Finally, in May 1991 the first information-sharing system using 
HTML, HTTP and a client software program (called WorldWideWeb) was 
fully operational on the multi-platform computer network at the CERN 
laboratories in Switzerland (Hitmill, 2003). The physicists at CERN used the 
name ‘Web server’ for the main computer at CERN because it ‘served-up’ 
batches of cross-linked HTML documents. By the end of 1992 there where 
over 50 Web servers in the world. Many of these were located at universities or 
other research centres. 

In February 1993, Marc Andreesen, an undergraduate student at the 
University of Illinois at Urbana-Champaigne, was working on a project for the 
National Centre for Supercomputing Applications (NCSA) when he led a team 
that developed the graphic interface browser called Mosaic. People without 
computer expertise are now able to navigate the Web by just pointing and 
clicking on objects of their choice. 
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Finally, in April 1993, CERN’s directors declared that World Wide Web 
technology would be freely usable by anyone, with no fees being payable to 
CERN. A milestone in the history of the World Wide Web. 
 
1.1.2 Growth 
 
The following years the World Wide Web grew quickly. In 1999, there were 
more than 720,000 public information servers. Subsequently, in 2001 there 
were over 24 million servers and the May 2003 survey of Netcraft (2003) 
collected more than 40 million servers. In Belgium, an analysis of ISPA 
Belgium (2003), organization of Belgian Internet providers, registered 370.000 
Internet connections in July 1999 and 1,800,000 Internet connections in March 
2003. 

Today, the World Wide Web represents a universe of information through 
which people can communicate and collaborate by means of a system of 
Internet servers that support specially formatted documents. The documents are 
formatted in a script called HTML that supports links to other documents, as 
well as graphics, audio and video files. This means you can jump from one 
document to another simply by clicking on hot spots (Webopedia, 2002). Yet, 
the Web is not identical to the Internet. The Web is one of many Internet-based 
communication systems. On the Internet, you can run data services like 
electronic mail, file transfer, remote log-in, bulletin boards and the World Wide 
Web. The Internet is often compared with traffic: computers must use the 
cables in an agreed fashion to avoid chaos. Therefore, a common protocol is 
used called Transmission Control Protocol/Internet Protocol (TCP/IP). The 
Web is like a parcel delivery service on the Internet. At your request, World 
Wide Web servers will send you documents (CERN, 2002). 

In order to define standards for the Web to evolve in a single direction 
rather than being splintered among competing factions, Tim Berners-Lee, also 
known as the architect of the WWW, founded the World Wide Web 
Consortium (W3C) in 1994. Standards exist for programming languages, 
operating systems, data formats, communications protocols and electrical 
interfaces. 

The explosive growth of the World Wide Web, which is still expected to 
continue, gives rise to ethical and social concerns. Questions about privacy and 
intellectual property are still open for discussion in this virtual information 
space. Yet, some privacy policies for Web visitors are regulated by privacy 
statements (Mena, 2001). In general, it must be clear that gathering and storing 
customer information adds value to both parties: faster and customized services 
for the web visitor and commercial assets for the web owner. 
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1.2 Web Mining 
 
1.2.1 Definition 
 
Despite the fact that Web Mining is a relatively new study, many definitions 
about Web Mining are given (Chang et al, 2001; Cooley et al, 1997; Mena, 
1999; Mobasher et al, 1996; Mulvenna et al, 2000; Zaïane, 2000). They all 
describe Web Mining from a particular point of view. 

Cooley et al (1997) defines Web Mining as the discovery and analysis of 
useful information from the World Wide Web. Following Zaïane (1998) and 
Borges and Levene (2000), Web Mining is a common term for the application 
of data mining techniques on the Web. Data mining is the process of non-trivial 
extraction of implicit, previously unknown and potentially useful information 
from data in large databases (Piatetsky-Shapiro et al, 1996; Zaïane, 1998). 
Databases are considered large when they contain several hundred thousand 
transactions (Mena, 2001). Besides, data mining is about knowledge discovery 
for a strategic, tangible, competitive business advantage (Mena, 2001). This 
implies that Web Mining includes all techniques that aim to discover 
knowledge from the World Wide Web. The goal of knowledge discovery is to 
uncover implicit knowledge not necessarily stated in any resource. This may 
not be confused with resource discovery, which goal is to find explicit 
information (Zaïane, 1998). 

Finally, Mena (2001) gives a more practical definition. Web Mining is all 
about improving the customer experience while optimising business 
profitability. In general, three knowledge discovery domains pertain to Web 
Mining: Web Content Mining, Web Structure Mining and Web Usage Mining 
(Chang et al, 2001; Cooley et al, 1997; Mobasher et al, 1996; Zaïane, 2000). 
An overview is given in figure 1.1. 
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Figure 1.1: Taxonomy of Web Mining techniques. 

 
1.2.2 Web Content Mining 
 
Web Content Mining is the process of extracting knowledge from the content 
of documents and their descriptions. Two groups of Web Content Mining 
strategies exist. First, Web Page Content Mining mines directly the content of 
documents. For example, WebQQL (Arocena and Mendelzon, 1998) uses 
graph trees to extract knowledge and restructure web documents. Ahoy (Shakes 
et al, 1997) applies heuristics to distinguish personal home pages from other 
web pages and ShopBot (Doorenbos et al, 1997) looks for product prices 
within web pages. In Ester et al (2002), a new approach is introduced for 
spotting interesting information on the World Wide Web. Instead of classifying 
pages, more complex objects of complete web sites are spotted by means of 
several approaches for classification. 

Second, improvement of the content search of other tools like search 
engines is accomplished by Search Result Mining. Sieg et al (2003) present 
ARCH, an interactive query formulation aid that is based on conceptual 
categories. The goal of the system is to meet the user’s information needs by 
closing the gap between the user’s stated query and the actual intent of the 
search. Kwok et al (2001) extent question-answering techniques, first studied in 
the information retrieval literature, to the web and experimentally evaluate their 
performance. Zamir and Etzioni (1998) present a tool for clustering documents 
retrieved by a set of search engines. The techniques are based on information 
provided in search results like phrases, URL’s or snippets. Snippets are 
descriptions or first lines of the page content. 
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1.2.3 Web Structure Mining 
 
Web Structure Mining is the process of inferring knowledge from the World 
Wide Web organization and links between pages in the Web. Links pointing to 
a document indicate the popularity of the document while links coming out of a 
document indicate the richness or the variety of topics covered in the 
document. Examples of techniques of Web Structure Mining are Hypursuit 
(Weiss et al, 1996), PageRank (Brin and Page, 1998) and CLEVER 
(Chakrabarti et al, 1998). Based on interconnections between web pages a 
weight is given to pages in order to find pertinent web pages. Another 
technique is the Multi Layered Database Approach MLDB (Han et al, 1995; 
Zaïane and Han, 1995), which uses a multi-level database representation of the 
Web in order to represent structure and content of the World Wide Web. 
 
1.2.4 Web Usage Mining 
 
Web Usage Mining, also called web log mining, is the process of extracting 
previously unknown and interesting usage patterns in web access logs (Cooley 
et al, 1999a; Zaïane, 1998). Web servers record data about user interactions on 
the web in log files. Analysing log files (or web access logs) of web sites can 
help us understand user behaviour. Applying data mining techniques on web 
access logs allows management to optimise the site for the benefit of visitors 
(Foss et al, 2001). Likewise, understanding and modelling visiting behaviour 
may lead to strategies for web personalization and in general strengthen 
competitive advantage. 

Two main research areas exist in Web Usage Mining. First, General Access 
Pattern Tracking analyses log files to understand access patterns and trends. 
This information is used for optimising web sites through better structures, 
design, layout and page-links. Other applications are grouping of resource 
providers and web personalization techniques to provide better services to 
visitors. Examples of techniques to understand general access patterns and 
trends are WebLogMining (Zaïane et al, 1998), Speedtracer (Wu et al, 1998), 
Wum (Spiliopoulou and Faulstich, 1998) and WebSIFT (Cooley et al, 1999c). 
In Dai and Mobasher (2003), various approaches are explored for integrating 
semantic knowledge into the personalization process based on Web Usage 
Mining. In Perkowitz and Etzioni (2000), adaptive web sites mine the data 
buried in web server logs to produce more easily navigable web sites. Another 
example of General Access Pattern Tracking is given in Spiliopoulou et al 
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(2000), where the effectiveness of a web site is improved with web usage 
mining.  

Second, Customized Usage Tracking analyses individual trends in order to 
customize web sites to users. Displayed information, depth of site structure as 
well as format of resources can all be dynamically customized for each user 
over time based on their access patterns. In Perkowitz and Etzioni (1997) 
automatically adaptive sites are presented through learning from user access 
patterns. SiteHelper (Ngu and Wu, 1997) provides individual web 
personalization and Web Watcher (Joachims et al, 1997) provides 
recommendations to web users. 
 
 
1.3 Research statement and motivation 
 
A well-known problem in studies of web usage behavior is extracting 
information about the order in which people visit web pages. If we are able to 
group temporary aspects of visiting patterns together based on how the order of 
pages occurs within patterns and if large groups are provided with similar 
order-based characteristics, we could use this information for the benefit of the 
visitor. For example, if 10% of the visiting patterns show that page x is visited 
before page y, and that page y is visited before page z, we may predict that 
page z will be visited after page x followed by page y. This way, a proxy server 
is able to provide faster deliveries of pages to web visitors. Also, if no direct 
hyperlinks exist from page x to y and from page y to z, we may suggest 
inserting direct hyperlinks for the ease and convenience of the visitor. Another 
advantage of using order-based information of groups of visiting patterns is 
suggesting cross-links between web pages. Cross-links are references to other 
documents based on common features. Especially for commercial web sites, 
cross-links may be an interesting asset. For example, people who visited 
product X are offered a cross-link to product Y. Through studying the order of 
visited pages we are able to examine which cross-links are used and which are 
not used. This means that, in the end, the results of cross-selling products X 
and Y through the web may be compared with the effect or use of cross-links. 
In other application domains like studies of the learning curve and psychology 
of the web visitor, the order of visited pages may provide information to 
construct guided tours for first time visitors and for visitors who frequently use 
the web site. 

In order to provide order-based information that is useful for prediction, link 
optimization, learning curve and psychology studies, we used basic, existing or 
related work but we also introduced three new concepts in Web Usage Mining. 

= 17



First, sequences are constructed holding pages as well as times. Second, 
sequences are clustered based on a distance measure using Sequence 
Alignment Methods instead of the commonly used Association distance 
measure. Third, the results are graphically presented showing the structure of 
the web site, including direct hyperlinks between web pages, and the most 
frequent occurring patterns depicting the order in which web pages are visited. 

Generally, in this study we will concentrate on Web Usage Mining studies 
and more precisely on General Access Pattern Tracking. The technique that we 
will use throughout this thesis to understand general access patterns and trends 
from log files on web sites is clustering sequences representing navigations 
(and not visitors or users) based on Sequence Alignment Methods (SAM). The 
advantage of clustering in General Access Pattern Tracking is that groups of 
patterns are provided with small differences within the groups and large 
differences between the groups. The advantage of using SAM over classical 
clustering methods is that SAM group sequences together based on the order of 
occurrence of elements in a sequence. Moreover, two information types such as 
visited pages and visiting times are handled by 2-dimensional SAM (2-dim 
SAM). The advantage of using 2-dim SAM over SAM is that 2-dim SAM group 
sequences together based on the order of occurrence of elements and on 
relations between visited pages and visiting times. Objectives of using SAM 
and 2-dim SAM on web usage data are given in chapter four, section 4.3.  

No prior work has been found yet concerning the problem of mining 
navigation patterns using a measure that incorporates the order of elements 
within sequences. Cadez et al (2000) use a mixture of first order markov chain 
to model and cluster web behavior. They claim to measure order-based 
information. However, the main difference between SAM and the method used 
by Cadez et al (2000) is that SAM examines order-based information within the 
entire sequence whereas the approach of Cadez et al (2000) models only parts 
of the sequence. For example, the sequence AB is modeled by the approach of 
Cadez et al (2000) not taking into account whether the sequence is ABC or 
CAB or whatever. So they take into account only the previous web page 
instead of the entire sequence. This means that important or interesting 
information may be lost. For example, suppose one direct hyperlink exists from 
page A to B and no direct hyperlink exists from page B to page C. Obviously, 
the support of sequence AB will be much larger than the support of sequence 
BC. For this reason, the approach of Cadez et al (2000) concentrates on 
sequence AB. Yet, sequence BC may be interesting as well. Suppose the 
following situation occurs. Only 1% of the patterns provide sequence BC and 
90% of the patterns holding B also hold C. This means that 90% of the visitors 
who went to B (or C) also went to C (or B), without the existence of a direct 
hyperlink between B and C. This is useful to know for link optimization 
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studies. Moreover, in order to support navigations through guided tours, entire 
sequences must be studied. For these reasons we analyze entire sequences 
instead of parts of sequences or sub-sequences. 
 
 
1.4 Dissertation outline 
 
In chapter two, existing or related work about web usage mining studies is 
given. Several data sources are described and definitions about frequently used 
concepts and terms throughout this thesis are given. In chapter three, the 
algorithm of SAM and 2-dim SAM are described and illustrated with examples, 
without yet considering clustering based on SAM or 2-dim SAM. 

In order to show how SAM and 2-dim SAM provide advantages when 
looking for order-based information within sequences, chapter four discusses 
the surplus value of clustering based on SAM over classical clustering methods 
as well as the surplus value of clustering based on 2-dim SAM over SAM. 
After defining the objectives, SAM and 2-dim SAM are applied to three real 
data sets and sequences are clustered based on SAM and 2-dim SAM. Then, 
the clustering results based on SAM are compared with a classical clustering 
method. Also, the clustering results based on 2-dim SAM are compared with 
SAM. 

Clustering sequences based on SAM or 2-dim SAM distance measures 
provide a general overview of large groups of visiting patterns on a web site. 
Also, general information about the order in which pages are visited and small 
differences within the groups along with large differences between the groups 
are studied. This also means that most of the general visiting patterns are 
indicated by the structure of the web site. Direct hyperlinks between web pages 
offer a ‘road’ to visitors leading to obvious visiting patterns, which are 
generally and mostly extracted by our algorithm of clustering based on SAM or 
2-dim SAM. Yet, in order to search for navigation patterns that are interesting 
instead of general or obvious, in chapter five, SAM is extended with an 
interestingness measure. A pattern is interesting if it is unexpected or 
surprising. For example, if page x is usually followed by page y without a 
direct hyperlink from page x to page y the pattern x followed by y is 
interesting. Chapter five discusses the technique for measuring interestingness 
based on Baldwin’s support logic since Baldwin introduced a general measure 
for interestingness that is easy to apply in different research domains. The 
technique is applied to a real data set and the results provide interesting 
navigations as well as non-existing navigations given a provided structure. 

= 19



From the results, suggestions are given for optimizing the structure of the web 
site, analogue with how visitors behave. 

In order to study the stability of the SAM algorithm, chapter six provides an 
analysis of the sensitivity of SAM towards changes in the parameters. To 
examine a broad range of parameter settings, the effects of small, medium or 
large changes in the parameters of SAM on the results are analyzed. 

Although we may provide a good method for extracting order-based 
information within visiting behavior on a web site, we still face the problem of 
handling large databases by means of SAM-based clustering. Moreover, a good 
algorithm for analyzing sequences in Web Usage Mining studies must be able 
to handle large databases. Therefore, in chapter seven, the computational 
complexity of SAM is described and a heuristic for analyzing large databases 
by means of SAM is provided. 
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CHAPTER 2 

 
WEB USAGE MINING: 

RELATED WORK 
 

 
 
In this chapter, three different data sources, analyzed by Web Usage Mining 
studies, are described. Also, URL addresses of web sites providing sources of 
web data are publicly available on the World Wide Web. Besides data sources 
this chapter also provides descriptions of frequently used terms throughout this 
thesis. Different data types, data abstractions and page types are defined. 
Following, the Web Usage Mining process along with three analysis steps, 
which are called pre-processing, processing and post-processing are described. 
In each step some heuristics and techniques related to Web Usage Mining 
studies are given to clean and mine the data. Also, methods for analyzing the 
results are given. In addition, examples are provided of the approaches that are 
used throughout this project. Finally, in the pre-processing step of the Web 
Usage Mining process, typical problems such as how to deal with outliers, 
detect accesses that are not recorded by the data sources and user identification 
are discussed and methods for handling these problems are given.   
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2.1 Data sources 
 
In order to discover and analyse web usage patterns, data needs to be collected 
from different sources. A general framework for data collection is given in 
Cooley (2000) and Srivastava et al (2000) where three levels of data sources 
are described: server-level, client-level and proxy-level. Each level differs in 
terms of format, scope, method of implementation, accuracy and reliability. 
 
2.1.1 Server-level data collection 
 
Server-level data collection often replies to data created by the web servers in 
log files (or server logs) where the browsing behaviour of visitors is recorded. 
These log files are stored in various formats, such as Common Log file Format 
(CLF) or Extended Common Log file Format (ECLF). The format of a 
common log file line has the following fields, separated by a space: IP address 
(or remote host name), user id (or remote login name of the user), date, request, 
status and bytes. An extended common log format file is a variant of the 
common log format file and, for each request, keeps track of two additional 
fields: referrer and user agent. Examples of lines in common and extended log 
file formats that we used throughout this thesis are shown in table 2.1. If data is 
missing, a minus sign is typically placed in the field. Other examples of log file 
data are given in Cooley et al (1999), Fu et al (1999), Srivastava et al (2000), 
Zaïane and Luo (2001), Zaïane et al (1998). The basic data fields in log files 
are explained in appendix 1. 
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ECLF 

CLF  
IP address User 

ID 
Date Request Status Bytes Referrer User agent 

195.238.3.198 - 2001-03-03 
00:01:43 

GET/bib/src/top/law-
top.html 

304 80 - - 

195.238.3.198 - 2001-03-03 
00:01:45 

GET/leeromgeving/tr
ajecten_tew/0122/01
22.htm 

304 80 - - 

212.190.0.252 - 2001-03-03 
00:01:46 

GET/images/lucthem
ehover/actuhov.gif 

304 80 - - 

… … … … … … … … 
142.56.200.14 - 1999/01/31- 

23:59:07 
GET/music/machines
/manufacturers/Akai/
MPC/samples/HTTP 
/1.1 

403 1471 - Mozilla/4.0(c
ompatible; 
MSIE4.01; 
MSIEcrawler; 
Windows 95) 

100.77.86.90 - 1999/01/31- 
23:59:13 

GET/music/machines
/manufacturers/EMS/
Overview/vcs3.gifH
TTP/1.0 

301 279 http://www. 
ems-synthi. 
demon.co.uk 
/emsprods.ht 
ml#vcs3 

Mozilla/4.05(
Macintosh  
; I; PPC,Nav 

100.77.86.90 - 1999/01/31- 
23:59:15 

GET/music/machines
/manufacturers/EMS/
Overview/vcs3.gifH
TTP/1.0 

200 21211
1 

http://www. 
ems-synthi. 
demon.co.uk 
/emsprods.ht 
ml#vcs3 

Mozilla/4.05(
Macintosh  
; I; PPC,Nav 

… … … … … … … … 
 
Table 2.1: Sample Common Log file Format (CLF) and Extended Common 
Log file Format (ECLF). 
 

Collecting data from server-level data sources is, unfortunately, not as easy 
as it seems. Data stored in log files are not completely reliable due to several 
reasons: 
 

1. Not all pages are recorded in log files because of client- and proxy-level 
caches. A client cache occurs when a visitor uses the ‘back’ or ‘reload’ 
button. A proxy-level cache occurs when the page, requested by the 
client, is delivered by the proxy server instead of the web server. A 
proxy server is described in section 2.1.3 Proxy-level data collection. 

 
2. Logged time information may be inaccurate when a page is delivered by 

client or proxy caches. This means that the page view time of its 
previous page will be interpreted to be longer than it actually was. Also, 
the logged page view time which is often calculated as the time 
difference between two subsequent, logged, requests, may differ from 
the actual view time due to reasons like connection speed of the client, 
size of requested page file and network congestion. 
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3. When the user id is not available and clients request pages behind a 
proxy server, many requests are recorded with the same IP address  
(usually the proxy’s host name). As a result, page views may seem to be 
erratic, with very short viewing times. 

 
Methods to deal with these problems are cookies and packet sniffers or 

network monitors. A cookie is a message given to a web browser by a web 
server. The browser stores the message in a text file, called cookie.txt. This 
message is sent back to the server each time the browser requests a page from 
the server (Webopedia, 2002). Cookies may be used to identify users and to 
prepare customized web pages. A packet sniffer is a program that records all 
network packets that travel past a given network interface. It is used to analyse 
network traffic and helps a network manager to keep traffic flowing efficiently. 
It is also used to record hidden parameters that are not stored in log files. 
Unfortunately, besides legitimate use, sniffers are used as well for stealing 
information off a network. Examples of free packet sniffing tools are Ethereal, 
Ksniffer, Snort, IpGrab and IpLog (Packet Sniffing Tools, 2003). In Pitkow 
(1997), a complete discussion on the shortcomings of the current log standard 
and potential solutions are given.  

Not only browsing behavior or usage data is collected from server sources 
but other data as well such as content data, structure data and web page meta 
information. For example, in Cooley et al (1999c), usage, content and structure 
data are integrated into an algorithm called Web Site Information Filter 
(WebSIFT) to identify interesting knowledge. Also, in Chan (1999), usage and 
content data are used to build user profiles. The different data types are 
explained in section 2.2.1 Data types.=
 
2.1.2 Client-level data collection 
 
Data processing now occurs at the client side instead of at the server side. Two 
important client level sources for data collection are available: remote agents 
and modified browsers. Remote agents are used to record single user – single 
site browsing behaviour. Examples of remote agents are Javascripts and Java 
applets. In Shahabi et al (1997), users navigation paths are detected using a 
Java based remote agent. Likewise, the WebSIFT system, which is a web usage 
mining system that discovers interesting behaviour on web sites, uses optional 
data such as remote agent logs to provide information for constructing 
information abstractions, such as page views and user sessions (Cooley et al, 
1999c). Using modified browsers (such as Mosaic or Mozilla), single user – 
multi site browsing behaviour is collected. A practical example of employing 
the Mozilla browser and Microsoft Internet Explorer browser using JavaScript, 
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in order to capture behavioural aspects on the web, is introduced by the Web 
Event-Logging Tool (WET) (Etgen and Cantor, 1999). 

The major advantage of implementing agents and modified browsers is that 
the problem of cached pages is resolved. In Srikant and Yang (2001), an 
algorithm is presented that can handle page cashing by the browser. However, 
by using Java applets the problem of the actual page view time still exists and 
some overhead may occur. Then again, Javascripts reduce the overhead 
problem but they cannot capture all user clicks due to clicking the ‘back’ or 
‘reload’ button by the site visitors. Another disadvantage of using both client 
level data sources is that user cooperation is required. Without approval of the 
user, the remote agent cannot be implemented or the modified browser cannot 
be used. 
 
2.1.3 Proxy-level data collection 
 
A third source for data collection that is used in web usage mining studies is 
the proxy server. A proxy server (for example an ISP provider) acts as 
intermediary between a client application, such as a web browser, and a real 
server. It intercepts all requests to the real server to see if it can fulfil the 
requests itself. If not, it forwards the requests to the real server. Proxy servers 
have two main purposes: performance improvement and filtering requests. 
 
Performance improvement Because proxy servers save the results of all 
requests for a certain amount of time and because the user often is on the same 
network as the proxy server, the performance for groups of users is improved. 

 
Filtering requests Proxy servers are also used to filter requests. A 
company might for example use a proxy server to prevent its employees from 
accessing a specific set of web sites. 
 

Employing proxy level data sources, cached pages are collected from proxy 
traces in order to reveal the actual HTTP requests from multiple clients to 
multiple servers. Also the browsing behaviour of a group of users sharing the 
same proxy server may be identified. An example of how proxy servers are 
used for overcoming many of the problems with server-side and client-side 
logging, is given by the WebQuilt system (Hong and Landay, 2001).   
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2.1.4 World Wide Web 
 
Other sources of data for Web Usage Mining studies are publicly available on 
the World Wide Web. Table 2.2 lists some addresses of web sites where data 
can be downloaded. In addition, a description of the data set is given. 
 

Address Data set description 
http://www.kdnug
gets.com/datasets/i
ndex.html 

Data sets for all kinds of Data Mining applications within different 
research areas.   

http://www.kdcent
ral.com/Data_Sets/
Web_Log_Mining/ 

Data sets representing web click stream and purchase data from 
Gazelle.com, a leg wear and leg care web retailer. 

http://maya.cs.depa
ul.edu/~classes/ect
584/resource.html 
 

Three data sets are presented. First, DePaul CTI Web Usage Data 
contains pre-processed and filtered sessionized data of visits to the 
main CTI site during a two-week period. Second, Movie Ratings 
Data presents real movie ratings from the www.movielens.org web 
site. The data set holds ratings on more than 1600 movies by 1000 
users. Finally, the third data set, called UCI KDD Archive, is an 
online repository of large data sets, which encompasses a wide 
variety of data types, analysis tasks and application areas. 

http://www.cs.was
hington.edu/ai/ada
ptive-data/ 
 

Here, web logs storing data of three years’ surfing behaviour on the 
web site http://machines.hyperreal.org are given. Also, logs of user 
accesses to http://www.cs.washington.edu, the Department of 
Computer Science and Engineering at the University of Washington, 
from August 1998 and January to September 1999 are presented. 
These logs record data that was used in Perkowitz and Etzioni 
(1997). 

 
Table 2.2: Publicly available data sets for web usage mining. 
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2.2 Web usage terms 
 
The data sources, which are described in the previous section, record different 
kinds of data that is structured in several ways. In order to create some 
consistency in the discussions that follow, we provide an overview of 
frequently used concepts in Web Usage Mining studies (Cooley, 2000; W3C, 
2003). 
  
2.2.1 Data types 
 
Data is generally classified into several groups according to the type of 
information (Cooley, 2000; Cooley et al, 1999a; Cooley et al, 1999b; 
Srivastava et al, 2000): 
 
Content data  This is the real data in the web pages, the substantive 
or meaningful part of data the web page was designed to convey to the visitors. 
Some examples of content data are graphics and text. 
 
Structure data  The organization of the content is described by 
structure data. Two kinds of structure data exist: intra-page and inter-page 
structure data. The first includes the arrangement of various HTML or XML 
tags within a given page; the second contains information about the hyper-links 
connecting one page to another.  
 
Usage data  This type of data describes the pattern of usage of web 
pages. Examples of usage data are IP addresses, page references and date/time 
of access. A typical source that collects usage data is the ECLF server log. 
 
2.2.2 Data abstractions 
 
In order to discover patterns of web usage, different types of data, collected 
from different sources, must be organized and prepared in a way that pattern 
discovery techniques can be applied to the data. Therefore, data abstractions 
are defined. Definitions of frequently used data abstractions throughout this 
thesis are given below. 
 
User  A person using a client application to interact and retrieve 
resources from the server. 
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Client  A role assumed by an application when retrieving resources 
from the server.  
 
Request A message describing an atomic operation to be carried out in 
the context of a specified resource. For example, HTTP GET, POST, PUT and 
HEAD requests. 

 
Web page A collection of resources identified by a single URL. 
 
Web site A collection of interlinked web pages, including a host page, 
residing at the same network location. Interlinked means that any of a web 
site’s constituent web pages can be accessed by following a sequence of 
references beginning at the site’s host page. 
 
Page view The rendered web page in a specific client application. 
 
User session The click stream of page views for a single user across the 
entire web. The user requests pages from one or more web servers. For 
example, if a user visits the web sites http://www.airplane.com and 
http://www.flightsim.com, a user session might look like this: 
 
http://www.airplane.com/faq.php, http://www.airplane.com/features.php, 
http://www.flightsim.com/login.htm, 
http://www.flightsimnetwork.com/cgi/dcforum/dcboard.cgi, 
http://www.airplane.com/contactus.php     
 
Server session / Visit The click stream of page views for a single user to a 
web site. The user requests pages from a single web server. For example, if a 
user visits the web site http://www.diamonds.com, a server session might look 
like this: 
 
http://www.diamonds.com, http://www.diamonds.com/necklaces.html, 
http://www.diamonds.com/rings.html 
 
Session Uniform name to refer to user session and/or server session 

(visit)  
 
Episode A subset of page views from a server session. 
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2.2.3 Page types 
 
A third way for structuring data is classifying web pages into groups according 
to their intended use. 
 
Head/Home page Also known as host page. This should be the first page 
that users visit when entering the web site. Examples of home pages used 
throughout this thesis are http://www.luc.ac.be/tew and 
http://machines.hyperreal.org. 
 
Content page  The purpose of this page is providing mainly content 
information of the web site. Examples of content pages are 
http//:www.luc.ac.be/tew/opleidingen/basisopleidingen/opbouw_hi/3de_jaar_hi
_kmo.htm and http://machines.hyperreal.org/manufacturers/Yamaha/DX-100. 
 
Navigation page The purpose of this page is providing mainly links to 
guide users to content pages. Examples of navigation pages are 
http://www.luc.ac.be/tew/information and http://machines.hyperreal.org/guide. 
 

Regarding content and navigation pages we remark that it may be difficult 
to define a-priori which pages are content or navigation pages because of the 
following reasons: 

 
� Defining content and navigation pages is dependant of the user. For 

example, a user who visits the web site for the first time, will use particular 
web pages as ‘content’ while for users who frequently visit the web site, the 
same web pages are visited as ‘navigation’. 

 
� Every web page is in fact a combination of ‘content’ and links, which 

means that, defining which pages are ‘content’ and which are ‘navigation’ 
is not an easy task. 

 
To deal with these difficulties when a-priori categorizing web pages into 
‘content’ and ‘navigation’ pages, we define index pages as navigation pages 
and non-index pages as content pages. Also, pages that are offered to the visitor 
as a ‘guide’ on the web site (guided tours) are often navigation pages. Yet, we 
still are aware of the fact that page x may be used a-posteriori as ‘navigation’ 
(or ‘content’) while being a-priori defined as ‘content’ (or ‘navigation’).  
 
Dynamic page  A dynamic page refers to web content that changes 
each time it is viewed. For example, the same URL could provide different 
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information depending on parameters such as geographic location of the reader, 
time of day, previous pages viewed by the reader or the reader’s profile. There 
are many technologies for producing dynamic HTML, including Common 
Gateway Interface (CGI) scripts, Server-Side Includes (SSI), cookies and Java 
(Webopedia, 2002). The opposite of dynamic is static. In Nasraoui and Rojas 
(2003) an approach is proposed that considers Web Usage data as a reflection 
of a dynamic environment which therefore requires dynamic learning of the 
access patterns from non-stationary Web usage environments.  
=
Static page  A static page can only supply information that is 
written into the HTML and this information will not change unless the change 
is written into the source code (Webopedia, 2002). In this research project, 
static web pages are used in examining surfing behavior on web sites.  
 
 
2.3 Web Usage Mining: a data mining process 
 
Web Usage Mining is defined as the application of data mining techniques on 
web access logs allowing management to optimize the site for the benefit of 
visitors (Foss et al, 2001). Before proceeding to the details of Web Usage 
Mining we first define data mining. 

A standard definition for data mining, also called knowledge discovery, is 
the non-trivial extraction of implicit, previously unknown and potentially 
useful knowledge from data (Agrawal, 1993; Zaïane, 1998). Another definition 
is that data mining is the automatic or (more usually) semi-automatic process of 
discovering patterns in large data sets, containing several hundred thousands, 
even millions, of records. The patterns discovered must be meaningful, i.e. 
leading to some advantage, usually an economic advantage. Besides, data 
mining is the acquisition of knowledge and the ability to use it (Witten and 
Frank, 2000). Mena (1999) defines data mining as a process that recognizes 
patterns through inductive data analysis. Also, data mining involves various 
techniques such as association, classification, clustering and segmentation, 
which are used for decision-making knowledge in areas like estimation, 
optimisation, sequencing, prediction and visualization. This means that data 
mining is not query or user-driven. Instead, it is driven by the need to uncover 
hidden undercurrents in the data. Finally, Agrawal (1999) and Thearling (2003) 
state that data mining converges three technologies: statistical and learning 
algorithms, increased computer power and improved data collection and 
management. An overview of data mining is given in Hand et al (2001). 
Eventually, the web creates one of the greatest opportunities for data mining, 
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due to a huge collection of data and a universal digital distribution medium, 
which makes data mining results actionable in fundamentally new ways 
(Agrawal, 1999). 

Finally, a Web Usage Mining process consists of three steps occurring in 
the following order: pre-processing, processing (i.e. the actual data mining 
step) and post-processing. Output of each step is used as input for each 
subsequent step. The following sections describe each step within a Web Usage 
Mining process.  
 
 
2.4 Pre-processing 
 
Pre-processing, also called data preparation, is necessary to convert raw data, 
recorded in different data sources, into usable data in order to perform mining 
techniques on the usage data. Generally, the files analysed in this step are 
server log files, web site files or usage statistics from previous analyses. 
Outputs of this step are user session files, server session (visit) files, episodes, 
site topology or page types. Within Web Usage Mining, the pre-processing step 
is divided into two activities: data cleaning and transaction identification 
(Cooley, 2000). 
 
2.4.1 Data cleaning 
 
First, because our objective is analysing visiting behaviour on web sites, 
irrelevant items should be eliminated from the data source files. An irrelevant 
item is usually recognizable by the suffix of the URL name. For example, all 
log entries with filename suffix like gif, jpeg, jpg, GIF, JPEG, JPG and map 
should be removed. Furthermore, when analysing data, sometimes a value can 
be far from the others. Such a value is called an outlier and often these values 
are the result of an error in data entry. Outliers can be removed from the data, 
although never without any special attention. In our research project, we found 
seven user requests that were recorded in a log file without time information. 
These requests are very difficult to handle in the following steps of the 
analysis. Without any time information, they might erroneously be assigned to 
a server session. For this reason, we omitted the records from the data.  

A second task to fulfil during the data cleaning process is detecting accesses 
that are not recorded in log files. Reasons why certain elements are not logged 
as well as methods to deal with this problem are given in section 2.1.1 Server-
level data collection. In our research project, we did not use information from 
cookies nor did we use packet sniffers to detect proxy-level caches. However, 
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we did use a filtering method in order to overcome most of the problems of 
requests of different users recorded with the same IP address due to proxy 
servers. For example, the filtering method searched through the log files for 
requests recorded with equal IP addresses and time information. Also, if the 
information provided by the referrer corresponded with the ‘road’ indicated by 
the web site structure (taking into account the possibilities of using ‘back’ 
buttons), the filtering method kept the records for further analysis.  

 A third task is user identification. Because of the use of proxy servers, it is 
hard to identify each individual user who accesses and views pages on the web 
site. The main problems concerning user identification are the following: 

 
Single IP address / multi server session ISP’s have a pool of proxy 
servers through which users can access the web. This situation results in one IP 
address for different users, potentially over the same period of time. 
 
Multi IP address / single server session Some ISP’s randomly assign 
each request from a user to one of several IP addresses. In this case, a single 
server session can have different IP addresses. 
 
Multi IP address / single user  This occurs when a user accesses the 
web from different machines. Each session will have a different IP address 
dependent on what machine was used. 
 
Multi server session / single user When a user opens up more than one 
browser window and accesses different portions of a web site simultaneously, 
the log file will collect different server sessions reporting erroneously accesses 
of different users. 
 
Single client / multi user If more than one individual uses the same 
computer, such as families or public access machines, all accesses will be 
recorded as if it were only one user. 
 

Examples of user tracking approaches are given in Shahabi and Banaei-
Kashani (2001), Shahabi et al (2000), Shahabi et al (1997). A framework for 
the evaluation of the accuracy of sessionizing tools is presented in Berendt et al 
(2001). Finally, the main tracking mechanisms for handling problems of cashed 
pages and user identification are presented in table 2.3 (Cooley, 2000). A 
description of each mechanism is given, along with privacy concern levels 
ranging from low to very high, advantages and disadvantages. 
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Mechanism Description Privacy 

concern 
Advantages Disadvantages 

IP address 
and agent 

Assumes that each 
unique IP 
address/agent pair 
is a unique user. 

Low. Always available; 
no extra 
technology is 
required. 

No guarantee of 
referring to a 
unique user, 
generally 
because of 
random or 
rotating IP. 

Embedded 
session ID 

Uses dynamically 
generated pages to 
insert ID into 
every link. 

Low/ 
Medium. 

Always available 
and independent of 
IP address. 

Repeated visits 
are not 
collected. 
Requires full 
dynamic site. 

User 
registration 

Users explicitly 
sign-in to the site. 

Medium. Can track single 
individuals, not 
just browsers. 

Not all users 
may be willing 
to register. 

Cookie Saves an identifier 
on the client 
machine. 

Medium/ 
High. 

Can track repeat 
visits. 

Can be disabled. 
Negative public 
image. 

Software 
agent 

A program is 
loaded into the 
browser that sends 
back usage data. 

High. Accurate usage 
data for a single 
web site is 
collected. 

Likely to be 
refused. 
Negative public 
image. 

Modified 
browser 

The browser 
records usage 
data. 

Very 
high. 

Accurate usage 
data across the 
entire web is 
collected. 

Users must 
explicitly ask 
for software. 

 
Table 2.3: Tracking mechanisms for cashed pages and user identification 
(Cooley, 2000). 

 
Yet, in most research projects, cashed pages are not recorded (Cadez et al, 

2000). In the absence of cookies or dynamic web pages, the combination of IP 
address and user agent is used to identify users (Cooley et al, 1999b; Fu et al, 
1999). Moreover, using only the information supplied by the log file for pre-
processing tasks is supported and specified in the HTTP protocol by CERN and 
NCSA (Cooley et al, 1999a). In our research project we cleaned the data in log 
files following the approaches of Cadez et al (2000), Cooley et al (1999b) and 
Fu et al (1999). 
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2.4.2 Transaction identification 
 
Before data mining techniques are applied on the web usage data, sequences of 
page accesses must be grouped into logical units representing server sessions 
(visits) or user sessions. Depending on the criteria of identifying transactions, 
the size of a transaction can range from single page reference to all page 
references in a user session or server session. In Cooley et al (1997), three 
different techniques are described to identify transactions. The selection of the 
technique is subject to the application area of the results of the Web Usage 
Mining project. 
 
Navigation-content technique Each transaction consists of a single content 
page reference and all the navigation page references leading to this content 
page reference. This method is used to mine for traversal patterns. 

 
Content-only technique Each transaction consists of all the content 
page references in a user session or server session. These transactions are used 
to discover associations between content pages. In Cadez et al (2000) and 
Banerjee and Ghosh (2001), content page references are grouped into a higher 
level called page categories or concepts. Each transaction contains categories 
of web pages or concepts instead of URL page requests. 
 
Maximal forward reference technique  Each transaction is defined as 
the set of pages in the session from the fist page in the log file up to the pages 
before a backward reference is made. When the next forward reference is 
made, a new transaction is started. A backward reference is a page view 
already present in the set of pages of the current session. Similarly, a forward 
reference is a page view that is not present in the set of pages of the current 
session. This technique is used to discover path traversal patterns. An example 
is given in Srikant and Yang (2001), where the point from where visitors 
backtrack is identified as a possible expected location of a web page. 
 

Practically, most research projects adopt a standard pre-processing 
technique for transaction identification that includes some time-out heuristic 
(Banerjee and Ghosh, 2001; Catledge and Pitkow, 1995; Cooley et al, 1999a; 
Zaïane and Luo, 2001), which is also used in our research project. Because it is 
very likely that users will visit the web site more than once, the goal of using 
time-out heuristics is to identify individual transactions. 
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2.5 Processing 
 
The second step within a Web Usage Mining process represents the actual data 
mining process, also called pattern discovery or pattern recognition. The 
outputs of the pre-processing step are used as inputs for the processing step. 
Different techniques are applied to discover patterns in data. The choice of 
which technique is used depends on the needs of the analyst and the type of 
data. Here, we distinguish two groups of techniques. In the first, typical data 
mining methods are used to mine the usage data. In the second, modifications 
of the typical data mining methods are used.  
 
2.5.1 Typical data mining methods 
 
The typical data mining methods that are applied within Web Usage Mining are 
summarized in Cooley (2000), Cooley et al (1999a), Cooley et al (1997), 
Srivastava et al (2000). An overview of data mining techniques, without 
considering the application to web related data, is given in Agrawal and Srikant 
(1994a), Fayyad et al (1996), Witten and Frank (2000). 
 
2.5.1.1 Association rules and frequent item sets 
 
Association rules present unordered associations and correlations among data 
items where the presence of one set of items in a transaction implies the 
presence of other items. In Agrawal and Srikant (1994), Agrawal et al (1996), 
fast algorithms for mining association rules are given. The new association 
algorithms Apriori and AprioriTid are introduced and compared with AIS and 
SETM algorithms. Empirical evaluation shows that the new methods 
outperform the existing ones. The difference between apriori algorithms and 
other existing ones is that apriori generates and counts less item sets during 
candidate generation. Besides, before a new pass begins, it concludes a priori 
that some combinations are not possible because lack of minimum support. The 
concepts ‘support’ and ‘confidence’ are used to prune the search space. Support 
is a measure based on the number of occurrences, which means that it identifies 
the percent of transactions that contain the given pattern. Confidence (also 
known as accuracy) of a rule represents the number of transactions containing 
all of the items in a rule, divided by the number of transactions containing the 
rule antecedents. In Borgelt and Kruse (2002), a method for induction of 
association rules is presented and the performance of the classic apriori 
algorithm is optimised. In Dehaspe and Toivonen (2001), relational association 
rules are discovered. The process uses a relational database and the type of 
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patterns that are considered are SQL queries. Combinations of attribute-value 
pairs that have a pre-specified minimum support are frequent item sets (Witten 
and Frank, 2000). A tree projection algorithm for generation of frequent item 
sets is given in Agarwal et al (2001). Finally, association rules and frequent 
item sets are expressed by equations (2.1) and (2.2) (Goethals, 2002) below. 
 
Association rule (AR):  X → Y      
Support (AR) in dataset D = X U Y in D 
Confidence (AR) in dataset D 

 = [support (X U Y) in D] / [support (X) in D]   (2.1) 
  
Item set (IS):   I = {i1, i2, …, ik}   (2.2) 
Support (IS) in dataset D = support (I) in D = support (i1 ٨ i2 ٨ … ٨ ik) in D 
 
where  X, Y and I are item sets; 
  X ∩ Y = {}; 
  k = total number of items in item set I; 
 

The items in Web Usage Mining usually are represented by visited pages 
through their URL’s. Some examples of association rules and item set, along 
with their support and confidence values, which resulted from the data used 
throughout this work, are given in table 2.4. Other practical examples are given 
in Cooley et al (1999a), Mobasher et al (2001), Zaïane and Luo (2001). 
 

Association rules Support (%) Confidence (%) 
If http://machines.hyperreal.org then 
http://machines.hyperreal.org/manufacturers/Moog 

2.52 15.00 

If http://machines.hyperreal.org then 
http://machines.hyperreal.org/manufacturers/Roland/TR-
909 

1.98 7.00 

If http://machines.hyperreal.org/manufacturers/Moog 
then 
http://machines.hyperreal.org/manufacturers/Roland/TR-
909 

0.31 12.00 

Item set Support (%) Confidence (%) 
(http://machines.hyperreal.org,  
http://machines.hyperreal.org/manufacturers/Moog, 
http://machines.hyperreal.org/manufacturers/Roland/TR-
909) 

0.22 - 

   
Table 2.4: Examples of association rules and item set in Web Usage Mining. 
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Association rules discovered from web usage data give an overview of the 
(set of) pages that are frequently visited together. These results may be applied 
to the optimisation of the web site through, for example, organising link 
structures between web pages. Also, association rules and frequent item sets 
may serve as a heuristic for pre-fetching documents in order to reduce loading 
time of pages from a remote site. Obviously, the inputs for this application are 
often sessions defined with the content-only technique.  
 
2.5.1.2 Sequential Patterns 
 
In Agrawal and Srikant (1994b) and Srikant and Agrawal (1995), sequential 
patterns are defined as follows. A sequence is an ordered list of item sets. In a 
set of sequences, a sequence s is maximal if s is not contained in any other 
sequence. Finally, every maximal sequence with a certain user-specified 
minimum support represents a sequential pattern. 

In Web Usage Mining, sequential patterns find inter-session patterns in such 
a way that the presence of a set of pages is followed by another page in a time-
ordered set of sessions or episodes (Cooley et al, 1997). Also, temporal 
relationships among data items in Web Usage Mining studies are presented in 
Cooley et al (1997) and Mannila et al (1995). The difference with association 
rules is that the former relates pages that are referenced together in a single 
session, so that they are defined as intra-session patterns. As with association 
rules, confidence and support values are used as thresholds in order to limit the 
number of rules discovered and reported. The resulting information is used to 
predict visiting patterns and to target advertising campaigns aimed at groups of 
users. Other applications of sequential patterns in Web Usage Mining are, for 
example, finding common characteristics of visitors who went to a particular 
page within a specific time period [t1, t2]. On the other hand, we may be 
interested in a time interval (within a day, week, month etc.) in which a 
particular page is frequently accessed.  

In our research project, sequential patterns are represented by sequences of 
ordered page requests called open sequences (Capri, 2001). This is also shown 
in Büchner et al (1999). Examples of sequential patterns that we found in the 
data we used throughout our research project are given in table 2.5. Definitions 
of open sequences and equations for calculating support and confidence are 
provided in chapter four, section 4.8. The support value is equal to the number 
of server sessions holding the sequential pattern (open sequence) divided by the 
total number of server sessions in the data set. The confidence value is equal to 
the number of server sessions holding the sequential pattern (open sequence) 
divided by the number of server sessions holding all but the last element of the 
sequential pattern (open sequence). We remark that sequential patterns (open 
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sequences) are used in our research project in the final analysis step of the Web 
Usage Mining process (i.e. post-processing) whereas usually sequential 
patterns are used in the previous step (i.e. processing). 
 

Sequential patterns Support (%) Confidence (%) 
Visitors on the web site http://machines.hyperreal.org 
went to http://machines.hyperreal.org/the_Roland_TB-
303 followed by http://machines.hyperreal.org/ecards  

2 82 

Visitors on the web site http://www.luc.ac.be/tew went 
to http://www.luc.ac.be/tew/opleidingen followed by 
http://www.luc.ac.be/tew/opleidingen/basisopleidingen/ 
opbouw_hi 

20 24 

 
Table 2.5: Examples of sequential patterns in Web Usage Mining. 

 
2.5.1.3 Clustering 
 
In Fayyad et al (1996), clustering is defined as is a common descriptive task 
where one seeks to identify a finite set of categories or clusters to describe the 
data. The categories may be mutually exclusive and exhaustive, or consist of a 
richer representation such as hierarchical or overlapping categories. Besides, 
cluster analysis groups together items that have similar characteristics 
(Kaufman and Rousseeuw, 1990). The challenge is to find groups of items 
(without any predefinition) that naturally fall together, to assign instances to 
these groups and to be able to assign new instances to the groups or clusters. 
The values of attributes that measure different aspects of the instance 
characterize the instance (Witten and Frank, 2000). 

Applied within Web Usage Mining, clustering identifies usage, transaction 
and page clusters. Usage clusters group URL references based on how often 
they occur together across sessions, rather than clustering sessions themselves. 
In Mobasher et al (2000) an example of usage clusters is given. Usage as well 
as session clusters represent groups of users having similar behavioural 
characteristics with regard to visited pages. Such knowledge is useful for 
inferring user demographics in order to perform market segmentation in E-
commerce applications or to provide personalized web content to users that fall 
within a particular cluster. In Fu et al (1999), Nasraoui et al (1999), Shahabi et 
al (1997) and Yan et al (1996), user sessions are clustered to predict future user 
behaviour. In our research project, server sessions are clustered. Finally, page 
clusters discover groups of pages having similar content. Although page 
clustering actually falls within Web Content Mining we do mention it here 
because, as already stated in section 2.1.1 Server-level data collection, besides 
usage data, content data is collected as well to perform better results. For 
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example, in Heer and Chi (2001), user profiles are built by combining users’ 
navigation paths with other data features, such as page viewing time, hyperlink 
structure and page content. Likewise, in Mobasher et al (2000), two techniques 
based on clustering of user and/or server sessions and clustering of pages, are 
presented in order to discover overlapping aggregate profiles that can be 
effectively used by recommender systems for real-time web personalization.  
 
2.5.1.4 Classification 
 
Fayyad et al (1996) describes classification as “learning a function that maps 
(classifies) a data item into one of several predefined classes”. Classification 
rules group items into a predefined profile according to their common 
attributes. Furthermore, new data items that are added to the database are 
classified into the profile. “In classification learning, a learning scheme takes a 
set of classified examples from which it is expected to learn a way of 
classifying unseen samples” (Witten and Frank, 2000). 

In Web Usage Mining, classification algorithms develop a profile of users 
according to their demographic information or their access patterns. In Zaïane 
et al (1998) the WebLogMiner, a knowledge discovery tool for mining web 
server log files, classifies features in the web log data and generates 
classification rules from such models. These classification rules are used to 
describe each class, optimise the structure of the web site and customize 
answers to requests.  
 
2.5.2 Modifications of typical data mining methods 
 
Besides the typical data mining methods, modified algorithms are used to 
discover user profiles or to learn user navigation patterns in Web Usage Mining 
studies. For example, in Zaïane et al (1998) the WebLogMiner is introduced. 
The system interactively extracts implicit knowledge from access records by 
means of combining OLAP and data mining techniques with a multi-
dimensional data cube. Each dimension is represented by one or more 
attributes. Examples of dimensions are URL, time, agent, user, server status 
etc. The multi-dimensional structure of the data cube provides a way to view 
the data from different perspectives. The strengths of WebLogMiner are 
scalability, interactivity, variety and flexibility. In Borges and Levene (2000a) 
user navigation data is modelled as a hypertext probabilistic grammar (HPG). 
HPG generates probability strings. The highest probability strings generated by 
the grammar correspond to the user preferred navigation trails. To deal with the 
drawbacks of returning a large number of rules when the cut-point is small and 
a small set of rules when the cut-point is high, a new heuristic is introduced. By 
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setting the value of the stopping criterion, the analyst can determine the number 
and the quality of rules. Another example of modified data mining techniques 
for Web Usage Mining studies is the Web Site Information Filter (WebSIFT) 
system (Cooley et al, 1999b). WebSIFT applies an interestingness measure to 
data mining methods in order to automatically discover interesting rules and 
patterns from web usage behaviour. Other examples are given in Kosala and 
Blockeel (2000). Finally, in our research project, server sessions are clustered 
using matrices of SAM distance measures instead of using the typical distance 
measures of clustering methods. More details about SAM and clustering based 
on SAM matrices are given in chapter three and four. Also, in chapter five, an 
interestingness measure for Web Usage Mining studies is integrated with SAM. 
SAM calculates distance measures between interesting combinations of pages 
in server sessions in order to discover interesting navigations. 

For the analysis of web usage behaviour, often several typical data mining 
techniques, which are presented in different categories in section 2.5.1, are 
combined to obtain the desired information. Also, not only usage data but also 
content and topology data are used. Illustrations are given in Cooley et al 
(1999a) and Zaïane and Luo (2001). In our research project, content pages are 
distinguished from navigation pages in order to define categories of visiting 
page times. Also, topology data of the web site structure is used to provide 
information for extracting interesting navigations from non-interesting 
navigations. More details are given in chapter four and five.    

Finally, statistical techniques provide a general insight into the data in order 
to ‘get to know your data’ before the actual analysis occurs. Examples of 
information provided by statistical analysis are frequency of page-clicks, 
average page-clicks per user or server session, longest/shortest user or server 
session, average viewing time, most frequently accessed pages etc. In Cooley et 
al (1999a), the WEBMINER system uses statistical techniques in combination 
with clustering, association mining and sequential pattern mining to provide 
interesting rules, patterns and statistics. Some examples of statistical 
information used throughout this thesis for describing data sets are: total 
number of server sessions, total number of distinct URL addresses (i.e. total 
number of distinct web pages), shortest/longest server session, server sessions’ 
average length, total number of requested web pages, distribution of the length 
of server sessions, average visiting page times, etc.      
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2.6 Post-processing 
 
In order to apply the results of the pattern discovery process of Web Usage 
Mining, they first have to be understood and interpret. Therefore, the final 
process of Web Usage Mining, called pattern analysis or pattern evaluation, 
must be fulfilled. The discovered patterns are analysed using different 
techniques: visualisation tools, OLAP and data & knowledge querying. 
 
2.6.1 Visualization tools 
 
Visualization tools present graphically how the users visit the web site. The 
web is generally visualised as a directed graph with cycles, where nodes are 
represented as pages and (inter-page) hyperlinks are depicted as edges. Pitkow 
and Bharat (1994) have developed the Webviz system for visualising World 
Wide Web access patterns. Also, Spiliopoulou and Faulstich (1998) use 
graphical techniques for analysing discovered patterns. They developed a Web 
Utilization Miner (WUM) where aggregate trees and navigation patterns are 
drawn in a graph. Furthermore, in Kato et al (2000) a visualization technique 
using a polar coordinate system is introduced to assist web publishers in pattern 
analysis. Figure 2.1 illustrates how the polar coordinate system is represented 
by circles sharing the same centre (or origin). The inner circle has the smallest 
radius; the outer circle the largest. The analyst-selected target page (page A) is 
plotted at the origin (0,0) of the circle. User behaviour to and from the target 
page is shown by the pages plotted on the circles (pages B, C and D), with the 
number of visited pages increasing and the ratio of the number of users who 
visited the pages decreasing in proportion to the distance from the target page. 
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B

C

D

 
Figure 2.1: Polar coordinate system for user path visualization. 

 
Another technique for visualizing information of web usage patterns is 
presented in Chi et al (2000). By means of the Dome Tree visualization, user 
paths are embedded in 3D and the analyst can peer into the Dome through the 
opening like a door. Also, path crossings are minimized in order to provide an 
overview of web usage paths. 

In our research project navigation patterns are visualized by means of 
clusters of server sessions. Each cluster graphically presents the web site 
structure (i.e. pages and direct hyperlinks between pages) and navigations on 
the web site. For each cluster, open sequences with high support values are 
selected. The navigation patterns, represented by the selected open sequences, 
are drawn in the graph by means of arrows between pages. More details are 
provided in chapter four.  
 
2.6.2 OLAP 
 
OLAP stands for On-Line Analytical Processing. Pendse (2003) summarizes 
the OLAP definition in just five key words: Fast Analysis of Shared 
Multidimensional Information, or FASMI for short. OLAP is capable of 
analysing multi dimensional data, for example, time series and trend analysis 
views (Webopedia, 2002). Pattern analysis of web usage data by means of 
OLAP techniques is described in Zaïane et al (1998).  By means of a data cube 
structure, the intersection of three dimensions of interest, for example traffic, 
weekend days and user agent, is generated interactively. The results are 
presented through summarization of the selected data cells. In Büchner and 
Mulvenna (1998), marketing intelligence is discovered through online 
analytical web usage mining.  
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2.6.3 Data & knowledge querying 
 
A query is a request for information from a database (Webopedia, 2000). With 
a query language an application is allowed to express what conditions must be 
satisfied by the data it needs, rather than having to specify how to get the 
required data. In Cooley et al (1999a) an SQL-like querying language is used 
by the WEBMINER system. Spiliopoulou and Faulstich (1998) integrate a 
MINT query into the WUM system in order to obtain simple statistical 
information and new aggregate trees, to combine aggregate trees into a 
navigation pattern and to look for information about revisited nodes. 

= 43



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 44



 
CHAPTER 3 

 
SEQUENCE ALIGNMENT METHOD 

(SAM) 
 

 
 
The Sequence Alignment Method (SAM) originated in biological studies to 
compare macromolecules. Within this research area it was important to develop 
a method that handles sequences of variable length and incorporates a measure 
for the order in which elements occur in sequences. Moreover, biological 
studies need to assign different costs for different types of work when 
equalizing one sequence with another. More precisely, SAM is developed to 
measure distances between sequences. Yet, some differences between SAM 
and mathematical distance measures may occur. It is important to recognize for 
which parameter settings SAM distance differs from mathematical distance. In 
preliminary studies, SAM is applied to sequences in Web Usage Mining studies 
in Hay et al (2001a). 

Calculating SAM distance measures between sequences is a combinatory 
problem and dynamic programming is used for SAM calculations. Besides 
SAM, also multi-dimensional SAM (MDSAM) is presented. Descriptions of 
SAM and MDSAM illustrated with examples in Web Usage Mining studies are 
provided in Hay et al (2001b, 2002a, 2002b, 2003b, 2003c, 2003d). While 
SAM calculates distances between sequences consisting of one attribute, 
MDSAM calculates distances between sequences consisting of more than one 
attribute, without loosing the characteristics of SAM. Moreover, MDSAM 
takes into account the inter-attribute relationships. An attribute or dimension is 
defined as a particular type of information in a sequence. For example, visited 
pages and visiting times are two different attributes within Web Usage Mining 
studies. Also, particular relations between visited pages and visiting times may 
occur, which is recognized by MDSAM. Finally, heuristic algorithms based on 
dynamic programming and genetic algorithms are given to calculate MDSAM 
between multi-dimensional sequences.          
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3.1  Biological background 
 
Originally, the Sequence Alignment Method (SAM), also known as edit 
distance, alignment distance or Levenshtein distance (Sankoff and Kruskal, 
1983), was developed in biology to obtain knowledge with regard to homology 
(i.e. correspondence) of macromolecules. These macromolecules are 
considered as long sequences of subunits linked together sequentially in a 
chain. Examples of such macromolecules are DNA or RNA sequences. SAM 
measures the biological distances between such sequences. Essentially, the 
amount of work required to equalize two sequences of information is treated as 
a measure of distance. The method deals with common characteristics of 
biological sequences. This means that it handles variable-length sequences and 
incorporates sequential information, i.e. the order in which elements appear in 
a sequence, into its distance measure. It also gives opportunities to treat some 
mutations as more unlikely than others, using different weights for different 
types of work during the equalization process. In Sankoff and Kruskal (1983) 
an overview is given of pattern recognition in macromolecular sequences. In 
chapter six, the effects on the results of using different weights are analyzed for 
web usage mining studies. 
 
 
3.2  Calculating SAM distance: the basic algorithm 
 
In general, the distance or similarity between two sequences, based on SAM, is 
reflected by the number of operations necessary to convert one sequence into 
the other. As a result, SAM distance is represented by a score. The 
higher/lower the score, the more/less effort it takes to equalize sequences and 
the less/more similar sequences are. In addition, SAM scores for the following 
operations during the equalization process: Deletion and insertion operations 
are applied to elements of the source (first) sequence in order to change the 
source into the target (second) sequence. Substitution operations indicate 
deletion + insertion. Note that throughout this thesis, operations are applied to 
the source sequence in order to change (equalize) the source into (with) the 
target. This way, additional complexities about the method are avoided and 
uniform procedures are followed in every chapter. Finally, SAM represents the 
minimum cost (optimal distance) for equalizing two sequences. 

In particular, SAM distance measure between two sequences S1 = s11, s12, 
…, s1m and S2 = s21, s22, …, s2n is calculated using the following formula 
(Sankoff and Kruskal, 1983): 
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dSAM (S1, S2) = min [(wdD + wiI) + wsS]     (3.1) 
 
where 
dSAM  is the distance between two sequences S1 and S2, based on SAM; 
wd is the weight value for the deletion operations, a positive constant not 

equal to 0, determined by the researcher (wd > 0); 
wi is the weight value for the insertion operations, a positive constant not 

equal to 0, determined by the researcher (wi > 0); 
ws is the weight value for the substitution operations and equals wd + wi ; 
D  is the number of deletion operations; 
I is the number of insertion operations; 
S is the number of substitution operations; 
 
and 
m is the length of the first sequence (source); 
n is the length of the second sequence (target); 
sij is an element, representing a particular character, of a sequence; 
i identifies the sequence number, i = 1, …, N; 
N is the total number of sequences in the analysis; 
j identifies the position in a sequence, j = 1, …, m or j = 1, …, n;  
 
Equation (3.1) indicates that the score, represented by SAM distance measure 
between two sequences, consists of the minimum costs for deleting, inserting 
and substituting elements.  

SAM is illustrated by means of four examples in different domains. Table 
3.1 presents sequences used within biology, human speech and time use 
studies. We also provide a preliminary example how we will use SAM in web 
usage mining studies. For each sequence pair, SAM distance is given along 
with the operations that are necessary to convert the source into the target. The 
weight values used to calculate SAM are 1 for insertion/deletion and 2 for 
substitution. 
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Operation  
 

Domain 

 
 

Sequence pair 

SAM 
distance 
wi = 1 
wd = 1 
ws = 2 

 
I 

 
D 

 
S 

Source AACAAA Biology 
Target AAAAA 

1 0 1 0 

Source INDUSTRY Human 
Speech Target INTEREST 

8 3 3 1 

Source breakfast  work  shopping  dinner  sport Time 
use 
studies 

Target work  housekeeping  dinner 
4 1 3 0 

Source page x   page y Web 
usage 
mining 

Target page x   page y   page z 
1 1 0 0 

 
Table 3.1: Sequence comparison based on SAM. 

 
Practically, we provide an algorithm to structure the equalizing process 

between two sequences in a fast and easy way. For illustrations we use the 
examples given in table 3.1. We remark that it has not yet been proven that the 
following three steps always lead to an optimum solution. Yet, they mostly do. 

 
Step 1  Identify maximum identities or the longest common sub strings 
respecting the sequential order of elements. 
-------------------------------------------------------------------------------------------- 
Example: Sequence pairs    Longest common sub strings 
 

A  A  C  A  A  A

A  A  A  A  A

I  N  D  U  S  T  R  Y

I  N  T  E  R  E  S  T

I  N  D  U  S  T  R  Y

I  N  T  E  R  E  S  T

breakfast  work  shopping  dinner  sport

work  housekeeping  dinner

page x   page y

page x   page y   page z  

AA-AAA 

IN-ST or IN-TR 

work-dinner 

page x - page y 

 
-------------------------------------------------------------------------------------------- 
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Step 2  Identify elements, which are not included in the sub string and 
appear in the source and target sequence. Count one substitution (= deletion + 
insertion) operation for each such identified element. 
------------------------------------------------------------------------------------------------------ 
Example: Sequence pairs   Elements not included in sub string and 
     appearing in source and target sequence 

A  A  C  A  A  A

A  A  A  A  A

I  N  D  U  S  T  RR Y

I  N  T  E  RR E  S  T

I  N  D  U  SS T  R  Y

I  N  T  E  R  E  SS T

breakfast  work  shopping  dinner  sport

work  housekeeping  dinner
page x   page y

page x   page y   page z  

None (0 substitution)

R (1 substitution) 
or S (1 sustitution)

None (0 substitution) 

None (0 substitution) 

 
------------------------------------------------------------------------------------------------------ 
 
At the end of this step, the order of substituted elements has been changed. In 
the example above, R is changed in the source sequence in order to obtain the 
same order of elements as in the target sequence. Likewise, if IN-TR is chosen 
as longest common subsequence, S changes places coming after TR in the 
source sequence. In the following step the results are given for changes made in 
the source sequence.  
 
Step 3  Identify elements, which are not included in the sub string and 
appear in either one of the compared sequences. Count one deletion operation 
for each element found in the source sequence. Count one insertion operation 
for each element found in the target sequence. As a matter of fact, elements 
found in the source sequence are ‘deleted’ from the source sequence; elements 
found in the target sequence are ‘inserted’ into the source sequence, respecting 
the positions of the elements. 
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------------------------------------------------------------------------------------------------------ 
Example: Sequence pairs   Elements not included in sub string and 
     appearing in either one of the compared 
     sequences 

A  A  C  A  A  A

A  A  A  A  A

I  N  D  U  R  R  S  T Y

I  N  T  E  RR E  S  T

I  N  D  U  T  R  SS Y

I  N  T  E  R  E  SS T

breakfast  work  shopping  dinner  sport

work  housekeeping  dinner

T E E E E T

housekeeping

page x   page y
page x   page y   page z

page z

      

in source: C (1 deletion)
in target: none (0 insertion)

in source: D, U, Y (3 deletions)
in target: T, E, E (3 insertions)

in source: breakfast, shopping, sport (3 deletions)
in target: housekeeping (1 insertion)  

in source: -
in target: page z (1 insertion)   

------------------------------------------------------------------------------------------------------ 
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3.3  Mathematical distance versus SAM distance 
 
In mathematical science, the word ‘distance’ is used to indicate a function d, 
which satisfies the following metric axioms between the points a, b and c 
(Sankoff and Kruskal, 1983): 
 
� nonnegative property: d(a, b) ≥ 0; 
� zero property:  d(a, b) = 0 if a = b; 
� triangle inequality:  d(a, b) + d(b, c) ≥ d(a, c); 
� symmetry:   d(a, b) = d(b, a); 
 
Comparing the metric axioms illustrated above with the way we use SAM 
distance, the first three metric axioms always hold, while the fourth metric 
axiom does not always hold. This is illustrated in table 3.2, using S1, S2 and S3 
representing three sequences within web usage mining studies. 
 

S1 = page x   page y 
S2 = page x   page y   page z 
S3 = page y   page x 

 
SAM distance between 

sequence pairs 
wd = wi = 1 ; ws = 2 wd = 1; wi = 2 ; ws = 3 

d(S1, S2) 1 2 
d(S2, S1) 1 1 
d(S1, S3) 2 3 
d(S3, S1) 2 3 
d(S2, S3) 3 4 
d(S3, S2) 3 5 

 
Table 3.2: Comparing SAM distance with metric axioms of mathematical 
distance. 
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Dependant of the weights for deletions, insertions and substitutions, SAM 
distance measures are not always symmetric. If equal weight values for 
deletion and insertion are used, SAM satisfies all of the mathematical metric 
axioms of a distance measure. For example, in column two of table 3.2, weight 
values are wd = wi = 1. Yet, if unequal weight values for deletion and insertion 
are used, SAM satisfies all but one of the axioms. SAM becomes an 
asymmetric distance measure. For example, in column three of table 3.2, 
weight values are wd = 1, wi = 2. Therefore we remark that, throughout this 
thesis, if we use the term ‘distance’ we refer to SAM distance and not to 
mathematical distance measures, unless otherwise mentioned. In chapter five 
and seven, equal weight values of insertion and deletion with substitution = 
insertion + deletion are used. In chapter six, equal as well as unequal weight 



values of insertion and deletion with substitution =, > or < insertion + deletion 
are used in order to investigate how sensitive the results are towards changes in 
parameter values of SAM. Although it is generally desirable to use a function d 
satisfying all of the metric axioms mentioned above, exceptions are given in 
Sankoff et al (1983). The use of SAM as an asymmetric function in speech 
recognition and without zero property in telecommunications is stated. Within 
Web Usage Mining studies, the use of SAM as an asymmetric function is 
discussed in chapter six. 
 
 
3.4 Dynamic programming 
 
3.4.1 Combinatory problem 
 
Calculation of SAM distance measures between sequences is a combinatory 
problem, due to many different possible trajectories. A trajectory, also known 
as array (Sankoff and Kruskal, 1983), is a path of equalizations between two 
sequences (Joh et al, 2001) that may be optimal (i.e. representing the minimum 
total operational costs) or not. To understand the nature of this problem, we 
first summarize the basic SAM algorithm in figure 3.1. Common elements are 
elements appearing in both of the compared sequences whereas unique 
elements appear in either one of them. Following, we present a dynamic 
programming model and illustrate operational efforts using a comparison table. 
The comparison table, also called computational array, is a two-dimensional 
table representing the elements of source and target sequences and trajectories 
between them, shown by a set of moves.  
 
begin 
 read source sequence  //first sequence of sequence pair// 
 read target sequence  //second sequence of sequence pair// 
 calculate maximum identity //identity = common elements occurring in the same 

order// 
 define other common elements 
 define unique elements 
 calculate SAM cost between source and target sequence 
 write source sequence, target sequence, SAM cost 
end; 

 
Figure 3.1: Summarization of basic SAM algorithm.  
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In practical applications, dynamic programming algorithms are used to 
resolve combinatory problems (Joh et al., 2001; Mannila and Ronkainen, 1997; 
Wilson, 1998). Dynamic programming is a mathematical programming 
technique for making interrelated decisions. It provides a systematic procedure 
for determining the optimal combination of decisions (Hillier and Lieberman, 
1990). In Silver and Peterson (1985), dynamic programming is described as a 
mathematical procedure for solving sequential decision problems, where the 
outcome of the decision at one point has effect on the outcome at later decision 
points. The combinatory problem of SAM is mathematically presented by 
means of a dynamic programming model, given by equation (3.2) below.  
 
d (S1, S2) = cell (m, n)       (3.2) 
 
where 
m = length of S1; 
n = length of S2; 
cell (0, 0) = 0; 
cell (i, 0) = cell (i-1, 0) + cost; 
cell (o, j) = cell (o, j-1) + cost; 
cell (i, j) = min [cell (i-1, j), cell (i, j-1), cell (i-1, j-1)] + cost; 
 
and      
i = 1, …, m; 
j = 1, …, n; 
cost = 0 if s1i = s2j and i = j; 
cost = wd if i > j; 
cost = wi if j > i; 
 
In a comparison table, elements of S1 (i.e. s1i = s11, s12, …, s1m) are written 
vertically and elements of S2 (i.e. s2j = s21, s22, …, s2n) are written horizontally. 
The cells between S1 and S2 in the comparison table are systematically filled 
with numbers, starting from cell (0, 0) and ending with cell (m, n). Cells  (i, 0) 
and (0, j) represent the margin cells of the first column and the first row in the 
comparison table. In chapter four and five, the basic SAM algorithm presented 
in figure 3.1 along with equation (3.2) are applied to real data sets consisting of 
server sessions providing information about visited pages on web sites.   

The following sequence pair illustrates the combinatory problem of SAM by 
means of comparison table 3.3. General examples of sequences in web usage 
mining studies are given where elements in sequences are represented by 
visited web pages, ordered sequentially. Consider two sequences S1 (source) = 
page x page y page z page x page w and S2 (target) = page x page y page w 
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page x. S1 is presented vertically, S2 horizontally in the comparison table. Also, 
positions of elements are written next to or above the sequences. In a 
comparison table, each sequence starts with a blanc representing a null element 
at position 0. Each cell (i, j), with i = 0, …, m and j = 0, …, n; m = length of 
source and n = length of target, represents the optimal (= minimum) 
equalization cost or SAM distance between the elements at positions up to i of 
the source and the elements at positions up to j of the target. For example, cell 
(3, 2) represents the equalization cost between – page x page y page z and – 
page x page y. Indeed, one deletion operation of element ‘page z’ in the source 
equalizes these sequences, leading to an equalization cost of 1. Proceeding 
downwards to cell (4, 2), an equalization cost of 2 is given for equalizing – 
page x page y page z page x and – page x page y. Obviously, two deletion 
operations of elements ‘page z’ and ‘page x’ in the source change the source 
into the target. Also cell (4, 3) gives an equalization cost of 3 as distance 
measure between – page x page y page z page x and – page x page y page w. In 
this case, optimal distance is obtained by deleting elements ‘page z’ and ‘page 
x’ in the source and inserting element ‘page w’ into the source. Ultimately, the 
final SAM distance measure between S1 and S2 is given in cell (5, 4).   

Besides cell values representing minimum equalization costs, also the types 
of operations can be read from a comparison table through trajectories. The 
equalization process starts at cell (0, 0) and ends at cell (5, 4). Each operation is 
represented by moves in the table. A horizontal move indicates an insertion, a 
vertical move represents a deletion and a diagonal move stands for an identity 
(if elements are equal) or substitution (if elements are not equal). The optimal 
path, showing the types of operations that lead to the total minimum 
equalization cost, is found in the comparison table through backtracking. Now 
the opposite direction of the equalization process is followed, starting at cell (5, 
4) and ending at cell (0,0). Each time the minimum cell value is chosen of the 
cell above, left and above-left. The direction that is chosen identifies the 
operation type. For example, starting at cell (5, 4), the cell values above, to the 
left and above-left are respectively 2, 2 and 3. We can step above or step left. If 
we step left, a horizontal move occurs (1 insertion). Now we are at cell (5, 3) 
from where the values of the cells above, left and above-left are now 
respectively 3, 3, 2. This means that we have to move diagonally to cell (4, 2). 
This move does not change the equalization costs, which means that an identity 
occurs. Furthermore, the optimal path proceeds to cell (3, 2), identifying 1 
deletion, cell (2, 2), again 1 deletion and finally to cells (1, 1) and (0, 0). 
Ultimately, the operation types leading to the total minimum equalization costs 
in cell (5, 4) are one insertion and two deletions. More precisely, looking at s1 
and s2, element ‘page w’ is inserted into the source at position 3, element ‘page 
z’ is deleted from the source at position 3 and finally element ‘page w’ is 
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deleted from the source at position 5. Note that a deletion and insertion of the 
same element affecting the same sequence is the same as one reordering 
operation (Joh et al, 2001a). In fact, we may also say that one reordering and 
one deletion are the operations leading to the total minimum equalization cost. 
In this research project, we will use the term reordering (or substitution) if the 
order of common elements is changed. The parameter value or operational 
weight for reordering will be denoted as “η”. Yet, reordering is used in Joh et al 
(2001a) in a position-sensitive SAM algorithm. We apply SAM’s basic 
operations. This means that, if we mention reordering (or substitution) we do 
not include the number of positions over which changes in order of elements 
occur into our measurement. Finally, during an equalization process, several 
optimal paths may occur. Remark that optimal paths are trajectories. However, 
a trajectory is not always an optimal path. 

 
Operation weights: wd = wi = 1; ws = wd + wi 

Optimal path 
Trajectory 

Position Target 0 1 2 3 4 
Source Element - Page x page y page w page x 

0 - 0 1 2 3 4 
1 page x 1 0 1 2 3 
2 page y 2 1 0 1 2 
3 page z 3 2 1 2 3 
4 page x 4 3 2 3 2 
5 page w 5 4 3 2 3 

 
Table 3.3: Comparison table. 

