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1
Introduction

Data can be represented in many ways, the most common one in natural
language text. Below is a description of a store by way of example.

The store is flourishing, quite a number of orders have been placed.
John Mitchell, who’s email address is j. mitchell@ yahoo. com

has ordered a DVD box (118F for US$100) which is currently not
in stock, although there happen to be 10 IG8 DVDs that are supplied
by Al Jones (a. j@ gmail. com or a. j@ dot. com )...

Although this is quite intelligible for humans, a computer would have a hard
time processing the information presented in this form. It is just represented
in free format that lacks any kind of formal structure. At the other end of
the spectrum, this same information could be stored in a relational database.
The data is organized in tables, each column having its specific type, all in a
rigorous structure that can easily be manipulated by a computer program and
is described by a database schema.

As the term implies, semi-structured data takes the middle ground between
unstructured and structured data. The concept traces its roots to the 1960s
when the need arose to create machine readable documents. IBM’s Gener-
alized Markup Language [Gol96] was succeeded by the Standard Generalized
Markup Language [ME95] that has been in use by various large companies
as a document format. Markup was used to add some structure and/or se-
mantics to textual documents. Although extensively used by professionals,
semi-structured data entered the lay person’s ecosystem with the advent of
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2 Introduction

the World Wide Web in the form of HyperText Markup Language, or HTML.
A few years later, researchers and entrepreneurs realized that the web had
potential as an application platform, but that HTML was not a suitable data
format for such a purpose. Although HTML served well as a format to specify
how a web page should be rendered, it could not be harnessed into conveying
semantics or structure of data. A working group was formed that borrowed
ideas from SGML to define a more lightweight semi-structured data format:
XML.

1.1 Motivation

The eXtensible Markup Language (XML) serves as the lingua franca for data
exchange on the Internet [ABS99]. Because XML documents in general can be
of any form, most communities and applications impose structural constraints
on the documents that are to be exchanged or processed. These constraints can
be formally specified in a schema, which is written in a schema language such
as the Document Type Definitions (DTDs) or the XML Schema Definitions
(XSDs) [TBMM01].

The advantages offered by the presence of a fully specified schema are nu-
merous. First and foremost, a schema allows automatic validation of the input
document structure, which not only facilitates automatic processing but also
ensures soundness of the input. Unvalidated input data from web requests is
considered as the number one vulnerability for web applications [OWA04]. The
presence of a schema also allows for automation and optimization of search,
integration, and processing of XML data (cf., e.g., [BFG05, DFS99, KSSS04,
MFK01, NS03, WLY+03]). Moreover, various software development tools such
as Castor1 and SUN’s JAXB2 rely on schemas to perform object-relational
mappings for persistence. Furthermore, the existence of schemas is impera-
tive when integrating (meta) data through schema matching [RB01] and in
the area of generic model management [Ber03, Mel04]. A final advantage of
a schema is that it assigns meaning to the data. That is, it provides a user
with a concrete semantics of the document and aids in the specification of
meaningful queries over XML data. Although the examples mentioned here
just scrape the surface of current applications, they already underscore the
importance of schemas accompanying XML data.

Unfortunately, in spite of the above mentioned advantages, the presence of
a schema is not mandatory and many XML documents are not accompanied
by one. For instance, in a recent study, Barbosa et al. [BMV05, MBV03] have

1http://www.castor.org/
2http://java.sun.com/webservices/jaxb/

http://www.castor.org/
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shown that approximately half of the XML documents available on the web do
not refer to a schema. In another study, we have noted that about two-thirds
of XSDs gathered from schema repositories and from the web are not valid
with respect to the W3C XML Schema specification [TBMM01], rendering
them essentially useless for immediate application (see Chapter 6). A similar
observation was made by Sahuguet [Sah00] concerning DTDs.

Based on the lack of schemas in practice, it is essential to devise algo-
rithms that can infer a schema for a given collection of XML documents when
none, or no syntactically correct one, is present. This is also acknowledged by
Florescu [Flo05] who emphasizes that in the context of data integration:

“We need to extract good-quality schemas automatically from ex-
isting data and perform incremental maintenance of the generated
schemas.”

It should be noted that even when a schema is already available, there
are situations where inference can be useful. One such situation is schema
cleaning : sometimes a schema is too general with respect to the XML data that
it is supposed to describe. In that case, it can be advantageous to infer a new
schema based solely on the data at hand. This situation is nicely illustrated by
the following real-world example taken from the Protein Sequence Database
DTD [Mik02], which gives the following definition for the refinfo-element:

authors , citation , volume?, month?, year , pages?,
(title | description )?, xrefs?

An analysis of the available XML corpus (683 megabyte of data) using our
inference algorithms shows that the refinfo-element is better described by
the following expression:

authors , citation , (volume | month), year , pages?,
(title | description )?, xrefs?

Note that the latter is more strict than the former, as it emphasizes that volume
and month do not occur together: either one specifies a month of publication
for a given journal article, or the volume that it has appeared in, but not
both. As this example illustrates, schema inference algorithms can be used to
better understand the semantics of a given XML dataset, making it possible
to adapt an existing schema when necessary. In general, schema inference
can be used to restrict schemas to a relevant subset of data needed by the
application at hand, thereby facilitating difficult tasks like schema matching
and data integration. Indeed, as argued by Hinkelman [Hin05], industry-level
standards are too loosely defined in general, which can result in XML schemas
where many business structures are formally specified as being optional.
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The second situation where schema inference is useful even though a schema
already exists is in the presence of noisy XML data. In such a situation, part
or all of the data that needs to be processed is rejected by the existing schema.
For instance, we have harvested and investigated a corpus of XHTML docu-
ments from the web and found that an astonishing 89 % of 2092 documents was
not valid with respect to the XHTML Transitional specification [PAA+02]. In
this case, the inference of a new schema based on the corpus and its compari-
son with the XHTML Transitional specification provides a uniform view of the
kind of errors made. Further, given that one often has no choice but to deal
with such noisy data, one may infer a new schema from a subset of the cor-
pus (deleting documents that make unacceptable errors) and work with that
schema rather than with the official specification to retain at least a minimal
validation.

The situations sketched above in which schema inference is potentially
helpful motivated us to develop a tool intended to complement existing high-
quality schema editors like Stylus Studio3 and <oXygen/>4 to assists in such
scenarios. In Chapter 5 this tool, SchemaScope, is introduced.

1.2 Problem setting

Based on the above observations, it is hence essential to devise algorithms
that can automatically infer a DTD or XSD from a given corpus of XML
documents.

As illustrated in Figure 1.1, an DTD is essentially a mapping d from ele-
ment names to regular expressions over element names. An XML document
is valid with respect to d if for every occurrence of an element name e in the
document, the word formed by its children belongs to the language of the
corresponding regular expression d(e). For instance, the DTD in Figure 1.1
requires each store element to have zero or more order children, which must
be followed by a stock element. Likewise, each order must have a customer

child, which must be followed by one or more item elements.
To infer a DTD from a corpus of XML documents C it hence suffices to

look, for each element name e that occurs in a document in C, at the set of
element name words that occur below e in C, and to infer from this set the
corresponding regular expression d(e). As such, the inference of DTDs reduces
to the inference of regular expressions from sets of positive example words. To
illustrate, from the words id price, id qty supplier, and id qty item item

appearing under <item> elements in a sample XML corpus, we could derive

3http://www.stylusstudio.com/
4http://www.oxygenxml.com/

http://www.stylusstudio.com/
http://www.oxygenxml.com/
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the rule
<!ELEMENT item (id , price | (qty , (supplier | item *)))>

<!ELEMENT store (order*, stock)>
<!ELEMENT order (customer , item+)>
<!ELEMENT customer (first , last , email*)>
<!ELEMENT item (id , price | (qty , (supplier | item +)))>
<!ELEMENT stock (item*)>
<!ELEMENT supplier (first , last , email*)>

Figure 1.1: An example DTD.

While the inference of XSDs is more complicated than the inference of
DTDs, recent characterizations [MNSB06] show that the structural core of
XML Schema Definition (that is, the sets of trees that are definable by XSDs)
correspond to DTDs extended with vertical regular expressions. Therefore,
one cannot hope to successfully infer XSDs without good algorithms for infer-
ring regular expressions. As such, Chapters 2 and 3 focus on the inference of
regular expressions (and therefore, by the reduction above, on the inference of
DTDs). The inference of XSDs, building on the algorithms presented here, is
treated in Chapter 4.

In particular, let Σ be a fixed set of alphabet symbols (also called element
names), and let Σ∗ be the set of all words over Σ.

Definition 1.1 (Regular Expressions, REs). In this work, we are interested
in learning regular expressions r, s of the form

r, s ::= ∅ | ε | a | r . s | r + s | r? | r+,

where parentheses may be added to avoid ambiguity. Here, ε denotes the
empty word; a ranges over symbols in Σ; r . s denotes concatenation; r + s
denotes disjunction; r+ denotes one-or-more repetitions; and r? denotes the
optional regular expression. That is, the language L(r) accepted by regular
expression r is given by:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}

L(r . s) = {vw | v ∈ L(r), w ∈ L(s)}
L(r + s) = L(r) ∪ L(s)
L(r+) = {v1 . . . vn | n ≥ 1 and v1, . . . , vn ∈ L(r)}
L(r?) = L(r) ∪ {ε}.
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Note that the Kleene star operator (denoting zero or more repetitions as
in r∗) is not allowed by the above syntax. This is not a restriction, since r∗

can always be represented as (r+)? or (r?)+. Conversely, the latter can always
be rewritten into the former for presentation to the user.

The class of all regular expressions is actually too large for our purposes, as
both DTDs and XSDs require the regular expressions occurring in them to be
deterministic (also sometimes called one-unambiguous [BKW98]). Intuitively,
a regular expression is deterministic if, without looking ahead in the input
word, it allows to match each symbol of that word uniquely against a position
in the expression when processing the input in one pass from left to right.
For instance, (a + b)∗a is not deterministic as already the first symbol in
the word aaa could be matched by either the first or the second a in the
expression. Without look-ahead, it is impossible to know which one to choose.
The equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic.

Definition 1.2. Let r stand for the regular expression obtained from r by
replacing the ith occurrence of alphabet symbol a in r by a(i), for every i

and a. For example, for r = b+a(ba+)? we have r = b(1)+a(1)(b(2)a(2)+)?. A
regular expression r is deterministic if there are no words wa(i)v and wa(j)v′

in L(r) such that i 6= j.

Equivalently, an expression is deterministic if it is translated using the
Glushkov construction [BK93] into a deterministic finite automaton rather
than a non-deterministic one [BKW98]. Not every non-deterministic regular
expression is equivalent to a deterministic one [BKW98]. Thus, semantically,
the class of deterministic regular expressions forms a strict subclass of the
class of all regular expressions.

Learning in the limit. For the purpose of inferring DTDs from XML data,
we are hence in search of an algorithm that, given enough sample words of
a target deterministic regular expression r, returns a deterministic expression
r′ equivalent to r. In the framework of learning in the limit [Gol67], such an
algorithm is said to learn the deterministic regular expressions from positive
data.

Definition 1.3. Define a sample to be a finite subset of Σ∗ and let R be
a subclass of the regular expressions. An algorithm M mapping samples to
expressions in R is said to learn R in the limit from positive data if (1) S ⊆
L(M(S)) for every sample S and (2) to every r ∈ R we can associate a so-
called characteristic sample Sr ⊆ L(r) such that, for each sample S with
Sr ⊆ S ⊆ L(r), M(S) is equivalent to r.
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Intuitively, the first condition says that M must be sound ; the second that
M must be complete, given enough data. A class of regular expressions R is
learnable in the limit from positive data if an algorithm exists that learns R.
For the class of all regular expressions, it was shown by Gold that no such
algorithm exists [Gol67]. The same holds for the class of deterministic regular
expressions, as shown below.

Theorem 1.4. The class of deterministic regular expressions is not learnable
in the limit from positive data.

Proof. It was shown by Gold [Gol67, Theorem I.8], that any class of regular
expressions that contains all non-empty finite languages as well as at least
one infinite language is not learnable in the limit from positive data. Since
deterministic regular expressions like a∗ define an infinite language, it suffices
to show that every non-empty finite language is definable by a deterministic
expression. Hereto, let S be a finite, non-empty set of words. Now consider
the prefix tree T for S. For example, if S = {a, aab, abc, aac}, we have the
following prefix tree:

b c

a

c

b

a

Nodes for which the path from the root to that node forms a string in S are
marked by double circles. In particular, all leaf nodes are marked.

By viewing the internal nodes in T with two or more children as disjunc-
tions, internal nodes in T with one child as conjunctions, and adding a question
mark for every marked internal node in T , it is straightforward to transform
T into a regular expression. For example, with S and T as above we get
r = a .(b . c+ a .(b+ c))?. Clearly, L(r) = S. Moreover, since no node in T has
two edges with the same label, r must be deterministic.

Theorem 1.4 immediately excludes the possibility for an algorithm to infer
the full class of DTDs. In practice, however, regular expressions occurring in
DTDs and XSDs are concise rather than arbitrarily complex. Indeed, a study
of 819 DTDs and XSDs gathered from the Cover Pages [Cov03] (including
many high-quality XML standards) as well as from the web at large, reveals
that regular expressions occurring in practical schemas are such that every
alphabet symbol occurs at most k times, with k small. Actually, in 98% of
the cases k = 1. The reader is referred to Chapter 6 for a detailed analysis
and discussion.
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Definition 1.5. A regular expression is k-occurrence if every alphabet symbol
occurs at most k times in it.

For example, the expressions customer . order+ and (school+institute)+

are both 1-occurrence, while id .(qty+id) is 2-occurrence (as id occurs twice).
Observe that if r is k-occurrence, then it is also l-occurrence for every l ≥ k.
To simplify notation in what follows, we abbreviate ‘k-occurrence regular ex-
pression’ by k-ORE and also refer to the 1-OREs as ‘single occurrence regular
expressions’ or SOREs.

Note that, since every alphabet symbol can occur at most once in a SORE,
every SORE is necessarily deterministic. Given their importance in practical
schemas, Chapter 2 focuses on the inference of SOREs. The inference of
deterministic k-OREs for k > 1 is treated in Chapter 3.

To appreciate the difference between inferring DTDs and XSDs, consider
the XML document in Figure 1.2 that contains information about store or-
ders and stock contents. Orders hold customer information and list the items
ordered, with each item stating its id and price. The stock contents consists
of the list of items in stock, with each item stating its id, the quantity in
stock, and—depending on whether the item is atomic or composed from other
items—some supplier information or the items of which they are composed,
respectively. It is important to emphasize that order items do not include
supplier information, nor do they mention other items. Moreover, stock items
do not mention prices.

DTDs are incapable of distinguishing between order items and stock items
because the content model of an element can only depend on the element’s
name in a DTD, and not on the context in which it is used [MLMK05]. For
example, although the DTD in Figure 1.1 describes all intended XML docu-
ments, it also allows supplier information to occur in order items and price
information to occur in stock items.

XML Schema, in contrast, is based on type definitions, and therefore does
allow the content model of an element to depend on the context it is used
in [MLMK05, MNSB06]. For instance, it can be specified that an item is an
order item when it occurs under an order element. In particular, XML schema
can exactly describe the set of all intended documents, as we will show in
Section 4.1. It is precisely this ability that makes inferring XSDs significantly
more difficult than inferring DTDs. Indeed, whereas DTD inference basically
reduces to generating regular expressions from sets of sample strings, inferring
XSDs also entails identifying from a corpus of XML document the contexts in
which elements bear different content models. Existing DTD inference engines
do not identify such contexts and therefore always return schemas like the one
in Figure 1.1 that are too general with respect to the target schema.
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<store>
<order>

<customer >
<name>John Mitchell </name>
<email> j.mitchell@yahoo.com </email>

</customer >
<item> <id> I18F </id>

<price> 100 </price>
</item>
<item> ... </item> ... <item> ... </item>

</order>
<order> ... </order> ... <order> ... </order>
<stock>

<item>
<id> IG8 </id> <qty> 10 </qty>
<supplier > <name> Al Jones </name>

<email> a.j@gmail.com </email>
<email> a.j@dot.com </email>

</supplier >
</item>
<item>

<id> J38H </id> <qty> 30 </qty>
<item>

<id> J38H1 </id> <qty> 10 </qty>
<supplier > ... </supplier >

</item>
<item>

<id> J38H2 </id> <qty> 1 </qty>
<supplier > ... </supplier >

</item>
<item> ... </item> ... <item> ... </item>

</item>
...
<item> ... </item>

</stock>
</store>

Figure 1.2: Example XML document.
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Given that any DTD can be represented by an XSD and that it is—in
general—impossible to learn the class of all DTDs, it is by extension im-
possible to learn the class of all XSDs from positive examples only. As the
framework for XML schema inference is exactly such that only positive exam-
ple documents are provided, it is unrealistic to develop inference algorithms
for the class of all XSDs. One of the main challenges therefore is to identify
subclasses of XSDs that are widely used in practice and that can be learned
efficiently from positive data only.

An examination of 225 XSDs gathered from the Cover Pages [Cov03] (in-
cluding many high-quality XML standards) as well as from the web at large,
reveals that in more than 98% of the XSDs occurring in practice the content
model of an element depends only on the label of the element itself, the label
of its parent, and (sometimes) the label of its grandparent [MNSB06]. In Fig-
ure 1.2, for example, an item is an order item only if it is occurs in an order
element. It is a stock item only if it occurs in a stock element or in an item
element. We say that an XSD is k-local if its content models depend only on
labels up to the k-th ancestor.

Although the class of k-local XSDs by itself is still too general to be learned
from positive examples only, we show in Chapter 4 that the class of local XSDs
with content models given by regular expressions in which each element name
occurs at most once, can be learned efficiently from positive data only. The
restriction to such single occurrence regular expressions (SOREs for short) has
already been motivated above. Furthermore, as shown in Chapter 2, SOREs
can be learned efficiently from positive data only, in contrast to the class of
all regular expressions. Also, SOREs have the added benefit of succinctness:
since every element name can occur only once, the size of a SORE is always
linear in the number of different element names occurring in the corpus. The
inferred content models are therefore naturally comprehensible.

In principle, one could consider k-ORE content models in the context of
XSD inference, however, the combined complexity would require unrealisti-
cally large samples and incur large running times.

The study of real-world DTDs and XSDs much of this work is motivated
by is discussed in more detail in Chapter 6. This chapter also details how the
corpora we use in our experiments have been obtained.

Finally, Appendix 6.2 gives a short overview of the software that can be
of general interest developed in the course of the research reported here.

Publications Chapter 2 is based on work presented at VLDB 2006 [BNST06]
and submitted to VLDB Journal, Chapter 3 on a contribution to the WWW
conference 2008 [BGNV08] and an article submitted to ACM Transactions
on the Web, Chapter 4 at VLDB 2007 [BNV07], SchemaScope was demon-
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strated at SIGMOD 2008 [BNV08]. Finally, the analysis in Chapter 6 is an
extended version of the one presented at WebDB 2004 [BNV04], the WWW
2005 conference [BMNS05] and an article in ACM Transactions on Database
Systems [MNSB06].

1.3 Related work

Schema inference Schemas for semi-structured data have been defined
in [BDFS97, FS98, QWG+96] and their inference has been addressed in [GW97,
NUWC97, NAM98]. The methods in [NUWC97, GW97] focus on the deriva-
tion of a graph summary structure (called full representative object or data-
guide) for a semi-structured database. This data structure contains all paths
in the database. Approximations of this structure are considered by restricting
to paths of a certain length. The latter then basically reduces to the derivation
of an automaton from a set of bounded length strings. Naively restricting the
algorithms to trees rather than graphs is inappropriate since no order is con-
sidered between the children of a node so that DTD-like schemas can not be
derived. However, even the use of more sophisticated encodings of the XML
documents using edges between siblings would be to no avail since no algo-
rithms are given to translate the obtained automata to regular expressions. In
[NAM98], a schema is a typing by means of a datalog program. The complex-
ity of optimal schema inference is NP-hard. Again, no algorithms are given
to transform datalog types into regular expressions. So, these approaches can
therefore not be used to derive DTDs, not even when the semi-structured
database is tree-shaped.

DTD inference In the context of DTD inference, [SW01] proposes sev-
eral approaches to generate probabilistic string automata to represent REs.
To transform these into actual REs, and hence to obtain DTDs, the authors
refer to the methods of [Aho96]. The latter provides a method to trans-
late one-unambiguous non-probabilistic string automata to REs, as given by
Brüggemann-Klein and Wood [BKW98], followed by a post-processing simpli-
fication step. Apart from several case analyzes based on a dictionary example,
no systematic study of the effectiveness of the approach is provided. In par-
ticular, in contrast to our results, no target class is given for which the set of
transformations is complete.

There are only a few papers describing systems for direct DTD infer-
ence [GGR+03, MAC03, Chi01]. Only one of them is available for testing:
xtract [GGR+03]. In Section 2.5, we make a detailed comparison with our
proposal. In contrast to our approach, the xtract systems generates for ev-
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ery separate string a regular expression while representing repeated subparts
by introducing Kleene-*. In a second step, the system factorizes common
subexpressions of these candidate regular expressions using algorithms from
the logic optimization literature. Finally, in the third step, xtract applies
the Minimum Description Length (MDL) principle to find the best RE among
the candidates. Although the approach has been shown to work on real-world
DTDs [GGR+03] the XML data complying to these DTDs was generated. We
report in Section 2.5 that xtract has two kinds of shortcomings on real-world
XML data: (1) it generates large, long-winded, and difficult to interpret reg-
ular expressions; and (2) it cannot handle large data sets (over 1000 strings).
The latter is due to the NP-hard submodule in the third step of the xtract
algorithm [Fer04]. The former problem seems to be more fundamental. The
final step results in expressions consisting of disjunctions of regular expressions
while in practice the large majority of regular expressions are concatenations
of disjunctions [BNV04]. As a result, larger data sets result in larger regular
expressions.

Min et al. [MAC03] propose an adaptation of the xtract approach to a
restricted class of regular expressions which form a subclass of SOREs. Al-
though the system, according to the conducted experiments [MAC03] outper-
forms xtract in accuracy and efficiency, it seems that the two fundamental
shortcomings described above remain present. It would thus be surprising if
the system performed much better than xtract on real-world data.

Similarly to Ahonen’s [Aho96], Chidlovskii’s approach [Chi01] relies on the
translation of Glushkov automata to regular expressions which, in general, can
lead to an exponential size increase.

Trang [Cla03] is state of the art software written by James Clark intended
as a schema translator for the schema languages DTDs, Relax NG, and XML
Schema. In addition, Trang allows to infer a schema for a given set of XML
documents. We discuss Trang further in Section 2.5.1.

Language inference Most of the learning of regular languages from pos-
itive examples in the computational learning community is directed towards
inference of automata as opposed to inference of REs [AS83, Pit89, Sak97].
As noted by Fernau [Fer04] and argued in the previous paragraph, first using
learning algorithms for deterministic automata and then transforming these
into regular expressions, in general leads to unmanageable and long-winded
regular expressions. Some approaches to inference of REs for restricted cases
have been considered. For instance, Brāzma [Brā93] showed that REs without
union can be approximately learned in polynomial time from a set of exam-
ples satisfying some criteria. Recently, Fernau [Fer05] provided a learning
algorithm for regular expressions that are finite unions of pairwise left-aligned
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union-free regular expressions. These expressions are different from the expres-
sions we consider here: they are not included in the class of SOREs and do not
contain all CHAREs. The development is purely theoretical, no experimental
validation has been performed.

Automata to RE translation Although heuristics for automata to RE
translations [DM04, HW05] have been proposed, all of them are optimiza-
tions of the classical state elimination algorithm. In particular, they inves-
tigate the best order to eliminate states when going from automata to REs.
So, they focus on the class of all automata for which, as explained above,
an exponential increase in size cannot be avoided in general. Further, the
methods remain theoretical as no experimental analysis has been performed.
Caron and Ziadi [CZ00] devise an algorithm deciding whether an automaton
is Glushkov. If so, the automaton can be rewritten into a short equivalent
regular expression. There method works in a top-down fashion, i.e., it derives
the top nodes of the parse tree corresponding to the regular expression first,
and subsequently proceeds downward in the tree. Consequently, the method
first derives the largest subexpressions of the expression, making it harder to
devise heuristics in the presence of missing data. In contrast, our approach
is bottom-up, i.e., starting from the leaf nodes of the parse tree, composing
them into the smallest subexpressions.

Learning of tree automata Fernau [Fer02] proposed a general framework
of function distinguishability to learn tree automata for ranked trees. In
essence, the framework gives a learning algorithm for the settings where a
function is given which determines how to merge states. As XSDs constitute
a subset of the regular unranked tree languages [MNSB06], our approach can
be seen as an instantiation of that framework generalized to unranked trees.
In contrast to the ranked setting, our algorithm has to deal with regular ex-
pressions inference as well. Unranked tree language inference received recent
interest in the context of wrapper induction [CLN04]. However, this setting
considers the inference of node-selecting queries in the presence of both posi-
tive and negative examples which makes the problem entirely different. The
most related to our work is [RBV05], where it is shown that unranked (m,n)-
contextual tree languages can be learned from positive data only. Basically,
an algorithm is presented that learns a tree language from the sets of (m,n)-
forks appearing in sample trees. Here, an (m,n)-fork is a subtree of depth n
and width m. The (m,n) contextual languages form a strict superset of local
SOXSDs. It hence follows immediately that local SOXSDs can be learned from
positive data only. Our Theorem 4.5 shows, however, that for local SOXSDs
we do not need to resort to general (m,n)-forks but that already path-shaped
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forks suffice. In addition, the techniques of [RBV05] are geared towards infer-
ring queries, not XSDs. As such, no optimizations in the direction of schema
inference have been attempted.



2
Inferring single-occurrence
regular expressions

We consider the problem of inferring a concise Document Type Definition
(DTD) for a given set of XML-documents, a problem that basically reduces
to learning concise regular expressions from positive examples strings. We
identify two classes of concise regular expressions—the single occurrence reg-
ular expressions (SOREs) and the chain regular expressions (CHAREs)—that
capture the vast majority of expressions used in practical DTDs. For the in-
ference of SOREs we present several algorithms that on a given set of example
strings first infer an automaton using known techniques and then translate
that automaton to a corresponding SORE, possibly repairing the automaton
when no equivalent SORE can be found. In the process, we introduce a novel
automaton to regular expression rewrite technique which is of independent
interest. We show that our algorithms outperform existing systems in accu-
racy, conciseness and speed. When only a very small amount of XML data is
available, however, (for instance when the data is generated by Web service
requests or by answers to queries), these algorithms produce regular expres-
sions that are too specific. Therefore, we introduce a novel learning algorithm
crx that directly infers CHAREs (which form a subclass of SOREs) without
going through an automaton representation. We show that crx performs very
well within its target class on very small data sets.

15



16 Inferring single-occurrence regular expressions

2.1 A complete algorithm for inferring SOREs

Our goal in this section is to infer a SORE s equivalent to a target SORE
r given only a finite sample S ⊆ L(r). To this end, we first learn from S
a single occurrence automaton (SOA for short). A SOA is a specific kind of
deterministic finite state automaton in which all states, except for the initial
and final state, are element names. Figure 2.1 gives an example. Note that
in contrast to the classical definition of automata, no edges are labeled: all
incoming edges in a state a are assumed to be labeled by a. As such, a word
a1, . . . , an is accepted if there is an edge from the initial state to a1, an edge
from a1 to a2,. . . , and an edge from an to the final state. In other words, the
SOA in Figure 2.1 accepts the same language as a . b .(c + d+).

Definition 2.1 (SOA). Let src and sink be two special symbols, distinct from
the element names, that will serve as the initial and final state, respectively.
A single occurrence automaton is a finite directed graph G = (V,E) such that

1. {src, sink} ⊆ V and all nodes in V −{src, sink} are element names; and

2. the edge relation E is such that src has only outgoing edges; sink has
only incoming edges; and every v ∈ V − {src, sink} is reachable by a
walk from src to sink .

In this context, an accepting run for a word a1 . . . an is a walk src a1 . . . an

sink from src to sink in G. In what follows we write L(G) for the set of all
words accepted by G; V (G) for the set of G’s vertices, and E(G) for G’s edge
relation.

2.1.1 Learning an automaton

Given a sample S, we can learn an automaton G that accepts all words in
S by means of the algorithm 2t-inf shown in Algorithm 1. Its behavior is
illustrated in Figure 2.1 on the sample S = {abc, abdd} and in Figure 2.2 on
the sample S = {bacacdacde, cbacdbacde, abccaadcde}.

2t-inf was introduced by Garcia and Vidal [GV90], who also proved the
following proposition.

a b c

d

Figure 2.1: The SOA accepting the same language as the SORE a . b .(c+d+).
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Algorithm 1 2t-inf

Input: a finite set of sample strings S
Output: a SOA G such that S ⊆ L(G)
1: Let V be the set of states consisting of all element names occurring in S

plus the initial state src and final state sink
2: Initialize E := ∅
3: for each string a1 . . . an in S do
4: add the edges (src, a1), (a1, a2), . . . , (an, sink) to E
5: return G = (V,E)

a d

b c e

Figure 2.2: The SOA generated by 2t-inf for the sample S =
{bacacdacde, cbacdbacde, abccaadcde}.

Proposition 2.2 (Garcia and Vidal [GV90]). 2t-inf is sound in the sense
that S ⊆ L(2t-inf(S)) for each sample S. Moreover, 2t-inf is minimal in
the sense that for each SOA G with S ⊆ L(G), 2t-inf(S) is a subgraph of G
and hence L(2t-inf(S)) ⊆ L(G).

It turns out that 2t-inf is also complete for building a SOA representation
of a target SORE r, provided that its input sample is representative with
respect to r.

Definition 2.3 (Representative sample). A word v of length 2 is said to be
2-gram of a set of words W if it occurs as a subword in some w ∈ W . A
sample S is representative of a SORE r if S ⊆ L(r) and

1. for every a ∈ Σ that starts a word in L(r) there is a word in S that
starts with a;

2. for every a ∈ Σ that ends a word in L(r) there is a word in S that ends
with a; and

3. every 2-gram of L(r) is a 2-gram of S.

If S is not representative of r, then we say that S does not cover r.

For instance, the sample {bacacdacde, cbacdbacde, abccaadcde} is represen-
tative for ((b? .(a + c)+) . d)+ . e but {bacacdacde, cbacdbacde} is not since it
does not contain the 2-gram ab.
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Proposition 2.4. If S is a representative sample of SORE r then
L(2t-inf(S)) = L(r).

Proof. It is not hard to see that every SORE r can be transformed into an
equivalent SOA Gr: we take as nodes of Gr all element names occurring in r
plus the initial state src and the final state sink ; for each alphabet symbol that
starts a word in L(r) we add the edge (src, a) to Gr; for each alphabet symbol
that ends a word in L(r) we add an edge (a, sink) to Gr, and for each alphabet
symbol b that follows an alphabet symbol a in a word in L(r) we add the edge
(a, b) to Gr. Now reason as follows. Clearly, S ⊆ L(r) = L(Gr). Hence,
2t-inf(S) is a subgraph of Gr by Proposition 2.2. Since S is a representative
sample of r, however, every edge of Gr must also be in 2t-inf(S). As such,
2t-inf(S) = Gr and hence L(2t-inf(S)) = L(Gr).

2.1.2 From SOA to SORE

Proposition 2.4 shows that it is possible to learn a SOA representation of a
target SORE r, provided that we are given enough data. To transform this
SOA into a regular expression, an obvious approach would be to use known
techniques such as the classical state elimination algorithm (cf., e.g., [HU79]).
Unfortunately, as already hinted upon by Fernau [Fer04, Fer05] and as we
illustrate below, it is very difficult to get concise regular expressions from
an automaton representation. For instance, the classical state elimination
algorithm applied to the SOA generated by 2t-inf in Figure 2.2 yields the
expression:1

(aa∗d + (c + aa∗c)(c + aa∗c)∗(d + aa∗d) + (b + aa∗b + (c +
aa∗c)(c + aa∗c)∗(b + aa∗b))(aa∗b + (c + aa∗c)(c + aa∗c)∗

(b + aa∗b))∗(aa∗d + (c + aa∗c)(c + aa∗c)∗(d + aa∗d)))(aa∗d +
(c + aa∗c)(c + aa∗c)∗(d + aa∗d) + (b + aa∗b + (c + aa∗c)(c +
aa∗c)∗(b + aa∗b))(aa∗b + (c + aa∗c)(c + aa∗c)∗(b + aa∗b))∗

which differs quite a bit from the equivalent SORE

((b?(a + c))+d)+e (‡).

Actually, results by Ehrenfeucht and Zeiger [EZ76], Gelade and Neven [GN08],
and Gruber and Holzer [GH08] show that it is impossible in general to generate
concise regular expressions from automata: there are automata, even SOAs
as generated by 2t-inf, for which the number of occurrences of alphabet
symbols in the smallest equivalent expressions is exponential in the size of the
automaton. For such automata, a concise regular expression representation
hence does not exist.

1Transformation computed by JFLAP: www.jflap.org.

www.jflap.org
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a

b

Figure 2.3: A SOA not equivalent to any SORE. It accepts the same language
as a(ba)+.

These results imply that there are SOAs G for which an equivalent SORE
does not exist (Figure 2.3 gives a simple example). Note, however, that when
such a SORE r does exist, its size is always linearly bounded by the number
of states of G. Indeed, since every alphabet symbol can occur at most once
in r, the size of r is linearly bounded by the alphabet symbols that it men-
tions. Since G and r are equivalent, these symbols are exactly the states of G
(minus src and sink). Hence, the SOREs constitute a well-behaved and con-
cisely representable subset of the regular languages. It is therefore natural to
investigate how transform a given SOA into an equivalent SORE when such
a SORE exists. Clearly, the example above illustrates that the classical state
elimination algorithm does not suffice for this purpose.

For that reason, we introduce in this section a novel graph-rewriting ap-
proach for transforming SOAs into SOREs. While our approach is related
to the classical state-elimination algorithm for transforming an arbitrary au-
tomaton into a regular expression, we do not eliminate states by introducing
additional edges (thereby duplicating subexpressions) but instead replace sets
of states by single states (taking care to avoid duplication). In addition, there
a two rewriting steps that only removes edges.

Just as the classical algorithm, it is necessary for the definition of the
graph rewrite rules to define a generalization of SOAs in which internal states
are allowed to be labeled by SOREs (as opposed to element names from Σ).
This generalization is defined as follows. Call two regular expressions r and s
alphabet-disjoint if r and s have no alphabet symbol in common. For example,
(a + b)? and c+ are alphabet-disjoint, whereas (a + b) and b?c+ are not. Call
an expression r proper if it accepts at least one non-empty word (i.e., it is not
equivalent to ∅, nor to ε).

Definition 2.5. A generalized single occurrence automaton (generalized SOA
for short) is a finite graph G = (V,E) such that

1. {src, sink} ⊆ V and all vertices in V −{src, sink} are pairwise alphabet-
disjoint proper SOREs; and

2. the edge relation E is such that src has only outgoing edges; sink only
incoming edges; and every v ∈ V is reachable by a walk from src to sink .
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A word w ∈ Σ∗ is accepted by G if there is a walk src r1 . . . rn sink in G and a
division of w into subwords w = w1 . . . wn such that wi ∈ L(ri), for 1 ≤ i ≤ n.
Again, we write L(G) for the set of all words accepted by G.

Figure 2.6 shows some examples. Clearly, every SOA is also a generalized
SOA. In what follows, we write PredG(r) for the set of all direct predecessors
of s in G, and SuccG(s) for the set of all direct successors of s in G:

PredG(s) := {r | (r, s) ∈ E(G)},
SuccG(s) := {t | (s, t) ∈ E(G)}.

Furthermore, we write Pred−G(r) for PredG(r)−{r} and similarly Succ−G(s) for
SuccG(s)− {s}. Finally, we write

Pred+
G(s) :=

{
PredG(s) ∪ {s} if s = s′+

PredG(s) otherwise

Succ+
G(s) :=

{
SuccG(s) ∪ {s} if s = s′+

SuccG(s) otherwise.

Rewrite rules. Our system of rewrite rules consists of the seven rules shown
in Figure 2.4: one rule to introduce disjunction (r + s), four rules to introduce
concatenation (r . s, r? . s, r . s?, and r? . s?), one rule to introduce iteration
(r+), and one rule to introduce optionals (r?). At the basis of the first five
rules lies the contraction of two states r and s into a single new state t, which
is defined as follows.

Definition 2.6 (State contraction). Let G be a generalized SOA; let r and s
be states in G; and let t be a state not in G. The contraction of r and s into
t is the generalized SOA G[r, s/t] obtained from G as follows:

1. Add t as a new state to G;

2. make every v ∈ Pred(r)− {r, s} a predecessor of t;

3. make every w ∈ Succ(r)− {r, s} a successor of t;

4. add a loop t→ t if r ∈ Succ(s); and

5. remove r, s and all of their incoming and outgoing edges.

Note that state contraction is not symmetric due to step (4).
For example, the contraction G[a, c/a + c] of the generalized SOA G in

Figure 2.6(a), is shown in Figure 2.6(b). Similarly, the contraction G[b, a +
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Disjunction r + s

Precondition Action

(1) r, s 6∈ {src, sink} and replace G by G[r, s/r + s]
(2.a) PredG(r) = PredG(s) and SuccG(r) = SuccG(s) or
(2.b) Pred+

G(r) = Pred+
G(s) and Succ+G(r) = Succ+G(s)

Concatenation r . s

Precondition Action

(1) r, s 6∈ {src, sink} and Replace G by G[r, s/r . s]
(2) SuccG(r) = {s} and PredG(s) = {r}

Concatenation r . s?

Precondition Action

(1) r, s 6∈ {src, sink} Replace G by G[r, s/r . s?]
(2) PredG(s) = {r}
(3) SuccG(r)− {r, s} = SuccG(s)− {r, s} and
(4) if r ∈ SuccG(s) then r ∈ Succ+(r)
(5) if r ∈ SuccG(r) then r ∈ SuccG(s)

Concatenation r? . s

Precondition Action

(1) r, s 6∈ {src, sink} Replace G by G[r, s/r? . s]
(2) SuccG(r) = {s}
(3) PredG(r)− {r, s} = PredG(s)− {r, s} and
(4) if s ∈ PredG(r) then s ∈ Pred+(s)
(5) if s ∈ PredG(s) then s ∈ PredG(r)

Concatenation r? . s?

Precondition Action

(1) r, s 6∈ {src, sink} Replace G by G[r, s/r? . s?]
(2) s ∈ SuccG(r)
(3) SuccG(r)− {r, s} = SuccG(s)− {r, s}
(4) PredG(r)− {r, s} = PredG(s)− {r, s}
(5) PredG(r)× SuccG(s) ⊆ E(G) and either
(6a) r ∈ SuccG(s), r ∈ Succ+(r), and s ∈ Succ+(s); or
(6b) r 6∈ SuccG(s), r 6∈ SuccG(r), and s 6∈ SuccG(s)

Iteration r+

Precondition Action

(1) r 6∈ {src, sink} and Replace G by G[r/r+]	(r+, r+)
(2) r ∈ SuccG(r)

Optional r?

Precondition Action

(1) r 6∈ {src, sink} and Replace G by G[r/r?]	(src, sink)
(2) E(G) = {(src, r), (r, sink), (src, sink)}

Figure 2.4: Rewrite rules
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c/b? .(a + c)] of the generalized SOA G in Figure 2.6(b) is shown in Fig-
ure 2.6(c). Note that if r = s, then G[r, s/t] is simply a substitution of r
by the new state t. To simplify notation, we simply write G[r/t] for such
contractions in what follows.

In addition to contraction, the rewrite rules also use the following opera-
tion.

Definition 2.7. If G is a generalized SOA and r, s are states in G, then we
write G	(r, s) to denote the generalized SOA obtained from G by removing
the edge from r to s, if present.

In what follows, we write G H to indicate that G rewrites to H in a single
step according to the rewrite rules in Figure 2.4, and G ∗ H to indicate that
G rewrites to H in zero or more steps.

The following proposition shows that the rewrite rules are sound:

Proposition 2.8. If G is a generalized SOA and G H then H is also a
generalized SOA and L(G) = L(H).

Proof. First observe that, since all states in a generalized SOA are pairwise
alphabet-disjoint proper SOREs, the new states r +s; r . s; r? . s; r . s?; r? . s?;
r+; and r? introduced by the rewrite rules in Figure 2.4 must themselves
be proper SOREs alphabet-disjoint with the remaining states. As such, all
states in H are pairwise alphabet-disjoint proper SOREs. To show that H is a
generalized SOA, it hence remains to show that every state in H participates
in a walk from src to sink . Hereto, observe that H is either

� G[r, s/t] for some t. Then, since G is a generalized SOA, r and s par-
ticipate in a walk from src to sink . In particular, there is a walk form
src to r in G, and a walk form s to sink . Then, by definition of state
contraction, there is a walk from src to t and from t to sink in H, i.e., t
participates in a walk form src to sink in H.

� G[r/r+]	(r+, r+). Then, by definition of state contraction and since r
participates in a walk from src to sink in G, r+ must participate in a
walk form src to sink in G[r/r+]. This walk can always be transformed
into a walk from src to sink in H by removing the edge (r+, r+) should
it occur.

� G[r/r?]	(src, sink). Then, by definition of state contraction and since
r participates in a walk from src to sink in G, r? must participate in a
walk form src to sink in G[r/r?]. Since the edge (src, sink) cannot occur
in this walk, r? also participates in a walk from src to sink in H.
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To see that L(G) = L(H) we reason by a case analysis on the rewrite rule
used to transform G into H. For economy of space, we only illustrate this
reasoning for Disjunction r + s; the other cases are similar.

So, suppose that G was rewritten into H by Disjunction r + s, i.e H =
G[r, s/r+s]. Then r and s have the same (extended) predecessor and successor
set. As such,

s ∈ SuccG(r)⇔ s ∈ Succ+
G(s)

⇔ s ∈ Pred+
G(s)

⇔ s ∈ PredG(r)
⇔ r ∈ SuccG(s)
⇔ r ∈ Succ+(r)

Therefore, G is either as illustrated in Figure 2.5(a) or as illustrated in Fig-
ure 2.5(b). In both cases, the corresponding H is also shown.

Now suppose that w = w1 . . . wn ∈ Σ∗ is recognized by the walk src, t1, . . . ,
tn, sink in G with wi ∈ L(ti) for 1 ≤ i ≤ n. Let the sequence src, t′1, . . . , t

′
n, sink

be obtained from src, t1, . . . , tn, sink by replacing every occurrence of r and s
by r + s. By inspection of Figures 2.5(a) and 2.5(b), it is not difficult to see
that src, t′1, . . . , t

′
n, sink is walk in H. Moreover, wi ∈ L(t′i) by construction

for 1 ≤ i ≤ n. Therefore, w ∈ L(H) and hence L(G) ⊆ L(H). Conversely,
suppose that w = w1 . . . wn ∈ Σ∗ is recognized by src, t′1, . . . , t

′
n, sink in H

with wi ∈ L(t′i) for 1 ≤ i ≤ n. Determine vi as follows:

ti =


t′i if t′i 6= r + s

r if t′i = r + s and wi ∈ L(r)
s if t′i = r + s and wi ∈ L(s)

By inspection of Figures 2.5(a) and 2.5(b) it is not difficult to see that src,
t1, . . . , tn, sink is a walk in G. Moreover, wi ∈ L(ti) for 1 ≤ i ≤ n. Therefore
w ∈ L(G) and hence L(H) ⊆ L(G). As such, L(G) = L(H).

Since each rewrite rule either contracts two states into a single state or
removes an edge from G, the size of H is always smaller than G. Therefore:

Proposition 2.9. The system of rewrite rules in Figure 2.4 is terminating:
there is no infinite sequence of rewrite steps G H I . . .

Our algorithm rewrite, shown in Algorithm 2, then operates as follows.
First, it checks whether the input SOA G corresponds to the empty language
(∅) or the empty word (ε) in lines 1 − 5. If so, it returns the corresponding
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Figure 2.5: Illustration of the proof of Proposition 2.8. P is the set PredG(r)−
{r, s} = PredG(s)− {r, s}. S is the set SuccG(r)− {r, s} = SuccG(s)− {r, s}.
The gray loops on r and s in case (b) indicate that r ∈ Succ+

G(r) and s ∈
Succ+

G(s).

regular expression. Otherwise, it rewrites G until no further rules apply. If
the resulting SOA is final, i.e., if E(G) = {(src, r), (r, sink)} with r distinct
from src and sink , then clearly L(G) = L(r), and r is returned as result. If
the resulting SOA is not final, then G is not equivalent to a SORE (as we
formally show further on), and rewrite fails. To illustrate, Figure 2.6 shows
an example run of rewrite on the example SOA from Figure 2.2.

Theorem 2.10. On input SOA G, rewrite fails if and only if G is not
equivalent to a SORE. Otherwise, rewrite returns a SORE equivalent to
G. Moreover, rewrite operates in time O(n5) where n is the number of states
in G.

Note that the complexityO(n5) is reasonable since when we apply rewrite
to the result of 2t-inf on a sample S, n corresponds to the (typically small)
number of distinct element names occurring in S, not the total number or
total length of words in S.

The remainder of this section is devoted to the proof of Theorem 2.10,
which is divided into three steps. First, we show that rewrite is sound:

Proposition 2.11. If rewrite(G) does not fail then it returns a SORE
equivalent to G, for any SOA G.

Proof. We distinguish three cases.

1. If sink is not reachable from src then rewrite(G) = ∅ (clearly a SORE)
and L(G) = ∅ = L(∅), as desired.

2. If E(G) = {(src, sink)} then rewrite(G) = ε (again clearly a SORE),
and L(G) = {ε} = L(ε), as desired.



2.1. A complete algorithm for inferring SOREs 25

Algorithm 2 rewrite

Input: a SOA G
Output: a SORE r such that L(r) = L(G)
1: if sink is not reachable from src in G then
2: return ∅
3: else if E(G) = {(src, sink)} then
4: return ε
5: else
6: while a rewrite rule from Figure 2.4 can be applied do
7: perform the rewrite rule on G
8: if G is final then
9: return the corresponding regular expression

10: else
11: fail

a d

b c e

(a)

a + c d

b e

(b)

b? .(a + c) d

e

(c)

(b? .(a + c))+ d

e

(d)

(b? .(a + c))+ . d

e

(e)

((b? .(a + c))+ . d)+

e

(f)

Figure 2.6: An execution of rewrite on the example automaton in Fig. 2.2.
Step (1) applies Disjunction r + s with r = a and s = b. Step (2) applies
Concatenation r? . s with r = b and s = a + c. Step (3) applies Iteration
r+ with r = b? .(a + c). Step (4) applies Concatenation r . s with r =
(b? .(a + c))+ and s = d. Step (5) applies Iteration r+ with r = (b? .(a +
c))+ . d. One more application of Concatenation r . s with r = ((b? .(a +
c))+ . d)+ and s = e (not shown) leads to the resulting expression ((b? .(a +
c))+ . d)+ . e.
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3. Otherwise, G is rewritten into a final generalized SOA H with E(H) =
{(src, t), (t, sink)} (t distinct from src and sink) and rewrite(G) =
t. In particular, t is a SORE. By Proposition 2.8, L(G) = L(H)
and thus, since E(H) = {(src, t), (t, sink)}, L(G) = L(H) = L(t) =
L(rewrite(G)), as desired.

Next, we show that rewrite has the claimed complexity.

Proposition 2.12. rewrite operates in time O(n5), where n is the number
of states of its input G.

Proof. We assume that checking whether there is an edge from state r to state
s can be done in constant time (for instance, using an adjacency matrix rep-
resentation). To see that rewrite runs in time O(n5) under this assumption,
let us check that lines 1-4, lines 6-7, and lines 8-10 all run in O(n5).

(Lines 1-4). Since G has at most n2 edges, checking whether sink is reach-
able from src can be done in time O(n2) using depth first search. Moreover,
checking whether E(G) = {(src, sink)} can also be done in time O(n2).

(Lines 6-7). Suppose that ~G = G1, G2, . . . , Gk is the sequence of gener-
alized SOAs produced by lines 6-7 when rewriting G = G1 until no further
rewrite rule applies. Since rewrite rules never introduce new states without
also removing a state, every Gi has at most n states. Now reason as follows:

� The rule for optionals can be applied at most once in ~G since the au-
tomaton that it returns is always final, and since no rewrite rule applies
to a final generalized SOA. Checking the preconditions of the rule for
optionals can be done in time O(n2), and its action can be performed in
time O(n). As such, the total time spent in ~G on applying the rewrite
rule for optionals is bounded by O(n2).

� Since the rewrite rules for disjunction and concatenation contract two
states into a single one, these rewrite rules can be applied at most n
times in ~G. Since of all their preconditions can be checked in time O(n4)
(by iterating over all pairs of states r and s in the current automaton Gi

and comparing Pred(r), Pred(s), Succ(r) and Succ(s) as desired) and
since state contraction can be done in time O(n), the total time spent
in ~G on the rewrite rules for disjunction and concatenation is bounded
by O(n× n4) = O(n5).

� Since the rule for iteration removes the loop of the state to which it is
applied, and since each generalized SOA contains at most n loops, there
can be at most n consecutive applications of this rule before another
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rewrite rule is applied. By the remarks above, there are at most n
applications of the other rewrite rules, so the rewrite rule for iteration
can be applied at most n2 times in ~G. Since its precondition can be
checked in constant time, and since its action can be done in time O(n),
the total time spent in ~G on the rewrite rule for iteration is bounded by
O(n2 × n) = O(n3).

(Lines 6-7). Finally, checking whether a generalized SOA is final and
extracting the corresponding regular expression can be done in time O(n2).

In summary, lines 1-4 run in time O(n2), lines 6-7 run in time O(n4), and
lines 8-11 run in time O(n2), yielding a total running time of O(n4).

Finally, we show that rewrite(G) fails if, and only if G is not equivalent
to a SORE, or equivalently, that rewrite(G) does not fail if, and only if, G
is equivalent to a SORE. This is actually the most involved part of the proof
of Theorem 2.10. Proposition 2.11 already shows that if rewrite(G) does
not fail, then G is equivalent to a SORE. Hence, we remain to show:

Proposition 2.13. If SOA G is equivalent to a SORE, then rewrite(G)
does not fail.