 
3.4.2 Advantages of dynamic programming  
 
The dynamic programming method is preferable to other methods because of 
several reasons (Kruskal and Sankoff, 1983). 
 

1. Separation of evaluation from algorithm. Dynamic programming 
permits the user to understand the evaluation system (through for 
example a comparison table), without studying the algorithm. 
Moreover, the user may change the evaluation system (through for 
example using other operational weights than the most elementary 
ones, also known as the default values for parameters in SAM-dynamic 
programming presented in table 3.3), without changing the algorithm. 
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2. Global optimality. Dynamic programming guarantees to find the best 
optimal path (or several best optimal paths) out of all possible 
trajectories. This means that the optimal path(s) with the best 
(minimum) equalization score is (are) found. Many other methods do 
not link their algorithm to an equalization score. Neither do they 
guarantee to find the optimal path. 

 
3. Stable parameters. In some methods, it is frequently necessary to adjust 

the parameters for new comparisons and considerable expertise may be 
required to make proper choices. Likewise, the result is heavily 
dependent on these parameter settings. However, through dynamic 
programming sensible results are obtained by using the default values, 
which are all equal to 1 (re. chapter six). 

 
Yet, despite these advantages, dynamic programming is also associated with a 
disadvantage (Hillier and Lieberman, 1990). Computing time may become 
extremely large due to the number of calculations or possibilities to examine. 
 
 
3.5 Multi-dimensional SAM (MDSAM) 
 
In order to measure similarities between sequences based on more than one 
attribute the multi-dimensional SAM or MDSAM is used. We define an 
attribute or dimension as a particular type of information in a sequence. 
Examples of different attributes in Web Usage Mining studies are pages (URL-
addresses), time spent on pages, page type, page category, web structure level 
etc. By means of MDSAM, multi-dimensional or multivariate web usage 
patterns are analyzed on such typical attributes. 

MDSAM is developed by Joh et al (2001) and is concerned with differences 
in element composition, sequential order of elements and handles inter-attribute 
relationships. An element of a sequence represents the lowest level of 
information and belongs to (or describes) a particular attribute. Examples of 
elements used in this research project are page1 (www.luc.ac.be/tew), page2 
(www.luc.ac.be/tew/diensten/diensten_voor_studenten), 3 seconds, 1 minute 
etc. Most multi-dimensional distance measures sum one-dimensional distance 
measures across several attributes to produce an overall measure of similarity 
(Boyle and Flowerdew 1997; Les and Maher 1998; Murray 2000). However, 
this ignores correlations between attributes. For example, the choice between 
page and time spent on page is probably interrelated due to the fact that visitors 
spent short times on navigation pages and longer times on content pages. 
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Therefore, any valid similarity measure should incorporate such 
interdependencies in the quantification of the degree of similarity. This 
characteristic distinguishes MDSAM from other multi-dimensional distance 
measures. 

Basically, MDSAM is a multi-dimensional extension of the one-
dimensional SAM. This is explained in section 3.5.1. To overcome the 
problems of combinatorial explosion (re. section 3.5.2), Joh et al (2001) 
generated acceptable solutions by means of alternative heuristics based on 
dynamic programming and genetic algorithms, while maintaining the 
characteristics of MDSAM. More details of the approach are given in section 
3.5.3. 

 
3.5.1 Multi-dimensional sequence comparison 
 
Multi-dimensional sequences are represented by K attribute sequences. Each 
attribute sequence consists of a set of elements. A pair of K-dimensional 
sequences consisting of m and n positions is represented by K x m and K x n 
matrices of qualitative elements. The problem of comparing these two 
sequences is to measure the effort required to equalize the two matrices. In 
particular, the equalization costs for two one-dimensional sequences is defined 
as the minimum sum of weights for deletion, insertion and substitution 
operations that are required to equalize the sequences (Gusfield, 1997; Sankoff 
and Kruskal, 1983; Waterman 1995). The problem that arises in multi-
dimensional analysis of sequences is that the equalization costs are not equal to 
a simple sum of one-dimensional costs because of the interrelations between 
attributes. In other words, a variety of interdependency relationships between 
attributes complicate the problem of calculating the minimum-effort 
equalization. 

 
3.5.2 Combinatory problem 
 
The same operations applied to elements at the same positions across attributes 
require a multi-dimensionally integrated operational weight that is smaller than 
the simple sum of one-dimensional weights of the operations involved, 
implying interdependency between attributes. Therefore, MDSAM bundles 
operations of the same kind that are applied to the same positions into the same 
sequences, across attributes, into a single operation. However, combinatorial 
explosion occurs due to the fact that a multitude of ways can be envisioned to 
align one-dimensional sequences. To illustrate the combinatory problem of 
MDSAM, consider the following two-dimensional sequences. 
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S1 = page x   page y   page z   page w  (attribute 1) 
 a            b           c            d   (attribute 2) 
S2 = page x   page t   page u   page y   page v (attribute 1) 
 a           c           d            b           a  (attribute 2) 
 
suppose: wd = wi = 1 and η = reordering = wd + wi 
 
For each sequence pair, a trajectory contains the kind of operations (d = 
deletion; i = insertion) as well as the positions and the sequences that are 
affected by the operations. During the equalization process, trajectories are 
composed for each attribute. Some trajectories represent the optimal path or 
minimum costs (i.e. one-dimensional SAM), others are non-optimal. However, 
due to the interdependencies between attributes, all possible trajectories must 
be evaluated to calculate the total minimum cost, which is MDSAM distance 
between S1 and S2. 
 
trajectory = {d3S1, d4S1, i2S1, i3S1, i5S1}  -optimal- (attribute 1) 
trajectory = {d3S1, d4S1, d2S2, d3S2, d5S2}  -optimal- 
trajectory = {i3S2, i4S2, d2S2, d3S2, d5S2}  -optimal- 
trajectory = {i3S2, i4S2, i2S1, i3S1, i5S1}  -optimal- 
trajectory = {i2S2, i4S1, d3S1, d4S1, d2S2, d3S2, d5S2} -non-optimal- 
trajectory = {d2S1, d4S2, d3S1, d4S1, d2S2, d3S2, d5S2} -non-optimal- 
… 
 
trajectory = {d2S1, d4S2, d5S2}   -optimal- (attribute 2) 
trajectory = {d2S1, i4S1, d5S2}   -optimal- 
trajectory = {d2S1, i4S1, i5S1}   -optimal- 
trajectory = {d2S1, d4S2, i5S1}   -optimal- 
trajectory = {i4S1, i2S2, d5S2}   -optimal- 
trajectory = {i4S1, i2S2, i5S1}   -optimal- 
trajectory = {d3S1, d4S1, d2S2, d3S2, d5S2}  -non-optimal- 
trajectory = {d3S1, d4S1, i2S1, i3S1, d5S2}  -non-optimal- 
trajectory = {d3S1, d4S1, i2S1, i3S1, i5S1}  -non-optimal- 
… 
 
The first trajectory of attribute 1 combined with the ninth trajectory of attribute 
2 provides the minimum total equalization cost between S1 and S2, because 5 
operations could be bundled up into single operations: 
 
trajectory = {d3S1, d4S1, i2S1, i3S1, i5S1}  -optimal- (attribute 1) 
trajectory = {d3S1, d4S1, i2S1, i3S1, i5S1}  -non-optimal- (attribute 2) 
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Ultimately, MDSAM distance between S1 and S2 equals 5. This example shows 
that also non-optimal one-dimensional costs may result into optimal multi-
dimensional costs. 
 
3.5.3 Heuristics 
 
Enumerating all possible solutions to find MDSAM and guarantee optimality 
is, due to combinatorial explosion and in terms of computing time, not a 
realistic approach. Therefore Joh et al (2001) introduced heuristics based on 
dynamic programming and genetic algorithms to compute near optimal 
solutions within acceptable computing times. 
 
3.5.3.1 A heuristic based on genetic algorithms 
 
Genetic algorithms are modeled in analogue to evolutionary processes of 
biological species. What makes genetic algorithms particularly interesting is 
that they do not search the entire space of a possibly infinite number of solution 
candidates, but reduce the solution search space by considering populations. 
Each time a new population is created genetically from the old one, resulting in 
better fitness values. Finally, a near optimal solution is found by means of a 
stop condition (e.g. fitness value of several populations during consecutive 
generations does not improve). 

A heuristic algorithm for MDSAM, based on genetic algorithms, is 
developed as follows (Joh et al, 2001). First of all, some terms are defined. A 
set of moves in the comparison table constitutes a trajectory, a set of 
trajectories is called a trajectory set. A trajectory set represents K one-
dimensional trajectories (K = number of attributes). Ultimately, a set of 
trajectory sets constitutes a population of the current generation. 

Trajectory sets are selected based on their fitness values. The fitness value 
of a trajectory set is the sum of the costs for the insertion and deletion 
operations included in the multi-dimensional operation sets. The lower the 
multi-dimensional alignment cost, the better the fitness value of a trajectory set. 
The employed genetic algorithms start randomly with the population of the 0th 
generation and probabilistically select the trajectory sets for generating new 
populations in proportion to their fitness values. The selection probability St(u) 
of a trajectory set u for the population of the tth  generation is expressed in 
equation (3.3). 
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        U 
        ∑  C u’ 

      u’ = 1 

         C u 
St(u) =         (3.3)    
            U 
 U         ∑   C u’ 

 ∑       u’ = 1 

                  u’ = 1       C u’ 
 
 
where 
C = fitness value; 
U = total number of trajectory sets within the population of the tth generation; 
u = uth trajectory set within the population of the tth generation; 
  
and 
1 ≤ u ≤ U; 
u’ = 1, … ,u, …, U; 
  K 
1 ≤ U ≤ ∏ Ak; 
 k = 1 

K = total number of attributes; 
Ak = total number of trajectories for attribute k; 
 

Equation (3.3) says that the probability of the uth trajectory set selection is 
defined as the goodness-of-fit of that particular uth trajectory set (numerator) 
and the sum of goodness-of-fit of all trajectory sets (denominator) within the 
population of the tth generation. The selection probability of the uth trajectory 
set is also called the survival rate. 

The population of the next generation is created by means of the following 
genetic operators: reproduction, crossover and mutation (Mena, 1999). 
Reproduction is the process by which a program evaluates and copies strings 
according to the desired output. When crossover occurs, two strings exchange 
information that yields new combinations. Mutation is a source of variation 
used to maintain diversity in a population. Figure 3.2 summarizes the MDSAM 
heuristic based on genetic algorithms. 
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begin 
t=0   // t indicates the tth generation // 
no_improve = 0 
initialize E(t)  // E(t) is the population // 
calculate C°(t)  // C°(t) is the fitness of E(t) // 
Best_Fitness = C°(t) 
while not (no_improve >= convergence_rate) do 
begin 
  select a genetic operator  
  create E1(t) by selecting and copying a subset of E(t)  
  t = t+1 
  no_improve = no_improve +1 
  create E1(t) by applying the selected genetic operator to E1(t-1) 
  create E2(t) by selecting and copying a subset of E(t-1) 
  create E(t) by summing E1(t) and E2(t) 
  calculate C°(t) 

     if C°(t) < Best_Fitness then Best_Fitness = C°(t) and no_improve = 0 
   end 
end 

 
Figure 3.2: Summarization of the MDSAM heuristic based on genetic 
algorithms. 
 
3.5.3.2 A heuristic based on dynamic programming 
 
In theory, the one-dimensional optimal trajectories do not always provide the 
optimal multi-dimensional solution, as discussed in section 3.5.2. Yet, in 
practice we may expect that the integration of one-dimensional optimal 
trajectories will provide a solution that is near to the multi-dimensional 
optimum due to the fact that optimal trajectories involve the largest number of 
cost-free identities (Joh et al, 2001). However, often many one-dimensional 
optimum trajectories occur and the number of combinations across attributes to 
consider will cause combinatorial explosion. Therefore, Joh et al (2001) 
provide a heuristic based on dynamic programming, which considers for each 
attribute only one optimum trajectory along (or at) the diagonal region of the 
comparison table. Besides, Sankoff and Kruskal (1983) and States and Boguski 
(1991) have proven that most one-dimensional optimum trajectories run along 
the diagonal region of the comparison table. Equation (3.4) shows how 
optimum trajectories along (or at) the diagonal regions are found (Joh et al, 
2001). 
 
     Rk 
F (Qvk) = ∑ erv        (3.4) 
       r 
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where 
erv  is a dichotomous value denoting whether the coordinate of the 

rth identity operation of the vth optimum trajectory falls in the 
diagonal region; 
= 1 if e(i, j, k)rv Є D{e(i, j, k)} 

  = 0 otherwise; 
e(i, j, k)r is the rth identity operation applied to the ith source element and 

the jth target element of the kth attribute; 
e(i, j, k)rv is e(i, j, k)r of the vth optimum trajectory; 
Rk is the total number of identity operations of the optimum 

trajectory of the kth attribute; 
Qvk is the identity operation set of the vth optimum trajectory of the 

kth attribute; 
F (Qvk) is a diagonal function measuring how much Qvk is involved 

with the diagonal region of the kth attribute, denoted by D{e(i, 
j, k)}; 

 
and 
F (Qk) = F (Qvk

°) = max [ F (Q1k), …, F (Qvk), …, F (QVk) ]; 
Qk is the cost-free identity operation set of an optimum alignment 

of the kth attribute; 
Vk is the number of optimum trajectories that can be traced in the 

comparison table of the kth attribute; 
Qk = {q|q = e(i, j, k)1, …, e(i, j, k)r, …, e(i, j, k)Rk}; 
Ok is the cost-taking deletion and insertion operation set of the kth 

attribute; 
Ok = conv (Qk) = {p|p = d(i, k) ٧ i(j, k)}; 
conv (Qk) is a procedural function that converts Qk into Ok; 
d(i, k), i(j, k) are the deletion and insertion operations applied to the ith and 

jth elements of the kth attribute; 
 
More specifically, equation (3.5) defines the value of erv (Joh et al, 2001): 
 
erv  = 1 if p ≤ q ≤ (|m-n| + p) 
  = 0 otherwise     (3.5) 
 
where 
p, q are the positions of the shorter pattern and the longer pattern 

appeared in e(i, j, k)rv respectively; 
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Finally, Qk can easily be converted into Ok by comparing the coordinates of 
two adjacent identity operations. All the source and target elements in-between 
these are identified as the elements that are respectively deleted and inserted. 
When there are multiple Qvk’s with the maximum value of the diagonal 
function, one of such Qvk’s is arbitrarily selected as Qvk

°. 
The major difference between the dynamic programming and genetic 

algorithm heuristics is that the dynamic programming approach considers, for 
each attribute, only one optimum trajectory within or nearest to the diagonal 
region. The genetic algorithm heuristic seeks, for each attribute, more 
trajectories, also including non-optimum trajectories. Figure 3.4 summarized 
the MDSAM heuristic based on dynamic programming. 
 

begin   // search for each attribute an optimal trajectory along or at the 
    for k=1 to K do diagonal region //  

          begin  
        F (Qk) = F (Qvk

°) = max [F (Q1k,) …, F (Qvk), …, F (QVk)] 
        Optimal_trajectory_k = F (Qvk

°) 
     end; 
end; 
no_improve = 0 
Best_Fitness = 100,000,000 // give initial value to Best_Fitness // 
while not (no_improve  >= convergence_rate) do 

      begin 
  multi_dim_cost = integration of optimal trajectories across K dimensions; 
  no_improve = no_improve +1 
  if multidim_cost < Best_Fitness then Best_Fitness = multidim_cost and no_improve = 0 

 end 
=

Figure 3.3: Summarization of the MDSAM heuristic based on dynamic 
programming. 
 
3.5.3.3 A heuristic based on combining genetic algorithms and dynamic 

programming 
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A third heuristic combines genetic algorithms and dynamic programming as 
follows (Joh et al, 2002). The heuristics based on dynamic programming 
outperform those based on genetic algorithms in terms of computing time. 
However, the heuristics based on genetic algorithms improve the solution 
accuracy significantly. Therefore, genetic algorithms use the solution of 
dynamic programming as a starting value (re. figure 3.3) instead of randomly 
starting with a population of the 0th generation. For a further search to solution 
the random application of genetic operators (re. figure 3.2) is used. Finally, the 
new heuristic sharply improves the solution accuracy while only moderately 
increasing computing time. In chapter four, the heuristic based on genetic 



algorithms and dynamic programming, described in figures 3.3 and 3.2, is 
applied to real data sets consisting of server sessions providing information 
about visited web pages and time spent on pages.  
 
3.5.4 Two-dimensional SAM 
 
In the following chapter, SAM and MDSAM are applied to different data sets. 
More precisely, two different attributes are used: visited web pages and visiting 
time of web pages. Other attributes like page type or web structure level are not 
used because the inter-attribute relationships with visited web pages are too 
strong, which means that, if one attribute is known, the other attributes are 
known as well. Analysis of such attributes by means of MDSAM produces the 
same outcome as when only visited pages are analysed. For example, a web 
page is always related to one page type and one web structure level whereas 
several different visiting times may be related to the same web page. Therefore, 
in the following chapters, we will use the term two-dimensional (2-dim) SAM 
to refer to MDSAM applied to two-dimensional sequences (i.e. server sessions 
consisting of visited web pages and visiting times). Finally, the next chapter 
starts with an overview of the surplus value of SAM and two-dim SAM and 
examples of situations are given when to apply SAM and 2-dim SAM to server 
sessions.  
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CHAPTER 4 

 
APPLICATIONS OF  

SAM AND 2-DIM SAM 
TO WEB USAGE DATA 

 
 
 
This chapter examines the contributions of SAM and 2-dim SAM for Web 
Usage Mining studies. SAM is applied to web usage data in order to discover 
visiting profiles providing information of visited pages and the order in which 
pages are visited on a web site. 2-dim SAM is applied to web usage data in 
order to discover visiting profiles providing information of visited pages and 
the time that people stay on a page, also called categories of visiting page time. 
Moreover, 2-dim SAM also takes into account the order in which pages are 
visited on a web site and relations between visited pages and categories of 
visiting page time. 

Preliminary studies of SAM and 2-dim SAM applications on real web data 
are given in Hay et al (2003b), (2003c), (2003d), (2002a), (2002b). In this 
chapter, SAM and 2-dim SAM distance measures are applied to real log files of 
visiting behaviour on three different web sites. First, our approach of Web 
Usage Mining is explained in section 4.5. We also provide a method for 
defining categories of visiting page time and illustrate its application on web 
usage data stored in log files. In section 4.6, the data that is used throughout 
experimental tests are described and illustrated by means of statistics and other 
graphical presentations. 

Following section 4.7, the actual ‘mining’ step of our approach of Web 
Usage Mining is described. Here, server sessions are clustered based on SAM 
or 2-dim SAM distance measures. In order to define the right number of 
clusters, several criteria are used for defining a trade off between number of 
clusters and model fit. Finally, section 4.7 provides cluster solutions for SAM 
applied to server sessions consisting of visited pages. In section 4.8, these 
cluster solutions are examined on visited pages, the order of occurrence of 
visited pages and on the length of server sessions. In order to provide a general, 
graphical overview how people visit a web site, groups of surfing behaviour, 
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represented by visiting profiles, are presented, for each of the three data sets, in 
section 4.9. The graphical presentations provide information about navigations 
and the structure of the web site as well as direct hyperlinks between web 
pages. URL addresses of web pages are also shown in the graphs. Finally, in 
section 4.10, the results of applying SAM to server sessions and clustering 
based on SAM are deployed. For each web site, examples are given how the 
structure of the web site may be adjusted conform to visiting profiles, 
providing information about the order of visited pages. Also, in order to 
provide better and faster services to web visitors, examples of page prediction 
are given. Finally, besides structure improvement and page prediction, other 
topics for applying the results are given. 

In order to show that SAM is a better method for measuring the order of 
visited pages in server sessions, the same data sets are used in section 4.11, 
where server sessions are clustered based on Association distance. Association 
distance measures are commonly used Euclidean based distance measures 
between sequences, which do not take into account the order of elements 
(Everitt, 1980). Preliminary tests with Association distance applied to server 
sessions are illustrated in Hay et al (2003b, 2003c). Likewise, clusters are 
examined on visited pages, the order of occurrence of visited pages and on the 
length of server sessions. Finally, comparisons are made with the clustering 
results based on SAM distance measures. 

In order to show that 2-dim SAM is a better method for measuring relations 
between visited pages and categories of visiting page time, without loosing its 
capacities of measuring sequential information, SAM is compared with 2-dim 
SAM in section 4.12. The data sets of server sessions consisting of visited 
pages that were previously used in experimental tests of SAM and Association, 
are now enlarged with categories of visiting page time. First, server sessions 
consisting of visited pages and categories of visiting page time are clustered 
based on 2-dim SAM distance measures. The clusters are examined on the 
order of and relations between visited pages and categories of visiting page 
time. Second, server sessions consisting of visited pages and categories of 
visiting page time are clustered based on SAM distance measures. The clusters 
are examined on the order of and relations between visited pages and categories 
of visiting page time. The results of the first and second approach are 
compared. Finally, some illustrations are given how information provided by 
profiles, resulting from clusters based on 2-dim SAM distance measures, may 
be deployed. For example, profiles based on 2-dim SAM distance measures 
between server sessions consisting of visited pages and categories of visiting 
page time, may not only predict that page y is visited after page x but also the 
time that people will stay on page y and page x. This may suggest the urgency 
of delivering pages by web servers. Also, extracted information given by 
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profiles based on 2-dim SAM distance measures might be used to verify 
whether navigation and content pages are actually used by the visitors conform 
to the intentions of the web developer. 

Finally, conclusions are given about the experimental tests using SAM, 
Association and 2-dim SAM distance measures between server sessions from 
three different data sets. Indications are provided when to use SAM, 
Association and 2-dim SAM. Ultimately, avenues for future research are given.  
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4.1  Surplus value of SAM 
 
The surplus value of SAM, compared to other distance measures, is that SAM 
incorporates the order of elements in addition to measuring distances between 
sequences. This means that, if SAM is used as distance measure for clustering, 
sequences are grouped based on the order of occurrence of elements as well as 
equalities of elements. Elements are defined in section 3.4 of the previous 
chapter. 

We illustrate this feature of SAM by means of an example, given in table 
4.1. In the first row, four sequences S1, S2, S3, S4 are given, holding three to 
five elements. Instead of using the general examples of server sessions in the 
previous chapters (for example, page x   page y   page z), from now on each 
web page is identified with a unique integer value (for example, 1, 2, 3). In the 
following rows of table 4.1, SAM distance measures and Association distance 
measures are calculated between each sequence pair, using equations (3.1) and 
(4.1) respectively. Association distance measures are commonly used 
Euclidean based distance measures between sequences, which do not take into 
account the order of elements (Everitt, 1980). Other methods, which are often 
used for measuring distances between sequences, are given in appendix four. 
Note that none of them incorporates the order of elements. For non-metric data, 
Association distance is measured by transforming each sequence into a vector 
and counting the number of dissimilarities at each position of the sequence. 
Missing values in either one of the compared sequences are treated as 
dissimilarity. In particular, the distance between two sequences S1 and S2, 
based on Association distance, is presented with the following formula (Hay et 
al, 2003b, 2003c): 
            n 
dASS (S1, S2) = ∑  ƒi       (4.1)  
                 i = 1 

with ƒi = 1 if S1(i) ≠ S2(i) 
 ƒi = 0 otherwise 
 
where 
dASS is the distance between two sequences S1 and S2, based on Association 

distance; 
   n 
 ∑  ƒi is the sum of dissimilarities between two sequences S1 and S2, from   
i = 1 positions i to n; 
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n is the number of positions of S1 or S2 if the sequences are of equal 
length, otherwise n is equal to the number of positions of the longest 
sequence; 

 
 

S1 = 1  2  3  4  5 
S2 = 2  3  4 
S3 = 2  1  4  5 
S4 = 1  2  1  4  5 

Sequence pair dSAM (wd = wi = 1;  η = 2) dASS 
(S1, S2) 2 5 
(S1, S3) 3 5 
(S1, S4) 2 1 
(S2, S3) 3 2 
(S2, S4) 4 5 
(S3, S4) 1 5 

Ward clustering based on distance matrix 
Cluster SAM Association 

1 S1 and S2 S1 and S4 
2 S3 and S4 S2 and S3 

 
Table 4.1: Example of clustering sequences based on SAM and Association 
distance. 
 
The objective is to cluster sequences based on equalities and the order of 
occurrence of elements. In the example, SAM recognizes the longest common 
sub strings respecting the order of elements, between S1 and S2 (i.e. pattern 2, 3, 
4) and between S3 and S4 (i.e. pattern 2, 1, 4, 5). Instead of comparing elements 
within sequences based on positions only, SAM is able to search for patterns of 
elements across positions. Therefore, clustering based on the SAM distance 
matrix groups S1 and S2 in cluster 1 and S3 and S4 in cluster 2. However, 
clustering based on the Association distance matrix does not recognize these 
patterns and groups S1 and S4 in one cluster and S2 and S3 in the other. Note 
that, instead of using Ward for hierarchical clustering, other methods may be 
used as well like for example median, centroïd, complete or single linkage. 
Other clustering methods are described in section 4.7, table 4.8 of this chapter. 
Figure 4.1 plots the dendograms that resulted from clustering sequences S1, S2, 
S3, S4, based on SAM and Association distance. 
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Figure 4.1: Example of dendograms resulted from clustering sequences based 
on SAM and Association distance. 
 
 
4.2  Surplus value of 2-dim SAM 
 
2-dim SAM measures similarities between sequences based on two attributes. 
In section 3.4 of the previous chapter, an attribute or dimension is defined as a 
particular type of information in a sequence, for example pages or times. In 
addition to SAM, 2-dim SAM measures not only the order and equalities of 
elements between two sequences, but captures also the inter-attribute 
relationships within sequences. An example of an inter-attribute relationship is 
“3” (of attribute 1) and “2” (of attribute 2) within the following two-
dimensional sequences: 
 
Sx = 1  2  3  (attribute 1) 
= 0  0  2  (attribute 2) 
Sy = 1  2  3  (attribute 1) 
 1  2  2  (attribute 2) 
 
This means that, if 2-dim SAM is used as distance measure for clustering, 2-
dimensional sequences are grouped based on three characteristics: the order of 
occurrence of elements, equalities of elements and inter-attribute relationships. 
However, if SAM is used as distance measure for clustering, two-dimensional 
sequences are grouped based on two characteristics: the order of occurrence of 
elements and equalities of elements. SAM is not able to recognize inter-
attribute relationships between two-dimensional patterns. 
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We illustrate the difference between SAM and 2-dim SAM by means of an 
example, given in table 4.2. In the first row, four two-dimensional sequences 
are given, holding three to five elements. In the following rows, SAM and 2-
dim SAM distance measures are calculated between each sequence pair. If 
SAM is used to calculate the distance between 2-dimensional sequences, 
equations (3.1) and (3.2) are used to compute the distance for each attribute. 
Then, the individual distance measures for each attribute are summed together 
to represent the total SAM distance between 2-dimensional sequences. For 
example, if operation weights d = i = 1; η = 2 are used, dSAM (S1, S4) for 
attribute 1 equals 2, based on the trajectory {d3S1, i3S1} and dSAM (S1, S4) for 
attribute 2 equals 4, based on trajectories {d3S1, i2S1, d5S1, i5S1}, {d2S1, i2S1, 
d5S1, i5S1} or {d1S1, i2S1, d5S1, i5S1}. The total SAM distance between S1 and 
S4 equals 6. If 2-dim SAM is used to calculate the distance between 2-
dimensional sequences, equations (3.4), (3.5) and (3.3) (dynamic programming 
and genetic algorithms) are used to compute the distance across attributes, 
while searching for the most equal trajectories between attributes. For example, 
based on trajectories {d3S1, i3S1} for attribute 1 and {d3S1, i2S1, d5S1, i5S1} 
for attribute 2, d2-dim SAM (S1, S4) equals 5.   

  
S1 =  1  2  3  4  5  (attribute 1) 
    =  0  0  0  1  4  (attribute 2) 
S2 =  2  3  4  (attribute 1) 
    =  0  0  4  (attribute 2) 
S3 =  2  1  4  5  (attribute 1) 
    =  0  0  1  4  (attribute 2) 
S4 =  1  2  1  4  5  (attribute 1) 
    =  0  1  0  1  1  (attribute 2) 

Operation weights used for attribute 1 and 2: d = i = 1; η = 2 
Sequence pair dSAM  d2-dim SAM 

(S1, S2) 4 4 
(S1, S3) 4 3 
(S1, S4) 6 5 
(S2, S3) 4 4 
(S2, S4) 8 7 
(S3, S4) 4 4 

Ward clustering based on distance matrix 
Cluster SAM 2-dim SAM 

1 S1 and S2 S1, S3 and S2 
2 S3 and S4 S4 

 
Table 4.2: Example of clustering sequences based on SAM and 2-DIM SAM. 

 
The objective is to cluster sequences based on equalities and the order of 
occurrence of elements as well as inter-attribute relationships. In the example, 
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SAM and 2-dim SAM both recognize pattern 2, 3, 4 of the first attribute in S1 
and S2. However, only 2-dim SAM recognizes inter-attribute relationships and 
therefore clusters S1, S2 and S3 together whereas SAM groups S1 with S2 in 
cluster 1 and S3 with S4 in cluster 2. In other words, 2-dim SAM considers the 
relations between attribute 1 and 2 of 1-0, 2-0, 3-0 or 5-4 in S1, S2 or S3 as 
relatively strong inter-attribute relationships within the data. In S4, different 
relations between attribute 1 and 2 are shown. For example, 2-1 and 5-1. For 
this reason, 2-dim SAM considers S4 to be more distant from S1, S2 and S3. 
Figure 4.2 plots the dendograms that resulted from clustering sequences S1, S2, 
S3 and S4, based on SAM and 2-dim SAM distance. 
 

Rescaled Distance Cluster Combine

0 5 10 15 20 25

s1
s2
s3
s4

dendogram using Ward and SAM distance matrix 

dendogram using Ward and 2-dim SAM distance matrix s1
s3
s2
s4

 
Figure 4.2: Example of dendograms resulted from clustering sequences based 
on SAM and 2-DIM SAM. 
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4.3 Objectives 
 
Within research area of General Access Pattern Tracking, which is described in 
chapter one, section 1.3, the objective of applying SAM or 2-dim SAM to Web 
Usage Data is to discover profiles of visiting behaviour on a web site. SAM is 
used to measure distances between server sessions of one attribute (dimension), 
which is visited pages. Profiles resulting from SAM distance measures provide 
information about visited pages and the order in which pages are visited. For 
example, page y is visited after page x. 2-dim SAM is used to measure distances 
between server sessions of two attributes (dimensions), which are visited pages 
and categories of visiting page time. Profiles resulting from 2-dim SAM 
distance measures provide information about visited pages, categories of 
visiting page time, the order in which pages and times occur and inter-attribute 
relationships between pages and times. For example, page y is visited after 
page x while page y is related with time t2 and page x is related with time t1. 

The extracted profiles of visiting behaviour are represented by clusters, 
which resulted from clustering server sessions based on distance matrices 
holding SAM or 2-dim SAM distance measures. If SAM is used as distance 
measure between server sessions consisting of visited pages, server sessions are 
clustered together based on equalities of pages and the order in which pages 
occur within server sessions. If 2-dim SAM is used as distance measure 
between server sessions consisting of visited pages and categories of visiting 
page time, server sessions are clustered together based on equalities of pages 
and times, the order in which pages and times occur within server sessions and 
relations between particular pages with particular times. 

The extracted profile information may be used by web personalization 
systems to provide better and faster services to web visitors. For example, 
profiles based on SAM distance measures between server sessions consisting of 
visited pages may predict that page y is visited after page x and/or that page z is 
visited after pages y and x. Moreover, profiles based on 2-dim SAM distance 
measures between server sessions consisting of visited pages and categories of 
visiting page time, may not only predict that page y is visited after page x but 
also the time that people will stay on page y and page x. This may suggest the 
urgency of delivering pages by web servers. Also, for the convenience of the 
visitor, the structure of the web site may be adjusted conform to the profiles. 
For example, if page y is visited after page x without the presence of a link 
from page x to y, we may suggest inserting a direct hyperlink from page x to y. 
Also, extracted information given by profiles based on 2-dim SAM distance 
measures might be used to verify whether navigation and content pages are 
actually used by the visitors conform to the intentions of the web developer. 
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For example, suppose that page x is a navigation page leading to page z, we 
expect visitors to follow the ‘road’ from page x to z while staying longer on 
page z than on page x. If this is contradicted by the extracted profiles, we may 
provide information for adjusting the web site for the convenience of visitors. 
Other applications for using the information provided by SAM (2-dim SAM)-
based clustering is offering different guided tours to different groups of web-
visitors, distinguishing visiting behaviour of ‘first-time’ visitors from regular 
visitors, inserting cross-links between particular web pages etc. More details 
are given in section 4.10 and 4.12.2 Deploying the results. 
 
 
4.4 Three steps in a Web Usage Mining process 
 
Before proceeding to the applications of SAM and 2-dim SAM to real log files 
of Web Usage Data, we describe in this section our approach of Web Usage 
Mining. A general overview of the three steps in a Web Usage Mining process 
is given in chapter two. The details of our approach by means of the SAM and 
2-dim SAM applications are provided in figure 4.3. Output of each step is used 
as input in the following step. First, the raw data, registered in log files, are pre-
processed into server sessions so as to become useful for mining. Second, 
dependent on the objectives, SAM or 2-dim SAM distance measures are 
calculated between the server sessions. Hierarchical clustering algorithms are 
invoked on the distance measures in order to obtain, based on several 
information criteria for defining the number of clusters, clusters of server 
sessions. Third, for the SAM application, clusters are examined on equalities of 
pages, the order in which pages occur within the server sessions and on the 
length of server sessions. For the 2-dim SAM application, clusters are 
examined on the order of occurrence and inter-attribute relationships between 
pages and times. Open sequences are used for examining the order of pages 
(times) in clusters of server sessions. Open sequences are defined in section 4.8 
of this chapter. 
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Data clean.
Data filter.

Visits
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sequences
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Cluster description
[order of pages/times]
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Figure 4.3: Web Usage Mining by means of SAM or 2-dim SAM. 

 
Each step of our approach as well as the data sets used in the SAM and 2-

dim SAM applications are described in detail in the following sections. In 
section 4.5 and 4.6, the raw log file data is pre-processed into server sessions 
and a description is given of the data sets that are used throughout this project. 
In section 4.7, SAM distance measures are calculated between server sessions. 
Then, server sessions are clustered based on SAM distance measures. In 
section 4.8, clusters based on SAM distance measures are examined on 
page_ids, the order of page_ids and on the length of server sessions. After 
describing and deploying the results in section 4.9 and 4.10, SAM is compared 
with Association distance in section 4.11. The clusters based on SAM distance 
between server sessions are compared with those based on Association distance 
in order to show that SAM groups server sessions together based on the order 
of pages. In section 4.12, SAM is compared with 2-dim SAM in order to show 
the capability of 2-dim SAM to cluster server sessions together based on 
relations between pages and times. Also, the results of the 2-dim SAM 
application are deployed. This chapter ends with conclusions about applying 
(2-dim) SAM to real web data stored in log files and avenues for future 
research in section 4.13.  
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4.5 Step 1: Pre-processing 
 
In order to analyse visiting behaviour on a web site, sessions of web click 
stream data must be defined from the raw log data. A server session or visit is 
defined in chapter two as the click stream of page views for a single visit of a 
user to a web site (Cooley, 2000). We will use server session or visit 
interchangeably. In the absence of cookies or dynamic web pages, in this study 
server sessions are composed heuristically using the information supplied by 
the extended log files (Cooley et al, 1999a; CERN, 2002) as follows. First, the 
data are cleaned in such a way that only URL page requests of the form 
‘GET…htm(l)’ are maintained. Then, a unique code is given to each distinct 
combination of ip address and user agent (Cooley et al, 1999b; Fu et al, 1999). 
Likewise, a unique code is given to each distinct URL. 

Furthermore, server sessions are identified using some time-out heuristic 
(Banerjee and Ghosh, 2001; Catledge and Pitkow, 1995; Cooley et al, 1999a; 
Zaïane and Luo, 2001) based on a threshold of 30 minutes visiting page time. 
Visiting page time is the time difference (expressed in seconds) between 
consecutive page requests (Shahabi et al, 1997) and is calculated for each page 
that is registered as a request in the log file. Unfortunately, missing values 
occur when visiting page time is calculated for the last page of a server session. 
To deal with this problem, visiting page time for the last page of a server 
session is substituted by the average visiting page time of that particular page 
taken across all sessions in which the page is not the last page request (Witten 
and Frank, 2000). Using a threshold of 30 minutes visiting page time means 
that, for the same ip address, a new session is created when the time between 
subsequent page requests exceeds 30 minutes. In general, a server session is 
created when a new ip address and/or user agent is met in the log file. Finally, a 
filtering method is invoked on the sequences in order to identify visitors using 
the same ip address and user agent. Note that the focus of this project is to 
provide profiles of visiting behaviour showing visited pages and the order of 
visited pages on a web site, rather than examining the various engineering 
issues with regard to sessionizing or user identification. Besides, within our 
research area of General Access Pattern Tracking (re. chapter one and two), 
opposed to Customized Usage Tracking, general instead of individual trends 
are analysed in order to customize web sites to users. It is important to note that 
other heuristics or algorithms for identifying users and server sessions may be 
employed in future research. 

After defining the server sessions, holding consecutive page requests, 
categories of visiting page time are added. The reason for adding time 
information to page information in server sessions is to examine whether 
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visitors actually use the site as web designers expect the site is being used. 
Moreover, time information provides the ability to predict which pages will be 
requested within certain time limits, which optimises the speed of delivering 
web pages to users. The approach of using time windows is illustrated in 
Cooley et al (1999a). Likewise, in Cooley et al (1997) time windows are used 
to find common characteristics of users that visited a particular page within the 
time period [t1, t2]. Yet, in our approach time windows are applied to 
investigate whether visitors actually (a-posteriori) use the site as web designers 
expect the site is being used (a-priori) as well as for delivery speed of page 
predictions. A definition of a-priori defined web pages is given in chapter two, 
section 2.2.3. Examination is done whether the a-priori defined web pages as 
‘content’ and ‘navigation’ match with the a-posteriori visited web pages. In 
order to define the a-posteriori ‘content’ and ‘navigation’ web pages, an 
estimated cutoff visiting page time is defined between ‘content’ and 
‘navigation’ pages by means of the following equation (Cooley, 2000): 
 
tcutoff  =  - ln (1 – γ) / λ       (4.2) 
 
where 
γ  is the number of navigation pages divided by the number of total pages 

in the analysis; 
λ is the reciprocal of the observed mean visiting page time in the 

analysis; 
 

Equation (4.2) is derived from integrating the formula for an exponential 
distribution from γ to zero (Cooley, 2000). The maximum likelihood estimate 
for the exponential distribution is the observed mean. Practically, tcutoff is 
defined by taking the ln-function of the scale (1 – γ) and dividing (i.e. 
standardizing) it by the observed mean visiting page time. The reason for 
applying ‘-ln’ instead of ‘ln’ is because the scale (1 – γ) will always be less 
than zero. Taking ‘ln’ of a value less than zero ends up with a negative value. 
Taking ‘-ln’ of a value less than zero ends up with a positive value.  

On the one hand, if for page x actual visiting time is at or below tcutoff, page 
x is used by the visitor as ‘navigation’ page (a-posteriori), irrelevant of whether 
the web developer constructed page x as ‘content’ or ‘navigation’ (a-priori) in 
the web site. On the other, if for page x actual visiting time is above tcutoff, page 
x is used by the visitor as ‘content’ page (a-posteriori), irrelevant of whether 
the web developer constructed page x as content or navigation (a-priori) in the 
web site. 

In order to examine, by means of 2-dim SAM, the delivery speed of page 
predictions, more categories besides t0 (a-posteriori use of navigation page) 
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and t1 (a-posteriori use of content page) are defined. If we want to know 
whether web pages must be delivered relatively fast (i.e. urgent), at an average 
speed or relatively slow (i.e. not urgent), the distribution of actual visiting page 
times is used to define several categories of visiting page times for pages that 
are actually used as a content page by the visitor. For example, t1, t2, t3 are 
used to notify the page is actually used as a content page by the visitor with 
visiting page time between t cutoff and 60 seconds, 61-300 seconds, above 300 
seconds respectively. The reason for using categories of time instead of 
continuous time information is due to the SAM (and 2-dim SAM) algorithm. 
When two sequences are equalized by means of SAM (and 2-dim SAM), 
sequences must hold categorical elements. Numerical elements are difficult to 
handle by means of SAM (and 2-dim SAM). Future research will discuss 
algorithms for analysing continuous data for visiting page time.  

Eventually, for the analysis of SAM and 2-dim SAM, server sessions are 
built in the form of session_id, {(<unique code for URL request>); (<category 
of visiting page time>)} representing consecutive pages requested by the same 
user with corresponding time information. Examples of how data is pre-
processed into server sessions, using the heuristics described in this section, are 
given in table 4.3. The records are ordered based on the time of the request. 
Suppose tcutoff = 5, defining t0. Likewise, suppose t1, t2 and t3 are categories of 
equally distributed visiting page times above 5 seconds. This means that, the 
number of occurrences of visiting page times in t1, t2 and t3 are equal. The 
web developer has constructed pages 68, 65, 9 and 1 for navigational use. In 
the last row of table 4.3, the first, third and fourth server sessions demonstrate 
visiting behaviour as expected by the web developer i.e. navigational pages are 
visited during less than 5 seconds; content pages are visited for more than 5 
seconds.  
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Code ip address & user agent Date Time Code URL 
1 2001-02-15 00:01:43 68 
1 2001-02-15 00:01:45 65 
1 2001-02-15 00:01:47  55 
2 2001-02-15 00:01:47 68 
3 2001-02-15 00:01:48 1 
4 2001-02-15 00:01:52 13 
2 2001-02-15 00:02:05 9 
1 2001-02-15 00:02:11 70 
2 2001-02-15 00:02:30 68 
2 2001-02-15 00:02:31 71 
… … … … 

t cutoff  = 5 
t0 ≤ t cutoff   

t cutoff  < t1 ≤ 60 
60 < t2 ≤ 300 

300 < t3     

Average visiting page time 
for page 70 = 95 
for page 9 = 3 
for page 1 = 8 

for page 13 = 306 
for page 71 = 75 

…  
Server sessions 

1, {(68, 65, 55, 70); (t0, t0, t1, t2)} 
2, {(68, 9, 68, 71); (t1, t1, t0, t2)} 

3, {(1); (t1)} 
4, {(13); (t3)} 

… 
Table 4.3: Examples of constructing server sessions. 

 
Finally, we give two remarks. First, as mentioned in chapter two, the time of 

the request is the time the request is received (and logged) by the web server. 
This means that the visiting page times, calculated from the logged time data, 
may differ from the real visiting (i.e view) time, since overload of network 
traffic may delay deliveries of pages to the user. However, most of the studies 
in Web Usage Mining rely on information supplied by (extended) log files and, 
although time differences may occur, logged time data are considered to 
provide reliable information (CERN, 2002, Cooley et al, 1999a). Future 
research discusses ways for handling differences between real and logged time 
data within Web Usage Mining studies. Second, server sessions consisting of 
one page only are not excluded from the analysis because they might provide 
profiles of visiting behaviour to web pages that are directly accessed using the 
URL address instead of using the navigational pages. Yet, care must be taken 
when interpreting the visiting page time since average values are used to 
replace missing values. Future research mentions excluding server sessions of 
one page from the analysis and verifies whether the results are significantly 
different.   
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4.6  Describing the data 
 
SAM and 2-dim SAM are applied to three data sets. For each data set, visiting 
behaviour towards a different web site is examined. The first analysis concerns 
log files of our university web site, Faculty of Applied Economic Sciences 
(http://www.luc.ac.be/tew). This site consists of information and course 
material of a bachelors and masters degree in Applied Economic Sciences and 
Economic Engineering at the Limburg University Center (LUC) in Belgium. 
The second uses logged data of the Music Machines web site 
(http://machines.hyperreal.org), home of musical electronics on the web. Music 
Machines offers images, software, schematics, synthesizers, effects, drum 
machines, recording equipment etc. Visiting behaviour on this web site is also 
analysed by Perkowitz and Etzioni (2000). Adaptive web sites mine the data 
buried in server logs to produce more easily navigable web sites. Through 
index page synthesis, a site could offer an alternative organization of its 
contents based on user access patterns. Finally, in the third experiment log files 
of the web site of a Belgian telecom provider are analysed. Due to privacy 
agreements we are not able to provide name/URL address of their web site. 
Generally, the site provides information about products, prices, subscriptions, 
business solutions, customer services, jobs, FAQ, press release etc. 

After pre-processing the data using the heuristics given in the previous 
section, the raw data in the log files are converted into server sessions. Table 
4.4 presents, for each data set, the number of server sessions. Also, the period 
of data registration and the number of distinct URL addresses that were logged 
in the files, are given. Each URL address is represented by a unique code, also 
called page_id or (web) page. For the first data set, a total number of 2764 
server sessions are defined over 71 different page_ids. The second data set 
provides 3131 server sessions including 1159 different page_ids. Finally, in the 
third data set, 773 server sessions are defined from a web site of 492 web 
pages. 
 

 
Data 
set 

 
URL address of web site 

Period of data 
registration 

Total 
number of 

server 
sessions 

Total 
number of  

distinct 
page_ids 

1 http://www.luc.ac.be/tew 15/02/2001 - 22/07/2001 2764 71 
2 http://machines.hyperreal.org 01/02/1999- 03/02/1999 3131 1159 
3 ‘Belgian telecom provider’ 20/02/1999- 28/02/1999 773 492 

 
Table 4.4: Three pre-processed data sets used for SAM and 2-dim SAM 
experiments. 
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Table 4.5 provides statistics about the server sessions of each data set. All of 

the data sets hold at least one server session consisting of one element or page. 
The longest and average lengths of the server sessions differ among the data 
sets. In the last row, the total number requests are the total number of requested 
web pages in the data sets.  

 
Server sessions Statistics 

Data set 1 Data set 2 Data set 3 
Shortest 1 1 1 
Longest 55 20 38 
Average length 3 2.5 6 
Total number of 
requests 

8308 7887 4605 

 
Table 4.5: Describing server sessions used for SAM and 2-dim SAM 
experiments. 

 
Figure 4.4 provides, for each data set, the distribution of the server sessions’ 

length. On the horizontal axis, the length of the server sessions, ranging from 1 
to 55, is given. On the vertical axis the relative frequency (number of server 
sessions of the corresponding length divided by the total number of server 
sessions in the data set, multiplied by 100) is given. For example, considering 
the first data set of web usage behaviour on http://www.luc.ac.be/tew, 46.92% 
(i.e. [1297 / 2764] * 100) of the server sessions are one page long. The length 
of the server sessions in data set one and two follow approximately the same 
distribution. In the third data set, 31.95% and 18.63% of the server sessions are 
respectively five and six pages long. Although the first data set contains server 
sessions up to 55 pages long, merely 0.24% of the server sessions are longer 
than 30 pages. In the second data set 89.71% of the server sessions are one to 
five pages long. Finally, in the third data set, 89.53% of the server sessions are 
one to ten pages long. 
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Figure 4.4: Distribution of the length of server sessions. 

 
Figures 4.5 to 4.7 provide, for each data set, the distribution of distinct 

page_ids. In figure 4.5, on the horizontal axis, 71 distinct page_ids are 
presented. On the vertical axis, relative frequencies (number of requests of the 
corresponding page_id divided by the total number of requests (i.e. 8308) in the 
file, multiplied by 100) are given. For example, 19.03% ([1,581 / 8308] * 100) 
of the requested pages in the first data set are page 68. For the three highest 
relative frequencies, url-addresses are written in the graph. 
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Figure 4.5: Distribution of 71 distinct page_ids in data set 1. 
 

In figure 4.6, 1,159 distinct page_ids are represented by means of 50 groups. 
In the first stage of the pre-processing step, web pages were ordered 
alphabetically on URL address before a unique code (i.e. page_id) is assigned 
to each distinct URL address, starting with page 1 for 
http://machines.hyperreal.org/addressbook and ending with page 1,159 for 
http://machines.hyperreal.org/software. Here, each group reflects 23 web 
pages, except for the last group. For example, group 1 reflects page 1 to 23, 
group 2 reflects page 24 to 46, group 3 reflects page 47 to 69 etc. Finally, 
group 50 reflects page 1,128 to 1,159. On the vertical axis, the frequency 
values (number of requests of the page_ids within the corresponding group 
divided by the total number of requests (i.e. 7,887) in the file, multiplied by 
100) are given. The graph shows that 25.28% of the visited pages in the second 
data set are pages within group 29, reflecting web pages 645 to 667 (including 
645 and 667). The following two highest relative frequency values are 7.24% 
for group 45, reflecting web pages 1013 to 1035 (including 1013 and 1035) and 
5.44% for group 50, reflecting web pages 1128 to 1159 (including 1128 and 
1159). 
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Figure 4.6: Distribution of 1159 distinct page_ids, represented in 50 groups, in 
data set 2. 
 

In figure 4.7, 492 distinct page_ids are represented by means of 20 groups. 
Likewise, in the first stage of the pre-processing step, web pages were ordered 
alphabetically on URL address before a unique code (i.e. page_id) is assigned 
to each distinct URL address, starting with page 1 for ‘www…../a…’ and 
ending with page 492 for ’www…/p…’. Here, each group reflects 25 web 
pages, except for the last group. For example, group 1 reflects page 1 to 25, 
group 2 reflects page 26 to 50, group 3 reflects page 51 to 75 etc. Finally, 
group 20 reflects page 476 to 492. On the vertical axis, the frequency values 
(number of requests of the page_ids within the corresponding group divided by 
the total number of requests (i.e. 4,605) in the file, multiplied by 100) are 
given. The three highest relative frequency values are shown for group 15 
(15.08%), 12 (14.83%) and 20 (12.65%). 

We remark that groups of page_ids are used throughout this thesis for 
presentational reasons only, because scaling 1,159 and 492 different page_ids 
will be too large. Yet, every analysis is executed on individual page_ids and 
not on groups of page_ids. Future research discusses ways of analysing web 
pages at a higher hierarchical level. 

We also remark that, instead of using alphabetically ordered URL addresses, 
we could group page_ids together based on classes, like for example 
manufacturers, software or samples (data set 2) and products, prices or services 
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(data set 3). Figures of groups of page_ids based on classes for data set 2 and 3 
are given in appendix four. 
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Figure 4.7: Distribution of 492 distinct page_ids, represented in 20 groups, in 
data set 3. 

 
For each data set, categories of visiting page time are defined by tcutoff  using 

equation (4.2) as follows. Table 4.6 provides the values of γ and λ for each data 
set. In the first data set, 7 out of 71 pages are structured by the web developer 
as navigational pages. Examples of navigation pages are 
http://www.luc.ac.be/tew/information and 
http://wwwq.luc.ac.be/tew/education. In the second data set, the main 
navigational pages are http://machines.hyperreal.org (home page), 
http://machines.hyperreal.org/gear (manufacturers page), 
http://machines.hyperreal.org/links (provides references to other sources of 
information on the web), http://machines.hyperreal.org/guide (explains how to 
use Music Machines and how it’s structured) and 
http://machines.hyperreal.org/email (guides you to the email account in order 
to contact the Music Machines crew). Other examples of navigation pages are 
/categories, /images, /software etc. We also believe that, for each manufacturer, 
one navigation page is defined, for example 
http://machines.hyperreal.org/gear/ARP, 
http://machines.hyperreal.org/gear/Akai, 
http://machines.hyperreal.org/gear/Yamaha etc. Ultimately, from the basic 
structure of the Music Machines web site, 99 pages are defined as navigation 
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pages. In the third data set, 50 out of 492 web pages are navigation pages. 
Some examples of navigation pages are /products&services, /sales, /tariff. In 
order to define the second parameter λ, the observed mean visiting page time is 
calculated across all of the page requests in each data set. In the first data set, 
pages are visited during an average time of 2.07 minutes or 124.20 seconds. In 
the second and third data set, the mean visiting page times are 107.89 and 
54.72 seconds respectively. Finally, tcutoff equals 12.89 in the first data set, 
indicating that, if visitors stay less than 12.89 seconds on a page, they actually 
use this page as a navigation page. In the second and third data set, tcutoff equals 
9.63 and 5.86 respectively.  

 
Data set Parameters 

1 2 3 
γ 0.09859 0.08541 0.10162 
λ 0.00805 0.00927 0.01827 

tcutoff 12.89 9.63 5.86 
 

Table 4.6: Calculating tcutoff for each data set. 
 
Also, for each data set, the distribution of visiting page times above tcutoff is 

used to define categories of visiting page time when visitors actually use pages 
as content pages. Because the actual duration of visits to content pages may be 
spread out over a time range of ]tcutoff ,1799] seconds, several categories are 
defined based on equal distributions, also known as equal frequency binning. 
Equal frequency binning is used in our research project for the following 
reasons: 
� Rarely occurring categories are avoided. Categories that may be interesting 

and rarely occur in the analysis are often not presented in the results of the 
analysis. 

� Pre-defined input is avoided. If the analyst pre-defines categories, the 
results will provide information that was already known before the analysis 
took place. 

� All of the three web sites in our experimental tests offer more content 
pages and less navigational pages, which advises using several time 
categories for content (i.e. index) pages. However, we must remark, if web 
sites are analysed with more navigational pages than content pages, it might 
be wise to create several time categories for navigational instead of content 
pages.  
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Figures 4.8 to 4.10 present the distribution of visiting page times for data set 
one, two and three. Within the group of visiting page times above tcutoff we 
define three categories: short, medium and long stay on a web page. For each 



data set, the boundaries of time categories are given in table 4.7. Based on the 
distribution of actual visiting page times above tcutoff, the boundaries are defined 
as follows. The total number of requests is the same within each time category. 
For example, in the first data set, the total number of requests with visiting 
page time above 12.89 seconds is equal to 6,033. Following, actual visiting 
page times are ordered ascending starting with 12.891 up to 1,799 seconds. 
Each time one actual visiting page time is assigned to t1 until the total number 
of requests within time category t1 is equal to 2,011 (i.e. 6,033 / 3). The 
boundary of t1 is now equal to the last visiting page time that was added to t1 
before the total number of requests that were added to t1 exceeded 2,011. Then, 
visiting page times are assigned to t2 and t3 accordingly. Future research 
discusses another boundary calculation, based on equal total visiting page time 
within each category. 
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Figure 4.8: Distribution of visiting page times for data set 1. 
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Figure 4.9: Distribution of visiting page times for data set 2. 
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Figure 4.10: Distribution of visiting page times for data set 3. 

 
 

Dataset 
1 2 3 

0 < t0 ≤ 12.89 
12.89 < t1 ≤ 56 
56 < t2 ≤ 166 

166 < t3 

0 < t0 ≤ 9.63 
9.63 < t1 ≤ 68 
68 < t2 ≤ 204 

204 < t3 

0 < t0 ≤ 5.86 
5.86 < t1 ≤ 13 
13 < t2 ≤ 107 

107 < t3 
 

Table 4.7: Visiting page time categories based on equal number of requests. 
 

Figures 4.11 to 4.13 present average visiting page times for data set 1, 2 and 
3. We remark that, in figures 4.12 and 4.13, the horizontal axis represents 
groups of distinct web pages, as previously mentioned and conform with 
figures 4.6 and 4.7. Average visiting page time in data set 1 is calculated for 
each page_id by summing the corresponding visiting page times, expressed in 
seconds, and dividing it by the number of requests of the corresponding 
page_id. In data set 2 and 3, average visiting page times are first calculated for 
each page_id. Then, the average is taken for each group. In the first data set, 
pages with identification number 68, 2 and 43 present the lowest average 
visiting page times of respectively 30, 57 and 64 seconds. In the second data 
set, group 14 (reflecting page_id 300 till 322) and 15 (reflecting page_id 323 
till 345) present the lowest average visiting page times of respectively 14.04 
and 17.61 seconds. Also group 49 (reflecting page_id 1105 to 1127), group 5 
(reflecting page_id 93 to 115) and group 37 (reflecting page_id 829 to 851) 
have low average visiting page times of respectively 26.13, 28 and 28.52 
seconds. In particular, page_ids 163, 349, 713, 984, 1082, 933, 815, 151, 947 
and 1129 have low average visiting page times of respectively 2, 2, 4, 5, 5, 6, 7, 
8, 8 and 8 seconds. Finally, in the third data set, the lowest average visiting 
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page time (24.20 seconds) is given for group 16 (reflecting page_id 376 till 
400). Particularly page_ids 81, 492, 249, 250, 436 and 27 are visited during a 
short time of respectively 1, 1, 2, 2, 2 and 3 seconds.       
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Figure 4.11: Average visiting page times in data set 1. 
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Figure 4.12: Average visiting page times in data set 2. 
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Figure 4.13: Average visiting page times in data set 3. 
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4.7  Step 2: Processing 
 
In the second step of our approach in the Web Usage Mining process (re. figure 
4.3), SAM distance measures are calculated between the server sessions in each 
data set, using equation (3.1) and the algorithm summarized in figure 3.1. We 
remark that, in this section, SAM is applied to three data sets. In section 4.11 
and 4.12, Association distance and 2-dim SAM are applied to three data sets. 

The operation weights are defined in its most basic and natural way i.e. d = i 
= 1 and η = 2 (Sankoff and Kruskal, 1983), indicating that the effort of deleting 
an element is the same as inserting an element and reordering is the sum of one 
insertion plus one deletion. In chapter six, the influence of changes in operation 
weights on the results are examined by means of sensitivity analyses.  

For each data set given in table 4.4, one distance matrix holding pair wise 
SAM distance measures between server sessions is used as distance measure 
for clustering. For example, if 2764 server sessions, S1, S2, …, S2764, are 
analysed, SAM calculates distance measures between every pair of sessions i.e. 
between S1 and S2, S1 and S3, …, S1 and S2764, between S2 and S3, S2 and S4, …, 
S2 and S2764, …, and finally between S2763 and S2764. These distance measures 
are inserted into a matrix where columns and rows represent the sequences S1, 
S2, … S2764. The diagonal elements of the matrix are zero because they 
represent the distance between equal server sessions. 

Several hierarchical clustering methods like Ward, Single-, Complete-, 
Average-, or Centroïd linkage (Hair et al, 1998; Kaufman and Rousseeuw, 
1990) may be invoked on the distance matrices. The clustering methods that 
are used in the experiments are agglomerative which means that the algorithms 
start with n clusters and proceed by successive fusions until a single cluster is 
obtained holding all of the server sessions in the data set (Kaufman and 
Rousseeuw, 1990). Divisive clustering techniques proceed in the opposite order 
and are computationally more complex than agglomerative techniques. Future 
research discusses heuristics for divisive clustering techniques. 

The distance between two points i and j is calculated by the clustering 
methods as follows (Kaufmann and Rousseeuw, 1990): 
                         __________________________________________________ 
d (i, j) = √ (xi1 – xj1)2 + (xi2 – xj2)2 … + (xin – xjn)2    (4.3)
    
where 
i  = 1, 2, …, n = server session i; 
j  = 1, 2, …, n = server session j; 
xab  = SAM distance measure in distance matrix with a = i or j and b = 1, 2, 
…, n; 
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Two clusters are joined together if the dissimilarity between them is minimal. 
In table 4.8, equations indicate how the dissimilarity between two clusters, Ca 
and Cb, is computed. For example, using single linkage, the dissimilarity 
between two clusters Ca and Cb is equal to the minimum distance between a 
pair of points, one in Ca and one in Cb. Single linkage is often called nearest 
neighbour method. Yet, complete linkage defines the dissimilarity between two 
clusters as the largest distance between one point in one cluster and one point 
in the other. In average linkage, the dissimilarity between two clusters is the 
average distance between pairs of server sessions. Furthermore, in the centroid 
method, the dissimilarity between two clusters is defined as the Euclidean 
distance between their centroids or means.  
 

Clustering method Dissimilarity [Ca , Cb] 
Ward = || avg (x (Ca)) – avg (x (Cb)) ||2 / [(1 / nCa) + (1 / nCb)] 

Single linkage 
(nearest neighbour) 

= min d (i, j) 
 

Complete linkage 
(furthest neighbour) 

= max d (i, j) 
 

Average linkage = [(1 / nCa) + (1 / nCb)]   Σ      Σ    d (i, j) 
                                                        i Є Ca   i Є Cb 

Centroïd linkage = || avg (x (Ca)) – avg (x (Cb)) ||2 
where 
avg (x (Ca)) is the average distance in cluster a; 
avg (x (Cb)) is the average distance in cluster b; 
nCa is the number of server sessions in cluster a; 
nCb is the number of server sessions in cluster b; 
i Є Ca; 
j Є Cb; 

 
Table 4.8: Computing dissimilarities between two clusters (Kaufmann and 
Rousseeuw, 1990). 

 
Ward’s method joins clusters with a small number of observations and is 

strongly biased towards producing clusters with roughly the same number of 
observations (Milligan, 1980). Because we are interested in web usage 
behaviour of large groups of visitors, Ward’s method is chosen for further 
analyses. 

It is important to define the right number of clusters because specifying too 
few ignores group differences, while specifying too many causes the model to 
be unstable or computational demands will be extremely high. There are many 
approaches for determining the number of clusters and none of them has been 
proven to be the best (Bock, 1985; Everitt, 1979; Hartigan, 1985). However, 
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several criteria have proven to be useful for defining a trade off between 
number of clusters and model fit. R-squared is used as a goodness-of-fit 
measure during clustering processing and equals to the proportion of variation 
explained by the model. R-squared ranges in values from zero to one. 
Obviously, the level of R-squared increases with the number of clusters. Small 
values of R-squared indicate that the model does not fit the data well, whereas 
measures of 0.6 and higher are considered acceptable (Hair et al, 1998). 
Ultimately, we will define a stop-criterion when the incremental values of R-
squared flatten out if additional clusters are formed. Opposed to R-squared, 
semi-partial R-squared represents the decrease in the proportion of variance 
accounted for by joining two clusters. Furthermore, Cooper and Milligan 
(1988) and Milligan and Cooper (1985) have compared thirty methods for 
estimating the number of clusters using hierarchical clustering methods. The 
criteria that performed best in these simulation studies were pseudo F statistic 
(PSF), developed by Calinski and Harabasz (1974) and T-squared statistic 
(TST), originated by Duda and Hart (1973). Relatively large values given by 
the pseudo F statistic indicate a stopping point. A general rule for interpreting 
the values of the T-squared statistic is to move towards joining of clusters and 
find values markedly larger than previous values. Finally, another method for 
judging the number of clusters in a data set is the root mean squared standard 
deviation (RMSSTD), which provides a measure of homogeneity for the cluster 
solution. The smaller this value, the more homogeneous are the clusters. 
Equations for calculating the criteria are given in table 4.9. 
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Information criterion Equation 
R-squared                     G                         n 

= 1 – [( ∑ WCa ) / ( ∑ || xi  - avg (x) ||2 )] 
                  a = 1                   i = 1 

Semi-partial R-squared                                                             n 
= (W  - W - W  ) / ( ∑ || xCm Ca Cb
                                                          i = 1 

i  - avg (x) ||2 ) 

Pseudo F statistic (PSF) = (1) / (2)   

                     n                                                 G 
(1) = [ ( ∑ || xi  - avg (x) ||2 ) - ∑ WCa ] / G – 1 
                   i = 1                                           a = 1 

                  G 
(2) = ( ∑ WCa ) / n - G 
               a = 1 

T-squared statistic (TST) = (WCm - WCa - WCb ) / [(WCa + WCb ) / (nCa + nCb – 2)]  
Root mean squared standard 
deviation (RMSSTD) 

= √ [WCa / v (nCa – 1)] 

where 
n is the number of server sessions; 
nCa is the number of server sessions in cluster a; 
nCb is the number of server sessions in cluster b; 
v is the number of variables; 
avg (x) is the average distance in the data set; 
avg (x (Ca)) is the average distance in cluster a; 
WCm = ∑ || xi – avg (x (Cm)) ||2; 
               i Є Cm    

WCa = ∑ || xi – avg (x (Ca)) ||2; 
               i Є Ca    

W  = ∑ || x  – avg (x (CCb i
               i Є Cb    

b)) ||2; 

Cm = Ca U Cb ; 
G is G-th level of the hierarchy and the number of clusters for the summation; 

 
Table 4.9: Information criteria for defining the number of clusters. 

 
For the SAM applications on the data sets given in table 4.4, the values of 

the information criteria for defining the number of clusters are graphically 
presented in figures 4.14 to 4.16. Note that figures 4.14 till 4.16 are constructed 
using Ward’s method (re. table 4.8) for hierarchical clustering. Future research 
discusses examining the influence of using other methods than Ward on the 
final clustering results. Looking for consensus among the criteria, the following 
cluster solutions are defined. 
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4.7.1 Defining the number of clusters for data set 1 (http://www.luc.ac.be/tew) 
 
If server sessions, consisting of visited pages, of the first data set are clustered 
using SAM distance measures, all of the five criteria suggest six clusters (re. 
figure 4.14). The pseudo F statistic has the largest value for six clusters and the 
T-squared statistic, starting from seven clusters, rises when two clusters are 
joined together providing a solution of six clusters. Likewise, the value of R-
squared indicates that 88.04% of the variance is explained by the model if six 
clusters are defined. Besides, the graph shows that the incremental values of R-
squared flatten out if more than six clusters are formed. This is also shown by 
the values of semi-partial R-squared. The additional variance explained by the 
model from six to seven clusters reaches barely 0.0138, which is quite low. 
Likewise, the root mean squared standard deviation has a relatively low value 
for six clusters, indicating that the homogeneity of the data in six clusters is 
relatively high. 

Yet, not only six clusters appear to be a good clustering solution, two 
clusters might be interesting as well. For practical reasons, if we are interested 
in adjusting the structure of the web site to the largest group of visitors, two 
clusters might be a good solution. Unfortunately, the variance in the data 
explained by two clusters is only 50.92%, which is below the minimum level 
(Hair et al., 1998). An overview of the number of server sessions for each 
cluster of data set 1 is given in appendix 4. 
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Figure 4.14: Applying SAM to data set 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages: Information criteria for defining the 
number of clusters. 
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4.7.2 Defining the number of clusters for data set 2 
(http://machines.hyperreal.org) 
 
If server sessions of data set two are clustered using SAM distance measures, a 
consensus is reached among all the criteria at five clusters (re. figure 4.15). The 
pseudo F statistic is relatively high and T-squared shows that five clusters are 
better than four or six. Also, R-squared indicates that five clusters are a good 
solution explaining 88% of the variance in the data. Additional variances 
incorporated in the model by a higher number of cluster solutions than five are 
very small, which indicate the level-out effect starting at more than five 
clusters. Likewise, root mean squared standard deviation is relatively low at 
this point, suggesting that five clusters are a good solution. 

Yet, not only five clusters appear to be a good clustering solution, two 
clusters might be interesting as well. For practical reasons, if we are interested 
in adjusting the structure of the web site to the largest group of visitors, two 
clusters might be a good solution. Unfortunately 59.22% of the variance in the 
data is explained by two clusters, which is still below the minimum level (Hair 
et al., 1998). An overview of the number of server sessions for each cluster of 
data set 2 is given in appendix 4. 
 
4.7.3 Defining the number of clusters for data set 3 (Belgian telecom provider) 

   
If server sessions in data set three are clustered using SAM distance measures, 
T-squared statistic strongly suggests four clusters (re. figure 4.16). R-squared 
reaches a level of 0.64, which is satisfactory. Also, the root mean squared 
standard deviation is relatively low at this point. Although the F-statistic does 
not reach the highest value at four clusters, compared with the values of 772 
other cluster solutions 439.99 is still relatively high. An overview of the 
number of server sessions for each cluster of data set 3 is given in appendix 4. 
 
 
 
 
 
 
 
 

= 97



 

 

 
Figure 4.15: Applying SAM to data set 2 (http://machines.hyperreal.org), 
server sessions consisting of visited pages: Information criteria for defining the 
number of clusters. 

= 98

http://machines.hyperreal.org/


 

 

 
Figure 4.16: Applying SAM to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Information criteria for defining the 
number of clusters. 
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4.7.4 Remarks about information criteria 
 
Before proceeding to the third step of our approach of Web Usage Mining (re. 
figure 4.3), we provide some explications about the graphical presentations in 
figures 4.14 to 4.16. In figure 4.14, PSF reaches a peak at six clusters because 
dispersion in the data set (before clustering) is much higher than the sum of 
dispersions within six clusters, indicating a good clustering solution. TST from 
five to six clusters rises because WCm > WCa + WCb, which means that splitting 
up cases improves dispersion and homogeneity. Finally, in figure 4.16 PSF 
provides a lower value compared to TST at four clusters. The main reason is 
that on the one hand, PSF mainly investigates the difference between 
dispersion in the data set and dispersion for G clusters, with G being the level 
of the hierarchy and the number of clusters for the summation. On the other, 
TST investigates dispersion for two cluster solutions i.e. one before merging Ca 
with Cb and one after merging Ca with Cb, with Cm = Ca U Cb and taking into 
account the number of server sessions in Ca and Cb. 
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4.8 Step 3: Post-processing 
 
In the third step of our approach of Web Usage Mining (re. figure 4.3), every 
cluster is examined on page_id’s, the order in which page_id’s are requested 
and on the length of server sessions. Practically, every cluster represents 
visiting profiles providing a general view of not only page requests but also 
order-based information. 

In this section, three techniques are used for cluster examination. First, 
clusters are graphically explored on page_id’s without considering the order of 
pages. Second, open sequences (Capri, 2001) are used to measure how well 
every cluster extracts order-based information from the data set. Open 
sequences are sequences with the same elements occurring in the same order 
and irrelevant of the positions of the elements. In Büchner et al (1999), open 
sequences are used to discover structural information within navigation 
patterns. For example, open sequence (68, 65, 55) indicates that page 65 is 
requested after page 68 and before page 55. Moreover, open sequence (68, 65, 
55) is an element of the following server sessions: 
� {(2, 68, 65, 70, 55); (t0, t1, t1, t1, t2)} 
� {(68, 55, 65, 33, 55, 22); (t1, t1, t1, t3, t0, t3)} 
� {(68, 65, 55); (t0, t1, t2)} 
2-dimensional open sequences contain page_id’s and categories of visiting 
page time. For example, open sequence (68, 65, 55); (t1, t1, t2) indicates that 
page 68 and 65 are visited within time category t1 and that page 55 is visited 
within time category t2, without loosing the order of visited pages. Only the 
first server session in the example above holds the 2-dimensional open 
sequence. 

Open sequences are valued by means of two criteria: support and 
confidence. Support specifies the number of server sessions within a cluster 
presenting the open sequence divided by the total number of server sessions 
within that cluster. Confidence expresses the probability that, if a server session 
contains all but the last element (in respective order) of the open sequence, the 
server session will also hold the last element of the open sequence. Equations 
(4.4) to (4.7) show how support and confidence values for open sequences are 
calculated. 
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                                       nCa 
Support (p1, p2, …, pe) = ∑ Si / nCa     (4.4) 
                                                              i = 1 

and Si = 1 if (p1, p2, …, pe) Єorder Si 
 Si = 0 otherwise 
                                             nCa          nCa 
Confidence (p1, p2, …, pe) = ∑ Si / ∑ Sj     (4.5) 
                                                                        i = 1          j = 1 

and Si = 1 if (p1, p2, …, pe) Єorder Si 
 Si = 0 otherwise 
 Sj = 1 if (p1, p2, …, pe-1) Єorder Sj 
 Sj = 0 otherwise 
                                                             nCa 
Support (p1, p2, …, pe); (t1, t2, …, te) = ∑ Si / nCa    (4.6) 
                                                                                                 i = 1 

and Si = 1 if (p1, p2, …, pe); (t1, t2, …, te) Єorder Si 
 Si = 0 otherwise 
                                                                   nCa          nCa 
Confidence (p1, p2, …, pe); (t1, t2, …, te) = ∑ Si /  ∑ Sj   (4.7) 
                                                                                                          i = 1          j = 1 

and Si = 1 if (p1, p2, …, pe); (t1, t2, …, te) Єorder Si 
 Si = 0 otherwise 
 Sj = 1 if (p1, p2, …, pe-1); (t1, t2, …, te-1) Єorder Sj 
 Sj = 0 otherwise 
 
where 
Si represents server session i; 
Sj represents server session j; 
nCa is the number of server sessions in cluster a ; 
pe is the last element of the page_id’s in the open sequence; 
te is the last element of the time categories in the open sequence; 
pe-1 is the one but last element of the page_id’s in the open sequence; 
te-1 is the one but last element of the time categories in the open sequence; 
Єorder is an element of, respecting the order of occurrence of elements in the 
open sequence;  
 
For example, support as well as confidence for open sequence (68, 65, 55) is 1 
or 100% for cluster Ca holding the three server sessions presented above. For 
the 2-dimensional open sequence (68, 65, 55); (t1, t1, t2) support is 0.33 or 
33% while confidence is 0.5 or 50%. This means that, if page 65 is requested 
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after page 68 with category of visiting page time of t1 for both pages, the 
chance that page 55 is requested AND visited during time t2 is 50%. 

We remark that, in our experiments, open sequences are used in the post-
processing step, i.e. after clustering based on SAM distance measures. If open 
sequences were searched first, followed by SAM and clustering, we would be 
clustering open sequences instead of server sessions and might lose information 
embedded in server sessions. Moreover, applying alignment methods on open 
sequences instead of server sessions will treat open sequences with relatively 
high support and confidence the same way as open sequences with relatively 
low support and confidence. In the end, clusters may end up holding open 
sequences with relatively low support and confidence values. This means that a 
cutoff value needs to be defined to extract open sequences with high support 
and/or confidence values. Defining a cutoff value before the mining process 
takes place means that only part of the data will be analysed and valuable 
information might be lost. For this reason, we apply sequence alignment 
methods before open sequences and not the other way around. Nevertheless, 
further research should explore how open sequences might be used before the 
mining process. 