Essentially, we prove this proposition in two steps. Call a generalized SOA
proper if L(G) 6= ∅ and L(G) 6= {ε}.

1. We first show that for any proper SOA G equivalent to a SORE there
exists a sequence of rewrite steps that ends in a final automaton (Corol-
lary 2.20).

2. In addition, we show that if proper G can be rewritten into a final
automaton by a particular sequence of rewrite steps, then any sequence
of rewrite steps on G ends in a final automaton (Corollary 2.28).

As such, rewrite(G) cannot fail when G is equivalent to a SORE: either G
is not proper, in which case lines 1-4 of Algorithm 2 return a valid expression,
or G is proper and will hence be rewritten into a final automaton, in which
case line 9 returns a valid expression.

Step (1) above is obtained by showing that for every proper SOA G equiv-
alent to a SORE, there exists a SORE r of a special form from which we can
deduce a sequence of automata G1, G2, . . . , Gn such that G1 = G; every Gi

can be rewritten by one of the rewrite rules of Figure 2.4 into Gi+1; and Gn is
final. Here, the special form that r takes is that of a saturated factor, a notion
that is introduced in the following definitions.
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Definition 2.14 (Factors, terms, basic terms). Let the sets of factors, terms,
and basic terms be given by the syntax

factors f ::= t | t?
terms t ::= e | e+

basic terms e ::= a | f . f | t + t,

where a ranges over symbols in Σ.

For instance, (name++id) is a basic term (and hence also a term), (name++
id)+ is a term (and hence also a factor), and (name? . email?) . address? is
a factor. Note that repetitions of ? and + (as in name?? and name++) and
optionals immediately below a disjunction (as in (name? + id)) are disallowed
by the syntax of factors, terms and basic terms. This is not a restriction, as
the following proposition shows.

Proposition 2.15. For every proper SORE r there exists an equivalent
SORE factor f .

Proof. Consider the following system of rewrite rules on regular expressions.

s?+ → s+? s?? → s?
s++ → s+ (s1? + s2) → (s1 + s2)?

(s1 + s2?) → (s1 + s2)? s + ε → s?
ε + s → s? s . ε → s
ε . s → s ε? → ε
ε+ → ε s + ∅ → s

∅+ s → s s . ∅ → ∅
∅ . s → ∅ ∅? → ∅
∅+ → ∅

Since each rewriting rule either reduces the size of the original expression,
or moves an optional ? outward in the original expression, any sequence of
rewrite steps starting from r must end in an expression f on which no rule is
applicable. Since each rewrite rule clearly produces an expression equivalent
to the original expression, it readily follows that r is equivalent to f . Moreover,
since none of the rewrite rules duplicates a subexpression and r is a SORE, so
is f . It remains to show that f is a factor. Hereto, we first verify by structural
induction on f that, since none of the above rewrite rules are applicable to
f or any of its subexpressions, f is either ∅, ε, or a factor. Then, since r is
proper and f is equivalent to r, f must be proper and thus cannot be ∅ or ε.
As such, f is a factor, as desired.
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Definition 2.16 (Saturation). A regular expression r is nullable if ε ∈ L(r).
A regular expression is saturated if for every subexpression r . s, if r is nullable
then it is an optional r′? and similarly, if s is nullable then it is an optional
s′?.

For instance, the expression (name? . email?) is saturated, while the fol-
lowing expression (name? . email?) . address? is not.

We can easily make any expression saturated by replacing all nullable but
non-optional subexpressions r and s occurring in a concatenation r . s by r?
and s?, respectively. For instance, in the expression (name? . email?) . address?
we would replace (name? . email?) by (name? . email?)?, so that we obtain
(name? . email?)? . address?. It is readily verified that saturating a factor in
this way yields again a factor. Hence, by Proposition 2.15:

Corollary 2.17. For every proper SORE r there exists an equivalent satu-
rated factor SORE f .

Definition 2.18. A generalized SOA is ε-transitive if for all distinct states
r, s, and t with (r, s) ∈ E, (s, t) ∈ E, and ε ∈ L(s) we also have (s, t) ∈ E. A
generalized SOA is well-looped if there is no loop of the form (s+, s+) in E. A
generalized SOA is well-behaved if it is ε-transitive, well-looped and all of its
states, except src and sink , are saturated terms.

Note that SOAs are trivially well-behaved.

Proposition 2.19 (Backwards Rewriting). If G is a well-behaved generalized
SOA but not a SOA (i.e., it contains at least one state that is not src, sink or
an alphabet symbol) then there exists a well-behaved generalized SOA F such
that F  G.

Proof. Pick x ∈ V (G) − (Σ ∪ {src, sink}) arbitrarily. Note that since G is
well-behaved, x is a saturated term. We then construct F by expanding x
into one or more new states and edges depending on both the shape of x and
the presence of a loop on x, as shown in Fig. 2.7 and 2.1.2. There, we range
over saturated basic terms by e, e1, and e2; and over saturated terms by t, t1,
and t2.

For instance, if x = e+ with e a basic term then there can be no loop on x
since G is well-looped. As shown in Fig. 2.7, we then construct F by replacing
e+ by e and adding the edge (e, e). It is readily verified that since G is well-
behaved, so is F . Moreover, since e ∈ SuccF (e), we can apply Iteration e+

on F , which yields G, as desired.
As another example, when x = e1? . e2? has a loop, then we construct F

by (see Fig. 2.1.2):
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x loop on x? then G looks like and we take F to be
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Figure 2.7: Illustration of the proof of Proposition 2.19.
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Figure 2.8: Illustration of the proof of Proposition 2.19 (Continued from
Fig. 2.7).
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� expanding x into two new states e1 and e2;

� making every v ∈ Pred−G(x) a predecessor of both e1 and e2

� making every w ∈ Succ−G(x) a successor of both e1 and e2; and

� adding the edges (e1, e1), (e1, e2), (e2, e1), (e2, e2).

Since x was saturated, so are e1 and e2. Hence, all states in F are saturated
terms. Moreover, since G was well-looped, and since we have only added loops
on the basic terms e1 and e2 (which themselves cannot be of the form e+),
F is also well-looped. Finally, since G is ε-transitive, so is F . Hence F is
well-behaved. Furthermore, we can apply Concatenation e1? . e2? on F :

1. e1, e2 6∈ {src, sink};

2. e2 ∈ SuccF (e1);

3. SuccF (e1)− {e1, e2} = SuccF (e2)− {e1, e2};

4. PredF (e1)− {e1, e2} = PredF (e2)− {e1, e2};

5. Since ε ∈ L(e1? . e2?) and G is ε-transitive, there is an edge in G from
every v ∈ Pred−G(e1? . e2?) to every w ∈ Succ−G(e1? . e2?). Since these
edges were left untouched when constructing F , it is readily verified
that PredF (e1)× SuccF (e2) ⊆ E(F );

6. Finally, e1 ∈ SuccF (e2), e1 ∈ Succ+
F (e1), and e2 ∈ Succ+(e2).

Then it is easy to see that applying Concatenation e1? . e2? on F yields G,
as desired.

The other cases are similar.

Corollary 2.20. For every SOA G that is equivalent to a proper SORE r
there exists a final generalized SOA H such that G ∗ H.

Proof. Since r is a proper SORE there exists a saturated factor f equivalent
to r by Corollary 2.17. Let the saturated factor h be defined as follows:

� if f = t? for some t, then h := f ;

� if f = t for some t and ε ∈ L(f), then h := t?;

� otherwise f = t for some t with ε 6∈ L(t), and h := f .
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Note that h is equivalent to f (and hence to r) and that ε ∈ L(h) if, and only
if, h is an optional saturated term t?. Now let H be the final generalized SOA
with V (H) = {src, h, sink}, and E(H) = {(src, h), (h, sink)}. We claim that
G ∗ H, which can be seen as follows. Let Gn be defined by case analysis on
h:

� if h = t? for some saturated term t, then take

V (Gn) := {src, t, sink} and
E(Gn) := {(src, t), (t, sink), (src, sink)}.

Clearly, Gn is well-behaved by construction. Moreover, Gn H.

� otherwise h = t for some saturated term t with ε 6∈ L(t) and we
take Gn := H. Again, Gn is well-behaved by construction. Moreover,
Gn ∗ H.

By repeated application of Proposition 2.19 we can start from Gn and keep
rewriting backwards along a sequence of well-behaved generalized SOAs until
we end up with a SOA G0 such that G0 ∗ Gn. By soundness of the rewrite
rules (Proposition 2.8) we then have L(G0) = L(Gn) = L(H) = L(h) = L(r).
Since also L(G) = r and since G and G0 are SOAs, it must be the case that
G = G0. Indeed, if G and G0 were to differ in a state or an edge between
states, then—since each state in a SOA participates in a walk from from src to
sink—we can always construct a walk src, a, . . . , b, sink in one automaton (say
G) that is not a walk in the other. Hence, a . . . b ∈ L(G) but a . . . b 6∈ L(G0),
contradicting L(G) = L(G0). Therefore, G = G0 ∗ Gn ∗ H with H final,
as desired.

Having established that any proper SOA equivalent to a SORE can always
be rewritten into a final generalized SOA using a specific sequence of rewrite
steps, it remains to show that any sequence of rewrite steps starting from that
SOA ends in a final generalized SOA. Thereto, the following definitions and
observations are in order.

Definition 2.21 (Isomorphism). Let r ∼ s denote that regular expressions r
and s are both iterated (i.e., r = r′+ and s = s′+ for some r′ and s′), or are
both not iterated (i.e., r 6= r′+ and s 6= s′+ for any r′ and s′). Two generalized
SOAs G and H are isomorphic, denoted G ' H, if there exists a one-to-one
onto mapping ρ : V (G)→ V (H) such that

1. ρ(src) = src; ρ(sink) = sink ; and v ∼ ρ(v) for all v ∈ V (G)−{src, sink};
and



34 Inferring single-occurrence regular expressions

a
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Figure 2.9: Illustration of isomorphism: F ' G, F 6' H, and G 6' H.

2. (v, w) ∈ E(G)⇔ (ρ(v), ρ(w)) ∈ E(H) for all v, w ∈ V (G).

To illustrate, the generalized SOAs F and G in Figure 2.9 are isomorphic,
but F and H are not.

Observe that if H ' F , then H is final if and only if F is also final. Hence,
in order to show that G ∗ H with H final implies that any sequence of rewrite
steps starting from G ends in a final automaton, it suffices to show that for
any G ∗ F with no rule applicable to F we have H ' F . Thereto, we show
that our rewrite rules are confluent modulo ', a concept from the theory of
abstract reduction systems that is defined as follows.

Definition 2.22 (Joinable, confluence). Let ≡ be an equivalence relation.
Two generalized SOAs H1 and H2 are joinable modulo ≡, denoted H1 ↓≡ H2,
if they can be made equivalent through rewriting, i.e., if there exist I1 and I2

such that H1 ∗ I1; H2 ∗ I2; and I1 ≡ I2. Rewriting is said to be confluent
modulo ≡ if G ∗ H1 and G ∗ H2 implies H1 ↓≡ H2, for all G, H1, and H2.

Proposition 2.23. Suppose that there is a sequence of rewrite steps starting
from G that ends in a final automaton. If rewriting is confluent modulo ',
then any sequence of rewrite steps starting from G ends in a final automaton.

Proof. Suppose that we rewrite G ∗ H1 with no rewrite rule applicable to H1.
By hypothesis, there is some final H2 such that G ∗ H2. Hence H1 ↓' H2

by confluence of rewriting modulo '. As such, there exist I1 and I2 such that
H1 ∗ I1; H2 ∗ I2; and I1 ' I2. However, since no rewrite rule applies to H1

(by hypothesis), nor to H2 (as H2 is final), H1 must equal I1 and H2 must
equal I2. As such, H1 ' H2. Then, since H2 is final, so is H1.

It is a classical result in the theory of abstract rewrite systems [Hue80,
Ohl98] that in order to show that rewriting is confluent modulo an equivalence
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relation ≡, it suffices to show that rewriting is terminating ; locally consistent
with respect to ≡; and locally confluent modulo ≡.

Definition 2.24. Rewriting is terminating if there is no infinite sequence
G1 G2 . . . . Let ≡ be an equivalence relation. Rewriting is locally consis-
tent with respect to ≡ if G G′ and G ≡ H implies that there exists H ′ ≡ G′

such that H H ′, for all G, G′, and H. Rewriting is locally confluent modulo
≡ if G H1 and G H2 implies H1 ↓≡ H2, for all G, H1, and H2.

We have already established that rewriting is terminating in Proposi-
tion 2.9. It remains to show the other two properties.

Proposition 2.25 (Local consistency w.r.t. '). Let G ' H be two isomorphic
generalized SOAs. If G G′ then there exists H ′ ' G′ such that H H ′.

Proof. Let ρ : V (G) → V (H) be the one-to-one onto mapping that testifies
G ' H. To ease notation, we extend ρ pointwise to sets. For example,
ρ({r, s, t}) = {ρ(r), ρ(s), ρ(t)}. It is then readily verified that

1. ρ(PredG(v)) = PredH(ρ(v));

2. ρ(Pred+
G(v)) = Pred+

H(ρ(v));

3. ρ(SuccG(v)) = SuccH(ρ(v)); and

4. ρ(Succ+
G(v)) = Succ+

H(ρ(v)),

for all v ∈ V (G). As such, if r, s are states in G that satisfy the preconditions
of one of the rewrite rules for disjunction or concatenation, then ρ(r) and
ρ(s) also satisfy these preconditions in H. Hence, the same rewrite rule is
applicable to H. Similarly, if r is a state in G that satisfies the precondition
of Iteration or Optional, then ρ(r) also satisfies this precondition, and
hence the same rewrite rule is applicable to H. It is then readily verified that
the results of applying the same rewrite rule on two isomorphic automata are
again isomorphic.

Proposition 2.26 (Local Confluence modulo '). If G H1 and G H2 then
H1 ↓' H2.

Proof. To ease the discussion that follows, let α
 with α a regular expression

be the binary relation on generalized SOAs such that F1
α
 F2 if, and only if,

F1 rewrites into F2 in a single step, and α is the new state introduced by this
rewriting. For instance, F1

r+s
 F2 indicates that we obtain F2 by applying

Disjunction r + s on F1. Similarly, F1
t+
 F2 indicates that we obtain F2 by

applying Iteration t+ on F1. Note that α uniquely determines the rewrite
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rule used, as well as the states that are contracted during the application of
that rule.

Now clearly, since G H1 and G H2 there exist α1 and α2 such that
G

α1 H1 and G
α2 H2. The proof then proceeds by a case analysis on α1 and

α2. We first observe that if α1 and α2 are alphabet-disjoint, then α1 and α2 
commute: there is some I such that G

α1 H1
α2 I and G

α2 H2
α1 I. For

instance, suppose that α1 = r + s and α2 = t+, with r, s, and t all alphabet-
disjoint. Then, H1 = G[r, s/r + s] since G

r+s
 H1 and hence, by definition of

state contraction,

SuccH1(t) = SuccG(t)− {r, s} ∪ {r + s | r ∈ SuccG(t)}. (2.1)

Then, since G
t+
 H2, G satisfies all preconditions of Iteration t+. In particu-

lar, t ∈ SuccG(t) and hence, since r, s, and t are all distinct, also t ∈ SuccH1(t)
by (2.1). Therefore, Iteration t+ is indeed applicable to H1. Let I1 be its
result. Using a similar reasoning it can be verified that Disjunction r + s is
applicable to H2, yielding an automaton I2. Then

I1 = H1[t/t+]	(t+, t+)
= G[r, s/r + s][t/t+]	(t+, t+)
= G[t/t+]	(t+, t+)[r, s/r + s]
= H2[r, s/r + s]
= I2

and hence G
α1 H1

α2 I and G
α2 H2

α1 I, as claimed. The reasoning for the
other alphabet-disjoint combinations of α1 and α2 is similar.

Since commutativity clearly implies H1 ↓' H2, it remains to verify the
proposition in the cases where α1 and α2 are not alphabet-disjoint. By defi-
nition of the rewrite rules, α1 and α2 are of the form

r + s | r . s | r? . s | r . s? | r? . s? | r+ | r?,

where r and s range over states of G. Since all states of G are alphabet-
disjoint, α1 and α2 can share an alphabet symbol only if they share a whole
state of G. Using these observations, Table 2.1 lists all possible combinations
of α1 and α2 of the above form that share a state in G. In that table, the
regular expressions r,s, and t range over distinct (and hence alphabet-disjoint)
states of G.

Now observe that for most combinations of α1 and α2 in Table 2.1 we
cannot have G

α1 H1 and simultaneously G
α2 H2.
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α1 Possible values for α2

r + s r + s r . s r . s? r? . s r? . s? r+ s+ r? s?
s + r s . r s . r? s? . r s? . r?
r + t r . t r . t? r? . t r? . t?
t + r t . r t . r? t? . r t? . r?
s + t s . t s . t? s? . t s? . t?
t + s t . s t . s? t? . s t? . s?

r . s r + s r . s r . s? r? . s r? . s? r+ s+ r? s?
s + r s . r s . r? s? . r s? . r?
r + t r . t r . t? r? . t r? . t?
t + r t . r t . r? t? . r t? . r?
s + t s . t s . t? s? . t s? . t?
t + s t . s t . s? t? . s t? . s?

r . s? r + s r . s r . s? r? . s r? . s? r+ s+ r? s?
s + r s . r s . r? s? . r s? . r?
r + t r . t r . t? r? . t r? . t?
t + r t . r t . r? t? . r t? . r?
s + t s . t s . t? s? . t s? . t?
t + s t . s t . s? t? . s t? . s?

r? . s r + s r . s r . s? r? . s r? . s? r+ s+ r? s?
s + r s . r s . r? s? . r s? . r?
r + t r . t r . t? r? . t r? . t?
t + r t . r t . r? t? . r t? . r?
s + t s . t s . t? s? . t s? . t?
t + s t . s t . s? t? . s t? . s?

r? . s? r + s r . s r . s? r? . s r? . s? r+ s+ r? s?
s + r s . r s . r? s? . r s? . r?
r + t r . t r . t? r? . t r? . t?
t + r t . r t . r? t? . r t? . r?
s + t s . t s . t? s? . t s? . t?
t + s t . s t . s? t? . s t? . s?

r+ r + s r . s r . s? r? . s r? . s? r+ r?
s + r s . r s . r? s? . r s? . r?

r? r + s r . s r . s? r? . s r? . s? r+ r?
s + r s . r s . r? s? . r s? . r?

Table 2.1: All possible combinations of α1 and α2 that share a state in the proof
of Proposition 2.26. For each possible value for α1, only the corresponding
values for α2 that are underlined can be simultaneously applied to G.
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� For instance, suppose for the purpose of contradiction that G
r+s
 H1

and G
r . s
 H2. Since G

r . s
 H2, G satisfies the precondition of Concate-

nation r . s, and hence SuccG(r) = {s}. Also, since G is a generalized
SOA, there is a walk from r to sink . Since s is the only successor of r,
such a walk can only exist if s has a successor u 6∈ {r, s}. Since G

r+s
 H1,

G satisfies the precondition of Disjunction r+s, and hence u must also
be a successor of r. But then SuccG(r) 6= {s}, which gives the desired
contradiction.

� As another example, suppose for the purpose of contradiction that G
r+s
 

H1 and G
r . t?
 H2 with r, s, and t distinct states in G. Since G

r . t?
 

H2, G satisfies the precondition of Concatenation r . t?, and hence
PredG(t) = {r}. As such, t ∈ SuccG(r). Then, since G

r+s
 H1, G

satisfies the precondition of Disjunction r+s. In particular, t must also
be a successor of s. But then s ∈ PredG(t), and hence PredG(t) 6= {r},
which gives the desired contradiction.

By similar examination of the other combinations of α1 and α2 in Table 2.1
we obtain that for each possible value of α1, only the corresponding values for
α2 that are underlined in Table 2.1 can be applied simultaneously to G. For
each such simultaneously applicable combination, we illustrate in Figure 2.10
how H1 and H2 can be joined. For economy of space, we have omitted the
trivial cases where α1 = α2. For the same reason, cases that are equivalent to
one of the already shown cases are also omitted. For instance, the case where
α1 = r . s and α2 = t? . r is not shown. Note however, that since the roles of
α1 and α2 can always be swapped, and since r, s, t can always be permuted,
this case is treated in the equivalent case α1 = r? . s and α2 = s . t.

� For instance, consider the case where α1 = r + s and α2 = r? . s?. Since
G

r? . s?
 H2, G satisfies the precondition of Concatenation r? . s?, and

hence s ∈ SuccG(r). Moreover, since G
r+s
 H1, G also satisfies the

precondition of Disjunction r + s and r, s therefore have the same
(extended) predecessor and successor set. As such,

s ∈ SuccG(r)⇒ s ∈ Succ+
G(s)

⇒ s ∈ Pred+
G(s)

⇒ s ∈ PredG(r)
⇒ r ∈ SuccG(s)

Also, by the precondition of Concatenation r? . s?, PredG(r)×SuccG(s) ⊆
E(G). Hence, G, H1, and H2 are as illustrated in Figure 2.11. Clearly,
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Figure 2.10: Illustration of the proof of Proposition 2.26.
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P

r

s

S

G

P r + s S

H1

P r? . s? S

H2

r + s

r? . s?

Figure 2.11: Illustration of the interaction of r + s and r? . s? in the proof of
Proposition 2.26. P is the set PredG(r)− {r, s} = PredG(s)− {r, s}. S is the
set SuccG(r)− {r, s} = SuccG(s)− {r, s}. The gray loops on r and s indicate
that r ∈ Succ+

G(r) and s ∈ Succ+
G(s).

the one-to-one onto mapping ρ : V (H1)→ V (H2) that is the identity on
every state in V (H1) except r + s, for which ρ(r + s) = r? . s?, shows
that H1 and H2 are isomorphic. As such, H1 ↓' H2.

� As another example, consider the case where α1 = r . s? and α2 = s? . t?.
Since G

r . s?
 H1, G satisfies the precondition of Concatenation r . s?,

and hence PredG(s) = {r}. In particular, t 6∈ PredG(s). Therefore,

s 6∈ SuccG(t). Since G
s? . t?
 H1, G also satisfies the precondition of

Concatenation s? . t?. By this precondition, the fact that s 6∈ SuccG(t)
implies s 6∈ SuccG(s) and t 6∈ SuccG(t). We then distinguish two possi-
bilities.

(1) r ∈ SuccG(s). Since s and t have the same predecessors (modulo s
and t) by the precondition of Concatenation s? . t?, also r ∈ SuccG(t).
Moreover, by the precondition of Concatenation r . s?, r ∈ Succ+

G(r).
As such, G, H1, and H2 are as illustrated in Figure 2.12. Clearly, H1

satisfies the precondition of Concatenation (r . s?) . t?, while H2 sat-
isfies the precondition of Concatenation r .(s? . t?)?. Let I1 and I2 be
the results of this rewriting, as shown in Figure 2.12. Clearly, the one-
to-one onto mapping ρ : V (H1) → V (H2) that is the identity on every
state in V (H1) except (r . s?) . t?, for which ρ((r . s?) . t?) = r .(s? . t?)?,
shows that I1 and I2 are isomorphic. As such, H1 ↓' H2.

(2) r 6∈ SuccG(s). Since s and t have the same predecessors (modulo s
and t) by the precondition of Concatenation s? . t?, also r 6∈ SuccG(t).
Then, by the precondition of Concatenation r . s?, also r 6∈ SuccG(r).
A reasoning similar to case (1) then shows that again H1 ↓' H2.

The reasoning for the other simultaneously applicable combinations is similar.
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Figure 2.12: Illustration of the interaction of r . s? and s? . t? in the proof of
Proposition 2.26. P is the set PredG(r) − {r, s, t}. S is the set SuccG(s) −
{r, s, t} = SuccG(t)−{r, s, t}. The gray loop on r indicates that r ∈ Succ+

G(r).

Corollary 2.27 (Confluence modulo '). If F  ∗ G1 and F  ∗ G2 then G1 ↓'
G2.

Hence, by Proposition 2.23:

Corollary 2.28. Suppose that there is a sequence of rewrite steps starting
from G that ends in a final automaton. Then any sequence of rewrite steps
starting from G ends in a final automaton.

This concludes the proof of Proposition 2.13, and hence also the proof of
Theorem 2.10.

2.1.3 Discussion

It should be noted that while the result of rewrite is always a SORE, this
SORE need not be easy to read (depending on the order of rewriting). For
instance, as illustrated in Figure 2.12, it is possible for rewrite to generate
an expression r .(s? . t?)?. Clearly, the optional around (s? . t?) is redundant.
Removing it leads to the simpler r .(s? . t?). For presentation to the user, it is
therefore advisable to post-process the result of rewrite (and its variations
in Section 2.2) using a regular expression simplification algorithm.
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2.2 Dealing with missing data

The results of Section 2.1 suggest the following method to infer a SORE from
a given sample S:

1. First, use 2t-inf to learn from S an automaton representation G of the
target SORE r.

2. Next, convert G into a SORE using rewrite.

If S is a representative sample of r then G is equivalent to r by Proposition 2.4.
Therefore, rewrite(G) does not fail by Theorem 2.10, and hence rewrite(G)
is equivalent to r.