Finally, a third way of looking at clusters is to examine the length of server 
sessions within the clusters. In order to know whether SAM is (in)sensitive to 
the length of the server sessions, clusters need to be analysed on the length of 
server sessions. 
 
4.8.1 Examining clusters on page_ids 
 
4.8.1.1 Data set 1 (http://www.luc.ac.be/tew) 
 
Figures 4.17 to 4.22 are three-dimensional graphs presenting, for each cluster, 
the page_id on the horizontal axis and relative frequency or exclusivity on the 
vertical axis. Relative frequency for page_id x (x = 1, 2, …, 71) in cluster Ca (a 
= 1, 2, …, 6) is equal to the number of requests of x in Ca divided by the total 
number of requests in Ca, multiplied by 100. Relative frequencies provide a 
view of the distribution of pages within clusters. Exclusivity for page_id x in 
cluster Ca is defined as the number of requests of x in Ca divided by the total 
number of requests of x in the data set. Exclusivities of nearly one indicate that 
the clusters are well separated and that pages are exclusively represented in 
clusters. Exclusivities provide a view of the distribution of pages across 
clusters. Tables of relative frequencies and exclusivities for data set 1 are given 
in appendix 4. 
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Figure 4.17: SAM applied to data set 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages: Distribution of web pages in six clusters. 
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Figure 4.18: SAM applied to data set 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages: Exclusivity of web pages in six clusters. 

 
Figure 4.17 shows, if SAM is applied to server sessions consisting of visited 

pages in the first data set, different distributions of pages are provided within 
the clusters. 20.48% of the pages in cluster one are requests for page 1. Also, 
pages 68 (17.61%), 9 (14.83%) and 2 (11.35%) are well represented in cluster 
one. In cluster two, the most frequent request is page 68 (38.73%). Yet, 97.78% 
of the pages in cluster three are page1. Cluster four and six provide a more or 
less equal spread among all of the 71 pages in the data set. Finally, cluster five 
shows peaks at page 68 (28.10%) and 65 (17.92%). 
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Figure 4.18 shows, if SAM is applied to server sessions consisting of visited 
pages in the first data set, exclusivities for most of the pages are relatively high 
in one of the six clusters. For example, 83% of pages 2 in the data set are 
grouped in the first cluster. Also, 80% of pages 9 in the data set are grouped in 
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the first cluster. In cluster two, page 49 and 43 show exclusivities of 0.67 and 
0.65 respectively. Note that, although 97.78% of the pages in cluster three are 
page 1, exclusivity of page 1 in cluster three is 0.46, indicating that 46% of 
pages 1 in the data set are grouped in cluster three. Yet, exclusivities of other 
pages in cluster three are nearly zero. In cluster four, page 8 provides an 
exclusivity of 0.88. In cluster five, page 55, 65 and 70 show exclusivities of 
0.59, 0.54 and 0.52 respectively. Finally, cluster six provides exclusivities 
between 0.50 and 0.55 for page 15, 18, 21, 22, 23 and 37. 
 
4.8.1.2 Dataset 2 (http://machines.hyperreal.org) 
 
Figures 4.19 to 4.20 present, for each cluster, groups of page_ids on the 
horizontal axis and relative frequency or exclusivity on the vertical axis. 
Relative frequency for group y (y = 1, 2, …, 50) in cluster Ca (a = 1, 2, …, 5) is 
equal to the number of requests of pages in group y within Ca divided by the 
total number of requests in Ca, multiplied by 100. Relative frequencies provide 
a view of the distribution of groups of pages within clusters. Exclusivity for 
group y in cluster Ca is defined as the number of requests of pages in group y 
within Ca divided by the total number of requests of pages in group y within the 
data set. Exclusivities of nearly one indicate that the clusters are well separated 
and that groups of pages are exclusively represented in clusters. Exclusivities 
provide a view of the distribution of groups of pages across clusters. Tables of 
relative frequencies and exclusivities for groups of pages in data set 2 are given 
in appendix 4. 
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Figure 4.19: SAM applied to data set 2 (http://machines.hyperreal.org), server 
sessions consisting of visited pages: Distribution of groups of page_ids in five 
clusters. 
 
= 106

http://machines.hyperreal.org/
http://machines.hyperreal.org/


 

1 3 5 7 9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1

2

3

4

5

0

0,2

0,4

0,6

0,8

1

Ex
cl

us
iv

ity

Group of page_ids

Cluster

 

1

50
1

2
3

4
5

0

0,2

0,4

0,6

0,8

1

  
Figure 4.20: SAM applied to data set 2 (http://machines.hyperreal.org), server 
sessions consisting of visited pages: Exclusivity of groups of page_ids in five 
clusters. 

 
Figure 4.19 shows, if SAM is applied to server sessions consisting of visited 

pages in the second data set, the distributions of pages within the clusters have 
one feature in common. Group 29, representing web pages 645 to 667 
(including 645 and 667), is well represented in each cluster. The highest 
relative frequency for group 29 is shown by cluster two. Here, 73.53% of the 
pages are pages of or between 645-667. Compared with figure 4.6, 25.28% of 
the visited pages in the second data set are pages of group 29. In cluster four, 
high relative frequency is shown for group 50. Here, 41.43% of the requests are 
pages of or between 1128-1159. 

= 107

http://machines.hyperreal.org/


Figure 4.20 shows, if SAM is applied to server sessions consisting of visited 
pages in the second data set, exclusivities for groups of page_ids in cluster one 
are relatively high compared to the four remaining clusters. In particular, 
exclusivities for groups of page_ids in cluster one are minimum 0.50 except for 
the following groups: 29 (0.24), 31 (0.35), 35 (0.33), 36 (0.31), 43 (0.35), 49 
(0.45) and 50 (0.47). Also, exclusivities equal to 1 are shown in cluster one for 
group 6 and 37. In the remaining four clusters, exclusivities for groups of 
page_ids are relatively low. However, this does not mean that clusters are not 
well separated, because high exclusivities for individual pages are shown in 
every cluster. For example, exclusivities of 1 are shown for the following pages 
in the following clusters: page 105 (cluster three), page 284 and 287 (cluster 
two) and page 288 (cluster five). The reason why exclusivities for groups of 
page_ids may differ with exclusivities for individual pages is given by the 
following example. Suppose page x (x = 1, 2, …, 5) Є group 1 and the number 
of requests for page x in the data set and in two clusters derived from the data 
set is given in table 4.10. Exclusivity for group 1 is 0.9 in the first cluster and 
0.1 in the second. Yet, page 5 is exclusively represented in cluster two. 
Although care must be taken when interpreting exclusivities for groups of 
page_ids, the approach is used for data sets with a relatively large number of 
different page_ids (for example, dataset 2 and 3 consist of 1,159 and 492 
different page_ids respectively). Since we are unable to provide relative 
frequencies and exclusivities for each individual page_id, groups of page_ids 
are used. 
 

Number of requests 
Cluster 

 
Group 

 
Page x Data set 

1 2 
1 15 15 0 
2 3 3 0 
3 0 0 0 
4 0 0 0 

 
 

1 

5 2 0 2 
Total number of requests 20 18 2 

Group 1 0.9 0.1 
Page 1 1 0 
Page 2 1 0 
Page 3 0 0 
Page 4 0 0 

 
 

Exclusivity 

Page 5 0 1 
 
Table 4.10: Differences between exclusivities for a group of pages and for 
individual pages. 
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4.8.1.3 Dataset 3 (Belgian telecom provider) 
 
Figures 4.21 to 4.22 present, for each cluster, groups of page_ids on the 
horizontal axis and relative frequency or exclusivity on the vertical axis. 
Relative frequency for group z (z = 1, 2, …, 20) in cluster Ca (a = 1, 2, 3, 4) is 
equal to the number of requests of pages in group z within Ca divided by the 
total number of requests in Ca, multiplied by 100. Exclusivity for group z in 
cluster Ca is defined as the number of requests of pages in group z within Ca 
divided by the total number of requests of pages in group z within the data set. 
Tables of relative frequencies and exclusivities for groups of pages in data set 3 
are given in appendix 4. 
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Figure 4.21: SAM applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Distribution of groups of page_ids in four 
clusters. 
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Figure 4.22: SAM applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Exclusivity of groups of page_ids in four 
clusters. 

 
Figure 4.21 shows, if SAM is applied to server sessions consisting of visited 

pages in the third data set, cluster one mainly represents pages of group 2 (i.e. 
page_ids of or between 51 and 75), 5 (i.e. page_ids of or between 101 and 125) 
and 10 (i.e. page_ids of or between 226 and 250). In cluster two, a more or less 
equal spread of the distribution of groups of page_ids is shown. Finally, cluster 
three and four show approximately the same distribution for groups of 
page_ids, concentrated on group 12 (i.e. page_ids of or between 276 and 300), 
15 (i.e. page_ids of or between 351 and 375) and 20 (i.e. page_ids of or 
between 476 and 492). 
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Figure 4.22 shows, if SAM is applied to server sessions consisting of visited 
pages in the third data set, exclusivities for groups of page_ids in clusters one, 



two and three are relatively high compared to cluster four. Yet, cluster four 
shows exclusivities equal to 1 for page 389 and 390. The reason why 
exclusivities for groups of page_ids may differ from exclusivities for individual 
pages is given in the previous section. 

With regard to values of exclusivities for web pages, we must be careful 
with interpretations. Exclusivity measures for web pages provide an indication 
of the occurrence of page x in cluster a and the absence of page x in cluster b. 
Also, exclusivity measures do not provide any information about the order of 
pages. This means that, in the extreme situation of the next example of clusters 
holding the following sequences, low exclusivities do not necessarily mean that 
the data set is badly split. In terms of order-based information, the data set is 
split up perfectly. 
Cluster a: 1, 2, 3 
Cluster b: 3, 2, 1 
Cluster c: 1, 3, 2 
 
4.8.2 Examining clusters on the order of page_ids 
 
In order to measure how well every cluster extracts order-based information 
from the data set, open sequences are calculated for every cluster using the 
software Capri (2001). For each data set and for each cluster, all possible open 
sequences with minimum support or confidence of 1% and minimum length of 
two elements are calculated. Open sequences having the five highest support 
values are selected for cluster description. Obviously, due to the high support 
demand, most of these selected sequences are quite short of length. Hence, to 
provide more order-based information, also open sequences having the five 
highest confidence values are selected for cluster description. If more than five 
open sequences were found, all of them showing the same high confidence 
values, two additional selection criteria were applied, based on the longest open 
sequences and on the highest support values. For example, after clustering 
server sessions, consisting of visited pages, based on SAM in the first data set, 
cluster five provided 119 open sequences having confidence values of 100% 
and length of three to eight elements. Some of them are given below: 
 
� 1 (69, 2, 9)    Support = 1.08; Confidence = 100.00 
� … 
� 14 (58, 68, 2, 9)   Support = 1.08; Confidence = 100.00 
� … 
� 47 (67, 55, 57, 56, 58)  Support = 1.08; Confidence = 100.00 
� … 
� 95 (65, 57, 56, 58, 59, 60)  Support = 1.44; Confidence = 100.00 
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� … 
� 112 (1, 68, 65, 55, 70, 9, 2)  Support = 1.08; Confidence = 100.00 
� 113 (65, 55, 57, 56, 58, 59, 60) Support = 1.08; Confidence = 100.00 
� 114 (68, 55, 57, 56, 58, 59, 60) Support = 1.08; Confidence = 100.00 
� 115 (68, 65, 55, 56, 58, 59, 60) Support = 1.08; Confidence = 100.00 
� 116 (68, 65, 55, 57, 58, 59, 60) Support = 1.08; Confidence = 100.00 
� 117 (68, 65, 55, 70, 57, 56, 58) Support = 1.81; Confidence = 100.00 
� 118 (68, 65, 57, 56, 58, 59, 60) Support = 1.44; Confidence = 100.00 
� 119 (68, 65, 55, 57, 56, 58, 59, 60) Support = 1.08; Confidence = 100.00 
 
Instead of presenting all of these open sequences to show order-based 
information in cluster five, we first selected the longest one (i.e. 119 of eight 
elements long). Then, open sequences 117 and 118 are selected because they 
are seven elements long and represent the highest support. Following, because 
open sequences 112 till 116 have the same support value, all of them are 
selected for cluster description. For each data set and for each cluster, the 
selected open sequences along with support and confidence values are given 
below. 
 
4.8.2.1 Data set 1 (http://www.luc.ac.be/tew) 
 
In table 4.11, six visiting profiles, providing order-based information of visited 
pages at http://www.luc.ac.be/tew, are given by open sequences in clusters. 
Cluster one mainly represents visiting profiles to page 1, followed by pages 9, 
68 or 2. Also, page 68 is followed by page 9 or 65. Cluster two represents 
visiting profiles to page 68 followed by pages 43, 49, 71 and 65. Also, page 49 
is visited before page 47 in 5% of the server sessions. More than 90% of the 
server sessions in cluster three consist of only one page and represent visiting 
profiles to page 1. Other server sessions hold multiple consecutive values of the 
same element, page 1. For this reason, no open sequences with minimum two 
elements are found. Likewise, cluster four mainly groups server sessions 
consisting of one page. This page can be any page of the web site, for example 
page 11, 55, 47, 59, 60 or 63. Cluster five mainly represents visiting profiles to 
page 68, followed by pages 65 and/or 55 and/or 70. Cluster six provides 
information about visiting profiles starting with pages 59, 28, 26 and 40. Note 
that the profile of page 68 followed by page 65 is represented in cluster one 
(support = 25.27%), two (support = 6.31%) and five (support = 89.17%). Yet, 
each cluster represents a unique visiting profile because (68, 65) is related with 
pages 1 and 9 in cluster one, with pages 43, 49 and 71 in cluster two and with 
pages 55 and 70 in cluster three. 
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Besides open sequences with high support values, open sequences are also 
selected on high confidence values to provide more order-based information for 
every cluster. Such open sequences identify the probability that a particular 
page is visited following a certain visiting profile. For example, in data set 1, 
the probability that a visitor goes to page 65 after having followed the pattern, 
respecting the order, 69, 2, 66, 71, 12, 43 is 100% (cluster one). 

For evaluation purposes, support and confidence values of the open 
sequences selected for describing order-based information within each cluster, 
are also given for the other clusters in table 4.12. The support and confidence 
values of the open sequences used to describe clusters in table 4.11 are written 
in bold and represent the cluster that is printed at the head of the columns. For 
example, page 1 followed by page 9 (1st row) represents cluster one. Page 68 
followed by page 43 (14th row) represents cluster two. In general, we may state 
that the more zero support values at the non-diagonal places (or the more zero 
support values not printed in bold) in table 4.12, the better the model fits the 
data, i.e. the better open sequences printed in bold represent order-based 
information within clusters. 

With regard to table 4.12 we give three remarks. First, no open sequences 
were found for describing order-based information in cluster three and four, 
since 73.59% and 73.61% of the server sessions are one page long. This 
information is presented in the table with ‘one-page sessions’ in the first 
column instead of open sequences. Also, to compare the percentage of one-
page sessions in cluster three and four with other clusters, support values are 
given for server sessions of one page long. Second, at first sight, it might seem 
that open sequence (68, 65) does not strongly represent cluster one, since the 
support value is 25.27% for cluster one and 89.17% for cluster five. However, 
cluster one and five represent different navigation patterns related to pages 68 
and 65. Cluster one represents navigations regarding pages 68 and 65 along 
with navigations to pages 1, 9 and 2. Cluster five represents navigations 
regarding pages 68 and 65 along with navigations to pages 55 and 70. This 
means that, server sessions in cluster one holding pages 68, followed by 65, 
also hold pages 1, 9 and/or 2. Likewise, server sessions in cluster five holding 
pages 68, followed by 65, also hold pages 55 and/or 70. Although not all of the 
numbers outside the diagonal have zero support values, we may say that most 
of them do (or are relatively small values) and that the model fits the data well. 
Third, four cells provide support values not printed in bold and higher than 
10% (i.e. open sequence (68, 9) in cluster five, (68, 71) in cluster one and five, 
(33, 42) in cluster six). All other cells provide support values not printed in 
bold and zero or less than 10%, which indicates that order-based information is 
well represented by each cluster. 
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Cluster Open sequences Support (%) Confidence (%) 
(1, 9) 50.11 68.62 
(1, 68) 49.68 68.04 
(1, 2) 38.54 52.79 
(68, 9) 29.98 43.61 
(68, 65) 25.27 36.76 
(69, 2, 66, 71, 12, 43, 65) 1.28 100.00 
(69, 2, 71, 12, 43, 65) 1.28 100.00 
(69, 2, 66, 12, 43, 65) 1.28 100.00 
(69, 2, 66, 71, 43, 65) 1.28 100.00 
(69, 2, 66, 71, 12, 65) 1.28 100.00 
(69, 2, 66, 71, 12, 43) 1.28 100.00 
(69, 66, 71, 12, 43, 65) 1.28 100.00 

 
 

 
 
 
 
1 

(2, 66, 71, 12, 43, 65) 1.28 100.00 
(68, 43) 19.54 23.65 
(68, 49) 14.15 17.13 
(68, 71) 11.85 14.34 
(68, 65) 6.31 7.64 
(49, 47) 5.38 28.46 
(1, 68, 43) 2.46 100.00 
(68, 43, 33, 42) 1.69 78.57 
(68, 33, 42) 1.69 78.57 
(43, 33, 42) 1.69 78.57 

 
 
 
 
 
2 

(33, 42) 1.69 78.57 
3 One-page sessions 

(8, 11) 1.39 26.92 4 
(1, 11) 1.29 48.15 
(68, 65) 89.17 90.15 
(68, 55) 45.85 46.35 
(65, 55) 36.46 40.40 
(68, 65, 55) 36.10 40.49 
(68, 55, 70) 27.44 59.84 
(68, 65, 55, 57, 56, 58, 59, 60) 1.08 100.00 
(68, 65, 55, 70, 57, 56, 58) 1.81 100.00 
(68, 65, 57, 56, 58, 59, 60) 1.44 100.00 
(1, 68, 65, 55, 70, 9, 2) 1.08 100.00 
(65, 55, 57, 56, 58, 59, 60) 1.08 100.00 
(68, 55, 57, 56, 58, 59, 60) 1.08 100.00 
(68, 65, 55, 56, 58, 59, 60) 1.08 100.00 

 
 
 
 
 
 
5 

(68, 65, 55, 57, 58, 59, 60) 1.08 100.00 
(59, 60) 64.00 94.12 
(59, 63) 60.00 88.24 
(28, 35) 56.00 87.50 
(28, 33) 56.00 87.50 
(28, 30) 56.00 87.50 
(26, 35) 56.00 87.50 
(26, 33) 56.00 87.50 
(26, 38) 56.00 87.50 
(26, 30) 56.00 87.50 
(40, 35) 56.00 87.50 
(40, 33) 56.00 87.50 
(40, 30) 56.00 87.50 
(42, 14, 21, 13, 25, 64, 22, 18, 53, 54) 20.00 100.00 
(42, 14, 21, 13, 16, 64, 22, 18, 53, 54) 20.00 100.00 
(42, 14, 21, 20, 25, 64, 22, 18, 53, 54) 20.00 100.00 
(42, 14, 21, 20, 16, 64, 22, 18, 53, 54) 20.00 100.00 

 
 
 
 
 
 
 
 
6 

(42, 14, 21, 13, 25, 64, 22, 18, 51) 20.00 100.00 

 
Table 4.11: SAM applied to data set 1 (http://www.luc.ac.be/tew), server  
sessions consisting of visited pages: Open sequences with high support or 
confidence values within six clusters. 
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1      2 3 4 5 6Open sequences 
S        C S C S C S C S C S C

(1, 9) 50.11            68.62 0.00 0.00 0.59 0.59 0.20 7.41 2.17 40.00 8.00 66.67
(1, 68) 49.68            68.04 2.46 50.00 0.59 0.59 0.50 18.52 3.97 73.33 4.00 33.33
(1, 2) 38.54            52.79 0.00 0.00 0.59 0.59 0.00 0.00 2.53 46.67 4.00 33.33
(68, 9) 29.98            43.61 2.62 3.17 0.00 0.00 0.10 2.86 16.97 17.15 4.00 50.00
(68, 65) 25.27            36.76 6.31 7.64 0.30 50.00 0.69 20.00 89.17 90.15 8.00 100.00
(69, 2, 66, 71, 12, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 2, 71, 12, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 2, 66, 12, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 2, 66, 71, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 2, 66, 71, 12, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 2, 66, 71, 12, 43) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(69, 66, 71, 12, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(2, 66, 71, 12, 43, 65) 1.28            100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(68, 43) 7.28 10.59 19.54          23.65 0.00 0.00 0.69 20.00 14.08 14.23 4.00 50.00
(68, 49) 6.21 9.03 14.15          17.13 0.00 0.00 0.10 2.86 5.78 5.84 8.00 100.00
(68, 71) 10.28 14.95 11.85          14.34 0.00 0.00 0.40 11.43 18.77 18.98 0.00 0.00
(68, 65) 25.27 36.76 6.31          7.64 0.30 50.00 0.69 20.00 89.17 90.15 8.00 100.00
(49, 47) 0.86 11.76 5.38          28.46 0.00 0.00 0.00 0.00 1.81 31.25 0.00 0.00
(1, 68, 43) 4.93 9.91 2.46          100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(68, 43, 33, 42) 0.00 0.00 1.69          78.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(68, 33, 42) 0.00 0.00 1.69          78.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(43, 33, 42) 0.00 0.00 1.69          78.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(33, 42) 0.00 0.00 1.69          78.57 0.00 0.00 0.00 0.00 0.00 0.00 12.00 18.75
One-page sessions 7.71 - 41.69 - 73.59 - 73.61    - 0.00 - 0.00 -
(8, 11) 0.00 0.00 0.15 100.00 0.00 0.00 1.39      26.92 0.00 0.00 0.00 0.00
(1, 11)             5.57 7.62 0.00 0.00 0.00 0.00 1.29 48.15 0.00 0.00 0.00 0.00
(68, 65)             25.27 36.76 6.31 7.64 0.30 50.00 0.69 20.00 89.17 90.15 8.00 100.00
(68, 55)             5.35 7.79 4.00 4.81 0.00 0.00 0.20 5.71 45.85 46.35 0.00 0.00
(65, 55)             4.28 15.62 1.08 14.58 0.00 0.00 0.10 3.23 36.46 40.40 0.00 0.00
(68, 65, 55) 4.07 16.10 0.92 14.63 0.00 0.00 0.10 14.29 36.10    40.49 0.00 0.00
(68, 55, 70) 2.14 40.00 1.69 42.31 0.00 0.00 0.00 0.00 27.44    59.84 0.00 0.00
(68, 65, 55, 57, 56, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(68, 65, 55, 70, 57, 56, 58) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.81    100.00 0.00 0.00
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1 2 3 4 5 6 Open sequences 
S  C S C S C S C S C S C 

(68, 65, 57, 56, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44    100.00 0.00 0.00
(1, 68, 65, 55, 70, 9, 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(65, 55, 57, 56, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(68, 55, 57, 56, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(68, 65, 55, 56, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(68, 65, 55, 57, 58, 59, 60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(59, 60) 0.00 0.00 0.15 33.33 0.00 0.00 0.99 30.30 2.17 20.00 64.00  94.12
(59, 63) 0.00 0.00 0.15 33.33 0.00 0.00 0.79 24.24 1.81 16.67 60.00  88.24
(28, 35)             0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(28, 33)             0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(28, 30)             0.00 0.00 0.00 0.00 0.00 0.00 0.30 20.00 0.00 0.00 56.00 87.50
(26, 35)             0.00 0.00 0.15 5.88 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(26, 33)             0.00 0.00 0.00 0.00 0.00 0.00 0.10 5.00 0.00 0.00 56.00 87.50
(26, 38)             0.00 0.00 0.62 23.53 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(26, 30)             0.00 0.00 0.15 5.88 0.00 0.00 0.40 20.00 0.00 0.00 56.00 87.50
(40, 35)             0.00 0.00 0.46 9.68 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(40, 33)             0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(40, 30)             0.00 0.00 0.15 3.23 0.00 0.00 0.00 0.00 0.00 0.00 56.00 87.50
(42, 14, 21, 13, 25, 64, 22, 18, 53, 54) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00  100.00
(42, 14, 21, 13, 16, 64, 22, 18, 53, 54) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00  100.00
(42, 14, 21, 20, 25, 64, 22, 18, 53, 54) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00  100.00
(42, 14, 21, 20, 16, 64, 22, 18, 53, 54) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00  100.00
(42, 14, 21, 13, 25, 64, 22, 18, 51) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00  100.00

 
Table 4.12: SAM applied to data set 1 (http://www.luc.ac.be/tew), server sessions consisting of visited pages: Evaluating 
open sequences in other clusters. 
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4.8.2.2 Data set 2 (http://machines.hyperreal.org) 
 
In table 4.13, five visiting profiles, providing order-based information of 
visited pages at http://machines.hyperreal.org, are given by open sequences in 
clusters. Cluster one and two represent visiting profiles of mostly one-page 
sessions. For this reason, open sequences with low support measures are found 
for cluster description. In cluster one almost every web page is represented. For  
example, pages 657, 947, 804, 190, 338, 1153, 1082 or 933. Yet, in cluster two, 
not every web page is represented. Instead, pages 657 or 802 are visited. 
Cluster three represents visiting profiles to and from page 657. Cluster four 
represents visiting profiles from page 1129 to 657, 713 or 1026. Also page 657 
is visited followed by page 713 and in reverse order. Note that page 713 also 
occurs in the profiles given by cluster three. Yet, profiles in cluster three show 
no relation with page 1129. In cluster five, visiting profiles regarding page 657 
related with pages 815, 947 and 984 are presented. Note that server sessions in 
cluster three also contain pages 815 and 984. However, the difference between 
cluster five and cluster three is that profiles in cluster three are not related to 
page 947. 

With regard to open sequences selected on high confidence values, we give 
some examples of page prediction. The probability that visitors proceed back to 
page 657 is 100% if they follow the pattern (and respect the order of pages) 
713, 657, 713 (cluster three). Also, the probability of re-visiting page 1129 is 
100% after pattern 1129, 996 or 1129, 947 is followed (cluster four). 

For evaluation purposes, support and confidence values of the open 
sequences selected for describing order-based information within each cluster, 
are also given for the other clusters in table 4.14. The support and confidence 
values of the open sequences used to describe clusters in table 4.13 are written 
in bold and represent the cluster that is printed at the head of the columns. 
Support values of open sequences (657, 947), (657, 984), (657, 815) and (657, 
713) are written in bold more than once, indicating that they are used for more 
than one cluster description. Yet, each cluster describes different navigations 
related with these open sequences. Generally, 7 cells are found with relatively 
high support values for open sequences, which are elsewhere (in other 
columns) not selected for cluster description (i.e. not printed in bold). For 
example, (657, 1082), (657, 933) and (933, 657) show support of 10.53%, 
20.00% and 12.63% respectively in cluster five while being selected for 
describing cluster one. Unfortunately, support values in cluster one are very 
low (i.e. around 1.00%), which indicates that cluster one is not well represented 
by open sequences. The main reason is that almost every web page is 
represented and more than 50% of the server sessions are one-page sessions in 
cluster one. Finally, in general, we believe that most of the support values at 
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the non-diagonal places (or not printed in bold) in table 4.14 are zero values or 
relatively low values, indicating that, except for cluster one, order-based 
information within clusters is well represented by open sequences. 
 

Cluster Open sequences Support (%) Confidence (%) 
(657, 947) 1.79 10.03 
(804, 190) 1.69 82.05 

1.37 81.25 
(657, 1082) 1.16 6.49 
(657, 933) 1.16 6.49 

 
 

1 

(933, 657) 1.00 26.76 
(802, 657) 6.68 76.47 
(657, 802) 2.91 3.16 
(657, 802, 657) 1.71 58.82 

 
 

2 
(802, 657, 802) 1.54 38.08 
(657, 984) 18.51 25.48 
(657, 794) 12.43 17.11 
(657, 815) 11.60 15.97 
(984, 657) 11.33 37.61 
(657, 713) 10.22 14.07 
(657, 713, 657, 713, 657) 1.10 100.00 
(713, 657, 713, 657) 1.38 100.00 
(713, 815, 657) 1.10 100.00 
(990, 984) 1.38 100.00 

 
 
 
 

3 

(1153, 698) 1.10 100.00 
(1129, 657) 13.98 20.80 
(1129, 713) 9.68 14.40 
(657, 713) 7.53 26.92 
(713, 657) 5.38 17.86 
(1129, 1026) 5.38 8.00 
(1129, 947, 1129, 1103, 1129) 1.08 100.00 
(947, 1129, 1103, 1129) 1.08 100.00 
(1129, 947, 1103, 1129) 1.08 100.00 
(1129, 1026, 996, 1129) 1.08 100.00 
(1129, 996, 1129) 2.69 100.00 

 
 
 
 
 

4 

(1129, 947, 1129) 2.69 100.00 
(815, 657) 33.68 96.97 
(657, 815) 33.68 34.41 
(657, 815, 657) 32.63 96.88 
(657, 947) 24.21 24.73 
(947, 657) 21.05 86.96 
(657, 984) 21.05 21.51 
(657, 947, 657) 21.05 86.96 
(815, 657, 813, 657) 5.26 100.00 
(933, 657, 933, 657) 5.26 100.00 
(657, 815, 984, 657) 5.26 100.00 
(815, 657, 984, 657) 6.32 100.00 
(815, 657, 815, 657) 11.58 100.00 
(657, 933, 657, 933, 657) 5.26 100.00 

 
 
 
 
 
 

5 

(657, 815, 657, 815, 657) 10.53 100.00 

(338, 1153) 

 
Table 4.13: SAM applied to data set 2 (http://machines.hyperreal.org), server 
sessions consisting of visited pages: Open sequences with high support or 
confidence values within five clusters. 
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1     2 3 4 5Open sequences 
S       C S C S C S C S C

One-page sessions 53.87        - 83.90 - 17.68 - 59.14 - 3.16 -
(657, 947) 1.79          10.03 0.00 0.00 3.59 4.94 0.00 0.00 24.21 24.73
(804, 190) 1.69          82.05 0.17 100.00 0.55 50.00 0.00 0.00 1.05 33.33
(338, 1153) 1.37          81.25 0.34 100.00 0.55 100.00 0.00 0.00 0.00 0.00
(657, 1082) 1.16          6.49 0.00 0.00 1.66 2.28 0.00 0.00 10.53 10.75
(657, 933) 1.16          6.49 0.00 0.00 1.38 1.90 0.00 0.00 20.00 20.43
(933, 657) 1.00          26.76 0.34 66.67 0.55 22.22 0.54 25.00 12.63 63.16
(802, 657) 0.11 100.00 6.68        76.47 0.55 100.00 0.00 0.00 0.00 0.00
(657, 802) 0.00 0.00 2.91        3.16 0.00 0.00 0.00 0.00 0.00 0.00
(657, 802, 657) 0.00 0.00 1.71        58.82 0.00 0.00 0.00 0.00 0.00 0.00
(802, 657, 802) 0.00 0.00 1.54        38.08 0.00 0.00 0.00 0.00 0.00 0.00
(657, 984) 0.95          5.31 0.34 0.37 18.51 25.48 0.54 1.92 21.05 21.51
(657, 794)           0.21 1.18 0.17 0.19 12.43 17.11 1.08 3.85 9.47 9.68
(657, 815)           0.84 4.72 0.51 0.56 11.60 15.97 0.54 1.92 33.68 34.41
(984, 657)           0.58 22.00 0.34 66.67 11.33 37.61 0.00 0.00 20.00 90.48
(657, 713)           0.21 1.18 0.17 0.19 10.22 14.07 7.53 26.92 5.26 5.38
(657, 713, 657, 713, 657) 0.00 0.00 0.00 0.00 1.10      100.00 0.00 0.00 0.00 0.00
(713, 657, 713, 657) 0.00 0.00 0.00 0.00 1.38      100.00 0.00 0.00 0.00 0.00
(713, 815, 657) 0.00 0.00 0.00 0.00 1.10      100.00 0.00 0.00 0.00 0.00
(990, 984) 0.00          0.00 0.00 0.00 1.38 100.00 0.00 0.00 1.05 100.00
(1153, 698) 0.21 12.50 0.00 0.00 1.10      100.00 0.00 0.00 0.00 0.00
(1129, 657)           0.26 9.26 0.00 0.00 1.10 66.67 13.98 20.80 6.32 75.00
(1129, 713)           0.05 1.85 0.00 0.00 0.55 33.33 9.68 14.40 1.05 12.50
(657, 713)           0.21 1.18 0.17 0.19 10.22 14.07 7.53 26.92 5.26 5.38
(713, 657)           0.21 15.38 0.17 50.00 8.01 67.44 5.38 17.86 6.32 85.71
(1129, 1026)           0.11 3.70 0.17 50.00 0.00 0.00 5.38 8.00 2.11 25.00
(1129, 947, 1129, 1103, 1129) 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(947, 1129, 1103, 1129) 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(1129, 947, 1103, 1129) 0.00 0.00 0.00 0.00 0.00 0.00 1.08    100.00 0.00 0.00
(1129, 1026, 996, 1129)           0.00 0.00 0.00 0.00 0.00 0.00 1.08 100.00 0.00 0.00
(1129, 996, 1129) 0.00          0.00 0.00 0.00 0.00 0.00 2.69 100.00 0.00 0.00
(1129, 947, 1129)           0.00 0.00 0.00 0.00 0.00 0.00 2.69 100.00 0.00 0.00
(815, 657) 0.74          48.28 0.34 66.67 9.39 58.62 0.00 0.00 33.68 96.97

= 119



1 2 3 4 5 Open sequences 
S  C S C S C S C S C 

(657, 815)           0.84 4.72 0.51 0.56 11.60 15.97 0.54 1.92 33.68 34.41
(657, 815, 657)           0.42 50.00 0.34 66.67 7.73 66.67 0.00 0.00 32.63 96.88
(657, 947) 1.79          10.03 0.00 0.00 3.59 4.94 0.00 0.00 24.21 24.73
(947, 657)           0.84 13.91 0.34 40.00 2.76 62.50 0.00 0.00 21.05 86.96
(657, 984)           0.95 5.31 0.34 0.37 18.51 25.48 0.54 1.92 21.05 21.51
(657, 947, 657)           0.42 23.53 0.00 0.00 1.93 53.85 0.00 0.00 21.05 86.96
(815, 657, 813, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 100.00
(933, 657, 933, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 100.00
(657, 815, 984, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 100.00
(815, 657, 984, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.32 100.00
(815, 657, 815, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.58 100.00
(657, 933, 657, 933, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 100.00
(657, 815, 657, 815, 657)           0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.53 100.00

 
Table 4.14: Data set 2 (http://machines.hyperreal.org), server sessions consisting of visited pages: Evaluating open 
sequences in other clusters. 
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4.8.2.3 Data set 3 (Belgian telecom provider) 
 
In table 4.15, four visiting profiles, providing order-based information of 
visited pages at the web site of a telecom provider, are given by open 
sequences in clusters. Cluster one represents visiting profiles starting with 
pages 28 and 27. Cluster two shows visiting profiles with regard to pages 281, 
286, 305, 317, 355, 368 and 372. Surprising is the relatively strong distinction 
of order based relations between pages 281 and 280 in cluster three and four. In 
cluster three, 97.39% of the server sessions provide pattern 281, followed by 
280. Yet, in cluster four, 100% of the server sessions provide pattern 280, 
followed by 281. With regard to open sequences selected by high confidence 
values, every cluster provides information for page predication with probability 
of 100%. 

In table 4.16, generally, most of the support values at the non-diagonal 
places (or not printed in bold) are zero values or relatively low values, 
indicating that, order-based information within clusters is well represented by 
open sequences. However, one remark is given. Open sequences (281, 355) and 
(280, 355) are well represented in cluster three and four. However, different 
navigations are presented in each cluster. Cluster three groups server sessions 
holding page 281 followed by 280, followed by 355. Yet, cluster four groups 
server sessions holding page 280, followed by 281, followed by 355. 
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Cluster Open sequences Support (%) Confidence (%) 
(28, 109) 97.39 99.12 
(27, 109) 85.65 87.17 
(27, 250) 84.78 86.28 
(109, 250) 84.78 85.53 
(28, 250) 83.91 85.40 
(28, 27, 250, 113, 123, 138, 181, 126, 161, 176) 1.30 100.00 
(28, 27, 250, 113, 127, 138, 181, 126, 161, 176) 1.30 100.00 
(28, 27, 109, 250, 234, 227, 237, 244, 230, 239) 1.30 100.00 
(28, 109, 250, 113, 127, 123, 138, 181, 126, 161) 1.30 100.00 

 
 

 
 
 
 

1 

(27, 109, 250, 113, 127, 123, 138, 181, 126, 161) 1.30 100.00 
(305, 317) 6.49 89.47 
(286, 317) 5.73 83.33 
(305, 286) 4.58 63.16 
(372, 368) 3.82 76.92 
(281, 355) 3.82 47.62 
(281, 280, 372, 386) 1.15 100.00 
(286, 305, 317) 1.91 100.00 
(21, 22, 17, 19) 1.53 100.00 
(21, 18, 17, 19) 1.53 100.00 
(18, 17, 19) 1.53 100.00 
(22, 17, 19) 1.53 100.00 
(21, 17, 19) 1.53 100.00 

 
 
 
 
 
 
 

2 

(196, 186, 194) 1.53 100.00 
(281, 355) 97.39 98.68 
(281, 280) 97.39 98.68 
(280, 355) 85.22 85.96 
(281, 280, 355) 83.91 86.16 
(281, 492) 83.04 84.14 
(280, 492) 83.04 83.77 
(280, 355, 492, 491, 372, 368, 386, 425, 371, 404) 2.61 100.00 
(280, 355, 492, 358, 372, 368, 386, 425, 371, 404) 2.61 100.00 
(281, 355, 492, 491, 372, 368, 386, 425, 371, 404) 2.61 100.00 
(281, 355, 492, 358, 372, 368, 386, 425, 371, 404) 2.61 100.00 

 
 
 
 
 

3 

(281, 280, 492, 491, 372, 368, 386, 425, 371, 404) 2.61 100.00 
(280, 281) 100.00 100.00 
(281, 355) 98.04 98.04 
(280, 355) 98.04 98.04 
(280, 281, 355) 98.04 98.04 
(280, 281, 355, 358) 90.20 92.00 
(280, 281, 358) 90.20 90.20 
(280, 355, 358) 90.20 92.00 
(281, 355, 358) 90.20 92.00 
(280, 358) 90.20 90.20 
(281, 358) 90.20 90.20 
(355, 358) 90.20 90.20 
(280, 281, 355, 358, 491, 492, 272, 275, 276) 3.92 100.00 
(280, 281, 355, 491, 492, 460, 461, 462, 402) 3.92 100.00 
(280, 281, 355, 491, 492, 460, 462, 402) 3.92 100.00 
(280, 281, 355, 491, 492, 460, 461, 402) 3.92 100.00 

 
 
 
 
 
 
 

4 

(280, 281, 355, 491, 492, 460, 461, 462) 3.92 100.00 

 
Table 4.15: SAM applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Open sequences with high support or 
confidence values within four clusters. 
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1    2 3 4Open sequences 
S      C S C S C S C

(28, 109) 97.39        99.12 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109) 85.65        87.17 2.67 63.64 0.87 100.00 0.00 0.00
(27, 250) 84.78        86.28 0.76 18.18 0.87 100.00 0.00 0.00
(109, 250) 84.78        85.53 0.76 11.76 0.87 100.00 0.00 0.00
(28, 250) 83.91        85.40 1.15 16.67 0.87 50.00 0.00 0.00
(28, 27, 250, 113, 123, 138, 181, 126, 161, 176) 1.30        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 27, 250, 113, 127, 138, 181, 126, 161, 176) 1.30        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 27, 109, 250, 234, 227, 237, 244, 230, 239) 1.30        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 109, 250, 113, 127, 123, 138, 181, 126, 161) 1.30        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109, 250, 113, 127, 123, 138, 181, 126, 161) 1.30        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(305, 317) 0.00 0.00 6.49      89.47 0.00 0.00 0.00 0.00
(286, 317) 0.00 0.00 5.73      83.33 0.00 0.00 0.00 0.00
(305, 286) 0.00 0.00 4.58      63.16 0.00 0.00 0.00 0.00
(372, 368) 0.00 0.00 3.82      76.92 9.13 75.00 1.96 50.00
(281, 355) 0.00 0.00 3.82      47.62 97.39 98.68 98.04 98.04
(281, 280, 372, 386) 0.00 0.00 1.15      100.00 9.57 81.48 0.00 0.00
(286, 305, 317) 0.00 0.00 1.91      100.00 0.00 0.00 0.00 0.00
(21, 22, 17, 19) 0.43 13.00 1.53      100.00 0.00 0.00 0.00 0.00
(21, 18, 17, 19) 0.43 11.00 1.53      100.00 0.00 0.00 0.00 0.00
(18, 17, 19) 0.43 8.00 1.53      100.00 0.00 0.00 0.00 0.00
(22, 17, 19) 0.43 5.00 1.53      100.00 0.00 0.00 0.00 0.00
(21, 17, 19) 0.43 2.00 1.53      100.00 0.00 0.00 0.00 0.00
(196, 186, 194) 0.00 0.00 1.53      100.00 0.00 0.00 0.00 0.00
(281, 355) 0.00 0.00 3.82 47.62 97.39    98.68 98.04 98.04
(281, 280) 0.00 0.00 3.05 38.10 97.39    98.68 0.00 0.00
(280, 355) 0.00 0.00 1.53 25.00 85.22    85.96 98.04 98.04
(281, 280, 355) 0.00 0.00 0.76 25.00 83.91    86.16 0.00 0.00
(281, 492) 0.00 0.00 1.15 14.29 83.04    84.14 74.51 74.51
(280, 492) 0.00 0.00 1.53 25.00 83.04    83.77 74.51 74.51
(280, 355, 492, 491, 372, 368, 386, 425, 371, 404) 0.00 0.00 0.00 0.00 2.61    100.00 0.00 0.00
(280, 355, 492, 358, 372, 368, 386, 425, 371, 404) 0.00 0.00 0.00 0.00 2.61    100.00 0.00 0.00
(281, 355, 492, 491, 372, 368, 386, 425, 371, 404) 0.00 0.00 0.00 0.00 2.61    100.00 0.00 0.00
(281, 355, 492, 358, 372, 368, 386, 425, 371, 404) 0.00 0.00 0.00 0.00 2.61    100.00 0.00 0.00
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1 2 3 4 Open sequences 
S  C S C S C S C 

(281, 280, 492, 491, 372, 368, 386, 425, 371, 404) 0.00 0.00 0.00 0.00 2.61    100.00 0.00 0.00
(280, 281) 0.00        0.00 1.15 18.75 1.74 1.75 100.00 100.00
(281, 355) 0.00 0.00 3.82 47.62 97.39 98.68 98.04  98.04
(280, 355) 0.00 0.00 1.53 25.00 85.22 85.96 98.04  98.04
(280, 281, 355) 0.00 0.00 0.76 66.67 1.30 75.00 98.04  98.04
(280, 281, 355, 358) 0.00 0.00 0.00 0.00 0.87 66.67 90.20  92.00
(280, 281, 358) 0.00        0.00 0.00 0.00 0.87 50.00 90.20 90.20
(280, 355, 358) 0.00 0.00 0.00 0.00 59.13 69.39 90.20  92.00
(281, 355, 358) 0.00 0.00 0.00 0.00 68.26 70.09 90.20  92.00
(280, 358) 0.00 0.00 0.76 12.50 69.57 70.18 90.20  90.20
(281, 358)         0.00 0.00 0.00 0.00 69.57 70.48 90.20 90.20
(355, 358)         0.00 0.00 0.00 0.00 68.70 69.91 90.20 90.20
(280, 281, 355, 358, 491, 492, 272, 275, 276) 0.00 0.00 0.00 0.00 0.00 0.00 3.92  100.00
(280, 281, 355, 491, 492, 460, 461, 462, 402) 0.00 0.00 0.00 0.00 0.00 0.00 3.92  100.00
(280, 281, 355, 491, 492, 460, 462, 402) 0.00 0.00 0.00 0.00 0.00 0.00 3.92  100.00
(280, 281, 355, 491, 492, 460, 461, 402) 0.00 0.00 0.00 0.00 0.00 0.00 3.92  100.00
(280, 281, 355, 491, 492, 460, 461, 462) 0.00 0.00 0.00 0.00 0.00 0.00 3.92  100.00

 
Table 4.16: SAM applied to dataset 3 (Belgian telecom provider), server sessions consisting of visited pages: Evaluating 
open sequences in other clusters. 
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4.8.3 Examining clusters on the length of server sessions 
 
A third way of cluster examination is based on the length of server sessions. In 
order to analyse how sensitive SAM is to the length of the server sessions, 
figures 4.23 to 4.25 provide, for each data set and SAM application, the 
distribution of the length of server sessions within each cluster. On the 
horizontal axis, the length of the server session is given. On the vertical axis, 
the relative frequency is presented. Relative frequency of  server sessions’ 
length x (x = 1, 2, …, 55) in cluster Ca is equal to the number of server sessions 
of x elements (pages) long in cluster Ca divided by the total number of server 
sessions in cluster Ca, multiplied by 100. 
 
4.8.3.1 Data set 1 (http://www.luc.ac.be) 
 
In figure 4.23, cluster one and five group server sessions, which are mainly of 
or between one and thirteen elements long. In cluster two, three and four, 
41.69%, 73.59% and 73.61% of the server sessions are one element long. In 
cluster six, most of the server sessions are between 20 and 35 elements long. 
Compared with the distribution of server sessions’ length in the first data set, 
presented in figure 4.4, cluster two shows approximately the same distribution.  
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Figure 4.23: SAM applied to data set 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages: Distribution of server sessions’ length in 
six clusters. 
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4.8.3.2 Data set 2 (http://machines.hyperreal.org) 
 
In figure 3.24, cluster one, two and four show similar distributions for server 
sessions of or between one to three elements long, with highest relative 
frequencies for one-page sessions of respectively 53.87%, 83.9% and 59.14%. 
In cluster three, 94.75% of the server sessions are of or between one and ten 
elements long. Cluster five represents server sessions, which are of or between 
one and twenty pages long, showing a maximum relative frequency of 13.68% 
for server sessions of seven elements long. Compared with the distribution of 
server sessions’ length in the second data set, presented in figure 4.4, cluster 
one shows the most similar distribution. 
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Figure 4.24: SAM applied to data set 2 (http://machines.hyperreal.org), server 
sessions consisting of visited pages: Distribution of server sessions’ length in 
five clusters. 
 
4.8.3.3 Data set 3 (Belgian telecom provider) 
 
In figure 4.25, cluster one, three and four provide a distribution of server 
sessions’ length with the same characteristics as the one given in figure 4.4 for 
dataset 3. Most of the server sessions are five or six elements long. Finally, in 
cluster two, another distribution is provided, showing maximum relative 
frequencies for one-page sessions (29.39%), two-page sessions (19.85%), five-
page sessions (15.27%) and three-page sessions (14.12%). 
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Figure 4.25: SAM applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Distribution of server sessions’ length in 
four clusters. 
 
 
4.9 Results 
 
In order to provide a general overview how people visit a web site, clustering 
server sessions based on SAM distance extracts groups of surfing behaviour, 
also called visiting profiles, providing not only visited pages, but also the order 
in which pages are visited. For each data set, graphical presentations of the 
visiting profiles are given.  

In figures 4.26 to 4.28, visiting profiles are represented by means of clusters 
showing the web site structure with regard to the page_ids of open sequences 
with high support values given in tables 4.11, 4.13 and 4.15. For each page, the 
page_id is given along with (a part of) the URL address of this particular page, 
which is written under the page_id inside the rectangular. Regarding the 
privacy agreements of the web site of a Belgian telecom provider, a description 
of the pages in figure 4.28 is given instead of the complete URL addresses. 
Yet, in figures 4.26 and 4.27, the complete URL address of each page can be 
read taking into account the level in the web site structure along with the links. 
For example, in figure 4.26, page 1 is the main page with URL address 
http://www.luc.ac.be/tew. Going one level downwards, three web pages appear. 
The complete URL address of page 2 is 
http://www.luc.ac.be/tew/diensten/diensten_voor_studenten.htm. Another 
example of how to read a URL address is 
http://www.luc.ac.be/tew/opleidingen/basisopleiding/opbouw_tew.htm for page 
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65. In figure 4.27, page 1026 can be reached through the URL address 
http://machines.hyperreal.org/manufacturers/Roland/TR-909. 

In figures 4.26 to 4.28, links between pages are drawn by thin black solid 
arrows, while navigations, including order-based information, are given by the 
bigger solid arrows. For example, in figure 4.26, page 68 can be accessed 
through page 1 and vice versa. A visitor can also go from page 43 to page 55. 
However, the other way around is not possible here. Open sequences having 
the five highest support values, illustrated in tables 4.11, 4.13 and 4.15, are 
used to represent navigation patterns within each cluster. Support (s) and 
confidence (c) values are written next to or above the navigation arrow. For 
example, in cluster two of the first data set, in 20% of the server sessions page 
68 is visited before page 43. The confidence value indicates that, if people visit 
page 68, the probability that they will proceed to page 43 afterwards is 24%. 
Nevertheless, we could also use open sequences selected on high confidence 
values, presented in tables 4.11, 4.13 and 4.15. Yet, the open sequences 
selected on high support values present order-based information for most of the 
server sessions, are short of length and therefore more efficient to provide a 
clear, realistic and graphical view of the results. 

For evaluation purposes, distribution of server sessions is given in the upper 
left corner of every cluster in figures 4.26 to 4.28. For example, 23.51% of the 
server sessions analysed in the first data set are grouped in cluster two. 
Practically, this means that 650 out of the 2764 server sessions are grouped in 
cluster two. 

In order to avoid complex drawings of arrows making the figures unclear, 
some modifications are made in figures 4.26 to 4.28. First, regarding the links 
between pages, arrows pointing to a page_id may appear. For example, in 
figure 4.26, from pages 43, 49, 65 and 71 one may proceed to pages 1, 2 and 9. 
Likewise, from pages 26, 28, 30, 33, 35, 38, 40, 55, 47, 59, 60 and 63 one may 
proceed to pages 1, 2, 9 and 68. The dashed parts of the links indicate that there 
is no intersection with other links. If there were no dashed parts, the links could 
be misinterpreted, saying, for example, that from page 71 a link goes to page 
63. Second, with regard to navigations presented by open sequences, lines 
showing arrows in the middle of navigations, instead of at the beginning or at 
the end, may appear. For example, in cluster two of figure 4.27, when 
navigating from page 657 to page 802 and from page 802 to page 657, 
somewhere in the middle of both navigations, an arrow is drawn. These arrows 
are used for interpreting open sequences having more than two elements. 
Support and confidence values are given next to or above the arrow of the last 
navigation within the open sequence. In cluster two of figure 4.27, in 2% of the 
server sessions navigations appear in the following order: 657, 802, 657. 
Furthermore, if people visit page 802 after page 657, the probability is 59% 
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that they will return to page 657. Also, in 2% of the server sessions navigations 
appear in the following order: 802, 657, 802. Furthermore, if people visit page 
657 after page 802, the probability is 38% that they will return to page 802. 

Finally, an overview of how people visit the web sites 
http://www.luc.ac.be/tew, http://machines.hyperreal.org and a Belgian telecom 
provider are given below. For the three data sets of our analyses, the largest 
clusters are graphically presented below. Graphical presentations of the 
remaining clusters are given in appendix 4. 
 
4.9.1 Surfing behaviour at http://www.luc.ac.be/tew  
 
In figure 4.26, cluster two and four are given, representing respectively 23.51% 
and 36.47% of the server sessions in dataset 1. Note that web pages at the 
lowest level of the web site structure show only the page_id, without a URL 
address, due to space limitations. Besides, all of these pages represent 
curriculum pages for each educational degree, showing courses and teaching 
subjects with regard to each year of study and specialisation. For example, page 
26 is the curriculum page for the second year education in economic 
engineering, specialisation accountancy and finance. Page 28 is the curriculum 
page for the second year education in economic engineering, specialisation 
international business. And page 30 is the curriculum page for the second year 
education in economic engineering, specialisation small and medium 
enterprises. 

Cluster two represents visiting profiles from the main education page 
(68/opleidingen) followed by underlying pages in the structure, which are 
education pages with regard to a particular degree, i.e. education in economic 
engineering (43 /basisopl./opbouw_hi), education in economic engineering 
computer sciences (49 /basisopl./opbouw_hibin) and education in applied 
economic sciences (65 /basisopl./opbouw_tew). Navigation patterns also show 
visits to the main education page followed by an information page about new 
education and examination systems (71 /V_onderwijs_en_examensysteem). 5% 
of the server sessions in cluster two requested education in economic 
engineering computer sciences, followed by the web page of the second year of 
their curriculum (47). 

In cluster four, visiting profiles mostly consist of only one page, which is 
indicated in figure 4.26 by a frame around web pages. For example, 5.58% of 
the server sessions in cluster four are one-page visits to the web page giving 
information about study evenings, where presentations of political or 
economical subjects take place (11 /studie-avonden). Other examples of one-
page visits are the curriculum web pages at the lowest level of the web site 
structure: first year education in applied economic sciences (55), second year 
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education in economic engineering computer sciences (47), education in 
applied economic sciences, specialisation accountancy and finance (59), 
specialisation service management (60) and specialisation marketing (63). 
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Figure 4.26: SAM applied to data set 1: Surfing behaviour on 
http://www.luc.ac.be/tew: navigation patterns, providing page and order-based 
information. 
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4.9.2 Surfing behaviour at http://machines.hyperreal.org 
 
In figure 4.27, cluster one and two are the two largest clusters representing 
respectively 60.50% and 18.65% of the server sessions in the second data set. 
Note that, in figure 4.27, the web pages /manufacturers, /categories, /drum-
machines, /Korg and /software do not show a page_id because they do not 
appear within the open sequences selected by high support values, given in 
table 4.13. As such, they are only presented for structural reasons. Furthermore, 
frames drawn with dashed rectangles represent web pages that originated from 
a different logged URL address in the files. Further analysis revealed that the 
log files also stored information of people who used the URL address 
http://www.hyperreal.org and navigations from this main page on. For 
example, page 933, having URL address 
http://www.hyperreal.org/manufacturers/Korg, appears to be exactly the same 
as http://machines.hyperreal.org/manufacturers/Korg. 

 In cluster one and cluster two, visiting profiles, shown by the navigations 
drawn by the big arrows, do not provide high support values because 53.87% 
and 83.90% of the server sessions in cluster one and two are one-page sessions. 
With regard to one-page sessions in cluster one, the highest number of direct 
accesses are found for the web page with the alternative URL address 
http://www.hyperreal.org (163), for 
http://www.hyperreal.org/manufacturers/Moog (947) and for the home page 
http://machines.hyperreal.org (657). This is indicated in the figure by a frame 
around these pages. With regard to one-page sessions in cluster two, instead of 
several pages, only the home page http://machines.hyperreal.org (657) is 
considered. 

Although the support values for navigations in cluster one and two are low, 
some of the confidence values are relatively high. This means that information 
for page prediction may be provided about the probability that people will visit 
particular pages after or before other pages. For example, the probability that 
http://machines.hyperreal.org/ecards (190) is visited after 
http://machines.hyperreal.org/the_Roland_TB-303 (804) is 82% (cluster one). 
Interesting to know is that a direct link from page 804 to 190 is not present in 
the web site structure, which means that people have follow a workaround 
procedure to fulfil this pattern. Also, the probability that people will visit 
http://machines.hyperreal.org/schematics (1153) after 
http://machines.hyperreal.org/manufacturers/Moog/schematics (338) is 81% 
(cluster one). The probability that people will proceed to the home page 
http://machines.hyperreal.org (657) after having visited 
http://machines.hyperreal.org/manufacturers/categories/DR-660 (802) is 76% 
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(cluster two). Finally, if people visit page 657, followed by page 802, the 
probability that page 657 is re-visited becomes 59% (cluster two). 
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Figure 4.27: SAM applied to data set 2: Surfing behaviour at 
http://machines.hyperreal.org: navigation patterns, providing page and order-
based information. 
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4.9.3 Surfing behaviour at the web site of a Belgian telecom provider 
 
In figure 4.28, cluster one, two and three representing respectively 29.75%, 
33.89% and 29.75% of the server sessions in data set 3, are graphically 
presented. On the web site of a Belgian telecom provider, every web page is 
given in two languages and for each language a different URL address is stored 
in the log files. Therefore, in figure 4.28, the structure of the web site is build 
for two languages: French, indicated by FR and Dutch, indicated by DU in the 
description of each page. In every cluster, web pages in French language and 
their structure are printed left; web pages in Dutch language and their structure 
are printed right. Furthermore, rectangles that are drawn without page_id and 
description of the web page do not appear in table 4.15, where clusters are 
described by means of open sequences selected by high support values. In 
order to show that the structure of French pages is equal to Dutch pages, the 
empty rectangles are given for structural reasons only. 

Generally, visiting profiles are categorized in two groups. On the one hand, 
cluster one represents visiting profiles towards pages in French language. On 
the other, clusters two and three (and four, re. appendix 4) represent visiting 
profiles towards pages in Dutch language. The main difference between French 
and Dutch profiles is that web pages with regard to jobs, or employment in 
general at the company, as well as web pages with regard to products ‘X’ and 
‘Y’ are not visited by French speaking people. 

Particularly, cluster one represents visiting profiles from the French general 
(28) and welcome (27) pages, which are considered as two home pages in 
French language. Also, 85% of the server sessions in cluster one visit the main 
page before the games page. Furthermore, if people have visited the main page 
in French language, the probability is 86% that they will visit thereafter the 
games page in French language. Cluster two represents visiting profiles in 
Dutch language with regard to pages offering jobs at the company. Also, pages 
of products X and Y are visited. If people have visited the first page about jobs 
at the company, the probability is 63% that they will visit thereafter the second 
page. If people have visited the web page giving information about product Y, 
the probability is 77% that they will visit thereafter the web page giving 
information about product X. Cluster three is, despite the difference in 
languages, comparable with cluster one. Visiting profiles from the Dutch 
general (281) and welcome (280) pages, which are considered as two home 
pages in Dutch language, to the Dutch main page (355) and the Dutch games 
page (492), are represented. However, the French speaking people usually visit 
the games page after the main page whereas the Dutch speaking people visit 
the games page after one of the home pages. 
 
= 135



286
DU Jobs 2

Cluster 1
29.75%

28
FR General

281
DU General

227
FR Tariff

109
FR Main

250
FR Games

27
FR Welcome

280
DU Welcome

468
DU Tariff

355
DU Main

492
DU Games

305
DU Jobs 1

113
FR Main 

New

358
DU Main 

New317
DU Main 

Jobs

28

2728
2728

281
280

280
281

281

s 97, c 99

s 84, c 85

s 85, c 86

368
DU Prod X372

DU Prod Y

281

355 

355 

28

109  

109  

s 86, c 87

s 85, c 86

 

286
DU Jobs 2

Cluster 2
33.89%

28
FR General

281
DU General

227
FR Tariff

109
FR Main

250
FR Games

27
FR Welcome

280
DU Welcome

468
DU Tariff

355
DU Main

492
DU Games

305
DU Jobs 1

113
FR Main 

New

358
DU Main 

New317
DU Main 

Jobs

28

2728
2728

281
280

280
281

281 s 6, c 83

s 6, c 89 s 5, c 63

s 4, c 48

368
DU Prod X372

DU Prod Y

281

355 

355 

28

109  

109  

s 4, c 77
 

= 136



286
DU Jobs 2

Cluster 3
29.75%

28
FR General

281
DU General

227
FR Tariff

109
FR Main

250
FR Games

27
FR Welcome

280
DU Welcome

468
DU Tariff

355
DU Main

492
DU Games

305
DU Jobs 1

113
FR Main 

New

358
DU Main 

New317
DU Main 

Jobs

28

2728
2728

281
280

280
281

281

s 83, c 84

s 83, c 84

s 97, c 99

368
DU Prod X372

DU Prod Y

281

355 

355 

28

109  

109  

s 97, c 99

s 85, c 86

s 84, c 86

 
 
Figure 4.28: SAM applied to data set 3: Surfing behaviour at the web site of a 
Belgian telecom provider: navigation patterns, providing page and order-based 
information. 
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4.10 Deploying the results 
 
Visiting profiles, graphically presented by clusters in the previous section, 
provide information, which may be incorporated into two optimisation tasks 
within web development (re. 4.3 Objectives). First, the structure of the web site 
may be adjusted conform to visiting profiles. Practically, this means that, for 
the convenience of the visitor, information of visiting profiles is used by link 
optimisation studies. Through deleting and inserting direct hyperlinks between 
web pages, the web site may be transformed for the benefit of the largest group 
of visitors. Second, proxy servers or web personalization techniques may 
incorporate general visiting profiles in order to predict page requests. As such, 
better and faster services to web visitors are provided. For each data set, we 
give some suggestions for re-structuring the web site by means of direct 
hyperlinks between pages. We also give some examples of page prediction. 
Finally, for each data set, some suggestions are given for other topics like 
cross-link examination, learning curve and psychology studies.  
 
4.10.1 Suggestions for structure and service improvement of the web site 

http://www.luc.ac.be/tew 
 
In cluster two, low confidence values of navigations between pages with direct 
hyperlinks indicate that the links are not optimally used. We therefore suggest 
moving pages 43, 49, 65 and 71 to a higher level in the web site structure. For 
example, the main education page (68) may be replaced by pages 43, 49, 65 
and 71 since the direct hyperlinks from the main education page (68) to the 
education pages of specific degrees in economic sciences are only used in 24%, 
17%, 8% and 14% of the cases. We may also suggest deleting the following 
direct hyperlinks: 
 
� From main education (68) to education in economic engineering (43) 
� From main education (68) to education in economic engineering computer 

sciences (49) 
� From main education (68) to education in applied economic sciences (65) 
� From main education (68) to new education and examination system (71) 

 
In cluster four, profiles of one-page sessions are identified, particularly for 

the following pages: information about study evenings (11), curriculum first 
year applied economic sciences and economic engineering (55), curriculum 
second year economic engineering computer sciences (47), curriculum applied 
economic sciences specialization accountancy and finance (59), service 
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management (60) and marketing (63). This means that pages 11, 55, 47, 59, 60 
and 63 are directly accessed without using the direct hyperlinks. We therefore 
suggest moving these pages one or two levels higher in the web site structure. 
For example, information about study evenings (11) may replace the general 
information page (9) since the direct hyperlink from page 9 to page 11 is not 
optimally used. Moreover, 48% of the cases that visited the home page (1) 
visited thereafter page 11, indicating that a direct hyperlink from (1) to (11) 
may be used more efficiently. Also, the curriculum pages may be re-directed to 
the second level in the web site structure, just below the home page. We may 
also suggest deleting the following direct hyperlinks: 

 
� From general information (9) to information about study evenings (11) 
� From education in applied economic sciences (65) to curriculum applied 

economic sciences specialization accountancy and finance (59) 
� From education in applied economic sciences (65) to curriculum applied 

economic sciences specialization service management (60) 
� From education in applied economic sciences (65) to curriculum applied 

economic sciences specialization marketing (63) 
� From education in economic engineering computer sciences (49) to 

curriculum second year economic engineering computer sciences (47) 
� From education in economic engineering (43) to curriculum first year 

applied economic sciences and economic engineering (55) 
 
4.10.2 Suggestions for structure and service improvement of the web site 

http://machines.hyperreal.org 
 
Cluster one identifies mostly one-page sessions to the home pages with URL 
addresses http://machines.hyperreal.org (657), http://www.hyperreal.org (163) 
and to other pages like for example the manufacturers label Moog page, which 
is reached at http://machines.hyperreal.org/manufacturers/Moog (947). Since 
page 947 is a popular one-page visit, we suggest moving this page to a higher 
level in the web site structure. For example, instead of structuring page 947 at 
the third level in the hierarchy under the manufacturers page, page 947 may be 
re-directed to the second level, directly under the home page. 

High confidence values between pages without direct hyperlinks suggest 
inserting direct hyperlinks. For example, in cluster one, the probability that 
http://machines.hyperreal.org/ecards (190) is visited after 
http://machines.hyperreal.org/the_Roland_TB-303 (804) is 82%. Also, the 
probability that http://machines.hyperreal.org/schematics (1153) is visited after 
http://machines.hyperreal.org/manufacturers/Moog/schematics (338) is 81%. 
We therefore suggest inserting the following direct hyperlinks: 
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� From http://machines.hyperreal.org/the_Roland_TB-303 (804) to 

http://machines.hyperreal.org/ecards (190) 
� From http://machines.hyperreal.org/manufacturers/Moog/schematics (338) 

to http://machines.hyperreal.org/schematics (1153) 
 

Although the support values are not very high, high confidence values may 
provide information for page prediction. For example, in cluster one and two: 
 
� If people visit http://machines.hyperreal.org/the_Roland_TB-303 (804), the 

probability is 82% that they will visit thereafter 
http://machines.hyperreal.org/ecards (190) 

� If people visit 
http://machines.hyperreal.org/manufacturers/Moog/schematics (338), the 
probability is 81% that they will visit thereafter 
http://machines.hyperreal.org/schematics (1153) 

� If people visit http://machines.hyperreal.org/manufacturers/categories/DR-
660 (802), the probability is 76% that they will proceed thereafter to the 
home page http://machines.hyperreal.org (657) 

 
Finally, relatively low confidence values between pages without direct 

hyperlinks indicate that the site is being used conform to the structure. For 
example, in cluster one, if page 657 is visited, the probability is only 6% that 
page 1082 is visited since no direct hyperlink exist from page 657 to 1082. 
Likewise, relatively high confidence values between pages with direct 
hyperlinks indicate that the site is being used conform to the structure. For 
example, in cluster two, if page 802 is visited, the probability is 76% that page 
657 is visited after page 802 since a direct hyperlink exists from page 802 to 
657.  
 
4.10.3 Suggestions for structure and service improvement of the web site of a 

Belgian telecom provider 
 
In cluster one, visiting profiles indicate that people visiting the French web 
pages are using the web site conform to the intentions of the web developer i.e. 
navigating from the general home (28) and welcome (27) page to pages like the 
main page (109) and games page (250), following the direct hyperlinks. The 
high confidence values may be used for page predictions with regard to pages 
presented in French language as follows: 
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� If people visit the general home page (28), the probability is 99% that they 
will visit thereafter the main page (109) 

� If people visit the general home page (28), the probability is 85% that they 
will visit thereafter the games page (250) 

� If people visit the welcome page (27), the probability is 87% % that they 
will visit thereafter the main page (109) 

� If people visit the welcome page (27), the probability is 86% that they will 
visit thereafter the games page (250) 

� If people visit the main page (109), the probability is 86% that they will 
visit thereafter the games page (250) 

 
In cluster two, high confidence values between pages presented in Dutch 

language without direct hyperlinks suggest inserting direct hyperlinks: 
 
� From Jobs 2 (286) to Main Jobs (317) 
� From Jobs 1 (305) to Main Jobs (317) 
� From Jobs 1 (305) to Jobs 2 (286) 
� From Prod Y (372) to Prod X (368) 
 

Generally, the results of analysing visiting behaviour on the web site of a 
Belgian telecom provider suggest different structures between pages in French 
and pages in Dutch language, in order to allow for the visitor to directly follow 
common patterns, without having to click on other pages that are not typically 
visited. The main difference between visiting behaviour of French and Dutch 
speaking people is that web pages with regard to employment or jobs at the 
company as well as web pages presenting information about products X and Y 
are not visited by French speaking people. Therefore, we may suggest moving 
less important pages, such as ‘FR Main Jobs’, ‘FR Jobs 1’, ‘FR Jobs 2’, ‘FR 
Prod X’, ‘FR Prod Y’ to a lower level in the structure of the web site. 
 
4.10.4 Suggestions for other topics 
 
Besides link optimisation and page prediction studies, the information provided 
by SAM-based clustering may be used in other studies as well. Cross-links are 
references to other documents based on common features. For example, in the 
first data set of our university web site, two groups of visitors may be 
distinguished: staff and students. For each group different cross-links are 
applied in order to provide different guided tours for staff members and for 
students. On the one hand, a guided tour for staff members may create a path 
through the curriculum web pages (cluster 4) in order to visit and change pages 
of interest. On the other, guided tours for students to curriculum web pages 
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(cluster 4) do not provide cross-links to documents for changing information. 
Moreover, order-based associations provide the ability to deliver common 
paths to the visitor. For example, in the second data set, cross-links may be 
inserted between pages in order to present the following common path (re. 
cluster 4; support = 1.08%, confidence = 100%): 
� http://machines.hyperreal.org/samples (1129) followed by 
� http://machines.hyperreal.org/manufacturers/Moog (947) followed by 
� http://machines.hyperreal.org/samples (1129) followed by 
� http://machines.hyperreal.org/manufacturers/Yamaha/TX-81z (1103) 

followed by 
� http://machines.hyperreal.org/samples (1129) 
Finally, an example of suggestions for cross-links in the third data set may be 
as follows. If visitors use the Dutch pages, two different guided tours may be 
offered. The first provides cross-links between jobs and products pages; the 
second between main, welcome and games pages. If visitors use the French 
pages, one guided tour providing cross-links between main, welcome and 
games pages covers most common paths. 

Results of SAM-based clustering may also be deployed in learning curves 
and psychology studies. Through frequent visits, visitors become more 
experienced users of web sites. This means that visitors become more confident 
with particular web pages and, as such, the function of these web pages may 
change from content (after first time visit) to navigation (after frequent visits). 
For example, in the first data set, a first time visitor to http://www.luc.ac.be/tew 
may use the home page as content page and stays more than 12.89 seconds on 
this page to read the information that is available on the web site. After 
frequent visits, the user interprets the home page no longer as content but as 
navigational page in order to directly proceed to other content pages of her/his 
interest. 
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4.11  Comparing SAM with Association 
 
In this section, SAM is compared with Association distance (re. section 4.1 and 
equation (4.1)) in order to examine how well SAM measures order-based 
information within server sessions. In order to proof the surplus value of SAM, 
described in section 4.1, we also calculate Association distance measures 
between server sessions of each data set in table 4.4. The same procedure, 
given in figure 4.3, is used, which means that hierarchical clustering is invoked 
on the distance matrices holding the pair wise Association distance measures 
between server sessions. Criteria for defining the number of clusters for each 
data set are given in figures 4.29 to 4.31. For the first and second data set, three 
clusters are chosen. For the third data set, four clusters are chosen. Then, like in 
section 4.8, clusters are analysed on page_ids, the order of page_ids and on the 
length of server sessions. For each data set, the results are given below. 

The following remarks are given with regard to figures 4.29 and 4.30. The 
PSF in figures 4.29 and 4.30 augments with rising number of clusters and starts 
to decrease at solutions of a large number of clusters. In the first and second 
data set, if Association distance is applied to server sessions, PSF statistic 
keeps on rising with the number of clusters and finally reaches a peak at 
respectively 422 and 519 clusters. Compared with PSF in figure 4.31 and in 
figures 4.14, 4.15 and 4.16 of the SAM application, PSF reached a relatively 
high level at or near the chosen cluster solution and starts to decrease relatively 
early after 6, 12, 11 or 8 clusters. The reason why PSF keeps on rising with the 
number of clusters in figures 4.29 and 4.30 is due to incremental differences 
between dispersion of server sessions in the data set and the sum of dispersions 
of server sessions within clusters (re. equation PSF in table 4.9). For each 
additional cluster, the sum of dispersions of server sessions within clusters 
decreases, indicating that the clustering solution improves. Unfortunately, if we 
follow the information provided by PSF in figures 4.29 and 4.30 for defining 
the number of clusters we will end up with 422 and 519 clusters, which 
obviously will not provide visiting profiles of large groups of visitors. The PSF 
statistic in figures 4.29 and 4.30 might indicate that Association distance is not 
an appropriate method for measuring distances between server sessions. 
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Figure 4.29: Applying Association distance to data set 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: 
Information criteria for defining the number of clusters. 
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Figure 4.30: Applying Association distance to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages: 
Information criteria for defining the number of clusters. 

= 145

http://machines.hyperreal.org/


 

 

 
Figure 4.31: Applying Association distance to data set 3 (Belgian telecom 
provider), server sessions consisting of visited pages: Information criteria for 
defining the number of clusters. 
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4.11.1 Examining clusters on page_ids 
 
For comparison reasons, the same scales are used as in the previous sections, 
when clusters resulting from the SAM application are examined. Definitions of 
relative frequencies and exclusivities are given in section 4.8.1. Tables of 
relative frequencies and exclusivities with regard to Association distance 
applied to each data set presented in table 4.4 are given in appendix 4. 
 
4.11.1.1  Data set 1 (http://www.luc.ac.be/tew) 

 
In figure 4.32, the distributions of page_ids in different clusters are very much 
alike. Compared with figure 4.17 in section 4.8.1, where SAM is applied to the 
same data set, each cluster presents a different distribution of page_ids. 
Exclusivities in figure 4.33 are not better/worse than exclusivities in figure 
4.18. The difference between exclusivities of clusters of page_ids based on 
SAM and Association is that clusters resulting from the SAM application show 
a considerate number of zero exclusivity values, which may indicate that 
clusters are better separated. 
  
 

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71

1

2

3

0

20

40

60

80

100

R
el

at
iv

e 
fr

eq
ue

nc
y

Page_id

Cluster

 
Figure 4.32: Association distance applied to data set 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: 
Distribution of web pages in three clusters. 
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Figure 4.33: Association distance applied to data set 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: 
Exclusivity of web pages in three clusters. 
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4.11.1.2 Data set 2 (http://machines.hyperreal.org) 
 
Distributions of groups of page_ids in different clusters look very much alike in 
figure 4.34. Compared with figure 4.19 in section 4.8.1, where SAM is applied 
to data set 2, each cluster presents a different distribution of groups of 
page_ids. Proceeding to figure 4.35, exclusivities of groups of page_ids within 
clusters are not worse or better compared with figure 4.20. 
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Figure 4.34: Association distance applied to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages: 
Distribution of groups of page_ids in three clusters. 
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Figure 4.35: Association distance applied to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages: 
Exclusivity of groups of page_ids in three clusters. 
 
 
 
 
 
 
 
 
 
 
 

= 150

http://machines.hyperreal.org/


4.11.1.3  Data set 3 (Belgian telecom provider) 
 
Comparing figure 4.36 with figure 4.21 in section 4.8.1, where SAM is applied 
to data set 3, the distribution of page_ids in cluster 4 of figure 4.36 looks very 
much like cluster three and four of figure 4.21. With regard to exclusivities of 
page_ids represented by clusters, more zero values are found in clusters of 
figure 4.22, which may indicate that clusters are better separated based on 
SAM distance. Generally, relatively high exclusivities are found in three 
clusters in figure 4.22 whereas in figure 4.37 only two of the four clusters 
provide high exclusivities.  
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Figure 4.36: Association distance applied to data set 3 (Belgian telecom 
provider), server sessions consisting of visited pages: Distribution of groups of 
page_ids in four clusters. 
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Figure 4.37: Association distance applied to data set 3 (Belgian telecom 
provider), server sessions consisting of visited pages: Exclusivity of groups of 
page_ids in four clusters. 
 
 
 
 
 
 
 
 
 
 
 

= 152
 



4.11.2 Examining clusters on the order of page_ids 
 
4.11.2.1  Data set 1 (http://www.luc.ac.be/tew) 
 
Table 4.17 presents order-based information of visited pages within three 
clusters, based on Association distance measures, for data set 1. Cluster two 
consists of one-page sessions. Clusters one and three are very much alike. Four 
out of five open sequences selected on high support values are the same in 
cluster one and three. Note that, with regard to open sequences selected on high 
confidence values, more than thirty combinations were found of open 
sequences with four pages long and support of 5.84% and confidence of 100%. 
This is indicated in the last row of cluster three with ‘…’. Looking at table 
4.18, we notice that the main difference between cluster one and three is 
indicated by the open sequences selected on high confidence values for cluster 
three, which are not found in cluster one. All of the remaining open sequences 
are found in cluster one and three. 

Comparing table 4.18 with table 4.12, Association distance is much more 
sensitive to one-page sessions than SAM distance. 95.05% of the server 
sessions in cluster two, based on Association distance, are one-page sessions, 
while the other two clusters do not contain one-page sessions. When SAM 
distance is used between server sessions, four out of six clusters hold one-page 
sessions. Also, taking into account that it is very obvious to have zero support 
and confidence values for open sequences in clusters of one-page sessions, 
table 4.18 contains far less zero values for support values at the non-diagonal 
places (or support values not written in bold) than table 4.12. This may indicate 
that order-based information of visited pages is better represented in clusters 
based on SAM than on Association distance. 
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Cluster Open sequences Support (%) Confidence (%) 
(68, 65) 27.39 40.33 
(1, 68) 17.28 48.65 
(1, 9) 16.08 45.29 
(68, 43) 12.50 18.41 
(68, 9) 12.10 17.82 
(8, 11) 1.11 73.68 
(68, 49, 47, 48) 1.35 60.71 
(68, 47, 48) 1.35 60.71 
(1, 68, 2, 9) 2.63 56.90 

 
 

 
 
 

1 

(49, 47, 48) 1.43 54.55 
2 One-page sessions 

(68, 65) 46.10 62.83 
(68, 9) 34.42 46.90 
(68, 43) 33.12 45.13 
(68, 55) 32.47 44.25 
(1, 68) 31.82 81.67 
(42, 14, 25, 17, 51) 5.19 100.00 
(42, 14, 25, 17, 53) 5.19 100.00 
(19, 27, 63, 55) 5.84 100.00 
(19, 28, 63, 55) 5.84 100.00 
(19, 59, 37, 55) 5.84 100.00 

 
 
 
 

3 

… … … 

 
Table 4.17: Association distance applied to data set 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: Open 
sequences with high support or confidence values within three clusters. 
 

1 2 3 Open sequences 
S  C S C S C 

(68, 65) 27.39 40.33 0.00 0.00 46.10 62.83 
(1, 68) 17.28 48.65 0.00 0.00 31.82 81.67 
(1, 9) 16.08 45.29 0.00 0.00 29.22 75.00 
(68, 43) 12.50 18.41 0.00 0.00 33.12 45.13 
(68, 9) 12.10 17.82 0.00 0.00 34.42 46.90 
(8, 11) 1.11 73.68 0.07 2.94 0.65 20.00 
(68, 49, 47, 48) 1.35 60.71 0.00 0.00 1.95 27.27 
(68, 47, 48) 1.35 60.71 0.00 0.00 1.95 27.27 
(1, 68, 2, 9) 2.63 56.90 0.00 0.00 12.34 65.52 
(49, 47, 48) 1.43 54.55 0.00 0.00 2.60 30.77 
One-page sessions 0.80 - 95.05 - 0.00 - 
(68, 65) 27.39 40.33 0.00 0.00 46.10 62.83 
(68, 9) 12.10 17.82 0.00 0.00 34.42 46.90 
(68, 43) 12.50 18.41 0.00 0.00 33.12 45.13 
(68, 55) 10.35 15.24 0.00 0.00 32.47 44.25 
(1, 68) 17.28 48.65 0.00 0.00 31.82 81.67 
(42, 14, 25, 17, 51) 0.00 0.00 0.00 0.00 5.19 100.00 
(42, 14, 25, 17, 53) 0.00 0.00 0.00 0.00 5.19 100.00 
(19, 27, 63, 55) 0.00 0.00 0.00 0.00 5.84 100.00 
(19, 28, 63, 55) 0.00 0.00 0.00 0.00 5.84 100.00 
(19, 59, 37, 55) 0.00 0.00 0.00 0.00 5.84 100.00 

 
Table 4.18: Association distance applied to dataset 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: 
Evaluating open sequences in other clusters. 
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4.11.2.2  Data set 2 (http://machines.hyperreal.org) 
 
In table 4.19 and 4.20, cluster one represents mainly one-page sessions. Both 
cluster two and three group server sessions that are related with pages 657, 984 
and 815. Generally, support measures for open sequences are higher in cluster 
three, indicating that cluster three represents more order-based information 
related with pages 657, 984 and 815. 

Comparing table 4.20 with table 4.14, Association distance is much more 
sensitive to one-page sessions than SAM distance. 88.33% of the server 
sessions in cluster one, based on Association distance, are one-page sessions. In 
cluster two and three, 8.06% and 4.84% of the server sessions are one-page 
sessions. When SAM distance is used between server sessions, one-page 
sessions are distributed more equally across clusters. For example, in cluster 
one and four, 53.87% and 59.14% of the server sessions are one-page sessions. 
Although, at a general level, we cannot say that table 4.20 contains far less zero 
values for support values at the non-diagonal places (or support values not 
written in bold) than table 4.12, we state an important remark about open 
sequences selected on high confidence values. In table 4.19, open sequence 
(657, 815, 810, 657) with confidence of 100% is selected for describing order-
based information within cluster three. Unfortunately, the same open sequence 
provides a confidence value of 100% in table 4.20 for cluster two as well. Since 
support is below 1%, it is not provided in cluster two of table 4.19. Yet, with 
regard to cluster description by means of open sequences selected on high 
confidence values, if high confidence is shown in different clusters, server 
sessions are not well clustered with regard to order-based information of visited 
pages. No such information is shown when SAM is used as distance measure 
for clustering. Practically, open sequence (657, 815, 810, 657) from table 4.20 
indicates that, if visitors go to page 657, followed by pages 815 and 810, the 
probability is 100% that they will proceed back to page 657 (cluster two and 
three). This means that server sessions holding the same sequential 
relationships are clustered differently. This may indicate that order-based 
information of visited pages is better represented in clusters based on SAM 
than on Association distance. 
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Cluster Open sequences Support (%) Confidence (%) 
1 One-page sessions 

(802, 657) 4.19 90.48 
(657, 947) 3.31 6.82 
(804, 190) 3.20 96.67 
(657, 984) 3.20 6.59 
(657, 815) 3.09 6.36 
(338, 1153) 2.10 100.00 
(283, 576) 1.66 93.75 

 
 
 

2 

(337, 1152) 1.32 85.71 
(657, 984) 17.19 24.15 
(815, 657) 14.29 88.06 
(657, 815) 13.56 19.05 
(984, 657) 12.59 59.77 
(657, 815, 657) 12.35 91.07 
(657, 933, 657, 933, 657) 1.21 100.00 
(657, 713, 657, 713, 657) 1.21 100.00 
(657, 947, 657, 1026, 657) 1.21 100.00 
(657, 815, 810, 657) 1.45 100.00 

 
 
 

3 

(657, 984, 993, 657) 1.45 100.00 

 
Table 4.19: Association distance applied to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages: 
Open sequences with high support or confidence values within three clusters. 
 

1 2 3 Open sequences 
S  C S C S C 

One-page sessions 88.33 - 8.06 - 4.84 - 
(802, 657) 0.06 11.11 4.19 90.48 0.97 100.00 
(657, 947) 0.11 0.36 3.31 6.82 9.20 12.93 
(804, 190) 0.06 11.11 3.20 96.67 1.45 66.67 
(657, 984) 0.44 1.45 3.20 6.59 17.19 24.15 
(657, 815) 0.55 1.81 3.09 6.36 13.56 19.05 
(338, 1153) 0.17 37.50 2.10 100.00 1.94 88.89 
(283, 576) 0.17 42.86 1.66 93.75 0.48 66.67 
(337, 1152) 0.00 0.00 1.32 85.71 0.97 66.67 
(657, 984) 0.44 1.45 3.20 6.59 17.19 24.15 
(815, 657) 0.28 26.32 1.99 47.37 14.29 88.06 
(657, 815) 0.55 1.81 3.09 6.36 13.56 19.05 
(984, 657) 0.44 16.67 1.43 26.53 12.59 59.77 
(657, 815, 657) 0.28 50.00 1.43 46.43 12.35 91.07 
(657, 933, 657, 933, 657) 0.00 0.00 0.00 0.00 1.21 100.00 
(657, 713, 657, 713, 657) 0.00 0.00 0.00 0.00 1.21 100.00 
(657, 947, 657, 1026, 657) 0.00 0.00 0.00 0.00 1.21 100.00 
(657, 815, 810, 657) 0.00 0.00 0.11 100.00 1.45 100.00 
(657, 984, 993, 657) 0.00 0.00 0.00 0.00 1.45 100.00 

 
Table 4.20: Association distance applied to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages:  
Evaluating open sequences in other clusters. 
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4.11.2.3 Data set 3 (Belgian telecom provider) 
 
Table 4.21 presents order-based information of visited pages within four 
clusters, based on Association distance measures, for data set 3. Cluster four 
represents server sessions related with pages 281, 280, 355 and 492 while 
clusters one, two and three mainly represent server sessions related with pages 
28, 27, 109 and 250. Note that, with regard to open sequences selected on high 
confidence values for describing clusters one, two and four, lots of 
combinations were found with respectively ten, two and eight pages long and 
support of 1.94%, 1.10% and 1.18%. This is indicated in the last row of 
clusters one, two and four with ‘…’. Comparing table 4.21 with table 4.15 it 
becomes very clear that clusters are better separated with regard to sequential 
information if SAM distance is used between server sessions. 

If we compare table 4.21 with table 4.16, the same remark is given about 
open sequences selected on high confidence values. In table 4.21, several open 
sequences selected for cluster description on high confidence values show 
100% confidence for different clusters. For example, open sequence (196, 186, 
194) shows confidence of 100% for clusters two and three. Likewise, open 
sequence (471, 480) shows confidence of 100% for clusters one, two and four. 
Other examples are open sequences (365, 369), (52, 64), (461, 462) and (281, 
280, 355, 492, 358, 491, 461, 462). Since support is below 1%, they are not 
provided for cluster description in table 4.21. This means that server sessions 
are not well clustered with regard to order-based information if Association 
distance is used between server sessions. Otherwise stated, server sessions 
holding the same sequential relationships are clustered differently based on 
Association distance. No such information is shown when SAM is used as 
distance measure for clustering. Finally, table 4.22 contains far less zero values 
for support values at the non-diagonal places (or support values not written in 
bold) than table 4.16. This may also indicate that order-based information of 
visited pages is better represented in clusters based on SAM than on 
Association distance. 
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Cluster Open sequences Support (%) Confidence (%) 
(28, 109) 54.37 100.00 
(27, 109) 51.46 94.64 
(28, 109, 250) 50.49 92.86 
(109, 250) 50.49 92.86 
(28, 250) 50.49 92.86 
(27, 109, 250, 113, 249, 138, 181, 126, 161, 176) 1.94 100.00 
(27, 109, 250, 113, 249, 123, 181, 126, 161, 176) 1.94 100.00 
(27, 109, 250, 113, 249, 123, 138, 126, 161, 176) 1.94 100.00 
(27, 109, 250, 113, 249, 123, 138, 181, 161, 176) 1.94 100.00 
(27, 109, 250, 113, 249, 123, 138, 181, 126, 176) 1.94 100.00 

 
 
 
 
 

1 

… … … 
(28, 109) 4.95 64.29 
(28, 27) 4.40 57.14 
(28, 27, 109) 2.75 62.50 
(27, 109) 2.75 62.50 
(471, 480) 2.20 100.00 
(281, 355) 2.20 30.77 
(305, 317, 286) 1.10 100.00 
(196, 186, 194) 1.10 100.00 
(471, 485, 480) 1.10 100.00 
(471, 480) 2.20 100.00 
(365, 369) 1.10 100.00 

 
 
 
 
 

2 

… … … 
(28, 109) 52.66 94.92 
(27, 109) 46.08 84.48 
(27, 250) 45.77 83.91 
(109, 250) 45.77 83.91 
(28, 250) 45.45 81.92 
(280, 281, 355) 15.05 100.00 
(286, 305, 317) 1.57 100.00 
(52, 64) 1.25 100.00 
(460, 462) 1.25 100.00 
(461, 462) 1.25 100.00 

 
 
 
 
 

3 

(245, 231) 1.25 100.00 
(281, 280) 98.92 99.40 
(281, 355) 97.63 98.21 
(281, 280, 355) 95.27 96.41 
(280, 355) 95.27 95.83 
(281, 492) 84.62 85.12 
(280, 492) 84.62 85.12 
(281, 280, 355, 492, 358, 491, 460, 461, 462) 1.18 100.00 
(281, 280, 355, 492, 358, 491, 461, 462) 2.37 100.00 
(281, 280, 355, 492, 358, 460, 461, 462) 1.78 100.00 
(281, 280, 355, 492, 491, 358, 368, 386) 1.78 100.00 
(281, 280, 355, 492, 491, 460, 461, 462) 1.18 100.00 

 
 
 
 
 

4 

… … … 

 
Table 4.21: Association distance applied to data set 3 (Belgian telecom 
provider), server sessions consisting of visited pages: Open sequences with 
high support or confidence values within four clusters. 
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1    2 3 4Open sequences 
S      C S C S C S C

(28, 109) 54.37        100.00 4.95 64.29 52.66 94.92 0.59 100.00
(27, 109) 51.46        94.64 2.75 62.50 46.08 84.48 0.59 100.00
(28, 109, 250) 50.49        92.86 0.00 0.00 44.51 84.52 0.59 100.00
(109, 250) 50.49        92.86 0.00 0.00 45.77 83.91 0.59 100.00
(28, 250) 50.49        92.86 0.00 0.00 45.45 81.92 0.59 100.00
(27, 109, 250, 113, 249, 138, 181, 126, 161, 176) 1.94        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109, 250, 113, 249, 123, 181, 126, 161, 176) 1.94        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109, 250, 113, 249, 123, 138, 126, 161, 176) 1.94        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109, 250, 113, 249, 123, 138, 181, 161, 176) 1.94        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109, 250, 113, 249, 123, 138, 181, 126, 176) 1.94        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 109) 54.37 100.00 4.95      64.29 52.66 94.92 0.59 100.00
(28, 27) 42.72 78.57 4.40      57.14 43.26 77.97 0.00 0.00
(28, 27, 109) 39.81 93.18 2.75      62.50 34.80 80.43 0.00 0.00
(27, 109) 51.46 94.64 2.75      62.50 46.08 84.48 0.59 100.00
(471, 480) 5.83 100.00 2.20      100.00 0.00 0.00 1.18 100.00
(281, 355) 36.89 95.00 2.20      30.77 24.76 98.75 97.63 98.21
(305, 317, 286) 0.00 0.00 1.10      100.00 0.31 66.67 0.00 0.00
(196, 186, 194) 0.97 50.00 1.10      100.00 0.31 100.00 0.00 0.00
(471, 485, 480) 1.94 66.67 1.10      100.00 0.00 0.00 0.00 0.00
(471, 480) 5.83 100.00 2.20      100.00 0.00 0.00 1.18 100.00
(365, 369) 0.97 100.00 1.10      100.00 0.63 100.00 0.00 0.00
(28, 109) 54.37 100.00 4.95 64.29 52.66    94.92 0.59 100.00
(27, 109)         51.46 94.64 2.75 62.50 46.08 84.48 0.59 100.00
(27, 250) 50.49 92.86 0.00 0.00 45.77    83.91 0.59 100.00
(109, 250) 50.49 92.86 0.00 0.00 45.77    83.91 0.59 100.00
(28, 250) 50.49 92.86 0.00 0.00 45.45    81.92 0.59 100.00
(280, 281, 355)         5.83 85.71 0.55 50.00 15.05 100.00 0.00 0.00
(286, 305, 317)         0.00 0.00 0.00 0.00 1.57 100.00 0.00 0.00
(52, 64) 10.68 100.00 0.00 0.00 1.25    100.00 0.00 0.00
(460, 462)         4.85 83.33 0.00 0.00 1.25 100.00 2.96 62.50
(461, 462) 5.83 100.00 0.55 25.00 1.25    100.00 4.14 77.78
(245, 231)         3.88 66.67 0.00 0.00 1.25 100.00 0.00 0.00
(281, 280)         33.98 87.50 1.10 15.38 9.40 37.50 98.92 99.40
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1 2 3 4 Open sequences 
S  C S C S C S C 

(281, 355)         36.89 95.00 2.20 30.77 24.76 98.75 97.63 98.21
(281, 280, 355) 27.18 80.00 0.00 0.00 2.19 23.33 95.27  96.41
(280, 355) 32.04        82.50 0.55 14.29 17.55 68.29 95.27 95.83
(281, 492)         35.92 92.50 1.10 15.38 15.99 63.75 84.62 85.12
(280, 492) 35.92 92.50 0.00 0.00 16.93 65.85 84.62  85.12
(281, 280, 355, 492, 358, 491, 460, 461, 462) 0.00 0.00 0.00 0.00 0.00 0.00 1.18  100.00
(281, 280, 355, 492, 358, 491, 461, 462) 0.97 100.00 0.00 0.00 0.00 0.00 2.37  100.00
(281, 280, 355, 492, 358, 460, 461, 462) 0.00 0.00 0.00 0.00 0.00 0.00 1.78  100.00
(281, 280, 355, 492, 491, 358, 368, 386) 4.85 83.33 0.00 0.00 0.00 0.00 1.78  100.00
(281, 280, 355, 492, 491, 460, 461, 462) 0.00 0.00 0.00 0.00 0.00 0.00 1.18  100.00

 
Table 4.22: Association distance applied to data set 3 (Belgian telecom provider), server sessions consisting of visited 
pages: Evaluating open sequences in other clusters. 
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4.11.3 Examining clusters on the length of server sessions 
 
4.11.3.1  Data set 1 (http://www.luc.ac.be/tew) 
 
If server sessions of data set 1 are clustered based on Association distance, one-
page sessions are clustered almost exclusively in cluster two. Moreover, server 
sessions in cluster one are shorter than server sessions in cluster three. Looking 
at the distribution of server sessions based on their length when SAM is used as 
distance measure for clustering (re. figure 4.23), one-page sessions are 
distributed in four out of six clusters. Besides one-page sessions, clusters three 
and four merely group server sessions which are two pages long. In general, 
clusters one, two and five group short as well as longer server sessions. Cluster 
six, representing only 0.94% of the server sessions in data set 2, holds server 
sessions, which mostly are longer than 20 elements. 
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Figure 4.38: Association distance applied to data set 1 
(http://www.luc.ac.be/tew), server sessions consisting of visited pages: 
Distribution of server sessions’ length in three clusters. 
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4.11.3.2  Data set 2 (http://machines.hyperreal.org) 
 
Comparing figure 4.39 with figure 4.24, one-page sessions are concentrated in 
one cluster, which is not shown in figure 4.24. Generally, clustering server 
sessions based on Association distance groups relatively short sessions (i.e. two 
to four pages long) in cluster two and relatively long sessions (i.e. five pages 
and more) in cluster three. When server sessions are clustered based on SAM 
distance measures, clusters are less sensitive to the length of server sessions, 
given the distribution of server sessions’ length in data set 2 (re. figure 4.4). 
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Figure 4.39: Association distance applied to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages: 
Distribution of server sessions’ length in three clusters. 
 
4.11.3.3 Data set 3 (Belgian telecom provider) 
 
Comparing the distribution of the length of server sessions in clusters based on 
Association distance, presented in figure 4.40, with clusters based on SAM 
distance, presented in figure 4.25, we remark that, given the distribution in data 
set 3 (re. figure 4.4), SAM distance measure is less sensitive to the length of 
server sessions. In figure 4.40, cluster one groups server sessions of nine pages 
and longer. Cluster two groups server sessions, which are one to four pages 
long. Cluster three and four respectively group server sessions of minimum five 
pages and maximum ten pages long. This means that, server sessions of, for 
example five pages long, are not found in cluster one or two. Yet, in figure 
4.25, server sessions of five pages long are found in all of the four clusters. 
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Figure 4.40: Association distance applied to data set 3 (Belgian telecom 
provider), server sessions consisting of visited pages: Distribution of server 
sessions’ length in four clusters. 
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4.12  Comparing SAM with 2-dim SAM 
 
In order to proof the surplus value of 2-dim SAM over SAM, described in 
section 4.2 of this chapter, we also calculate 2-dim SAM distance measures 
between server sessions. Instead of using SAM on only one attribute, which is 
visited pages (re. sections 4.7 to 4.10), in this section 2-dim SAM and SAM are 
calculated between server sessions consisting of two attributes: visited pages 
and categories of visiting page time. The Web Usage Mining process given in 
figure 4.3 is applied to the data sets that were pre-processed in section 4.5 and 
described in section 4.6. Examples of how 2-dim SAM and SAM calculate 
distances between sequences consisting of two attributes, as well as the 
equations that are used, are given in section 4.2. Criteria for defining the 
number of clusters for each data set are given in figures 4.41 to 4.46. 

If 2-dim SAM is applied to dataset 1, 2 and 3, the number of clusters is 
respectively three, four and four (re. figures 4.41, 4.42, 4.43). In figure 4.42, 
the T-squared statistic might indicate that two clusters are a good clustering 
solution as well. However, we chose for a solution of four clusters because the 
root mean squared standard deviation at this point is 0.90 compared to 1.37 at 
two clusters. In figure 4.43, the T-squared statistic might advise a solution of 
two clusters. However, we chose for a solution of four clusters because R-
squared is far too low at two clusters. Only 35.18% of the variance in the data 
is explained with two clusters, whereas 68.08% of the variance in the data is 
explained with four clusters.  

If SAM is applied to dataset 1, 2 and 3, the number of clusters chosen is 
respectively three, two and four (re. figures 4.44, 4.45 and 4.46). In figure 4.45, 
two clusters are chosen because 63.47% of the variance in the data is 
explained, which is higher than the minimum standard variance explanation of 
60% (Hair et al, 1998). In figure 4.46, the T-squared statistic might indicate 
that three clusters are a good solution as well. However, only 56.18% of the 
variance in the data is explained, which is below the minimum standard of 60% 
(Hair et al, 1998), whereas four clusters explain 68.17% of the variance in the 
data. Besides, the homogeneity of the server sessions in four clusters improves 
from 4.62 to 3.82.    
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Figure 4.41: Applying 2-dim SAM to data set 1 (http://www.luc.ac.be), server 
sessions consisting of visited pages and categories of visiting page time: 
Information criteria for defining the number of clusters. 
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Figure 4.42: Applying 2-dim SAM to data set 2 
(http://machines.hyperreal.org), server sessions consisting of visited pages and 
categories of visiting page time: Information criteria for defining the number of 
clusters. 
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Figure 4.43: Applying 2-dim SAM to data set 3 (Belgian telecom provider), 
server sessions consisting of visited pages and categories of visiting page time: 
Information criteria for defining the number of clusters. 
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Figure 4.44: Applying SAM to data set 1 (http://www.luc.ac.be), server 
sessions consisting of visited pages and categories of visiting page time: 
Information criteria for defining the number of clusters. 
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Figure 4.45: Applying SAM to data set 2 (http://machines.hyperreal.org), 
server sessions consisting of visited pages and categories of visiting page time: 
Information criteria for defining the number of clusters. 

= 169



 

 

 
Figure 4.46: Applying SAM to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages and categories of visiting page time: 
Information criteria for defining the number of clusters. 
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4.12.1 Examining clusters on order-based information and on relations 
between page_ids and categories of visiting page time 

 
Tables 4.23 to 4.28 provide, for each cluster, open sequences consisting of 
visited pages as well as categories of visiting page time, describing order-based 
information and relations between pages and times. Open sequences are 
described in section 4.8 and selected on high support or high confidence values. 
Definitions and calculations of support and confidence for open sequences are 
provided in section 4.8 as well. Tables 4.23, 4.25 and 4.27 provide open 
sequences for the three data sets presented in section 4.6, consisting of visited 
pages and categories of visiting page time, using 2-dim SAM as distance 
measure between server sessions. Tables 4.24, 4.26 and 4.28 provide open 
sequences for the same data sets, using SAM as distance measure between 
server sessions. The distribution of server sessions across clusters is given at 
the head of each table. For example, 47% of the server sessions in data set 1 are 
grouped in cluster 1 (re. table 4.23), based on 2-dim SAM distance. 

Comparing table 4.23 (2-dim SAM and data set 1) with table 4.24 (SAM 
and data set 1), a general difference is that support values for open sequences 
consisting of two attributes and written in bold are higher in table 4.23. This 
indicates that two-dimensional server sessions are better clustered with regard 
to relations between pages and times as well as sequential information if 2-dim 
SAM is used as distance measure. For example, in table 4.23, 2-dim SAM 
distinguishes server sessions holding page 1 (with category of visiting page 
time equal to 0 or 1) followed by page 68 (with category of visiting page time 
equal to 1) in cluster 1 from server sessions holding page 1 (with category of 
visiting page time equal to 0) followed by page 68 (with category of visiting 
page time equal to 0) in cluster 2. Also, in cluster 3, server sessions holding re-
visits to page 68 (with category of visiting page time equal to 0 or 1) and 
related with pages 65 and 71 are distinguished from those related with pages 1, 
43 and 69 in cluster 1. This means that 2-dim SAM discovers three different 
profiles related with page 68. For presentational reasons we will write t0, t1, t2 
or t3 between brackets to refer to visiting page time category: 

 
� Page 68 (t1) is visited after page 1 (t0 or t1) and/or before pages 43 and 69 

(cluster 1) 
 
� Page 68 (t0) is visited after page 1 (t0) (cluster 2) 
 
� Page 68 (t0) is re-visited (t1) and/or visited before pages 65 and 71  (cluster 

3) 
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The profiles discovered by 2-dim SAM might reveal important information 
since page 68 is considered as the most requested page in data set 1 (re. figure 
4.5). 

In table 4.24, two-dimensional server sessions are clustered differently. 
SAM is not able to distinguish different profiles with regard to sequential page 
and related time information for page 68. Instead, each cluster represents 
unique page combinations. For example, SAM discovers the following visiting 
profiles: 

 
� Page 1 (t0 or t1) is visited before pages 9 and/or 2. Page 1 (t0 or t3) is also 

re-visited (t2) (cluster 1). 
  
� Page 68 (t0) is re-visited (t1) and/or visited before pages 65 and 71 and/or 

after page 1 (t0) (cluster 2). 
 
� Page 11 (t1) is visited before page 8 (t3). Page 6 (t3) is visited after page 5 

(t3), followed by pages 7 (t3) and 3 (t3) (cluster 3). 
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1 (47.00%) 2 (26.80%) 3 (26.20%) Open sequences 
S  C S C S C 

(1, 68), (0, 1) 2.98 87.50 5.22 11.48 0.00 0.00 
(68, 43), (0, 1) 2.98 38.89 0.00 0.00 6.11 6.78 
(1, 68), (1, 1) 1.70 66.67 2.24 16.67 0.00 0.00 
(68, 43), (0, 2) 1.70 22.22 1.49 8.00 0.00 0.00 
(68, 68), (0, 1) 1.70 22.22 0.00 0.00 21.37 23.73 
(68, 69), (0, 2) 1.70 22.22 0.00 0.00 0.00 0.00 
(61, 63, 60), (1, 1, 1) 1.28 100.00 0.00 0.00 0.00 0.00 
(59, 63, 60), (1, 1, 1) 1.28 100.00 0.00 0.00 0.00 0.00 
(61, 60), (1, 1) 1.28 100.00 0.00 0.00 0.00 0.00 
(61, 63), (1, 1) 1.28 100.00 0.00 0.00 0.00 0.00 
(1, 1), (0, 2) 0.00 0.00 14.93 32.79 1.53 15.38 
(1, 68), (0, 0) 0.00 0.00 14.18 31.15 7.63 76.92 
(1, 2), (0, 0) 0.00 0.00 14.18 31.15 0.00 0.00 
(1, 9), (0, 2) 0.00 0.00 13.43 29.51 1.53 15.38 
(1, 9), (0, 0) 0.00 0.00 10.45 22.95 0.00 0.00 
(1, 68, 65, 2, 9), (0, 0, 1, 0, 2) 0.00 0.00 1.49 100.00 0.00 0.00 
(1, 65, 2, 9), (0, 1, 0, 2) 0.00 0.00 1.49 100.00 0.00 0.00 
(68, 65, 2, 9), (0, 1, 0, 2) 0.00 0.00 1.49 100.00 0.00 0.00 
(65, 2, 9), (1, 0, 2) 0.00 0.00 1.49 100.00 0.00 0.00 
(1, 1), (3, 2) 0.00 0.00 2.99 80.00 0.00 0.00 
(68, 68), (0, 1) 1.70 22.22 0.00 0.00 21.37 23.73 
(68, 65), (0, 0) 0.00 0.00 5.22 28.00 17.56 19.49 
(68, 65), (0, 1) 0.00 0.00 3.73 20.00 16.79 18.64 
(68, 71), (0, 3) 0.00 0.00 0.00 0.00 15.27 16.95 
(68, 65), (0, 2) 0.00 0.00 1.49 8.00 13.74 15.25 
(68, 57, 65, 2, 9), (0, 1, 1, 0, 0) 0.00 0.00 0.00 0.00 1.53 100.00 
(68, 33, 42, 43, 38), (0, 0, 3, 0, 3) 0.00 0.00 0.00 0.00 1.53 100.00 
(68, 43, 33, 42, 38), (0, 1, 0, 3, 3) 0.00 0.00 0.00 0.00 1.53 100.00 
(68, 65, 58, 9, 71), (0, 1, 1, 1, 3) 0.00 0.00 0.00 0.00 1.53 100.00 
(68, 65, 55, 65, 58), (0, 1, 1, 0, 1) 0.00 0.00 0.00 0.00 1.53 100.00 
(68, 65, 55, 70, 2), (0, 1, 1, 1, 0) 0.00 0.00 0.00 0.00 1.53 100.00 

 
Table 4.23: 2-dim SAM applied to dataset 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages and categories of visiting page time: 
Evaluating open sequences in three clusters. 
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1 (28.80%) 2 (51.00%) 3 (20.20%) Open sequences 
S  C S C S C 

(1, 1), (0, 2) 13.19 76.00 1.18 5.36 0.00 0.00 
(1, 9), (0, 2) 4.17 24.00 5.49 25.00 0.00 0.00 
(1, 1), (3, 2) 3.47 62.50 0.00 0.00 0.00 0.00 
(1, 9), (1, 2) 2.78 44.44 1.57 21.05 0.00 0.00 
(1, 2), (1, 2) 2.78 44.44 0.00 0.00 0.00 0.00 
(1, 9, 69, 66, 12), (3, 3, 2, 3, 2) 1.39 100.00 0.00 0.00 0.00 0.00 
(1, 9, 69, 66, 71), (3, 3, 2, 3, 3) 1.39 100.00 0.00 0.00 0.00 0.00 
(1, 9, 69, 2, 12), (3, 3, 2, 3, 2) 1.39 100.00 0.00 0.00 0.00 0.00 
(1, 9, 69, 2, 71), (3, 3, 2, 3, 3) 1.39 100.00 0.00 0.00 0.00 0.00 
(1, 9, 69, 2, 66), (3, 3, 2, 3, 3) 1.39 100.00 0.00 0.00 0.00 0.00 
(68, 68), (0, 1) 0.00 0.00 12.94 20.75 0.00 0.00 
(68, 65), (0, 0) 0.00 0.00 11.76 18.87 0.00 0.00 
(1, 68), (0, 0) 0.00 0.00 11.37 51.79 0.00 0.00 
(68, 65), (0, 1) 0.00 0.00 10.98 17.61 0.00 0.00 
(68, 71), (0, 3) 0.00 0.00 8.63 13.84 0.00 0.00 
(68, 33, 42, 38), (0, 0, 3, 3) 0.00 0.00 1.18 100.00 0.00 0.00 
(61, 59, 63), (1, 1, 1) 0.00 0.00 1.18 100.00 0.00 0.00 
(33, 42, 38), (0, 3, 3) 0.00 0.00 1.18 100.00 0.00 0.00 
(68, 42, 38), (0, 3, 3) 0.00 0.00 1.18 100.00 0.00 0.00 
(68, 33, 38), (0, 0, 3) 0.00 0.00 1.18 100.00 0.00 0.00 
(11, 8), (1, 3) 0.00 0.00 0.00 0.00 2.97 100.00 
(5, 6, 7, 3), (3, 3, 3, 3) 0.00 0.00 0.00 0.00 1.98 100.00 
(5, 7, 3), (3, 3, 3) 0.00 0.00 0.00 0.00 1.98 100.00 
(5, 6, 3), (3, 3, 3) 0.00 0.00 0.00 0.00 1.98 100.00 
(5, 6, 7), (3, 3, 3) 0.00 0.00 0.00 0.00 1.98 100.00 
(6, 7, 3), (3, 3, 3) 0.00 0.00 0.00 0.00 1.98 100.00 

 
Table 4.24: SAM applied to dataset 1 (http://www.luc.ac.be/tew), server 
sessions consisting of visited pages and categories of visiting page time: 
Evaluating open sequences in three clusters. 
 

In data set 2, page 657 is considered to be the most frequent requested page 
(23.86% of the requested pages in data set 2 is page 657, re. figure 4.6). 2-dim 
SAM discovers the following profiles (re. table 4.25) with regard to page 657: 

 
� Page 657 (t0) is visited before page 947 (t0) (cluster 1). 
 
� Page 657 is visited after (t2) / before (t0) page 802 and/or visited before 

(t0) page 984 and/or visited before (t0) page 815. Page 657 (t0) is also re-
visited (t2) (cluster 2). 

 
� Page 657 (t2) presents one-page sessions (support of one-page sessions for 

page 657 is 88.50%) (cluster 3). 
 
� Page 657 (t0) is visited before / after page 984 and/or after page 1026. Page 

657 (t0) is also re-visited (t2) (cluster 4). 
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If two-dimensional server sessions are clustered based on SAM distance 
measures (re. table 4.26), server sessions are not clustered based on sequential 
relationships with regard to the most requested page (657) and relations 
between pages and times. Instead, the following profiles are discovered: 

 
� Page 1129 (t0) is visited before page 713 (t0) (cluster 1). 
 
� Page 657 (t0) is visited before / after page 984 and/or before page 713 

and/or before page 815. Page 657 (t0) is also re-visited (t2) (cluster 2). 
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1 (54.40%) 2 (23.40%) 3 (17.40%) 4 (4.80%) Open sequences 
S      C S C S C S C

(657, 947), (0, 0) 1.84        35.71 0.00 0.00 0.00 0.00 12.50 12.50
(1129, 713), (0, 0) 1.84        17.86 0.00 0.00 0.00 0.00 0.00 0.00
(804, 190), (1, 1) 1.10        60.00 0.00 0.00 0.00 0.00 0.00 0.00
(947, 996), (0, 1) 1.10        16.67 0.00 0.00 0.00 0.00 0.00 0.00
(657, 657), (0, 2) 0.00 0.00 17.95      30.00 0.00 0.00 0.00 0.00
(802, 657), (1, 2) 0.00 0.00 7.69      64.29 0.00 0.00 37.50 37.50
(657, 802), (0, 1) 0.00 0.00 6.84      11.43 0.00 0.00 0.00 0.00
(657, 984), (0, 0) 0.00 0.00 5.98      10.00 0.00 0.00 54.17 54.17
(657, 815), (0, 0) 0.00 0.00 5.13      8.57 0.00 0.00 20.83 20.83
(657, 786, 794, 786), (0, 1, 1, 1) 0.00 0.00 1.71      100.00 0.00 0.00 0.00 0.00
(657, 786, 794), (0, 1, 1) 0.00 0.00 1.71      100.00 0.00 0.00 0.00 0.00
(657, 1089, 713), (0, 3, 0) 0.00 0.00 1.71      100.00 0.00 0.00 0.00 0.00
(657, 1089, 657), 0, 3, 0) 0.00 0.00 1.71      100.00 0.00 0.00 0.00 0.00
(1082, 657, 1082), (0, 0, 0) 0.00 0.00 1.71      100.00 0.00 0.00 0.00 0.00

One-page sessions         0.77 - 0.05 - 0.98 - 0.00 -
(657, 984), (0, 0) 0.00 0.00 5.98 10.00 0.00 0.00 54.17  54.17
(657, 984, 657), (0, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 37.50  69.23
(984, 657), (0, 0) 0.00 0.00 2.56 16.67 0.00 0.00 37.50  69.23
(657, 657), (0, 2) 0.00 0.00 17.95 30.00 0.00 0.00 37.50  37.50
(1026, 657), (1, 0) 0.00 0.00 0.00 0.00 0.00 0.00 29.17  87.50
(657, 1026, 657, 984), (0, 1, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 12.50  100.00
(657, 815, 657), (0, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 20.83  100.00
(657, 713, 657), (0, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 16.67  100.00
(657, 947, 657), (0, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 12.50  100.00
(1026, 713, 657), (1, 0, 0) 0.00 0.00 0.00 0.00 0.00 0.00 12.50  100.00

 
Table 4.25: 2-dim SAM applied to dataset 2 (http://machines.hyperreal.org), server sessions consisting of visited pages 
and categories of visiting page time: Evaluating open sequences in four clusters. 
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1 (76.00%) 2 (24.00%) Open sequences 
S  C S C 

(1129, 713), (0, 0) 1.32 19.23 0.00 0.00 
(657, 657), (0, 2) 0.00 0.00 25.00 29.70 
(657, 984), (0, 0) 0.00 0.00 16.67 19.80 
(984, 657), (0, 0) 0.00 0.00 10.00 48.00 
(657, 713), (0, 0) 0.00 0.00 9.17 10.89 
(657, 815), (0, 0) 0.00 0.00 9.17 10.89 
(657, 984, 1006, 984), (0, 0, 2, 0) 0.00 0.00 1.67 100.00 
(657, 984, 1006, 657), (0, 0, 2, 0) 0.00 0.00 1.67 100.00 
(657, 984, 663, 657), (0, 0, 1, 0) 0.00 0.00 1.67 100.00 
(657, 815, 1082, 657), (0, 0, 0, 0) 0.00 0.00 1.67 100.00 
(657, 1025, 984, 1025), (0, 1, 0, 1) 0.00 0.00 1.67 100.00 

 
Table 4.26: SAM applied to dataset 2 (http://machines.hyperreal.org), server 
sessions consisting of visited pages and categories of visiting page time: 
Evaluating open sequences in two clusters. 
 

 
In data set 3, most requested pages are page 28 (5.32%), 27 (5.56%), 109 

(5.45%), 250 (4.56%), 280 (6.47%), 281 (6.69%), 355 (6.51%) and 358 
(4.91%). This is also shown in figure 4.7. A general difference between data 
sets 1, 2 and 3 is that in the first two data sets one high relative frequency value 
for one page is shown (re. figures 4.5 and 4.6) whereas in data set 3, several 
high relative frequency values for several pages are shown. Therefore, for data 
set 3, profiles discovered by 2-dim SAM distance measures provide 
information for several pages whereas for data set 1 and 2, profiles provide 
information that is concentrated on one page. 

Generally, if we compare table 4.27 with 4.28, server sessions are more 
equally spread across clusters based on 2-dim SAM. For example, in table 4.27, 
cluster 1, 2, 3 and 4 represent respectively 31.40%, 29.20%, 22.60% and 
16.80% of the server sessions whereas in table 4.28, cluster 1, 2, 3 and 4 
represent respectively 32.40%, 31.80%, 8.20% and 27.60% of the server 
sessions. 

Particularly, if we compare table 4.27 with 4.28, cluster one based on 2-dim 
SAM is very much alike with cluster one based on SAM. The same is shown 
for cluster two. The main difference between clustering 2-dimensional server 
sessions of data set 3 based on 2-dim SAM and SAM is shown by clusters three 
and four. The profiles presented by clusters three and four in table 4.27 are as 
follows: 
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� Page 281 (t0) is visited before page 280 (t0) and/or page 355 (t1) and/or 
page 492 (t0). Also, page 280 (t0) is visited before page 355 (t1) (cluster 3). 

 
� Page 281 (t0) is visited before page 355 (t1) and/or page 358 (t0). Also, 

page 280 (t0) is visited before page 355 (t1) and/or page 358 (t0) (cluster 
4). 

 
The profiles presented by clusters three and four in table 4.28 are as follows: 
 
� Page 281 (t0) is visited before page 280 (t0) and/or page 355 (t1) and/or 

page 358 (t0) and/or page 491 (t0). Also, page 280 (t0) is visited before 
page 355 (t1) and/or page 358 (t0) and/or page 491 (t0). Also, page 355 
(t1) is visited before page 492 (t0) (cluster 3). 

 
� Page 281 (t0) is visited before page 280 (t0) and/or page 355 (t1) and/or 

page 492 (t0). Also, page 280 (t0) is visited before page 355 (t1) and/or 
page 492 (t0) (cluster 4). 

 
The main difference is that in table 4.27, cluster three and four distinguish 
server sessions excluding page 358 (cluster 3) and including page 358 (cluster 
4). In table 4.28, cluster three and four distinguish server sessions including 
pages 358 and 491 (cluster 3) and excluding pages 358 and 491 (cluster 4). 
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1 (31.40%) 2 (29.20%) 3 (22.60%) 4 (16.80%) Open sequences 
S  C    S C S C S C

(28, 109), (0, 0) 98.09        98.09 2.05 33.33 1.77 100.00 0.00 0.00
(27, 109), (0, 0) 87.26        87.26 0.00 0.00 1.77 100.00 0.00 0.00
(109, 250), (0, 0) 86.62        87.18 0.00 0.00 1.77 100.00 0.00 0.00
(28, 250), (0, 0) 86.62        86.62 1.37 22.22 1.77 100.00 0.00 0.00
(27, 250), (0, 0) 86.62        86.62 0.00 0.00 1.77 100.00 0.00 0.00
(28, 109, 250), (0, 0, 0) 85.35        87.01 0.00 0.00 1.77 100.00 0.00 0.00
(28, 109, 250, 113, 52, 64), (0, 0, 0, 0, 2, 1) 5.10        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 250, 113, 52, 64), (0, 0, 0, 2, 1) 5.10        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 109, 250, 52, 64), (0, 0, 0, 2, 1) 5.10        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 109, 113, 52, 64), (0, 0, 0, 2, 1) 5.10        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(28, 109, 249, 52, 64), (0, 0, 0, 2, 1) 5.10        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(305, 317), (2, 2) 0.00 0.00 9.59      87.50 0.00 0.00 0.00 0.00
(286, 317), (2, 2) 0.00 0.00 8.90      86.67 0.00 0.00 0.00 0.00
(305, 286), (2, 2) 0.00 0.00 6.85      62.50 0.00 0.00 0.00 0.00
(305, 286, 317), (2, 2, 2) 0.00 0.00 5.48      80.00 0.00 0.00 0.00 0.00
(286, 305, 317), (2, 2, 2) 0.00 0.00 2.74      100.00 0.00 0.00 0.00 0.00
(305, 286, 317, 307, 311), (2, 2, 2, 2, 3) 0.00 0.00 1.37      100.00 0.00 0.00 0.00 0.00
(234, 227, 237, 244, 230), (3, 2, 3, 3, 3) 0.00 0.00 1.37      100.00 0.00 0.00 0.00 0.00
(286, 317, 307, 311), (2, 2, 2, 3) 0.00 0.00 2.05      100.00 0.00 0.00 0.00 0.00
(305, 286, 307, 311), (2, 2, 2, 3) 0.00 0.00 1.37      100.00 0.00 0.00 0.00 0.00
(305, 317, 307, 311), (2, 2, 2, 3) 0.00 0.00 1.37      100.00 0.00 0.00 0.00 0.00
(281, 280), (0, 0) 0.00 0.00 0.00 0.00 100.00    100.00 44.05 52.11
(281, 280, 355), (0, 0, 1) 0.00 0.00 0.00 0.00 99.12    99.12 0.00 0.00
(281, 355), (0, 1) 0.00 0.00 0.00 0.00 99.12    99.12 75.00 88.73
(280, 355), (0, 1) 0.00 0.00 0.00 0.00 99.12    99.12 53.57 66.18
(281, 280, 492), (0, 0, 0) 0.00 0.00 0.00 0.00 92.04    92.04 0.00 0.00
(281, 280, 355, 491, 297, 328), (0, 0, 1, 0, 2, 2)  0.00 0.00 0.00 0.00 2.65    100.00 0.00 0.00
(281, 280, 355, 491, 340, 328), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 2.65    100.00 0.00 0.00
(281, 280, 355, 491, 340, 297), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 2.65    100.00 0.00 0.00
(281, 280, 355, 491, 295, 328), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 2.65    100.00 0.00 0.00
(281, 280, 355, 491, 295, 297), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 2.65    100.00 0.00 0.00
(281, 355), (0, 1) 0.00 0.00 0.00 0.00 99.12 99.12 75.00  88.73
(280, 355), (0, 1) 0.00 0.00 0.00 0.00 99.12 99.12 53.57  66.18
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1 (31.40%) 2 (29.20%) 3 (22.60%) 4 (16.80%) Open sequences 
S  C S C S C S C 

(280, 358), (0, 0) 0.00 0.00 0.00 0.00 74.34 74.34 52.38  64.71
(281, 358), (0, 0) 0.00 0.00 0.00 0.00 74.34 74.34 50.00  59.15
(281, 355, 358), (0, 1, 0) 0.00 0.00 0.00 0.00 73.35 74.11 47.62  63.49
(281, 280, 355, 358, 483), (0, 0, 1, 0, 3) 0.00 0.00 0.00 0.00 0.00 0.00 5.95  100.00
(281, 355, 475, 474, 483), (0, 1, 3, 3, 3) 0.00 0.00 0.00 0.00 0.00 0.00 5.95  100.00
(281, 355, 468, 474, 483), (0, 1, 3, 3, 3) 0.00 0.00 0.00 0.00 0.00 0.00 5.95  100.00
(281, 280, 355, 492, 483), (0, 0, 1, 0, 3) 0.00 0.00 0.00 0.00 0.00 0.00 5.95  100.00
(281, 280, 468, 474, 483), (0, 0, 3, 3, 3) 0.00 0.00 0.00 0.00 0.00 0.00 5.95  100.00

 
 
Table 4.25: 2-dim SAM applied to dataset 3 (Belgian telecom provider), server sessions consisting of visited pages and 
categories of visiting page time: Evaluating open sequences in four clusters.
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1 (32.40%) 2 (31.80%) 3 (8.20%) 4 (27.60%) Open sequences 
S  C    S C S C S C

(28, 109), (0, 0) 96.91        96.91 1.26 33.33 0.00 0.00 0.00 0.00
(28, 250), (0, 0) 86.42        86.42 0.00 0.00 0.00 0.00 0.00 0.00
(109, 250), (0, 0) 85.80        87.42 0.00 0.00 0.00 0.00 0.00 0.00
(27, 250), (0, 0) 85.80        86.34 0.00 0.00 0.00 0.00 0.00 0.00
(27, 109), (0, 0) 85.80        86.34 0.00 0.00 0.00 0.00 0.00 0.00
(27, 28, 109, 250, 116, 161), (0, 0, 0, 0, 2, 1) 1.23        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 28, 109, 113, 52, 33), (0, 0, 0, 0, 2, 3) 1.23        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 28, 109, 113, 116, 161), (0, 0, 0, 0, 2, 1) 1.23        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 28, 109, 250, 52, 64), (0, 0, 0, 0, 2, 1) 1.23        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(27, 28, 109, 250, 52, 33), (0, 0, 0, 0, 2, 3) 1.23        100.00 0.00 0.00 0.00 0.00 0.00 0.00
(305, 317), (2, 2) 0.00 0.00 8.18      86.67 0.00 0.00 1.45 100.00
(286, 317), (2, 2) 0.00 0.00 7.55      85.71 0.00 0.00 1.45 100.00
(305, 286), (2, 2) 0.00 0.00 6.29      66.67 0.00 0.00 0.00 0.00
(305, 286, 317), (2, 2, 2) 0.00 0.00 5.03      80.00 0.00 0.00 0.00 0.00
(45, 76), (2, 2) 0.00 0.00 2.52      100.00 0.00 0.00 0.00 0.00
(305, 286, 317, 307, 311), (2, 2, 2, 2, 3) 0.00 0.00 1.26      100.00 0.00 0.00 0.00 0.00
(286, 317, 307, 311), (2, 2, 2, 3) 0.00 0.00 1.89      100.00 0.00 0.00 0.00 0.00
(492, 358, 485, 480), (0, 0, 3, 3) 0.00 0.00 1.26      100.00 0.00 0.00 0.00 0.00
(305, 286, 307, 311), (2, 2, 2, 3) 0.00 0.00 1.26      100.00 0.00 0.00 0.00 0.00
(305, 317, 307, 311), (2, 2, 2, 3) 0.00 0.00 1.26      100.00 0.00 0.00 0.00 0.00
(281, 280), (0, 0) 1.85 100.00 0.00 0.00 95.12    97.50 79.71 80.29
(281, 355), (0, 1) 1.85 100.00 0.00 0.00 92.68    95.00 97.83 98.54
(355, 492), (1, 0) 1.23 66.67 0.00 0.00 82.93    85.00 75.36 77.04
(280, 358), (0, 0) 1.85 100.00 0.00 0.00 82.93    85.00 66.67 67.15
(280, 491), (0, 0) 1.85 100.00 0.00 0.00 82.93    85.00 64.49 64.96
(280, 355), (0, 1) 1.85 100.00 0.00 0.00 82.93    85.00 86.96 87.59
(281, 358), (0, 0) 1.85 100.00 0.00 0.00 82.93    85.00 65.22 65.69
(281, 491), (0, 0) 1.85 100.00 0.00 0.00 82.93    85.00 63.04 63.50
(281, 280, 355, 491, 449, 452), (0, 0, 1, 0, 2, 2)  0.00 0.00 0.00 0.00 4.88    100.00 0.00 0.00
(281, 280, 355, 491, 326, 339), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 4.88    100.00 0.00 0.00
(281, 280, 355, 491, 326, 328), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 4.88    100.00 0.00 0.00
(281, 280, 355, 491, 326, 297), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 4.88    100.00 0.00 0.00
(281, 280, 355, 491, 326, 340), (0, 0, 1, 0, 2, 2) 0.00 0.00 0.00 0.00 4.88    100.00 0.00 0.00
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1 (32.40%) 2 (31.80%) 3 (8.20%) 4 (27.60%) Open sequences 
S  C S C S C S C 

(281, 355), (0, 1) 1.85 100.00 0.00 0.00 92.68 95.00 97.83  98.54
(280, 355), (0, 1) 1.85 100.00 0.00 0.00 82.93 85.00 86.96  87.59
(281, 280), (0, 0) 1.85 100.00 0.00 0.00 95.12 97.50 79.71  80.29
(280, 492), (0, 0) 1.85 100.00 0.00 0.00 80.49 82.50 77.54  78.10
(281, 492), (0, 0) 1.85 100.00 0.00 0.00 80.49 82.50 76.09  76.64
(281, 280, 355, 492, 363, 356), (0, 0, 1, 0, 2, 1) 0.00 0.00 0.00 0.00 0.00 0.00 1.45  100.00
(281, 280, 492, 363, 356), (0, 0, 0, 2, 1) 0.00 0.00 0.00 0.00 0.00 0.00 1.45  100.00
(281, 280, 355, 275, 272), (0, 0, 1, 3, 3) 0.00 0.00 0.00 0.00 0.00 0.00 1.45  100.00
(281, 355, 492, 363, 356), (0, 1, 0, 2, 1) 0.00 0.00 0.00 0.00 0.00 0.00 1.45  100.00
(280, 355, 392, 363, 356), (0, 1, 0, 2, 1) 0.00 0.00 0.00 0.00 0.00 0.00 1.45  100.00

 
Table 4.28: SAM applied to dataset 3 (Belgian telecom provider), server sessions consisting of visited pages and 
categories of visiting page time: Evaluating open sequences in four clusters. 

= 182



4.12.2 Deploying the results 
 
4.12.2.1 Suggestions for structure and service improvement of the web site 

http://www.luc.ac.be/tew 
 
If 2-dim SAM is applied to server sessions consisting of visited pages and 
categories of visiting page time, information provided by profiles related with 
page 68 or http://www.luc.ac.be/tew/opleidingen (which is the most 
requested page) may be deployed as follows. First, web personalization 
systems may provide better and faster services to the web visitor and predict 
the urgency of page deliveries. Some examples are given below. Note that for 
interpretations of categories of visiting page time table 4.7 is used: 
 
� If visitors go to the home page http://www.luc.ac.be/tew and stay on this 

page for less than 12.89 seconds (t0), the probability is 87.50% that they 
will visit thereafter http://www.luc.ac.be/tew/opleidingen and stay on this 
page between 12.89 and 56 seconds (t1) (re. open sequence (1, 68), (0, 1) in 
cluster 1). 

 
� If visitors go to the home page http://www.luc.ac.be/tew and stay on this 

page for less than 12.89 seconds (t0), the probability is 31.15% that they 
will visit thereafter http://www.luc.ac.be/tew/opleidingen and stay on this 
page for less than 12.89 seconds (re. open sequence (1, 68), (0, 0) in cluster 
2). 

 
� The probability is 100% that http://www.luc.ac.be/tew/informatie is 

requested and visited between 56 and 166 seconds if a visitor follows the 
pattern and respects sequential order and visiting page times: 

http://www.luc.ac.be/tew (visiting page time less than 12.89 seconds), followed 
by http://www.luc.ac.be/tew/opleidingen (visiting page time less than 12.89 
seconds), followed by 
http://www.luc.ac.be/tew/opleidingen/basisopleiding/opbouw_tew (visiting 
page time between 12.89 and 56 seconds), followed by 
http://www.luc.ac.be/tew/diensten/diensten_voor_studenten (visiting page time 
less than 12.89 seconds) (re. open sequence (1, 68, 65, 2, 9), (0, 0, 1, 0, 2) in 
cluster 2). 
 
� The probability is 100% that http://www.luc.ac.be/tew/informatie is 

requested and visited for less than 12.89 seconds if a visitor follows the 
pattern and respects sequential order and visiting page times: 
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http://www.luc.ac.be/tew/opleidingen (visiting page time less than 12.89 
seconds), followed by 
http://www.luc.ac.be/tew/opleidingen/basisopleidingen/opbouw_tew/curriculu
m/cur2kantew.html (visiting page time between 12.89 and 56 seconds), 
followed by http://www.luc.ac.be/tew/opleidingen/basisopleiding/opbouw_tew 
(visiting page time between 12.89 and 56 seconds), followed by 
http://www.luc.ac.be/tew/diensten/diensten_voor_studenten (visiting page time 
less than 12.89 seconds) (re. open sequence (68, 57, 65, 2, 9), (0, 1, 1, 0, 0) in 
cluster 3). 
 

Second, navigational pages and content pages related with 
http://www.luc.ac.be/tew/opleidingen may be verified with regard to their 
actual use by the web visitors. If, in data set 1, navigational pages with visiting 
page time of more than 12.89 seconds are found, they are not used as intended 
and structured by the web developer. Likewise, if content pages with visiting 
page time of less than 12.89 seconds are found, they are not used the way they 
should be used. Some examples are given below: 
 
� Generally, http://www.luc.ac.be/tew/opleidingen (68) is actually used as a 

navigation page (cluster 2 and 3). Yet, 
http://www.luc.ac.be/tew/opleidingen is related with other navigational 
pages that are actually used as content pages. Examples are 
http://www.luc.ac.be/tew/opleidingen/basisopleiding/opbouw_tew (65) and 
http://www.luc.ac.be/tew/informatie (9) (cluster 2). 

 
If SAM is used as distance measure between two-dimensional server 

sessions, not every cluster is concentrated on profile information with regard to 
the most requested page http://www.luc.ac.be/tew/opleidingen (68) in data set 
1. Instead, each cluster represents unique page combinations. Instead of 
extracting information that is concentrated on the most requested web page, 
now profiles provide more general information, which may also be used to 
predict page requests and to verify whether navigational and content pages are 
used as intended and structured in the web site. 
 
4.12.2.2 Suggestions for structure and service improvement of the web site 

http://machines.hyperreal.org 
 
If 2-dim SAM is applied to server sessions consisting of visited pages and 
categories of visiting page time, information provided by profiles related with 
page 657 or http://machines.hyperreal.org (which is the most requested page) 
may be deployed as follows. First, web personalization systems may provide 
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better and faster services to the web visitor and predict the urgency of page 
deliveries. Some examples are given below. Note that for interpretations of 
categories of visiting page time table 4.7 is used: 
 
� If visitors go to the home page http://machines.hyperreal.org and stay on 

this page for less than 9.63 seconds (t0), the probability is 35.71% that they 
will visit thereafter http://machines.hyperreal.org/manufacturers/Moog and 
stay on this page for less than 9.63 seconds (re. open sequence (657, 947), 
(0, 0) in cluster 1). 

 
� If visitors go to 

http://machines.hyperreal.org/manufacturers/categories/DR-660 and stay on 
this page between 9.63 and 68 seconds (t1), the probability is 64.29% that 
they will visit thereafter http://machines.hyperreal.org and stay on this page 
between 68 and 204 seconds (t2) (re. open sequence (802, 657), (1, 2) in 
cluster 2). 

 
� http://machines.hyperreal.org is the only page that is visited. The average 

visiting page time of all the requests of http://machiens.hyperreal.org in 
data set 2 lies between 68 and 204 seconds (cluster 3). 

 
� If visitors go to http://machines.hyperreal.org and stay on this page for less 

than 9.63 seconds, followed by 
http://machines.hyperreal.org/manufacturers/Roland with visiting page time 
less than 9.63 seconds, the probability is 69.23% that they will re-visit 
thereafter http://machines.hyperreal.org and stay on this page for less than 
9.63 seconds (re. open sequence (657, 984, 657), (0, 0, 0) in cluster 4). 

 
Second, navigational pages and content pages related with 

http://machines.hyperreal.org may be verified with regard to their actual use by 
the web visitors. If, in data set 2, navigational pages with visiting page time of 
more than 9.63 seconds are found, they are not used as intended and structured 
by the web developer. Likewise, if content pages with visiting page time of less 
than 9.63 seconds are found, they are not used the way they should be used. 
Some examples are given below: 
 
� Generally, http://machines.hyperreal.org is actually used as a navigation 

page except when the home page is re-visited (cluster 2 and 4) and when 
http://machines.hyperreal.org/manufacturers/categories/DR-660 (802) 
precedes the home page (cluster 2). 
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If SAM is used as distance measure between two-dimensional server 
sessions, not every cluster is concentrated on profile information with regard to 
the most requested page, which is http://machines.hyperreal.org in data set 2. 
Instead, each cluster distinguishes unique page combinations. Instead of 
extracting information that is concentrated on the most requested web page, 
now profiles provide more general information, which may also be used to 
predict page requests and to verify whether navigational and content pages are 
used as intended and structured in the web site. 

 
4.12.2.3 Suggestions for structure and service improvement of the web site 

of a Belgian telecom provider 
 
If 2-dim SAM is applied to server sessions consisting of visited pages and 
categories of visiting page time, information provided by profiles related with 
several highly requested pages, such as FR General (28), FR Main (109), FR 
Games (250), DU Welcome (280), DU General (281), DU Main (355) and 
DU Main New (358) may be deployed as follows. First, web personalization 
systems may provide better and faster services to the web visitor and predict 
the urgency of page deliveries. Some examples are given below. Note that for 
interpretations of categories of visiting page time table 4.7 is used: 
 
� If visitors go to the home page FR General and stay on this page for less 

than 5.86 seconds (t0), the probability is 98.09% that they will visit 
thereafter FR Main and stay on this page for less than 5.86 seconds (re. 
open sequence (28, 109), (0, 0) in cluster 1). 

 
� If visitors go to DU General and stay on this page for less than 5.86 

seconds, the probability is 99.12% that they will visit thereafter DU Main 
and stay on this page between 5.86 and 13 seconds (t1) (re. open sequence 
(281, 355), (0, 1) in cluster 3). 

 
Second, navigational pages and content pages may be verified with regard 

to their actual use by the web visitors. If, in data set 3, navigational pages with 
visiting page time of more than 5.86 seconds are found, they are not used as 
intended and structured by the web developer. Likewise, if content pages with 
visiting page time of less than 5.86 seconds are found, they are not used the 
way they should be used. Some examples are given below: 
 
� The home pages in French and Dutch language, FR General (28), FR 

Welcome (27), DU General (281) and DU Welcome (280) are all visited 
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for less than 5.86 seconds, which is conform the intentions of the web 
developer (cluster 1, 2, 3, 4). 

 
� Page DU Main (355), which is structured as navigation page, is actually 

used as a content page and visited between 5.86 and 13 seconds (cluster 3, 
4). 

 
If SAM is used as distance measure between two-dimensional server 

sessions in data set 3, small differences are shown in clustering results 
compared with those based on 2-dim SAM distance measures. 

 
 

4.13  Conclusion and Future Research 
 
4.13.1 Conclusion 
 
In this chapter, the surplus value of clustering server sessions based on SAM 
and 2-dim SAM distance measures is demonstrated on real log file data 
registering visiting behaviour on three different web sites. Experimental tests 
analyse Web Usage Data from http://www.luc.ac.be/tew, 
http://machines.hyperreal.org and the web site of a Belgian telecom provider. 
For privacy reasons we omit the URL address of the last web site. 

SAM measures distances between server sessions taking into account 
equalities of visited pages and the order of visited pages. Clustering based on 
SAM groups server sessions with equal visited pages and similar order of 
visited pages together. Generally, SAM is used for server sessions consisting of 
one attribute or dimension, which are visited pages. SAM is compared with a 
method that does not incorporate order-based information, called Association 
distance. Given the results of our experimental tests, SAM-based clustering 
performs better than Association-based clustering for the following reasons: 

 
� Different statistical measures for defining the number of clusters behave 

towards the same level of solutions if SAM is used as distance measure. 
Yet, if Association distance is used, for two of the three data sets statistical 
measures lead to different levels of clustering solutions. 

 
� The distribution of (groups of) page_ids in different clusters is generally 

better represented when SAM is used as distance measure between server 
sessions. Also, at a general level, if page x is highly represented in cluster 
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a, it is (nearly) not represented in cluster b following SAM-based 
clustering. 

 
� Order-based information is better given by clusters based on SAM. This 

might indicate that the model based on SAM fits the data better. 
 
� SAM is less sensitive to the length of server sessions when compared to 

Association. 
 
2-dim SAM measures distances between server sessions taking into account 

the same features as SAM and additionally measures equalities of categories of 
visiting page time as well as relations between visited pages and categories of 
visiting page time. Clustering based on 2-dim SAM groups server sessions 
together based on four characteristics: equal visited pages, equal categories of 
visiting page time, similar order of visited pages and similar relations between 
visited pages and categories of visiting page time. 2-dim SAM is used for 2-
dimensional server sessions or server sessions consisting of two attributes or 
dimensions, which are visited pages and categories of visiting page time. In 
order to show that 2-dim SAM is more able to distinguish server sessions with 
regard to relations between visited pages and categories of visiting page time, 
the data sets of the three different web sites (providing server sessions 
consisting of two attributes) are also analysed by means of SAM. Given the 
results of our experimental tests, the main difference between clusters based on 
2-dim SAM and SAM are the following: 
 
� Generally, support values of two-dimensional open sequences selected for 

cluster description are higher for clusters based on 2-dim SAM. This might 
indicate that two-dimensional server sessions are better clustered with 
regard to relations between visited pages and categories of visiting page 
time. 

 
� Generally, 2-dimensional server sessions are more equally distributed 

across clusters based on 2-dim SAM. This means that relatively large 
groups of visiting behaviour are found based on 2-dim SAM. Since we are 
interested in adjusting the web site conform to large groups of visiting 
behaviour, clustering 2-dimensional server sessions based on 2-dim SAM 
might provide better results. 

 
� If a particular web page is highly requested relative to other requests, 

clustering based on 2-dim SAM tends to group 2-dimensional server 
sessions together based on equal visiting behaviour related to the web page 

= 188



that is highly requested. Practically, this means that different profiles with 
regard the most requested web page are discovered. 

 
� If a particular web page is highly requested relative to other requests, 

clustering based on SAM tends to group 2-dimensional server sessions 
together irrelevant of their relation to the web page that is highly requested. 
Practically, this means that one profile is discovered with regard to the 
highest requested web page. The remaining profiles are not related with the 
highest requested web page. Yet, every profile is different and provides 
information about different visiting behaviour. 

 
� If several web pages are highly requested relative to others, clustering 

based on 2-dim SAM as well as SAM tend to group 2-dimensional server 
sessions together based on equal visiting behaviour related to the web pages 
that are highly requested. Practically, this means that different profiles, 
mostly with regard to the high requested web pages, are discovered. 

 
� Clustering based on 2-dim SAM groups 2-dimensional server sessions 

together based on equalities, order-based information and relations between 
visited pages and categories of visiting page time. Clustering based on 
SAM groups 2-dimensional server sessions together based on equalities 
and order-based information of visited pages and categories of visiting page 
time, without considering the relations between the two attributes. 

 
4.13.2 Future research 
 
Future research should employ other heuristics or algorithms for identifying 
users and server sessions. The influence of user and session identification 
should be measured on the final results. In Berend et al  (2001), the accuracy of 
sessionizers for web usage analysis is measured. Also, the impact of caching 
must be examined. Analysis on sequences of requests may be affected by 
cashed pages since backward moves to previously seen pages should be part of 
the analysis (Berend et al, 2001). Likewise, cashed pages affect the visiting 
page times if looking at cached pages takes so long that sessions are 
erroneously split (Berend et al, 2001). The only way to effectively study the 
impact of cashing is by deploying client-side agents that keep track of users’ 
actions (Berend et al, 2001). 

Algorithms should be developed for analysing continuous, numerical values 
for visiting page time information, instead of using categories. As a general 
rule, neural networks (Craven and Shavlik, 1998) work best on data sets with a 
large number of numeric attributes (Mena, 1999). 
= 189



Another topic for future research is examining whether time differences 
between logged page requests on the server and real page delivery to the user 
are significant. If so, the visiting page times that are based on the time of page 
requests logged on the server must be reconsidered. 

Another topic for future research concerns the boundary calculation for t1, 
t2 and t3. We defined boundaries based on equal number of requests. Instead, 
boundaries may be defined based on equal total visiting page time. For 
example, the total visiting page time of all the requests above 12.89 seconds in 
the first data set amounts up to 1,027,500 seconds. Following, actual visiting 
page times are ordered ascending starting with 12.891 up to 1799 seconds. 
Each time one actual visiting page time is assigned to t1 until the total visiting 
page time within time category t1 is equal to 342,500 (i.e. 1,027,500 / 3) 
seconds. The boundary of t1 is equal to the last visiting page time that was 
added to t1 before total visiting page time exceeded 342,500 seconds. Then, 
visiting page times are assigned to t2 and t3 accordingly. Table 4.29 provides 
the boundaries based on equal total visiting page time within each time 
category for the datasets used in our analyses. More research is necessary to 
evaluate whether other methods for calculating boundaries for t1, t2 and t3 
provide significant differences in the results. 

 
Dataset 

1 2 3 
0 < t0 ≤ 12.89 

12.89 < t1 ≤ 203 
203 < t2 ≤ 562 

562 < t3 

0 < t0 ≤ 9.63 
9.63 < t1 ≤ 209 
209 < t2 ≤ 322 

322 < t3 

0 < t0 ≤ 5.86 
5.86 < t1 ≤ 208 
208 < t2 ≤ 335 

335 < t3 
 
Table 4.29: Visiting page time categories based on equal total visiting page 
time. 
 

Future research should also examine how sensitive the final results are to 
(small) changes in the value of tcutoff, particularly regarding γ (the number of 
navigation pages divided by the total number of pages in the analysis) in 
equation (4.2). For example, with regard to analysing visiting behaviour on 
http://www.luc.ac.be/tew, 7 out of 71 pages are navigation pages, which means 
that γ equals 0.09859. Yet, further examination is necessary in order to know 
how increases/decreases in the number of navigational pages might affect the 
final clustering results. 

Besides Ward clustering, other clustering methods may be invoked on the 
distance matrices as well. In table 4.8 of section 4.7, the dissimilarities between 
clusters are calculated using Single linkage, Complete linkage, Average linkage 
and Centroïd linkage. 
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Future research should also explore how open sequences might be used 
before the mining process takes place. In our experiments, open sequences are 
used after the mining process or in the post-processing step. The reasons why 
open sequences are searched after the mining process are given in section 4.8. 
Nevertheless, in order to employ open sequences before the mining process, a 
cutoff value needs to be defined to extract open sequences with high support 
and/or confidence values, while, at the same time, employing an algorithm 
which notifies when valuable information embedded in server sessions might 
be lost. 

Throughout the analysis of invoking hierarchical clustering algorithms on 
distance matrices including SAM or 2-DIM SAM distance measures between 
server sessions, we used an agglomerative clustering method (i.e. Ward). 
Future research should examine whether divisive hierarchical clustering 
techniques are suitable as well. Divisive methods proceed by splitting the data 
set into smaller and smaller clusters until each object belongs to a separate 
cluster (Kaufman and Rousseeuw, 1990). Generally, divisive methods are 
computationally more complex than agglomerative methods. Nevertheless, it is 
possible to construct divisive methods that do not consider all divisions, 
because many of them would be totally inappropriate anyway. Therefore, 
Kaufman and Rousseeuw (1990) suggest an algorithm based on the proposal of 
Macnaughton-Smith et al (1964). 

For each of the three data sets that we examined, one-page sessions are not 
omitted from the analysis because we believe that they might provide real 
visiting behaviour. However, care must be taken for interpreting visiting page 
times of one-page sessions, since time difference between request and 
subsequent request cannot be calculated. Therefore, within our analyses, we 
used the average visiting page time for one-page sessions. Future research 
should examine whether omitting one-page sessions from the data leads to 
different results. 

SAM and 2-dim SAM analyses are executed on individual page_ids and not 
on groups of page_ids. Future research should examine whether analysing web 
surfing behaviour at a higher hierarchical level, using groups of pages (also 
known as classes of pages), provides meaningful results. This way, suggestions 
for links between classes of pages instead of individual pages may be provided. 

Since web sites currently evolve into dynamic data repositories, further 
research is necessary in applying SAM-based clustering to dynamic data sets. 
In order to examine order-based information of dynamic pages (instead of 
static pages), other pre-processing techniques for constructing server sessions 
are necessary. Instead of using only the information recorded in log files, extra 
information of CGI scripts, SSI and/or cookies may construct sequences 
consisting of page_id and text. SAM is able to calculate distances between 
= 191



sequences consisting of both numeric and alphabetic information. Finally, 
clustering based on SAM may provide large groups of visiting patterns offering 
order-based information of dynamic web pages. 
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CHAPTER 5 

 
SAM AND INTERESTINGNESS 

 
 
 

In this chapter, a new algorithm called Sequence Alignment Method integrated 
with an Interestingness Measure (SAMI ) (Hay et al, 2003a) is illustrated for 
mining navigation patterns on a web site. Through log file analysis, SAMI 
distinguishes interesting patterns (i.e. unexpected, surprising patterns 
contradicting with the structure of the web site or direct hyperlinks between 
web pages) from uninteresting patterns (i.e. expected, known, obvious patterns 
resulting from the structure of the web site or direct hyperlinks between web 
pages) and provides information about the order of visited web pages. The 
algorithm is validated using real data sets of the Music Machines web site 
http://machines.hyperreal.org, home of musical electronics on the web. 
Empirical results show that SAMI identifies profiles of visiting behaviour, 
which may be used for web personalization techniques and for optimising the 
layout of the web site through structuring of page-links. 
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5.1  Motivation 
 
In the previous chapter, we discovered knowledge about visiting patterns on 
three different web sites. The extracted knowledge from log file analysis is 
presented by means of visiting profiles showing visited pages (and visiting 
times) along with order-based information. Clustering server sessions by means 
of SAM or two-dimensional SAM provides a general overview of how people 
visit a web site, without distinguishing interesting patterns from uninteresting 
patterns. Interesting patterns are unexpected, surprising patterns contradicting 
with the structure of the web site or direct hyperlinks between web pages. 
Uninteresting patterns are expected, known, obvious patterns resulting from 
the structure of the web site or direct hyperlinks between web pages. For 
example, with regard to the analysis of the log files of the web site 
http://www.luc.ac.be/tew in chapter four (re. section 4.9.1), uninteresting 
patterns are navigations from page 1 to page 9 and from page 1 to page 68. The 
relatively strong support measures of these patterns result from direct 
hyperlinks between page 1 and 9 and page 1 and 68. Also, navigating from 
page 2 to page 40 might not be interesting since the support is expected to be 
relatively low, due to the absence of links between pages 2 and 40. However, 
navigating from page 68 to page 55 might be surprising and therefore 
interesting due to a relatively high support without any direct hyperlinks 
between pages 68 and 55. In other words, if two different web pages (i.e. web 
pages having different URL addresses) A and B are connected by a direct 
hyperlink from A to B, visiting pattern AB may be interesting if the support is 
relatively low. Yet, if A and B are not connected by a direct hyperlink, visiting 
pattern AB may be interesting if the support is relatively high. 