Unfortunately, real-world samples are rarely representative. For instance,
for target r = (a1 + · · ·+an)+ and increasing values of n, it is increasingly un-
likely that a sample bears witness to each of the n2 2-grams needed to represent
r. On such non-representative samples, 2t-inf will construct an automaton
for which L(G) is a strict subset of L(r). In particular, this automaton need
not be equivalent to a SORE, and rewrite(G) can fail. Figure 2.13 shows
an example.

For that reason, we present in this section two modifications of rewrite
that “repair” G when rewriting gets stuck in a non-final automaton. The first
modification, rwr, picks a single repair when rewriting gets stuck, indepen-
dent of how the repair affects G. The second modification, rwr2, in contrast,
considers multiple repair strategies and selects the one that extends G in a
minimal way. The repair rules used by both algorithms are shown in Fig-
ure 2.14. After a repair rule is applied, the automaton necessarily satisfies the
precondition of the corresponding rewrite rule. Now note:

Proposition 2.29. Let G be a proper generalized SOA. If G is not final and
no rewrite rule applies to G, then at least one of the repair rules in Figure 2.14
applies to G.

Proof. Since G is proper, it recognizes at least one non-empty word. Clearly,
this can only happen when src has a successor r distinct from sink . We
distinguish two cases.

� Either r has a successor s distinct from src, sink , and r. Clearly, Repair
r? . s? is then applicable to G.

� If r does not have such a successor s, then we claim that src has an-
other successor t, distinct from src, sink , and r. Indeed, suppose for
the purpose of contradiction that no such successor exists. Then, since
every state in G participates in a walk from src to sink , either E(G) =
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a d

b c e

Figure 2.13: The SOA generated by 2t-inf for the non-representative sample
S = {bacacdacde, abccaadcde}. The only rewrite rules that can be applied
are Iteration a+ and Iteration c+, after which rewrite gets stuck in a
non-final automaton and fails.

{(src, r), (r, sink)}, or E(G) = {(src, r), (r, r), (r, sink)}. In the first case
G is final, in the second we can rewrite G using Iteration r+— a con-
tradiction in both cases. As such, the claimed t exists. Then, since
src ∈ PredG(r) ∩ PredG(t), Repair r + t is applicable to G.

As such, we can always apply a repair rule if rewriting gets stuck in a
non-final automaton, after which rewriting can continue.

2.2.1 A greedy approach: rwr

An outline of rwr (short for ReWrite with Repairs), is shown in Algo-
rithm 3. Like rewrite, it first checks whether its input G is equivalent to ∅
or ε. Otherwise, G is rewritten using the rewrite rules in Figure 2.4 until a
final automaton is reached, arbitrarily selecting a repair rule when rewriting
gets stuck. (In our implementation we first check whether there are r and s
for which Repair r . s? can be applied. Then we check whether there are r
and s for which Repair r? . s can be applied. Next, we check for Repair r+s
and finally for Repair r? . s?.)

Since the repair rules add edges to G, thereby increasing L(G), we may
conclude:

Theorem 2.30. For a SOA G, rwr always produces a SORE r with L(G) ⊆
L(r). Moreover, if G is equivalent to a SORE, then L(G) = L(r).

(The second statement follows by Theorem 2.10.) Combined with Propo-
sition 2.4, we hence obtain:

Corollary 2.31. Let M be the composition of 2t-inf with rwr, i.e., M(S) :=
rwr(2t-inf(S)). Then M learns the class of SOREs from positive data.
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Repair r + s

Precondition Add edges

PredG(r) ∩ PredG(s) 6= ∅ or (1) for all u ∈ (PredG(r) ∪ PredG(s))− {r, s},
SuccG(r) ∩ SuccG(s) 6= ∅ add (u, r), (u, s)

(2) for all u ∈ (SuccG(r) ∪ SuccG(s))− {r, s},
add (r, u), (s, u)

(3) if r ∈ SuccG(s) or s ∈ SuccG(r) then
(a) add (r, s), (s, r)
(b) if r 6∈ Succ+

G(r), add (r, r)
(c) if s 6∈ Succ+

G(s), add (s, s)

Repair r . s?

Precondition Add edges

PredG(s) = {r} (1) for all u ∈ SuccG(s)− {r, s}, add (r, u)
(2) for all u ∈ SuccG(r)− {r, s}, add (s, u)
(3) if r ∈ SuccG(s) and r 6∈ Succ+

G(r), add (r, r)

Repair r? . s

Precondition Add edges

SuccG(r) = {s} (1) for all u ∈ PredG(s)− {r, s}, add (u, r)
(2) for all u ∈ PredG(r)− {r, s}, add (u, s)
(3) if r ∈ SuccG(s) and s 6∈ Succ+

G(s), add (s, s)

Repair r? . s?

Precondition Add edges

s ∈ SuccG(r) (1) for all u ∈ PredG(s)− {r, s}, add (u, r)
(2) for all u ∈ PredG(r)− {r, s}, add (u, s)
(3) for all u ∈ SuccG(s)− {r, s}, add (r, u)
(4) for all u ∈ SuccG(r)− {r, s}, add (s, u)
(5) if r ∈ SuccG(s) and r 6∈ Succ+

G(r), add (r, r)
(6) if r ∈ SuccG(s) and s 6∈ Succ+

G(s), add (s, s)
(7) for all u ∈ PredG(r), u′ ∈ SuccG(s),

add (u, u′)

Figure 2.14: Repair rules
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Algorithm 3 rwr

Input: a SOA G
Output: a SORE r such that L(G) ⊆ L(r) if G is not equivalent to a SORE,

and L(G) = L(r) otherwise.
1: if sink is not reachable from src in G then
2: return ∅
3: else if E(G) = {(src, sink)} then
4: return ε
5: else
6: while G is not final do
7: if a rewrite rule from Figure 2.4 can be applied then
8: apply the rewrite rule on G
9: else

10: apply a repair rule from Figure 2.14
11: return the corresponding regular expression r

2.2.2 Exploring the search space: rwr2
`

When rewriting gets stuck, rwr arbitrarily selects a repair rule (perhaps based
on some ordering of the rules as in our implementation), and discards the oth-
ers. It should be clear, however, that when different repair rules are applicable,
one rule may have a smaller impact on the language of the automaton than
another. For that reason we present in this section a different modification
of rewrite that, in contrast to rwr, tries the “best” ` repair rules when
there are several candidates. Here, the “best” repair rules are those that add
the least number of words to the language. Since an automaton defines an
infinite language in general, it is of course impossible to take all added words
into account. We therefore only consider the words up to a length n, where
n is twice the number of alphabet symbols in the automaton. Formally, for a
language L, let |L≤n| denote the number of words in L of length at most n.
Moreover, say that generalized SOA H is a repair of generalized SOA G if H
is obtained by applying a repair rule on G. Then the repairs of the current
automaton G are ordered according to increasing values of | L(H)≤n|, and the
best (i.e., first) ` among them are further investigated.

The resulting algorithm, called rwr2
` (an abbreviation of ReWrite with `

best Ranked Repairs) is shown in Algorithm 4. Like rewrite, it first checks
whether its input G is equivalent to ∅ or ε. Otherwise, rwr2

` uses rwr2
` -aux

to recursively rewrite and repair G until a final automaton is reached. During
this recursion, Hopt is the best final generalized SOA found so far. Initially, on
Line 4 of rwr2

` , Hopt is set to the final generalized SOA that accepts all words



46 Inferring single-occurrence regular expressions

Algorithm 4 rwr2
`

Input: SOA G
Output: a SORE r such that L(G) ⊆ L(r) if G is not equivalent to a SORE,

and L(G) = L(r) otherwise.
1: if sink is not reachable from src in G then
2: return ∅
3: else if E(G) = {(src, sink)} then
4: return ε
5: else
6: initialize the final automaton Hopt to recognize Σ(G)∗

7: return the SORE corresponding to the final automaton computed by
rwr2

` -aux(G, Hopt)

over alphabet symbols mentioned in G. rwr2
` -aux then rewrites G in Lines 1-

2 until no more rewrite rule is applicable. If the resulting G is final then it is
returned. Otherwise, rwr2

` -aux computes in Line 6 all possible repairs H of
G and orders them according to increasing values of | L(H)≤n|. The algorithm
then recursively calls itself on the ` best ranked repairs in lines 8-10. The test
in Line 9 is an optimization: if the current repair is already worse than the
best final generalized SOA Hopt computed so far in terms of language size,
then further rewriting and repairing cannot yield a final generalized SOA that
is better than Hopt. Lines 11 updates Hopt when appropriate. Finally, Hopt is
returned.

Given its definition, it is clear that rwr2
` results in regular expressions

with a smaller language size for increasing values of `, of course at the cost
of increased computation time. In the experiments (Section 2.5.2) the trade-
off between precision and computation time of rwr and rwr2

` , for increasing
values of `, is investigated in more detail.

2.2.3 Efficiently computing the language size

During its executing, rwr2 repeatedly needs to compute the language size
of the possible repairs. This computation can actually be done quite effi-
ciently for SOAs, as we show next. Of course, in general rwr2 needs to
compute the language size also for generalized SOAs, not just ordinary SOAs.
Our implementation first expands such generalized SOAs into an equivalent
SOA using the Glushkov construction (similar to the ideas of the proof of
Proposition 2.19), and then invokes the language size computation procedure
explained next.

Let |L=m| denote the number of words in L of length exactly m. Let G
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Algorithm 5 rwr2
` -aux

Input: generalized SOAs G and Hopt

Output: final generalized SOA I such that L(G) ⊆ L(I) if G is not equivalent
to a SORE, and L(G) = L(I) otherwise.

1: while a rewrite rule from Figure 2.4 can be applied to G do
2: perform the rewrite rule on G
3: if G is final then
4: return G
5: else
6: compute the set R of all possible repairs H of G
7: sort R in increasing order by | L(H)≤n|
8: for each of the min(`, |R|) best repairs H do
9: if | L(H)≤n| < | L(Hopt)≤n| then

10: recursively compute H ′ := rwr2
` -aux(H,Hopt)

11: set Hopt := H ′ if | L(H ′)≤n| < | L(Hopt)≤n|
12: return Hopt

be a SOA; and assume that V (G)−{src, sink} = {a1, . . . , an}. Then consider
the n× n matrix D where for i, j ∈ {1, . . . , n}

D[i, j] =
{

1 if (ai, aj) ∈ E; and,
0 otherwise.

In addition, define the 1 × n and n × 1 matrices I and F , respectively, as
follows: for i, j ∈ {1, . . . , n}

I[1, j] =
{

1 if (src, j) ∈ E; and,
0 otherwise;

and

F [i, 1] =
{

1 if (i, sink) ∈ E; and,
0 otherwise.

The following lemma is straightforward to prove by induction on n using
the fact that each walk from src to sink in G uniquely determines an accepted
word. Let Dm denote the m-times multiplication of D, with D0 the unit
matrix.

Lemma 2.32. Let m > 0 and let G be a SOA. Then | L(G)=m| = I ·Dm−1 ·F .

Since for m = 0, we simply have | L(G)=m| = 1 if (src, sink) ∈ E, and
| L(G)=m| = 0, otherwise and since | L(G)≤n| = Σn

m=0| L(G)=m|, we can deter-
mine | L(G)≤n| by iteratively computing the matrices D1 to Dm, and applying
Lemma 2.32. This immediately gives the following corollary.
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Corollary 2.33. For each n > 0 and SOA G, | L(G)≤n| can be computed in
time O(n|G|3).

As already noted in the Introduction, real-worlds samples need not be
valid with respect to its known schema. Errors crop up due to all sorts of
circumstances. This underscores the need for a robust inference algorithm
that can handle some noise in the input sample.

Noise can come in several forms. To generate a noisy subsample, we modify
the target expression either by replacing a symbol by a different one from the
target’s expression, or by replacing it by a symbol that is not in the alphabet of
the target expression. We than use the modified target expression to generate
a complete sample. We define the noise level as follows:

Definition 2.34. Given a target expression r, the noise level of a sample S
is the ratio |S − L(r)|/|S|.

Here we propose an approach to filter the sample S based on the probability
of its words being generated by a probabilistic automaton as we also use in
Section 3.2. This probabilistic automaton has one state for each alphabet
symbol, and the transition probabilities are computed using the Baum-Welsh
algorithm. Given the probabilistic automaton, it is straightforward to compute
the probability for each w ∈ S, so that one can rank the sample’s words. One
expects words that contain noise, i.e., that would be rejected by the target
regular expression, to have low probability if their number is not excessively
large compared to the sample’s size.

To filter the sample, hoping to exclude those words that contain noise, we
compute the mean µ and standard deviation σ of the sample’s probabilities. A
string w ∈ S with probability P (w) is excluded if P (w) < µ− ασ. The factor
α is a parameter of the algorithm. The filtered sample S′ is now used to derive
a regular expression. It is of course possible that in the generation of S′ some
words needed to derive the target expression were removed. Hence there is no
guarantee that the derived regular expression will be an overapproximation of
the target expression. Experimental results will be discussed in Section 2.5.4.

2.3 rwr0

It should be noted that in the conference version of this article [BNST06]
we proposed a different set of rewrite and repair rules for transforming SOAs
into SOREs. While those rewrite rules were claimed in [BNST06] to possess
the analogue of Proposition 2.13 (namely that they always produce a SORE
equivalent to the input SOA, provided that such a SORE exists), this claim is
false. Worse, there exist generalized SOAs for which rewrite rules of [BNST06]
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are not sound. To illustrate this claim, the rewrite rules of [BNST06] are given
in Figure 2.15, where G∗ refers to the ε-closure of G, defined as follows.

Definition 2.35. Let G = (V,E) be a generalized SOA. The ε-closure G∗ of
G is the graph (V,E∗) where E∗ contains

� all edges of E;

� all edges (r, r) with r = s+ or r = s+?;

� all edges (r, s) for which there is a path from r to s in G that passes only
through intermediate nodes t with ε ∈ L(t).

Figure 2.16 shows a sequence of rewrite steps using these rules starting
from the SOA recognizing (a + b)+? or, equivalently, (a? . b?)+. Note that the
second rewrite step, which introduces b?, causes the automaton to become
disconnected: because a? ∈ PredG∗(b) and sink ∈ SuccG∗(b) − {b} it deletes
(a?, sink)—the only edge linking src to sink . As such, the accepted language
changes from L((a+ b)+?) to ∅. This clearly illustrates that the Optional r?
rule in Figure 2.15 is unsound. For that reason, we have moved in this article
to the new rewrite rules in Figure 2.4.

It is peculiar, however, that we have extensively used the rewrite of Fig-
ure 2.15 together with the repair rules in Figure 2.18 in a prototype imple-
mentation but have never encountered a situation where:

� we obtained a SORE r that failed to accept at least all words in the
input SOA G; or

� we obtained a SORE r that accepted a strict superset of L(G) when G
was equivalent to a SORE.

We suspect that this behavior is due to the strict order in which we apply the
rewrite rules in our implementation: first Concatenation, then Disjunc-
tion, then Self-Loop, and finally Optional. To illustrate, Figure 2.17
shows a successful rewriting of the SOA accepting (a + b)+? under this order.

The algorithm rwr0 is shown in Algorithm 6 and is based on the rewrite
rules in Figure 2.15 and the repair rules in Figure 2.18. The experiments in
Section 2.5 indicate that rwr0 has no benefits over rwr and rwr2. Moreover,
as we do not have a formal proof that rewriting always behaves in the above
sound and complete manner under this order, it does not make much sense
to consider rwr0 for the class of SOREs. In strong contrast, on the class of
k-occurrence regular expressions (k > 1), rwr0 can make a difference over
rwr and rwr2, as is shown in Chapter 3. So even without formal guarantees,
rwr0 still proofs to have its merits.
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Disjunction

Precondition Action
{r1, . . . , rn} with n ≥ 2 is a sub-
set V (G)−{src, sink} such that ev-
ery two nodes ri, rj have the same
predecessor and successor set in G∗.
Note that this implies that either

1. there are no edges in G be-
tween r1, . . . , rn at all; or

2. for each i, j there is an edge
ri, rj in G∗.

� Remove r1, . . . , rn;

� add a new node r = r1 + · · ·+
rn;

� redirect all incoming and out-
going edges of r1, . . . , rn to r.

� In the case of situation (2)
add the edge (r, r).

Concatenation

Precondition Action
{r1, . . . , rn} with n ≥ 2 is a maximal
subset of V (G) − {src, sink} such
that

� there is an edge in G from ri

to ri+1;

� every node besides r1 has only
one incoming edge in G; and

� every node besides rn has only
one outgoing edge in G.

� Remove r1, . . . , rn;

� add a new node r = r1 · · · rn;

� redirect all incoming edges of
r1 and all outgoing edges of rn

to r. (In particular: if G has
an edge (rn, r1) then (r, r) is
added.)

Self-loop r+

Precondition Action
(r, r) ∈ E(G) Replace G by G[r/r+]	(r+, r+)

Optional r?
Precondition Action
SuccG∗(r) ⊆ SuccG∗(s) for every s ∈
PredG∗(r)

� Relabel r by r?;

� remove all edges (s, t) with
s ∈ PredG∗(r) and t ∈
SuccG∗(r)− {r}

Figure 2.15: Set of rewrite rules introduced in the conference version of this
article[BNST06].
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a

b

(a)

a?

b

(b)

a?

b?

(c)

Figure 2.16: A problematic sequence of rewrite steps using the rules in Fig-
ure 2.15. The input SOA accepts the same language as (a + b)+?, or, equiv-
alently (a? . b?)+. Note that the automaton resulting from by the second
rewrite step is disconnected and hence accepts the empty language. Rewriting
is therefore not sound.

a

b

(a) a + b (b)

(a + b)+ (c)(a + b)+?(d)

Figure 2.17: A successful sequence of rewrite steps using the rules in Fig-
ure 2.15. The input SOA accepts the same language as (a + b)+?, or, equiva-
lently (a? . b?)+.
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Enable-Disjunction

Precondition Add edges

(1) r, s ∈ V (G)− {src, sink} and either (1) for all u ∈ (PredG∗ (r) ∪ PredG∗ (s))− {r, s},
(2a) PredG∗(r) ∩ PredG∗(s) 6= ∅; or add (u, r), (u, s)
(2b) SuccG∗(r) ∩ SuccG∗(s) 6= ∅ (2) for all u ∈ (SuccG∗ (r) ∪ SuccG∗ (s))− {r, s},

add (r, u), (s, u)
(3) if r ∈ SuccG(s) or s ∈ SuccG(r) then

(a) add (r, s), (s, r)
(b) if r 6∈ SuccG∗ (r), add (r, r)
(c) if s 6∈ SuccG∗ (s), add (s, s)

Enable-Optional-1

Precondition Add edges

(1) r ∈ V (G)− {src, sink} for all s ∈ PredG∗ (r) and all u ∈ SuccG∗ (r),
(2) ε 6∈ L(r) add (s, u)
(3) SuccG∗ (r) ∩ SuccG∗ (s) 6= ∅

for every s ∈ PredG∗ (r)

Enable-Optional-2

Precondition Add edges

(1) r ∈ V (G)− {src, sink} for all s ∈ PredG∗ (r) and all u ∈ SuccG∗ (r),
(2) ε 6∈ L(r) add (s, u)
(3) PredG∗ (r) 6= ∅

Figure 2.18: Repair rules accompanying the rewrite rules in Figure 2.15. These
rules are a correction of the rules presented in [BNST06]. Repairs are tried in
the order shown. In particular, Enable-Optional-2 is only applied if none
of the other rules are applicable.
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Algorithm 6 rwr0

Input: a SOA G
Output: a SORE r
1: if sink is not reachable from src in G then
2: return ∅
3: else if E(G) = {(src, sink)} then
4: return ε
5: else
6: initialize done to false
7: while not done do
8: if there a rewrite rule in Figure 2.15 is applicable then
9: rewrite G, giving precedence to Concatenation, then Disjunc-

tion, then Self-loop, then Optional
10: else if a repair rule in Figure 2.18 is applicable then
11: repair G, giving precedence to Enable-Disjunction, then

Enable-Optional-1, then Enable-Optional-2
12: else
13: set done to true
14: if G is final then
15: return the corresponding regular expression r
16: else
17: return ∅
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2.4 Inferring CHAREs: CRX

In this section, we present the algorithm crx for the inference of chain regular
expressions (CHAREs).

Definition 2.36 (CHAREs). The class of chain regular expressions consists
of those SOREs of the form f1 · · · fn where every fi is a chain factor—an
expression of the form (a1 + · · · + ak), (a1 + · · · + ak)?, (a1 + · · · + ak)+, or,
(a1 + · · ·+ ak)+? with k ≥ 1 and every ai is an alphabet symbol.

For instance, the expression a(b+c)∗d+(e+f)? is a CHARE, while (ab+c)∗

and (a∗ + b?)∗ are not.
Since each CHARE is a concatenation of alphabet-disjoint chain factors,

every occurrence of an alphabet symbol in a word must be generated by the
same chain factor in the target CHARE. The positional relationships between
occurrences of alphabet symbols in a given sample then allow us to deduce
which chain factors are present in the target CHARE, and how they are or-
dered.

Example 2.37. Consider the sample S = {u, v, w} with u = abd, v = bcdee,
and w = cade. Clearly a occurs before b in u, b occurs before c in v, and c
occurs before a in w. In the target CHARE, therefore, a, b, and c must belong
to the same chain factor which can only be (a+ b+ c)+ or (a+ b+ c)+?. Since
one of {a, b, c} is present in every word of S, we choose (a+ b+ c)+. Similarly,
d and e form chain factors by themselves. Whereas d occurs once in every
word in S, e can occur zero, one or more times. Therefore, d is represented by
the chain factor d, while e is represented by the chain factor e+?. Since a, b, c
always occur before d, which in turn always occurs before the e’s, the derived
CHARE is then (a + b + c)+de+?.

So, in brief, crx computes chain factors, orders them and uses that order to
generate a CHARE. Of course, the order of the chain factors is not necessarily
linear. In that case, a linear order can be constructed by making the factors
optional. Some care has to be taken, however, to generate factors that are
disjunctions without repetitions.

Definition 2.38. Let S be a sample. We denote by →S the partial pre-order
on Σ such that a→S b if, and only if, a immediately precedes b in some w ∈ S.
(I.e., ab is a 2-gram of S.) We say that a occurs before b in S if a→∗

S b, where
→∗

S is the reflexive and transitive closure of →S .

For instance, Figure 2.19 illustrates →S when S = {abccde, cccad, bfegg,
bfehi}.
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a
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d e

h

g
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Figure 2.19: The partial pre-order →S for S = {abccde, cccad, bfegg, bfehi}.

[a, b, c]

[d]

[f ]

[e]

[g]

[h] [i]

Figure 2.20: The Hasse diagram HS of the sample S = {abccde, cccad, bfegg,
bfehi}. The corresponding partial pre-order from which HS is derived is shown
in Figure 2.19.

Definition 2.39. Define a ≈S b if a occurs before b in S and b occurs before
a. That is, a ≈S b if a→∗

S b and b→∗
S a.

Clearly, ≈S is an equivalence relation. Let ΓS denote the set of equivalence
classes of ≈S . In what follows, we denote such equivalence classes by e.g.,
[a1, . . . , an]. As usual, an equivalence class of cardinality 1 is called a singleton.

Definition 2.40. The Hasse diagram of S, denoted HS , is the graph over ΓS

in which there is an edge from equivalence class [a1, . . . , an] to class [b1, . . . , bm]
if (1) [a1, . . . , an] and [b1, . . . , bm] are distinct and (2) there exists 1 ≤ i ≤ n
and 1 ≤ j ≤ m such that ai →S bj .

For instance, the Hasse diagram of the sample S = {abccde, cccad, bfegg,
bfehi} is shown in Figure 2.20. The operation of crx is then shown in Algo-
rithm 7 and illustrated in the following example.

Example 2.41. Consider again the sample S = {abccde, cccad, bfegg, bfehi}
and its corresponding Hasse diagram in Figure 2.20. Since PredHS

([d]) =
PredHS

([f ]) and SuccHS
([d]) = SuccHS

([f ]), line 3 applies to [d] and [f ]. Al-
though PredHS

([g]) = PredHS
([h]), step 7 cannot be applied as SuccHS

([g]) 6=
SuccHS

([h]). Similarly [g] and [i] share successors, i.e. ∅, but have different
predecessors. Hence, after the while loop in line 2 we obtain:

[a, b, c] [d, f ] [e]

[g]

[h] [i]

A possible topological sort is [a, b, c], [d, f ], [e], [g], [h], [i]. Since at least one of
a, b and c occurs once or more in every string of W , r([a, b, c]) = (a | b | c)+ is
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Algorithm 7 crx

Input: a sample S
Output: a CHARE r such that S ⊆ L(r)
1: Compute the set ΓS of equivalence classes of ≈S

2: while a maximal set of singleton nodes γ1, . . . , γ` such that PredHS
(γ1) =

· · · = PredHS
(γ`) and SuccHS

(γ1) = · · · = SuccHS
(γ`) exists do

3: Replace γ1, . . . , γ` by γ := ∪`
j=1γj , and redirect all incoming and outgo-

ing edges of the γi to γ in HS

4: Compute a topological sort γ1, . . . , γk of the nodes
5: for all i ∈ {1, . . . , k} (γi = [a1, . . . , an]) do
6: if every w ∈ S contains exactly one occurrence of a symbol in

{a1, . . . , an} then
7: r(γi) := (a1 + · · ·+ an)
8: else if every w ∈ S contains at most one occurrence of a symbol in

{a1, . . . , an} then
9: r(γi) := (a1 + · · ·+ an)?