 If the web administrator wants to automatically discover only interesting 
patterns, instead of a general overview providing both uninteresting and 
interesting patterns, it is necessary to extend SAM with a measure that 
distinguishes interesting patterns from uninteresting patterns by looking at 
support measures and the structure of the web site. Besides, as stated in chapter 
two, section 2.3, successful data mining projects extract previously unknown 
and useful information while searching beyond obvious correlations. To 
address this problem, we integrated SAM with an interestingness measure, 
based on the structure of the web site. The new method is called SAMI and 
discovers interesting patterns providing visited web pages as well as the order 
of visited web pages.  
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5.2 Interestingness measures 
 
Researchers have been working on defining various measures of 
interestingness for patterns (Liu et al, 1997; Padmanabhan and Tuzhilin, 1998; 
Piatetsky-Shapiro and Matheus, 1994; Silberschatz and Tuzhilin, 1996). 
Generally, a common theme among the various criteria for interestingness is 
novelty or unexpectedness of a rule. This means that, results that were 
previously known by the data analyst before the mining process took place, are 
not considered interesting. 

Silberschatz and Tuzhilin (1996) describe two types of interestingness 
measures. Objective measures rate rules based on the data in the analysis. Often 
thresholds for values of support, confidence or chi-square are used to search 
for interesting information (Brin et al, 1997; Cooley et al, 1999b). However, 
high thresholds rarely discover knowledge that was not previously known and 
low thresholds usually result in an explosion and therefore unmanageable 
number of rules (Cooley et al, 1999b). Subjective measures depend on the class 
of users who examine the pattern and use two criteria to define whether a rule 
is interesting: unexpectedness and action ability or ease of integration within 
existing processes. 

In Liu et al (1997) and Padmanabhan and Tuzhilin (1998), sets of beliefs or 
general impressions are used as a filter when searching for interesting rules. 
Sets of beliefs or general impressions are a-priori information or knowledge 
about a particular domain. For example, in Web Usage Mining, the web 
administrator knows that people commonly use the root (home) page of the 
web site to proceed to other pages within that site. Eventually, rules 
contradicting the set of beliefs or general impressions are considered 
interesting. The drawback of this approach is that beliefs and impressions are 
manually created and, unless a comprehensive set is defined, many interesting 
results may be lost. Hence, to deal with problems of imprecise or incomplete 
sets of beliefs, Cooley et al (1999b) developed a method for automatically 
discovering interesting frequent item sets within Web Usage Mining studies 
using a framework based on Baldwin’s support logic (Baldwin, 1987), which is 
specifically designed to handle reasoning about multiple sources of evidence. 
The algorithm is incorporated into the Web Site Information Filter (WebSIFT) 
system and evaluated using real web data. 
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5.3  Approach 
 
In this study, SAM is integrated with the results of the new algorithm, based on 
Baldwin’s support logic and developed by Cooley et al (1999b), in order to 
automatically discover interesting visiting patterns (instead of presenting a 
general view) providing visited pages and the order of visited pages. 
Practically, this means that server sessions are pre-processed into sessions 
holding interesting combinations of web pages, before SAM calculates 
distances between each pair of sessions. This also means that SAM distance 
measures between pre-processed sessions are used as distance measure for 
clustering. The resulting clusters provide groups of pre-processed sessions 
holding interesting combinations of web pages. Moreover, clusters represent 
profiles of interesting, order-based visiting patterns.  

The reason why pre-processing of server sessions, based on the identified 
interesting related web pages, precedes instead of proceeds the calculation of 
SAM distance measures is because this approach deals with noise (i.e. 
uninteresting patterns) in an early stage of the analysis. Data sets within Web 
Usage Mining studies generally contain lots of patterns that are ‘known’ or 
‘obvious’ due to the structure of direct hyperlinks between web pages that is 
offered as a ‘navigating road’ to web visitors. Dealing with uninteresting 
patterns in an early stage of the analysis provides an opportunity for SAM to 
handle large data sets. For example, in section 5.7, 75, 855 server sessions are 
created from log files registering visiting behaviour on the web site 
http://machines.hyperreal.org. The data set is reduced from 75,855 to 7,266 
server sessions after pre-processing the server sessions into server sessions 
holding interesting related, frequently visited web pages. This means that 
68,589 server sessions do not hold interesting related, frequently visited web 
pages. If the original data set of 75,855 server sessions were first used to 
calculate SAM distance measures, we would end up with an explosion of SAM 
distance measures (i.e. [75,855 x 75,854] / 2 = 2,876,950,000 SAM distance 
measures). Moreover, we would also face the problem of distance-based 
clustering (re. chapter seven) before we could ‘post-process’ the server sessions 
into server sessions holding interesting combinations of web pages. This way 
we unnecessarily burden the analysis with data, which is in fact noise. 

The reason why server sessions, holding interesting related web pages, are 
clustered is to provide large groups of different interesting visiting patterns. 
This provides an overview of interesting patterns actually occurring on the web 
site. It also shows small difference in interesting patterns within the same 
cluster and large differences between interesting patterns across different 
clusters. If we omit the clustering procedure of server sessions holding 

= 196

http://machines.hyperreal.org/


interesting related web pages, it would be difficult to provide an overview of 
several different large groups of interesting visiting patterns, to examine small 
differences within the groups and major differences across the groups. 

In order to distinguish SAM from SAM based on interestingness, we will 
use SAMI to refer to SAM distance measures between server sessions that are 
pre-processed into sessions holding interesting combinations of web pages, 
based on our approach of interestingness, which is explained in the following 
sections. Section 5.4 describes the framework of support logic, which is 
developed, illustrated and evaluated for Web Usage Mining studies in Cooley 
et al (1999b). We will also show how sets of beliefs are generated for Web 
Usage Mining within the support logic framework. In section 5.5, evidence is 
incorporated into the support logic framework for filtering interesting frequent 
item sets. Details and examples of this approach are given in Cooley et al 
(1999b). In section 5.6, we will show how SAM is integrated with the 
interesting frequent item sets (SAMI), provided by the results of the support 
logic framework and evidence combination. After explaining our approach, the 
method is illustrated on real data sets of visiting behaviour on the web site 
http://machines.hyyperreal.org in the following three sections. 

For the following sections of this chapter, we define some frequently used 
concepts. (Interesting) frequent item sets, (interesting) frequently visited pages 
or (interesting) (beliefs of) related (web) pages all have the same meaning and 
do not provide order based information. Yet, (interesting) navigations or 
visiting patterns provide information about the order of visited pages. 
Interesting (web) pages are pages occurring within interesting frequent item 
sets or interesting navigations. Furthermore, (interesting) profiles refer to 
clusters grouping server sessions and provide information about the order of 
visited web pages. Finally, usage behaviour is a general term for the behaviour 
of users on the web and may be based on (interesting) frequent item sets and/or 
(interesting) navigations. 
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5.4  Support logic framework 
 
The support logic framework, used within this application, starts with the 
principles of Baldwin’s support logic. We first explain the method and its 
possibilities. Then we construct the framework with beliefs for Web Usage 
Mining and we describe how we will apply the method within our research 
project. 
 
5.4.1 Baldwin’s support logic 
=
Baldwin’s support logic (Baldwin, 1987) values each piece of information, also 
called belief, by the evidence for and evidence against. For each such type of 
evidence, two kinds of evidence definitions exist. Demonstrated evidence is 
evidence that is proven or shown by the data and known by the researcher. 
Possible evidence is evidence that is not proven by the data. The researcher 
may have an idea about the existence of such evidence but it is not known for 
sure. 

Figure 5.1 illustrates the conceptual frame of evidence (Cooley et al, 
1999b). For each belief ßi, demonstrated evidence edßi and possible evidence 
epßi is represented by the evidence pair [edßi , epßi ]. Furthermore, possible 
evidence against ßi, demonstrated evidence against ßi and lack of evidence 
with regard to ßi are represented in the framework by respectively (1 - edßi), (1 - 
epßi) and (epßi - edßi). Demonstrated as well as possible evidence must be 
nonnegative. Finally, summing demonstrated evidence supporting ßi with 
demonstrated evidence against ßi must not be greater than one. 

For each belief ßi, evidence pairs are deducted from the framework 
presented above as follows. For example, assume that evidence is collected 
about a belief ß1 = (X, Y), saying that web pages X and Y are related. If all of 
the evidence is for, or in support of ß1, the evidence pair is [1, 1]. However, if 
all of the evidence is against ß1, the evidence pair is [0, 0]. If, say, 20% of the 
cases in the data support ß1 and, say, 30% of the cases are against ß1, the 
evidence pair is [0.2, 0.7], indicating a proven evidence of 0.2 and a possible 
evidence of 0.7 supporting ß1. This shows that there is a lack of evidence of 
0.5. Finally, if there is no evidence at all to support ß1, the evidence pair will 
be [0, 1] indicating a complete lack of evidence of 100%. 
=
=
=
=
=

= 198



=
Lack of 
evidence 

Demonstrated 
evidence against ßi

Demonstrated 
evidence for ßi 

=
=
=

=
=
= epßi edßi  

 

 
Fol

belief 
differe
 
K 
 
edßi

c
   

 
epßi

c
   

 
where
K = 
demon
demon
K = s
combi

K > 0;
=

0
  
 

where 
ßi = belief i with i = 1, 2, … B; 
B = total number of beliefs;  
edßi = demonstrated evidence for, in support of, ßi; 
epßi = possible evidence for, in support of, ßi; 
(1 - edßi) = possible evidence against ßi; 
(1 - epßi) = demonstrated evidence against ßi; 
(epßi - edßi) = lack of evidence for or against ßi; 
[edßi , epßi ]= evidence pair of ßi; 
edßi ≥ 0; epßi ≥ 0; edßi + (1 - epßi) ≤ 1; 

Figure 5.1: Conceptual frame of evidence.=
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c
  = indicated by demonstrated evidence against ßi, lack of evidence 

regarding ßi, provided by both sources, divided by K and summed to 1 in order 
to satisfy epßi

c ≥ 0; 
 

In the support logic framework, three types of comparisons are made 
between evidence sources. Comparing one of the original evidence sources 
with combined evidence identifies beliefs with conflicting evidence along with 
evidence only represented in the other source as interesting. This is useful 
when evidence pairs of one source are ‘known’ and evidence pairs of the other 
source are ‘new’. By combining the new evidence sources and comparing the 
known evidence pairs to the combined evidence pairs, all of the previously 
unknown and conflicting results will be labelled as interesting. If the two 
evidence sources are directly combined, all beliefs that have evidence from one 
of the sources are declared interesting in addition to any conflicting beliefs. 
This is useful when both sources of evidence are considered to be ‘new’ 
(Cooley et al, 1999b). 

Examples of types of comparisons between different sources of evidence 
that would make sense within Web usage Mining Studies are given in table 5.1. 
Suppose you start analysing visiting behaviour on your web site one year after 
the site was developed. In order to find interesting visiting behaviour, source 
one, representing structure data of direct hyperlinks between web pages, is 
compared with source two, representing usage data stored in log files. Also, in 
order to be able to reason about evidence, coming from multiple sources, about 
a given belief, source one and two may be combined into 1_2. This way, 
instead of looking for beliefs with conflicting evidence from different sources, 
beliefs are identified with relatively strong/weak evidence from source two and 
relatively weak/strong evidence from source one (1 vs 1_2 and 2 vs 1_2). More 
information about comparisons with regard to combining evidence from 
structure and usage data is given in section 5.5.4. After interpretation of the 
results, the structure of the web site is adjusted conform to the behaviour of 
visitors, represented by evidence source 3. Two years after the site was initially 
developed, source three may be compared with source four in order to find 
interesting behaviour that may be useful for re-adjusting the layout of the web 
site conform to interesting visiting behaviour. Also, in order to search for 
interesting patterns across several years, source one and three are combined 
into source 1_3 while source two and four are combined into source 2_4. Both 
combinations are compared. Suppose that, after the second year no major 
changes are applied in the structure of the web site, source four and five may be 
combined and compared with source 3. More information about data sources 
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that are used to define interesting visiting behaviour throughout this thesis is 
given in the next sub-section. 

 
Evidence source Combined evidence Type of comparison 

1 = structure data year 1 
2 = usage data year 1 

1 and 2 = 1_2 
 

1 vs 2 
1 vs 1_2 
2 vs 1_2 

3 = structure data year 2 
4 = usage data year 2 

1 and 3 = 1_3 
2 and 4 = 2_4 

3 vs 4 
1_3 vs 2_4 

5 = usage data year 3 4 and 5 = 4_5 3 vs 4_5 
… … … 

 
Table 5.1: Examples of types of comparisons between different sources of 
evidence within Web Usage Mining studies. 

  
Interesting results are defined as either a belief with a combined evidence 

pair that is significantly different from (conflicting with) one of the original 
evidence pairs, or original evidence pairs that are significantly different from 
(conflicting among) each other.  Significantly different is determined by setting 
a threshold value т for the differences between the evidence pairs. For a high 
value of т, which is at or above 0.5 (re. Cooley et al, 1999b), relatively strong 
differences between evidence pairs provide high interesting results. For a low 
value of т, which is below 0.5 (re. Cooley et al, 1999b), relatively weak 
differences between evidence pairs provide low interesting results. Ultimately, 
a belief ßi is interesting if: 
 
т  ≤  IMßi        (5.4) 
 
where      ____________________ 

IMßi = √ (edßi) 
2 + (epßi) 

2  = interestingness measure for ßi; 
edßi  =  |edßi

1 − edßi
2|; 

epßi
  =  |epßi

1 − epßi
2|; 

edßi
1 = demonstrated evidence for, in support of, ßi, provided by source 1; 

edßi
2 = demonstrated evidence for, in support of, ßi, provided by source 2; 

epßi
1 = possible evidence for, in support of, ßi, provided by source 1; 

epßi
2 = possible evidence for, in support of, ßi, provided by source 2; 
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(edßi) 
2 = squared difference between demonstrated evidences for ßi, provided 

by source 1 and source 2; 
(epßi) 

2 = squared difference between possible evidences for ßi, provided by 
source 1 and source 2;  
  

In a plane, IMßi represents the straight-line distance between two points 
(edßi

1, epßi
1) and (edßi

2, epßi
2) and is called the Euclidean distance (Kaufman and 

Rousseeuw, 1990). In figure 5.2, evidence pairs coming from different sources 
are depicted in a plane. For each belief ßi, demonstrated evidence is given on 
the horizontal axis while possible evidence is given on the vertical axis. Note 
that evidence pairs always fall within the area that is marked by the small spots 
in grey colour, at or above the diagonal. The area under the diagonal is marked 
by a rectangular pattern and specifies a range where evidence pairs cannot 
occur. 
 

edßi

epßi

10 0.25 0.50 0.75

0.25

0.50

0.75

1

[edßi
1, epßi

1]

[e dß
i

2 , e pß
i

2 ]

•

•

IMßi

 
Figure 5.2: Frame of evidence presented in a plane. 

 
Finally, for each belief ßi, an interestingness measure IMßi is defined in the 

support logic framework by real-values. Practically this means that an ordering 
among interesting beliefs may be presented. Likewise, IMßi’s with positive 
differences between demonstrated evidences for ßi (edßi

1 > edßi
2) can be 

distinguished from IMßi’s with negative differences between demonstrated 
evidences for ßi (edßi

1 < edßi
2). As such, two groups of IMßi’s may be discovered 

describing different situations. 
 
5.4.2 Beliefs for Web Usage Mining 
 
Within Web Usage Mining studies, beliefs along with their evidence pairs are 
automatically generated from two different sources. Structure data provide 
information about links between pages, which is incorporated into beliefs of 
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related pages. The stronger the topological connection between pages, the 
higher the value of edßi

1. Usage data provide information of visited pages on a 
web site, logged in a file and processed into server sessions. Likewise, this 
information is used to automatically construct beliefs and evidence pairs for 
pages being related by means of frequent item sets. The stronger the frequent 
item set, the higher the value of edßi

2. More information about structure, usage 
data and server sessions is given in chapter two. Examples of how evidence 
pairs are calculated from structure and usage data are given in the following 
section. 
 
 
5.5  Filtering knowledge based on interestingness in Web   

Usage Mining 
 
In order to define which beliefs are interesting and which are not, we will use 
the two different sources of structure data and usage data, providing for each 
belief ßi, structure evidence [edßi

s, epßi
s] and usage evidence [edßi

u, epßi
u] of pages 

being related on a web site. A belief ßi is interesting if the difference between 
its structure and usage evidence pairs ≥ т or if the difference between its 
structure (usage) and combined evidence pairs ≥ т. We may also say that a 
belief ßi is interesting if IMßi ≥ т, following equation (5.4). 
 
5.5.1 Calculating structure evidence   
 
In Cooley et al (1999b), a method for automatically calculating structure 
evidence pairs for beliefs of related web pages is given. Two factors define 
edßi

s. The link factor (lfactor) is a normalized measure for the number of links 
present among the pages of an item set. The connectivity factor (cfactor) is a 
measure for the strength of the topological connection among the pages in an 
item set. Structure evidence for a belief ßi is defined as follows: 
 
edßi

s = lfactor x cfactor       (5.5) 
 
where 
lfactor = L / [P (P-1)]; 
P = total number of pages in the item set; 
L = number of direct hyperlinks between the pages in the item set; 
cfactor = 1 if the graphical presentation for the pages in the item set is 
connected, which means that minimum one direct hyperlink must exist between 
every pair of pages in the item set; 
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cfactor = 0 otherwise; 
 
epßi

s may be set anywhere between edßi
s and 1, depending on the degree of lack 

of evidence        (5.6) 
 
To illustrate how the cfactor is defined, six examples are given in figure 5.3. 

In the first column, at least one direct hyperlink exists between every pair of 
pages in item sets (X, Y), (X, Y, Z) and (W, X, Y, Z) and a cfactor equal to 1 is 
given to the item sets. In the second column, the graphical presentation for the 
pages in item sets (X, Y), (X, Y, Z) and (W, X, Y, Z) are not connected, which 
means that a cfactor of zero is given to the item sets.  
 

cfactor = 1 cfactor = 0

X Y

X Y

Z

X Y

ZW

X Y

Z

X Y

X Y

Z

X Y

ZW

X Y

Z

 
Figure 5.3: Illustration of direct hyperlinks between web pages defining the 
connectivity factor. 

 
We remark that, within this research project, cfactors are either equal to one 

or to zero. This implies the following situations. A cfactor equal to zero for a 
four-item set indicates that the topological connection among these pages is not 
strong enough to support the belief that all of these four pages are structurally 
related. Yet, the cfactor for a three item set, composed with pages of the four 
item set, equal to one indicates that the topological connection among these 
pages is strong enough to support the belief that all of these three pages are 
structurally related. Instead of using two values for the cfactor, indicating 
whether the graphical presentation for the items in the item set is connected or 
not, it might be a good idea to use a range of values for the cfactor (i.e. 0 ≤ 
cfactor ≤ 1), indicating how strong the graphical presentation for the items in 
the item set is connected. This topic is suggested in future research. The reason 
why we do not yet consider ranges of values for the cfactor is because first we 
would like to examine whether applying the basic definition of the cfactor, 
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developed and illustrated for Web Usage Mining studies by Cooley et al 
(1999b), provides good results. If so, we would be able to compare good results 
based on a relatively simple cfactor with ‘better’ results based on a relatively 
complicated cfactor. This makes it possible to test how sensitive the results are 
with regard to different scales for the cfactor. We may also provide a trade off 
between the results that are obtained from the analysis and the amount of work 
that was needed to perform the analysis. 

Another remark is that, following equation (5.5), if cfactor ≠ 0 then also edßi
s 

≠ 0, indicating that structure evidence will surely exist. Furthermore, following 
equation (5.5), if cfactor ≠ 0 and P = 2 then edßi

s = 1 (L = 2) or 0.5 (L = 1). If  
cfactor ≠ 0 and P ≥ 3 then 0.5 ≤ edßi

s ≤ 1.  
To illustrate the calculation of structure evidence in Web Usage Mining, 

consider item set (W, X, Y, Z) presented in the first column of figure 6.3. 
Because at least one direct hyperlink between every pair of pages in the item 
set exists, cfactor = 1. Lfactor is defined by L = 7 and P = 4. Finally, structure 
evidence for belief ß(W, X, Y, Z) is defined as follows: 
edß(W, X, Y, Z)

s = 7/12 x 1 = 0.58 and 0.58 ≤ epß(W, X, Y, Z)
s ≤ 1. 

 
5.5.2 Calculating usage evidence 
 
In Cooley et al (1999b), mined results from server session analyses, in the form 
of frequent item sets, representing frequently visited pages, are used to provide 
usage evidence for pages being related. Two measures are calculated for 
frequent item sets. Support (s) calculates the fraction of transactions that 
contain all of the items in the item set while coverage (c) measures the fraction 
of transactions that contain at least one of the items in the item set. 
 
s = count ( i1 ٨ i2  … ٨ iP )  / N      (5.7) 
 
c = count ( i1 ٧ i2  … ٧ iP )  / N      (5.8) 
 
where 
count (predicate) is the number of transactions containing the predicate; 
i is a web page in the item set; 
P is the total number of pages in the item set; 
N is the total number of transactions or server sessions; 
 

Note that support and coverage are both highly dependent on the total 
number of transactions. By taking the ratio of support-to-coverage (SCR), this 
dependency is eliminated. Besides, SCR gives a single measure of the strength 
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of a frequent item set independent of the total number of transactions in the 
data set. Finally, edßi

u is calculated as follows: 
 
edßi

u = SCR        (5.9) 
 
where 
SCR = s / c; 
 
epßi

u may be set anywhere between edßi
u and 1, depending on the degree of lack 

of evidence        (5.10) 
 

To illustrate the calculation of usage evidence in Web Usage Mining, 
consider pages W, X, Y and Z. Suppose that 3 out of a total of 1000 server 
sessions hold page W as well as pages X, Y and Z, irrelevant in which order. 
Suppose that 300 out of a total of 1000 server sessions hold page W or pages 
X, Y or Z, irrelevant in which order. Usage evidence for belief ß(W, X, Y, Z) is 
defined as follows: 
edß(W, X, Y, Z)

u = 3/300 = 0.01 and 0.01 ≤ epß(W, X, Y, Z)
u ≤ 1. 

 
5.5.3 Lack of evidence in Web Usage Mining 
 
The conceptual frame of evidence is designed for a variety of applications in 
different research areas. This means that demonstrated, possible as well as lack 
of evidence (i.e. possible evidence – demonstrated evidence re. figure 5.1) may 
have different meanings in different applications. For example, in marketing 
research, loyalty analysis studies may define demonstrated and possible 
evidence of customer c to product p as follows.  It might be useful to calculate 
demonstrated evidence from sequential sales (i.e. repeating sales of p to c 
within one year) and possible evidence from the results of annual household 
studies regarding distribution and spending of income. If an average household 
in Belgium spends yearly 0.5% of its income to product p, possible evidence 
may be equalized to that amount. This means that ‘lack of evidence’ may be 
used as a scale to indicate how loyal customer c actually is to product p. A 
relatively high degree of lack of evidence means that customer c is not loyal to 
product p or that demonstrated and possible evidence are scaled far away from 
each other in the conceptual frame of evidence. In other words, demonstrated 
evidence is plotted at the lower end of the scale, near zero, while possible 
evidence is plotted at the upper end of the scale, near one. A relatively low 
degree of lack of evidence means that customer c is loyal to product p or that 
demonstrated and possible evidence are scaled near each other in the 
conceptual frame of evidence. In other words, demonstrated as well as possible 
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evidence are both plotted at the lower end, both somewhere in the middle or 
both at the upper end of the scale. Yet, some standardization procedure is 
necessary in order to assure that possible evidence will always be equal to or 
larger than demonstrated evidence. 

Considering ‘lack of evidence’ in Web Usage Mining studies, a meaningful 
application must be given to demonstrated and possible evidence. Looking for 
proof for beliefs of related web pages, server sessions in log files as well as 
direct hyperlinks between web pages in the structure of the web site provide 
information to define demonstrated usage and structure evidence. Yet, a 
meaningful way for defining possible usage and structure evidence for beliefs 
of related web pages in Web Usage Mining studies is hard to find. For this 
reason, with regard to beliefs of related web pages, possible evidence is 
equalized with demonstrated evidence in Web Usage Mining studies (Cooley et 
al, 1999b). Practically this means that, for the remaining of this chapter, lack of 
evidence will always be zero indicating that demonstrated and possible 
evidence are plotted at the same point in the scale of the conceptual frame of 
evidence.  
 
5.5.4 Combining structure and usage evidence 
 
Cooley et al (1999b) noticed the problem of scaling when combining structure 
and usage evidence into the support logic framework. Since the two sets of 
evidence are derived in different manners from different data sets, the scales do 
not necessarily match. For example, for the usage data, a factor that has not 
been considered in the generation of usage evidence is that the average mean 
path length of a server session equals about three pages (Pitkow, 1998). 
Furthermore, the distribution of the path length of server sessions fits the 
inverse Gaussian distribution and is heavily tailed to the right (Pitkow, 1998). 
This means that, if the number of related pages in a belief increases, the less 
likely it is that a corresponding frequent item set will be discovered. To deal 
with this, Cooley et al (1999b) scales usage evidence based on the number of 
pages in the item set: 
 
edßi

u = SCR x sfactor       (5.11) 
 
where 
sfactor = number of pages in the item set; 
 

In our illustration for belief ß(W, X, Y, Z), given in the previous examples, 
usage evidence is scaled with sfactor = 4 and becomes:   
edß(W, X, Y, Z)

u = 0.01 x 4 = 0.04 and 0.04 ≤ epß(W, X, Y, Z)
u ≤ 1. 
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Suppose no lack of evidence is tolerated, then edß(W, X, Y, Z)
s = epß(W, X, Y, Z)

s and 
edß(W, X, Y, Z)

u = epß(W, X, Y, Z)
u. Using equations (5.1) to (5.3), the combined 

evidence pair for ß(W, X, Y, Z), following from structure evidence [0.58; 0.58] 
and usage evidence [0.04; 0.04] with lack of evidence = 0, equals: 
edß(W, X, Y, Z)

c = epß(W, X, Y, Z)
c = 0.05. 

 
5.5.5 Interesting frequent item sets 
 
The algorithm presented in figure 5.4 is used for automatically discovering 
interesting frequent item sets. Usage evidence and structure evidence are 
combined using Baldwin’s rules described in equations (5.1) to (5.3). Then, for 
each belief, three types of comparisons are made in order to filter interesting 
beliefs, represented by interesting item sets. First, usage evidence is compared 
with structure evidence. Second, usage evidence is compared with combined 
evidence. Third, structure evidence is compared with combined evidence. As 
stated in section 5.4.1, for each type of comparison, IMßi’s with positive 
differences between demonstrated evidences for ßi are distinguished from 
IMßi’s with negative differences between demonstrated evidences for ßi in 
order to investigate whether these groups describe different situations. Note 
that evidence pairs for usage and structure evidence are used, which do not take 
any degree for lack of evidence into account. 

We illustrate the algorithm for automatically discovering interesting 
frequent item sets by means of our example given in the previous sections. 
Regarding belief ß (W, X, Y, Z), usage, structure and combined evidence are 
given in the second, third and fourth column of table 5.2. A value of 0.75 is 
given to т for filtering interesting item sets. This means that beliefs of the 
highest interest levels are identified since studies showed that т equal to 0.5 
provides acceptable levels of interesting frequent item sets (Cooley et al, 
1999b). Interestingness measures of at least 0.75, resulting from three different 
types of comparisons, along with indications for positive (+) and negative (-) 
differences, are given in the last three columns. This means that, in our 
example, we may consider belief ß(W, X, Y, Z) as an interesting frequent item 
set by comparing usage with structure evidence and structure with combined 
evidence. The difference between usage and structure evidence is negative; the 
difference between structure and combined evidence is positive. Following the 
results of this example we may say that pages W, X, Y and Z are used together 
less than would be expected from the structure of the web site, since there is a 
strong topological connection between web pages W, X, Y and Z with 
relatively less visiting behaviour. 
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Evidence IMß(W, X, Y, Z)  ≥ 0.75  
Belief 

 
Usage Structure Combined Usage - 

Structure 
Usage - 

Combined 
Structure 

- 
Combined 

ß(W, X, Y, 
Z) 

[0.04 ; 
0.04] 

[0.58 ; 
0.58] 

[0.05 ; 
0.05] 

0.76 (-) - 0.75 (+) 

 
Table 5.2: Discovering interesting frequent item sets with regard to belief ß(W, 
X, Y, Z). 
 
for each discovered frequent item set, representing belief ßi, do 
begin 
  edßi

u  =  epßi
u  = SCR(ßi) x sfactor(ßi);            //calculate usage evidence pair for ßi// 

  edßi
s  =  epßi

s  = lfactor(ßi) x cfactor(ßi);       //calculate structure evidence pair for ßi// 
  [edßi

c  , epßi
c ] = Baldwin’s combined evidence pair;//calculate combined evidence pair for ßi// 

   
  edßi

  =  |edßi
u  - edßi

s| and epßi = |epßi
u  - epßi

s|;              //compare usage with structure evidence// 
  if т ≤ √ [(edßi) 

2 + (epßi) 
2] then 

   begin 
     add ßi to interesting frequent item set by means of comparing usage with structure evidence; 
     if edßi

u > edßi
s then positive_difference[edßi

u , edßi
s] = true 

     else positive_difference[edßi
u , edßi

s] = false; 
   end; 
 
  edßi

  =  |edßi
u  - edßi

c| and epßi = |epßi
u  - epßi

c|;              //compare usage with combined evidence// 
  if т ≤ √ [(edßi) 

2 + (epßi) 
2] then 

   begin 
     add ßi to interesting frequent item set by means of comparing usage with combined evidence; 
     if edßi

u > edßi
c then positive_difference[edßi

u , edßi
c] = true 

     else positive_difference[edßi
u , edßi

c] = false; 
   end; 
 
  edßi

  =  |edßi
s  - edßi

c| and epßi = |epßi
s  - epßi

c|;          //compare structure with combined evidence// 
  if т ≤ √ [(edßi) 

2 + (epßi) 
2] then 

   begin 
     add ßi to interesting frequent item set by means of comparing structure with combined 
evidence; 
     if edßi

s > edßi
c then positive_difference[edßi

s , edßi
c] = true 

     else positive_difference[edßi
s , edßi

c] = false; 
   end; 
 
end; 
 

Figure 5.4: Algorithm for discovering interesting frequent item sets. 
 

We remark that, the interestingness measure, based on the support logic 
framework and further developed for discovering interesting patterns within 
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Web Usage Mining (Cooley et al, 1999b), is not suitable for defining 
interesting frequent item sets consisting of one page. The reasons are the 
following. First, demonstrated structure evidence will always be zero because 
there are no direct hyperlinks with other pages to consider. Second, 
demonstrated usage evidence will always be one due to equal support and 
coverage. This results in frequent item sets that are always interesting, no 
matter where the page is located in the web site structure, no matter how often 
these pages are visited. Further research will discuss an interestingness measure 
for frequent item sets of one page. Nevertheless, we integrate the 
interestingness measure developed by Cooley et al (1999b) into SAM in order 
to investigate the order of visited pages within interesting visiting patterns. Our 
goal is to investigate whether the structure of direct hyperlinks between web 
pages may be improved and therefore we need interesting frequent item sets of 
minimum two pages. 

Finally, table 5.3a and 5.3b present, by means of a decision table, the 
outcome if IM ≥ т for each type of comparison. Distinctions are made with 
regard to structure or usage evidence (not) equal to 0, 0.5 or 1. Also, no lack of 
evidence is tolerated, which means that the evidence shown from one of the 
sources defines demonstrated as well as possible evidence for a given belief. In 
other words, within Web Usage Mining studies (Cooley et al, 1999b) and in the 
remaining sections of this chapter, edßi

u  = epßi
u  and edßi

s  = epßi
s . Future research 

discusses how lack of evidence might be used and interpreted for Web Usage 
Mining studies. In general, the decision table provides the following 
information: 
 
� If usage as well as structure evidence are different from 0, 0.5 and 1, 

comparing usage evidence with structure evidence identifies interesting 
beliefs with conflicting evidence. The outcome of the comparison does not 
indicate the strength of usage and structure evidence. 

  
� If usage as well as structure evidence are different from 0, 0.5 and 1, 

comparing usage evidence with combined evidence identifies interesting 
beliefs with strong usage and weak structure evidence. The outcome of the 
comparison provides an indication of the strength of usage and structure 
evidence. 

 
� If usage as well as structure evidence are different from 0, 0.5 and 1, 

comparing structure evidence with combined evidence identifies interesting 
beliefs with weak usage and strong structure evidence. The outcome of the 
comparison provides an indication of the strength of usage and structure 
evidence. 

= 210



 
� If usage and/or structure evidence are equal to 0, 0.5 or 1, different types of 

comparisons identify interesting beliefs with ‘no’ (evidence equal to 0), 
‘some’ (evidence equal to 0.5) or ‘strong’ (evidence > 0.5) usage or 
structure evidence. For some cases, an interestingness measure equal to 0 
(IM = 0) is shown, which means that no interesting beliefs are identified. 

  
In Web Usage Mining studies, decision table 5.3a and 5.3b may be used to 

predict the outcome of different comparison types when no lack of evidence is 
tolerated. For example, consider belief ß (W, X, Y, Z) presented in table 5.2, 
with usage and structure evidence different from 0, 0.5 and 1. If we directly 
compare the original evidences i.e. usage with structure evidence providing an 
IM ≥ т, belief ß (W, X, Y, Z) will be declared interesting with conflicting 
evidence. If we compare combined with usage evidence, IM < т, which means 
that belief ß (W, X, Y, Z) is not declared interesting for this type of 
comparison. Yet, if we compare structure with combined evidence, IM ≥ т, 
which means that belief ß (W, X, Y, Z) is identified as interesting with strong 
structure and weak usage evidence. Suppose that, instead of edßi

u  = epßi
u = 0.04 

and edßi
s  = epßi

s = 0.58, evidence measures of edßi
u  = epßi

u = 0.34 and edßi
s  = epßi

s 

= 1 are used. Then, table 5.3b may be used to predict the outcome of different 
types of comparisons. Comparing usage with structure evidence will provide an 
interesting belief with conflicting and strong structure evidence since IM ≥ т. 
Comparing usage with combined evidence will provide, since IM ≥ т, an 
interesting belief with strong structure evidence. Comparing structure with 
combined evidence will not provide an interesting belief since IM = 0.   

 
 
 
 
 
 
 
 

= 211



Structure evidence ≠ 0 and ≠ 0.5 and ≠ 1 Structure evidence = 0 Sources of 
evidence 
/ type of 

comparison 

Usage vs 
structure 

Usage vs 
combined 

Structure vs 
combined 

Usage vs 
structure 

Usage vs 
combined 

Structure vs 
combined 

Usage evidence ≠ 0 
and ≠ 0.5 and ≠ 1 

Interesting beliefs 
with conflicting 

evidence 

Interesting beliefs 
with strong usage 
and weak structure 

evidence 

Interesting beliefs 
with strong 

structure and 
weak usage 

evidence 

Interesting beliefs 
with no structure 

evidence 

Interesting beliefs 
with no structure 

evidence 

(IM = 0) 

Usage evidence = 0 Interesting beliefs 
with no usage 

evidence 

(IM = 0) Interesting beliefs 
with no usage 

evidence 

(IM = 0) (IM = 0) (IM = 0) 

Usage evidence = 
0.5 

Interesting beliefs 
with some usage 

evidence 

Interesting beliefs 
with some usage 

evidence 

(IM = 0) Interesting beliefs 
with some usage 
and no structure 

evidence 

Interesting beliefs 
with some usage 
and no structure 

evidence 

(IM = 0) 

Usage evidence = 1 Interesting beliefs 
with strong usage 

evidence 

(IM = 0) Interesting beliefs 
with strong usage 

evidence 

Interesting beliefs 
with strong usage 
and no structure 

evidence 

Interesting beliefs 
with strong usage 
and no structure 

evidence 

(IM = 0) 

 
Table 5.3a: Decision table presenting the outcome for IM ≥ т specified for different types of comparisons and evidence. 
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Structure evidence = 0.5 Structure evidence = 1 Sources of 
evidence 
/ type of 

comparison 

Usage vs 
structure 

Usage vs 
combined 

Structure vs 
combined 

Usage vs 
structure 

Usage vs 
combined 

Structure vs 
combined 

Usage evidence ≠ 0 
and ≠ 0.5 and ≠ 1 

Interesting beliefs 
with conflicting 

and some 
structure 
evidence 

(IM = 0) Interesting beliefs 
with some 
structure 
evidence 

Interesting beliefs 
with conflicting 

and strong 
structure evidence 

Interesting beliefs 
with strong 

structure evidence 

(IM = 0) 

Usage evidence = 0 Interesting beliefs 
with some 

structure and no 
usage evidence 

(IM = 0) Interesting beliefs 
with some 

structure and no 
usage evidence 

Interesting beliefs 
with strong 

structure and no 
usage evidence 

(IM = 0) Interesting 
beliefs with 

strong structure 
and no usage 

evidence 
Usage evidence = 

0.5 
(IM = 0)  (IM = 0) (IM = 0) Interesting beliefs 

with strong 
structure and 
some usage 

evidence 

Interesting beliefs 
with strong 

structure and some 
usage evidence 

(IM = 0) 

Usage evidence = 1 Interesting beliefs 
with strong usage 

and some 
structure 
evidence 

(IM = 0) Interesting beliefs 
with strong usage 

and some 
structure 
evidence 

(IM = 0) (IM = 0) (IM = 0) 

 
Table 5.3b: Decision table presenting the outcome for IM ≥ т specified for different types of comparisons and evidence. 
 

= 213



5.6  Integrating SAM with support logic framework and 
evidence combination 

 
The interesting frequent item sets, representing interesting related web pages, 
provided by the algorithm of support logic framework and evidence 
combination, are integrated into the SAM algorithm. Hence, interesting visiting 
patterns, including order-based information, are automatically discovered. The 
advantage of integrating SAM with support logic framework and evidence 
combination is that, instead of presenting a general view of both interesting and 
uninteresting visiting patterns, now only the patterns that are interesting are 
given, including order-based information. From now on we will call SAMI the 
SAM algorithm for discovering interesting visiting patterns. Practically this 
means that, when measuring distance between sequences by means of SAMI, 
only the elements that represent interesting related pages are considered, 
instead of considering every element. SAMI automatically filters out interesting 
pages (or combinations of pages) during the equalization process for sequence 
comparison. At the end of the process of sequence comparison, SAMI identifies 
the interesting combination of pages within each sequence along with the 
distance measures. Sequences without any interesting combination of pages are 
not processed by SAMI. 

In particular, SAMI distance between two sequences S1 = s11, s12, …, s1m and 
S2 = s21, s22, …, s2n is calculated using equation (5.12), which is deducted from 
equation (3.1) in chapter three. We remark that operations are performed on 
interesting pages only. We also note that substitution in equation (3.1) is 
replaced by reordering in equation (5.12) since reordering represents one 
deletion and one insertion of the same element affecting the same sequence 
(Joh et al, 2001). 
 
dSAM

I (S1, S2) = min [(wdDI + wiII) + η RI ]    (5.12) 
  
where 
dSAM

I
 is the similarity or distance for interesting pages between two 

sequences S1 and S2, based on SAM; 
wd is the weight value for the deletion operations, a positive constant not 

equal to 0, determined by the researcher (wd > 0); 
wi is the weight value for the insertion operations, a positive constant not 

equal to 0, determined by the researcher (wi > 0); 
DI  is the number of deletion operations for interesting pages; 
II is the number of insertion operations for interesting pages; 
RI is the number of reordering operations for interesting pages; 
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η is the reordering weight, a positive constant not equal to 0, determined 
by the researcher (η > 0); 

 
and 
m is the length of the first sequence (source); 
n is the length of the second sequence (target); 
sij is an element, representing a particular character, of a sequence; 
i identifies the sequence number, i = 1, …, N; 
N is the total number of sequences in the analysis; 
j identifies the position in a sequence, j = 1, …, m or j = 1, …, n;  
 
Equation (5.12) indicates that the score, represented by SAMI between two 
sequences, consists of the minimum costs for deleting and inserting unique 
interesting elements and the minimum costs for reordering common interesting 
elements. 

In figure 5.5, the procedure is given that SAMI uses for transforming 
original server sessions into sessions holding only interesting combinations of 
pages with respect of the order of pages. The source code of the program is 
given in appendix five. The algorithm reads the input file 
‘server_sessions_original’ and checks, for every original server session, 
whether it holds interesting frequent item sets of two, three or four pages. If 
yes, the frequent item sets are written in an array. Then, for each original server 
session, starting with the first page up to the last page, this array is used to 
check whether the page is an element of an interesting frequent item set that 
was previously found in the original server session. If the page can be read 
from the array it is written in the output file ‘server_sessions_transformed’. 
 
begin 
  read original server session; 
  for i:=1 to n do  //n = total number of interesting frequent item sets// 
  begin 
    read IFIS;  //IFIS = interesting frequent item set// 
    if IFIS Є original server session then write IFIS in array; 
    readln; 
  end 
  … 
  for j:=1 to m do  //m = length of server session or total number of elements= 
  begin   pages in server session// 
    if j Є array then write j in server_sessions_transformed; 
  end; 
end;  
   
Figure 5.5: Procedure, used by SAMI, for transforming server sessions into 
sessions with interesting combinations of pages, respecting the order of pages. 
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To give a clear understanding of how SAMI works, the algorithm given in 

figure 5.5 is illustrated with an example in table 5.4. The interesting frequent 
item sets, discovered by the support logic framework and evidence 
combination, described in sections 5.4 and 5.5, are given in the first column. 
Note that alphanumerical characters are changed in integer values so as to 
apply the algorithm presented in figure 5.5. We remind that the order in which 
elements occur in frequent item sets is irrelevant. The second column presents 
two sequences s1 and s2 representing server sessions holding interesting and 
uninteresting combinations of pages. In the third column SAMI between s1 and 
s2 is presented. Finally, in the last column, the original source and target 
sequences s1 and s2 are changed into sequences holding only interesting 
combinations of pages, respecting the order in which pages occur. 
Combinations of pages that are not interesting are filtered out of the sequences. 
 

Interesting frequent 
item sets / interesting 
related pages 

Source sequence: 
 
s1 = Y, T, U, X 
    = 2,  6,  7,  1 

 
wi = 1 
wd = 1 
η = 2 

Source sequence 
(interesting comb. 
of pages): 
s1 = Y, X 
    = 2,  1 

(X, Y) = (1, 2) 
(V, W) = (4, 5) 
(Y, W) = (2, 5) 
(X, Y, Z) = (1, 2, 3) 

Target sequence: 
 
s2 = X, Z, X, W, Y 
    = 1,  3,  1,  5,  2 

 
dSAM

I(s1, s2) = 5 
Target sequence 
(interesting comb. 
of pages): 
s2 = X, Z, X, W, Y 
    = 1,  3,  1,  5,  2 

 
Table 5.4. Sequence comparison based on SAMI . 
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5.7  Application 
 
For this application, log files registering visiting behaviour from 01/02/1999 till 
28/02/1999 on the web site http://machines.hyperreal.org are analysed. After 
pre-processing the data using the method described in chapter four, section 
4.3.1 Step 1: Pre-processing, a total number of 75,855 server sessions, 
navigating through web pages with 1,159 different logged URL addresses, are 
identified. Each URL address refers to a web page. For convenience of 
presentation, a unique page identification number is given to each distinct URL 
address. For example, page 349 is given to URL address 
http://machines.hyperreal.org/manufacturers. We remark that in this chapter the 
same web site is analysed as in chapter four (data set 2). Yet, different 
registration periods of the logged data are used. Compared to data set 2 of 
chapter four, this chapter analyses more data, providing more server sessions, 
which are analysed by SAMI. If we use only the 3,131 server sessions of data 
set 2 in chapter four, we would end up with barely 180 server sessions holding 
interesting frequently visited web pages through SAMI analysis. This is not a 
realistic experimental analysis for testing SAM and Interestingness within Web 
Mining and Data Mining research. For this reason, we used more data and 
started the analysis of SAMI with more server sessions.  

In the first section, statistics about the data used in this application are 
given. This is followed by the first step of the analysis, where interesting 
frequently visited pages are defined. Then, SAMI similarity measures for 
interesting frequently visited pages are calculated between the server sessions. 
Based on these similarity measures, the server sessions holding interesting 
related pages are clustered. Finally, in section 5.7.4, the clusters are examined. 
 
5.7.1 Describing the data 
 
Table 5.5 describes the data that is used for discovering interesting visiting 
patterns, providing order based information, on the web site 
http://machines.hyperreal.org. The shortest server session consists of one page 
whereas the longest server session is twenty pages long. The average length of 
the server sessions is 2.6. The total number of page views in the file is 196,550 
with a total number of distinct URL addresses equal to 1,159. 
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Statistics Server sessions representing visiting 

behaviour from 01/02/1999 – 28/02/1999 on 
the web site http://machines.hyperreal.org. 

Total 75,855 
Shortest 1 
Longest 20 
Average length 2.59 
Total number of requests 196,550 
Distinct pages 1,159 

 
Table 5.5: Describing server sessions used within the SAMI application. 

 
 
Figure 5.6 provides an overview of the distribution of the server sessions’ 

length. On the horizontal axis, the length of the server sessions ranging from 
one to twenty web pages is given; on the vertical axis the relative frequency 
(number of occurrences of the corresponding sessions’ length divided by the 
total number of sessions in the analysis, multiplied by 100) is given. The three 
highest relative frequency values from the graph show that 54.45% of the 
server sessions in the analysis consist of one page, 16.40% consist of two pages 
and 9.33% consist of three pages. Finally, 16.45% of the server sessions in the 
analysis are between four and ten pages long and 3.37% of the server sessions 
in the analysis are between eleven and twenty pages long.      
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Figure 5.6: Distribution of the length of server sessions.  
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Figure 5.7 gives an overview of the distribution of distinct web pages. On 
the horizontal axis, 1,159 distinct web pages are presented by means of 50 
groups. Each group reflects 23 web pages, except for the last group. For 
example, group 1 reflects page 1 to page 23, group 2 reflects page 24 to 46, 
group 3 reflects page 47 to page 69 etc. Finally, group 50 reflects page 1,128 to 
page 1,159. On the vertical axis, the frequency values (number of requests of 
the page_ids within the corresponding group divided by the total number of 
requests (i.e. 196,550) in the file, multiplied by 100) are given. The graph 
shows that 25% of the visited pages are pages within group 29, reflecting web 
pages 645 to 667 (including 645 and 667). The following two highest relative 
frequency values are 6.75% for group 50, reflecting web pages 1128 to 1159 
(including 1128 and 1159) and 6.42% for group 45, reflecting web pages 1013 
to 1035 (including 1013 and 1035). 
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Figure 5.7: Distribution of 1159 distinct page_ids, represented in 50 groups. 

 
Comparing figures 5.6 and 5.7, given above, with figures 4.4 (data set 2) 

and 4.6 in chapter four, presenting web usage behaviour on the same web site, 
the data sets are very similar with regard to distribution of length of server 
sessions and (groups of) distinct web pages. This means that the logged data 
that is used in chapter four (data set 2), storing visiting behaviour from 
01/02/1999 to 03/02/1999, which is used to provide (un)interesting visiting 
patterns by means of SAM, is very similar to the logged data that is used in this 
chapter, storing visiting behaviour from 01/02/1999 to 28/02/1999, which is 
used for defining interesting visiting patterns by means of SAMI.   
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5.7.2 Interesting frequently visited pages 
 
Frequent item sets with minimum support of 0.1% (Cooley et al, 1999b) are 
calculated on the server sessions. Every frequent item set represents a belief of 
related pages and usage evidence pairs for pages being related are calculated 
from the support and coverage values of the frequent item sets using equations 
(5.10) and (5.11). Then, structure and combined evidence pairs are defined 
using equations (5.1) to (5.3), (5.5) and (5.6). Note that, as previously 
mentioned, no lack of evidence is tolerated in the analysis. In order to filter out 
interesting frequently visited pages, equation (5.4) is used along with the 
algorithm presented in figure 5.4. 

An illustration is given in table 5.6. A total number of 539 beliefs, 
consisting of minimum two and maximum four related pages, are identified. 
They are given in the first column. For each belief, usage, structure and 
combined evidence pairs are presented in the following columns. An 
interestingness threshold value of т = 0.75 in equation (5.4) is used to filter out 
interesting beliefs of related pages. By setting the value of т very high, related 
pages of the highest interest are discovered. Usually, a т-value of 0,5 is 
satisfactory to filter out interesting from uninteresting beliefs (Cooley et al, 
1999b). Three lists of interesting related pages are identified by comparing 
usage evidence with structure evidence (column five), usage evidence with 
combined evidence (column six), and structure evidence with combined 
evidence (column seven). Beliefs of related pages that are considered 
interesting are written in bold. Along with interesting beliefs, positive and 
negative differences between evidence pairs are written between brackets, next 
to the value of IMßi. Out of 539 beliefs of related pages, 91 are considered 
interesting. They are given in appendix five, ordered by level of interestingness 
and comparison manner. 
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221
Table 5.6:=Interesting and uninteresting beliefs of related pages on http://machines.hyperreal.org. 

Evidence IMßi  ≥ 0.75  
Beliefs of 

related pages 
 

 
Usage 

 
Structure 

 
Combined 

Usage 
- 

Structure 

Usage 
- 

Combined 

Structure 
- 

Combined 
ß1(657, 984) [0.1700; 0.1700] [0.5000; 0.5000] [0.1700; 0.1700] - - - 
ß2(815, 657) [0.1338; 0.1338] [1.0000; 1.0000] [1.0000; 1.0000] 1.2249 (-) 1.2249 (-) - 
ß3(657, 947) [0.1100; 0.1100] [0.5000; 0.5000] [0.1100; 0.1100] - - - 

…       … … … … … …
ß100(1026, 1025) [0.1598; 0.1598] [0.0000; 0.0000] [0.0000; 0.0000] - - - 

…       … … … … … …
ß200(1129, 996) [0.0816; 0.0816] [0.5000; 0.5000] [0.0816; 0.0816] - - - 

…       … … … … … …
ß300(984, 163) [0.0356; 0.0356] [1.0000; 1.0000] [1.0000; 1.0000] 1.3638 (-) 1.3638 (-) - 

…     … … … … … …
ß310 (62, 171) [0.2372; 0.2372] [1.0000; 1.0000] [1.0000; 1.0000] 1.0787 (-) 1.0787 (-) - 

…     … … … … … …
ß450(657, 1026, 713) [0.0420; 0.0420] [0.0000; 0.0000] [0.0000; 0.0000] - - - 

…       … … … … … …
ß500(815, 657, 810) [0.0123; 0.0123] [1.0000; 1.0000] [1.0000; 1.0000] 1.3968 (-) 1.3968 (-) - 

…     … … … … … …
ß520(657, 1026, 1025) [0.0192; 0.0192] [0.0000; 0.0000] [0.0000; 0.0000] - - - 

…       … … … … … …
ß530(657, 984, 993) [0.0174; 0.0174] [0.5000; 0.5000] [0.0174; 0.0174] - - - 

…       … … … … … …
ß535(657, 1026, 713, 868) 0.0084; 0.0084] [0.0000; 0.0000] [0.0000; 0.00000] - - - 

… …     … … … … …
ß539(815, 794, 657, 786) [0.0116; 0.0116] [0.5834; 0.5834] [0.0162; 0.0162] 0.8086 (-) - 0.8021 (+) 

=

http://machines.hyperreal.org/


Table 5.7 provides some statistics of beliefs of related pages that are 
considered interesting. A total number of 91 interesting frequent item sets, 
consisting of two to four pages, are found. The average length is 2.5. The total 
number of pages within 91 interesting frequent item sets is 229. Finally, the 
total number of distinct pages within 91 interesting frequent item sets is 61. 
 

Statistics Interesting frequent item sets 
Total 91 
Shortest 2 
Longest 4 
Average length 2.5 
Total number of requests 230 
Distinct pages 61 

 
Table 5.7: Describing interesting frequent item sets used within the SAMI 
application. 

 
Figure 5.8 provides an overview of the distribution of the interesting 

frequent item sets’ length. On the horizontal axis, the length ranging between 
two to four pages is given; on the vertical axis the relative frequency (number 
of occurrences of the frequent item sets’ length divided by the total number of 
frequent item sets in the analysis, multiplied by 100) is given. The graph shows 
that 50.55% of the interesting frequent item sets consist of two pages, 47.25% 
consist of three pages and 2.20% consist of four pages. 

 

 
Figure 5.8: Distribution of interesting frequent item sets’ length. 
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Figure 5.9 provides an overview of the distribution of distinct web pages 
within the 91 interesting frequent item sets. On the horizontal axis, 61 distinct 
web pages, starting with page_id 62 and ending with page_id 1,134, are 
presented. On the vertical axis, the frequency value for each distinct web page 
divided by the total number of requests (pages) in the file (i.e. 229), multiplied 
by 100, is given. The graph shows that 21.83% of the pages in the interesting 
frequent item sets are page 657. Likewise, pages 984 and 815 are highly 
represented in the interesting frequent items sets with respectively 19.65% and 
9.17%. 
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Figure 5.9: Distribution of distinct web pages in interesting frequent item sets.  

 
Table 5.9 presents information about values of the cfactor, which is used in 

equation (5.5) for defining structure evidence, and of the sfactor, which is used 
in equation (5.11) for defining usage evidence on the data set presented in table 
5.5. The table shows that, when comparing all of the beliefs with the interesting 
beliefs, distributions of values of the cfactor and sfactor are quite different. For 
example, out of the 539 beliefs of related pages that were found by frequent 
items sets with minimum support of 0.1%, 192 (35.62%) showed a cfactor 
equal to zero while 347 (64.38%) showed a cfactor equal to one. Out of the 91 
beliefs of related pages that were declared interesting, all of them (100%) 
showed a cfactor equal to one. The distribution of the values of the sfactor 
among the 539 beliefs of related pages is as follows. 72.73%, 25.42% and 
1.85% showed an sfactor of respectively two, three and four. Beliefs of related 
pages consisting of more than four pages, given minimum support of 0.1% for 
frequent item sets, were not found. The distribution of the values of the sfactor 
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among the 91 interesting beliefs of related pages is as follows. 49.45%, 48.35% 
and 2.20% showed an sfactor of respectively two, three and four. Some 
explanations for these differences are given below:  

 
� If cfactor = 0 then structure evidence = 0 and, given т = 0.75, usage 

evidence must be ≥ 0.53034 in order to find an interesting belief. Beliefs 
with structure evidence = 0 and usage evidence ≥ 0.53034 were not found. 
For this reason, interesting beliefs of related pages are not found when 
cfactor = 0. 

 
� Structure evidence for beliefs consisting of two pages can have only three 

values, which are 0, 0.5 or 1. Because of the relatively low usage evidence 
values along with a relatively high т value (i.e. 0.75), all of the interesting 
beliefs are identified when structure evidence is 1 for two-item sets. 

 
� Structure evidence for beliefs consisting of three pages can have five 

values, which are 0; 0.5; 0.67; 0.83 and 1. Because of the relatively low 
usage evidence values along with a relatively high т value (i.e. 0.75), all of 
the interesting beliefs are identified when structure evidence ≥ 0.67 for 
three-item sets. 

 
� Structure evidence for beliefs consisting of four pages can have the 

following values: 0; 0.33; 0.42; 0.5; 0.58; 0.67; 0.75; 0.83; 0.92 and 1. 
Because of the relatively low usage evidence values along with a relatively 
high т value (i.e. 0.75), all of the interesting beliefs are identified when 
structure evidence ≥ 0.58 for four-item sets 

 
539 beliefs of related pages 91 interesting beliefs of related pages  

Factor Number of 
beliefs 

% of beliefs Number of 
interesting beliefs 

% of interesting 
beliefs 

cfactor = 0 192 35.62 0 0.00 
cfactor = 1 347 64.38 91 100.00 
sfactor = 2 392 72.73 45 49.45 
sfactor = 3 137 25.42 44 48.35 
sfactor = 4 10 1.85 2 2.20 

 
Table 5.9: Comparing cfactor and sfactor for total number of beliefs with 
interesting beliefs. 
 

Finally, with regard to interesting beliefs of related pages presented by triple 
item sets, only one triple item set is also interesting for each combination of its 
dual items sets. Of the 43 remaining interesting beliefs of related pages 
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presented by triple item sets, none of them provides interesting dual item sets 
for each combination. For example, (815, 657, 810) is defined interesting along 
with (815, 657), (815, 810) and (657, 810). Yet, (815, 657, 813) is defined 
interesting along with (815, 657) and (657, 813). However, dual item set (815, 
813) is not defined interesting. Considering the two interesting related pages 
presented by four-item sets, (815, 657, 1026, 984) shows interesting related 
pages for each combination of triple item sets while for (815, 794, 657, 786), 
triple item sets (794, 657, 786) and (815, 794, 786) are not defined interesting. 

Figure 5.10 depicts how (815, 657, 810) and (815, 657, 813) are structured 
on http://machines.hyperreal.org, along with information of URL addresses for 
the page_ids in the item sets. On the left hand side of the figure, each 
combination of dual item sets is interesting because visiting behaviour between 
these pages occurs less frequent than expected, given the direct hyperlinks 
between the web pages. On the right hand side of the figure, (815, 813) is not 
interesting because, given only one direct hyperlink from 813 to 815, visiting 
behaviour between 815 and 813 occurs less frequent, which is expected. Table 
5.10 provides information about usage-, structure evidence and interestingness 
measure. 

 
 

6 5 7

6 5 7  =  h t tp :/ /m a c h in e s .h y p e rre a l .o rg
8 1 5  =  h t tp :/ /m a c h in e s .h y p e rre a l .o rg /g u id e
8 1 0  =  h t tp :/ /m a c h in e s .h y p e rre a l .o rg /e m a il .h tm l
8 1 3  =  h t tp :/ /m a c h in e s .h y p e rre a l .o rg /fe a tu re s

8 1 5 8 1 0

6 5 7

8 1 5 8 1 3

 
Figure 5.10: Example of interesting frequent item sets (815, 657, 810) and 
(815, 657, 813) along with direct hyperlinks on http://machines.hyperreal.org. 
 
 
 
 
 
 
 
= 225

http://machines.hyperreal.org/
http://machines.hyperreal.org/


 
т = 0.75 

Evidence IM Frequent item set 
Usage Structure Usage – Structure 

(815, 657, 810) [0.0123; 0.0123] [1.0000; 1.0000] 1.3968 
(815, 657) [0.1338; 0.1338] [1.0000; 1.0000] 1.2249 
(815, 810) [0.0951; 0.0951] [1.0000; 1.0000] 1.2797 
(657, 810) [0.0210; 0.0210] [1.0000; 1.0000] 1.3845 
(815, 657, 813) [0.0189; 0.0189] [0.8334; 0.8334] 1.1518 
(815, 657) [0.1338; 0.1338] [1.0000; 1.0000] 1.2249 
(657, 813) [0.0345; 0.0345] [1.0000; 1.0000] 1.3654 
(815, 813) [0.2466; 0.2466] [0.5000; 0.5000] 0.3583 

 
Table 5.10: Usage-, structure evidence and interestingness measure (IM) for 
interesting triple frequent item sets shown in figure 5.10 and combinations of 
dual item sets. 
 
5.7.3 SAM I  distance measures 
 
The interesting beliefs of related pages, which are also called interesting 
frequently visited pages or interesting frequent item sets, presented in appendix 
5, are used by SAMI to measure distances between server sessions. In this step, 
the algorithm described in equation (5.12) and in figure 5.5 is used. Due to the 
fact that SAMI selectively aligns sequences based on interesting frequently 
visited pages, the original number of server sessions is reduced from 75,855 to 
7,266. This means that 68,589 server sessions do not hold interesting frequently 
visited pages and therefore, are not considered for further analysis. 

From now on, the same approach is used as shown in chapter four, steps 2 
and 3: Processing and Post-processing. This means that the SAMI distance  
measures for interesting frequently visited pages are used as distance measures 
for clustering. Figure 5.11 depicts the criteria for defining the number of 
clusters. The first two criteria, pseudo F statistic along with T-squared statistic, 
designate four clusters as a good cluster solution. Although R-squared reaches 
57% at this level, the homogeneity of the data in four clusters is relatively high, 
indicated by a small value for the root mean squared standard deviation. We 
may also choose for six or eleven clusters. However, the result will end up in 
some small clusters holding small percentages of the data, which may be 
indicated by lower values for the pseudo F statistic. Since we are interested in 
large clusters of more or less equal sizes, we prefer four clusters. 
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Figure 5.11: Information criteria for defining the number of clusters, using 
SAMI distance measures between server sessions at 
http://machines.hyperreal.org. 
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5.7.4 Cluster examination 
 
Ward hierarchical clustering, based on SAMI distance matrix, results in four 
clusters. In this section, every cluster is examined by means of interesting 
pages, excluding order-based information, and interesting navigations, 
including order-based information of visited pages. First, some statistics are 
given with regard to the file holding all of the server sessions and the clusters. 
 
5.7.4.1 Describing the data 
 
Statistics for each cluster, as well as for the file holding the server sessions 
based on interesting related pages, are provided in table 5.11. A total number of 
7,266 server sessions, showing 35,566 page requests, are clustered in four 
groups. Comparing the original server sessions given in table 5.5 with table 
5.11, the total number of server sessions and total number of requests are 
reduced from 75,855 and 196,550 to 7,266 and 35,566 respectively. The 
shortest server session in the file is, instead of one, two pages long. The 
average length of server sessions holding interesting related web pages equals 
4.9 instead of 2.59. Obviously, the total number of distinct pages in the file 
holding all of the server sessions based on interesting related pages is the same 
as in table 5.7.  
 

Server sessions based on interesting related pages 
Cluster 

 
Statistics 

 
File 

1 2 3 4 
Total 7,266 1,337 2,352 2,584 993 
Shortest 2 2 2 2 2 
Longest 20 13 19 20 19 
Average length 4.9 3.2 5.3 5.5 4.7 
Number of requests 35,566 4,280 12,458 14,199 4,629 
Distinct pages 61 29 55 56 50 

 
Table 5.11: Describing server sessions and clusters based on interesting related 
pages resulted from the SAMI application. 
 

Figure 5.12 provides a 3D overview of the length of server sessions based 
on interesting related pages. Although at this stage of the analysis server 
sessions consisting of one page no longer exist (they are removed from the 
analysis because of the reasons given in section 5.5.4), for comparison reasons, 
the horizontal axis of the graph is the same as in figure 5.6, showing the length 
of the server sessions ranging from one to twenty pages. On the vertical axis, 
the relative frequency for each server sessions’ length within each file/cluster is 
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presented. The relative frequency equals to the number of occurrences of the 
corresponding server sessions’ length divided by the total number of sessions 
in the file or cluster, multiplied by 100. The figure shows that, with regard to 
the file holding all of the server sessions based on interesting related pages, 
22.49% of the sessions are three pages long, 21% are two pages long and 
13.71% are four pages long. The length of server sessions in cluster two, three 
and four show approximately the same division. Yet, cluster one provides 
another division with regard to sessions’ length. Here, 46.97% of the server 
sessions are two pages long, 23.56% are three pages long and 13.31 are four 
pages long. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

File

Cluster 1
Cluster 2

Cluster 3
Cluster 4

0
10
20
30
40
50

Relative 
frequency

Length of server 
sessions based on 
interesting related pages

 
Figure 5.12: Distribution of the length of server sessions based on interesting 
related pages. 
 
5.7.4.2 Cluster examination by means of interesting web pages 
 
In figure 5.13, clusters are graphically presented with regard to interesting web 
pages. In a 3D view, the relative frequencies of interesting web pages, 
occurring in interesting frequent item sets (re. table 5.7), are given for the file 
holding all of the server sessions based on interesting related pages and for the 
clusters. The relative frequency equals to the number of requests (hits) of the 
corresponding web page divided by the total number of requests (hits) in the 
file or cluster, multiplied by 100. For example, the file holding all of the server 
sessions based on interesting related pages contains 1,334 requests of page 349. 
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The relative frequency of page 349 is [1,334 / 35,566] * 100 or 3.75%. Since 
page 349 shows 1,304 hits in cluster one, the relative frequency of page 349 in 
cluster one is [1,304 / 4280] * 100 or 30.46%. The following pages show 
relatively high frequency values in the following file or cluster: 
 
� File holding all of the server sessions based on interesting related pages: 

657 (32.28%), 984 (14.11%) and 815 (7.46%) 
 
� Cluster 1: 349 (30.47%), 657 (12.62%), 163 (10.56%) and 159 (10.42%) 
 
� Cluster 2: 984 (33.77%), 657 (23.68%) 
 
� Cluster 3: 657 (49.67%), 815 (16.52%) 
 
� Cluster 4: 657 (20.29%), 1082 (17.37%), 882 (10.09%),  
 

The two smaller graphs below provide a rotated and elevated view of the 
graph above. Compared with figure 5.9, the file holding all of the server 
sessions based on interesting related pages shows approximately the same 
distribution of interesting web pages. Note that, in figure 5.13, if all of the 
interesting web pages were written on the horizontal axis like in figure 5.9, the 
graphical presentation becomes unclear. Therefore, without changing the scale 
of the horizontal axis, 21 instead of 61 interesting web pages, or 1 out of 3, are 
written down. 
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Figure 5.13: Distribution of interesting web pages. 

 
In order to analyse the exclusivity of the clusters with regard to interesting 

pages, figure 5.14 provides exclusivity measures for each page within each 
cluster. Exclusivity for page x within cluster y is defined as the number of 
requests (hits) for page x within cluster y divided by the total number of 
requests (hits) for page x within the analysis, multiplied by 100. Exclusivity 
lies between zero and one. Exclusivity of a particular page equal to zero means 
that the corresponding cluster does not represent that page at all. Exclusivity of 
one indicates that the corresponding cluster is the only cluster that represents 
the page. Figure 5.14 shows that each cluster represents high exclusivities for 
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interesting web pages. The clusters given below represent exclusivities of at 
least 0.80 for 90% of the pages (or for 55 out of 61 pages): 
 
� Cluster 1: 62, 159, 162, 171, 206, 349, 386, 452, 524, 627 

 
� Cluster 2: 984, 985, 990, 991, 992, 995, 996, 997, 998, 999, 1000, 1001, 

1006, 1012, 1021, 1022, 1024, 1025, 1028 
 
� Cluster 3: 663, 698, 713, 786, 794, 810, 813, 815, 933, 947, 1129, 1134 

 
� Cluster 4: 857, 859, 868, 882, 883, 886, 1034, 1040, 1041, 1082, 1083, 

1091, 1092, 1093 
 
Page 163 is mainly represented in cluster one with exclusivity of 0.69; pages 
987, 1013 and 1018 are represented in cluster two with exclusivities of 
respectively 0.78, 0.76 and 0.72. Finally, two pages are not exclusively 
assigned to a cluster: page 657 (4.70% in cluster one, 25.69% in cluster two, 
61.43% in cluster three, 8.18% in cluster four) and page 1026 (0.3% in cluster 
one, 58.32% in cluster two, 40.56% in cluster three, 1.03% in cluster four). 

Within the web usage mining process of analysing visiting behaviour on 
http://machines.hyperreal.org, chapter four presented the results of exclusivities 
for (un)interesting web pages by means of clustering based on SAM. When 
comparing the results of chapter four (re. figure 4.20) with the results of 
exclusivities for interesting web pages by means of clustering based on SAMI, 
high exclusivity measures based on SAMI are more evenly distributed among 
different clusters. Instead of one cluster providing most of the high 
exclusivities, now each cluster provides high exclusivities.  
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Figure 5.14: Exclusivity for interesting web pages within four clusters. 
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5.7.4.3 Cluster examination by means of interesting navigations 
 
Cluster examination with regard to the order of interesting pages is done with 
open sequences. Open sequences are defined and illustrated in chapter four, 
section 4.8.2 (Step 3: Post-processing). For each cluster, all possible open 
sequences with minimum length of two elements and minimum support or 
confidence of 1% are calculated. Furthermore, for a thorough analysis and a 
clear view of the results, first open sequences having the five highest support 
values are selected for every cluster. The results are given in table 5.12. Cluster 
one generally represents interesting navigations to and from page 349. Cluster 
two and three represent navigations to and from page 984 and page 657 
respectively. Finally, cluster four concerns visiting patterns to several web 
pages: 657, 857, 868, 882, 883 and 1082. Note that, with regard to open 
sequences with high support values, the same open sequences are not shown   
in different clusters. This indicates that the clusters are well separated.  

To provide more order-based information for every cluster, also open 
sequences based on the five highest confidence values are given for each 
cluster. If more than five open sequences were found, all of them showing the 
same high confidence values, two additional selection criteria were applied, 
based on the longest open sequences and on the highest support values. For 
example, in cluster three, 11 open sequences provided the same highest 
confidence values of 100%: 
 
� 1 (815, 1018, 657, 813, 657)         Support = 1.04; Confidence = 100.00 
� 2 (815, 794, 657, 813, 657)           Support = 1.01; Confidence = 100.00 
� 3 (815, 794, 657, 815, 657)           Support = 1.16; Confidence = 100.00 
� 4 (815, 984, 657, 813, 657)           Support = 1.20; Confidence = 100.00 
� 5 (810, 984, 657, 815, 657)           Support = 1.01; Confidence = 100.00 
� 6 (657, 1018, 657, 813, 657)         Support = 1.12; Confidence = 100.00 
� 7 (657, 794, 657, 813, 657)           Support = 1.20; Confidence = 100.00 
� 8 (815, 657, 794, 657, 815, 657)   Support = 1.04; Confidence = 100.00 
� 9 (815, 657, 984, 657, 813, 657)   Support = 1.08; Confidence = 100.00 
� 10 (657, 815, 810, 657, 813, 657) Support = 1.04; Confidence = 100.00 
� 11 (657, 815, 984, 657, 813, 657) Support = 1.04; Confidence = 100.00 
 
Instead of presenting all of these open sequences to show order-based 
information within cluster three, we first selected the longest ones. To show 
more than four open sequences, the fifth one is selected based on highest 
support. If, after the additional selection criteria, more than one sequence is 
found with highest support, all of them are given. Table 5.13 provides order- 
based information of interesting navigations within four clusters, based on the 
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five highest confidence values and, if necessary, additional selection criteria. 
For example, the following four different interesting navigations are extracted 
from the data: 

 
� Cluster 1: The chance that page 349 is visited after the following pattern 

(respecting the order of pages in the pattern) is 66.04%: 
657, 163 

 
� Cluster 2: The chance that page 1013 is visited after the following pattern 

(respecting the order of pages in the pattern) is 91.67%: 
984, 996, 999, 657 
 

� Cluster 3: The chance that page 657 is visited after the following pattern 
(respecting the order of pages in the pattern) is 100.00%: 
815, 657, 984, 657, 813 

 
� Cluster 4: The chance that page 657 is visited after the following pattern 

(respecting the order of pages in the pattern) is 85.71%: 
657, 1082, 1091, 1082 

 
For evaluation purposes, support and confidence values of the open 

sequences selected for describing order-based information within each cluster, 
are also given for the other clusters in table 5.14. The support and confidence 
values of the open sequences used to describe clusters in table 6.12 and 6.13 
are written in bold and represent the cluster that is printed at the head of the 
columns. For example, page 163 followed by page 349 (first row) represents 
cluster one. Page 657 followed by page 984 (eleventh row) represents cluster 
two. In general, we may state that the more zero values at the non-diagonal 
places (or the more zero values not printed in bold) in table 6.14, the better the 
model fits the data, i.e. the better open sequences printed in bold represent 
clusters. 

One remark is that, at first sight, it might seem that open sequences (657, 
984) and (984, 657) do not strongly represent cluster two, since the support 
values for these open sequences are more than 17% and 12% for cluster three. 
However, cluster two and three represent different interesting navigations 
related to pages 657 and 984. Cluster two represents navigations regarding 
pages 657 and 984 along with navigations to pages 996 and 998. Cluster three 
represents navigations to pages 657 and 984 along with navigations to pages 
815 and 813. This means that, server sessions in cluster two holding pages 657 
and 984 also hold pages 996 and 998. Likewise, server sessions in cluster three 
holding pages 657 and 984 also hold pages 815 and 813. Although not all of 
= 235



the numbers outside the diagonal have zero values, we may say that most of 
them do (or are lower than 1%) and that the model fits the data well. 
 