10: else if every w ∈ S contains at least one of a1, . . . , an and there is a
word that contains at least two occurrences of symbols then

11: r(γi) := (a1 + · · ·+ an)+

12: else
13: r(γi) := (a1 + · · ·+ an)∗

14: return r(γ1) . r(γ2) . · · · . r(γk)
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the first factor; the second factor is (d | f) since either d or f occurs exactly
once; the factor derived from [e] is e? since W contains a string without e
and similarly for those from [h] and [i]. Finally, g occurs multiple times in a
single string. Hence the simple regular expression derived by the algorithm is
(a | b | c)+ · (d | f) · e? · g∗ · h? · i? which completes step 7.

Note that the order of the chain factors in the CHARE depends on the
topological sort.

Theorem 2.42. Given a sample S, crx computes a CHARE r such that
S ⊆ L(S).

Proof. The theorem follows almost immediately from the construction. Clearly,
crx always outputs a CHARE. Moreover, observe that after Step 7 the com-
puted topological sort is consistent with the order of the symbols in the words
in S. More precisely, there can not exist symbols a and b, such that a ∈ γi,
b ∈ γj , i < j, and b →∗

S a. Subsequently, for each γi a chain factor is chosen
in such a manner that it is consistent with all words w ∈ S. As these factors
are ordered consistently with the order of the symbols in S, this implies that
S ⊆ L(r).

Furthermore, on the class of CHAREs, crx is complete:

Theorem 2.43. For each CHARE r there is a sample S such that L(r) =
L(crx(S)).

Proof. Denote by Sym(r) the set of alphabet symbols occurring in r. We
also abuse notation and, for a sample S, write Sym(S) to denote the set
of alphabet symbols occurring in S. Let r = f1 · · · fk be a CHARE. We
construct the sample S such that the crx(S) is syntactically equal to r, up
to commutativity of +. The theorem then follows.

Thereto, for every 1 ≤ i ≤ k, let wi be a word in L(fi). We construct S
by subsequently adding words to it. First, for all 1 ≤ i ≤ k − 1, a ∈ Sym(fi),
b ∈ Sym(fi+1), we add w1 · · ·wi−1abwi+2 · · ·wk to S. Further, for all 1 ≤ i ≤ k,
we add words to S, depending on the form of fi. Specifically, if fi is of the
form

� (a1 + · · ·+ an), we add w1 · · ·wi−1a1wi+1 · · ·wk;

� (a1 + · · ·+ an)?, we add w1 · · ·wi−1wi+1 · · ·wk, w1 · · ·wi−1a1wi+1 · · ·wk;

� (a1 + · · ·+ an)+, we add w1 · · ·wi−1a1a1wi+1 · · ·wk;

� (a1+· · ·+an)+?, we add w1 · · ·wi−1wi+1 · · ·wk, w1 · · ·wi−1a1a1wi+1 · · ·wk.
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We now argue that given S, crx indeed derives an expression syntactically
equal to r. First observe that already before step 7, crx computes k nodes
γ1 to γk, which are linearly ordered, such that for each 1 ≤ i ≤ k, γi contains
exactly the alphabet symbols contained in fi. Then, due to the number of
occurrences of each symbol of the different chain factors, the algorithm will
associate to each γi exactly the factor fi, and hence crx(S) is syntactically
equivalent to r, up to commutativity of +.

From Theorems 2.42 and 2.43 it readily follows:

Corollary 2.44. crx learns the class of CHAREs from positive data.

The experiments in Section 2.5.3 show that the number of words in S
needed in practice is very small. Actually, the prime feature that makes crx
much more robust than rwr for very small data sets is its strong generalization
ability. Indeed, consider an expression of the form (a1 | · · · | an)∗. While
rewrite requires all n2 2-grams of the form aiaj for i, j ∈ {1, . . . , n} to
be present, rwr requires around (n2 − n) 2-grams. For crx, however, the
set {ε, a1a2, a2a3, . . . , an−1an, ana1} of size O(n) will suffice. This point is
illustrated in practice by example3 and example4 in Table 2.3 where n has a
value of 41 and 56 respectively. Experiments illustrate that only 400 � 1682
and 500� 3136 2-grams are needed by crx to learn example3 and example4,
respectively.

The following theorem shows that crx is optimal within the class of
CHAREs when the partial order ΓS is in fact a linear order:

Theorem 2.45. For every sample S, if ΓS is a linear order then for every
CHARE r such that S ⊆ L(r) and L(r) ⊆ L(crx(S)), we have r = crx(S),
i.e. r is syntactically equal to crx(S) up to commutativity of |.

Proof. Assume that crx(S) = f1 · · · fk and r = g1 · · · gl. Clearly, Sym(crx(S)) =
Sym(r) = Sym(S). We first argue that k = l. Thereto, assume for the pur-
pose of contradiction that k < l. Then, there is a chain factor f in crx(S)
with a, b ∈ Sym(f) and two chain factors g and g′ in r with a ∈ Sym(g) and
b ∈ Sym(g′). We distinguish two cases:

1. If f is of the form (a1 + · · · + an) or (a1 + · · · + an)?, then L(r) 6⊆
L(crx(S)).

2. If f is of the form (a1 + · · ·+ an)+? or (a1 + · · ·+ an)+, by construction
and since ΓS is linearly ordered, there are words u1, u2 ∈ S such that
a →∗

u1
b and b →∗

u2
a. However, since a and b are in different chain

factors of r, either u1 /∈ L(r) or u2 /∈ L(r), and hence S 6⊆ L(r).



2.5. Experimental evaluation 59

Conversely, assume k > l. Then, there are chain factors f, f ′ in crx(S)
with a ∈ Sym(f) and b ∈ Sym(f ′), and a chain factor g in r with a, b ∈ Sym(g).
We again distinguish two cases:

1. If g is of the form (a1 + · · · + an)+? or (a1 + · · · + an)+, then L(r) 6⊆
L(crx(S)).

2. If g is of the form (a1 + · · · + an) or (a1 + · · · + an)?, by construction
and since ΓS is linearly ordered, there are words u1, . . . , um ∈ S, and
symbols c1, . . . , cm−1 such that a→∗

u1
c1, cm →∗

um
b, and ci →ui+1 ci+1,

for all 1 ≤ i ≤ m− 1. However, due to the form of g, for at least one of
these ui, ui /∈ L(r) must hold and hence S 6⊆ L(r).

Using the same kind of argument it can be shown that Sym(fi) = Sym(gi),
for all 1 ≤ i ≤ k. Further, since L(r) ⊆ L(crx(S)), for every 1 ≤ i ≤ k, we
have L(gi) ⊆ L(fi). Since the different chain factors can only take a restricted
numbers of forms, it now suffices to show that L(gi) = L(fi), for all i, to show
that they are also syntactically equivalent. Hence, towards a contradiction,
assume L(gi) ( L(fi) for some 1 ≤ i ≤ k. This can only be the case if (1)
gi = (a1 + · · · + an) and fi = (a1 + · · · + an); (2) gi = (a1 + · · · + an)∗ and
fi = (a1 + · · · + an)+; or (3) gi = (a1 + · · · an)? and fi is one of the three
other forms. However, in each of these cases, given the construction of the
algorithm, one can find a word w ∈ S such that w /∈ L(r). Hence, for all i,
L(fi) = L(gi), and thus r = crx(S).

Note that this property does not hold when ΓS is not linear. For instance,
on S = {abc, ade, abe} crx yields a · b? · d? · c? · e? whereas the CHARE
a · (b | d) · (c | e) is a better approximation of the target language.

crx can be efficiently executed on very large datasets by only maintaining
HS and the multiplicities of occurrences of Σ-symbols in words in S (needed for
lines 6–13). From this representation, lines 2–5 can be executed. Hence, it is
not necessary that the entire sample resides in main memory. The complexity
of the algorithm is O(m + n3), where m is the size of the sample and n the
number of alphabet symbols.

2.5 Experimental evaluation

In this section we validate our approach by means of experimental analysis.
Specifically, we assess the quality of the expressions returned by our algorithms
on real-world corpora and DTDs, and compare it with the quality of expres-
sions returned by xtract [GGR+03] and Trang [Cla03]. Next, we compare
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the quality of rwr0, rwr and rwr2
` . Subsequently, we investigate the per-

formance of the algorithms on incomplete and noisy data. Finally, we discuss
their running time performance. We abuse notation and simply write rwr for
the application of 2t-inf followed by rwr, similarly for rwr0 and rwr2

` .

2.5.1 Real-world examples

The number of publicly available XML corpora is rather limited. We employed
the XML Data repository maintained by Miklau [Mik02] as a testbed. Unfor-
tunately, most of the corpora listed there are either very small; lack a DTD;
or contain a DTD with only trivial regular expressions. Nevertheless, two of
the listed corpora are interesting. Specifically, we compared xtract, rwr,
and crx on the Protein Sequence Database and the Mondial corpus [Mik02],
a database of information on various countries. Since no real-world data could
be obtained for SOREs that are not CHAREs, we generated our own XML
data for a number of real-world DTDs considered in [BNV04] containing a
number of sophisticated regular expressions outside the class of CHAREs.

Real-world data In this section, we only discuss rwr as rwr0 and rwr2
`

give precisely the same results. Table 2.2 lists all non-trivial element defini-
tions2 in the above mentioned DTDs together with the results derived by the
inference algorithms rwr, crx and xtract. It is interesting to note that only
the regular expression for authors is not a CHARE. Moreover, no elements
are repeated in any of the definitions. This should not come as a surprise given
the observations discussed in the Introduction on the content models occurring
in practice. The regular expression derived by the xtract algorithm is shown
whenever it fitted the table, otherwise the number of tokens it consists of is
listed. For better readability the actual output of xtract has been simplified
by replacing expressions such as (ai + ε) by ai?.

It can be verified that all regular expressions in Table 2.2 are learned quite
satisfactory by rwr and crx w.r.t. the examples extracted from the XML
corpus. The numbers in the first column refer to the size of the sample.
rwr and crx always produce the same result except for authors where crx
cannot derive the target expression as it is not a CHARE. We note that no
sample was representative of its target expression. As such, rwr always had
to apply repair rules. The expressions in the table indicate that the result of
these repairs are satisfactory. For a few expressions, e.g., ProteinE(ntry),
refinfo and genetics, the expressions produced by crx and rwr are more
strict than the corresponding one in the DTD. This is due to the data present

2It should be noted that the examples from the Mondial corpus are not valid according
to their DTD, so for the city element only valid elements were used as training examples.
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in the sample. For instance, for genetics, no a11 element occurs in the sample
so it obviously cannot be part of the derived expression. The element refinfo
illustrates that a3 and a4 are mutually exclusive in the sample and that a8 is
never followed by a9. Inspecting the original DTD illustrates the underlying
semantics:

authors, citation, volume?, month?, year,

pages?, (title | description)?, xrefs?

Indeed, volume is used in the context of a journal, while month is used for a
conference publication. Apart from the authors element xtract either pro-
duces a suboptimal expression or no expression at all. For instance, xtract
crashes on the ProteinE(ntry) sample due to excessive memory consumption
(more than 1 GB of RAM). Reducing the size of the sample to approximately
800 unique words yields a complex expression of 185 tokens.

Real-world regular expressions Table 2.3 lists the results of the algo-
rithms on a number of more sophisticated regular expressions extracted from
real-world DTDs discussed in [BNV04]. Since no real-world data was available
for those DTDs, we have randomly generated samples using ToXgene [BM06],
taking care that all relevant examples where present to ensure the target ex-
pression could be learned. Again, we list the sample size in the first column.
As some of these numbers might seem artificially large, we note that, for
instance, the SOA corresponding to example3 already contains 1897 edges.
Hence, a random data set of 5741 words is not unreasonably large. Note that
only the first three expressions in Table 2.3 are SOREs, none of them are
CHAREs. The table shows clearly that crx yields fairly good and concise
super-approximations to the original expressions. In some cases, the results
produced by rwr are more precise. For xtract, the size of the sample had to
be limited to 300–500 in order to avoid a crash. As can be seen from the table,
xtract performed excellently on the first example, but failed to generate an
expression that fitted the table in all other cases on all the sample sets we
tried.

Trang We ran Trang [Cla03] on the XML data discussed in this section.
In all but one case, Trang produced exactly the same output as crx, with a
notable exception: for example1 Trang’s output depends on the order in which
the examples are presented, yielding either a1

∗a2?a3
∗ or a1

+ | (a2?a3
+). The

former is the same output as crx, the latter is the intended RE that cannot
be derived by crx as it is outside the class of CHAREs. This inconsistency in
Trang’s output casts some doubt on its correctness and underscores the need
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Element Original DTD

Sample Result of crx/rwr

size Result of xtract

ProteinE. a1a2a3a4
∗a5

∗a6
∗a7

∗a8
∗a9?a10?a11

∗a12a13

2458 a1a2a3a4
+a5

∗a6
∗a7

∗a8
∗a9?a10?a11

∗a12a13

843 an expression of 185 tokens

organism a1a2?a3a4?a5
∗

9 a1a2?a3a4?a5
∗

9 a1((a2a3a4?+a3a4)a5?+a3a5
∗)

reference a1a2
∗a3

∗a4
∗

45 a1a2
∗a3

∗a4
∗

45 a1(a2
∗(a4

∗+a3
∗)+a2a3

∗a4a4+a3
∗a4

∗)

refinfo a1a2a3?a4?a5a6?(a7+a8)?a9?

10 a1a2(a3+a4)?a5a6?a7?a9?a8?

10 a1a2((a3a5a6a7?+a4a5)a9?+a5(a7+a8)?+a4a5a8)

authors a1
++(a2a3?)

54 a1
∗a2?a3? / a1

++(a2a3)

54 a1
∗+a2a3

accinfo a1a2
∗a3

∗a4?a5?a6?a7
∗

124 a1a2
∗a3

+a4?a5?a6?a7
∗

124 an expression of 97 tokens
genetics a1

∗a2?a3?a4?a5?a6?a7?a8?a9?a10?a11
∗a12

∗

219 a1
∗a2?a3?a4?a5?a6?a7?a8?a9?a10?a12

∗

219 an expression of 329 tokens
function a1?a2

∗a3
∗

26 a1?a2
∗a3

∗

26 (a1(a2?a2?a3
∗+a2

∗(a3a3)∗+a2a2a2a3)+a2(a2a3
∗+a3

∗))

city a1a2
∗a3

∗

9 a1a2
∗a3

∗

9 a1(a2
∗a3a3?+a2(a3

∗+a2))?

Table 2.2: Results of rwr, crx and xtract on DTDs and sample data from
the Protein Description Database and the Mondial corpora. The left column
gives element names, sample size for crx/rwr and sample size for xtract,
respectively. The right column lists original DTD, inferred DTD by crx/rwr
and the result of xtract, in that order.
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Element Original DTD

Result of crx

Sample Result of rwr

size Result of xtract

example1 a1
+ | (a2?a3

+)

48 a1
∗a2?a3

∗

48 a1
+ | (a2?a3

+)

48 a1
∗ | (a2?a3

∗)

example2 (a1a2?a3?)?a4?(a5 | · · · | a18)∗

2210 a1?a2?a3?a4?(a5 | · · · | a18)∗

2210 (a1a2?a3?)?a4?(a5 | · · · | a18)∗

300 an expression of 252 tokens

example3 a1?(a2a3?)?(a4 | · · · | a44)∗a45
+

5741 a1?a2?a3?(a4 | · · · | a44)∗a45
+

5741 a1?(a2a3?)?(a4 | · · · | a44)∗a45
+

400 an expression of 142 tokens

example4 a1?a2a3?a4?(a5
+ | ((a6 | · · · | a61)+a5

∗))

10000 a1?a2a3?a4?(a6 | · · · | a61)∗a5
∗

10000 a1?a2a3?a4?(a6 | · · · | a61)∗a5
∗

500 an expression of 185 tokens

example5 a1(a2 | a3)∗(a4(a2 | a3 | a5)∗)∗

1281 a1(a2 | a3 | a4 | a5)∗

1281 a1((a2 | a3 | a4)+a5
∗)

∗

500 an expression of 85 tokens

Table 2.3: Results of rwr, crx and xtract on non-simple real-world DTDs
and generated data. The left column gives element names, sample size for
crx, rwr and xtract, respectively. The right column lists original DTD,
inferred DTD by crx, by rwr and the result of xtract, in that order.
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for a formal model as the cornerstone of an implementation. Indeed, there
is no article or manual available describing the machinery underlying Trang.
A look at the Java-code indicates that Trang is related to but different from
crx: it uses 2t-inf to construct an automaton, eliminates cycles by merging
all nodes in the same strongly connected component, and then transforms the
obtained DAG into a regular expression. However, no target class of REs for
which Trang is complete, as is the case for crx, is specified. As Trang is
similar to crx, it is outperformed by rwr and rwr2

` .

2.5.2 rwr versus rwr2
`

We tested the results and performance of rwr versus rwr2
` for various values

of the rank cut-off parameter `. The SOAs used in this test were randomly
generated with 5 and 10 alphabet symbols. The results are summarized in
Table 2.4. We computed the average language size of the SOAs, which is the
target size. It should be noted that since no SORE corresponds to these SOAs,
the target size can never be attained since the regular expression resulting from
rwr or rwr2

` will necessarily be a generalization of the SOA’s language. It is
immediately clear from Table 2.4 that results of rwr2

` are on average better
than those for rwr, and that they improve with increasing values of `. For
expressions of alphabet size 5, we were able to consider all possible repairs,
resulting in the entry for ` = ∞ in Table 2.4. This represents the smallest
language that includes the SOA’s language and that can be expressed by a
SORE.

Of course, the results in Table 2.4 are averaged over 1000 randomly chosen
SOAs. A more detailed analysis reveals that for a considerable number of
SOAs, rwr actually outperforms rwr2

` for ` = 1. Table 2.5 shows the number
of times rwr outperforms rwr2

` for various values of `. The probability that
rwr outperforms rwr2

` drops rapidly for increasing values of `, especially for
larger alphabet sizes. The last line in Table 2.5 lists the probability that rwr
derives the optimal result, i.e., that the smallest language representable by a
SORE is obtained for expressions of alphabet size 5.

Although the rwr2
` algorithm clearly outperforms rwr in terms of the

language size of the derived expression, there is a compelling argument in the
latter’s favor. In terms of running time, rwr outperforms rwr2

` with a few
orders of magnitude as is discussed in Section 2.5.5.

2.5.3 Incomplete data

Unfortunately, in a real-world setting an available sample may simply contain
too little information to learn the target regular expression. To formalize this,
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|Σ| = 5 |Σ| = 10
target size 0.52 0.67

rwr0 0.88 0.98
rwr 0.80 0.96
rwr2

`

1 0.76 0.95
2 0.73 0.92
3 0.725 0.916
4 0.722 0.911
5 0.721 0.908
∞ 0.720 N/A

Table 2.4: Average language size for rwr and rwr2
` for various values of `.

` =∞ denotes an exhaustive exploration of all possible repairs.

rwr2
` |Σ| = 5 |Σ| = 10

1 28.8 % 46.3 %
2 7.6 % 7.3 %
3 3.2 % 1.2 %
4 1.3 % 0.0 %
5 0.7 % 0.0 %
∞ 24.6 % N/A

Table 2.5: Percentage of target expressions for which rwr outperforms rwr2
` .

we introduce the notion of coverage.

Definition 2.46. A sample S covers a deterministic automaton A if for every
edge (s, t) in A there is a word w ∈ S whose unique accepting run in A
traverses (s, t). Such a word w is called a witness for (s, t). A sample S
covers a deterministic regular expression r if it covers the automaton obtained
from S using the Glushkov construction for translating regular expressions
into automata [BK93].

If a sample S does not contain a witness for an edge, it may seem as if
the target expression can not be learned, even if it is a SORE since the SOA
derived from the data has an edge missing. However, the repair rules introduce
extra edges, so this part of the algorithm may actually alleviate the problem
of incomplete data. This is indeed confirmed experimentally. It turns out
that even with a substantial fraction of missing witnesses, the target regular
expression can be learned with an astonishing degree of success. To quantify
the missing information, we introduce the following definition:
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Definition 2.47. The coverage of a sample with respect to a target expression
r is the ratio of the number of edges of the SOA derived from the sample and
the SOA representing the target expression r.

The tests were done on 100 real-world regular expressions of alphabet
sizes up to 10, for 10 independently selected samples of varying coverage. The
results are presented in Table 2.6. The straightforward crx is clearly out-
performing all other algorithms, although this results should be approached
with some caution: to give crx a fair chance, the target expressions for this
algorithm were limited to CHAREs, while the other algorithms were tested on
general SOREs as well. Note that approximately 90 % of real-world expres-
sions are in fact CHAREs, hence its superior performance is not only due to
simpler target expressions. The robustness of rwr2

1 is quite remarkable since
it tends to derive more specific regular expressions than rwr0 and rwr. One
would expect the generalization ability to decrease for algorithms that yield
more specific results. This expectation is borne out when one compares rwr0

and rwr, however, rwr2
1’s greedy application of the repair rules seems to pay

off in the context of incomplete data as well.

coverage crx rwr0 rwr rwr2
1

25.0 85 % 56 % 12 % 73 %
35.0 87 % 48 % 32 % 73 %
45.0 96 % 60 % 57 % 74 %
55.0 87 % 58 % 63 % 57 %
65.0 82 % 48 % 58 % 59 %
75.0 80 % 51 % 51 % 63 %
85.0 63 % 48 % 47 % 53 %
92.5 57 % 48 % 47 % 61 %
97.5 85 % 74 % 64 % 73 %
100.0 100 % 100 % 100 % 100 %

Table 2.6: Percentage of successfully derived expressions at various values of
sample coverage for crx, rwr0, rwr and rwr2

1.

2.5.4 Noise

As already noted in the Introduction, real-worlds samples need not be valid
with respect to its known schema. Errors crop up due to all sorts of circum-
stances. This underscores the need for a robust inference algorithm that can
handle some noise in the input sample.

Noise can come in several forms. To generate a noisy subsample, we modify
the target expression either by replacing a symbol by a different one from the
target’s expression, or by replacing it by a symbol that is not in the alphabet of
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the target expression. We than use the modified target expression to generate
a complete sample. We define the noise level as follows:

Definition 2.48. Given a target expression r, the noise level of a sample S
is the ratio |S − L(r)|/|S|.

Here we propose an approach to filter the sample S based on the probability
of its words being generated by a probabilistic automaton as we also use in
Section 3.2. This probabilistic automaton has one state for each alphabet
symbol, and the transition probabilities are computed using the Baum-Welsh
algorithm. Given the probabilistic automaton, it is straightforward to compute
the probability for each w ∈ S, so that one can rank the sample’s words. One
expects words that contain noise, i.e., that would be rejected by the target
regular expression, to have low probability if their number is not excessively
large compared to the sample’s size.

To filter the sample, hoping to exclude those words that contain noise, we
compute the mean µ and standard deviation σ of the sample’s probabilities. A
string w ∈ S with probability P (w) is excluded if P (w) < µ− ασ. The factor
α is a parameter of the algorithm. The filtered sample S′ is now used to derive
a regular expression. It is of course possible that in the generation of S′ some
words needed to derive the target expression were removed. Hence there is no
guarantee that the derived regular expression will be an overapproximation of
the target expression. Experimental results will be discussed in Section 2.5.4.

Since it was shown above that rwr2
1 has the best overall performance,

we focus solely on this algorithm in this section. In order to investigate how
robust rwr2

1 is with respect to noise we apply the algorithm to samples S
with increasing noise levels and consider a range of values for the cut-off α.
We compute the precision and the recall for each individual expression and
use the average values of these quantities over many expressions to compute
the F -value for a given noise level and cut-off so that the optimal cut-off point
can be determined.

To define precision and recall, consider the sample S = Svalid ∪ Sinvalid,
where Svalid ⊆ S contains the words in S accepted by the target expression
and Sinvalid contains the words in S not accepted by the target expression. A
true positive is a word in Svalid that is accepted by the derived expression, while
a false negative is a word in Svalid that is rejected by the derived expression.
Similarly, a false positive is a word in Sinvalid that is accepted by the derived
expression, while a true negative is a word in Sinvalid that is rejected by the
derived expression. We denote by St.p. the set of true positives, by St.n. the
set of true negatives, by Sf.p. the set of false positives and by Sf.n. the set of
false negatives.
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Definition 2.49. The precision p, recall r, and F -value of a derived regular
expression on a sample S are given by

p =
|St.p.|

(|St.p.|+ |Sf.p.|)

r =
|St.p.|

(|St.p.|+ |Sf.n.|)

F =
2pr

p + r

Furthermore, we are interested in the fraction of derived regular expressions
that is equivalent to the target expression.