Cluster Open sequences Support (%) Confidence (%) 
(163, 349) 22.29 67.27 
(349, 524) 14.88 22.90 
(349, 657) 12.79 19.68 
(159, 349) 11.29 41.37 

 
 

1 

(163, 159) 10.92 32.96 
(657, 984) 62.71 86.82 
(984, 657) 40.01 40.03 
(657, 984, 657) 26.66 42.51 
(984, 996) 17.43 17.44 

 
 

2 

(984, 998) 11.73 11.74 
(657, 815) 65.63 65.69 
(815, 657) 57.97 80.15 
(657, 815, 657) 50.35 76.71 
(657, 813) 18.30 18.32 

 
 

3 

(657, 984) 17.65 17.66 
(657, 1082) 17.42 36.50 
(882, 883) 17.02 68.42 
(1082, 657) 15.01 37.06 
(657, 882) 13.29 27.85 

 
 

4 

(857, 868) 12.79 62.56 

 
Table 5.12: Open sequences having five highest support values within each 
cluster. 

 
Cluster Open sequences Support (%) Confidence (%) 

(657, 163, 349) 2.62 66.04 
(349, 627, 349) 3.07 39.81 
(163, 159, 349) 3.44 31.55 
(657, 159, 349) 1.57 30.88 

 
 

1 
 

(349, 452, 349) 2.24 30.61 
(984, 996, 999, 657, 1013) 1.40 91.67 
(984, 996, 998, 657, 1013) 1.19 73.68 
(657, 984, 1006, 984, 657) 2.17 68.00 
(657, 984, 1001, 984, 657) 1.74 67.21 

 
 

2 

(984, 657, 984, 1006, 657) 1.02 64.86 
(815, 657, 984, 657, 813, 657) 1.08 100.00 
(815, 657, 794, 657, 815, 657) 1.04 100.00 
(657, 815, 810, 657, 813, 657) 1.04 100.00 
(657, 815, 984, 657, 813, 657) 1.04 100.00 
(657, 794, 657, 813, 657) 1.20 100.00 

 
 
 

3 

(815, 984, 657, 813, 657) 1.20 100.00 
(657, 1082, 1091, 1082, 657) 1.21 85.71 
(657, 1091, 1082, 657) 1.21 85.71 
(882, 883, 882, 883, 882) 1.11 84.62 
(984, 657, 1082, 657) 1.01 83.33 
(657, 1082, 1091, 1082) 1.41 82.35 

 
 
 

4 

(657, 1082, 1091, 657) 1.41 82.35 

 
Table 5.13: Open sequences having five highest confidence values within each 
cluster. 
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1 2 3 4 Open sequences 
S  C S C S C S C 

(163, 349) 22.29 67.27 0.17 4.26 0.19 5.56 0.00 0.00 
(349, 524) 14.88 22.90 0.13 20.00 0.00 0.00 0.00 0.00 
(349, 657) 12.79 19.68 0.43 66.67 0.31 72.73 0.10 100.00 
(159, 349) 11.29 41.37 0.13 14.29 0.00 0.00 0.00 0.00 
(163, 159) 10.92 32.96 0.30 7.45 0.15 4.44 0.00 0.00 
(657, 163, 349) 2.62 66.04 0.00 0.00 0.00 0.00 0.00 0.00 
(349, 627, 349) 3.07 39.81 0.00 0.00 0.00 0.00 0.00 0.00 
(163, 159, 349) 3.44 31.51 0.00 0.00 0.00 0.00 0.00 0.00 
(657, 159, 349) 1.57 30.88 0.00 0.00 0.00 0.00 0.00 0.00 
(349, 452, 349) 2.24 30.61 0.00 0.00 0.00 0.00 0.00 0.00 
(657, 984) 0.45 1.46 62.71 86.82 17.65 17.66 3.63 7.59 
(984, 657) 0.75 58.82 40.01 40.03 12.73 67.01 3.42 70.83 
(657, 984, 657) 0.22 50.00 26.66 42.51 10.99 62.28 2.72 75.00 
(984, 996) 0.15 11.76 17.43 17.44 2.13 11.20 1.01 20.83 
(984, 998) 0.00 0.00 11.73 11.74 0.58 3.05 0.20 3.27 
(984, 996, 999, 657, 1013) 0.00 0.00 1.40 91.67 0.00 0.00 0.00 0.00 
(984, 996, 998, 657, 1013) 0.00 0.00 1.19 73.68 0.00 0.00 0.00 0.00 
(657, 984, 1006, 984, 657) 0.00 0.00 2.17 68.00 0.35 81.82 0.00 0.00 
(657, 984, 1001, 984, 657) 0.00 0.00 1.74 67.21 0.23 85.71 0.10 100.00 
(984, 657, 984, 1006, 657) 0.00 0.00 1.02 64.86 0.00 0.00 0.00 0.00 
(657, 815) 0.75 2.43 4.85 6.71 65.63 65.69 11.58 24.26 
(815, 657) 0.67 75.00 4.04 72.52 57.97 80.15 11.78 84.78 
(657, 815, 657) 0.45 60.00 3.27 67.54 50.35 76.71 9.16 79.13 
(657, 813) 0.52 1.70 0.47 0.65 18.30 18.32 0.81 1.69 
(657, 984) 0.45 1.46 62.71 86.82 17.65 17.66 3.63 7.59 
(815, 657, 984, 657, 813, 657) 0.00 0.00 0.00 0.00 1.08 100 0.00 0.00 
(815, 657, 794, 657, 815, 657) 0.00 0.00 0.00 0.00 1.04 100 0.00 0.00 
(657, 815, 810, 657, 813, 657) 0.00 0.00 0.00 0.00 1.04 100 0.00 0.00 
(657, 815, 984, 657, 813, 657) 0.00 0.00 0.00 0.00 1.04 100 0.00 0.00 
(815, 984, 657, 813, 657) 0.00 0.00 0.00 0.00 1.20 100 0.00 0.00 
(657, 794, 657, 813, 657) 0.00 0.00 0.00 0.00 1.20 100 0.00 0.00 
(882, 883) 0.00 0.00 0.13 100.00 0.23 28.57 17.02 68.42 
(657, 1082) 0.00 0.00 0.94 1.29 2.36 2.36 17.42 36.50 
(1082, 657) 0.00 0.00 0.55 54.17 2.55 88.00 15.01 37.06 
(657, 882) 0.00 0.00 0.13 0.18 0.70 0.70 13.29 27.85 
(857, 868) 0.00 0.00 0.13 100.00 0.00 0.00 12.79 62.56 
(657, 1082, 1091, 1082, 657) 0.00 0.00 0.00 0.00 0.15 100.00 1.21 85.71 
(657, 1091, 1082, 657) 0.00 0.00 0.00 0.00 0.15 100.00 1.21 85.71 
(882, 883, 882, 883, 882) 0.00 0.00 0.00 0.00 0.00 0.00 1.11 84.62 
(984, 657, 1082, 657) 0.00 0.00 0.30 43.75 0.23 85.71 1.01 83.33 
(657, 1082, 1091, 1082) 0.00 0.00 0.00 0.00 0.15 50.00 1.41 82.35 
(657, 1082, 1091, 657) 0.00 0.00 0.00 0.00 0.23 75.00 1.41 82.35 

 
Table 5.14: Evaluating open sequences in other clusters. 
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Finally, a random sample was drawn of 12 open sequences that were not 
selected by high support values for cluster description. Table 5.15 provides 
support and confidence values of open sequences with low or average support 
values for each cluster.  

 
1 2 3 4 Open sequences 

S C S C S C S C 
(163, 657) 5.46 16.48 1.28 31.91 2.55 73.33 0.00 0.00 
(159, 657) 7.26 26.58 0.00 0.00 0.00 0.00 0.00 0.00 
(159, 162) 3.89 14.25 0.00 0.00 0.00 0.00 0.00 0.00 
(997, 984) 0.00 0.00 4.00 50.00 0.00 0.00 0.00 0.00 
(1021, 984) 0.00 0.00 7.14 80.00 0.00 0.00 0.00 0.00 
(1026, 1025) 0.00 0.00 1.96 14.42 0.00 0.00 0.00 0.00 
(1129, 657) 0.00 0.00 0.00 0.00 3.48 90.00 0.00 0.00 
(813, 657) 0.00 0.00 0.00 0.00 14.74 73.41 0.00 0.00 
(1092, 1082) 0.00 0.00 0.00 0.00 0.00 0.00 7.65 68.47 
(1082, 1083) 0.00 0.00 0.00 0.00 0.00 0.00 11.18 27.61 
(1082, 815) 0.00 0.00 0.00 0.00 1.47 50.67 6.24 15.42 
(882, 886) 0.00 0.00 0.00 0.00 0.00 0.00 9.97 40.08 

 
Table 5.15: Evaluating open sequences with low or average support values. 
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5.8  Results 
 
Table 5.16 presents the number of interesting frequent item sets that are found 
in the experiment per type of comparison. Furthermore, for each type of 
comparison, positive differences between demonstrated evidences for ßi are 
distinguished from negative differences between demonstrated evidences for 
ßi. If differences between evidences are zero, the corresponding frequent item 
set can never be interesting. Because evidence pairs are used without taking 
any degree for lack of evidence into account (i.e. edßi

u = epßi
u, edßi

s = epßi
s, edßi

c = 
epßi

c), differences between demonstrated evidences for ßi will always be the 
same as differences between possible evidences against ßi. By comparing 
usage with structure evidence, all of the interesting frequent item sets in the 
analysis are identified showing negative differences. Moreover, by comparing 
usage with combined evidence and structure with combined evidence, all of the 
interesting frequent item sets in the analysis are identified showing respectively 
negative and positive differences. 
 

Type of comparison 
Usage - Structure Usage - Combined Structure - Combined 

Positive 
difference 

(edßi
u - edßi

s) 
> 0 

Negative 
difference 

(edßi
u - edßi

s) 
< 0 

Positive 
difference 

(edßi
u - edßi

c) 
> 0 

Negative 
difference 

(edßi
u - edßi

c) 
< 0 

Positive 
difference 

(edßi
s - edßi

c) 
> 0 

Negative 
difference 

(edßi
s - edßi

c) 
< 0 

0 91 0 46 45 0 
 
Table 5.16: Number of interesting frequent item sets per type of comparison 
and for positive and negative differences between demonstrated evidences for 
ßi. 
 

In table 5.17a and 5.17b, given the results of our experiment of applying 
SAMI to http://machines.hyperreal.org, a meaning is given to each category of 
outcome of interesting frequent items. In a decision table, the outcome is 
predicted per level of evidence and per type of comparison, taking into account 
positive and negative differences between sources of evidence. Also, 
distinctions are made whether usage and/or structure evidence are ≠ 0, ≠ 0.5 
and ≠ 1. Suggestions for improving the structure of the web site may be as 
follows. Frequent item sets that are found interesting in category (1) suggest 
inserting links between web pages. Frequent item sets that are found interesting 
in category (2) suggest deleting links between web pages or moving pages 
elsewhere in the structure of the web site. ‘-‘ indicates that comparing evidence 
can never be larger or smaller than zero. Detailed information about 
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suggestions for improving the structure of the web site 
http://machines.hyperreal.org is given in section 5.9 Deploying the results.    
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Structure evidence ≠ 0 and ≠ 0.5 and ≠ 1 Structure evidence = 0 
Usage vs structure Usage vs combined Structure vs combined Usage vs structure Usage vs combined Structure vs combined 

 
Sources of 
evidence 
/ type of 

comparison 

Positive 
difference 

(edßi
u - 

edßi
s) > 0 

Negative 
difference 

(edßi
u - 

edßi
s) < 0 

Positive 
difference 

(edßi
u - 

edßi
c) > 0 

Negative 
difference 

(edßi
u - 

edßi
c) < 0 

Positive 
difference 

(edßi
s - 

edßi
c) > 0 

Negative 
difference 

(edßi
s - 

edßi
c) < 0 

Positive 
difference 

(edßi
u - 

edßi
s) > 0 

Negative 
difference 

(edßi
u - 

edßi
s) < 0 

Positive 
difference 

(edßi
u - 

edßi
c) > 0 

Negative 
difference 

(edßi
u - 

edßi
c) < 0 

Positive 
difference 

(edßi
s - 
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(1) 
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(2) 

 
- 
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- 
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1 

 
(1) 

 
- 

 
- 

 
- 

 
- 

 
(1) 

 
(1) 

 
- 

 
(1) 

 
- 

 
- 

 
- 

(1) = Identification of interesting frequent item sets that are used together more than would be expected from the structure of the web site 
(2) = Identification of interesting frequent item sets that are used together less than would be expected from the structure of the web site 

 
Table 5.17a: Decision table providing a meaning for interesting frequent item sets if IM ≥ т, specified for different levels 
of evidence and positive/negative differences between types of comparisons. 
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Structure evidence = 0.5 Structure evidence = 1 
Usage vs structure Usage vs combined Structure vs combined Usage vs structure Usage vs combined Structure vs combined 
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Positive 
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(edßi
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and ≠ 1 

 
(1) 

 
(2) 

 
- 

 
- 
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- 
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- 
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0 

 
- 
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- 

 
- 
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- 
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- 

 
- 

 
(2) 

 
- 
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- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Usage 
evidence = 

1 

 
(1) 

 
- 

 
- 

 
- 

 
- 

 
(1) 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

(1) = Identification of interesting frequent item sets that are used together more than would be expected from the structure of the web site 
(2) = Identification of interesting frequent item sets that are used together less than would be expected from the structure of the web site 

 
Table 5.17b: Decision table providing a meaning for interesting frequent item sets if IM ≥ т, specified for different levels 
of evidence and positive/negative differences between types of comparisons. 
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In the sections that follow, first a graphical overview is given of interesting 
navigations on the web site http://machines.hyperreal.org, providing the 
structure of the web site along with URL addresses and the order in which 
pages are visited. Second, interesting information is provided about non-
existing navigations given a provided structure.  
 
5.8.1 Interesting navigations on http://machines.hyperreal.org presented in a 

graph. 
 
5.8.1.1 Composition of the graph 
=
In figures 5.15 and 5.16, interesting navigations, along with direct hyperlinks 
between pages and parts of the structure of the web site 
http://machines.hyperreal.org, are graphically depicted in each cluster. For each 
interesting page, the page_id is given along with (a part of) the URL address of 
this particular page, which is written under the page_id inside the rectangle. 
The complete URL address of each page can be read taking into account the 
level in the web site structure and the links. For example, page 657 constitutes 
the main page with URL address http://machines.hyperreal.org. Going one 
level downwards, three different web pages appear. The complete URL address 
of page 349 is http://machines.hyperreal.org/manufacturers. Proceeding 
towards, for example, page 868, the URL address 
http://machines.hyperreal.org/manufacturers/ARP/Odyssey is given. Other 
examples of how to read URL addresses are 
http://machines.hyperreal/manufacturers/Roland/Juno for page 996 and 
http://machines.hyperreal.org/manufacturers/Roland/JX for page 998. 

The dashed rectangles in figures 5.15 and 5.16 originated from different 
logged URL addresses in the files. However, the content of the web page 
appears to be exactly the same as the one given by the solid rectangles. Further 
analysis revealed that the log files also stored information of people who used 
the URL address www.hyperreal.org and navigations from this main page on. 
For example, page 159 appears to be exactly the same as page 815. The only 
difference is that page 159 is navigated through www.hyperreal.org/guide and 
page 815 is navigated through http://machines.hyperreal.org/guide. We would 
like to keep this distinction in our analysis because these web pages appear 
within interesting related pages. 

As already mentioned in chapter four, links between pages are drawn by 
thin black solid arrows, while interesting navigations, including order-based 
information, are given by the bigger dashed arrows. For example, from page 
657, people can go to pages 349, 815, 810 and 813 and from each of these 
pages a link points back to the home page. Also, from page 349 other pages 
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may be visited like 857, 984, 882, 1082 as well as 657, 815 and 810. In figure 
5.15, interesting navigations are represented by open sequences with the five 
highest support values for each cluster. The same navigations were previously 
given in table 5.12. In figure 5.16, for each cluster, interesting navigations are 
represented by the five highest support values of combinations of the order of 
pages within interesting related pages. Support (s) and confidence (c) values 
are written next to or above the arrows. For example, in cluster one of figure 
5.15 and 5.16, 22.29% of the cases visited page 163 before page 349. The 
confidence value indicates that, if people visit page 163, the chance that they 
will visit page 349 thereafter is 67.27%. In cluster four of figure 5.15, 17.42% 
of the cases visit page 657 before page 1082 and 15.01% of the cases visit page 
1082 before page 657. Nevertheless, we could also use open sequences or 
interesting related web pages selected by high confidence values. Yet, the open 
sequences with high support values are more efficient for graphical 
presentations since they summarize, for each cluster, the most occurring (i.e. 
most frequent) navigations. 

For evaluation purposes, distribution of server sessions is given in the upper 
left corner of every cluster. For example, in figure 5.15, 18.40% of the server 
sessions in the input file are grouped in cluster one. Practically, this means that 
1,337 out of the 7,266 server sessions are grouped in cluster one. 

In order to avoid complex drawings of arrows making the figures unclear, 
some modifications are made in figures 5.15 and 5.16. First, with regard to the 
links between pages, some arrows point towards a particular page_id. For 
example, from pages 857, 984, 882, 1082 one may proceed to pages 657, 815 
and 810. Likewise, from pages 868, 996, 998, 883 one may proceed to pages 
349, 657, 815 and 810. Second, the dashed parts of the links indicate that there 
is no intersection with other links. If there were no dashed parts, the links could 
be misinterpreted, saying, for example, that from page 984 a link points to page 
882. Third, with regard to the presentation of interesting navigations, lines 
showing arrows in the middle of navigations, instead of at the beginning or at 
the end, may appear. For example, in cluster two of figure 6.14, when 
navigating from page 657 to page 984 and from page 984 to page 657, 
somewhere in the middle of both navigations, an arrow is drawn. These arrows 
are used for interpreting open sequences or frequently visited pages having 
more than two elements. Support and confidence values are given next to or 
above the arrow of the last navigation. In cluster two, an interesting navigation 
appears in the following order: 657, 984, 657 with support and confidence 
values of 26.66% and 42.51%. Fourth, with regard to the magnitude of the 
structured web site with interesting related pages, for each cluster, only part of 
the site is given that is relevant for describing the interesting navigations. 
=

= 244



5.8.1.2 Interesting navigations presented by open sequences with high support 
values 
 
In figure 5.15, cluster one mainly represents navigations to and from the 
‘manufacturers’ page. In general, visitors also use the URL address 
www.hyperreal.org and the navigations represent usage behaviour that is very 
interesting. In appendix 5 relatively high interestingness measures of 1.3968, 
1.3087, 1.2415, 1.1183 and 1.0794 are defined for the following interesting 
beliefs of related pages: (657, 349), (163, 159), (163, 349), (349, 159) and 
(349, 524). The added value of the information extracted by cluster one, 
compared with the information provided the table of appendix 5, is that cluster 
one shows not only information about pages but also the order in which those 
pages are visited. Interesting to know is that people go from ‘manufacturers’ to 
the home page www.machines.hyperreal.org, instead of the other way around. 
Also, if people use the URL address www.hyperreal.org only one-way of 
traffic is interesting, going from www.hyperreal.org towards ‘manufacturers’. 
Referring to tables 5.16 and 5.17, all of the interesting navigations in cluster 
one fall within the same categories. This means that cluster one identifies 
profiles of interesting navigations between web pages that are used together 
less than would be expected from the structure of the web site.  

Cluster two mainly extracts interesting navigations that are concentrated 
around the ‘Roland’ page. For example, visitors use the link from ‘Roland’ to 
‘JX’ and from ‘Roland’ to ‘Juno’ less than expected from the structure of the 
web site. Note that (657, 984) or (984, 657) is not written as an interesting 
belief of two related pages in appendix 5. We remind that open sequences are 
used to describe the order of pages within server sessions grouped into clusters. 
They are primarily used to give a clear view of the reality and most occurring 
order based visiting behaviour. Open sequences are not used to distinguish 
between interesting and non-interesting navigations. 

In cluster three, interesting navigations with regard to the ‘home’ page are 
extracted. Links from ‘http://machines.hyperreal.org’ to ‘guide’ and the other 
way around, from ‘guide’ to ‘http://machines.hyperreal.org’ are used less than 
expected from the structure of the web site. Yet, from 
‘http://machines.hyperreal.org’ to ‘features’ is interesting in only one direction. 
This one-way, order based information indicated by open sequences is not 
provided in appendix 5. 

Finally, in cluster four, interesting navigations from ‘Casio’ to ‘CZ’ and 
from ‘ARP’ to ‘Odyssey’ occur less than expected from the structure of the 
web site. This also means that, given a Τ-value of 0.75,=navigations the other 
way around i.e. from ‘CZ’ to ‘Casio’ and from ‘Odyssey’ to ‘ARP’ are not 
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considered interesting since they occur as frequent as expected from the 
structure of the web site. 

In the analysis above, interesting navigations are discovered based on the 
second (2) and fourth (4) category of comparison. Yet, in figure 5.15, some of 
the navigations present visiting patterns between web pages that are used 
together less than would be expected from the structure of the web site 
(interesting navigations), others present visiting patterns between web pages 
that are used together as frequent as expected from the structure of the web site 
(uninteresting navigations). The reason why uninteresting navigations are also 
given in figure 5.15 is because they have high support values in the data. In 
order to provide only interesting navigations, the clusters are examined by 
combinations of the order of pages within interesting beliefs of related pages. 
The results are given in the following section. 
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Figure 5.15: Interesting navigations on http://machines.hyperreal.org, presented 
by open sequences with high support values. 
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5.8.1.3 Interesting navigations presented by high support values of 
combinations of the order of pages within interesting beliefs of related pages   

 
In this section, for each cluster, support and confidence are calculated for every 
combination of the order of pages within interesting beliefs of related pages. 
Out of a total number of 91 frequent item sets, given appendix 5, 278 different 
combinations of the order of pages are defined. For each cluster, the five 
highest support values are used for presenting interesting navigations in figure 
5.16. 

Compared with figure 5.15, cluster one represents the same interesting 
navigations. In general, eight out of twenty navigations in figure 5.16 are not 
given in figure 5.15. For example, in cluster two of figure 5.16, proceeding 
from page 657 to page 984, followed by page 996 is not presented in figure 
5.15 because the support measure is not high enough. 

All of the navigations in figure 5.16 are declared interesting and fall within 
the second (2) and fourth (4) category, providing visiting patterns between web 
pages that are used together less than would be expected from the structure of 
the web site. One exception occurs for navigation (657, 984, 996). The frequent 
item set of this navigation is declared interesting in table 5.16 for category (2) 
and (5). However, navigation (657, 984, 996) provides the same interesting 
information i.e. usage behaviour from page 657 to page 984 and from page 984 
to page 996 that occurs less frequent than expected from the structure of direct 
hyperlinks between the pages 657, 984 and 996. 
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Figure 5.16: Interesting navigations on http://machines.hyperreal.org, presented 
by high support values of combinations of the order of pages within interesting 
beliefs of related pages. 
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5.8.2 Non-existing navigations given a provided structure 
 
Another group in which results are categorized provides interesting information 
about links between pages that are nearly not (support of frequent item sets is 
less than 0.1%) used by the visitors. This kind of information may be used for 
deleting links between pages so as to prevent the web site for being too 
complicated or inefficient for the users. From the previous analysis, sets of 
pages without a frequent item set (i.e. support is less than 0.1%) automatically 
fall into this category. We may call these sets of pages beliefs of not related 
pages. Interesting beliefs of pages not being related, or interesting not 
frequently visited pages, are identified by three types of comparisons. Table 
5.18 gives the results, ordered by level of interestingness. Because the 
interesting combinations of not related pages do not represent any real frequent 
visiting behaviour, the order is irrelevant. 

All of the interesting beliefs of not related pages, following our analysis on 
http://machines.hyperreal.org, fall within category (2). This means that 
interesting frequent item sets of web pages are identified that are, given a 
provided structure of direct hyperlinks, barely used by the visitor.   
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Evidence IMßi  ≥ 0.75  
Interesting 

beliefs of not 
related pages 

 

 
Usage 

 
Structure 

 
Combined 

Usage 
- 

Structure 

Usage 
- 

Combined 

Structure 
- 

Combined 

(349, 406) [0.0019; 0.0019]  [1.0000; 1.0000] [1.0000; 1.0000] 1.4115 (-) 1.4115 (-) - 
(349, 937) [0.0022; 0.0022]  [1.0000; 1.0000] [1.0000; 1.0000] 1.4111 (-) 1.4111 (-) - 
(349, 959) [0.0027; 0.0027]  [1.0000; 1.0000] [1.0000; 1.0000] 1.4103 (-) 1.4103 (-) - 
(349, 407) [0.0042; 0.0042]  [1.0000; 1.0000] [1.0000; 1.0000] 1.4082 (-) 1.4082 (-) - 
(820, 827) [0.0337; 0.0337]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3665 (-) 1.3665 (-) - 
(857, 862) [0.2100; 0.2100]  [1.0000; 1.0000] [1.0000; 1.0000] 1.1172 (-) 1.1172 (-) - 
(852, 853) [0.2647; 0.2947]  [1.0000; 1.0000] [1.0000; 1.0000] 1.0398 (-) 1.0398 (-) - 

 
Table 5.18: Interesting beliefs of not related pages on http://machines.hyperreal.org.
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5.9  Deploying the results 
 
Both groups of interesting existing navigations providing order-based 
information of visited pages as well as non-existing navigations given a 
provided structure, described in sections 5.8.1 and 5.8.2, may be used for link 
optimisation studies. In order to develop a web site structure conform to 
visiting behaviour of users, links between pages that are not optimally used 
may be deleted or the pages may be moved elsewhere in the structure of the 
web site. Likewise, interesting navigations between web pages, without any 
direct links, may suggest link insertion for the convenience of the user. Finally, 
considering interesting non-existing navigations given a provided structure 
suggests link deletion. 
 
5.9.1 Suggestions for reorganizing pages or deleting direct links 
 
For this project we may give some suggestions with regard to link optimisation 
at the web site http://machines.hyperreal.org. First, links between the following 
pages are not used as frequently as expected from the current structure of the 
web site. Therefore we may suggest reorganizing the pages or deleting the 
direct links between pages with page_id and corresponding URL address given 
in table 5.19. In the last column the interestingness measure is given. This 
measure may give an indication of the ‘urgency’ of reacting to the behaviour of 
web users. The higher the interestingness measure, the more urgent it is to 
respond to visiting behaviour by optimising the structure of the web site. Note 
that in table 6.19 suggestions are given for the most frequent occurring and 
interesting patterns presented by the open sequences in figure 5.15.  
Suggestions for reconsidering the structure between pages, inserting or deleting 
links may also be studied for other interesting order-based navigation patterns, 
for example those not having high support values. Likewise, figure 5.16 may 
be used for suggestions with regard to link optimisation. 
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From To IM 

349 http://machines.hyperreal.org 
/manufacturers 

657 http://machines.hyperreal.org 1.3905 

657 http://machines.hyperreal.org 813 http://machines.hyperreal.org 
/features 

1.3654 

163 http://www.hyperreal.org 159 http://www.hyperreal.org/guide 1.3084 
159 http://www.hyperreal.org/guide 349 http://machines.hyperreal.org 

/manufacturers 
1.3084 

163 http://www.hyperreal.org 349 http://machines.hyperreal.org 
/manufacturers  

1.2415 

984 http://machines.hyperreal.org 
/manufacturers/Roland 

998 http://machines.hyperreal.org 
/manufacturers/Roland/JX 

1.2385 

657 http://machines.hyperreal.org 815 http://machines.hyperreal.org 
/guide 

1.2249 

815 http://machines.hyperreal.org 
/guide 

657 http://machines.hyperreal.org  1.2249 

857 http://machines.hyperreal.org 
/manufacturers/ARP 

868 http://machines.hyperreal.org 
/manufacturers/ARP/Odyssey 

1.1815 

984 http://machines.hyperreal.org 
/manufacturers/Roland 

996 http://machines.hyperreal.org 
/manufacturers/Roland/Juno 

1.1518 

349 http://machines.hyperreal.org 
/manufacturers 

524 http://www.hyperreal.org/ 
manufacturers/Roland 

1.0794 

882 http://machines.hyperreal.org 
/Casio 

883 http://machines.hyperreal.org 
/Casio/CZ 

0.9350 

 
Table 5.19: Suggestions for reorganizing pages or deleting direct links. 

 
Second, with regard to direct links between pages, which are barely used by 

the visitor (re. non-existing navigations given a provided structure, presented in 
table 5.18), we suggest link deletion. Suggestions for link deletion are given in 
table 5.20. 
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From To IM 

349 http://machines.hyperreal.org 
/manufacturers 

406 http://machines.hyperreal.org 
/manufacturers/email 

1.4115 

406 http://machines.hyperreal.org 
/manufacturers/email 

349 http://machines.hyperreal.org 
/manufacturers 

1.4115 

349 http://machines.hyperreal.org 
/manufacturers 

937 http://machines.hyperreal.org 
/manufacturers/links 

1.4111 

937 http://machines.hyperreal.org 
/manufacturers/links 

349 http://machines.hyperreal.org 
/manufacturers 

1.4111 

349 http://machines.hyperreal.org 
/manufacturers 

959 http://machines.hyperreal.org 
/manufacturers/Opus 

1.4103 

959 http://machines.hyperreal.org 
/manufacturers/Opus 

349 http://machines.hyperreal.org 
/manufacturers 

1.4103 

349 http://machines.hyperreal.org 
/manufacturers 

407 http://machines.hyperreal.org 
/manufacturers/EML 

1.4082 

407 http://machines.hyperreal.org 
/manufacturers/EML 

349 http://machines.hyperreal.org 
/manufacturers 

1.4082 

820 http://machines.hyperreal.org 
/incoming 

827 http://machines.hyperreal.org 
/incoming/info 

1.3665 

827 http://machines.hyperreal.org 
/incoming/info 

820 http://machines.hyperreal.org 
/incoming 

1.3665 

857 http://machines.hyperreal.org 
/manufacturers/ARP 

862 http://machines.hyperreal.org 
/manufacturers/ARP/Axxe 

1.1172 

862 http://machines.hyperreal.org 
/manufacturers/ARP/Axxe 

857 http://machines.hyperreal.org 
/manufacturers/ARP 

1.1172 

852 http://machines.hyperreal.org 
/manufacturers/Alesis 

853 http://machines.hyperreal.org 
/manufacturers/Alesis/MMT-8 

1.0398 

853 http://machines.hyperreal.org 
/manufacturers/Alesis/MMT-8 

852 http://machines.hyperreal.org 
/manufacturers/Alesis 

1.0398 

 
Table 5.20: Suggestions for deleting direct links. 

 
 
5.9.2 Suggestions for inserting direct links 

 
Finally, links between web pages may be inserted due to the fact that, although 
no direct links appear between these pages, the visiting pattern is higher than 
expected from the structure of the site. A suggestion for link insertion with 
regard to the web site http://machines.hyperreal.org is, unfortunately, not 
found, given the log files and given т = 0.75. This means that inserting direct 
hyperlinks on http://machines.hyperreal.org is not very urgent. 
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5.10 Calculating a less severe structure evidence 
 

In section 5.5.1 structure evidence is calculated by defining a cfactor equal to 1 
if at least one direct hyperlink exists between every pair of pages in an item set 
(re. figure 5.3). Otherwise, cfactor equals 0. The results of applying such a 
severe definition of structure evidence are given in sections 5.8 and 5.9. 
Generally, interesting navigations are discovered providing usage behaviour 
that occurs less frequent than expected from the structure of the web site. 

We may question ourselves what would have happened if less severe 
structure evidence had been used. Therefore, the analysis is repeated on the 
same data set, using the same value for т and applying a less severe cfactor for 
calculations of structure evidence. In figure 5.17 the same examples of figure 
5.3 are given, yet another cfactor is defined. Here, if at least one path occurs 
between web pages, a cfactor equal to 1 is used. Otherwise, cfactor equals 0.  
 

cfactor = 1 cfactor = 1
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Figure 5.17: Illustration of direct hyperlinks between web pages defining a less 
severe connectivity factor. 
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The results show that 116 frequent item sets are defined interesting, which 
is more compared to the 91 frequent item sets that are declared interesting 
previously. Also, all of the previously discovered 91 interesting frequent item 
sets re-occur within the new set. Moreover, all of the 116 interesting frequent 
item sets present beliefs of related web pages that are used together less than 
would be expected from the structure of the web site. This may be explained by 
the following reasons. Usage evidence pairs are the same for both types of 
analyses and appear to be relatively low. Also, structure evidence pairs that 
were previously different from zero (i.e. equal to one) remain the same. Yet, 
some of the structure evidence pairs that were previously equal to zero rise to a 
higher level in the analysis if a less severely defined cfactor is used. For 
example, in the second column of figure 5.17, structure evidence for frequent 
item sets (X, Y, Z, U) and (X, Y, W, Z) equals respectively 0.25 and 0.5. Yet, 
structure evidence for the same frequent item sets equals 0 using the cfactor of 



the previous analysis because direct hyperlinks between (X, Z), (X, U), (Y, U) 
and (Y, W) do not exist. 
 
 
5.11 Usage behaviour that occurs more frequent than 

expected from the web structure 
 
We may also question ourselves how we would have been able to discover 
interesting navigations providing usage behaviour that occurs more frequent 
than expected from the structure of the web site. This means that usage 
evidence must be larger than structure evidence with т  ≤  IMßi and IMßi =  
         ________________________________________ 

= √ (|edßi
1 − edßi

2|)2 + (|epßi
1 − epßi

2|)2 . Unfortunately, from the data used in the 
experimental tests with т = 0.75, this situation was not found due to the 
relatively low usage evidence for beliefs of related pages (or frequent item 
sets). 

However, we may provide a theoretical case where beliefs of related pages 
are defined interesting with usage evidence larger than structure evidence. 
Consider a preliminary example of a web site structure given in figure 5.18. 
The homepage is written as ‘H’. One level deeper page A, B and C are 
structured. At the deepest level pages D, E, F and G appear. Suppose the 
following five server sessions are logged in a file. Note that the backspace key 
is used in S3 and S5. 
S1 = H B F H B C G 
S2 = B C G 
S3 = H A E B C G 
S4 = H A D A B 
S5 = H A E B C 
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H

A CB

D E GF

 
Figure 5.18: Theoretical simplified example of a web site structure. 

 
If we consider frequent item set (B, G), structure evidence = 0 and usage 

evidence = 0.6 using equations (5.5) and (5.9), which provides an 
interestingness factor of 0.85. Using т = 0.75, frequent item set (B, G) is 
defined as an interesting frequent item set representing web usage behaviour 
that occurs more frequent than expected from the structure of the web site.  
 
 
5.12 Conclusion and Future Research 
 
In this chapter, SAM is integrated with an interestingness measure in order to 
discover navigations or visiting patterns that are interesting on a web site. 
Navigations are interesting if they are unexpected, surprising or contradicting 
with the structure of the web site or direct hyperlinks between web pages. 
Navigations are uninteresting if they are expected, known, obvious or resulting 
from the structure of the web site or direct hyperlinks between web pages. 
Interesting navigations provide information that may be used for optimising the 
layout of the web site through structuring of direct hyperlinks between web 
pages and for web personalization studies. 

The principles of Baldwin’s support logic create a support logic framework 
with a conceptual frame of evidence and beliefs for Web Usage Mining. 
Beliefs along with evidence pairs are automatically generated from two 
different sources. Structure data provide information about links between 
pages, which is incorporated into beliefs of related pages. Likewise, usage data 
provide information about visited pages on a web site, which is incorporated 
into beliefs of related pages. For each belief of related pages, evidence pairs are 
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defined from structure data and usage data, which are called structure evidence 
and usage evidence respectively.  

Within Web Usage Mining studies, two evidence pairs, coming from 
different sources and referring to the same belief, may be combined into one 
evidence pair, which is called combined usage evidence, combined structure 
evidence or combined evidence, in order to be able to reason about evidence 
coming from different sources. Combined usage evidence is combining usage 
evidence sources of different log files registering usage behaviour of different 
periods. Likewise, combined structure evidence is combining sources of 
modified web structures of different periods. Finally, combined evidence 
means that usage and structure evidence are combined. 

If usage evidence as well as structure evidence ≠ 0, ≠ 0.5 and ≠ 1, 
comparing usage with structure evidence will identify interesting beliefs with 
conflicting evidence. Comparing usage with combined evidence will identify 
interesting beliefs with strong usage and weak structure evidence. Yet, 
comparing structure evidence with combined evidence will identify interesting 
beliefs with strong structure and weak usage evidence. 

Interesting beliefs of related pages are defined using a threshold value т for 
the differences between evidence pairs. For a high value of т, which is at or 
above 0.5 (re. Cooley et al, 1999b), relatively strong differences between 
evidence pairs provide high interesting results. For a low value of т, which is 
below 0.5 (re. Cooley et al, 1999b), relatively weak differences between 
evidence pairs provide low interesting results. 

In search for interesting navigation patterns on 
http://machines.hyperreal.org, the value of т is set at 0.75 in order to find 
patterns of the highest interest level. First, 75,855 server sessions are created 
out of log files registering web usage behaviour from 01/02/1999 till 
28/02/1999. Frequent items sets with minimum support of 0.1% represent 
beliefs of related pages. From the log files, a total number of 539 beliefs, 
consisting of minimum two and maximum four related pages, are identified, of 
which 91 are declared interesting.  

For each belief, usage and structure evidence are calculated. Also combined 
evidence is calculated in order to identify interesting beliefs with relatively 
strong/weak structure evidence and relatively weak/strong usage evidence. The 
results of our experiment provided 91 interesting beliefs of related pages when 
comparing usage with structure evidence. 46 interesting beliefs showed 
structure evidence equal to one and weak usage evidence; 44 interesting beliefs 
showed structure evidence equal to 0.667 and weak usage evidence; 1 
interesting belief showed structure evidence equal to 0.8334 and weak usage 
evidence. In general, all of the 91 interesting beliefs identified related web 
pages that are used together less than would be expected from the structure of 
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the web site. No interesting beliefs are identified with regard to related pages 
that are used together more than would be expected from the structure of the 
web site, because of two reasons. First, usage evidence of frequent item sets is 
relatively low. Second, by setting т at 0.75, related pages of the highest interest 
only are identified. 

For each interesting belief of related pages, positive and negative 
differences between evidence pairs are examined per type of comparison. In a 
decision table, the outcome is predicted for usage/structure evidence ≠ or = 0, ≠ 
or = 0.5 and ≠ or = 1. Two different meanings may be given to interesting 
beliefs of related pages, given our experiment on http://machines.hyperreal.org. 
First, interesting beliefs of related pages identify interesting related pages that 
are used together more than would be expected from the structure of the web 
site (1). This means that, despite a relatively weak topological connection, the 
related pages are frequently visited. Second, interesting beliefs of related pages 
identify interesting related pages that are used together less than would be 
expected from the structure of the web site (2). This means that, despite a 
relatively strong topological connection, the related pages are not visited 
frequent enough. The results of our experiment that are considered interesting 
all fall into the second meaning (2), showing negative differences when 
comparing usage with structure and usage with combined evidence and 
showing positive differences when comparing structure with combined 
evidence. 

A typical characteristic of interesting frequent item sets, representing 
interesting beliefs of related pages within Web Usage Mining studies, is that 
underlying combinations of item sets usually are not interesting, given the 
results of our experiment. 

During the process of identifying interesting frequent item sets (or 
interesting related (web) pages) on http://machines.hyperreal.org, no lack of 
evidence is tolerated, which means that the evidence shown from one of the 
sources defines demonstrated as well as possible evidence for a given belief. 
This approach is also followed by Cooley et al (1999b) and practically, this 
means that edßi

u = epßi
u and edßi

s = epßi
s. Another remark is that, the interestingness 

measure, based on the support logic framework and further developed for 
discovering interesting patterns within Web Usage Mining (Cooley et al, 
1999b), is not suitable for defining interesting frequent item sets consisting of 
one page. Nevertheless, the interestingness measure is useful for our studies 
because we investigate the order of visited pages within interesting visiting 
patterns. Our goal is to investigate whether the structure of direct hyperlinks 
between web pages may be improved and therefore we need interesting 
frequent item sets of minimum two pages. 
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SAM is integrated with the results of interesting beliefs of related pages 
(SAMI). This means that SAMI is now able to recognize interesting frequent 
item sets within server sessions. This also means that SAMI ignores 
uninteresting frequent item sets when measuring distances between server 
sessions. In other words, SAMI filters the interesting frequent item sets out of 
the server sessions. Following our approach of Web Usage Mining (re. chapter 
four, figure 4.3), SAMI distance measures are used for clustering server 
sessions consisting of interesting related web pages. 

The reason why server sessions are filtered (also known as ‘pre-processed’), 
based on the identified interesting related web pages, before instead of after the 
calculation of SAM distance measures is because this approach deals with 
noise (i.e. uninteresting patterns) in an early stage of the analysis. Data sets 
within Web Usage Mining studies generally contain lots of patterns that are 
‘known’ or ‘obvious’ due to the structure of direct hyperlinks between web 
pages that is offered as a ‘navigating road’ to web visitors. Dealing with 
uninteresting patterns in an early stage of the analysis provides an opportunity 
for SAM to handle large data sets. For example, in our experiment of analysing 
web usage behaviour on http://machines.hyperreal.org, the data set is reduced 
from 75, 855 to 7,266 server sessions after pre-processing the server sessions 
into server sessions holding interesting related, frequently visited web pages. 
This means that 68,589 server sessions do not hold interesting related, 
frequently visited web pages. If the original data set of 75,855 server sessions 
were first used to calculate SAM distance measures, we would end up with an 
explosion of SAM distance measures (i.e. [75,855 x 75,854] / 2 = 
2,876,950,000 SAM distance measures). Moreover, we would also face the 
problem of distance-based clustering (re. chapter seven) before we could ‘post-
process’ the server sessions into server sessions holding interesting 
combinations of web pages. This way we unnecessarily burden the analysis 
with data, which is in fact noise. 

The reason why server sessions, holding interesting related web pages, are 
clustered is to provide large groups of different interesting visiting patterns. 
This provides an overview of interesting patterns actually occurring on the web 
site. It also shows small difference in interesting patterns within the same 
cluster and large differences between interesting patterns across different 
clusters. If we omit the clustering procedure of server sessions holding 
interesting related web pages, it would be difficult to provide an overview of 
several different large groups of interesting visiting patterns, to examine small 
differences within the groups and major differences across the groups. 

Clustering server sessions based on SAMI distance measures identifies 
profiles representing interesting navigations on a web site. The difference 
between frequent item sets and navigations is that navigations provide 
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information about the order of visited pages. Frequent item sets do not provide 
order-based information. The profiles, providing interesting order-based 
information of navigations on http://machines.hyperreal.org are the following. 
First, interesting navigations to and from 
http://machines.hyperreal.org/manufacturers are given. Second, interesting 
navigations to and from http://machines.hyperreal.org/manufacturers/Roland 
are shown. Third, interesting navigations with regard to the home page are 
given. Fourth, interesting navigations are concentrated around 
http://machines.hyperreal.org/manufacturers/Casio and 
http://machines.hyperreal.org/manufacturers/Jamaha. 

The added value of clustering based on SAMI (compared to interesting 
frequent item sets) is shown through large groups presenting profiles of 
interesting information about the order in which pages are visited. Also, small 
differences within profiles and large differences across profiles are presented. 
This means that clustering server sessions based on SAMI provides more 
information about what is actually going on at the web site. For example, 
interesting belief of related pages (163, 349) and (159, 349) do not provide 
order-based information and show an interestingness measure of respectively 
1.2415 and 1.1183. Clustering server sessions based on SAMI additionally 
informs us that people actually and mostly navigate through the web site from 
page 163 followed by page 349 and from page 159 followed by page 349, 
instead of the other way around. Moreover, interesting navigations with regard 
to pages 163, 349 and 159 are quite similar to interesting navigations with 
regard to page 524 (indicated by profile or cluster 1), while they are quite 
dissimilar to interesting navigations with regard to pages 657, 984, 996, 998 
(indicated by profile or cluster 2). The information provided by the clusters 
may be used for re-structuring web pages or deleting/inserting direct hyperlinks 
between web pages. In the example above, since people navigate from page 
163 to page 349 less than expected from the structure, the direct hyperlink from 
page 163 to page 349 may be deleted. Likewise, since people actually navigate 
less from page 349 to 163, the direct hyperlink from page 349 to 163 may be 
deleted as well. The web developer may also consider moving pages 163 and 
349 elsewhere in the structure of the web site, conform to visiting behaviour of 
users. 

We may conclude that the model of clustering based on SAMI fits the data 
well because of the following reasons. First, all of the four clusters show high 
exclusivities for interesting web pages. In particular, 90% of the pages have 
exclusivity above 0.80. Second, order-based information is well represented by 
the clusters. Open sequences show relatively high support and confidence 
values for only one of the four clusters. 
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Re-structuring a web site, by means of moving pages elsewhere in the 
structure, deleting links between particular pages and inserting links between 
other pages, conform with the behaviour of visitors, shows that the discovered 
information is easily integrated with existing processes. The ease of integration 
is one of the criteria for a successful data mining project, mentioned in chapter 
two, section 2.3. Note that our project falls into the category of Web Usage 
Mining as well as data mining, because Web Usage Mining is in fact a data 
mining project where web usage data is analysed. 

Finally, since the data set of 75,855 server sessions used for clustering based 
on SAMI is very similar to the data set of 3,131 server sessions used for 
clustering based on SAM (re. chapter four, data set 2), we may provide an 
indication how the results would look like if SAM had been applied to 75,855 
server sessions. Comparing four clusters based on SAMI with five clusters 
based on SAM, differences between clusters of both algorithms are found due 
to presence and absence of interesting frequent item sets within navigations. 
This means that, if SAMI is used for analysing usage behaviour on 
http://machines.hyperreal.org, navigations are discovered with an 
interestingness measure at or above т. If SAM is used, navigations are 
discovered which are generally smaller than т and, as such, not declared 
interesting. For example, given т = 0.75, cluster one based on SAMI provides 
the following interesting navigations: 163 followed by 349 (IM = 1.2415), 163 
followed by 159 (IM = 1.3084), 159 followed by 349 (IM = 1.1183) and 349 
followed by 524 (IM = 1.0794). Yet, cluster one based on SAM provides the 
following actual but, unfortunately, uninteresting navigations: 657 followed by 
1082 (IM = 0.6289), 657 followed by 947 (IM = 0.5840), 338 followed by 
1153 (IM = 0.5050), 804 followed by 190 (IM = 0.5587), 657 followed by 933 
and vice versa (IM = 0.5523). 

Topics for future research include extending MDSAM with an 
interestingness measure in order to distinguish interesting two-dimensional 
navigations from those that are uninteresting. Also, the interestingness measure 
should be sensitive to the ‘depth’ of pages in the web site structure. Studies 
must verify whether the a-priori probability of finding related pages, which are 
situated ‘deep’ in the web site structure is smaller than the probability of 
finding related pages, which are situated at the ‘top’ in the web site structure. 
Another topic for future research is developing the cfactor for a range of values 
instead of using two values for the cfactor (zero and one). Also, instead of 
working with no lack of evidence, the effect of different categories of lack of 
evidence on the results must be further investigated. For example, with regard 
to usage evidence, demonstrated evidence is provided by real web usage 
behaviour registered in log files that are used within the analysis while possible 
evidence may be provided by probabilities. Calculating probabilities for 
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possible evidence may be done through examination of web usage behaviour 
registered in log files during a relatively long period of, say, three or more 
years. Finally, SAMI may be extended with an interestingness measure for 
discovering interesting frequent item sets of one page. Usage as well as 
structure evidence must be developed in such a way that surprising effects 
measure real situations. 
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CHAPTER 6 

 
SENSITIVITY ANALYSIS 

 
 
 

In the preceding chapters, web usage data is analysed using SAM. This means 
that SAM, 2-DIM SAM or SAMI distance measures are calculated between 
server sessions. The distance measures are inserted into a distance matrix, 
which is used by a hierarchical clustering algorithm for defining clusters of 
server sessions. Finally, the clusters of server sessions represent profiles of 
visiting behaviour showing order-based information of (interesting) visited 
pages and/or visiting times with regard to web usage behaviour. 

The parameters of the SAM application are reflected by operation weights 
(also called costs) i.e. weights for deletion, insertion and substitution 
operations. In order to obtain more insight into the influence of SAM 
parameters on the calculations of and relations between SAM distance 
measures as well as on the final results (i.e. clusters of server sessions), we will 
analyse in this section the sensitivity of SAM. First, we provide an overview of 
properties with regard to SAM. In the following section, we evaluate, through 
experimental tests, whether these properties are true. We also examine to what 
extent SAM distance measures are changed if SAM parameters are changed. 
Then, we study how SAM distance measures change for sampled sets with 
differences in the total number of items and in average sequence length. 
Finally, before we conclude and define avenues for future research, we 
examine how changes in SAM parameters influence the final clustering results 
on a real data set. 

Parts of this chapter regarding the experimental tests, which are performed 
in order to examine the sensitivity of SAM to differences in operational 
weights and differences in sampled sets, are also described in Van Baelen 
(2003). Within our research group, this project is executed by Walter Van 
Baelen and myself. A first draft of the results is printed for a Masters degree in 
Economic Engineering Computer Science (Van Baelen, 2003). In this chapter, 
the results are used for further investigation how SAM’s parameter settings 
may influence the final clustering results. 
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6.1  SAM properties 
 
SAM uses three different parameters within its analysis of measuring distances 
between sequences. Each parameter refers to an operation and bears an 
operational cost (also called weight) reflecting the amount of work for 
changing one sequence into the other. Sensitivity analysis measures how 
changes in parameters affect (relations between) SAM distance measures, 
which will affect the final results (i.e. clusters of server sessions). Before 
proceeding to the sensitivity analysis of SAM, we first illustrate some 
properties with regard to different parameter settings of SAM. 
 
6.1.1 Operation weights providing equal SAM distance measures 
 
Different weights for substitution operations will not always provide different 
SAM distance measures. Below, situations are given when different parameters 
provide equal SAM distance measures. Due to the minimum cost principle of 
SAM (re. Chapter three, equation (3.1)), substitution operations are replaced by 
deletion and insertion operations if substitution costs more than the sum of 
deletion and insertion. This means that, if the weights given to deletion and 
insertion are equal and substitution weights are equal to or higher than the sum 
of the weights for deletion and insertion, the SAM distance measures will be 
the same for different operation weights. Table 6.1 provides some examples of 
different weights assigned to insertion, deletion and substitution operations. For 
s1 and s2, given in the first row, SAM distance measures are calculated using 
the parameters of the corresponding examples. Following the SAM algorithm, 
deletion and insertion operations must be applied to the source (first) sequence 
in order to change the source into the target sequence. The operations, 
necessary to equalize s1 with s2 (or to change s1 into s2), are one substitution, 
two deletions in s1 (i.e. elements 4 and 7) and one insertion in s1 (i.e. element 
5). The examples show that, although different parameter settings are used, due 
to the minimum costs principles of SAM, the same SAM distance measures are 
calculated between s1 and s2. 
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Source sequence: s1 = 1 2 3 4 7 
Target sequence: s2 = 2 1 3 5 

Parameters Example 
wd wi ws 

dSAM (s1, s2) 

1 1 1 2 5 
2 1 1 3 5 
3 1 1 100 5 

 
Table 6.1: Examples of operation weights providing equal SAM distance 
measures (wd = wi and ws ≥  wd + wi). 

 
6.1.2 Operation weights providing equally related SAM distance measures 
 
Different weights for deletion, insertion and substitution operations will not 
always affect the relations between SAM distance measures. This may indicate 
that clustering by means of the SAM distance matrix, will provide equal results 
if relations between SAM distance measures are not changed. If, for different 
examples, the weights of operations are multiplied/divided by a constant factor, 
the SAM distance measures between sequences are also multiplied/divided by 
that constant factor. Examples are given in table 6.2. In the first (second), 
weights of operations in the second (first) divided (multiplied) by 50 are used. 
Likewise, SAM distance measures are multiplied (divided) by 50, indicating 
that, in each example, relations between SAM distance measures remain 
unchanged. If sequences are clustered based on SAM distance measures, the 
final clustering results of example one and two will be the same. 
 

Source sequence: s1 = 1 2 3 4 7 
Target sequence: s2 = 2 1 3 5 

Parameters Example 
wd wi ws 

dSAM (s1, s2) 

1 2 2 4 10 
2 100 100 200 500 

 
Table 6.2. Examples of operation weights providing equally related SAM 
distance measures. 
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6.1.3 Operation weights with some influence on relations between SAM 
distance measures 
 
The relation between weights for deletion and insertion operations, irrelevant 
of the substitution weight, provides information about the influence of SAM’s 
parameters on relations between SAM distance measures. If, within several 
examples, the deletion-to-insertion weights ratios are equal, different 
parameters will have some influence on relations between SAM distance 
measures. Likewise, if, within several examples, the weights for deletions are 
much larger (smaller) than the weights for insertions, different parameters will 
have some influence on relations between SAM distance measures. Examples 
are given in table 6.3. In examples one, two and three the deletion-to-insertion 
weights ratios are 0.5. In example four and five the deletion-to-insertion 
weights ratios are 1. The last three examples illustrate parameters where 
weights for deletions are much larger than weights for insertions. In the end, 
small changes in relations between SAM distance measures may produce small 
changes in the final results (i.e. clusters of server sessions). Practically this 
means that, although SAM distance between s1 and s2 equals 6 in the first 
example and 14 in the second, they may end up in the same clusters of example 
one and two because the relations between the SAM distance measures in the 
data set of example one and two has been changed only a little bit.  

 
Source sequence: s1 = 1 2 3 4 7 
Target sequence: s2 = 2 1 3 5 

Parameters Example 
wd wi ws 

dSAM (s1, s2) 

Examples using parameters 
with some influence on 
relations between SAM 
distance measures 

1 1 2 2 6 
2 2 4 6 14 
3 2 4 10 14 

 
1, 2, 3 

4 2 2 2 8 
5 100 100 2 302 

4, 5 

6 100 1 2 203 
7 100 4 104 308 
8 100 2 200 304 

 
6, 7, 8 

 
Table 6.3. Examples of operation weights with some influence on relations 
between SAM distance measures. 
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6.1.4 Operation weights with more influence on relations between SAM 
distance measures 
 
Finally, if for several examples, no uniform rule exists about the relation 
between operation weights for deletions and insertions or whether the weights 
for deletions are much larger (smaller) than the weights for insertions, different 
parameters will have more influence on relations between SAM distance 
measures. Examples are given in table 6.4. In example one and two, the 
weights given to deletions are larger than those given to insertions. However, in 
example one, deletion operations cost twice as much as insertion operations 
whereas in example two, deletion operations cost 100 times as much as 
insertion operations. In example three, the weight for insertion is larger than the 
weight for deletion. In the end, more changes in relations between SAM 
distance measures may produce more changes in the final results (i.e. clusters 
of server sessions). Practically this means that, the first, second and third 
example may end up with more differences in clustering results because the 
relations between SAM distance measures in the data set of example one, two 
and three has been changed more.    
 

Source sequence: s1 = 1 2 3 4 7 
Target sequence: s2 = 2 1 3 5 

Parameters Example 
wd wi ws 

dSAM (s1, s2) 

1 2 1 2 7 
2 100 1 2 203 
3 1 100 2 104 

 
Table 6.4. Examples of operation weights with more influence on relations 
between SAM distance measures. 
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6.2  Parameterisation tests 
 
Parameterisation tests apply different SAM parameters on a sampled set and 
examine the relations between SAM distance measures. In the sections that 
follow, we first list the goals of parameterisation tests. Then we provide an 
overview of the different operation weights that are invoked on a synthetic 
sampled set throughout the tests. The following section describes how the 
relation between SAM distance measures, resulting from different parameters, 
is examined. Finally, the results of the parameterisation tests are described, 
given the experiments and the sampled set. 
 
6.2.1 Goals  
 
The goals of parameterisation tests are the following: 
 
� Examine whether the properties with regard to SAM, described in the 

previous section, are true. 
 
� Examine whether our software utilities meet the requirements of SAM’s 

properties. 
 
� Examine the sensitivity of SAM or measuring the extent of changes in 

SAM parameters on relations between SAM distance measures. 
 
6.2.2 Experiments and sampled set 
 
The parameterisation tests are performed by different SAM experiments, 
specifying different operation weights for deletion (wd), insertion (wi) and 
substitution (ws), presented in decision table 6.5. Based on the properties of 
SAM, which are illustrated in section 6.1, and on the levels of wd, wi and ws, 
nine different categories of experimental tests are performed. Every category is 
identified by ‘C’ followed by an integer. Every experiment is identified by 
means of three underscored (‘_’) delimited integer values. The first integer 
refers to the weight for deletion (wd), the second refers to the weight for 
insertion (wi) and finally the third refers to the weight for substitution (ws). For 
example, category C1 holds three experiments, which are designed to examine 
the first SAM property. The first, second and third experiment in C1 are 
identified by respectively 1_1_2, 1_1_3 and 1_1_100. Following SAM’s 
properties, these operational weights provide equal SAM distance measures. 
We remark that this study examines the algorithm of SAM through studying 
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relational changes in SAM distance measures. Future research discusses how 
meaningful costs may be applied within Web Usage Mining studies by means 
of changes in SAM parameter settings.    

The reason why categories and experiments of table 6.5 are chosen is given 
in the following paragraphs. C1 is designed to examine whether our software 
utilities meet the requirements of SAM’s first property. Three instead of two 
experiments are identified in C1 in order to test the software’s performance on 
the following characteristics: 
� The ability to handle small and large numerical values given to operational 

weights 
� The ability to handle two levels of parameter settings i.e. ws = wd + wi and 

ws > wd + wi 
The second level of parameter settings (i.e. ws < wd + wi) is not relevant for the 
first SAM property since equal SAM distance measures do not occur for 
different operational weights if ws < wd + wi. Also, equal SAM distance 
measures only occur if wd = wi  across different experiments. 

C2 and C3 are designed to examine whether our software utilities meet the 
requirements of SAM’s second property. Here, two levels of parameter settings 
(i.e. ws ≥ wd + wi and ws < wd + wi) are relevant and need to be examined. The 
only thing that matters for equally related SAM distance measures, using 
different operational weights, is to multiply or divide the weights of experiment 
a by x to obtain the weights of experiment b. This explains why in C2 equal 
weights are chosen (i.e. wd1 = wi1 and wd2 = wi2) and in C3 different weights are 
chosen (i.e. wd1 ≠ wi1 and wd2 ≠ wi2). Another explication for choosing this 
diversity in weights is to test the software’s performance regarding equally 
related SAM distance measures for small and large integer values. 

C4 to C9 are designed for two reasons. First, we examine whether the third 
and fourth properties of SAM are true. Second, we examine the influence or 
extent of changes in SAM parameters on relations between SAM distance 
measures. In other words, we specify categories of levels of influence and 
provide more detailed information based on changes in parameter settings. 
Both levels of parameter settings (i.e. ws ≥ wd + wi and ws < wd + wi) are 
relevant. C8 and C9 are distinguished from C4, C5, C6 and C7 based on 
different relations between weights for deletion and insertion operations. 
Furthermore, C4 and C5 specify three experiments, which are 2_1_3, 3_1_4, 
100_1_101 in C4 and 2_1_2, 4_2_2, 100_1_2 in C5. The parameters in C4 are 
chosen in order to examine whether changing parameters 2_1_3 into 3_1_4 
causes less relational changes compared to 100_1_101. For the same reason, 
parameters in C5 are chosen. We also expect that differences in SAM 
parameters will be quite small for experiments 2_1_2 and 4_2_2 in C5 because 
wd1/wi1 = wd2/wi2, or 2/1 = 4/2.   Categories C6 and C7 present experiments 
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which are the inverse of those in C4 and C5. This means that the weights given 
to deletion and insertion operations are turned around to verify whether the 
same relational changes in SAM distance measures are observed under 
different circumstances: deletion > insertion and deletion < insertion. Also, 
experiment 1_2_3 is added in C8 in order to verify whether changing 
parameters 2_1_3 into 1_2_3 causes less relational changes compared to 
1_100_101. For the same reason, experiment 1_2_2 is added in C9. Finally, 
weights are provided for small and large integer values.  

Some of the weights were previously shown in the examples of tables 6.1 to 
6.4 in section 6.1 to illustrate the SAM properties. For example, operational 
weights in C1 of decision table 6.5 are equal to the examples in table 6.1. 

 
Sam Property 

1 2 3 4 

Le
ve

ls
 o

f  
w

d, 
w

i, 
 w

s 

 
wd = wi 

=

 
wd1 =, >, < wi1 
wd2 =, >, < wi2 

(wd1 ≠ wd2) 
(wi1 ≠ wi2) 

 
wd1 > wi1 
wd2 > wi2 

(wd1 ≠ wd2) 

 
wd1 < wi1 
wd2 < wi2 
(wi1 ≠ wi2) 

 
wd1 > wi1 

and 
wd2 < wi2 

 
 

w
s ≥

 w
d +

 w
i 

C1 
 

1_1_2 
1_1_3 

1_1_100 

C2 
 

1_1_2 
100_100_200 

C4 
 

2_1_3 
3_1_4 

100_1_101 

C6 
 

1_2_3 
1_3_4 

1_100_101 

C8 
 

2_1_3 
1_2_3 

1_100_101 

w
s <

 w
d +

 w
i 

 C3 
 

1_2_1 
100_200_100 

C5 
 

2_1_2 
4_2_2 

100_1_2 

C7 
 

1_2_2 
2_4_2 

1_100_2 

C9 
 

2_1_2 
1_2_2 

1_100_2 

Description of SAM properties 
1 = Operation weights providing equal SAM distance measures 
2 = Operation weights providing equally related SAM distance measures 
3 = Operation weights with some influence on relations between SAM distance 
measures 
4 = Operation weights with more influence on relations between SAM distance 
measures 

 
Table 6.5. Decision table presenting different categories of parameter settings 
in SAM. Each category holds different experiments. 

 
The experiments presented in table 6.5, defining different SAM parameters, 

are used on a sampled, synthetic set with N = 500 sequences, representing 
server sessions. The number of items I, representing web pages, is 20 with i = 
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1, 2, …, 20. For a given value of N and I, data is sampled in such a way that 
every integer i has more or less the same probability in the set. The average 
length (avg_seq_length), minimum length (min_seq_length) and maximum 
length (max_seq_length) of the sequences in the sampled set are respectively 
two, one and five. Figure 6.1 summarizes the algorithm that is used to sample 
the set. Details of the algorithm are given in appendix 6. To give an idea how 
the sampled set that is used throughout the parameterisation tests, looks like, 
table 6.6 shows the first ten and the last ten records. 
 
 
 
begin 
    define equal probability function for integer values i of or between 1 and 20 
    for N:=1 to 50 do 
    begin 
        sample six sequences with length = 1 
        sample one sequence with length = 2 
        sample one sequence with length = 3 
        sample one sequence with length = 4 
        sample one sequence with length = 5 
    end 
end; 

 
Figure 6.1: Summarized algorithm for sampled set. 

 
 
 

Number of record Sequence (representing server session) 
1 1 
2 1 
3 18 
4 5 
5 6 
6 14 
7 7 4 
8 8 9 2 
9 10 2 17 2 
10 6 19 8 16 7 
… … 

491 14 
492 7 
493 12 
494 11 
495 9 
496 3 
497 11 16 
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498 15 5 9 
499 20 16 17 9 
500 1 19 11 10 10 

 
Table 6.6: First and last ten records, representing server sessions, of synthetic 
sampled set (created by algorithm in figure 6.1), used throughout 
parameterisation tests. 
 
6.2.3 Correlation and dissimilarity 
 
A good method for measuring the relation between SAM distance measures, 
resulting from different experiments, is Pearson’s correlation (c) (Kaufman 
and Rousseeuw, 1990), which looks for a linear relation between two variables 
x and y as follows: 
 
               n 
                     ∑ ( xj – avgx ) ( yj – avgy )  
            j = 1 

c (x, y)  =  ──────────────────────────────         (6.1) 
             n                            n 

√ [ ∑ ( xj – avgx )2 ]  √ [ ∑ ( yj – avgy )2 ] 
           j = 1                                             j = 1 

 

where 
x represents all of the pair-wise SAM distance measures between 

sequences in the analysis, based on operation weights of experiment a 
or dSAM

a ; 
y represents all of the pair-wise SAM distance measures between 

sequences in the analysis, based on operation weights of experiment b 
or dSAM

b ; 
j identifies the pair-wise SAM distance measures; 
n is the total number of pair-wise SAM distance measures between 

sequences in the analysis and equals [N x (N – 1)] / 2; 
avgx is the average SAM distance measure of x; 
avgy is the average SAM distance measure of y; 
 
and 
a identifies the first argument in the correlation, a = 1, 2, …,E; 
b identifies the second argument in the correlation, b = a + 1; 
E is the total number of different experiments in the parameterisation 

tests; 
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N is the total number of sequences in the analysis; 
 
Pearson’s correlation lies between -1 and +1 and is useful for clustering 
purposes because the extent to which two variables are related is measured 
(Kaufman and Rousseeuw, 1990). On the one hand, a perfect positive 
correlation between two variables is indicated by c = 1 and means that a 
high/low value of the first variable occurs with a high/low value of the second 
variable. On the other hand, a perfect negative correlation between two 
variables is indicated by c = -1 and means that, a high/low value of the first 
variable occurs with a low/high value of the second variable. Interpretations for 
c are given in table 6.7 (Texas A&M University, 2003; SPSS Tutorial, 2003; 
Northwest Missouri State University, 2003; Biz/ed, 2003). 
 

Strength of correlation Meaning 
0.8 ≤ |c| ≤ 1 Strong 

0.5 < |c| < 0.8 Moderate 
|c| ≤ 0.5 Weak 

 
Table 6.7: Interpreting Pearson’s correlation. 

 
In Kaufman and Rousseeuw (1990), correlations are converted to 

dissimilarities as follows: 
 
dissimilarity (x, y) = [1 - c (x, y)] / 2              (6.2) 
 
Dissimilarities lie between 0 and 1 and measure the extent of changes in 
relations between SAM distance measures, due to differences in SAM 
parameters. Using equation (6.2), variables (representing SAM distance 
measures resulting from different experiments) with a high positive correlation 
receive dissimilarity close to 0, whereas variables with a small positive 
correlation receive dissimilarity close to 0.5. With regard to negative 
correlations, dissimilarities lie between 0.5 and 1. The dissimilarity is 
particularly useful to indicate the effect of negatively correlated variables on 
the final clustering results. In the extreme case, a dissimilarity of 1 (correlation 
= -1) between SAM distance measures resulting from two experiments will end 
up with huge differences in clustering results since, for each sequence pair, 
small/large SAM distance measures in one experiment become large/small 
SAM distance measures in the other. Following, sequences with small distance 
measures in one experiment are grouped together during clustering based on 
the SAM distance matrix. Yet, the same sequences that were grouped together 
will end up in different clusters in the other experiment since their distance 
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measures in the SAM distance matrix are large. For this reason, negative 
correlations are always associated with high dissimilarities. 

 Along with interpretations of c, provided in table 6.7, corresponding 
interpretations of the dissimilarities are given in table 6.8. The last column 
provides information about the magnitude of changes in relations between 
SAM distance measures (no, minor, considerable or major), which may 
indicate the effect on the expected, final clustering results. 
 

Dissim (x, y) C (x, y) Meaning Magnitude of 
changes in relations 

between SAM 
distance measures 

0 1 Sam distance measures are 
similar and perfectly 
correlated. 

Zero 

> 0 and ≤ 0.1 ≥ 0.8 and < 1 SAM distance measures 
are nearly similar and 
strongly correlated. 

Minor 

> 0.1 and < 0.25 > 0.5 and < 0.8 SAM distance measures 
are moderately similar and 
moderately correlated. 

Considerable 
 

≥ 0.25 ≤ 0.5 SAM distance measures 
are dissimilar and weakly 
correlated. 

Major 

 
Table 6.8: Influence of SAM parameters on relations between SAM distance 
measures. 
 
6.2.4 Results 
 
Using the sampled set in table 6.6 and the SAM parameters given in the 
experiments of table 6.5, correlations and dissimilarities are calculated between 
SAM distance measures of every pair of experiments within each category (C1 
to C9), using equations (6.1) and (6.2). The results are given in table 6.9. In the 
first column, categories are given along with pairs of experiments in the second 
column. In the third and fourth column, the dissimilarity and correlation 
between SAM distance measures for each corresponding pair of experiments in 
the second column, is given. Finally, in the last column, sensitivity is shown, 
using the different categories of the dissimilarities provided in table 6.8. 
Sensitivity of changes in SAM parameter settings expresses the magnitude of 
changes in relations between SAM distance measures. 
 
 

= 278
 



Category Experiments Dissimilarity Correlation Sensitivity 
C1 1_1_2 and 1_1_3 0 1 Zero 
C1 1_1_2 and 1_1_100 0 1 Zero 
C1 1_1_3 and 1_1_100 0 1 Zero 
C2 1_1_2 and 100_100_200 0 1 Zero 
C3 1_2_1 and 100_200_100 0 1 Zero 
C4 2_1_3 and 3_1_4 0.0055 0.989 Minor 
C4 2_1_3 and 100_1_101 0.055 0.89 Minor 
C4 3_1_4 and 100_1_101 0.0255 0.949 Minor 
C5 2_1_2 and 4_2_2 0.005 0.99 Minor 
C5 2_1_2 and 100_1_2 0.06 0.88 Minor 
C5 4_2_2 and 100_1_2 0.055 0.89 Minor 
C6 1_2_3 and 1_3_4 0.0055 0.989 Minor 
C6 1_2_3 and 1_100_101 0.053 0.893 Minor 
C6 1_3_4 and 1_100_101 0.025 0.95 Minor 
C7 1_2_2 and 2_4_2 0.005 0.99 Minor 
C7 1_2_2 and 1_100_2 0.055 0.89 Minor 
C7 2_4_2 and 1_100_2 0.053 0.893 Minor 
C8 2_1_3 and 1_2_3 0.1165 0.767 Considerable 
C8 2_1_3 and 1_100_101 0.301 0.398 Major 
C9 2_1_2 and 1_2_2 0.12 0.76 Considerable 
C9 2_1_2 and 1_100_2 0.305 0.39 Major 

 
Table 6.9: dissimilarities and correlations between SAM distance measures for 
sampled set presented in table 6.6. 
 

First, we examine whether the properties with regard to the SAM algorithm, 
given in section 6.1, are true. We also verify whether the software utilities meet 
SAM’s requirements and handle properly large numerical values given to the 
operational weights. Table 6.9 provides the following results. The superscripts 
of dSAM indicate the experimental id (re. table 6.5). 

 
� dissim (dSAM

1_1_2, dSAM
1_1_3) = 0;  dissim (dSAM

1_1_2, dSAM
1_1_100) = 0; dissim 

(dSAM
1_1_3, dSAM

1_1_100) = 0; dissim (dSAM
1_1_2, dSAM

100_100_200) = 0; dissim 
(dSAM

1_2_1, dSAM
100_200_100) = 0, indicating that the first and second property 

in table 6.5 are true. Moreover, large (i.e. 100, 200) as well as small (i.e. 1, 
2, 3) integers are handled properly by SAM’s software. 

 
� Dissimilarities between SAM distance measures for experiments in C4, C5, 

C6 and C7 are generally smaller than those in C8 and C9. For example, 
dissim (dSAM

2_1_3, dSAM
3_1_4) = 0.0055 whereas dissim (dSAM

2_1_3, dSAM
1_2_3) = 

0.1165. Likewise, dissim (dSAM
2_1_3, dSAM

100_1_101) = 0.055 whereas dissim 
(dSAM

2_1_3, dSAM
1_100_101) = 0.301. This means that the third and fourth 
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property in table 6.5 are true. Moreover, large (i.e. 100, 101) as well as 
small (i.e. 1, 2, 3, 4) integers are handled properly by SAM’s software. 

 
Second, we examine whether small/large differences in parameter settings 

in C4 to C9 provide small/large differences in relations between SAM distance 
measures. In table 6.9, the following dissimilarities are found. 
 
� C4: dissim (dSAM

2_1_3, dSAM
3_1_4) < dissim (dSAM

2_1_3, dSAM
100_1_101) 

� C5: dissim (dSAM
2_1_2, dSAM

4_2_2) < dissim (dSAM
2_1_2, dSAM

100_1_2) 
� C6: dissim (dSAM

1_2_3, dSAM
1_3_4) < dissim (dSAM

1_2_3, dSAM
1_100_101) 

� C7: dissim (dSAM
1_2_2, dSAM

2_4_2) < dissim (dSAM
1_2_2, dSAM

1_100_2) 
� C8: dissim (dSAM

2_1_3, dSAM
1_2_3) < dissim (dSAM

2_1_3, dSAM
1_100_101) 

� C9: dissim (dSAM
2_1_2, dSAM

1_2_2) < dissim (dSAM
2_1_2, dSAM

1_100_2) 
 

Third, we verify whether changing parameters in such a way that wd1/wi1 = 
wd2/wi2 produces less changes in relations between SAM distance measures 
compared to circumstances where wd1/wi1 ≠ wd2/wi2. This is illustrated by the 
following experiments in table 6.9. 
 
� C5: dissim (dSAM

2_1_2, dSAM
4_2_2) < C4: dissim (dSAM

2_1_3, dSAM
3_1_4) 

� C7: dissim (dSAM
1_2_2, dSAM

2_4_2) < C6: dissim (dSAM
1_2_3, dSAM

1_3_4) 
 
We remark that these results are dependent on the sampled set and may be 

influenced by randomness. In order to provide more general results about the 
effect of changes in SAM parameters on (relations between) SAM distance 
measures and on final clustering results, parameterisation tests are executed on 
a real data set in section 6.4. 

Given the experiments specifying different SAM parameters (re. table 6.5) 
and given the sampled set (re. table 6.6) used for parameterisation tests, the 
following rules may be deducted. In order to know which rule will be applied 
to a group of parameter settings, changes in operational weights are examined 
starting with the first three rules. If operational weights do not match with rule 
1, 2 or 3, rule 4 is analysed. If again, no match is found, the analysis proceeds 
to rule 5. 
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If, for two experiments of SAM parameter settings, wd1, wi1, ws1 are operational 
weights in experiment 1 and wd2, wi2, ws2 are operational weights in experiment 
2: 

 
1. wd1 = wd2 = wi1 = wi2 and ws1 ≥ wd1 + wi1, ws2 ≥ wd2 + wi2 

then experiment 1 and 2 will provide equal SAM distance measures 
and the influence of different parameters on relations between SAM 
distance measures will be zero. 

 
2. wd1 = wd2 ≠ wi1 = wi2 and ws1 ≥ wd1 + wi1, ws2 ≥ wd2 + wi2 

then experiment 1 and 2 will provide equal SAM distance measures 
and the influence of different parameters on relations between SAM 
distance measures will be zero. 

 
3. wd1 = x wd2 and wi1 = x wi2 and ws1 = x ws2 with x = 2, 3, …, ∞    

then experiment 1 and 2 will provide equal relations between SAM 
distance measures and the influence of different parameters on 
relations between SAM distance measures will be zero.. 

 
Else if 
 

4. wd1 / wi1 = wd2 / wi2 and ws1 < wd1 + wi1 and ws2 < wd2 + wi2 or 
wd1 > wi1 and wd2 > wi2 and ws1 ≥ wd1 + wi1 and ws2 ≥ wd2 + wi2 or 
wd1 > wi1 and wd2 > wi2 and ws1 < wd1 + wi1 and ws2 < wd2 + wi2 or 
wd1 < wi1 and wd2 < wi2 and ws1 ≥ wd1 + wi1 and ws2 ≥ wd2 + wi2 or 
wd1 < wi1 and wd2 < wi2 and ws1 < wd1 + wi1 and ws2 < wd2 + wi2 
then the influence of different parameters on relations between SAM 
distance measures will be minor 

 
Else if 

 
5. wd1 / wi1 ≠ wd2 / wi2 and wd1 > wi1 and wd2 < wi2 and ws1 ≥ wd1 + wi1 and 

ws2 ≥ wd2 + wi2 or 
wd1 / wi1 ≠ wd2 / wi2 and wd1 > wi1 and wd2 < wi2 and ws1 < wd1 + wi1 and 
ws2 < wd2 + wi2 or 
wd1 / wi1 ≠ wd2 / wi2 and wd1 < wi1 and wd2 > wi2 and ws1 ≥ wd1 + wi1 and 
ws2 ≥ wd2 + wi2 or 
wd1 / wi1 ≠ wd2 / wi2 and wd1 < wi1 and wd2 > wi2 and ws1 < wd1 + wi1 and 
ws2 < wd2 + wi2 
then the influence of different parameters on relations between SAM 
distance measures will be considerable or major 
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For example, examining operational weights in experiments 2_1_3 and 

3_1_4, rule 4 predicts that the influence on relations between SAM distance 
measures will be minor. Yet, considering the operational weights in 
experiments 2_1_2 and 1_2_2, rule 5 predicts that, if wd1 = 2, wi1 = 1, ws1 = 2 
are changed into wd2 = 1, wi2 = 2, ws2 = 2, relations between SAM distance 
measures will at least be considerably influenced. In experiment 2_1_2, the 
weight for deletion is larger than insertion whereas in experiment 1_2_2, the 
weight for deletion is smaller than insertion. 

Section 6.4 examines whether these rules might be generalized for a real 
web usage data set. Before proceeding to section 6.4, we first examine whether 
particular characteristics of sampled sets might cause differences in the 
magnitude of changes in relations between SAM distance measures. 
 
 
6.3 Characteristics of sampled sets 
 
Sampled sets may differ in total number of distinct items in the set and in 
average sequence length. Instead of applying different SAM parameters on one 
sampled set, one set of parameters is applied to different sampled sets and the 
relations between SAM distance measures resulting from different sampled sets 
are analysed. In the sections that follow, we first list the goals of the tests. Then 
we provide an overview of different sampled sets that are used throughout the 
tests. The following subsection describes how the relation between SAM 
distance measures, resulting from different sampled sets, is analysed. Finally, 
the results of the tests are described. 
 
6.3.1 Goals 
 
The goals of the tests are the following: 
 
� Examine whether SAM is sensitive to the total number of items or average 

sequence length in the sampled set. 
 
6.3.2 Experiments and sampled sets 
 
The parameter settings that are used throughout the tests are given by 
experiment 1_1_2 (C1) of table 6.5. Also, in order to verify that the results did 
not occur by chance, two more experiments are used throughout the tests: 
experiment 100_1_2 and 2_4_10. Experiments 1_1_2, 100_1_2 and 2_4_10 are 
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chosen because of the variety in parameter settings. In experiment 1_1_2, wd = 
wi and ws = wd + wi. In experiment 100_1_2, wd > wi and ws < wd + wi. Finally, 
in experiment 2_4_10, wd < wi and ws > wd + wi.  

Table 6.10 describes six sampled sets that are used within the tests. The 
sampled sets are synthetic with N = 500 sequences, representing server 
sessions. The number of items I, representing pages, is 20, with i = 1, 2, …, 20 
for the first three sampled sets. The number of items I is 100, with i = 1, 2, …, 
100 for the last three sampled sets For a given value of N and I, data is sampled 
in such a way that every integer i has approximately the same probability in the 
sampled sets. The average length (avg_seq_length), minimum length 
(min_seq_length) and maximum length (max_seq_length) of the sequences in 
the sampled sets are given in the fourth, fifth and sixth column of table 6.10. 
This means that, besides I, sensitivity of SAM is also examined with regard to 
sequences of relatively short lengths (20_2_5_1 and 100_2_5_1), long lengths 
(20_12_15_10 and 100_12_15_10) and sequences of both short and long 
lengths (20_7_15_1 and 100_7_15_1). Note that each sampled set is identified 
by means of four underscored (‘_’) delimited integer values. The first integer 
refers to I. The following integers refer to  average, maximum and minimum 
sequence length in the sampled set. 
 

Id N I avg_ 
seq_length 

max_ 
seq_length 

min_ 
seq_length 

20_2_5_1 500 20 2 5 1 
20_12_15_10 500 20 12 15 10 
20_7_15_1 500 20 7 15 1 
100_2_5_1 500 100 2 5 1 

100_12_15_10 500 100 12 15 10 
100_7_15_1 500 100 7 15 1 

 
Table 6.10. Synthetic sampled sets. 

 
6.3.3 Correlation and dissimilarity 
 
Using equation (6.1), Pearson’s correlation (c) is calculated between two 
variables v and w where 
 
v represents all of the pair-wise SAM distance measures between 

sequences in the analysis of data set p, based on operation weights of 
experiment a or dSAM

a ; 
w represents all of the pair-wise SAM distance measures between 

sequences in the analysis of data set q, based on operation weights of 
experiment a or dSAM

a ; 
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and 
a identifies the experiment and the weights used by SAM; 
p identifies the first data set in the correlation, p = 1, 2, …,F; 
q identifies the second data set in the correlation, q = p + 1; 
F is the total number of different data sets in the tests; 
 

Characteristics and interpretations of Pearson’s correlation are described in 
section 6.2.3. Likewise, correlations are converted to dissimilarities using 
equation (6.2). Interpretations for dissimilarities are as follows. Dissimilarities 
lie between 0 and 1 and measure the influence of changes in sampled sets, 
particularly with regard to the number of items and differences in sequence 
length, on relations between SAM distance measures. Also, table 6.8 is used 
throughout the tests. Yet, instead of measuring the influence of SAM 
parameters, the influence of the sampled set is measured on SAM distance 
measures. 
 
6.3.4 Results 
 
Using the sampled sets of table 6.10 and the SAM parameters of experiments 
1_1_2, 100_1_2 and 2_4_10, for each experiment, the correlations and 
dissimilarities are calculated between the SAM distance measures of every pair 
of sampled sets, using equations (6.1) and (6.2). Sensitivity tables are 
calculated using table 6.8. The results for experiment 1_1_2 are given in tables 
6.11, 6.12 and 6.13. A dissimilarity table provides the dissimilarity between 
SAM distance measures for each pair of sampled sets. In a correlation table the 
value of c between SAM distance measures for each pair of sampled sets is 
given. Because the tables are symmetric, the lower half of the cells in the tables 
are marked with upward diagonal lines, so as to avoid repeating information. 
Dissimilarity, correlations and sensitivities of experiments 100_1_2 and 
2_4_10 are given in appendix 6. 
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S   A   M   P   L   E   D      S   E   T Experiment 1_1_2 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       0 0.6615 0.6585 0.6865 0.189 0.739
20_12_15_10  0     0.3625 0.4525 0.5275 0.5495

20_7_15_1   0    0.235 0.7115 0.2695
100_2_5_1    0   0.666 0.321

100_12_15_10     0  0.6805

 
 

SAMPLED 
SET 

100_7_15_1      0 

Table 6.11: Dissimilarity table for experiment 1_1_2. 
 

S   A   M   P   L   E   D      S   E   T  Experiment 1_1_2 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       1 -0.323 -0.317 -0.373 0.622 -0.478
20_12_15_10  1     0.275 0.095 -0.055 -0.099

20_7_15_1   1    0.53 -0.423 0.461
100_2_5_1    1   -0.332 0.358

100_12_15_10     1  -0.361

 
 

SAMPLED 
SET 

100_7_15_1      1 

Table 6.12: Correlation table for experiment 1_1_2. 
 

S   A   M   P   L   E   D      S   E   T  Experiment 1_1_2 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       ZERO MAJOR MAJOR MAJOR CONS MAJOR
20_12_15_10  ZERO     MAJOR MAJOR MAJOR MAJOR

20_7_15_1   ZERO    CONS MAJOR MAJOR
100_2_5_1    ZERO   MAJOR MAJOR

100_12_15_10     ZERO  MAJOR

 
 

SAMPLED 
SET 

100_7_15_1      ZERO 

Table 6.13. Sensitivity table for experiment 1_1_2. 
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Dissimilarities do not exclusively measure differences between sampled 
sets with regard to the number of items I and sequence length. However, due to 
approximate equal probabilities of the items i in the sampled sets, 
dissimilarities between sampled sets are mostly due to differences in the 
number of items I and differences in sequence length. Yet, care must be taken 
to interpret dissimilarities, correlations as well as sensitivities between pairs of 
sampled sets. Given the sampled sets of table 7.10 and experiments 1_1_2, 
100_1_2 and 2_4_10, the following results are obtained from the dissimilarity, 
correlation and sensitivity tables: 
 
� Differences BETWEEN sensitivity tables of different experiments are quite 

small, which argues for stable results. In table 6.14, the characters printed 
in bold show different values regarding sensitivities across different 
experiments. Comparing experiment 1_1_2 with 100_1_2, three cell values 
are different. Comparing experiment 1_1_2 with 2_4_10, one cell value is 
different. Yet, comparing experiment 100_1_2 with 2_4_10, four cell 
values are different. Different cell values across different sensitivity tables 
are due to different parameter settings.  For example, the sensitivity of 
SAM distance measures from sampled sets 20_7_15_1 and 100_2_5_1 in 
experiments 1_1_2 and 100_1_2 is less than in experiment 2_4_10. The 
reason for this difference might be that less deletions and more insertions in 
both sampled sets 20_7_15_1 and 100_2_5_1 occur. In experiments 1_1_2 
and 100_1_2 operation weights for insertions are equal to one. Yet, in 
experiment 2_4_10 operation weight for insertion equals four, which means 
that more fluctuations occur in relations between SAM distance measures.  

 
� Likewise, differences WITHIN sensitivity tables of different experiments 

are quite small. Most of the cell values show major changes in relations 
between SAM distance measures. This means that both I and sequence 
length have an influence on changes in relations between SAM distance 
measures.
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S   A   M   P   L   E   D      S   E   T  1 = Experiment 1_1_2 
2 = Experiment 100_1_2 
3 = Experiment 2_4_10 

 
Z = zero 

C = considerable 
M = major 

 
 

20_2_5_1 

 
 

20_12_15_10 

 
 

20_7_15_1 

 
 

100_2_5_1 

 
 

100_12_15_10 

 
 

100_7_15_1 

1                  2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
20_2_5_1 Z                  Z Z M M M M M M M M M C M C M M M

20_12_15_10  Z               Z Z M M M M M M M M M M M M
20_7_15_1   Z            Z Z C C M M M M M C M
100_2_5_1    Z         Z Z M M M M C M

100_12_15_10     Z      Z Z M M M

 
 
 

SAMPLED 
SET 

100_7_15_1      Z   Z Z

 
Table 6.14: Merging three sensitivity tables for experiments 1_1_2, 100_1_2 and 2_4_10.
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Tables 6.15 and 6.16 provide an overview of the number of cases (i.e. 
number of cells above the diagonal within sensitivity table 6.14) with 
considerable (table 6.15) and major (table 6.16) differences in relations 
between SAM distance measures of sampled sets with equal or different I 
(columns) and equal or different sequence length (rows). For example, table 
6.15 indicates that, out of six cases showing considerable differences in 
relations between SAM distance measures of two different sampled sets: 
 
� Zero cases were found with equal I and equal sequence length (cell in first 

column and first row) 
 
� One case is found with different I and equal sequence length (cell in 

second column and first row) 
 
� One case is found with equal I and different sequence length (cell in first 

column and second row) 
 
� Four cases were found with different I and different sequence length (cell 

in second column and second row) 
 
Table 6.16 indicates that, out of 39 cases showing major differences in 
relations between SAM distance measures of two different sampled sets: 
 
� Zero cases were found with equal I and equal sequence length (cell in first 

column and first row) 
 
� Eight cases are found with different I and equal sequence length (cell in 

second column and first row) 
 
� Seventeen cases are found with equal I and different sequence length (cell 

in first column and second row) 
 
� Fourteen cases are found with different I and different sequence length 

(cell in second column and second row) 
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Characteristics of compared sampled sets with 
considerable influence on SAM distance 
measures 

Equal I Different I TOTAL 

Equal sequence length 0 1 1 
Different sequence length 1 4 5 
TOTAL 1 5 6 

 
Table 6.15: Number of cases with considerable differences in relations 
between SAM distance measures distinguishing sampled sets with 
different/equal I and/or different/equal sequence length. 
 

Characteristics of compared sampled sets with 
major influence on SAM distance measures 

Equal I Different I TOTAL 

Equal sequence length 0 8 8 
Different sequence length 17 14 31 
TOTAL 17 22 39 

 
Table 6.16: Number of cases with major differences in relations between SAM 
distance measures distinguishing sampled sets with different/equal I or/or 
different/equal sequence length. 
 

We remark that, occasionally, SAM may be more or less sensitive than 
intuitively expected. For example, in table 6.11, for sampled sets 20_2_5_1 and 
100_12_15_10, showing differences in I as well as in sequence length, a 
relatively low dissimilarity measure of 0.189 is given. Yet, for sampled sets 
20_2_5_1 and 100_2_5_1, showing differences in I only, a relatively high 
dissimilarity measure of 0.6865 is given. Likewise, for sampled sets 20_2_5_1 
and 20_12_15_10, showing differences in sequence length only, a relatively 
high dissimilarity measure of 0.6615 is given. However, we would expect that, 
the more sampled sets differ, the more relations between SAM distance 
measures change resulting in a higher dissimilarity measure. 

We provide an example how, by chance, relations between SAM distance 
measures do not change the way we expect. Consider the first five sequences of 
sampled sets 20_2_5_1, 100_2_5_1, 20_12_15_10 and 100_12_15_10, holding 
respectively sequences of relatively short lengths and long lengths, shown in 
table 6.17. The lower half of the table provides the first five SAM distance 
measures for each sampled set using the following operational weights: 1 for 
deletion, 1 for insertion and 2 for substitution. Table 6.18 provides Pearson’s 
correlations as well as dissimilarities. The highest dissimilarity is shown for 
SAM distance measures of sampled sets 20_2_5_1 and 100_2_5_1, both 
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holding sequences of the same lengths but different I. Unexpected, the lowest 
dissimilarity (i.e. highest similarity!) is shown for SAM distance measures of 
sampled sets 20_2_5_1 and 100_12_15_10, holding sequences of different 
lengths and different I. 
 

Sampled set  
20_2_5_1 100_2_5_1 20_12_15_10 100_12_15_10 

s1 = 4 s1 = 6  9  10  
104 

s1 = 2  1  20  19  3  10  9  
8  5  12  18  5  5  6  3 

s1 = 22  72  28  21  55  54  
71  99 100  22  

s2 = 1 s2 = 77 s2 = 4  3  20  19  18  17  
5  2  1  6  9  6  7  3  2 

s2 = 31  61  44  72  89  80  
39  29  74  21 

s3 = 10 s3 = 20 s3 = 8  8  3  2  1  11  19  
17  16  20  9  8  7  2  15 

s3 = 42  52  76  93  60  40  
28  15  39  54 

s4 = 18 s4 = 1  99  54 s4 = 11  14  16  18  17  
17  2  4  1  6 

s4 = 93  82  49  29  73  48  
91  1  20  8 

s5 = 2  8  9 s5 = 44 s5 = 5  17  18  11 12 4  2  
9  8  16  16  13  12 

s5 = 91  75  88  29  1  29  
100  82  6  4  22  77  18  54  
63 

SAM distance measures 
d(s1, s2) = 2 d(s1, s2) = 5 d(s1, s2) = 18 d(s1, s2) = 10 
d(s1, s3) = 2 d(s1, s3) = 5 d(s1, s3) = 20 d(s1, s3) = 10 
d(s1, s4) = 2 d(s1, s4) = 7 d(s1, s4) = 19 d(s1, s4) = 10 
d(s1, s5) = 4 d(s1, s5) = 5 d(s1, s5) = 20 d(s1, s5) = 15 

 
Table 6.17: First five sequences and SAM distance measures in sampled sets 
20_2_5_1, 100_2_5_1, 20_12_15_10 and 100_12_15_10.  
 

First five SAM distance 
measures coming from 

sampled sets 

Correlation Dissimilarity 

20_2_5_1 and 100_2_5_1 -0.333 0.6665 
20_2_5_1 and 20_12_15_10 0.522 0.239 
20_2_5_1 and 100_12_15_10 1 0 

 
Table 6.18: Correlations and dissimilarities between first five SAM distance 
measures from different sampled sets. 
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6.4 Parameterisation tests on real data set 
 
In this section we examine how changes in SAM parameters influence the final 
clustering results on a real data set. To this end we investigate the effect of 
minor, considerable or major changes in relations between SAM distance 
measures, resulting from different operational weights, on the final clustering 
results. The data set is presented in chapter four, providing visiting behaviour 
on the web site of a Belgian telecom provider. The operational weights are 
given in table 6.19. We remark that, in order to test whether the rules, stated in 
section 6.2.4 and deducted from parameterisation tests described by 
experiments in table 6.5, may be generalized to a real data set, the operational 
weights given in table 6.19 are different from those provided earlier in table 
6.5. For example, rule 4 in section 6.2.4 predicts that the influence of different 
parameters on relations between SAM distance measures will be minor if the 
three previous rules do not hold and if wd1 > wi1, wd2 > wi2, ws1 ≥ wd1 + wi1 and 
ws2 ≥ wd2 + wi2. This is illustrated by experiments 5_3_8 and 7_6_13. 
 
 

Experiment 
identification 

wd wi ws Predicted influence on relations 
between SAM distance measures 

5_3_8 5 3 8 
7_6_13 7 6 13 

Minor 

4_7_11 4 7 11 
7_4_11 7 4 11 

Considerable or Major 

2_6_3 2 6 3 
150_4_3 10 6 3 

Considerable or Major 

 
Table 6.19: Experiments specifying different SAM parameters and predicting 
influence on relations between SAM distance measures. 
 

The operational weights, given by six different experiments of table 6.19, 
are used by SAM while measuring SAM distances between every pair of server 
sessions in the data set. In each experiment, a total number of (773 x 772) / 2 = 
298,378 SAM distance measures are calculated. Table 6.20 shows 
dissimilarities, correlations and sensitivities between SAM distance  measures 
resulted from different experiments. For example, with regard to the data set of 
a Belgian Telecom provider, the correlation between SAM distance measures 
of experiments 5_3_8 and 7_6_13_ equals 0.88, indicating a strong relation (re. 
table 6.7). Using equation (6.2), the dissimilarity equals 0.06, indicating that 
SAM distance measures are nearly similar (re. table 6.8). Furthermore, 
predictions are made about the influence of changing operational weights wd = 
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5, wi = 3, ws = 8 into wd = 7, wi = 6, ws = 13. Changes in relations between 
SAM distance measures, also called the sensitivity of SAM distance measures 
towards changes in operational weights, will be minor. Finally, the prediction 
rules about the influence of changes in operational weights on relations 
between SAM distance measures, stated in section 6.2.4, are true and may be 
generalized to a real data set of web usage behaviour on the web site of a 
Belgian Telecom Provider. 

 
 

Data set: 
Belgian Telecom Provider 

Dissimilarity Correlation Sensitivity 

5_3_8 
7_6_13 

0.06 0.88 Minor 

4_7_11 
7_4_11 

0.175 0.65 Considerable 

 
 
Experiments 

2_6_3 
150_4_3 

0.29 0.42 Major 

 
Table 6.20: Dissimilarities, correlations and sensitivities between SAM 
distance measures using different operational weights on a data set representing 
web usage behaviour on the web site of a Belgian Telecom Provider. 
 

In order to examine how the final clustering results will change due to 
changes in operational weights in the SAM algorithm, distance matrices are 
constructed for each experiment. A distance matrix is described in the second 
(i.e. processing) step of our approach of web usage mining process in chapter 
four. A total number of six distance matrices are constructed and, conform to 
our approach of web usage mining, Ward hierarchical clustering is invoked on 
each distance matrix. The number of clusters is based on information criteria. 
We remark that definitions of information criteria for defining the number of 
clusters are given in chapter four. Table 6.21 provides, for each experiment, the 
number of clusters. In table 6.22, the number of server sessions in each cluster, 
for each experiment, is given. 
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Experiment Total number of clusters 
5_3_8 4 
7_6_13 5 
4_7_11 5 
7_4_11 5 
2_6_3 5 

150_4_3 5 
 

Table 6.21: Total number of clusters in 6 different experiments. 
 

Cluster Experiment 
1 2 3 4 5 

TOT 

5_3_8 242 75 178 278 - 773 
7_6_13 220 98 170 264 21 773 
4_7_11 244 198 160 48 123 773 
7_4_11 238 225 56 112 142 773 
2_6_3 246 188 170 113 56 773 

150_4_3 238 244 156 78 57 773 
 

Table 6.22: Clustering 773 server sessions in 6 different experiments. 
  

The clustering results of six different experiments, using different 
operational weights on the same data set of a Belgian telecom provider, are 
compared by means of equality tables. Tables 6.23 to 6.25 present an equality 
table, showing equalities between server sessions grouped in each cluster for 
each pair of experiments, given in table 6.20. The objective of using equality 
tables is to examine to what extent changes in operational weights influence the 
final clustering results. In other words, how many server sessions are clustered 
differently when the influence of changes in operational weights on the relation 
between SAM distance measures is ‘minor’, ‘considerable’ or ‘major’ (re. 
prediction rules of section 6.2.4)? 

Tables 6.23 to 6.25 are constructed as follows. The total number of server 
sessions in the analysis are written in the corner at the bottom right of each 
table. The last column shows the number of server sessions in each cluster of 
the experiment that is presented vertically, in the first column. The last row 
shows the number of server sessions in each cluster of the experiment that is 
presented horizontally, in the first row. For example, table 6.23 compares equal 
server sessions in clusters of experiments 5_3_8 and 7_6_13. Out of 242 server 
sessions in cluster one of experiment 5_3_8, 215 are grouped in cluster one of 
experiment 7_6_13. Of the remaining server sessions, 8 are grouped in cluster 
two, 7 in cluster four and 12 in cluster five of experiment 7_6_13. The cells 
printed in bold show the maximum number of server sessions (in each row) 
that are ‘equally grouped together’, which means that, for two different 
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experiments, the same server sessions are grouped together irrelevant of the 
fact whether they are assigned, as a group, to the same type of clusters. 
‘Equally clustered’ means that, for two different experiments, the same server 
sessions are grouped together and are assigned to the same type of clusters. For 
example, comparing the final clustering results of experiments 4_7_11 and 
7_4_11 (re. table 6.24), 645 out of 773 server sessions of experiment 4_7_11 
are equally grouped together in experiment 7_4_11. Yet, 625 out of 773 server 
sessions of experiment 4_7_11 are equally clustered in experiment 7_4_11. 
Finally, comparing the final clustering results of experiments 5_3_8 and 
7_6_13 (re. table 6.23), 4_7_11 and 7_4_11 (re. table 6.24), 2_6_3 and 
150_4_3 (re. table 6.25), respectively 91.72%, 80.85% and 76.84% of the 
server sessions are equally clustered. 
 

Experiment 7_6_13: 5 clusters Experiment 
5_3_8: 

4 clusters 
1 2 3 4 5 

TOT 

1 215 8 0 7 12 242 
2 5 70 0 0 0 75 
3 0 11 167 0 0 178 
4 0 9 3 257 9 278 

TOT 220 98 170 264 21 773 
 

Table 6.23: Equality table comparing experiment 5_3_8 with 7_6_13. 
 

Experiment 7_4_11: 5 clusters Experiment 
4_7_11: 

5 clusters 
1 2 3 4 5 

TOT 

1 238 0 6 0 0 244 
2 0 62 0 0 136 198 
3 0 159 1 0 0 160 
4 0 0 14 34 0 48 
5 0 4 35 78 6 123 

TOT 238 225 56 112 142 773 
 

Table 6.24: Equality table comparing experiment 4_7_11 with 7_4_11. 
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Experiment 150_4_3: 5 clusters Experiment 
2_6_3: 

5 clusters 
1 2 3 4 5 

TOT 

1 0 239 0 0 7 246 
2 182 5 0 1 0 188 
3 46 0 103 14 7 170 
4 2 0 34 52 25 113 
5 8 0 19 11 18 56 

TOT 238 244 156 78 57 773 
 

Table 6.25: Equality table comparing experiment 2_6_3 with 150_4_3. 
 
 
6.5 Conclusions and Future Research 
 
SAM uses three different parameters within its analysis of measuring distances 
between sequences. Each parameter refers to an operation (deletion, insertion 
and substitution) and bears an operational cost (also called weight) reflecting 
the amount of work for changing one sequence into the other. In the previous 
chapters, weights of 1 for deletion, 1 for insertion and 2 for substitution are 
used in experimental tests. In order to obtain more information about the 
influence of changes in operational weights on SAM distance measures and on 
the final clustering results, this chapter examines the sensitivity of SAM. 

First, parameterisation tests, given by different experiments using different 
weights for deletion, insertion and substitution, are applied on a synthetic 
sampled set in order to examine whether specific changes in SAM parameters 
cause ‘no’, ‘some’ or ‘more’ changes in (relations between) SAM distance 
measures. Changes in relations between SAM distance measures may provide 
some information about changes in final clustering results. Furthermore, 
instead of predicting ‘no’, ‘some’ and ‘more’ influence on relations between 
SAM distance measures, categories of influence on relations between SAM 
distance measures are specified. For example, Pearson’s correlation (c) 
between SAM distance measures resulting from two different experiments 
applied to the same sampled set measures the extent to which two variables are 
related. From (c), dissimilarities (dissim) are deducted, providing information 
how dissimilar two variables are. Interpretations of dissimilarities and 
correlations provide four categories of influence: no, minor, considerable and 
major. 

In order to derive the influence of changes in weights for deletion, insertion 
and substitution on changes in relations between SAM distance measures, five 
rules are deducted from the parameterisation tests. In order to know which rule 
will be applied to a group of parameter settings, hierarchical examination is 
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necessary starting with rule 1, 2 or 3. If operational weights do not match, rule 
4 is analysed. If again, no match is found, the analysis proceeds to rule 5. 
Finally, the analysis ends by applying rule 5 if no match was found with the 
previous five rules. 

Second, examination is done on whether particular characteristics of 
sampled sets, such as the total number of distinct items (I), average sequence 
length (avg_seq_length), maximum sequence length (max_seq_length) and 
minimum sequence length (min_seq_length) might cause differences in the 
magnitude of changes in relations between SAM distance measures. To this 
end, instead of applying different experiments on one sampled set, one 
experiment (1_1_2) is applied to different sampled sets. The sampled sets vary 
in I and in sequence length. The relations between SAM distance measures 
resulting from different sampled sets are analysed. In addition, in order to 
verify that the results did not occur by chance, two more experiments (100_1_2 
and 2_4_10) are used throughout the tests. 

With regard to the influence of I and sequence length on changes in 
relations between SAM distance measures, the following conclusions are made. 
In most of the cases relations between SAM distance measures provide major 
changes. This means that correlations between SAM distance measures are less 
or equal than 0.5, providing dissimilarity measures higher or equal than 0.25. 
Given the experimental results of SAM applied to sampled sets, we conclude 
that I and sequence length have major influence on relations between SAM 
distance measures. 

Finally, we remark that the results of the tests for measuring the influence of 
I and sequence length on changes in SAM distance measures must be carefully 
interpret. Dissimilarities do not exclusively measure differences between 
sampled sets with regard to I and sequence length. However, due to 
approximate equal probabilities of the items i (i = 1, 2, …, I) in the sampled 
sets, dissimilarities between sampled sets are mostly due to differences in I and 
sequence length. 

In order to examine how changes in SAM parameters influence the final 
clustering results on a real data set, the effect of minor, considerable or major 
predicted changes in relations between SAM distance measures, resulting from 
different operational weights, is investigated on the final clustering results. To 
this end, different experiments are applied to a real web usage data set, storing 
visiting behaviour towards the web site of a Belgian telecom provider. The 
results of the tests confirm the predictions. For example, rule four predicts that 
changing wd = 5, wi = 3, ws = 8 into wd = 7, wi = 6, ws = 13 will provide a 
minor change in the relations between SAM distance measures. After 
examining the test results, the relation between SAM distance measures has 
indeed been changed minor, falling within the range of predicted change. With 
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regard to changes in the final clustering results, the following conclusions are 
made. Given the data set, minor, considerable and major changes in relations 
between SAM distance measures produced respectively 91.72%, 80.85% and 
76.84% of equally clustered server sessions. This indicates that, given the 
results of our experimental tests, the final clustering results of our approach of 
Web Usage Mining by means of SAM are relatively insensitive to changes in 
SAM’s operational weights. This means that, given the results of our 
experimental tests, SAM is a relatively stable method for analysing differences 
between server sessions in Web Usage Mining studies. 

Future research should examine the influence of changes in parameters on 
changes in relations between SAM distance measures and on the final 
clustering results, using more different experiments, more synthetic sampled 
sets and more real data sets, in order to generalize the results to a broad area of 
tests and sampled/data sets. Also, the sensitivity of changes in SAM’s weights 
for particular web pages instead of operations should be studied. Through 
assigning low weights for operations on semantically related web pages, it 
might be possible to extract clusters holding server sessions including 
semantically related web pages.  

An example of a meaningful way for introducing costs into Web Usage 
Mining studies would be as follows. Suppose that we would like to obtain 
different clusters of visiting behaviour towards a particular web page, called 
page x. The clusters should provide information about typical web pages 
preceding and following page x. Suppose that page x is the home page of a web 
site, it might be interesting to distinguish different behaviour where people are 
coming from before visiting the home page and where people are going to after 
visiting the home page. The analysis starts with omitting server sessions from 
the database if page x is not included. Then, in the SAM algorithm, we assign 
weights of 1 for insertion, 1 for deletion and 2 for substitution to page x and to 
operations of other pages if they precede or follow page x. Also, we assign 
weights of 0 for insertion, deletion and substitution to operations of web pages 
which do not precede or follow page x, since clusters should not be based upon 
these pages. Further research should examine how such typical behavioural 
patterns can be extracted from the database and presented by clusters. 
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CHAPTER 7 

 
SAM HEURISTIC 

 
 
 

When applying SAM to web usage data in large databases (i.e. data sets of one 
megabyte or more, or data sets storing at least 10,000 records), efficiency 
problems arise in terms of computational complexity, because the number of 
pair-wise comparisons, or the total number of SAM distance measures, is 
proportional to the total number of server sessions in the analysis squared. For 
example, if 10,000 server sessions are analysed by means of SAM, the total 
number of SAM distance measures equals (10,000 x 9,999) / 2 = 49,995,000, 
ending up with a high computational complexity. Moreover, the time needed to 
perform of the analysis would be approximately eight days. 

To overcome the problems of computational complexity when applying 
SAM to large databases, we introduce in this chapter a heuristic method based 
on SAM, also called SAM heuristic, starting with selecting a subset of server 
sessions to perform the analysis. Computational complexity of the SAM 
heuristic is proportional to the number of server sessions in the subset squared 
instead of the total number of server sessions in the analysis squared. This 
means that SAM heuristic reduces computational complexity considerably and 
the duration of the analysis is shortened to minutes, maybe hours, instead of 
days.  

The SAM heuristic randomly selects a server session, called sk, from the 
database. Then, SAM distance measures are calculated between all of the 
remaining server sessions in the database and sk,. The algorithm proceeds with 
ordering the server sessions in the database, based on their SAM distance 
measure towards sk, from low to high. From the ordered database, a subset of 
server sessions is selected in such a way that the subset holds server sessions, 
which are (very) similar to sk and (very) dissimilar to sk,. After selecting the 
subset, SAM distance measures are calculated between every pair of server 
sessions in the subset. The SAM distance measures are inserted into a distance 
matrix and used by Ward hierarchical clustering to perform cluster analysis on 
the data in the subset. The number of clusters is defined following a consensus 
among five criteria: pseudo F statistic, T-squared statistic, R-squared, semi-
partial R-squared and root mean squared standard deviation. The criteria are 
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also used by SAM applications in previous chapters (re. four, five and six). 
After assigning the server sessions in the subset to the clusters, cluster centres 
are defined based on the minimum sum of SAM distance measures between 
pairs of server sessions within each cluster. The method proceeds with 
assigning the remaining server sessions, which were not selected in the subset, 
to the clusters based on the minimum SAM distance measure with the cluster 
centre. 

To illustrate the functionality of the SAM heuristic on real web usage data, 
the method is applied to files of logged data on the web site 
http://machines.hyperreal.org.  A total number of 151,712 server sessions are 
analysed by means of the SAM heuristic. In order to examine how sensitive the 
results are with regard to the first randomly selected server session, ten 
different runs are executed on the data. Each run starts with a different starting 
value. The magnitude of the subset equals 0.5% or 759 server sessions. 

The final clustering results are validated by comparing equalities within the 
division of server sessions in clusters for each pair of runs. Given the results of 
our experiments we may conclude that the amount of server sessions that are 
equally clustered across different runs is at least 80%. Also, a huge advantage 
in processing time is accomplished reducing time of analysis from more than 
25,000 days, which is horrifying long, to approximately an hour. Therefore, 
given the results of our experiments, we may suggest SAM heuristic for 
analysing large databases of web usage data.  
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7.1 Large databases 
 
Companies have had decades to accumulate masses of data about their 
customers, products or services. For example, an annual survey conducted by 
The Winter Group in 1998 showed that the ten largest Unix data warehouses 
range in size from 150 to 700 gigabytes (Nautilus Systems inc., 2003). 
Moreover, the Palomar-STScI Digital Sky Survey (DPOSS) consists of three 
terabytes of data, which is enough information to fill six million books (Rocke 
and Dai, 2003). This trend also dominates in Web (Usage) Mining, which 
makes the web one of the largest repositories of data today (Ganti et al, 1999). 
Such an explosive growth of databases makes it important for developing data 
mining techniques that can handle large databases. Ultimately, there will 
always be a need to improve the performance of Web Usage Mining 
algorithms, regarding their efficiency in computational terms (Cooley et al, 
1997). 

Defining large and very large databases is not an easy task. In Kaufman and 
Rousseeuw (1990), data sets consisting of hundreds or thousands of cases are 
considered as ‘large databases’. However, in Toivonen (1996), data sets are 
large if the sample size consists of several ten thousands and even millions of 
records. In order to avoid misunderstandings, we will define large and very 
large databases for Web Usage Mining studies. Based on Nautilus Systems inc. 
(2003), a database can be measured in terms of bytes and number of rows or 
records. Large databases contain one megabyte, or more, up to one gigabyte of 
data. The number of records in large databases ranges between 10,000 and one 
million. Very large databases store at least one gigabyte of data and consist of 
minimum one million records. For example, in Keogh et al (2001), experiments 
are run on large databases of 64 megabytes. In Rocke and Dai (2003) large 
datasets of 10,000 records are used and in Bradley et al (1998) 13,711 data 
items in 64 dimensions are considered as a large database. Examples of very 
large databases are given in Edelstein (2003), where IBM conducted a case 
study on a total volume of about four terabytes of data. A random sample of the 
data still included over 900 million records taking up 360 gigabytes of storage. 
Finally, in Toivonen (1996), very large databases consisting of several millions 
of records are analysed through sampling several ten thousands of records.     

When applying SAM to web usage data in large databases, efficiency 
problems rise in terms of computational complexity. Therefore, we would like 
to introduce a SAM heuristic to analyse large databases. Before discussing the 
heuristic, we first describe computational complexity of SAM in the following 
section. 
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7.2 Computational complexity of SAM 
 
From this point forward, we define computational complexity of SAM as the 
total number of SAM distance measures that are calculated between sequences 
(server sessions) in the analysis. High computational complexity indicates lots 
of SAM distance measures whereas low computational complexity implicates 
far less SAM distance measures. An example of high computational 
complexity is 5 million calculated SAM distance measures. An example of low 
computational complexity is 5 thousand calculated SAM distance measures. 
Along with computational complexity, time complexity of SAM is the time 
(expressed in seconds) that is necessary to calculate the total number of SAM 
distance measures. 

Analysing large databases by means of SAM invokes computational 
complexity because the number of pair-wise comparisons, or the total number 
of SAM distance measures, is proportional to the total number of sequences in 
the analysis squared. This means that the number of SAM distance measures 
explodes for large databases. An illustration is given in equation (7.1). For 
example, consider the problem of calculating SAM between N = 10,000 
sequences, the total number of SAM distance measures equals (10,000 x 9,999) 
/ 2 = 49,995,000, resulting in a high computational complexity. 
 
Computational complexity of SAM for the SAM application equals  
[N x (N – 1)] / 2       (7.1) 
 
where 
N = total number of sequences (server sessions) in the analysis; 
 

Table 7.1 shows a simulated study of time and computational complexity 
for calculating SAM distance measures between sequences when N = 100 to 
3200. Note that, for the simulation, a Pentium III, CPU 1000 MHz, 261.56 KB 
RAM is used. The average length of the sequences used in the simulation 
studies is 10 with a maximum length of 20. The ratio between computational 
and time complexity rises until N = 400, indicating that computational 
complexity increments faster than time complexity. However, after this point 
the ratio between computational and time complexity falls down, indicating 
that time complexity increments faster than computational complexity. This is 
also graphically shown in figure 7.1. The figure shows that, if datasets become 
larger, time complexity exponentially raises with computational complexity. 
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N Time complexity 
(seconds) 

Computational 
complexity 

Ratio 
Computational complexity / 

Time complexity 
100 16 4,950 309.37 
200 46 19,900 432.61 
400 174 79,800 458.62 
800 729 319,600 438.41 

1,600 3,312 1,279,200 386.23 
3,200 19,608 5,118,400 261.04 

 
Table 7.1: Simulation study for SAM, comparing the number of sequences in 
the database with time- and computational complexity. 
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Figure 7.1: Relation between time- and computational complexity of SAM. 
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7.3 Computational complexity of distance-based clustering 
 
Another type of computational complexity occurs when SAM distance 
measures are invoked in a distance matrix that is used for clustering. The 
matrix contains N rows and N columns, representing N sequences. From the 
matrix the distance between each pair of sequences can be read. This means 
that the magnitude of the matrix equals N X N distance measures, which raises 
the well-known problem of distance-based clustering, unsuitable for large 
datasets (Fasulo, 1999). 

We define computational complexity of distance-based clustering as the 
total number of distance measures in the distance matrix, which need to be 
considered for clustering. This is illustrated by equation (7.2). 
 
Computational complexity of distance-based clustering for the SAM 
application equals N2       (7.2) 
 
where 
N = total number of sequences (server sessions) in the analysis; 
 
 
7.4 SAM heuristic for large databases 
 
To overcome the problems of computational complexity when applying SAM 
to large databases, we propose a method that clusters server sessions based on 
SAM distance measures for a small subset of the data. The resulting clusters 
are used to classify the remaining observations. In Banfield and Raftery (1993), 
the method is illustrated for model based clustering and large databases. 
Furthermore, in Fasulo (1999) sampling is mentioned as an important future 
direction for clustering research. A new general strategy for clustering is 
suggested as a method of data mining. In this strategy, the assumptions 
required by the various clustering algorithms can be explicitly parameterised, 
allowing the computer more freedom to search for the best way to cluster the 
data. To compensate for the broadening of search space of possible clustering, 
it is recommended that an implementation of this strategy use sampling to 
reduce the number of inputs if necessary. 

In the subsections that follow, we first describe the algorithm of the SAM 
heuristic. Then we illustrate how the SAM heuristic reduces the problems of 
computational complexity. 
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7.4.1 SAM heuristic for large databases: an algorithm 
 
The SAM heuristic for large databases starts with a random selection of one 
sequence, called sk, from the database. Then, ‘one-to-all’ SAM distance 
measures are calculated between sk and the remaining (N-1) sequences in the 
database. The algorithm follows with ordering the sequences in the database, 
based on their SAM distance measures towards sk, from low to high. The first 
sequence of the ordered database is sk, the second sequence is the one having 
the smallest SAM distance measure towards sk and finally the last sequence is 
the one with the largest SAM distance measure towards sk.  

From the ordered database, a subset of sequences M, expressed as a 
percentage of the total database, is selected in such a way that the maximum 
search space is represented by the subset. Practically, this means that the 
algorithm reads the ordered database top-down and after selecting sk, every (N-
1) / [((N-1) / 100) x M] lines a sequence is selected. For example, suppose N = 
100,000 and M = 1. After selecting the first sequence in the ordered database, 
every 99,999 / [(99,999 / 100) x 1] = 100 lines a sequence is selected from the 
ordered database and written in the subset file. The total number of sequences 
in the subset file equals 1000 (1 + 999). This is summarized in figure 7.2. 
 
begin 
    select sk   //random selection of one sequence from the database// 
    max_distance = 0  
    for i:=1 to N-1 do //calculate one-to-all SAM distance measures between sk and 
    begin   (N-1) remaining sequences in the database//  
        calculate dSAM(si, sk) 
        if dSAM(si, sk) > max_distance then max_distance:= dSAM(si, sk) 
    end 
    … 
    write(ordered_database, sk)  //write sk as the first sequence in ordered_database// 
    for distance:=0 to max_distance do //order (N-1) sequences based on their SAM distance 
    begin    measures towards sk, from low to high//  
        for i:=1 to N-1 do 
        begin 
            if distance = dSAM(si, sk) then 
            begin 
                write (ordered_database, si) 
                writeln (ordered_database) 
            end 
        end 
    end 
   … 
   reset(ordered_database)  //open ordered_database to read top-down// 
   read(ordered_database, sk)  //read the first sequence in ordered_database// 
   write(subset, sk)   //write the first sequence in subset file// 
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   while not eof(ordered_database) do 
   begin    //select sequences and write subset file// 
       for j:=1 to (N-1) / [((N-1) / 100) X M] - 1 do 
       begin 
           readln(ordered_database) 
       end 
       read (ordered_database, si) 
       write(subset, si) 
       writeln(subset) 
   end 
… 
end; 
 

Figure 7.2: SAM heuristic: selecting a subset of sequences. 
 

We note why we have chosen for one randomly selected sequence sk, and 
why we have not chosen for several randomly selected sequences, say sk1, sk2, 
sk3, sk4, sk5, in the first stage of the SAM heuristic. If we would have chosen 
more than one random selected sequence, we would risk that the sampled set 
may not represent the total data set due to the following reasons. Suppose, by 
chance, two sequences, say sk1 and sk2, are very much alike (in the worst case 
scenario they may even be the same). Instead of one, we now have five ordered 
databases of which a subset of sequences is selected. If we would select every x 
lines a sequence in the first database, then proceed to the second, third, fourth 
and fifth database, we end up with a sampled set holding 2/5th or 40% of its 
sequences that are very alike, although the total data set does represent the 
same division of sequences. To assure that the sampled set represents 
approximately the same division of sequences as in the total data set, we have 
chosen for one randomly selected sequence sk and use one ordered database for 
sequence selection in the sampled set.  

After selecting the subset, consisting of n = [(N) / 100) x M] sequences, 
SAM pair-wise distance measures are calculated between all the sequences in 
the subset file. The algorithm proceeds with constructing a distance matrix and 
inserting SAM distance measures into the n x n matrix. Furthermore, Ward 
hierarchical clustering is invoked on the matrix and the number of clusters is 
defined following a consensus among five criteria: pseudo F statistic, T-
squared statistic, R-squared, semi-partial R-squared and root mean squared 
standard deviation. A definition of the criteria is given in chapter four. 

In a following step, for each cluster, the centre is defined. The centre of a 
cluster is represented by the sequence with the minimum sum of the one-to-all 
SAM distance measures between that sequence and all other sequences within 
that cluster. The SAM distance measures are read from the n x n matrix. The 
method is illustrated in figure 7.3. 
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begin 
    for c’:=1 to C do   //C represents the total number of clusters// 
    begin 
         min_sum_distances = 999,999,999 
       for si:=1 to nc’ do  //nc’ represents the number of sequences grouped in 
         begin                                             cluster c’// 
             go to n x n matrix 
             sum_distances[si] = 0 
             for sj:=1 to nc - 1 do 
             begin             
                 search dSAM(si, sj)  //search in n x n matrix for the corresponding SAM 
                                                               distance measure between sequences si and sj// 
                 sum_distances[si]:= sum_distances[si] + dSAM(si, sj) 
             end 
             if sum_distances[si] < min_sum_distances then min_sum_distances:= sum_distances[si] 
and centre[c’]:= si 
        end 
        write(cluster_centre_file, ’the centre of cluster ’, c’, ’ is represented by  sequence ’, 
centre[c’]) 
        writeln(cluster_centre_file)     
    end 
end; 
 

Figure 7.3: Sam heuristic: defining the cluster centre. 
 

After defining the cluster centres, the remaining (N-n) sequences, which are 
not selected in the subset, are classified into the clusters based on the minimum 
distance towards the cluster centres. This means that SAM distance measures 
are calculated between every sequence sj with j = 1, 2, …, N-n and the cluster 
centres. Finally, sj is classified into the cluster where the SAM distance 
measure between sj and the centre is minimal. An illustration of how the 
remaining sequences are classified is given in figure 7.4. 
 
begin 
    for j:=1 to (N-n) do 
    begin 
        min_distance:= 999,999,999 
        for c’:=1 to C do 
        begin 
            calculate dSAM(sj, centre[c’]) 
            if dSAM(sj, centre[c’]) < min_distance then min_distance:= dSAM(sj, centre[c’]) and 
classification[sj]:= c’ 
        end 
    end 
end;   
 

Figure 7.4: SAM heuristic: classifying remaining sequences. 
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7.4.2 Reducing computational complexity 
 
7.4.2.1 Reducing computational complexity of SAM 
 
The heuristic for SAM applied to large databases reduces the computational 
complexity of SAM considerably. The total number of SAM distance measures 
that need to be calculated by the heuristic is proportional to the number of 
sequences in the subset squared (n2), instead of being proportional to the 
number of sequences in the analysis squared (N2). Equation (7.3) illustrates 
how many calculations of SAM distance measures are necessary for a subset of 
n sequences.  
 
Computational complexity of SAM for the SAM heuristic equals  
(N-1) + [n x (n-1)] / 2 + (N-n) x C     (7.3) 
 

where 
(N-1) = the number of SAM distance measures to define, for each sequence in 
the analysis, the distance towards the first randomly selected sequence sk in the 
subset; 
n = total number of sequences (server sessions) in the subset; 
C = total number of clusters; 
N = total number of sequences (server sessions) in the analysis; 
(N-n) x C = the number of SAM distance measures to define, for each sequence 
that is not selected in the subset, the distance towards each cluster centre; 
 
7.4.2.2 Reducing computational complexity of distance-based clustering 
 
If the SAM heuristic is used, computational complexity of distance-based 
clustering is reduced because n x n SAM distance measures need to be 
considered by the clustering algorithm instead of N x N. This is indicated in 
equation (7.4). 
 
Computational complexity of distance-based clustering for the SAM heuristic 
equals n2        (7.4) 
 
where 
n = total number of sequences (server sessions) in the subset; 
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7.4.2.3 Other calculations 
 
Besides calculating SAM distance measures between sequences and 
considering n x n SAM distance measures for clustering, other calculations 
must be taken into account as well when using the SAM heuristic. Equation 
(7.5) describes the number of calculations in addition to computational 
complexities. 
 
The number of calculations in addition to computational complexities for the 
SAM heuristic equals 
 
 
N - 1                                                C 
 ∑ i + (N/100) x M + ∑ (nc + nc

2) + (N - n) x C    (7.5) 
i = 1                                              c = 1 

 
where 
N - 1 
 ∑ i =   the number of calculations to order N-1 sequences in the 
i = 1 analysis from low to high SAM distance measure towards the 

initial randomly selected sequence sk; 
(N/100) x M = the number of calculations to select sequences for the subset; 
nc =  the number of sequences in cluster c; 
nc

2 = the number of calculations to define, for each sequence si in 
cluster c, the sum of SAM distance measures between si and all 
the other sequences in cluster c; 

nc + nc
2 = the number of calculations to define the minimum sum of 

SAM distance measures between si and all the other sequences 
in cluster c or 

 the number of calculations to define, for cluster c, the cluster 
centre; 

   C 
 ∑ (nc + nc

2) = the number of calculations to define, for each cluster, the 
c = 1  cluster centre; 
(N - n) x C = the number of calculations to define, for each sequence si not 

selected in the subset, the minimum SAM distance between si 
and the cluster centre; 
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7.4.2.4 Examples 
 

In table 7.2 some examples of reductions in computational complexities are   
given. The computational complexities of the SAM heuristic are, generally, 
several hundreds and even several thousands of times smaller than SAM. The 
table also shows that the SAM heuristic is able to handle very large databases 
of up to several hundreds of thousands of cases. Furthermore, the complexity of 
the SAM heuristic mainly depends on the magnitude of the subset and on the 
number of clusters. Compared with the information given in table 7.1, the total 
number of SAM distance measures (given by computational complexity of 
SAM) gives an indication of the time needed to calculate the SAM distance 
measures. For example, the SAM heuristic applied to a database of 200,000 
cases, using a subset of 1% along with 5 clusters, indicated by the criteria for 
the number of clusters derived from the subset, will last about 3 hours. This 
may seem a long time, however, compared with SAM, an improvement in time 
is obtained with a factor of 462,962. Applying SAM to 200,000 sequences will 
last about 1,388,888 hours or more than 50,000 days, which is horrifying long! 

With regard to computational complexity of distance-based clustering, the 
distance matrix used by the SAM heuristic, is compressed into a smaller 
matrix, called n x n matrix, corresponding with the magnitude of the subset 
instead of the whole dataset. The n x n matrix used by the SAM heuristic is 
handled easily by distance-based clustering. 
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Computational complexity of SAM Computational complexity of 
distance-based clustering 

 
N 

 
M 

 
n 

 
C 

SAM SAM heuristic SAM SAM heuristic 

10,000       0.5 50 5 49,995,000 60,974 100,000,000 2,500
10,000        0.5 50 20 49,995,000 210,224 100,000,000 2,500
10,000        2.0 200 5 49,995,000 78,899 100,000,000 40,000
10,000        2.0 200 20 49,995,000 225,899 100,000,000 40,000
10,000        5.0 500 5 49,995,000 182,249 100,000,000 250,000
10,000        5.0 500 20 49,995,000 324,749 100,000,000 250,000
100,000       0.7 700 5 4,999,950,000 841,149 1e+10 490,000
100,000        0.7 700 20 4,999,950,000 2,330,649 1e+10 490,000
100,000        1.0 1,000 5 4,999,950,000 1,094,499 1e+10 1,000,000
100,000        1.0 1,000 20 4,999,950,000 2,579,499 1e+10 1,000,000
200,000        0.8 1,600 5 19,999,900,000 2,471,199 4e+10 2,560,000
200,000        0.8 1,600 20 19,999,900,000 5,447,199 4e+10 2,560,000
200,000        1.0 2,000 5 19,999,900,000 3,188,999 4e+10 4,000,000
200,000        1.0 2,000 20 19,999,900,000 6,158,999 4e+10 4,000,000

 
Table 7.2: Comparing computational complexities between SAM and SAM heuristic.
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In table 7.3 some examples of additional calculations of the SAM heuristic 
are given. The same values for N, M, n and C are provided as in table 7.2. The 
values given to nc assume that sequences are equally distributed among 
clusters. Note that most of the additional calculations are due to ordering the 
data set of N-1 sequences (re. column six). In the last column the total number 
of additional calculations of the SAM heuristic is given. 

Table 7.4 provides an overview of the total effort of SAM versus SAM 
heuristic for the same data sets given in table 7.3 and 7.2. Total effort for SAM 
is equal to the sum of computational complexities. Total effort for SAM 
heuristic is equal to the sum of computational complexities and additional 
calculations. Practically, this means that the values in the sixth column of table 
7.4 represent the sum of column five and seven of table 7.2. The seventh 
column of table 7.4 represents the sum of column six and eight of table 7.2 and 
the last column of table 7.3. Comparing total effort of SAM with SAM 
heuristic, the effort of SAM heuristic is 3 times less than SAM for analysing 
10,000 sequences. Moreover, the effort of SAM heuristic is respectively 21 and 
40 times less than SAM for analysing 100,000 and 200,000 sequences. This 
means that, compared to SAM, SAM heuristic becomes more and more 
appropriate when the total number of sequences in the analysis (N) augments. 

 Finally, in the next section, an experiment of the SAM heuristic applied to a 
real large database is provided. Note that this application consists of one-
dimensional data, which means that the SAM heuristic is used for analysing 
visited web pages. However, the SAM heuristic may also be used for analysing 
two-dimensional data such as visited web pages along with categories of 
visiting page time (re. chapter four). Future research discusses computational- 
and time complexities for analysing large data sets of two-dimensional server 
sessions. 
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SAM heuristic 

Additional calculations 

 
 

N 

 
 

M 

 
 

n 

 
 

C 

 
 

nc 
N - 1 

 ∑ i 
i = 1 

 
(N/100) x M 

       C 

 ∑ (nc + nc
2)  

     c = 1 

 
(N - n) x C 

 
Total additional 

calculations 

10,000          0.5 50 5 50/5 49,995,000 50 550 49,750 50,045,350
10,000          0.5 50 20 50/20 49,995,000 50 175 199,000 50,194,225
10,000          2.0 200 5 200/5 49,995,000 200 8,200 49,000 50,052,400
10,000          2.0 200 20 200/20 49,995,000 200 2,200 196,000 50,193,400
10,000          5.0 500 5 500/5 49,995,000 500 50,500 47,500 50,093,500
10,000          5.0 500 20 500/20 49,995,000 500 13,000 190,000 50,198,500
100,000          0.7 700 5 700/5 704,982,704 700 98,700 496,500 705,578,604
100,000          0.7 700 20 700/20 704,982,704 700 25,200 1,986,000 706,994,604
100,000          1.0 1,000 5 1,000/5 704,982,704 1,000 201,000 495,000 705,679,704
100,000          1.0 1,000 20 1,000/20 704,982,704 1,000 51,000 1,980,000 707,014,704
200,000          0.8 1,600 5 1,600/5 1,474,936,480 1,600 513,600 992,000 1,476,443,680
200,000          0.8 1,600 20 1,600/20 1,474,936,480 1,600 129,600 3,968,000 1,479,035,680
200,000          1.0 2,000 5 2,000/5 1,474,936,480 2,000 802,000 990,000 1,476,730,480
200,000          1.0 2,000 20 2,000/20 1,474,936,480 2,000 202,000 3,960,000 1,479,100,480

 
Table 7.3: Additional calculations for the SAM heuristic. 
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Total effort  
N 

 
M 

 
n 

 
C 

 
nc SAM SAM heuristic 

10,000 0.5 50 5 50/5 149,995,000 50,108,824 
10,000 0.5 50 20 50/20 149,995,000 50,406,949 
10,000 2.0 200 5 200/5 149,995,000 50,171,299 
10,000 2.0 200 20 200/20 149,995,000 50,459,299 
10,000 5.0 500 5 500/5 149,995,000 50,525,749 
10,000 5.0 500 20 500/20 149,995,000 50,773,249 
100,000 0.7 700 5 700/5 1.499995e+10 706,909,753 
100,000 0.7 700 20 700/20 1.499995e+10 709,815,253 
100,000 1.0 1,000 5 1,000/5 1.499995e+10 707,774,203 
100,000 1.0 1,000 20 1,000/20 1.499995e+10 710,594,203 
200,000 0.8 1,600 5 1,600/5 5.999990e+10 1,481,474,879 
200,000 0.8 1,600 20 1,600/20 5.999990e+10 1,487,042,879 
200,000 1.0 2,000 5 2,000/5 5.999990e+10 1,483,919,479 
200,000 1.0 2,000 20 2,000/20 5.999990e+10 1,489,259,479 

 
Table 7.4: Comparing total effort between SAM and SAM heuristic. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 314



7.5 Application 
 
In this section, we illustrate the functionality of the SAM heuristic on a real, 
large dataset. To this end, we analysed files of logged web usage data from 
01/02/1999 to 31/03/1999 on the web site http://machines.hyperreal.org. After 
pre-processing the data using the approach described in chapter four, section 
4.5, a total number of 151,712 server sessions, showing visits to 1159 different 
web pages, are identified. Note that in chapter four, web usage data from 
01/02/1999 to 03/02/1999, regarding the same web site, is analysed by means 
of SAM. Also, in chapter six, SAM incorporating an interestingness measure 
for web usage data (SAMI) is applied to logged data from 01/02/1999 to 
28/02/1999. 
 
7.5.1 Applying SAM heuristic to 151,712 server sessions 
    
In order to examine how sensitive the results are with regard to the randomly 
selected first server session, ten different runs are executed on the data. Each 
run starts with a different initial randomly selected server session from the 
dataset. In table 7.5, the randomly selected first server sessions are given for 
each run. SAM distance measures are based on the following parameters. 
Weight values of one are given to deletion and insertion operations while a 
weight value of two is assigned to reordering. During each run, the data set is 
ordered based on one-to-all SAM distance measures between the initial 
selected server session and every remaining server session in the database. 
Following, a subset of server sessions is sampled with M equal to 0.5. The 
program reads the ordered database top-down from low to high SAM distance 
measures and every 200 lines a server session is selected in the subset. This 
means that, for each run, the subset consists of 759 server sessions, including 
the initial randomly selected first server session. 
 
 
 
 
 
 
 
 
 
 
 

= 315

http://machines.hyperreal.org/


SAM heuristic 
Randomly selected first server session 

Run 1 {408, 622, 2} 
Run 2 {984} 
Run 3 {997, 996} 
Run 4 {627, 642} 
Run 5 {338, 1153, 574, 469, 86} 
Run 6 {316, 714} 
Run 7 {496, 509, 574} 
Run 8 {403, 497, 574} 
Run 9 {163, 894, 906, 947} 
Run 10 {452} 

 
Table 7.5: SAM heuristic: randomly selected first server session for ten 
different runs. 

 
In the following step, for each run, all-to-all SAM distance measures are 

calculated between the server sessions in the subset. For each run, the SAM 
distance measures are inserted into a 759 x 759 distance matrix and Ward 
hierarchical clustering is invoked on the matrix. In order to define the number 
of clusters, a consensus among the following information criteria PSF, TST, R-
squared, semi-partial R-squared and RMSSTD is used. The criteria are 
described in chapter four, section 4.7. Equations for calculating the criteria are 
given in table 4.9. Also, Ward clustering is described and table 4.8 provides 
equations how to calculate dissimilarities between clusters using different 
clustering methods. 

Figures 7.5, 7.6 and 7.7 graphically present the information criteria for 
cluster solutions between 1 and 20 for the first three runs. Information criteria 
for the remaining runs are graphically presented in appendix 7. In the first run, 
four clusters are suggested by a consensus between PSF, TST, R-squared, 
semi- partial R-squared and RMSSTD. The variance explained by the model 
equals 85.20%. In the second run, five clusters indicate a good solution, given 
the criteria. TST might suggest three clusters but PSF falls down at this point. 
Also, the homogeneity of the data in three clusters is not high enough (i.e. the 
RMSSTD is not low enough), compared to other near by solutions. Moreover, 
87.60% of the variance is explained by a model of five clusters. In the third 
run, five clusters are defined. Two clusters explain less than 60% of the 
variance in the data. Compared to other cluster solutions, the homogeneity of 
the data in three clusters is relatively low, indicated in figure 7.7 by a relatively 
high RMSSTD. Finally, table 7.6 provides the number of clusters that are 
chosen in each run.  
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Figure 7.5: Run 1: Information criteria for defining the number of clusters, 
using SAM distance measures between 759 server sessions selected in the 
subset. 
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Figure 7.6: Run 2: Information criteria for defining the number of clusters, 
using SAM distance measures between 759 server sessions selected in the 
subset. 
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Figure 7.7: Run 3: Information criteria for defining the number of clusters, 
using SAM distance measures between 759 server sessions selected in the 
subset. 
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Run Total number of clusters 

1 4 
2 5 
3 5 
4 3 
5 5 
6 3 
7 4 
8 5 
9 3 

10 3 
 

Table 7.6: SAM heuristic: total number of clusters in 10 different runs. 
 
After defining the number of clusters, the clustering procedure assigns every 

server session selected in the subset to each cluster. Table 7.7 shows, for each 
run, how the subset is divided into clusters. In each run, one cluster appears to 
be relatively large (i.e. holding more server sessions) compared to the others. 
The reason why this happens is because generally one-page sessions, which are 
not considered to be strong enough to represent a separate cluster in the 
corresponding run, are grouped together into this cluster. For example, in the 
first run, one-page sessions such as 906, 813 or 837 are grouped in cluster one. 
Yet, 90% of the server sessions in cluster three are one-page sessions to web 
page 657, which are considered to be strong enough to represent a cluster. 

 
Cluster Run 

1 2 3 4 5 
TOT 

1 474 91 170 24 - 759 
2 167 392 134 50 16 759 
3 425 225 46 26 37 759 
4 373 327 59 - - 759 
5 422 161 104 55 17 759 
6 427 64 268 - - 759 
7 454 171 41 93 - 759 
8 490 136 39 75 19 759 
9 494 241 24 - - 759 
10 495 219 45 - - 759 

 
Table 7.7: SAM heuristic: subset clustering in 10 different runs. 

 
In the proceeding step of the SAM heuristic the cluster centres are defined 

for each run. To this end, in each cluster, one-to-all SAM distance measures 
between each server session and the other server sessions are summed. The 759 
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x 759 distance matrix is used to search for the corresponding SAM distance 
measures. In each cluster, the server session with the minimum sum of the 
SAM distance measures is considered as the centre for that cluster. For 
example, in cluster one of the first run, the SAM distance measures between 
the first server session and every other of the remaining 473 server sessions are 
summed. These distance measures are already defined in a previous step of the 
SAM heuristic, when all-to-all SAM distance measures were calculated 
between the server sessions in the subset to construct the 759 x 759 SAM 
distance matrix. In table 7.8 the centre for each cluster in each run is given. The 
table shows that each run produces a cluster having one-page session 657 as 
cluster centre. Other server sessions, which often serve as cluster centre, are 
one-page sessions 163 and 1129. Comparing table 7.8 with table 7.7, we notice 
that six of the ten runs provide one relatively large cluster having one-page 
session 163 as cluster centre. Other cluster centres of relatively large clusters of 
subset clustering are one-page sessions 1129 (run 4 and run 10), 933 (run 5) 
and 947 (run 9). 

 
Cluster Run 

1 2 3 4 5 
1 {163} {657, 984} {657} {657, 802, 

657, 802, 
657} 

- 

2 {657} {163} {1129} {657, 815, 
657} 

{338, 1153} 

3 {163} {657} {1129} {984} {657, 996, 
657, 1025, 

657} 
4 {1129} {657} {657, 1026, 657} - - 
5 {933} {657} {984} {1129} {657, 813, 

657, 1134, 
657} 

6 {163} {1129} {657} - - 
7 {163} {657} {1129} {657, 815, 

657} 
- 

8 {163} {657} {1129} {657, 984} {657, 947, 
657, 984, 
1000, 657, 
933, 657} 

9 {947} {657} {657, 1018, 657, 
1026, 657} 

- - 

10 {1129} {657} {657, 972, 657} - - 
 

Table 7.8: SAM heuristic: cluster centres in 10 different runs. 
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In the last step of the SAM heuristic application, for each run, the remaining 
server sessions that were not selected in the subset are assigned to the clusters 
based on the minimum SAM distance measure between server session and 
cluster centre. Table 7.9 provides information about the number of server 
sessions in the final clusters for each run. We notice that, in each run, one 
cluster appears to be relatively large (i.e. holding much more server sessions) 
compared to the others. The reason why these large clusters appear is because 
they generally group together one-page server sessions to page_id 657, 
representing the home page of the web site, along with other one-page server 
sessions, which are not represented in other clusters. For example, in run one, 
cluster three groups together approximately 90% of the server sessions in the 
analysis. 23% of the server sessions in cluster three are one-page sessions to 
page_id 657. Examples of other server sessions grouped in cluster three are 
one-page sessions to page_id 1129, 984, 947 and 933, because these types of 
server sessions are not represented as cluster centres in any other cluster of the 
first run. Yet, cluster one represents one-page sessions to page_id 163. In run 
two, cluster one groups together approximately 86% of the server sessions in 
the analysis. Likewise, one fifth of the server sessions in cluster one are one-
page sessions to page_id 657. Other server sessions grouped in cluster one are 
one-page sessions to page_id 984, 947 and 933. Unlike the previous run, one-
page sessions to page_id 1129 are grouped in a separate cluster (i.e. cluster 
three). In run three, one-page server sessions to page_id 657 along with one-
page server sessions to page_id 947 and 933 are represented by cluster two. 

In general, in each run, server sessions are shifted dependant on their 
distance with cluster centres. For example, in run three, server sessions 657, 
815, 657, 810 and 657, 802, 657, 802 both are grouped, based on their highest 
similarity with cluster centre {657}, in cluster two. On the other hand, the same 
server sessions are clustered differently in the two previous runs. In run one, 
server session 657, 815, 657, 810 is grouped in cluster three while server 
session 657, 802, 657, 802 is grouped in cluster four. In run two, server session 
657, 815, 657, 810 is grouped in cluster four while server session 657, 802, 
657, 802 is grouped in cluster one. 
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Cluster Run 
1 2 3 4 5 

TOT 

1 6,293 8,164 136,911 344 - 151,712 
2 131,804 6,197 8,492 2,984 2,235 151,712 
3 6,249 133,433 8,395 3,089 546 151,712 
4 8,811 141,572 1,329 - - 151,712 
5 3,068 136,395 3,270 8,490 489 151,712 
6 6,243 8,423 137,046 - - 151,712 
7 6,274 134,014 8,397 3,027 - 151,712 
8 6,313 128,109 8,402 8,039 849 151,712 
9 3,645 147,253 814 - - 151,712 
10 8,941 142,309 462 - - 151,712 

 
Table 7.9: SAM heuristic: dataset clustering in 10 different runs. 

 
Figures 7.8, 7.9 and 7.10 provide, for the first three runs, graphical 

presentations of the clusters. On the horizontal axis, 1,159 distinct web pages 
are represented by means of 50 groups. Each group reflects 23 web pages, 
except for the last group. For example, group 1 reflects page 1 to 23, group 2 
reflects page 24 to 46, group 3 reflects page 47 to 69 etc. Finally, group 50 
reflects page 1,128 to 1,159. On the vertical axis, frequency values (number of 
requests of the page_ids within the corresponding group divided by the total 
number of requests in the file or cluster, multiplied by 100) are given. We 
remark that the same scales are used in the presentations of the graphical 
figures in chapter four. 

In each of the three runs, figures 7.8, 7.9 and 7.10 show that every cluster 
represents a different distribution of visited pages, which indicates that the 
clusters are well separated. Also, the distribution of visited pages within 
clusters is relatively similar across different runs, which may argue for stable 
results. For example, in run one, two and three, respectively clusters one, two 
and one are very alike, representing a peak at group 8, holding page_ids of or 
between 162 and 184. In run one, two and three, respectively clusters three, one 
and two are very alike, representing a peak at group 29, holding page_ids of or 
between 645 and 667. 
=
=
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Figure 7.8: Run 1: SAM heuristic applied to 151,712 server sessions of 
http://machines.hyperreal.org: visited web pages in four clusters. 
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Figure 7.9: Run 2: SAM heuristic applied to 151,712 server sessions of 
http://machines.hyperreal.org: visited web pages in five clusters. 
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Figure 7.10: Run 3: SAM heuristic applied to 151,712 server sessions of 
http://machines.hyperreal.org: visited web pages in five clusters. 
 

Comparing figures 7.8, 7.9 and 7.10 with cluster centres of the first three 
runs in table 7.8, identical clusters across different runs show equal cluster 
centres. For example, clusters one, two and one of respectively run one, two 
and three present server session {163} as cluster centre. Also, clusters three, 
one and two of respectively run one, two and three present server session {657} 
as cluster centre. 

Comparing figures 7.8, 7.9 and 7.10 with the results of dataset clustering in 
the first three runs of table 7.9, the number of server sessions in equal clusters 
across different runs is more or less the same. For example, clusters one, two 
and one of respectively run one, two and three hold approximately 6,000 server 
sessions, representing the third largest cluster. Also, clusters three, one and two 
of respectively run one, two and three hold approximately 130,000 server 
sessions, representing the largest cluster. 
 
7.5.2 Validating the results 
 
The results of the ten different runs of the SAM heuristic, applied to a large 
dataset consisting of 151,712 server sessions, are validated by comparing 
equalities within the division of server sessions in clusters for each pair of runs. 
Table 7.10 presents information about the number of server sessions that are 
equally grouped together across different runs. For example, comparing the 
final clustering results of run 1 with run 2, 90.61% of the server sessions are 
equally grouped together. 
 

= 325
 

http://machines.hyperreal.org/


RUN 1 2 3 4 5 6 7 8 9 10 
1 100 90.61 91.71 93.31 89.90 94.05 92.06 93.34 97.06 93.80 
2  100 97.15 98.77 95.37 99.54 99.41 93.67 97.06 99.28 
3   100 98.80 97.39 99.58 97.57 95.72 97.06 99.30 
4    100 95.36 95.71 93.69 89.81 97.06 99.29 
5     100 95.84 93.82 91.91 97.06 99.35 
6      100 97.59 93.72 97.06 99.29 
7       100 93.69 97.06 99.30 
8        100 97.06 99.30 
9         100 93.80 
10          100 

 
Table 7.10: % of cases (server sessions) that are equally grouped together, for 
each pair of runs. 
 

Details of table 7.10 are given in appendix 7, where clusters are presented 
vertically and horizontally in equality tables. An equality table shows equalities 
between server sessions grouped in each cluster, for each pair of runs. The total 
number of server sessions for each cluster are presented vertically (last column) 
and horizontally (last row). The total number of server sessions in the analysis 
are written in the corner at the bottom right of each table. The cells printed in 
bold show the maximum number of server sessions (in each row) that are 
equally grouped together. We remark that we use the words ‘equally grouped 
together’ to refer to the fact that, in run two, cluster one groups server sessions 
of cluster two, three and four of run one. This means that run two does not 
recognize three different groups and instead these server sessions are grouped 
together. With regard to table 7.10 we may also say that 85.42% (i.e. [(123,660 
+ 5,937) / 151,712] * 100) of the cases in run one and two are equally 
clustered. This means that, in run one and two, not only the same server 
sessions are equally grouped together but also the same clusters are 
distinguished. 

Comparing the equality tables with the cluster centres in table 7.8 and with 
the graphical presentations in figures 7.8, 7.9 and 7.10, the same observations 
are given. Cluster one of the first run is most identical with cluster two of the 
second run, clearly indicated by the same cluster centre {163} in both runs. In 
figure 7.8 cluster one shows a peak for group 8, because page_id 163, which is 
an element of group 8, is frequently visited within the server sessions that are 
grouped in cluster one. In figure 7.9, cluster two shows a peak for group 8, 
indicating server sessions, which are merely concentrated on page_id 163. 
Furthermore, clusters two, three and four of the first run are grouped together 
in cluster one of the second run, due to differences in cluster centres. Also, 
cluster three, four and five of the second run are grouped together in cluster 
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three of the first run. The reason whey this occurs is because run one does not 
recognizes cluster centres {1129}, {657, 815, 657} and {338, 1153}. Server 
sessions are assigned to cluster three in run one because the SAM distance 
measure towards cluster centre {657} is smaller compared with other cluster 
centres. Also, cluster three of run one generally groups together one-page 
server sessions to page_id 657, representing the home page of the web site, 
along with other one-page server sessions, which are not represented by other 
cluster centres. Such as for example one-page server sessions 1129, which are 
grouped in cluster three of run one, together with one-page sessions 657. This 
is also shown in cluster three of figure 7.8, where group 29 including 
frequently visited page_id 657 shows a peak and in cluster three of figure 7.9, 
where group 50 including frequently visited page_id 1129 shows a peak. 

The shifts of server sessions between clusters in run one and two, along with 
cluster centres and total number of server sessions in each cluster is given in 
figure 7.11. Double arrows indicate approximately equal clustering solutions 
between run one and two. Above each arrow, the maximum number of server 
sessions that is shifted from one cluster to another, between run one and two, is 
given. For example, 5,937 out of 6,293 server sessions from cluster one of run 
one are grouped in cluster two of run two. Likewise, 5,937 out of 6,197 server 
sessions from cluster two of run two are grouped in cluster one of run one. 
Also, 8,391 out of 8,492 server sessions in cluster three of run two are grouped 
in cluster three of run one. The same information is also given in appendix 7 
(re. equality table comparing run 1 with run 2). 