We average over 580 SOREs obtained from a corpus of real-world DTDs.
The results are shown in Figure 2.21. From the F -value we can conclude that
a cut-off value αF ≈ 0.7 yields the best balance between precision and recall.
Figure 2.22 shows the fraction of derived regular expressions that is equivalent
to the target expression. For noise levels increasing from 0.01 to 0.05, the F -
value as well as the percentage of derived expressions equivalent to the target
expression gradually decreases, as is to be expected. It should be noted that
a recall r < 1 implies that the language represented by the derived regular
expression is not a superset of the target’s language. For the cut-off αF , and
a noise level of 0.01, approximately 16 % of the derived regular expressions
allow false negatives, while the value for a noise level of 0.05 is 15 %. The fact
that the derived expression is not a superapproximation may or may not be
acceptable, depending on the application.

Another interesting observation is that the number of derived expressions
that is equivalent to the target expression increases beyond the cut-off value
αF , see Figure 2.22. For a noise level of 0.01, this trend continues up to cut-
off values of αequiv. ≈ 0.3 where it reaches a maximum of approximately 53
%. However, at this value 20 % of the derived regular expressions are not
superapproximations to their target expressions. For α < αequiv., the F -value
decreases rapidly. For higher noise levels, the optimal cut-off value αequiv. is
smaller, but since it is very unlikely that one knows the noise level, it is hard
to take advantage of this fact by tuning αequiv. to a specific noise level. The
overall best result will be obtained for αequiv. ≈ 0 for noise levels not exceeding
0.05.

It should be noted that for a noise level of 0.01 at αequiv., out the 53
% of derived regular expression that are equivalent to the target expression,
about 7 % is not covered by the sample. The latter illustrates once more the
generalization ability of the algorithms rwr2

1 as was discussed in Section 2.5.3.



2.5. Experimental evaluation 69

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

-0.5  0  0.5  1

Figure 2.21: F -value as a function of the cut-off value α for noise levels of 0.01
(squares), 0.02 (circles), 0.05 (triangles)

2.5.5 Performance

As mentioned previously, the one advantage rwr has over rwr2
` is that the

former’s running time is much lower than the latter’s. This is illustrated
in Table 2.7 for 1000 target expressions of alphabet size 10. It also shows
the relative running time for rwr0, illustrating that rwr outperforms both
rwr0 and rwr2

` for any value of `. However, it is interesting to note that
rwr2

1 outperforms rwr0 by a factor of 3, and derives more specific regular
expressions, again illustrating the superiority of the new algorithms over rwr0.

relative running time
rwr0 6 · 102

rwr2
`

1 2 · 102

2 2 · 103

3 1 · 104

4 4 · 104

5 1 · 105

Table 2.7: Relative running times of rwr2
` versus rwr for various values of `.

The performance of rwr is excellent: on average it takes only ms to derive
an expression of alphabet size 10. Table 2.8 shows actual running times as a
function of the target expressions’ alphabet size, averaged over 1000 random
expressions of that alphabet size.
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Figure 2.22: Fraction of derived expressions equivalent to the target expression
as a function of the cut-off value α for noise levels of 0.01 (squares), 0.02
(circles), 0.05 (triangles)

|Σ| time (ms)
5 2
10 5
15 15
20 33
50 616
100 7562

Table 2.8: Average running times in milliseconds for rwr as a function of
alphabet size

With respect to the performance in terms of the number of examples, we
showed in previous work rwr0’s was adequate to deal with large data sets.
Example4 with 61 symbols in Table 2.3 is derived from 10000 example words in
7 seconds while crx only needs 3.2 seconds. More typical expressions of about
10 symbols derived from a few hundred examples take approximately a second.
These figures include the time to initialize a Java Virtual Machine while the
tests are done on a 2.5 GHz P4 with 512 MB of RAM. Given that rwr and
rwr2

1 outperform rwr0 and the time required to start the virtual machine
and parse the data is independent of the algorithm, our new algorithms are
adequate as well. Trang slightly outperforms crx thanks to very efficient
XML parsing. We did not make a detailed comparison with xtract for the
reason that xtract can not handle samples with more than 1000 words.
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2.6 Conclusion

We introduced novel algorithms for the inference of concise regular expres-
sions from positive data. For the inference of SOREs, rwr2

` was shown to
yield the best experimental results. It is also quite robust when presented
with incomplete and noisy data. We show that the quality of inferred ex-
pressions on real-world and synthetic data sets outperforms those returned by
xtract where crx is similar to Trang. crx’ generalization ability makes it
highly qualified in dealing with very small data sets. Further, rwr, rwr2

` and
crx always infer succinct expressions by definition which can easily be inter-
preted by humans. Of independent interest, we introduced a new algorithm
to transform automata into short, readable regular expressions.





3
Inferring k-occurrence regular
expressions

While Chapter 2 focused on single occurrence regular expressions, here we
broaden the scope to a larger class. The regular expressions occurring in
practical DTDs and XSDs are such that every alphabet symbol occurs only
a small number of times. As such, to infer an appropriate DTD or XML
Schema Definition, in practice it suffices to learn the subclass of deterministic
regular expressions in which each alphabet symbol occurs at most k times, for
some small k. We refer to such expressions as k-occurrence regular expressions
(k-OREs for short). Motivated by this observation, we provide a probabilis-
tic algorithm that learns k-OREs for increasing values of k, and selects the
deterministic one that best describes the sample based on a Minimum Descrip-
tion Length and a language size argument. The effectiveness of the method
is empirically validated both on real world and synthetic data. Furthermore,
the method is shown to be conservative over the simpler classes of expressions
considered in Chapter 2.

73
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3.1 Background

In this section we establish that, in contrast to the class of all deterministic
expressions, the subclass of deterministic k-OREs can theoretically be learned
in the limit from positive data, for each fixed k. We also argue, however, that
this theoretical algorithm is unlikely to work well in practice.

Let Σ(r) denote the set of alphabet symbols that occur in a regular ex-
pression r, and let Σ(S) be similarly defined for a sample S. Define the length
of a regular expression r as the length of it string representation, including
operators and parenthesis. For example, the length of (a . b)+? + c is 9.

Theorem 3.1. For every k there exists an algorithm M that learns the class
of deterministic k-OREs from positive data. Furthermore, on input S, M
runs in time polynomial in the size of S, yet exponential in k and |Σ(S)|.

Proof. The algorithm M is based on the following observations. First observe
that every deterministic k-ORE r over a finite alphabet A ⊆ Σ can be sim-
plified into an equivalent deterministic k-ORE r′ of length at most 10k|A| by
rewriting r according to the following system of rewrite rules until no more
rule is applicable:

((s)) → (s) s?+ → s+?
s?? → s? s++ → s+

s + ε → s? ε + s → s?
s . ε → s ε . s → s
ε? → ε ε+ → ε

s + ∅ → s ∅+ s → s
s . ∅ → ∅ ∅ . s → ∅
∅? → ∅ ∅+ → ∅

(The first rewrite rule removes redundant parenthesis in r.) Indeed, since each
rewrite rule clearly preserves determinism and language equivalence, r′ must
be a deterministic expression equivalent to r. Moreover, since none of the
rewrite rules duplicates a subexpression and since r is a k-ORE, so is r′. Now
note that, since no rewrite rule applies to it, r′ is either ∅, ε, or generated by
the following grammar

t ::= a | a? | a+ | a+? | (a) | (a)? | (a)+ | (a)+?
| t1 . t2 | (t1 . t2) | (t1 . t2)? | (t1 . t2)+ | (t1 . t2)+?
| t1 + t2 | (t1 + t2) | (t1 + t2)? | (t1 + t2)+ | (t1 + t2)+?

It is not difficult to verify by structural induction that any expression t pro-
duced by this grammar has length

|t| ≤ −4 + 10
∑

a∈Σ(t)

rep(t, a),
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where rep(t, a) denotes the number of times alphabet symbol a occurs in t.
For instance, rep(b .(b+c), a) = 0 and rep(b .(b+c), b) = 2. Since rep(r′, a) ≤ k
for every a ∈ Σ(r′), it readily follows that |r′| ≤ 10k|A| − 4 ≤ 10k|A|.

Then observe that all possible regular expressions over A of length at most
10k|A| can be enumerated in time exponential in k|A|. Since checking whether
a regular expression is deterministic is decidable in polynomial time [BKW98];
and since equivalence of deterministic expressions is decidable in polynomial
time [BKW98], it follows by the above observations that for each k and each
finite alphabet A ⊆ Σ it is possible to compute in time exponential in k|A|
a finite set RA of pairwise non-equivalent deterministic k-OREs over A such
that

� every r ∈ RA is of size at most 10k|A|; and

� for every deterministic k-ORE r over A there exists an equivalent ex-
pression r′ ∈ RA.

(Note that since RA is computable in time exponential in k|A|, it has at
most an exponential number of elements in k|A|.) Now fix, for each finite
A ⊆ Σ an arbitrary order ≺ on RA, subject to the provision that r ≺ s only
if L(r) − L(s) 6= ∅. Such an order always exists since RA does not contain
equivalent expressions.

Then let M be the algorithm that, upon sample S, computes RΣ(S) and
outputs the first (according to ≺) expression r ∈ RΣ(S) for which S ⊆ L(r).
Since RΣ(S) can be computed in time exponential in k|Σ(S)|; since there are
at most an exponential number of expressions in RΣ(S); since each expression
r ∈ RΣ(S) has size at most 10k|Σ(S)|; and since checking membership in L(r)
of a single word w ∈ S can be done in time polynomial in the size of w and r,
it follows that M runs in time polynomial in S and exponential in k|Σ(S)|.

Furthermore, we claim that M learns the class of deterministic k-OREs.
Clearly, S ⊆ L(M(S)) by definition. Hence, it remains to show completeness,
i.e., that we can associate to each deterministic k-ORE r a sample Sr ⊆ L(r)
such that, for each sample S with Sr ⊆ S ⊆ L(r), M(S) is equivalent to
r. Note that, by definition of RΣ(r), there exists a deterministic k-ORE r′ ∈
RΣ(r) equivalent to r. Initialize Sr to an arbitrary finite subset of L(r) = L(r′)
such that each alphabet symbol of r occurs at least once in S, i.e., Σ(Sr) =
Σ(r). Let r1 ≺ · · · ≺ rn be all predecessors of r′ in RΣ(r) according to ≺. By
definition of ≺, there exists a word wi ∈ L(r)−L(ri) for every 1 ≤ i ≤ n. Add
all of these words to Sr. Then clearly, for every sample S with Sr ⊆ S ⊆ L(r)
we have Σ(S) = Σ(r) and S 6⊆ L(ri) for every 1 ≤ i ≤ n. Since M(S) is the
first expression in RΣ(r) with S ⊆ L(r), we hence have M(S) = r′ ≡ r, as
desired.
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While Theorem 3.1 shows that the class of deterministic k-OREs is better
suited for learning from positive data than the complete class of deterministic
expressions, it does not provide a useful practical algorithm, for the following
reasons.

1. First and foremost, M runs in time exponential in the size of the alphabet
Σ(S), which may be problematic for the inference of schema’s with many
element names.

2. Second, while Theorem 3.1 shows that the class of deterministic k-OREs
is learnable in the limit for each fixed k, the schema inference setting is
such that we do not know k a priori. If we overestimate k then M(S)
risks being an under-approximation of the target expression r, especially
when S is incomplete. To illustrate, consider the 1-ORE target expres-
sion r = a+b+ and sample S = {ab, abbb, aabb}. If we overestimate k
to, say, 2 instead of 1, then M is free to output aa?b+ as a sound an-
swer. On the other hand, if we underestimate k then M(S) risks being
an over-approximation of r. Consider, for instance, the 2-ORE target
expression r = aa?b+ and the same sample S = {ab, abbb, aabb}. If we
underestimate k to be 1 instead of 2, then M can only output 1-OREs,
and needs to output at least a+b+ in order to be sound. In summary:
we need a method to determine the most suitable value of k.

3. Third, the notion of learning in the limit is a very liberal one: correct
expressions need only be derived when sufficient data is provided, i.e.,
when the input sample is a superset of the characteristic sample for the
target expression r. The following theorem shows that there are reason-
ably simple expressions r such that characteristic sample Sr of any sound
and complete learning algorithm is at least exponential in the size of r.
As such, it is unlikely for any sound and complete learning algorithm to
behave well on real-world samples, which are typically incomplete and
hence unlikely to contain all words of the characteristic sample.

Theorem 3.2. Let A = {a1, . . . , an} ⊆ Σ consist of n distinct element names.
Let r1 = (a1a2+a3+ · · ·+an)+, and let r2 = (a2+ · · ·+an)+a1(a2+ · · ·+an)+.
For any algorithm that learns the class of deterministic (2n + 3)-OREs and
any sample S that is characteristic for r1 or r2 we have |S| ≥

∑n
i=1(n− 2)i.

Proof. First consider r1 = (a1a2 +a3 + · · ·+an)+. Observe that there exist an
exponential number of deterministic (2n+3)-OREs that differ from r1 in only
a single word. Indeed, let B = A−{a1, a2} and let W consist of all non-empty
words w over B of length at most n. Define, for every word w = b1 . . . bm ∈W
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the deterministic (2n + 3)-ORE rw such that L(rw) = L(r1)−{w} as follows.
First, define, for every 1 ≤ i ≤ m the deterministic 2-ORE ri

w that accepts all
words in L(r1) that do not start with bi:

ri
w := (a1a2 + (B − {bi})) .(a1a2 + a3 + · · ·+ an)∗

Clearly, v ∈ L(r1)−{w} if, and only if, v ∈ L(r1) and there is some 0 ≤ i ≤ m
such that v agrees with w on the first i letters, but differs in the (i + 1)-th
letter. Hence, it suffices to take

rw := r1
w + b1(ε + r2

w + b2(ε + r3
w + b3(· · ·+ bm−1(ε + rm

w + bm . r1) . . . )))

Now assume that algorithm M learns the class of deterministic (2n+3)-OREs
and suppose that Sr1 is characteristic for r1. In particular, Sr1 ⊆ L(r1).
By definition, M(S) is equivalent to r for every sample S with Sr1 ⊆ S ⊆
L(r1). We claim that in order for M to have this property, W must be a
subset of Sr. Then, since W contains all words over B of length at most n,
|Sr1 | ≥

∑n
i=1(n − 2)i, as desired. The intuitive argument why W must be a

subset of Sr is that if there exists w in W − Sr, then M cannot distinguish
between r1 and rw. Indeed, suppose for the purpose of contradiction that
there is some w ∈ W with w 6∈ Sr1 . Then Sr1 is a subset of L(rw). Indeed,
Sr1 = Sr1 − {w} ⊆ L(r1) − {w} = L(rw). Furthermore, since M learns the
class of deterministic (2n+3)-OREs, there must be some characteristic sample
Srw for rw. Now, consider the sample Sr1 ∪ Srw . It is included in both L(r1)
and L(rw) and is a superset of both Sr1 and Srw . But then, by definition of
characteristic samples, M(Sr1 ∪ Srw) must be equivalent to both r1 and rw.
This is absurd, however, since L(r1) 6= L(rw) by construction.

A similar argument shows that the characteristic sample Sr2 of r2 = (a2 +
· · ·+ an)+a1(a2 + · · ·+ an)+ also requires

∑n
i=1(n− 2)i elements. In this case,

we take B = A − {a1} and we take W to be the set of all non-empty words
over B of length at most n. For each w = b1 . . . bm ∈ W , we construct the
deterministic (2n+3)-ORE rw such that L(rw) accepts all words in L(r) that
do not end with a1w, as follows. Let, for 1 ≤ i ≤ m, ri

w be the 2-ORE that
accepts all words in B+ that do not start with bi:

ri
w := (B − {bi}) . B∗

Then it suffices to take

rw := B+a1(ri
w + b1(ε + r2

w + b3(· · ·+ bm−1(ε + rm
w + bmB+) . . . ))).

A similar argument as for r1 then shows that the characteristic sample Sr2 of
r2 needs to contain, for each w ∈W , at least one word of the form va1w with
v ∈ B+. Therefore, |Sr2 | ≥

∑n
i=1(n− 2)i, as desired.
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3.2 The learning algorithm

In view of the observations made in Section 3.1, we present in this section a
practical learning algorithm that (1) works well on incomplete data and (2)
automatically determines the best value of k. Specifically, given a sample S,
the algorithm derives deterministic k-OREs for increasing values of k and
selects from these candidate expressions the k-ORE that describes S best. To
determine the “best” expression we propose two measures: (1) a Language
Size measure and (2) a Minimum Description Length measure based on the
work of Adriaans and Vitányi [AV06].

Our algorithm does not derive deterministic k-OREs for S directly, but
uses, for each fixed k, a probabilistic method to first learn an automaton for S,
which is subsequently translated into a k-ORE. Section 3.2.1 explains how the
probabilistic method that learns an automaton from S works. Section 3.2.2
explains how the learned automaton is translated into a k-ORE. Finally,
Section 3.2.3, introduces the whole algorithm, together with the two measures
to determine the best candidate expression.

3.2.1 Probabilistically learning an deterministic automaton

The algorithm first learns a deterministic k-occurrence automaton (determin-
istic k-OA) for S. This is a specific kind of finite state automaton in which
each alphabet symbol can occur at most k times. Figure 3.1(a) gives an ex-
ample. Note that in contrast to the classical definition of an automaton, no
edges are labeled: all incoming edges in a state s are assumed to be labeled
by the label of s. In other words, the 2-OA of Figure 3.1(a) accepts the same
language as aa?b+.

Definition 3.3 (k-OA). An automaton is a node-labeled graph G = (V,E, lab)
where

� V is a finite set of nodes (also called states) with a distinguished source
src ∈ V and sink sink ∈ V ;

� the edge relation E is such that src has only outgoing edges; sink has
only incoming edges; and every state v ∈ V −{src, sink} is reachable by
a walk from src to sink ;

� lab : V − {src, sink} → Σ is the labeling function.

In this context, an accepting run for a word a1 . . . an is a walk src s1 . . . sn sink
from src to sink in G such that ai = lab(si) for 1 ≤ i ≤ n. As usual, we
denote by L(G) the set of all words for which an accepting run exists. An
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a a

b

(a) An example 2-OA. It accepts
the same language as aa?b+

a

b

a

b

(b) The complete 2-OA over
{a, b}.

automaton is k-occurrence (a k-OA) if there are at most k states labeled by
the same alphabet symbol. If G uses only labels in A ⊆ Σ then G is said to
be an automaton over A.

In what follows, we write Succ(s) for the set {t | (s, t) ∈ E} of all direct
successors of state s in G, and Pred(s) for the set {t | (t, s) ∈ E} of all direct
successors of s in G. Furthermore, we write Succ(s, a) and Pred(s, a) for the
set of states in Succ(s) and Pred(s), respectively, that are labeled by a. As
usual, an automaton G is deterministic if Succ(s, a) contains at most one state,
for every s ∈ V and a ∈ Σ.

Note that 1-OAs and SOAs are clearly equivalent definitions for the same
concept. For that reason we will also refer to the 1-OAs as SOAs in this
chapter.

We learn a deterministic k-OA for a sample S as follows. First, recall from
Section 3.1 that Σ(S) is the set of alphabet symbols occurring in words in S.
We view S as the result of a stochastic process that generates words from Σ∗

by performing random walks on the complete k-OA Ck over Σ(S).

Definition 3.4. Define the complete k-OA Ck over Σ(S) to be the k-OA
G = (V,E, lab) over Σ(S) in which each a ∈ Σ(S) labels exactly k states such
that

� there is an edge from src to sink ;

� src is connected to exactly one state labeled by a, for every a ∈ Σ(S);
and

� every state s ∈ V −{src, sink} has an outgoing edge to every other state
except src.

To illustrate, the complete 2-OA over {a, b} is shown in Figure 3.1(b).
Clearly, L(Ck) = Σ(S)∗.

The stochastic process that generates words from Σ∗ by performing random
walks on Ck operates as follows. First, the process picks, among all states in
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Succ(src), a state s1 with probability α(src, s1) and emits lab(s1). Then it
picks, among all states in Succ(s1) a state s2 with probability α(s1, s2) and
emits lab(s2). The process continues moving to new states and emitting their
labels until the final state is reached (which does not emit a symbol). Of
course, α must be a true probability distribution, i.e.,

α(s, t) ≥ 0; and
∑

t∈Succ(s)

α(s, t) = 1 (3.1)

for all states s 6= sink and all states t. The probability of generating a par-
ticular accepting run ~s = src s1s2 . . . sn sink given the process P = (Ck, α) in
this setting is

P [~s | P] = α(src, s1) · α(s2, s3) · α(s2, s3) · · ·α(sn, sink),

and the probability of generating the word w = a1 . . . an is

P [w | P] =
∑

all accepting runs ~s of w in Ck

P [~s | P].

Assuming independence, the probability of obtaining all words in the sample
S is then

P [S | P] =
∏
w∈S

P [w | P].

Clearly, the process that best explains the observation of S is the one in which
the probabilities α are such that they maximize P [S | P].

To learn a deterministic k-OA for S we therefore first try to infer from S the
probability distribution α that maximizes P [S | P], and use this distribution
to determine the topology of the desired deterministic k-OA. In particular,
we remove from Ck the non-deterministic edges with the lowest probability as
these are the least likely to contribute to the generation of S, and are therefore
the least likely to be necessary for the acceptance of S.

The problem of inferring α from S is well-studied in Machine Learning,
where our stochastic process P corresponds to a particular kind of Hidden
Markov Model sometimes referred to as a Partially Observable Markov Model
(POMM for short). (For the readers familiar with Hidden Markov Models we
note that the initial state distribution π usually considered in Hidden Markov
Models is absorbed in the state transition distribution α(src, ·) in our context.)
Inference of α is generally accomplished by the well-known Baum-Welsh algo-
rithm [Rab89] that adjusts initial values for α until a (possibly local) maximum
is reached.

We use Baum-Welsh in our learning algorithm iKoa shown in Algorithm 8,
which operates as follows. In line 1, iKoa initializes the stochastic process P
to the tuple (Ck, α) where
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Algorithm 8 iKoa

Input: a sample S, a value for k
Output: a deterministic k-OA G with S ⊆ L(G)
1: P ← init(k, S)
2: P ← BaumWelsh(P, S)
3: G← Disambiguate(P, S)
4: G← Prune(G, S)
5: return G

� Ck is the complete k-OA over Σ(S);

� α(src, sink) is the fraction of empty words in S;

� α(src, s) is the fraction of words in S that start with lab(s), for every
s ∈ Succ(src); and

� α(s, t) is chosen randomly for s 6= src, subject to the constraints in
equation (3.1).

It is important to emphasize that, since we are trying to model a stochastic
process, multiple occurrences of the same word in S are important. A sample
should therefore not be considered as a set in Algorithm 8, but as a bag. Line
2 then optimizes the initial values of α using the Baum-Welsh algorithm.

With these probabilities in hand Disambiguate, shown in Algorithm 9,
determines the topology of the desired deterministic k-OA for S. In a breadth-
first manner, it picks for each state s and each symbol a the state t ∈ Succ(s, a)
with the highest probability and deletes all other edges to states labeled by
a. Line 7 merely ensures that α continues to be a probability distribution
after this removal and line 11 adjusts α to the new topology. Line 12 is a
sanity check that ensures that we have not removed edges necessary to accept
all words in S; Disambiguate reports failure otherwise. The result of a
successful run of Disambiguate is a deterministic k-OA which nevertheless
may have edges (s, t) for which there is no witness in S (i.e., a word in S
whose unique accepting run traverses (s, t)). The function Prune in line 4 of
iKoa removes all such edges. It also removes all states s ∈ Succ(src) without
a witness in S. Figure 3.1 illustrates a hypothetical run of iKoa.

It should be noted that BaumWelsh, which iteratively refines α until a
(possibly local) maximum is reached, is computationally quite expensive. For
that reason, our implementation only executes a fixed number of refinement
iterations of BaumWelsh in Line 11. Rather surprisingly, this cut-off actually
improves the precision of iDRegEx, as our experiments in Section 3.3 show,
where it is discussed in more detail.
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a1

b1

a2

b2

α a1 a2 b1 b2 sink
src 1 \ 0 \ 0
a1 0.2 0.3 0.3 0.1 0.1
a2 0.4 0.1 0.2 0.1 0.2
b1 0.1 0.3 0.3 0.2 0.1
b2 0.1 0.1 0.2 0.5 0.1

(c) Process P returned by init
with random values for α.

a1

b1

a2

b2

α a1 a2 b1 b2 sink
src 1 \ 0 \ 0
a1 0.2 0.3 0.3 0.19 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.01 0.01 0.5 0.28 0.2
b2 0.01 0.01 0.33 0.5 0.15

(d) Process P after first training
by BaumWelsh.

a1

b1

a2

b2

α a1 a2 b1 b2 sink
src 1 \ 0 \ 0
a1 0 0.5 0.49 0 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.01 0.01 0.5 0.28 0.2
b2 0.01 0.01 0.33 0.5 0.15

(e) Process P after first disam-
biguation step (for a1). Edges to
a1 and b2 are removed.

a1

b1

a2

b2

α a1 a2 b1 b2 sink
src 1 \ 0 \ 0
a1 0 0.5 0.49 0 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.02 0 0.78 0 0.2
b2 0.01 0.01 0.38 0.4 0.2

(f) Process P after second disam-
biguation step (for b1). Edges to
a2 and b2 are removed.

a

b

a

b

(g) Automaton A returned by
Disambiguate.

a a

b

(h) Automaton A returned by
Prune. It accepts the same lan-
guage as aa?b+.