 

R u n  1
(1 )   (2 ) (3 )

R u n  2
(1 )   (2 )   (3 )

(1 ) =  c lu ste r
(2 ) =  to ta l nu m be r o f se rve r session s in  (1 )
(3 ) =  cen tre  o f (1 )

1 6 ,29 3        {1 6 3 }           •

2 8 ,16 4        {6 5 7 , 9 8 4 }   •

3 13 6 ,91 1    {6 5 7 }           •

4 34 4            {6 5 7 , 8 0 2 ,  •
657 , 8 02 , 6 5 7 }

1 1 3 1 ,8 0 4    {6 5 7 }

2 6 ,1 9 7        {1 6 3 }

3 8 ,4 9 2        {1 1 2 9 }

4 2 ,9 8 4        {6 5 7 , 8 1 5 , 6 5 7 }

5 2 ,2 3 5        {3 3 8 , 1 1 5 3 }

•

•

•

•

•

5 ,9 3 7

5 ,9 37

7 ,53 6

1 2 3 ,6 60

12 3 ,6 60
8 ,3 91

2 ,3 9 3
2 ,2 1 3

3 2 9

 
 
Figure 7.11: Shifts of server sessions between clusters in run one and two. 
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Finally, it is important to notice that 151,712 server sessions are analysed by 

the SAM heuristic within a time period of approximately one hour. If SAM had 
been applied to the dataset, the analysis would have lasted for more than 
25,000 days or 68 years. This means that SAM is not able to analyse such a 
large data set.  
 
7.6  Conclusion and Future Research 
 
When applying SAM to web usage data in large databases (i.e. databases 
storing at least one megabyte of data or containing at least 10,000 records), 
efficiency problems rise in terms of computational complexity (i.e. total 
number of SAM distance measures). For this reason, in this chapter, a SAM 
heuristic is introduced, developed and applied to a large database.  

Computational complexity of SAM is proportional to the number of 
sequences in the analysis squared, whereas computational complexity of the 
SAM heuristic is proportional to the number of sequences in the subset 
squared. This means that, taking into account other additional calculations as 
well, the total effort for analysing large databases of, for example, 10,000 
records by means of SAM heuristic is approximately 3 times less than SAM. 
Moreover, the effort of SAM heuristic is respectively 21 and 40 times less than 
SAM for analysing 100,000 and 200,000 sequences. This means that, compared 
to SAM, SAM heuristic becomes more and more appropriate when the total 
number of sequences in the analysis (N) augments. 

To illustrate the functionality of the SAM heuristic for Web Usage Mining 
studies on a real, large dataset, we analysed files of logged web usage data 
from 01/02/1999 to 31/03/1999 on the web site http://machines.hyperreal.org. 
After pre-processing the data using the approach described in chapter four, 
section 4.5, a total number of 151,712 server sessions, showing visits to 1159 
different web pages, are identified. In order to examine how sensitive the 
results are with regard to the randomly selected first server session, ten 
different runs are executed on the data. Each run starts with a different initial 
randomly selected server session from the dataset. After defining, for each run, 
a subset of 759 server sessions (i.e. 0.5% of the original database) along with 
clustering information for the subset and cluster centres, the remaining 150,953 
server sessions are assigned to a cluster based on the minimum SAM distance 
between server session and cluster centre. 

The clustering results for each of the ten runs are validated by means of 
equality tables, showing equalities between server sessions grouped in each 
cluster of two different runs. The tables provide information about the total 
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number of server sessions that are equally grouped together or equally 
clustered between two different runs. ‘Equally grouped together’ refers to the 
number of server sessions that are grouped together between two different runs. 
‘Equally clustered’ refers to the number of server sessions that are grouped 
together and assigned to the same type of clusters, between two different runs. 
For example, 90.60% of the cases in run one are equally grouped together in 
run two and 91.71% of the cases in run one are equally grouped together in run 
three. Yet, 85.42% of the cases in run one are equally clustered in run two and 
88.28% of the cases in run one are equally clustered in run three. After 
investigating the equality tables of each pair of runs, we may conclude that the 
amount of server sessions that are equally clustered across different runs lies 
always above 80%. This means that, although the SAM heuristic starts with 
randomly selecting a first server session from the data set, the final clustering 
results are relatively stable, given the results of the experimental tests.  

Differences in clustering results across different runs, which are maximally 
20% of the server sessions in the data set, are generally due to differences in 
cluster centres, which occur due to differences in subset selection, which is in 
fact a consequence of the first randomly selected server session. Given the 
results of our experiments, we may also conclude that the length of the first 
randomly selected server session (one-page session, two-page session or more) 
does not influence the results.  

Finally, it is important to notice that 151,712 server sessions are analysed by 
the SAM heuristic within a time period of approximately one hour. If SAM had 
been applied to the dataset, the analysis would have lasted for more than 
25,000 days or 68 years. This means that, within our approach of Web Usage 
Mining, SAM is unable to analyse large datasets. With regard to SAM 
heuristic, given the results of our experiments, we may conclude that, although 
not all of the server sessions are equally clustered across different runs, most of 
them do. Minimum 80% of the results of the SAM heuristic are stable while 
maximally 20% may be sensitive to the initial randomly selected first starting 
value. Despite the fact that maximally 20% of the results of the SAM heuristic 
may be unstable, a huge advantage in processing time is accomplished and 
therefore we may suggest SAM heuristic for analysing large databases in Web 
Usage Mining studies. 

Further research is necessary to examine the effect of the magnitude of the 
subset on the final results. This means that, given N, the optimal value for M, 
with minimum sensitivity to the randomly selected starting value, must be 
defined. Also, computational and time complexities for analysing large data 
sets of two-dimensional server sessions, such as visited web pages along with 
categories of visiting page time (re. chapter four), should be studied in order to 
extent SAM heuristic for two-dimensional web usage data. In order to 
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generalize the performance of SAM heuristic to Web Usage Data in general, 
more experimental tests are necessary on log files of different web sites. 
Finally, it might be interesting to investigate how sensitivity to the first 
randomly selected sequence may be reduced. 
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APPENDIX 1 
 

The basic data fields in log files (re. table 2.1) are explained below. 
 
IP address Internet Protocol address, also known as remote hostname, is 
the Internet address of the machine that made the request and may be 
represented by the address of a proxy server. For most users accessing the 
Internet from a dial-up Internet service provider (ISP), the IP address will be 
different every time they log on. The format of an IP address is a 32-bit 
numeric address written as four numbers separated by periods. Each number 
can be zero to 255. For example, 1.168.12.243. 
 
User ID User Identification or remote login name of the user. If 
authentication is required to access password protected WWW pages, the user 
id is filled in. 
 
Date  Date and time of the request. Time refers to the moment the 
request was received by the web server.  
 
Request This field records the method, URI and protocol for the object 
that is retrieved by the client. 
 
Method This may be GET (requests an object from the web server), 
POST (sends information to the web server) or HEAD (requests just the HTTP 
header for an object). 
 
URI  The Uniform Resource Identifier can either be a static file in 
the local file system, or the name of an executable program that is called in 
response to a request. 
 
Protocol Examples of protocol systems are File Transfer Protocol (FTP) 
and Hyper Text Transfer Protocol (HTTP). FTP is the protocol used on the 
Internet for sending files. HTTP is the underlying protocol used by the World 
Wide Web. HTTP defines how messages are formatted and transmitted and 
what actions web servers and browsers should take in response to various 
commands. For example, when you enter a URL in your browser, this actually 
sends an HTTP command to the web server directing it to fetch and transmit 
the requested web page. 
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Status  This is the HTTP response code returned to the client. It 
indicates whether or not the file was successfully retrieved. If not, an error 
message is returned. Different codes are used, for example, codes ranging from 
200 to 299 indicate success, 300 to 399 indicate some form of redirection, 400 
to 499 indicate an error serving the particular request and finally codes ranging 
from 500 to 599 indicate a problem with the web server. A list of frequently 
used HTTP response codes is presented in the table below. 
 

Code Meaning 
200 OK. 
201 Created. 
202 Accepted. 
204 No content. 
301 Moved permanently. 
302 Moved temporarily. 
304 Not modified. 
400 Bad request. 
401 Unauthorized. 
403 Forbidden. 
404 Not found. 
500 Internal server error. 
501 Not implemented. 
502 Bad gateway. 
503 Service unavailable. 

 
Frequently used HTTP response codes (status). 

 
Bytes  The number of bytes transferred. 
 
Referrer The url that was visited before making this particular request. 
The referrer field will be null for url’s that are typed in or for an access through 
a bookmark (Cooley, 2000). 
 
User agent The operating system and browser software the client is using. 
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APPENDIX 4 
 

Commonly used distance measures, which do not take into account the order of 
elements within sequences (SPSS Tutorial, 2003). 

 
� Euclidean (straight-line) distance 
 
d(x, y) = √(x – y)(x – y) 
 
� Minkowski metric 
                             p 
d(x, y) = [ ∑ |xi – yi| m]1/m  and  p = number of dimensions; 
                          i = 1     m = 1 for city-block distance; 
     m = 2 for Euclidean distance; 
 
� Jaccard coefficient 
 
d(x, y) = X ∩ Y / X U Y 
 
� Simple matching coefficient 
 
d(x, y) = X ∩ Y 
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Groups of page_ids based on classes for data set 2 
(http://machines.hyperreal.org). 
 

Class Group 
Categories 1 
Machines 2 

Manufacturers 3 
Music 4 

Do-it-yourself 5 
Drum-machines 6 

Samples 7 
Software 8 
Incoming 9 

Remaining 10 
 
 
Distribution of 1,159 distinct page_ids in data set 2, represented in ten different 
groups, based on ten different classes. 
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Groups of page_ids based on classes for data set 3 (Belgian telecom provider). 
 

Class Group 
Service X 1 

FAQ 2 
Main 3 
New 4 

Products 5 
Range 6 
Sales 7 

 
 
 

French language 

Prices 8 
Service X 9 

FAQ 10 
Main 11 
New 12 

Products 13 
Range 14 
Sales 15 

 
 
 

Dutch language 

Prices 16 
French + Dutch 

language 
Remaining 17 

 
Distribution of 492 distinct page_ids in data set 3, represented in seventeen 
different groups, based on seventeen different classes. 
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Number of server sessions in each cluster of data set 1, 2 and 3. 
 

Dataset Cluster 
1 2 3 

1 467 1894 230 
2 650 584 262 
3 337 362 230 
4 1008 185 51 
5 277 106 - 
6 25 - - 

Total 2764 3131 773 
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SAM applied to data set 1 (http://www.luc.ac.be), server sessions consisting of 
visited pages: Distribution of web pages in six clusters. 
 

Relative frequency Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

1 20,48 1,72 97,78 1,8 1,08 0,67 
2 11,35 0,68 0,44 0,5 1,68 0,27 
3 0,56 0,05 0,22 1,36 0 0,53 
4 0,93 0,05 0 2,17 0,54 0,67 
5 1,85 0,1 0 1,49 0,27 1,07 
6 1,44 0,1 0 1,74 0,07 0,53 
7 1,25 0,1 0 1,67 0,2 0,53 
8 0,14 0,05 0 3,22 0 0,4 
9 14,83 0,94 0,44 0,56 3,3 0,27 
10 2,55 0,16 0,44 5,46 0,61 0,4 
11 1,81 0,31 0 5,58 0,34 0,53 
12 1,25 0,42 0 1,86 0,47 0,4 
13 0 0,21 0 0,74 0,07 1,6 
14 0,09 0,1 0 0,87 0 1,46 
15 0 0 0 0,62 0 1,6 
16 0 0,1 0 0,81 0 1,46 
17 0 0,05 0 0,87 0 1,6 
18 0 0 0 0,68 0 1,6 
19 0,14 1,56 0 1,3 0,67 1,73 
20 0 0,05 0 0,93 0 1,46 
21 0 0 0 0,68 0 1,46 
22 0 0 0 0,62 0 1,6 
23 0 0 0 0,68 0 1,6 
24 0 0,05 0 0,87 0 1,6 
25 0 0 0 0,68 0 1,33 
26 0 0,94 0 1,24 0,07 2,13 
27 0,09 0,68 0 0,81 0 2 
28 0,05 0,47 0 0,93 0 2,26 
29 0,05 0,21 0 0,99 0 1,6 
30 0 0,21 0 1,05 0 2,13 
31 0 0,05 0 0,99 0 1,73 
32 0 0,62 0 1,12 0,07 1,86 
33 0 0,78 0 0,99 0,07 2,13 
34 0,05 0,73 0 0,93 0 1,6 
35 0 0,36 0 0,81 0,07 2,13 
36 0 0,57 0 0,74 0 2,13 
37 0 0,26 0 0,68 0 2,13 
38 0 1,61 0 0,93 0,13 2,13 
39 0,09 1,87 0 1,05 0 2,13 
40 0,05 1,72 0 1,36 0,07 2,13 
41 0 0,94 0 1,12 0,67 1,73 
42 0 2,03 0 1,05 0,2 1,6 
43 1,95 9,94 0 1,05 2,76 0,53 
44 0,23 1,35 0 1,74 0,61 1,86 
45 0,37 1,41 0 1,18 0,2 1,86 
46 0 0,47 0 1,43 0,2 1,33 
47 0,19 1,98 0 1,05 0,54 1,86 
48 0,09 1,41 0 1,36 0,07 1,33 
49 1,58 6,66 0 0,43 1,15 0,53 
50 0 0 0 0,87 0,4 1,6 
51 0 0 0 0,99 0,13 1,46 
52 0,05 0 0 0,81 0,2 1,6 
53 0,09 0,05 0 0,87 0,07 1,6 
54 0 0 0 0,81 0 1,46 
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55 1,25 1,56 0 1,61 9,43 1,86 
56 0,32 2,45 0 0,62 2,16 1,86 
57 0,46 0,52 0 1,18 2,96 1,46 
58 0,14 0,42 0 2,6 2,9 2 
59 0,28 0,21 0 2,05 2,09 2,4 
60 0,05 0,05 0 2,23 0,67 2,53 
61 0,23 0,1 0 2,23 1,21 2,4 
62 0,09 0,05 0 2,29 0,47 2,26 
63 0,14 0,21 0 2,17 1,21 2,66 
64 0,05 0,05 0 1,49 0,67 1,46 
65 6,21 2,86 0,22 1,92 17,92 0,53 
66 1,16 0,21 0 2,48 0,34 0,13 
67 3,1 0,73 0 1,55 2,49 0,13 
68 17,61 38,73 0,44 2,29 28,1 0,4 
69 2,13 0,94 0 2,36 1,08 0,27 
70 0,51 0,68 0 2,85 5,39 0,53 
71 2,69 6,09 0 0,93 3,91 0,13 

=
SAM applied to data set 1 (http://www.luc.ac.be), server sessions consisting of 
visited pages: Exclusivity of web pages in six clusters. 
 

Exclusivity Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

1 0,46 0,03 0,46 0,03 0,02 0,01 
2 0,83 0,04 0,01 0,03 0,08 0,01 
3 0,3 0,03 0,03 0,55 0 0,1 
4 0,29 0,01 0 0,51 0,12 0,07 
5 0,51 0,03 0 0,31 0,05 0,1 
6 0,47 0,03 0 0,42 0,02 0,06 
7 0,43 0,03 0 0,43 0,05 0,06 
8 0,05 0,02 0 0,88 0 0,05 
9 0,8 0,05 0,01 0,02 0,12 0,01 
10 0,34 0,02 0,01 0,55 0,06 0,02 
11 0,27 0,04 0 0,63 0,03 0,03 
12 0,36 0,11 0 0,4 0,09 0,04 
13 0 0,14 0 0,41 0,03 0,41 
14 0,07 0,07 0 0,48 0 0,38 
15 0 0 0 0,45 0 0,55 
16 0 0,08 0 0,5 0 0,42 
17 0 0,04 0 0,52 0 0,44 
18 0 0 0 0,48 0 0,52 
19 0,04 0,39 0 0,27 0,13 0,17 
20 0 0,04 0 0,56 0 0,41 
21 0 0 0 0,5 0 0,5 
22 0 0 0 0,45 0 0,55 
23 0 0 0 0,48 0 0,52 
24 0 0,04 0 0,52 0 0,44 
25 0 0 0 0,52 0 0,48 
26 0 0,33 0 0,36 0,02 0,29 
27 0,05 0,3 0 0,3 0 0,35 
28 0,02 0,21 0 0,36 0 0,4 
29 0,03 0,12 0 0,48 0 0,36 
30 0 0,11 0 0,46 0 0,43 
31 0 0,03 0 0,53 0 0,43 
32 0 0,27 0 0,4 0,02 0,31 
33 0 0,31 0 0,33 0,02 0,33 
34 0,02 0,33 0 0,36 0 0,29 
35 0 0,19 0 0,35 0,03 0,43 
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36 0 0,28 0 0,31 0 0,41 
37 0 0,16 0 0,34 0 0,5 
38 0 0,48 0 0,23 0,03 0,25 
39 0,03 0,51 0 0,24 0 0,23 
40 0,01 0,45 0 0,3 0,01 0,22 
41 0 0,31 0 0,31 0,17 0,22 
42 0 0,55 0 0,24 0,04 0,17 
43 0,14 0,65 0 0,06 0,14 0,01 
44 0,06 0,32 0 0,34 0,11 0,17 
45 0,11 0,38 0 0,27 0,04 0,2 
46 0 0,2 0 0,51 0,07 0,22 
47 0,05 0,47 0 0,21 0,1 0,17 
48 0,03 0,44 0 0,35 0,02 0,16 
49 0,18 0,67 0 0,04 0,09 0,02 
50 0 0 0 0,44 0,19 0,38 
51 0 0 0 0,55 0,07 0,38 
52 0,03 0 0 0,45 0,1 0,41 
53 0,07 0,03 0 0,47 0,03 0,4 
54 0 0 0 0,54 0 0,46 
55 0,11 0,13 0 0,11 0,59 0,06 
56 0,06 0,43 0 0,09 0,29 0,13 
57 0,11 0,11 0 0,2 0,47 0,12 
58 0,03 0,07 0 0,38 0,39 0,14 
59 0,07 0,04 0 0,36 0,34 0,2 
60 0,01 0,01 0 0,54 0,15 0,28 
61 0,06 0,03 0 0,46 0,23 0,23 
62 0,03 0,02 0 0,58 0,11 0,27 
63 0,04 0,05 0 0,44 0,23 0,25 
64 0,02 0,02 0 0,51 0,21 0,23 
65 0,27 0,11 0 0,06 0,54 0,01 
66 0,33 0,05 0 0,53 0,07 0,01 
67 0,47 0,1 0 0,17 0,26 0,01 
68 0,24 0,47 0 0,02 0,26 0 
69 0,38 0,15 0 0,32 0,13 0,02 
70 0,07 0,08 0 0,3 0,52 0,03 
71 0,23 0,47 0 0,06 0,23 0 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
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SAM applied to data set 2 (http://machines.hyperreal.org), server sessions 
consisting of visited pages: Distribution of groups of page_ids in five clusters. 
 
=

Relative frequency Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

1 1,01 0 0,18 0 0 
2 0,27 0 0 0,25 0 
3 0,66 0,39 0 0 0 
4 0,42 0 0,06 0 0 
5 0,04 0 0,06 0 0 
6 0,21 0 0 0 0 
7 1,63 0,26 0,37 0 0 
8 4,56 0,52 1,29 0,74 0,62 
9 2,53 0,65 0,43 0,75 0,2 
10 1,08 0 0,31 0,25 0 
11 0,21 0 0,06 0 0 
12 0,28 0,13 0,3 0 0 
13 0,8 0,13 0,24 0,25 0,62 
14 0,33 0,39 0,06 0 0 
15 1,56 0,26 0,37 0 0 
16 2,14 0,26 0,06 0 0,31 
17 1,26 0,13 0,18 0 0 
18 0,67 0 0,12 0 0,1 
19 0,91 0,13 0 0 0 
20 2,1 0,13 0,12 0 0 
21 0,99 0,13 0 0 0,3 
22 0,85 0 0 0 0,2 
23 1,59 0,26 0,25 0 0,1 
24 0,85 0,9 0,12 0 0,1 
25 1,31 0 0,06 0 0 
26 1,95 0,52 0,12 0,5 0,92 
27 0,19 0,13 0 0 0,2 
28 0,93 0,52 0 0 0,52 
29 11,57 73,53 30,19 14,71 41,07 
30 1,18 0 1,35 0,25 0,51 
31 2,42 0,52 5,82 15,7 2,07 
32 1,85 0,52 0,86 0 0,2 
33 0,52 0,13 0,24 0 0,31 
34 0,15 0 0,18 0 0,41 
35 2,93 9,26 9,23 1,23 1,96 
36 1,72 0,65 5,26 0,99 6,6 
37 0,36 0 0 0 0 
38 2,67 1,56 2,58 1,73 3,82 
39 2,43 0,65 1,23 0,99 1,55 
40 3,16 0,39 1,5 0 1,96 
41 3,65 0,78 1,31 2,22 5,04 
42 4,44 1,16 1,8 3,44 5,98 
43 3,4 0,78 10,83 2,94 6,4 
44 5,76 0,65 7 4,42 4,75 
45 7,63 1,17 10,7 4,92 5,16 
46 1,85 0,39 0,24 0,49 0,41 
47 1,03 0,39 1,03 0,49 1,13 
48 4,28 0,78 1,66 1,49 3,82 
49 0,24 0,13 0,37 0 0,51 
50 4,83 0,91 1,75 41,43 2,06 
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SAM applied to data set 2 (http://machines.hyperreal.org), server sessions 
consisting of visited pages: Exclusivity of groups of page_ids in five clusters. 
 
=

Exclusivity Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

1 0,93 0 0,07 0 0 
2 0,92 0 0 0,08 0 
3 0,9 0,1 0 0 0 
4 0,95 0 0,05 0 0 
5 0,67 0 0,33 0 0 
6 1 0 0 0 0 
7 0,89 0,03 0,08 0 0 
8 0,85 0,02 0,1 0,01 0,03 
9 0,86 0,04 0,06 0,02 0,02 
10 0,88 0 0,1 0,02 0 
11 0,9 0 0,1 0 0 
12 0,67 0,06 0,28 0 0 
13 0,73 0,02 0,09 0,02 0,13 
14 0,78 0,17 0,06 0 0 
15 0,89 0,03 0,08 0 0 
16 0,94 0,02 0,01 0 0,03 
17 0,93 0,02 0,05 0 0 
18 0,9 0 0,06 0 0,03 
19 0,98 0,03 0 0 0 
20 0,97 0,01 0,02 0 0 
21 0,91 0,02 0 0 0,07 
22 0,95 0 0 0 0,05 
23 0,9 0,03 0,05 0 0,01 
24 0,78 0,15 0,04 0 0,02 
25 0,98 0 0,02 0 0 
26 0,83 0,04 0,02 0,02 0,09 
27 0,73 0,09 0 0 0,18 
28 0,81 0,08 0 0 0,1 
29 0,24 0,29 0,24 0,03 0,2 
30 0,63 0 0,29 0,01 0,07 
31 0,35 0,01 0,33 0,23 0,07 
32 0,79 0,04 0,15 0 0,02 
33 0,74 0,03 0,13 0 0,1 
34 0,5 0 0,21 0 0,29 
35 0,33 0,2 0,41 0,01 0,05 
36 0,31 0,02 0,37 0,02 0,28 
37 1 0 0 0 0 
38 0,53 0,06 0,2 0,03 0,18 
39 0,69 0,03 0,14 0,03 0,1 
40 0,74 0,02 0,14 0 0,11 
41 0,64 0,03 0,09 0,04 0,21 
42 0,62 0,03 0,1 0,05 0,2 
43 0,35 0,02 0,44 0,03 0,16 
44 0,56 0,01 0,27 0,04 0,11 
45 0,55 0,02 0,31 0,04 0,09 
46 0,85 0,03 0,04 0,02 0,04 
47 0,57 0,04 0,22 0,03 0,14 
48 0,7 0,02 0,11 0,02 0,15 
49 0,45 0,05 0,27 0 0,23 
50 0,47 0,02 0,07 0,4 0,05 
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SAM applied to data set 3 (Belgian telecom provider), server sessions 
consisting of visited pages: Distribution of groups of page_ids in four clusters. 
 

Relative frequency Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 1,44 5,25 0 0 
2 30,02 6,51 0,34 0 
3 3,36 2,79 0 0 
4 1,26 1,78 0 0 
5 27,91 5,95 0,22 0 
6 1,86 4,03 0 0 
7 0,72 2,99 0 0 
8 3,12 6,7 0,06 0 
9 1,98 1,55 0 0 
10 26,69 8,07 0,22 0 
11 0,24 3,99 2,6 2,24 
12 0,36 8,4 28,39 34,08 
13 0,06 8,54 1,14 0 
14 0 2,01 1,73 0 
15 0,18 9,65 28,74 33,43 
16 0 2,02 1,37 1,28 
17 0 2,78 2,17 0,64 
18 0 2,56 2,28 0,32 
19 0,24 6,16 6,13 3,2 
20 0,42 7,74 24,62 24,76 

=
SAM applied to data set 3 (Belgian telecom provider), server sessions 
consisting of visited pages: Exclusivity of groups of page_ids in four clusters. 
 

Exclusivity Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0,34 0,66 0 0 
2 0,89 0,1 0,01 0 
3 0,69 0,31 0 0 
4 0,57 0,43 0 0 
5 0,89 0,1 0,01 0 
6 0,46 0,54 0 0 
7 0,31 0,69 0 0 
8 0,46 0,53 0,01 0 
9 0,7 0,3 0 0 
10 0,85 0,14 0,01 0 
11 0,04 0,39 0,49 0,08 
12 0,01 0,11 0,73 0,16 
13 0,01 0,78 0,21 0 
14 0 0,38 0,63 0 
15 0 0,12 0,72 0,15 
16 0 0,39 0,52 0,09 
17 0 0,38 0,58 0,03 
18 0 0,36 0,63 0,02 
19 0,02 0,31 0,61 0,06 
20 0,01 0,12 0,74 0,13 

=
=
=
=
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SAM applied to data set 1: Surfing behaviour at http://www.luc.ac.be/tew: 
navigation patterns, providing page and order-based information. 
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Cluster 5
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SAM applied to data set 2: Surfing behaviour at http://machines.hyperreal.org: 
navigation patterns, providing page and order-based information. 
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SAM applied to data set 3: Surfing behaviour at the web site of a Belgian 
telecom provider: navigation patterns, providing page and order-based 
information. 
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Association distance applied to data set 1 (http://www.luc.ac.be), server 
sessions consisting of visited pages: Distribution of web pages in three clusters. 

 
Relative frequency Page_id 

 Cluster 1 Cluster 2 Cluster 3 
1 13,32 17,44 4,14 
2 4,44 1,4 3,01 
3 0,41 0,63 0,5 
4 0,58 1,75 0,73 
5 0,98 0,91 0,82 
6 0,77 1,05 0,64 
7 0,7 0,77 0,82 
8 0,41 2,38 0,23 
9 6,43 1,54 3,46 
10 1,13 5,74 1,09 
11 1,3 4,34 0,87 
12 0,68 1,12 1,18 
13 0,11 0,49 0,73 
14 0,06 0,63 0,73 
15 0,06 0,35 0,59 
16 0,15 0,28 0,64 
17 0,09 0,63 0,59 
18 0,04 0,49 0,59 
19 0,73 0,63 1,55 
20 0,02 0,7 0,68 
21 0 0,7 0,5 
22 0,09 0,35 0,55 
23 0,09 0,42 0,55 
24 0,09 0,56 0,64 
25 0,11 0,42 0,41 
26 0,38 0,56 1,32 
27 0,15 0,63 1,18 
28 0,21 0,49 1,14 
29 0,09 0,7 0,82 
30 0,17 0,7 0,87 
31 0,11 0,49 0,77 
32 0,21 0,56 1,18 
33 0,32 0,63 1,05 
34 0,28 0,84 0,73 
35 0,28 0,35 0,82 
36 0,19 0,56 0,96 
37 0,13 0,42 0,87 
38 0,38 0,56 1,68 
39 0,51 0,63 1,73 
40 0,62 0,84 1,46 
41 0,38 0,7 1,37 
42 0,64 0,42 1,55 
43 4,14 1,33 3,73 
44 0,66 1,26 1,46 
45 0,73 0,84 1,09 
46 0,26 0,84 0,91 
47 0,85 0,77 1,37 
48 0,66 0,91 0,82 
49 2,84 1,05 1,87 
50 0,17 0,56 0,68 
51 0,17 0,35 0,68 
52 0,06 0,56 0,77 
53 0,13 0,7 0,59 
54 0,02 0,49 0,68 
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55 2,99 1,33 3,55 
56 1,37 0,77 1,55 
57 1 0,56 1,73 
58 1,07 1,75 1,55 
59 0,79 1,05 1,73 
60 0,38 1,19 1,37 
61 0,56 1,26 1,5 
62 0,38 1,26 1,18 
63 0,62 1,33 1,37 
64 0,41 0,84 0,68 
65 8,3 0,07 4,55 
66 0,7 1,54 0,87 
67 1,94 0,84 1,82 
68 24,72 14,29 9,97 
69 1,2 1,33 2 
70 1,52 2,73 1,96 
71 3,52 2,38 2,23 

 
Association distance applied to data set 1 (http://www.luc.ac.be), server 
sessions consisting of visited pages: Exclusivity of web pages in three clusters. 
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Exclusivity Page_id 
 Cluster 1 Cluster 2 Cluster 3 

1 0,65 0,26 0,09 
2 0,71 0,07 0,22 
3 0,49 0,23 0,28 
4 0,4 0,37 0,24 
5 0,6 0,17 0,23 
6 0,55 0,23 0,22 
7 0,53 0,18 0,29 
8 0,33 0,59 0,09 
9 0,75 0,06 0,19 
10 0,33 0,52 0,15 
11 0,43 0,44 0,13 
12 0,43 0,22 0,35 
13 0,18 0,25 0,57 
14 0,11 0,32 0,57 
15 0,14 0,24 0,62 
16 0,28 0,16 0,56 
17 0,15 0,35 0,5 
18 0,09 0,32 0,59 
19 0,44 0,12 0,44 
20 0,04 0,38 0,58 
21 0 0,48 0,52 
22 0,19 0,24 0,57 
23 0,18 0,27 0,55 
24 0,15 0,31 0,54 
25 0,25 0,3 0,45 
26 0,33 0,15 0,53 
27 0,17 0,21 0,62 
28 0,24 0,17 0,6 
29 0,13 0,31 0,56 
30 0,22 0,27 0,51 
31 0,17 0,24 0,59 
32 0,23 0,18 0,59 
33 0,32 0,19 0,49 
34 0,32 0,29 0,39 
35 0,36 0,14 0,5 
36 0,24 0,21 0,55 
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37 0,19 0,19 0,61 
38 0,29 0,13 0,59 
39 0,34 0,13 0,54 
40 0,4 0,16 0,44 
41 0,31 0,17 0,52 
42 0,43 0,09 0,49 
43 0,66 0,06 0,28 
44 0,38 0,22 0,4 
45 0,49 0,17 0,34 
46 0,27 0,27 0,45 
47 0,49 0,14 0,37 
48 0,5 0,21 0,29 
49 0,7 0,08 0,22 
50 0,26 0,26 0,48 
51 0,29 0,18 0,54 
52 0,11 0,29 0,61 
53 0,21 0,34 0,45 
54 0,04 0,3 0,65 
55 0,59 0,08 0,33 
56 0,59 0,1 0,31 
57 0,51 0,09 0,41 
58 0,46 0,23 0,31 
59 0,41 0,17 0,42 
60 0,28 0,26 0,46 
61 0,34 0,23 0,43 
62 0,29 0,29 0,42 
63 0,37 0,24 0,38 
64 0,41 0,26 0,33 
65 0,79 0 0,2 
66 0,45 0,3 0,26 
67 0,64 0,08 0,28 
68 0,73 0,13 0,14 
69 0,47 0,16 0,37 
70 0,46 0,25 0,28 
71 0,67 0,14 0,2 
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Association distance applied to data set 2 (http://machines.hyperreal.org), 
server sessions consisting of visited pages: Distribution of groups of page_ids 
in three clusters. 
 

Relative frequency Page_id 
 Cluster 1 Cluster 2 Cluster 3 

1 0,69 0,61 0,47 
2 0,05 0,04 0,34 
3 0,23 0,58 0,34 
4 0,05 0,16 0,43 
5 0 0,04 0,06 
6 0,05 0,08 0,18 
7 0,69 1,35 0,87 
8 5,01 3,02 1,12 
9 1,74 2,52 0,64 
10 0,23 1,38 0,34 
11 0,05 0,28 0,06 
12 0,14 0,24 0,27 
13 0,45 0,78 0,5 
14 0,09 0,53 0,09 
15 0,54 1,51 0,71 
16 0,28 1,67 1,46 
17 0,33 1,05 0,7 
18 0,1 0,81 0,27 
19 0,46 0,4 0,61 
20 0,46 1,34 1,49 
21 0,47 0,64 0,57 
22 0,29 0,32 0,7 
23 1 0,56 1,13 
24 0,57 0,48 0,67 
25 0,65 0,68 0,77 
26 1,52 1,42 0,92 
27 0,14 0,16 0,12 
28 0,69 0,89 0,34 
29 27,7 22,43 25,8 
30 1,54 0,52 0,89 
31 3,77 3,51 3,51 
32 1,56 1,18 1,02 
33 0,47 0,52 0,24 
34 0,2 0,04 0,27 
35 4,7 5,49 3,95 
36 2 2,46 3,89 
37 0,27 0,16 0,15 
38 1,62 2,73 3,31 
39 1,69 2,4 1,47 
40 2,98 2,44 1,54 
41 3,12 2,9 2,93 
42 3,7 3,71 3,72 
43 3,75 3,98 6,66 
44 6,8 4,35 5,01 
45 7,83 4,86 8,54 
46 1,04 0,96 1,32 
47 0,84 0,85 1,15 
48 3,06 3,01 3,45 
49 0,18 0,24 0,37 
50 5,02 7,28 4,25 
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Association distance applied to data set 2 (http://machines.hyperreal.org), 
server sessions consisting of visited pages: Exclusivity of groups of page_ids in 
three clusters. 
 

Exclusivity Page_id 
 Cluster 1 Cluster 2 Cluster 3 

1 0,33 0,33 0,33 
2 0,08 0,08 0,85 
3 0,17 0,47 0,37 
4 0,05 0,21 0,74 
5 0 0,33 0,67 
6 0,11 0,22 0,67 
7 0,2 0,43 0,37 
8 0,5 0,33 0,16 
9 0,31 0,51 0,17 
10 0,1 0,68 0,22 
11 0,1 0,7 0,2 
12 0,17 0,33 0,5 
13 0,22 0,42 0,36 
14 0,11 0,72 0,17 
15 0,17 0,51 0,32 
16 0,06 0,44 0,5 
17 0,13 0,46 0,41 
18 0,06 0,65 0,29 
19 0,25 0,25 0,5 
20 0,11 0,36 0,53 
21 0,22 0,36 0,42 
22 0,16 0,22 0,62 
23 0,3 0,19 0,51 
24 0,26 0,26 0,48 
25 0,25 0,3 0,45 
26 0,34 0,36 0,31 
27 0,27 0,36 0,36 
28 0,31 0,46 0,23 
29 0,31 0,27 0,42 
30 0,45 0,17 0,38 
31 0,3 0,31 0,4 
32 0,35 0,3 0,34 
33 0,32 0,42 0,26 
34 0,29 0,07 0,64 
35 0,28 0,37 0,35 
36 0,19 0,26 0,55 
37 0,4 0,27 0,33 
38 0,17 0,32 0,51 
39 0,26 0,41 0,33 
40 0,38 0,34 0,28 
41 0,29 0,3 0,4 
42 0,28 0,31 0,41 
43 0,21 0,25 0,54 
44 0,36 0,26 0,39 
45 0,31 0,21 0,49 
46 0,25 0,27 0,48 
47 0,24 0,28 0,49 
48 0,27 0,29 0,44 
49 0,18 0,27 0,55 
50 0,26 0,42 0,32 
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Association distance applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Distribution of groups of page_ids in four 
clusters. 
=

Relative frequency Page_id 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 3,08 2,03 1,12 0 
2 10,83 8,57 20,98 0,2 
3 3,57 3,45 1,01 0 
4 1,54 2,01 0,45 0 
5 11,53 7,72 18,23 0,2 
6 2,17 2,3 1,59 0 
7 0,84 3,45 0,87 0 
8 3,99 10,31 1,17 0 
9 2,24 2,01 0,45 0 
10 13,7 4,31 17,11 0,2 
11 3,15 4,33 0,85 1,64 
12 8,38 9,16 10,63 33,01 
13 1,26 4,31 3,3 0,49 
14 2,03 2,59 0,46 0,19 
15 10,41 8,3 10,75 31,46 
16 1,4 2,01 0,5 0,97 
17 2,31 4,04 0,69 0,58 
18 1,26 4,32 1,25 0,87 
19 5,95 6,58 1,59 3,87 
20 10,48 8,57 7,32 26,31 

=
Association distance applied to data set 3 (Belgian telecom provider), server 
sessions consisting of visited pages: Exclusivity of groups of page_ids in four 
clusters. 

 
Exclusivity Page_id 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
1 0,62 0,1 0,28 0 
2 0,28 0,05 0,67 0 
3 0,63 0,15 0,22 0 
4 0,59 0,19 0,22 0 
5 0,32 0,05 0,63 0 
6 0,46 0,12 0,42 0 
7 0,31 0,31 0,38 0 
8 0,5 0,32 0,18 0 
9 0,68 0,15 0,17 0 
10 0,38 0,03 0,59 0 
11 0,49 0,16 0,16 0,18 
12 0,18 0,05 0,28 0,5 
13 0,19 0,15 0,61 0,05 
14 0,6 0,19 0,17 0,04 
15 0,21 0,04 0,28 0,47 
16 0,43 0,15 0,2 0,22 
17 0,51 0,22 0,18 0,09 
18 0,28 0,23 0,34 0,14 
19 0,48 0,13 0,16 0,23 
20 0,26 0,05 0,22 0,47 
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APPENDIX 5 
 

Algorithm, used by SAMI, for transforming server sessions into sessions with 
interesting combinations of pages, respecting the order of pages. 
 
begin 
     while not eof(server_sessions_original) do  //read input file// 
     begin 
          i:=0; 
          k:=0; 
          while not eoln(server_sessions_original) do 
          begin 
               i:=i+1; 
               read(server_sessions_original,page[i]); //read the server session as array page[i]// 
          end; 
          readln(server_sessions_original);  //proceed to the next line of the input file// 
          if i>1 then //original server sessions must consist of minimum two pages in order to 
          begin be relevant for interestingness based on the support logic framework// 
               Reset(interesting_related_pages); //open and read file with interesting related 
               while not eof(interesting_related_pages) do pages// 
               begin 
                    j:=0; 
                    while not eoln(interesting_related_pages) do 
             begin 
                         j:=j+1; 
                         read(interesting_related_pages,intpage[j]); //read the interesting related pages 
                    end;     as array intpage[j]// 
                    readln(interesting_related_pages); //proceed to the next line of the file// 
                    if i>=j then //if i<j, the original server session has less pages than the  
                    begin  interesting frequent item set and cannot hold the interesting 
                         for x:=1 to j do   related pages//   //the interesting frequent item set consists of 
                         begin           j related pages// 
                              teller[x]:=0; 
                         end 
                         for a:=1 to i do 
                         begin 
                              for x:=1 to j do 
                              begin 
                                   if page[a]=intpage[x] then teller[x]:=teller[x]+1; 
                              end; 
                         end; 
                         present:=0; 
                         for x:=1 to j do 
                         begin 
                              if (teller[x]<>0) then present:= present + 1; 
                         end; 
                         if present = j then 
                         begin //the interesting frequent item set is found in the server session//  
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                              for a:=1 to j do 
                           begin 
                                   k:=k+1; 
                                   interesting[k]:=intpage[a];  //the interesting related pages found in the input 
                              end;   file are written in array interesting[k]// 
                         end; 
                    end; 
               end; 
               CloseFile(interesting_related_pages); 
          end; 
          if k<>0 then  //k<>0 indicates that at least one interesting frequent item set  
          begin  of related pages is found in the original server session// 
               for a:=1 to i do 
               begin 
                    S:=0; 
                    for b:=1 to k do 
                    begin 
                         if (page[a]=interesting[b]) and (S=0) then 
                         begin 
                              S:=1; 
                              write(server_sessions_transformed,' ',page[a]);   //write the transformed 
                         end;               server session, including 
                    end;                only interesting related 
               end;                pages with respect of the 
               writeln(server_sessions_transformed);             order, in the output file// 
          end; 
     end; 
   CloseFile(server_sessions_original); 
   CloseFile(server_sessions_transformed); 
end; 
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Interesting beliefs of related pages on http://machines.hyperreal.org. 

 
Evidence IMßi  ≥ 0.75  

Interesting 
beliefs of 

related pages 
 

 
Usage 

 
Structure 

 
Combined 

Usage 
- 

Structure 

Usage 
- 

Combined 

Structure 
- 

Combined 

(657, 162) [0.0101; 0.0101]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3999 (-) 1.3999 (-) - 
(657, 159) [0.0102; 0.0102]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3997 (-) 1.3997 (-) - 

(815, 657, 810) [0.0123; 0.0123] [1.0000; 1.0000] [1.0000; 1.0000] 1.3968 (-) 1.3968 (-) - 
(657, 349) [0.0167; 0.0167]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3905 (-) 1.3905 (-) - 
(657, 810) [0.0210; 0.0210]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3845 (-) 1.3845 (-) - 
(815, 163) [0.0273; 0.0273]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3756 (-) 1.3756 (-) - 
(657, 813) [0.0345; 0.0345]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3654 (-) 1.3654 (-) - 
(984, 163) [0.0356; 0.0356]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3638 (-) 1.3638 (-) - 
(163, 162) [0.0417; 0.0417]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3552 (-) 1.3552 (-) - 
(984, 985) [0.0473; 0.0473]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3473 (-) 1.3473 (-) - 
(984, 987) [0.0538; 0.0538]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3381 (-) 1.3381 (-) - 

(984, 1012) [0.0550; 0.0550]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3364 (-) 1.3364 (-) - 
(984, 1000) [0.0650; 0.0650]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3222 (-) 1.3222 (-) - 
(984, 1022) [0.0651; 0.0651]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3221 (-) 1.3221 (-) - 
(984, 995) [0.0698; 0.0698]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3155 (-) 1.3155 (-) - 

(1082, 1093) [0.0730; 0.0730] [1.0000; 1.0000] [1.0000; 1.0000] 1.3109 (-) 1.3109 (-) - 
(984, 1024) [0.0737; 0.0737]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3099 (-) 1.3099 (-) - 
(1082, 1091) [0.0746; 0.0746] [1.0000; 1.0000] [1.0000; 1.0000] 1.3087 (-) 1.3087 (-) - 

(163, 159) [0.0748; 0.0748]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3084 (-) 1.3084 (-) - 
(984, 1001) [0.0770; 0.0770]  [1.0000; 1.0000] [1.0000; 1.0000] 1.3053 (-) 1.3053 (-) - 
(984, 1013) [0.0834; 0.0834]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2962 (-) 1.2962 (-) - 
(984, 997) [0.0876; 0.0876]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2903 (-) 1.2903 (-) - 
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(984, 990) [0.0878; 0.0878]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2900 (-) 1.2900 (-) - 
(984, 1025) [0.0922; 0.0922]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2838 (-) 1.2838 (-) - 
(984, 1021) [0.0938; 0.0938]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2815 (-) 1.2815 (-) - 
(984, 999) [0.0938; 0.0938]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2815 (-) 1.2815 (-) - 
(815, 810) [0.0951; 0.0951]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2797 (-) 1.2797 (-) - 

(1082, 1083) [0.0995; 0.0995] [1.0000; 1.0000] [1.0000; 1.0000] 1.2734 (-) 1.2734 (-) - 
(452, 349) [0.1149; 0.1149]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2517 (-) 1.2517 (-) - 

(1026, 984) [0.1151; 0.1151]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2514 (-) 1.2514 (-) - 
(163, 349) [0.1221; 0.1221]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2415 (-) 1.2415 (-) - 
(349, 627) [0.1239; 0.1239]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2389 (-) 1.2389 (-) - 
(984, 998) [0.1242; 0.1242]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2385 (-) 1.2385 (-) - 

(984, 1018) [0.1300; 0.1300]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2303 (-) 1.2303 (-) - 
(815, 657) [0.1338; 0.1338]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2249 (-) 1.2249 (-) - 
(159, 162) [0.1418; 0.1418]  [1.0000; 1.0000] [1.0000; 1.0000] 1.2136 (-) 1.2136 (-) - 
(349, 162) [0.1588; 0.1588]  [1.0000; 1.0000] [1.0000; 1.0000] 1.1896 (-) 1.1896 (-) - 
(868, 857) [0.1645; 0.1645]  [1.0000; 1.0000] [1.0000; 1.0000] 1.1815 (-) 1.1815 (-) - 
(984, 996) [0.1855; 0.1855]  [1.0000; 1.0000] [1.0000; 1.0000] 1.1518 (-) 1.1518 (-) - 

(815, 657, 813) [0.0189; 0.0189] [0.8334; 0.8334] [0.0879; 0.0879] 1.1518 (-) - 1.0543 (+) 
(349, 159) [0.2092; 0.2092]  [1.0000; 1.0000] [1.0000; 1.0000] 1.1183 (-) 1.1183 (-) - 

(1034, 1040) [0.2349; 0.2349] [1.0000; 1.0000] [1.0000; 1.0000] 1.0820 (-) 1.0820 (-) - 
(349, 524) [0.2367; 0.2367]  [1.0000; 1.0000] [1.0000; 1.0000] 1.0794 (-) 1.0794 (-) - 
(62, 171) [0.2372; 0.2372]  [1.0000; 1.0000] [1.0000; 1.0000] 1.0787 (-) 1.0787 (-) - 

(1034, 1041) [0.2798; 0.2798] [1.0000; 1.0000] [1.0000; 1.0000] 1.0185 (-) 1.0185 (-) - 
(857, 859) [0.3382; 0.3382]  [1.0000; 1.0000] [1.0000; 1.0000] 0.9359 (-) 0.9359 (-) - 
(882, 883) [0.3388; 0.3388]  [1.0000; 1.0000] [1.0000; 1.0000] 0.9350 (-) 0.9350 (-) - 

(1134, 815, 657) [0.0069; 0.0069] [0.6667; 0.6667] [0.0137; 0.0137] 0.9330 (-) - 0.9235 (+) 
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(815, 657, 698) [0.0072; 0.0072] [0.6667; 0.6667] [0.0143; 0.0143] 0.9326 (-) - 0.9226 (+) 
(657, 984, 985) [0.0072; 0.0072] [0.6667; 0.6667] [0.0143; 0.0143] 0.9326 (-) - 0.9226 (+) 
(657, 984, 1028) [0.0081; 0.0081] [0.6667; 0.6667] [0.0161; 0.0161] 0.9314 (-) - 0.9201 (+) 
(657, 984, 810) [0.0084; 0.0084] [0.6667; 0.6667] [0.0167; 0.0167] 0.9310 (-) - 0.9192 (+) 

(815, 657, 1026, 984)  [0.0084; 0.0084] [0.6667; 0.6667] [0.0167; 0.0167] 0.9309 (-) - 0.9192 (+) 
(815, 657, 1129) [0.0087; 0.0087] [0.6667; 0.6667] [0.0173; 0.0173] 0.9305 (-) - 0.9184 (+) 
(657, 984, 992) [0.0090; 0.0090] [0.6667; 0.6667] [0.0178; 0.0178] 0.9301 (-) - 0.9177 (+) 
(657, 984, 987) [0.0093; 0.0093] [0.6667; 0.6667] [0.0184; 0.0184] 0.9297 (-) - 0.9168 (+) 
(815, 657, 1018) [0.0093; 0.0093] [0.6667; 0.6667] [0.0184; 0.0184] 0.9297 (-) - 0.9168 (+) 
(657, 984, 991) [0.0096; 0.0096] [0.6667; 0.6667] [0.0190; 0.0190] 0.9292 (-) - 0.9160 (+) 
(657, 868, 857) [0.0096; 0.0096] [0.6667; 0.6667] [0.0190; 0.0190] 0.9292 (-) - 0.9160 (+) 
(657, 984, 1012) [0.0102; 0.0102] [0.6667; 0.6667] [0.0202; 0.0202] 0.9284 (-) - 0.9143 (+) 
(657, 984, 1024) [0.0105; 0.0105] [0.6667; 0.6667] [0.0208; 0.0208] 0.9280 (-) - 0.9134 (+) 
(657, 984, 995) [0.0105; 0.0105] [0.6667; 0.6667] [0.0208; 0.0208] 0.9280 (-) - 0.9134 (+) 
(657, 882, 883) [0.0108; 0.0108] [0.6667; 0.6667] [0.0214; 0.0214] 0.9275 (-) - 0.9126 (+) 
(657, 882, 886) [0.0108; 0.0108] [0.6667; 0.6667] [0.0214; 0.0214] 0.9275 (-) - 0.9126 (+) 
(657, 984, 1022) [0.0111; 0.0111] [0.6667; 0.6667] [0.0220; 0.0220] 0.9271 (-) - 0.9117 (+) 
(657, 984, 1000) [0.0117; 0.0117] [0.6667; 0.6667] [0.0231; 0.0231] 0.9263 (-) - 0.9102 (+) 
(815, 657, 786) [0.0117; 0.0117] [0.6667; 0.6667] [0.0231; 0.0231] 0.9263 (-) - 0.9102 (+) 

(657, 1082, 1092) [0.0123; 0.0123] [0.6667; 0.6667] [0.0243; 0.0243] 0.9254 (-) - 0.9085 (+) 
(657, 984, 1001) [0.0129; 0.0129] [0.6667; 0.6667] [0.0255; 0.0255] 0.9246 (-) - 0.9068 (+) 
(815, 657, 933) [0.0132; 0.0132] [0.6667; 0.6667] [0.0261; 0.0261] 0.9241 (-) - 0.9059 (+) 
(815, 657, 1026) [0.0138; 0.0138] [0.6667; 0.6667] [0.0272; 0.0272] 0.9233 (-) - 0.9044 (+) 
(657, 984, 1021) [0.0138; 0.0138] [0.6667; 0.6667] [0.0272; 0.0272] 0.9233 (-) - 0.9044 (+) 
(657, 984, 999) [0.0144; 0.0144] [0.6667; 0.6667] [0.0284; 0.0284] 0.9224(-)    - 0.9027 (+)
(657, 984, 997) [0.0144; 0.0144] [0.6667; 0.6667] [0.0284; 0.0284] 0.9224 (-) - 0.9027 (+) 

= PTP



Evidence IMßi  ≥ 0.75  
Interesting 
beliefs of 

related pages 
 

 
Usage 

 
Structure 

 
Combined 

Usage 
- 

Structure 

Usage 
- 

Combined 

Structure 
- 

Combined 

(657, 984, 990) [0.0141; 0.0141] [0.6667; 0.6667] [0.0278; 0.0278] 0.9224 (-) - 0.9027 (+) 
(815, 657, 663) [0.0150; 0.0150] [0.6667; 0.6667] [0.0296; 0.0296] 0.9216 (-) - 0.9010 (+) 
(657, 984, 1013) [0.0162; 0.0162] [0.6667; 0.6667] [0.0319; 0.0319] 0.9199 (-) - 0.8977 (+) 
(815, 657, 1082) [0.0162; 0.0162] [0.6667; 0.6667] [0.0319; 0.0319] 0.9199 (-) - 0.8977 (+) 
(657, 984, 1025) [0.0168; 0.0168] [0.6667; 0.6667] [0.0330; 0.0330] 0.9190 (-) - 0.8962 (+) 
(815, 657, 713) [0.0183; 0.0183] [0.6667; 0.6667] [0.0359; 0.0359] 0.9169 (-) - 0.8921 (+) 
(815, 794, 657) [0.0189; 0.0189] [0.6667; 0.6667] [0.0371; 0.0371] 0.9161 (-) - 0.8904 (+) 
(815, 657, 947) [0.0192; 0.0192] [0.6667; 0.6667] [0.0377; 0.0377] 0.9157 (-) - 0.8895 (+) 
(657, 984, 1006) [0.0195; 0.0195] [0.6667; 0.6667] [0.0383; 0.0383] 0.9152 (-) - 0.8887 (+) 
(657, 984, 998) [0.0210; 0.0210] [0.6667; 0.6667] [0.0411; 0.0411] 0.9131 (-) - 0.8847 (+) 
(815, 1026, 984) [0.0237; 0.0237] [0.6667; 0.6667] [0.0463; 0.0463] 0.9093 (-) - 0.8774 (+) 
(657, 984, 1018) [0.0252; 0.0252] [0.6667; 0.6667] [0.0492; 0.0492] 0.9072 (-) - 0.8733 (+) 
(657, 1026, 984) [0.0297; 0.0297] [0.6667; 0.6667] [0.0577; 0.0577] 0.9008 (-) - 0.8613 (+) 
(815, 657, 984) [0.0354; 0.0354] [0.6667; 0.6667] [0.0684; 0.0684] 0.8927 (-) - 0.8461 (+) 
(386, 206, 385) [0.0372; 0.0372] [0.6667; 0.6667] [0.0717; 0.0717] 0.8902 (-) - 0.8415(+) 
(657, 984, 996) [0.0372; 0.0372] [0.6667; 0.6667] [0.0717; 0.0717] 0.8902 (-) - 0.8415(+) 

(815, 794, 657, 786)  [0.0116; 0.0116] [0.5834; 0.5834] [0.0162; 0.0162] 0.8086 (-) - 0.8021 (+) 
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APPENDIX 6 
 

Algorithm for sampled set. 
 
… 
var     //define variables used throughout the data 
t, a , b, N, l, s: integer   sampling program// 
function integerrandom(a, b: integer): integer //define equal probability function for 
     integer values i of or between a and b// 
… 
begin 
    for N:= 1 to 50 do   //repeat following command 50 times to end 
    begin     up with 500 sequences in output file// 
        for s:= 1 to 6 do                                //sample six sequences with length = 1//  
        begin 

      t = trunc(random * (b-a+1)) + a 
      integerrandom = t 
      write(output, t) 
      writeln(output) 
  end 
  for s:= 1 to 1 do                               //sample one sequence with length = 2// 
  begin 
      for l:= 1 to 2 do 
      begin 
          t = trunc(random * (b-a+1)) + a 
          integerrandom = t 
          if l < 2 then write(output, t, ' ') 
          else write(output, t) 
      end 
      writeln(output) 
  end 
  for s:= 1 to 1 do …   //sample one sequence with length = 3// 
  for s:= 1 to 1 do …   //sample one sequence with length = 4// 
  for s:= 1 to 1 do …                          //sample one sequence with length = 5// 

    end 
end 
… 
begin 
    integerrandom(1, 20)   //a and b are identified by 1 and 20// 
end; 
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Dissimilarity table for experiment 100_1_2. 
S   A   M   P   L   E   D      S   E   T Experiment 100_1_2 

20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1
20_2_5_1       0 0.6265 0.729 0.704 0.4385 0.7335

20_12_15_10  0     0.5525 0.557 0.4525 0.6245
20_7_15_1   0    0.201 0.8035 0.1395
100_2_5_1    0   0.739 0.1555

100_12_15_10     0  0.8185

 
 

SAMPLED 
SET 

100_7_15_1      0 

 
Correlation table for experiment 100_1_2. 

S   A   M   P   L   E   D      S   E   T Experiment 100_1_2 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       1 -0.253 -0.458 -0.408 0.683 -0.467
20_12_15_10  1     -0.105 -0.114 0.095 -0.249

20_7_15_1   1    0.598 -0.607 0.721
100_2_5_1    1   -0.478 0.689

100_12_15_10     1  -0.637

 
 

SAMPLED 
SET 

100_7_15_1      1 

 
Sensitivity table for experiment 100_1_2. 

S   A   M   P   L   E   D      S   E   T Experiment 100_1_2 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       ZERO MAJOR MAJOR MAJOR MAJOR MAJOR
20_12_15_10  ZERO     MAJOR MAJOR MAJOR MAJOR

20_7_15_1   ZERO    CONS MAJOR CONS
100_2_5_1    ZERO   MAJOR CONS

100_12_15_10     ZERO  MAJOR

 
 

SAMPLED 
SET 

100_7_15_1      ZERO 
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Dissimilarity table for experiment 2_4_10. 
S   A   M   P   L   E   D      S   E   T Experiment 2_4_10 

20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1
20_2_5_1       0 0.572 0.608 0.689 0.2085 0.8495

20_12_15_10  0     0.48 0.481 0.482 0.5745
20_7_15_1   0    0.2695 0.6695 0.2755
100_2_5_1    0   0.6305 0.3745

100_12_15_10     0  0.75

 
 

SAMPLED 
SET 

100_7_15_1      0 

 
Correlation table for experiment 2_4_10. 

S   A   M   P   L   E   D      S   E   T Experiment 2_4_10 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       1 -0.144 -0.216 -0.378 0.583 -0.699
20_12_15_10  1     0.04 0.038 0.036 -0.149

20_7_15_1   1    0.461 -0.339 0.449
100_2_5_1    1   -0.261 0.251

100_12_15_10     1  -0.5

 
 

SAMPLED 
SET 

100_7_15_1      1 

 
Sensitivity table for experiment 2_4_10. 

S   A   M   P   L   E   D      S   E   T Experiment 2_4_10 
20_2_5_1     20_12_15_10 20_7_15_1 100_2_5_1 100_12_15_10 100_7_15_1

20_2_5_1       ZERO MAJOR MAJOR MAJOR CONS MAJOR
20_12_15_10  ZERO     MAJOR MAJOR MAJOR MAJOR

20_7_15_1   ZERO    MAJOR MAJOR MAJOR
100_2_5_1    ZERO   MAJOR MAJOR

100_12_15_10     ZERO  MAJOR

 
 

SAMPLED 
SET 

100_7_15_1      ZERO 

=
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APPENDIX 7 
Run 4: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 5: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 6: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 7: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 8: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 9: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Run 10: Information criteria for defining the number of clusters, using SAM 
distance measures between 759 server sessions selected in the subset. 
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Equality table comparing run 1 with run 2. 
Run 2: 5 clusters Run 1: 

4 clusters 1 2 3 4 5 
TOT 

1 279 5,937 61 0 16 6,293 
2 7,536 6 40 576 6 8,164 
3 123,660 254 8,391 2,393 2,213 136,911 
4 329 0 0 15 0 344 

TOT 131,804 6,197 8,492 2,984 2,235 151,712 
 

Equality table comparing run 1 with run 3. 
Run 3: 5 clusters Run 1: 

4 clusters 1 2 3 4 5 
TOT 

1 5,980 270 38 5 0 6,293 
2 3 4,871 30 3,070 190 8,164 
3 266 127,952 8,327 14 352 136,911 
4 0 340 0 0 4 344 

TOT 6,249 133,433 8,395 3,089 546 151,712 
 

Equality table comparing run 1 with run 4. 
Run 4: 3 clusters Run 1: 

4 clusters 1 2 3 
TOT 

1 240 6,049 4 6,293 
2 33 7,767 364 8,164 
3 8,538 127,418 955 136,911 
4 0 338 6 344 

TOT 8,811 141,572 1,329 151,712 
 

Equality table comparing run 1 with run 5. 
Run 5: 5 clusters Run 1: 

4 clusters 1 2 3 4 5 
TOT 

1 189 5,862 121 121 0 6,293 
2 3 4,922 3,081 29 129 8,164 
3 2,876 125,271 68 8,340 356 136,911 
4 0 340 0 0 4 344 

TOT 3,068 136,395 3,270 8,490 489 151,712 
 

Equality table comparing run 1 with run 6. 
Run 6: 3 clusters Run 1: 

4 clusters 1 2 3 
TOT 

1 5,951 40 302 6,293 
2 9 31 8,124 8,164 
3 283 8,352 128,276 136,911 
4 0 0 344 344 

TOT 6,243 8,423 137,046 151,712 
 

= 386
 



Equality table comparing run 1 with run 7. 
Run 7: 4 clusters Run 1: 

4 clusters 1 2 3 4 
TOT 

1 5,956 297 38 2 6,293 
2 15 7,511 30 608 8,164 
3 303 125,875 8,329 2,404 136,911 
4 0 331 0 13 344 

TOT 6,274 134,014 8,397 3,027 151,712 
 

Equality table comparing run 1 with run 8. 
Run 8: 5 clusters Run 1: 

4 clusters 1 2 3 4 5 
TOT 

1 5,963 287 36 7 0 6,293 
2 15 90 30 7,922 107 8,164 
3 335 127,423 8,336 85 732 136,911 
4 0 309 0 25 10 344 

TOT 6,313 128,109 8,402 8,039 849 151,712 
 

Equality table comparing run 1 with run 9. 
Run 9: 3 clusters Run 1: 

4 clusters 1 2 3 
TOT 

1 206 6,087 0 6,293 
2 52 7,853 259 8,164 
3 3,387 132,972 552 136,911 
4 0 341 3 344 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 1 with run 10. 
Run 10: 3 clusters Run 1: 

4 clusters 1 2 3 
TOT 

1 300 5,991 2 6,293 
2 44 8,082 38 8,164 
3 8,597 127,894 420 136,911 
4 0 342 2 344 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 2 with run 3. 
Run 3: 5 clusters Run 2: 

5 clusters 1 2 3 4 5 
TOT 

1 259 127,984 26 3,080 455 131,804 
2 5,939 253 3 2 0 6,197 
3 37 89 8,366 0 0 8,492 
4 0 2,896 0 1 87 2,984 
5 14 2,211 0 6 4 2,235 

TOT 6,249 133,433 8,395 3,089 546 151,712 
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Equality table comparing run 2 with run 4. 
Run 4: 3 clusters Run 2: 

5 clusters 1 2 3 
TOT 

1 18 130,661 1,125 131,804 
2 409 5,787 1 6,197 
3 8,383 104 5 8,492 
4 0 2,786 198 2,984 
5 1 2,234 0 2,235 

TOT 8,811 141,572 1,329 151,712 
 

Equality table comparing run 2 with run 5. 
Run 5: 5 clusters Run 2: 

5 clusters 1 2 3 4 5 
TOT 

1 2,845 125,552 3,123 33 251 131,804 
2 169 5,820 119 89 0 6,197 
3 33 78 13 8,368 0 8,492 
4 0 2,739 8 0 237 2,984 
5 21 2,206 7 0 1 2,235 

TOT 3,068 136,395 3,270 8,490 489 151,712 
 

Equality table comparing run 2 with run 6. 
Run 6: 3 clusters Run 2: 

5 clusters 1 2 3 
TOT 

1 259 44 131,501 131,804 
2 5,929 7 261 6,197 
3 43 8,372 77 8,492 
4 1 0 2,983 2,984 
5 11 0 2,224 2,235 

TOT 6,243 8,423 137,046 151,712 
 

Equality table comparing run 2 with run 7. 
Run 7: 4 clusters Run 2: 

5 clusters 1 2 3 4 
TOT 

1 283 131,390 30 101 131,804 
2 5,929 264 4 0 6,197 
3 43 84 8,363 2 8,492 
4 0 61 0 2,923 2,984 
5 19 2,215 0 1 2,235 

TOT 6,274 134,014 8,397 3,027 151,712 
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Equality table comparing run 2 with run 8. 
Run 8: 5 clusters Run 2: 

5 clusters 1 2 3 4 5 
TOT 

1 314 123,296 27 7,482 685 131,804 
2 5,942 248 3 4 0 6,197 
3 48 71 8,372 1 0 8,492 
4 0 2,282 0 546 156 2,984 
5 9 2,212 0 6 8 2,235 

TOT 6,313 128,109 8,402 8,039 849 151,712 
 

Equality table comparing run 2 with run 9. 
Run 9: 3 clusters Run 2: 

5 clusters 1 2 3 
TOT 

1 2,634 128,538 632 131,804 
2 172 6,025 0 6,197 
3 801 7,690 1 8,492 
4 0 2,807 177 2,984 
5 38 2,193 4 2,235 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 2 with run 10. 
Run 10: 3 clusters Run 2: 

5 clusters 1 2 3 
TOT 

1 273 131,115 416 131,804 
2 256 5,939 2 6,197 
3 8,405 86 1 8,492 
4 0 2,943 41 2,984 
5 7 2,226 2 2,235 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 3 with run 4. 
Run 4: 3 clusters Run 3: 

5 clusters 1 2 3 
TOT 

1 211 6,037 1 6,249 
2 236 131,978 1,219 133,433 
3 8,362 32 1 8,395 
4 2 3,085 2 3,089 
5 0 440 106 546 

TOT 8,811 141,572 1,329 151,712 
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Equality table comparing run 3 with run 5. 
Run 5: 5 clusters Run 3: 

5 clusters 1 2 3 4 5 
TOT 

1 206 5,832 120 91 0 6,249 
2 2,858 129,995 88 36 456 133,433 
3 2 27 3 8,363 0 8,395 
4 2 30 3,057 0 0 3,089 
5 0 511 2 0 33 546 

TOT 3,068 136,395 3,270 8,490 489 151,712 
 

Equality table comparing run 3 with run 6. 
Run 6: 3 clusters Run 3: 

5 clusters 1 2 3 
TOT 

1 5,968 8 273 6,249 
2 270 49 133,114 133,433 
3 5 8,366 24 8,395 
4 0 0 3,089 3,089 
5 0 0 546 546 

TOT 6,243 8,423 137,046 151,712 
 

Equality table comparing run 3 with run 7. 
Run 7: 4 clusters Run 3: 

5 clusters 1 2 3 4 
TOT 

1 5,958 286 5 0 6,249 
2 310 130,178 26 2,919 133,433 
3 3 26 8,366 0 8,395 
4 3 3,068 0 18 3,089 
5 0 456 0 90 546 

TOT 6,274 134,014 8,397 3,027 151,712 
 

Equality table comparing run 3 with run 8. 
Run 8: 5 clusters Run 3: 

5 clusters 1 2 3 4 5 
TOT 

1 5,978 263 5 3 0 6,249 
2 330 127,527 30 4,799 747 133,433 
3 3 25 8,367 0 0 8,395 
4 2 19 0 3,067 1 3,089 
5 0 275 0 170 101 546 

TOT 6,313 128,109 8,402 8,039 849 151,712 
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Equality table comparing run 3 with run 9. 
Run 9: 3 clusters Run 3: 

5 clusters 1 2 3 
TOT 

1 187 6,062 0 6,249 
2 2,672 130,050 711 133,433 
3 756 7,639 0 8,395 
4 30 3,058 1 3,089 
5 0 444 102 546 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 3 with run 10. 
Run 10: 3 clusters Run 3: 

5 clusters 1 2 3 
TOT 

1 272 5,976 1 6,249 
2 295 132,710 428 133,433 
3 8,370 25 0 8,395 
4 4 3,085 0 3,089 
5 0 513 33 546 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 4 with run 5. 
Run 5: 5 clusters Run 4: 

3 clusters 1 2 3 4 5 
TOT 

1 117 233 11 8,450 0 8,811 
2 2,947 134,913 3,257 40 415 141,572 
3 4 1,312 2 0 74 1,329 

TOT 3,068 136,395 3,270 8,490 489 151,712 
 

Equality table comparing run 4 with run 6. 
Run 6: 3 clusters Run 4: 

3 clusters 1 2 3 
TOT 

1 219 8,375 217 8,811 
2 6,024 48 135,500 141,572 
3 0 0 1,329 1,329 

TOT 6,243 8,423 137,046 151,712 
 

Equality table comparing run 4 with run 7. 
Run 7: 4 clusters Run 4: 

3 clusters 1 2 3 4 
TOT 

1 213 235 8,363 0 8,811 
2 6,061 132,656 34 2,821 141,572 
3 0 1,123 0 206 1,329 

TOT 6,274 134,014 8,397 3,027 151,712 
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Equality table comparing run 4 with run 8. 

Run 8: 5 clusters Run 4: 
3 clusters 1 2 3 4 5 

TOT 

1 221 222 8,364 3 1 8,811 
2 6,090 127,020 38 7,686 738 141,572 
3 2 867 0 350 110 1,329 

TOT 6,313 128,109 8,402 8,039 849 151,712 
 

Equality table comparing run 4 with run 9. 
Run 9: 3 clusters Run 4: 

3 clusters 1 2 3 
TOT 

1 873 7,938 0 8,811 
2 2,771 138,559 242 141,572 
3 1 756 572 1,329 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 4 with run 10. 
Run 10: 3 clusters Run 4: 

3 clusters 1 2 3 
TOT 

1 8,566 244 1 8,811 
2 375 140,824 373 141,572 
3 0 1,241 88 1,329 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 5 with run 6. 
Run 6: 3 clusters Run 5: 

5 clusters 1 2 3 
TOT 

1 206 5 2,857 3,068 
2 5,831 39 130,525 136,395 
3 116 3 3,151 3,270 
4 90 8,375 25 8,490 
5 0 1 488 489 

TOT 6,243 8,423 137,046 151,712 
 

Equality table comparing run 5 with run 7. 
Run 7: 4 clusters Run 5: 

5 clusters 1 2 3 4 
TOT 

1 189 2,874 2 3 3,068 
2 5,868 127,740 30 2,757 136,395 
3 123 3,116 3 28 3,270 
4 94 34 8,362 0 8,490 
5 0 250 0 239 489 

TOT 6,274 134,014 8,397 3,027 151,712 
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Equality table comparing run 5 with run 8. 
Run 8: 5 clusters Run 5: 

5 clusters 1 2 3 4 5 
TOT 

1 215 2,848 2 3 0 3,068 
2 5,875 124,840 31 4,846 803 136,395 
3 128 71 3 3,068 0 3,270 
4 95 29 8,366 0 0 8,490 
5 0 321 0 128 46 489 

TOT 6,313 128,109 8,402 8,039 849 151,712 
 

Equality table comparing run 5 with run 9. 
Run 9: 3 clusters Run 5: 

5 clusters 1 2 3 
TOT 

1 224 2,844 0 3,068 
2 2,613 133,028 754 136,395 
3 47 3,223 0 3,270 
4 761 7,729 0 8,490 
5 0 429 60 489 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 5 with run 10. 
Run 10: 3 clusters Run 5: 

5 clusters 1 2 3 
TOT 

1 162 2,906 0 3,068 
2 293 135,654 448 136,395 
3 32 3,238 0 3,270 
4 8,454 36 0 8,490 
5 0 475 14 489 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 6 with run 7. 
Run 7: 4 clusters Run 6: 

3 clusters 1 2 3 4 
TOT 

1 5,976 261 5 1 6,243 
2 15 39 8,369 0 8,423 
3 283 133,714 23 3,026 137,046 

TOT 6,274 134,014 8,397 3,027 151,712 
 

Equality table comparing run 6 with run 8. 
Run 8: 5 clusters Run 6: 

5 clusters 1 2 3 4 5 
TOT 

1 5,992 244 5 2 0 6,243 
2 14 38 8,370 1 0 8,423 
3 307 127,827 27 8,036 849 137,046 

TOT 6,313 128,109 8,402 8,039 849 151,712 
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Equality table comparing run 6 with run 9. 
Run 9: 3 clusters Run 6: 

3 clusters 1 2 3 
TOT 

1 201 6,042 0 6,243 
2 764 7,659 0 8,423 
3 2,680 133,552 814 137,046 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 6 with run 10. 
Run 10: 3 clusters Run 6: 

3 clusters 1 2 3 
TOT 

1 277 5,966 0 6,243 
2 8,377 46 0 8,423 
3 287 136,297 462 137,046 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 7 with run 8. 
Run 8: 5 clusters Run 7: 

4 clusters 1 2 3 4 5 
TOT 

1 5,985 280 3 6 0 6,274 
2 323 125,510 36 7,454 691 134,014 
3 3 31 8,363 0 0 8,397 
4 2 2,288 0 579 158 3,027 

TOT 6,313 128,109 8,402 8,039 849 151,712 
 

Equality table comparing run 7 with run 9. 
Run 9: 3 clusters Run 7: 

4 clusters 1 2 3 
TOT 

1 194 6,080 0 6,274 
2 2,689 130,690 635 134,014 
3 762 7,635 0 8,397 
4 0 2,848 179 3,027 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 7 with run 10. 
Run 10: 3 clusters Run 7: 

4 clusters 1 2 3 
TOT 

1 260 6,013 1 6,274 
2 315 133,279 420 134,014 
3 8,366 31 0 8,397 
4 0 2,986 41 3,027 

TOT 8,941 142,309 462 151,712 
 
 
 

= 394



Equality table comparing run 8 with run 9. 
Run 9: 3 clusters Run 8: 

5 clusters 1 2 3 
TOT 

1 215 6,098 0 6,313 
2 2,636 125,020 453 128,109 
3 762 7,640 0 8,402 
4 32 7,773 234 8,039 
5 0 722 127 849 

TOT 3,645 147,253 814 151,712 
 

Equality table comparing run 8 with run 10. 
Run 10: 3 clusters Run 8: 

5 clusters 1 2 3 
TOT 

1 269 6,044 0 6,313 
2 292 127,473 344 128,109 
3 8,374 28 0 8,402 
4 6 8,004 29 8,039 
5 0 760 89 849 

TOT 8,941 142,309 462 151,712 
 

Equality table comparing run 9 with run 10. 
Run 10: 3 clusters Run 9: 

3 clusters 1 2 3 
TOT 

1 925 2,717 3 3,645 
2 8,016 138,840 397 147,253 
3 0 752 62 814 

TOT 8,941 142,309 462 151,712 
 
 
 

= 395
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