Figure 3.1: Example run of iKoa for k = 2 with target language aa?b+. For
the process P in (c)-(f), the α values are listed in table-form. To distinguish
different states with the same label, we have indexed the labels.
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Algorithm 9 Disambiguate

Input: a POMM P = (G, α) and sample S
Output: a deterministic k-OA
1: Initialize queue Q to {s ∈ Succ(src) | α(src, s) > 0}
2: Initialize set of marked states D ← ∅
3: while Q is non-empty do
4: s← first(Q)
5: while some a ∈ Σ has |Succ(s, a)| > 1 do
6: pick t ∈ Succ(s, a) with α(s, t) = max{α(s, t′) | t′ ∈ Succ(s, a)}
7: set α(s, t)←

∑
{α(s, t′) | t′ ∈ Succ(s, a)}

8: for all t′ in Succ(s, a) \ {t} do
9: delete edge (s, t′) from G

10: set α(s, t′)← 0
11: P ← BaumWelsh(P, S)
12: if S 6⊆ L(G) then Fail
13: add s to marked states D and pop s from Q
14: enqueue all states in Succ(s) \D to Q
15: return G

3.2.2 Translating k-OAs into k-OREs

Using the results in Sections 2.1 and 2.2 in the previous chapter, we can state
the following theorem.

Theorem 3.5. Let G be a SOA and let T be any of the algorithms in the
family {rwr,rwr2

1,rwr2
2,rwr2

3, . . . }. If G is equivalent to a SORE r, then
T (G) returns a SORE equivalent to r. Otherwise, T (G) returns a SORE
that is a super approximation of G, L(G) ⊆ L(T (G)).

(Note that SOAs and SOREs are always deterministic by definition.)
In this section, we show how the SOA to SORE translation algorithms

from Chapter 2 can be used to translate k-OAs into k-OREs. For simplicity of
exposition, we will focus our discussion on rwr2

1 as it is the concrete translation
algorithm used in our experiments in Section 3.3, but the same arguments
apply to the other algorithms in the family.

Definition 3.6. First, let Σ(k) denote the alphabet that consists of k copies of
the symbols in Σ, where the first copy of a ∈ Σ is denoted by a(1), the second
by a(2), and so on:

Σ(k) := {a(i) | a ∈ Σ, 1 ≤ i ≤ k}.
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a(1) a(2)

b(1)

Figure 3.2: An example marking

Let strip be the function that maps copies to their original symbol, strip(a(i)) =
a. We extend strip pointwise to words, languages, and regular expressions over
Σ(k).

For example

strip({a(1)a(2)b(1), a(2)a(2)c(2)}) = {aab, aac}

and
strip(a(1) . a(2)? . b(1)+) = a . a? . b+

To see how we can use rwr2
1, which translates SOAs into SOREs, to trans-

late a k-OA into a k-ORE, observe that we can always transform a k-OA G
over Σ into a SOA H over Σ(k) by processing the nodes of G in an arbitrary
order and replacing the ith occurrence of label a ∈ Σ by a(i). To illustrate, the
SOA over Σ(2) obtained in this way from the 2-OA in Figure 3.1(a) is shown
in Figure 3.2. Clearly, L(G) = strip(L(H)).

Definition 3.7. We call a SOA H over Σ(k) obtained from a k-OA G in the
above manner a marking of G.

Note that, by Proposition 3.5, running rwr2
1 on H yields a SORE r over

Σ(k) with L(H) ⊆ L(r). For instance, with H as in Figure 3.2, rwr2
1(H)

returns r = a(1) . a(2)? . b(1)+. By subsequently stripping r, we always obtain a
k-ORE over Σ. Moreover, L(G) = strip(L(H)) ⊆ strip(L(r)) = L(strip(r)),
so the k-ORE strip(r) is always a super approximation of G. Algorithm 10,
called rwr2 with abuse of notation, summarizes the translation. By our
discussion, rwr2 is clearly sound:

Proposition 3.8. rwr2(G) is a (possibly non-deterministic) k-ORE with
L(G) ⊆ L(rwr2(G)), for every k-OA G.

Note, however, that even when G is deterministic and equivalent to a
deterministic k-ORE r, rwr2(G) need not be deterministic, nor equivalent to
r. For instance, consider the 2-OA G:

b

c

a

b
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Algorithm 10 rwr2

Input: a k-OA G
Output: a k-ORE r with L(G) ⊆ L(r)
1: compute a marking H of G.
2: return strip(rwr2

1(H))

Clearly, G is equivalent to the deterministic 2-ORE bc?a(ba)+?. Now suppose
for the purpose of illustration that rwr2 constructs the following marking H
of G. (It does not matter which marking rwr2 constructs, they all result in
the same final expression.)

b(1) a(1)

b(2)c(1)

Since H is not equivalent to a SORE over Σ(k), rwr2
1(H) need not be equiv-

alent to L(H). In fact, rwr2
1(H) returns ((b(1)c(1)?a(1))?b(2)?)+, which yields

the non-deterministic ((bc?a)?b?)+ after stripping. Nevertheless, G is equiv-
alent to the deterministic 2-ORE bc?a(ba)+?. So although rwr2 is always
guaranteed to return a k-ORE, it does not provide the same strong guar-
antees that rwr2

1 provides (Proposition 3.5). The following theorem shows,
however, that if we can obtain G by applying the Glushkov construction on
r [BK93], rwr2(G) is always equivalent to r. Moreover, if r is determinis-
tic, then so is rwr2(G). So in this sense, rwr2 applies an inverse Glushkov
construction to r. Formally, the Glushkov construction is defined as follows.

Definition 3.9. Let r be a k-ORE. Recall from Definition 1.2 that r is
the regular expression obtained from r by replacing the ith occurrence of
alphabet symbol a by a(i), for every a ∈ Σ and every 1 ≤ i ≤ n. Let pos(r)
denote the symbols in Σ(k) that actually appear in r. Moreover, let the sets
first(r), last(r), and follow(r, a(i)) be defined as shown in Figure 3.3. A k-OA
G is a Glushkov translation of r if there exists a one-to-one onto mapping
ρ : (V (G)− {src, sink})→ pos(r) such that

1. v ∈ Succ(src)⇔ ρ(v) ∈ first(r);

2. v ∈ Pred(sink)⇔ ρ(v) ∈ last(r);

3. v ∈ Succ(w)⇔ ρ(v) ∈ follow(r, ρ(w)); and

4. strip(ρ(v)) = lab(v),

for all v, w ∈ V (G)− {src, sink}.
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first(∅) = ∅ first(ε) = ∅
first(a(i)) = {a(i)} first(r?) = first(r)
first(r+) = first(r) first(r + s) = first(r) ∪ first(s)

first(r . s) =

{
first(r) if ε /∈ L(r),
first(r) ∪ first(s) otherwise.

last(∅) = ∅ last(ε) = ∅
last(a(i)) = {a(i)} last(r?) = last(r)
last(r+) = last(r) last(r + s) = last(r) ∪ last(s)

last(r . s) =

{
last(s) if ε /∈ L(s),
last(r) ∪ last(s) otherwise.

follow(a(i), a(i)) = ∅
follow(r?, a(i)) = follow(r, a(i))

follow(r+, a(i)) =

{
follow(r, a(i)) if a(i) /∈ last(r),
follow(r, a(i)) ∪ first(r) otherwise.

follow(r + s, a(i)) =

{
follow(r, a(i)) if a(i) ∈ pos(r),
follow(s, a(i)) otherwise.

follow(r . s, a(i)) =


follow(r, a(i)) if a(i) ∈ pos(r), a(i) /∈ last(r),
follow(r, a(i)) ∪ first(s) if a(i) ∈ pos(r), a(i) ∈ last(r),
follow(s, a(i)) otherwise.

Figure 3.3: Definition of first(r), last(r), and follow(r, a(i)), for a(i) ∈ pos(r).
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Theorem 3.10. If k-OA G is a Glushkov representation of a target k-ORE
r, then rwr2(G) is equivalent to r. Moreover, if r is deterministic, then so is
rwr2(G).

Proof. Since rwr2(G) = strip(rwr2
1(H)) for an arbitrarily chosen marking

H of G, it suffices to prove that strip(rwr2
1(H)) is equivalent to r and that

strip(rwr2
1(H)) is deterministic whenever r is deterministic, for every marking

H of G. Hereto, let H be an arbitrary but fixed marking of G. In particular,
G and H have the same set of nodes V and edges E, but differ in their
labeling function. Let labG be the labeling function of G and let labH the
labeling function of H. Clearly, labG(v) = strip(labH(v)) for every v ∈ V −
{src, sink}. Since G is a Glushkov translation of r, there is a one-to-one,
onto mapping ρ : (V − {src, sink}) → pos(r) satisfying properties (1)-(4) in
Definition 3.9. Now let σ : pos(r) → Σ(k) be the function that maps a(i) ∈
pos(r) to labH(ρ−1(a(i))). Since labH assigns a distinct label to each state, σ is
one-to-one and onto the subset of Σ(k) symbols used as labels in H. Moreover,
by property (4) and the fact that labG(v) = strip(labH(v)) we have,

strip(a(i)) = labG(ρ−1(a(i))) = strip(labH(ρ−1(a(i)))) = strip(σ(a(i))) (?)

for each a(i) ∈ pos(r). In other words, σ preserves (stripped) labels. Now let
σ(r) be the SORE obtained from r by replacing each a(i) ∈ pos(r) by σ(a(i)).
Since σ is one-to-one and r is a SORE, so is σ(r). Moreover, we claim that
L(H) = L(σ(r)).

Indeed, it is readily verified by induction on r that a word a1
(i1) . . . an

(in) ∈
L(r) if, and only if, (i) a1

(i1) ∈ first(r); (ii) ap+1
(ip+1) ∈ follow(r, ap+1

(ip+1))
for every 1 ≤ p < n; and (iii) an

(in) ∈ last(r). By properties (1)-(4) of
Definition 3.9 we hence obtain:

σ(a1
(i1)) . . . σ(an

(in)) ∈ L(σ(r))
⇔ a1

(i1) . . . an
(in) ∈ L(r)

⇔ src, ρ−1(a1
(i1)), . . . , ρ−1(an

(in)), sink is a walk in G
⇔ src, ρ−1(a1

(i1)), . . . , ρ−1(an
(in)), sink is a walk in H

⇔ labH(ρ−1(a1
(i1))) . . . , labH(ρ−1(an

(in))) ∈ L(H)
⇔ σ(a1

(i1)) . . . σ(an
(in)) ∈ L(H)

Therefore, L(H) = L(σ(r)).
Hence, we have established that H is a SOA over Σ(k) equivalent to the

SORE σ(r) over Σ(k). By Proposition 3.5, rwr2
1(H) is hence equivalent to

σ(r). Therefore, strip(rwr2
1(H)) is equivalent to strip(σ(r)), which by (?)

above, is equivalent to strip(r) = r, as desired.
Finally, to see that strip(rwr2

1(H)) is deterministic if r is deterministic,
let s := strip(rwr2

1(H)) and suppose for the purpose of contradiction that
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Algorithm 11 iDRegEx

Input: a sample S
Output: a k-ORE r
1: initialize candidate set C ← ∅
2: for k = 1 to kmax do
3: for n = 1 to N do
4: G← iKoa(S, k)
5: if rwr2(G) is deterministic then
6: add rwr2(G) to C
7: return best(C)

s is not deterministic. Then there exists wa(i)v1 and wa(j)v2 in L(s) with
i 6= j. It is not hard to see that this can happen only if there exist w′a(i′)v′1
and w′a(j′)v′2 in L(rwr2

1(H)) with i′ 6= j′. Since L(rwr2
1(H)) = L(σ(r))

we know that hence σ−1(w′a(i′)v′1) ∈ L(r) and σ−1(w′a(j′)v′2) ∈ L(r). Let
w′′a(i′′)v′′1 = σ−1(w′a(i′)v′1) and w′′a(j′′)v′′2 = σ−1(w′a(i′)v′2). Since σ is one-to-
one and i′ 6= j′, also i′′ 6= j′′. Therefore, r is not deterministic, which yields
the desired contradiction.

3.2.3 The whole algorithm

Our deterministic regular expression inference algorithm iDRegEx combines
iKoa and rwr2 as shown in Algorithm 11. For increasing values of k un-
til a maximum kmax is reached, it first learns a deterministic k-OA G from
the given sample S, and subsequently translates that k-OA into a k-ORE
using rwr2. If the resulting k-ORE is deterministic then it is added to the
set C of deterministic candidate expressions for S, otherwise it is discarded.
From this set of candidate expressions, iDRegEx returns the “best” regular
expression best(C), which is determined according to one of the measures in-
troduced below. Since it is well-known that, depending on the initial value of
α, BaumWelsh (and therefore iKoa) may converge to a local maximum that
is not necessarily global, we apply iKoa a number of times N with indepen-
dently chosen random seed values for α to increase the probability of correctly
learning the target regular expression from S.

The observant reader may wonder whether we are always guaranteed to
derive at least one deterministic expression such that best(C) is defined. In-
deed, Theorem 3.10 tells us that if we manage to learn from sample S a k-OA
which is the Glushkov representation of the target expression r, then rwr2 will
always return a deterministic k-ORE equivalent to r. When k > 1, there can
be several k-OAs representing the same language and we could therefore learn
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a non-Glushkov one. In that case, rwr2 always returns a k-ORE which is a
super approximation of the target expression. Although that approximation
can be non-deterministic, since we derive k-OREs for increasing values of k
and since for k = 1 the result of rwr2 is always deterministic (as every SORE
is deterministic), we always infer at least one deterministic regular expression.
In fact, in our experiments on 100 synthetic regular expressions, we derived for
96 of them a deterministic expression with k > 1, and only for 4 expressions
had to resort to a 1-ORE approximation.

A language size measure for determining the best candidate

Intuitively, we want to select from C the simplest deterministic expression that
“best” describes S. Since each candidate expression in C accepts all words in
S by construction, one way to interpret “the best” is to select the expression
that accepts the least number of words (thereby adding the least number of
words to S). To capture this notion, we can use the concept language size
that was introduced in Section 2.2.3, where we showed that | L(r)≤n| can be
computed quite efficiently.

A minimum description length measure for determining the best
candidate

An alternative measure to determine the best candidate is given by Adriaans
and Vitányi [AV06], who compare the size of S with the size of the language
of a candidate r. Specifically, Adriaans and Vitányi define the data encoding
cost of r to be:

datacost(r,S) :=
n∑

i=0

(
2 · log2 i + log2

(
| L=i(r)|
|S=i|

))
,

where n = 2m + 1 as before; |S=i| is the number of words in S that have
length i; and | L=i(r)| is the number of words in L(r) that have exactly length
i. Although the above formula is numerically difficult to compute, there is an
easier estimation procedure; see [AV06] for details.

In this case, the model encoding cost is simply taken to be its length,
thereby preferring shorter expressions over longer ones. The best regular ex-
pression in the candidate set C is then the one that minimizes both model and
data encoding cost (breaking ties arbitrarily).

We already mentioned that xtract [GGR+03] also utilizes the Minimum
Description Length principle. However, their measure for data encoding cost
depends on the concrete structure of the regular expressions while ours only
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depends on the language defined by them and is independent of the represen-
tation. Therefore, in our setting, when two equivalent expressions are derived,
the one with the smallest model cost, that is, the simplest one, will always be
taken.

3.3 Experimental evaluation

In this section we validate our approach by means of an experimental analysis.
Our previous work [BGNV08] on this topic was based on a version of the

rwr0 algorithm [BNST06], we refer to this algorithm as iDRegEx(rwr0).
Unfortunately, as detailed in Section 2.3, it is not known whether rwr0 is
complete on the class of all single occurrence regular expressions. Nevertheless,
the experiments in [BGNV08] which are revisited below show a good and
reliable performance. However, to obtain a theoretically complete algorithm,
cf. Theorem 3.10, we use the algorithm rwr2 which is sound and complete on
single occurrence regular expressions. In the remainder we focus on iDRegEx,
but compare with the results for iDRegEx(rwr0).

As mentioned in Section 3.2.3, another new aspect of the results presented
here is the use of language size as an alternative measure over MDL to compare
candidates. The iDRegEx(rwr0) algorithm is only considered with the MDL
criterion. We note that for alphabet size 5, the success rate of iDRegEx with
the MDL criterion was only 21 %, while that of the language size criterion is 98
%. The corpus used in this experiment is described in Section 3.3.3. Therefore
in the remainder of this section we only consider iDRegEx with the language
size criterion. However, iDRegEx performs poorly with the MDL criterion
(for the samples described in Section 3.3.3 with |Σ(S)| = 5 the success rate
was only 21% in contrast to the success rate of 91% with the language size
criterion), so iDRegEx, in contrast to iDRegEx(rwr0), is only considered
with the Language Size criterion of selecting the best candidate.

For all the experiments described below we take kmax = 4 and N = 10 in
Algorithm 11.

3.3.1 Running times

All experiments were performed with a prototype implementation of iDRegEx
and iDRegEx(rwr0) written in Java and executed on Pentium M 2.0 GHz
class machines equipped with 1GB RAM. For the BaumWelsh subroutine
we have gratefully used Jean-Marc François’ Jahmm library [Fra06], which
is a faithful implementation of the algorithms described in Rabiner’s Hidden
Markov Model tutorial [Rab89]. Since Jahmm strives for clarity rather than
performance and since only limited precautions are taken against underflows,
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our prototype should be seen as a proof of concept rather than a polished
product. In particular, underflows currently limit us to target regular expres-
sions whose total number of symbol occurrences is at most 40. Here, the total
number of symbol occurrences occ(r) of a regular expression r is its length
excluding the regular expression operators and parenthesis. To illustrate, the
total number of symbol occurrences in aa?b+ is 3. Furthermore, the lack of
optimization in Jahmm leads to average running times ranging from 4 minutes
for target expressions r with |Σ(r)| = 5 and occ(r) = 6 to 9 hours for targets
expression with |Σ(r)| = 15 and occ(r) = 30. Running times for iDRegEx
and iDRegEx(rwr0) are similar.

As already mentioned in Section 3.2.3, one of the bottlenecks of iDRegEx
is the application of BaumWelsh in Line 11 of Disambiguate (Algorithm 9).
BaumWelsh is an iterative procedure that is typically run until convergence,
i.e., until the computed probability distribution no longer change significantly.
To improve the running time, we only apply a fixed number ` of iteration steps
when calling BaumWelsh in Line 11 of Disambiguate. Experiments show
that the running time performance scales linear with ` as one expects, but,
perhaps surprisingly, the success rate improves as well for an optimal value of `.
This optimal value for ` depends on the alphabet size. These improved results
can be explained as follows: applying BaumWelsh in each disambiguation
step until it converges guarantees that the probability distribution for that
step will have reached a local optimum. However, we know that the search
space for the algorithm contains many local optima, and that BaumWelsh is
a local optimization algorithm, i.e., it will converge to one of the local optima
it can reach from its starting point by hill climbing. The disambiguation pro-
cedure proceeds state by state, so fine tuning the probability distribution for a
disambiguation step may transform the search space so that certain local op-
tima for the next iteration can no longer be reached by a local search algorithm
such as BaumWelsh. Table 3.1 shows the performance of the algorithm for
various number of BaumWelsh iterations ` for expressions of alphabet size
5, 10 and 15. These expressions are those described in Section 3.3.3. In this
Table, ` = ∞ denotes the case where BaumWelsh is ran until convergence
after each disambiguation step. The Table illustrates that the success rate is
actually higher for small values of `. The running time performance gains in-
crease rapidly with the expressions’ alphabet size: for |Σ| = 5, we gain a factor
of 3.5 (` = 2), for |Σ| = 10, it is already a factor of 10 (` = 3) and for |Σ| = 15,
we gain a factor of 25 (` = 3). This brings the running time for the largest
expressions we tested down to 22 minutes, in contrast with 9 hours mentioned
for iDRegEx(rwr0) and iDRegEx. The algorithm with the optimal num-
ber of BaumWelsh steps in the disambiguation process will be referred to as
iDRegExfixed. In particular for small alphabet sizes (|Σ| ≤ 7) we use ` = 2,
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for large alphabet size ` = 3 (|Σ| < 7). We note that the alphabet size can
easily be determined from the sample.

We should also note that Experience with Hidden Markov Model learning
in bio-informatics [FMSB+06] suggests that both the running time and the
maximum number of symbol occurrences that can be handled can be signifi-
cantly improved by moving to an industrial-strength BaumWelsh implemen-
tation. Our focus for the rest of the section will therefore be on the precision
of iDRegEx.

` rate |Σ| = 5 rate |Σ| = 10 rate |Σ| = 15
1 95 % 80 % 40 %
2 100 % 75 % 50 %
3 95 % 84 % 60 %
4 95 % 77 % 50 %
∞ 98 % 75 % 50 %

Table 3.1: Success rate for a limited number of BaumWelsh iterations in the
disambiguation procedure, ` = ∞ corresponds to iDRegEx, for ` = 1, . . . , 4
correspond to iDRegExfixed.

3.3.2 Real-world target expressions and real-world samples

We want to test how iDRegEx performs on real-world data. Since the number
of publicly available XML corpora with valid schemas is rather limited, we
have used as target expressions the 49 content models occurring in the XSD
for XML Schema Definitions [TBMM01] and have drawn multiset samples
for these expressions from a large corpus of real-world XSDs harvested from
the Cover Pages [Cov03]. In other words, the goal of our first experiment is
to derive, from a corpus of XSD definitions, the regular expression content
models in the schema for XML Schema Definitions1. As it turns out, the XSD
regular expressions are all single occurrence regular expressions.

The iDRegEx(rwr0) algorithm infers all these expressions correctly, show-
ing that it is conservative with respect to k since, as mentioned above, the
algorithm considers k values ranging from 1 to 4. In this setting, iDRegEx
performs not as well, deriving only 73 % of the regular expressions correctly.
We note that for each expression that was not derived exactly, always an ex-
pression was obtained describing the input sample and which in addition is
more specific than the target expression. iDRegEx therefore seems to favor
more specific regular expressions, based on the available examples.

1This corpus was also used in [BNV07] for XSD inference.
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3.3.3 Synthetic target expressions

Although the successful inference of the real-world expressions in Section 3.3.2
suggests that iDRegEx is applicable in real-world scenarios, we further test
its behavior on a sizable and diverse set of regular expressions. Due to the lack
of real-world data, we have developed a synthetic regular expression generator
that is parametrized for flexibility.

Synthetic expression generation In particular, the occurrence of the reg-
ular expression operators concatenation, disjunction (+), zero-or-one (?), zero-
or-more (∗), and one-or-more (+) in the generated expressions is determined by
a user-defined probability distribution. We found that typical values yielding
realistic expressions are 1/10 for the unary operators and 7/20 for others. The
alphabet can be specified, as well as the number of times that each individual
symbol should occur. The maximum of these numbers determines the value k
of the generated k-ORE.

To ensure the validity of our experiments, we want to generate a wide range
of different expressions. To this end, we measure how much the language of a
generated expression overlaps with Σ∗. The larger the overlap, the greater its
language size as defined in Section 3.2.3.

To ensure that the generated expressions do not impede readability by
containing redundant subexpressions (as in e.g., (a+)+), the final step of our
generator is to syntactically simplify the generated expressions using the fol-
lowing straightforward equivalences:

r∗ → r+?
r?? → r?

(r+)+ → r+

(r?)+ → r+?
(r1 · r2) · r3 → r1 · (r2 · r3)
r1 · (r2 · r3) → r1 · r2 · r3

(r1? · r2?)? → r1? · r2?
(r1 + r2) + r3 → r1 + (r2 + r3)
r1 + (r2 + r3) → r1 + r2 + r3

(r1 + r+
2 )+ → (r1 + r2)+

(r+
1 + r+

2 ) → (r1 + r2)+

r1 + r2? → (r1 + r2)?

Of course, the resulting expression is rejected if it is non-deterministic.
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((debab) + c)∗a
((((c + b)b) + a)ca) + e + d
(((ea)∗db) + b + a + c)+

((b+ + c + e + d)aab)+

((((eabh) + d + j + c + b)+f) + a + g + i)?
((((aa) + e)+ + c)b) + b + d
((((d + a)∗eabcb) + c)a)?
((((ac) + b + d)eab) + c)∗

(((((bab) + c)+ + e)?a) + d)+

((((ecb)+a) + b)+ + d + a)?
((bagbfeid) + c + a + j + h)∗

((gdab) + a + i + c + j + e + f)+hb
((h∗cdfa) + j + e + g + b + i)∗ab
((g + b + e + f + i + d)∗aba) + h + j + c
((((h + b + c + j + f)+ + e)?aaidb) + g)?

(((((dbe)∗cf) + j)hac) + b + i)∗gad
(((((ihaaj) + d)+ + g)b) + e + b + f + c)+

(((ecgecd) + b + d + a + j + f)∗ihaba)∗

(l + c + d + m + n)∗aojahbegcbfidke
(((c + b)ab) + d + i + a)+ + j + g + f + e + h
(((a?clfhabgd) + b + n + o)iedjcem)∗k
((a + k + f + c + m + e)+bdieclbonjgda)∗h
(((k?jghadfcelifcjbhom)+

b + g + a + e + i + n)+ + d)?
(((aedoadenhdbci) + h + k + m + j + g + b)∗

fccgelbifja)
((a+ + f + d + o + g + n + h + c + b + j + i + e)

keacdlbm)
(((k + f + o + a + j)?edhldfhngicjmab)?cie)∗bg
((((a?d)+ba) + h + g + e + c)+ + j + i + b)?f

Figure 3.4: A snapshot of the 100 generated expressions.

To obtain a diverse target set, we synthesized expressions with alphabet
size 5 (45 expressions), 10 (45 expressions), and 15 (10 expressions) with a
variety of symbol occurrences (k = 1, 2, 3). For each of the alphabet sizes, the
expressions were selected to cover language size ranging from 0 to 1. All in
all, this yielded a set of 100 deterministic target expressions. A snapshot is
given in Figure 3.4.

Synthetic sample generation For each of those 100 target expressions,
we generated synthetic samples by transforming the target expressions into
stochastic processes that perform random walks on the automata represent-
ing the expressions (cf. Section 3.2). The probability distributions of these
processes are derived from the structure of the originating expression. In par-
ticular, each operand in a disjunction is equally likely and the probability to
have zero or one occurrences for the zero-or-one operator ? is 1/2 for each op-
tion. The probability to have n repetitions in a one-or-more or zero-or-more
operator (∗ and +) is determined by the probability that we choose to continue
looping (2/3) or choose to leave the loop (1/3). The latter values are based
on observations of real-world corpora. Figure 3.5 illustrates how we construct
the desired stochastic process from a regular expression r: starting from the
following initial graph,

r
1 1

we continue applying the rewrite rules shown until each internal node is an
individual alphabet symbol.

Experiments on covering samples Our first experiment is designed to
test how iDRegEx performs on samples that are at least large enough to
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Figure 3.5: From a regular expression to a probabilistic automaton.

cover the target regular expression, as defined in Section 2.5. Intuitively, if a
sample does not cover a target regular expression r then there will be parts of r
that cannot be learned from S. In this sense, covering samples are the minimal
samples necessary to learn r. Note that such samples are far from “complete”
or “characteristic” in the sense of the theoretical framework of learning in the
limit, as some characteristic samples are bound to be of size exponential in the
size of r by Theorem 3.2, while samples of size at most quadratic in r suffice to
cover r. Indeed, the Glushkov construction always yields an automaton whose
number of states is bounded by the size of r. Therefore, this automaton can
have at most |r|2 edges, and hence |r|2 witness words suffice to cover r.

Table 3.2 shows how iDRegEx performs on covering samples, broken up
by alphabet size of the target expressions. The size of the sample used is
depicted as well. The table demonstrates a remarkable precision. Out of
a total of 100 expressions, 82 are derived exactly for iDRegEx. Although
iDRegEx(rwr0) outperforms iDRegEx with a success rate of 87 %, overall
iDRegExfixed performs best with 89 %. The performance decreases with
the alphabet size of the target expressions: this is to be expected since the
inference task’s complexity increases. It should be emphasized that even if
iDRegExfixed does not derive the target expression exactly, it always yields
an over-approximation, i.e., its language is a superset of the target language.

Table 3.3 shows an alternative view on the results. It shows the success rate
as a function of the target expression’s language size, grouped in intervals. In
particular, it demonstrates that the method works well for all language sizes.

A final perspective is offered in Table 3.4 which shows the success rate
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in function of the average states per symbol κ for an expression. The latter
quantity is defined as the length of the regular expression excluding operators,
divided by the alphabet size. For instance, for the expression a(a + b)+cab,
κ = 6/3 since its length excluding operators is 6 and |Σ| = 3. It is clear
that the learning task is harder for increasing values of κ. To verify the
latter, a few extra expressions with large κ values were added to the target
expressions. For the algorithm iDRegExfixed the success rate is quite high
for target expressions with a large value of κ. Conversely, iDRegEx(rwr0)
yields better results for κ < 1.6, while its success rate drops to around 50
% for larger values of κ. This illustrates that neither iDRegEx(rwr0) nor
iDRegExfixed outperforms the other in all situations.

|Σ| #regex iDRegEx(rwr0) iDRegEx iDRegExfixed |S|
5 45 86 % 97 % 100 % 300

10 45 93 % 75 % 84 % 1000
15 10 70 % 50 % 60 % 1500

total 100 87 % 82 % 89 %

Table 3.2: Success rate on the target regular expressions and the sample size
used per alphabet size for the various algorithms.

Density(r) #regex iDRegEx(rwr0) iDRegEx iDRegExfixed

[0.0, 0.2[ 24 100 % 87 % 96 %
[0.2, 0.4[ 22 82 % 91 % 91 %
[0.4, 0.6[ 20 90 % 75 % 85 %
[0.6, 0.8[ 22 95 % 72 % 83 %
[0.8, 1.0] 12 83 % 78 % 78 %

Table 3.3: Success rate on the target regular expressions, grouped by language
size.

κ #regex iDRegEx(rwr0) iDRegEx iDRegExfixed

[1.2, 1.4[ 29 96 % 72 % 83 %
[1.4, 1.6[ 37 100 % 89 % 89 %
[1.6, 1.8[ 24 91 % 92 % 100 %
[1.8, 2.0[ 11 54 % 91 % 100 %
[2.0, 2.5[ 12 41 % 50 % 50 %
[2.5, 3.0] 18 66 % 71 % 78 %

Table 3.4: Success rate on the target regular expressions, grouped by κ, the
average number of states per symbol.

It is also interesting to note that iDRegEx successfully derived the regular
expression r1 = (a1a2 + a3 + · · · + an)+ of Theorem 3.2 for n = 8, n = 10,
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and n = 12 from covering samples of size 500, 800, and 1100, respectively.
This is quite surprising considering that the characteristic samples for these
expressions was proved to be of size at least (n − 2)!, i.e., 720, 40320, and
3628800 respectively. The regular expression r2 = (Σ \ a1)+a1(Σ \ a1)+, in
contrast, was not derivable by iDRegEx from small samples.

Experiments on partially covering samples Unfortunately, samples to
learn regular expressions from are often smaller than one would prefer. In an
extreme, but not uncommon case, the sample does not even entirely cover the
target expression. In this section we therefore test how iDRegEx performs
on such samples.

Definition 3.11. The coverage of a target regular expression r by a sam-
ple S is defined as the fraction of transitions in the corresponding Glushkov
automaton for r that have at least one witness in S.

Note that to successfully learn r from a partially covering sample, iDRegEx
needs to “guess” the edges for which there is no witness in S. This guess-
ing capability is built into iDRegEx(rwr0) and iDRegEx in the form of
repair rules as discussed in Chapter 2.5.3. Our experiments show that for
target expressions with alphabet size |Σ| = 10, this is highly effective for
iDRegEx(rwr0): even at a coverage of 70%, half the target expressions can
still be learned correctly as Table 3.5 shows. The algorithm iDRegEx is
performing very poorly in this setting, being only successful occasionally for
coverages close to 100 %. iDRegExfixed performs better, although not as well
as iDRegEx(rwr0). This again illustrates that both algorithms have their
merits.

coverage iDRegEx(rwr0) iDRegEx iDRegExfixed

1.0 100 % 80 % 80 %
0.9 64 % 20 % 60 %
0.8 60 % 0 % 40 %
0.7 52 % 0 % 0 %
0.6 0 % 0 % 0 %

Table 3.5: Success rate for 25 target expressions for |Σ| = 10 for samples that
provide partial coverage of the target expressions.

We also experimented with target expressions with alphabet size |Σ| = 5.
In this case, the results were not very promising for iDRegEx(rwr0), but
as Table 3.6 illustrates, iDRegEx and iDRegExfixed performs better, on par
with the target expressions for |Σ| = 10 in the case of iDRegExfixed. This
is interesting since the absolute amount of information missing for smaller
regular expressions is larger than in the case of larger expressions.
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coverage iDRegEx(rwr0) iDRegEx iDRegExfixed

1.0 100 % 100 % 100 %
0.9 25 % 75 % 66 %
0.8 16 % 75 % 41 %
0.7 8 % 25 % 33 %
0.6 8 % 25 % 17 %
0.5 0 % 8 % 17 %

Table 3.6: Success rate for 12 target expressions for |Σ| = 5 with partially
covering samples.

3.4 Conclusions

We presented the algorithm iDRegEx for inferring a deterministic regular
expression from a sample of words. Motivated by regular expressions occurring
in practice, we use a novel measure based on the number k of occurrences of
the same alphabet symbol and derive expressions for increasing values of k.
We demonstrated the remarkable effectiveness of iDRegEx on a large corpus
of real-world and synthetic regular expressions of different densities.

Our experiments show that iDRegEx(rwr0) outperforms iDRegEx for
target expressions with a κ < 1.6 and vice versa for larger values of κ. For
partially covering samples, iDRegEx(rwr0) is more robust than iDRegEx.
As κ values and sample coverage are not known in advance, it makes sense
to run both algorithms and select the smallest expression or the one with the
smallest language size, depending on the application at hand.



4
From DTDs to XSDs

While previous work discussed in Section 1.3 and presented in Chapters 2 and
3 has mostly focused on the inference of Document Type Definitions (DTDs
for short), here we will consider the inference of XML Schema Definitions
(XSDs for short), the increasingly popular schema formalism that is turning
DTDs obsolete. In contrast to DTDs where the content model of an element
depends only on the element’s name, the content model in an XSD can also
depend on the context in which the element is used. Hence, while the inference
of DTDs basically reduces to the inference of regular expressions from sets of
sample strings, the inference of XSDs also entails identifying from a corpus
of sample documents the contexts in which elements bear different content
models. Since a seminal result by Gold implies that no inference algorithm
can learn the complete class of XSDs from positive examples only, we focus
on a class of XSDs that captures most XSDs occurring in practice. For this
class, we provide a theoretically complete algorithm that always infers the
correct XSD when a sufficiently large corpus of XML documents is available.
In addition, we present a variant of this algorithm that works well on real-world
(and therefore incomplete) data sets.

99
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4.1 Background

XML fragments For our purposes, an XML fragment is a (possibly empty)
sequence <a1> f1 </a1> . . . <an>fn</an> of elements where a1, . . . , an are ele-
ment names, and f1, . . . , fn are themselves XML fragments. In particular, we
ignore attributes (as these can straightforwardly be added) and data values
(as the inference of atomic data types has already been studied [HNW06]).

As usual we abbreviate <a> </a> by <a/>. Furthermore, if f is an XML
fragment, then we write paths(f) for the set of all labeled paths starting
at a root element in f . For example, for the XML fragment in Figure 4.1,
paths(f) includes the empty path λ, the path store, the path store order,
the path store stock, the path store order customer, and so on. We write
strings(f, p) for the set of all strings of element names occurring below an
occurrence of path p in f . For example, for the XML fragment in Figure 4.1,
strings(f, λ) = {store}, strings(f, store) = {order order stock}, and

strings(f, store order) = {customer item item,
customer item} .

The first order element in Figure 4.1 ensures the presence of customer item
item, while the second order element ensures the presence of customer item.
For paths like store order customer name that end in a leaf of f , strings(f, p)
always includes the empty string λ.

XML Schema Definitions The W3C specification [TBMM01] essentially
defines an XSD D to be a collection of type definitions, which, if we abstract
away from the concrete XML representation of XSDs, are rules like

store → order[order ]∗, stock[stock ] (?)

that map type names to regular expressions over pairs a[t] of element names
a and type names t. Throughout this chapter we use the convention that
element names are typeset in typewriter font, and type names are typeset in
italic. Intuitively, this particular type definition specifies an XML fragment to
be of type store if it is of the form

<order> f1 </order> . . . <order> fn</order> <stock> g </stock>

where n ≥ 0; f1, . . . , fn are XML fragments of type order ; and g is an XML
fragment of type stock . Each type name that occurs on the right hand side of
a type definition in an XSD must also be defined in the XSD, and each type
name may be defined only once.
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<store>
<order>

<customer > <name/> <email/> </customer >
<item> <id/> <qty/> <price/> </item>
<item> <id/> <qty/> <price/> </item>

</order>
<order>

<customer > <name/> <email/> <email/> </customer >
<item> <id/> <qty/> <price/> </item>

</order>
<stock>

<item>
<id/> <qty/>
<supplier/> <name/> <email/> </supplier >

</item>
</stock>

</store>

Figure 4.1: A sample XML fragment for the XSD in Figure 4.2.

It is important to remark that the ‘Element Declaration Consistent’ con-
straint of the W3C specification [TBMM01] requires multiple occurrences of
the same element name in a single type definition to occur with the same type.
Hence, type definition (?) is legal, but

persons → (person[male] + person[female])+

is not, as person occurs both with type male and type female. Of course,
element names in different type definitions can occur with different types
(which is exactly what yields the ability to let the content model of an element
depend on its context). For example, Figure 4.2 shows a legal XSD describing
the intended set of store document from the Introduction. Notice in particular
the use of the types item1 and item2 to distinguish between order items and
stock items.

Due to the ‘Element Declaration Consistent’ constraint, each element name
a occurring in the type definition of a type t is associated with a unique type
τ(t, a) in this type definition. For example, for the XSD in Figure 4.2 we have

τ(root , store) = store, τ(store, order) = order ,

τ(store, stock) = stock , τ(order , item) = item1,

τ(item1, id) = emp, τ(stock , item) = item2,

and so on. Then let ρ(t) stand for the ordinary regular expression over element
names only that we obtain by removing all types names in the definition of t.
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root → store[store]
store → order[order ]∗, stock[stock ]
order → customer[person], item[item1]+
person → name[emp], email[emp]+
item1 → id[emp], qty[emp], price[emp]
stock → item[item2]+
item2 → id[emp], qty[emp],

(supplier[person] + item[item2]+)
emp → ε

Figure 4.2: An XSD describing the XML document in Figure 1.2. The symbol
ε denotes the empty string.

For example, for the XSD in Figure 4.2 we have

ρ(root) = store ρ(store) = order∗, stock

ρ(order) = customer, item+ ρ(person) = name, email+

and so on. Then we can view an XSD D simply as a triple consisting only of
(1) the set of types T being defined, (2) the mapping τ , and (3) the mapping
ρ. Indeed, observe that the type definition of for example order ,

order → customer[person], item[item1]+

is easily obtained by replacing every element name a in the regular expression
ρ(order) = customer, item+ by the pair a[τ(order , a)]. Since this view is more
amenable to algorithmic manipulation, we will take it as the definition of an
XSD, although for presentation purposes we will continue to represent XSDs
as in Figure 4.2.

Definition 4.1. An XSD is a triple D = (T, ρ, τ) consisting of a finite set of
types T ; a mapping ρ from T to regular expressions r and a mapping τ that
assigns a type to each pair (t, a) with the element name a occurring in ρ(t).

Following the notation in DTDs, we often denote the concatenation of r
and r′ explicitly by r, r′ in the chapter.

As was already noted in Section 1.2, the W3C specification also requires
regular expressions to be deterministic [TBMM01]. We do not go into details
here, as the regular expressions for the classes of XSDs we will be inferring are
deterministic by definition.

The semantics of an XSD is given by the following simple algorithm to
validate an XML fragment f = <a1>f1</a1> . . . <an>fn</an> against a type
t in an XSD D = (T, ρ, τ) [MNSB06, MLMK05]. First, we check that the
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string of element names a1 . . . an is matched by the regular expression ρ(t).
For example, when t = order as defined in Figure 4.2, a1 . . . an would be
matched against customer, item+. If this check fails, then the fragment is
rejected. Otherwise, we validate each fi against the type τ(t, ai) of ai in t,
and accept the fragment if all these validations succeed. For example, when
t = order as defined in Figure 4.2 and ai = item, fi would be validated against
τ(order , item) = item1. We write F(D, t) for the set of all XML fragments of
type t in D.

Contextual power The validation algorithm above actually implies that
the content model of an element occurring in f ∈ F(D; t) is completely
determined by the labeled path from the root to that element – a prop-
erty of XSDs first noted by Martens et al. [MNSB06]. Indeed, for f =
<a1>f1</a1> . . . <an>fn</an> to be of type t, each fi must be valid w.r.t.
τ(t, ai). This is true only if fi = <b1>g1</b1> . . . <bm>gm</bm> and every gj

is valid w.r.t. τ(τ(t, ai), bj). We can continue this reasoning until we reach
the desired element, where we see that its child fragment h must be of type
τ(. . . τ(τ(t, ai), bj) . . . , c) with aibj . . . c the labeled path from the root to the
element. This leads us to the following alternative view on validation, which
forms the cornerstone of our inference algorithms. Let, for a path p = ab . . . c,
τ(s, p) → t denote that τ(. . . τ(τ(s, a), b) . . . , c) is defined and equals t. Let
L(r) denote the set of all strings matched by regular expression r.

Proposition 4.2. ([MNSB06]) An XML fragment f has type s in an XSD
(T, ρ, τ) iff for every path p ∈ paths(f) there exists t such that τ(s, p)→ t and
strings(f, p) ⊆ L(ρ(t)).

Locality The content model of an element in more than 98% of XSDs in
practice turns out not to depend on the whole labeled path from the root to
the element, but only on the k last element names in that path, with typically
k ≤ 3 [MNSB06]. The formal definition of such k-local XSDs is as follows.
Let p|k stand for the path formed by the k last element names of a path p (if
length(p) ≤ k then we take p|k = p). Two paths p and q are k-equivalent if
p|k = q|k. In particular, when length(p) < k, p is only k-equivalent to itself.

Definition 4.3. A pair (D, s) with D an XSD and s a type in D is called
k-local if for all k-equivalent p and q such that τ(s, p)→ t and τ(s, q)→ t′ we
have t = t′.

For example, (D, root) with D as in Figure 4.2 is 2-local but not 1-local
since p = store order item and q = store stock item are 1-equivalent, yet

τ(root , p)→ item1 and τ(root , q)→ item2.
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id qty supplier

item

Figure 4.3: The SOA accepting the same language as the SORE
id, qty, (supplier + item+).

Observe that the 1-local XSDs are in fact just DTDs.

Single occurrence As already explained in the Introduction, a seminal
result by Gold [Gol67] implies that the class of k-local XSDs is still too large
to be learned from positive examples only. Fortunately, the regular expressions
in more than 99 % of XSDs in practice are of a very specific form: each element
name occurs at most once in them [MNSB06]. SOREs were discussed in detail
in Chapter 2.

4.2 Inference of local SOXSDs

Our goal in this section is to infer a k-local SOXSD (D′, t′) equivalent to a
target k-local SOXSD (D, t) given only a finite corpus of XML documents
C ⊆ F(D, t). This entails identifying from C the contexts (i.e., types) in which
elements may bear different content models, as well as these content models
(i.e., single occurrence regular expressions) themselves. Intuitively, we will
use the paths occurring in C to identify types and the strings in C occurring
below these paths to identify the SOREs. The latter essentially boils down
to inferring a SORE from a set of sample strings, which can be done as was
described in Chapter 2. For the results in the remainder of this section, we
used the rwr2

` algorithm of Section 2.3.

The algorithm Inference of k-local SOXSDs can now be done as follows.
Let paths(C) stand for the set of all paths occurring in fragments in the corpus
C. Let k-strings(C, p|k) stand for the set of all strings in C that occur below
paths that are k-equivalent to p:

k-strings(C, p|k) :=
⋃
{strings(f, q) | f ∈ C, q ∈ paths(f), p|k = q|k}.

Algorithm 12, iLocal, then infers a k-local SOXSD from a finite corpus of
XML fragments C.

Let us illustrate iLocal’s operation by running it on the corpus C con-
sisting of the XML fragments of Figure 4.1 and 4.4, which both adhere to
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Algorithm 12 iLocal

Input: a natural number k and corpus C
Output: a k-local SOXSD (D, t) such that C ⊆ F(D, t)
1: Let the set of types T consist of all p|k with p ∈ paths(C)
2: Initialize the mappings ρ and τ to empty
3: for each type p|k in T do
4: add p|k 7→ rwr2

` (2t-inf(k-strings(C, p|k))) to ρ
5: for each path pa in paths(C) do
6: add (p|k, a) 7→ (pa)|k to τ
7: Return (D, t) with D = (T, ρ, τ) and t = λ

the target XSD in Figure 4.2. In line 1, iLocal constructs a type p|k for
each path p in paths(C). For k = 2, this yields the set of types shown in
Figure 4.5. Next, iLocal constructs the content models for these types in
lines 3 and 4. It does so by first learning a SOA (see Definition 2.1) for the
set k-strings(C, p|k) of all strings occurring in C below a path q that is k-
equivalent to the type p|k under inspection, and subsequently transforming
this SOA into a SORE. For k = 2 and p|k = stock item, this set of strings
is {id qty supplier, id qty item item} as the only path 2-equivalent to
stock item in C is store stock item. Hence, for stock item, iLocal will
first learn the SOA from Figure 4.3, which is subsequently transformed into
the SORE id, qty, (supplier + item+). Note that iLocal hence correctly
infers that stock items do not contain price elements. After termination of
the for loop in line 3 we have hence inferred the content models for all types
as shown in Figure 4.6.

Finally, in lines 5 and 6 iLocal determines the types associated with the
element names in these content models. It does so by adding (p|k, a) 7→ (pa)|k
to τ , for every element name a occurring in the content model of type p|a. For
k = 2 this yields, among others,

(λ, store) 7→ store,

(store, stock) 7→ store stock,

(store stock, item) 7→ stock item,

(stock item, item) 7→ item item,

(item item, item) 7→ item item.

Note in particular the recursion introduced in the last rule.
A careful analysis shows that for this specific example corpus, iLocal

has successfully inferred the target XSD D from Figure 4.2: F(D, root) =
F(iLocal(2, C)). This is actually not a coincidence, as iLocal is complete
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<store>
<stock>

<item>
<id/> <qty/>
<supplier/>

<name/> <email/> <email/>
</supplier >

</item>
<item>

<id/> <qty/>
<item>

<id/> <qty/>
<supplier > <name/> <email/> </supplier >

</item>
<item>

<id/> <qty/>
<item>

<id/> <qty/>
<supplier > <name/> <email/> </supplier >

</item>
<item>

<id/> <qty/>
<supplier > <name/> <email/> </supplier >

</item>
</item>

</item>
</stock>

</store>

Figure 4.4: Another sample XML fragment the XSD in Figure 4.2.

on corpora that are “sufficiently large” in the following sense.

Definition 4.4. Let D be an XSD, let t be a type in D, and let m be the
number of types in D. A corpus C is called k-complete for (D, t) if (1) C ⊆
F(D, t); (2) paths(C) contains all paths p of length at most m+k+1 such that
τ(t, p) → t′ for some t′; and (3) for each such path, k-strings(C, p) contains
all strings in L(ρ(t′)) of length at most 2n, where n is the number of different
element names occurring in ρ(t′).

Theorem 4.5. If (D, t) is a k-local SOXSD and corpus C is k-complete for
(D, t), then F(iLocal(k, C)) = F(D, t).

Proof. Let n stand for the number of types in (D, t); let (T, ρ, τ) = D; and
let ((T ′; ρ′; τ ′), λ) = iLocal(k, C). We show that for any path p we have
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λ, store, store order,
order customer, customer name, customer email,
order item, item id, item qty,
item price, store stock, stock item,
item supplier, supplier name, supplier email,
item item

Figure 4.5: The types inferred when running iLocal on the corpus consisting
of the XML fragments in Figure 4.1 and 4.4, for k = 2.

λ→ store

store→ order∗, stock

store order→ customer, item+

order customer→ name, email+

order item→ id, qty, price

store stock→ item+

stock item→ id, qty, (supplier + item+)
item supplier→ name, email+

item item→ id, qty, (supplier + item+)

Figure 4.6: The content models inferred when running iLocal on the corpus
consisting of the XML fragments in Figure 4.1 and 4.4, for k = 2. The types
with empty content model λ have been omitted for space efficiency.
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τ(t, p) → s for some s ∈ T if, and only if, τ ′(λ, p) → s′ for some s′ ∈ T ′ and
L(ρ(s)) = L(ρ′(p|k). The theorem then readily follows by Proposition 4.2.

(⇒). So, let p be an arbitrary path and suppose that τ(t, p)→ s. We show
that τ ′(λ, p)→ p|k and L(ρ(s)) = L(ρ′(p|k)) by induction on length(p).

1. If length(p) ≤ n + k + 1 then p ∈ paths(C) since C is k-complete for
(D, t). It is readily verified by induction on length(p) that τ ′(λ, p)→ p|k.
Moreover, since C is k-complete for (D, t) we know that k-strings(C, p|k)
contains all strings in ρ(s) of length at most m, where m is the number
of element names occurring in ρ(s). By construction,

ρ′(p|k) = rwr2
` (2t-inf(k-strings(C, p|k))),

and hence L(ρ′(p|k)) = L(ρ(s)) by Propositions 2.2 and 2.8.

2. if |(|p) > n + k + 1, then p = qa1 . . . akb for some path q and some
element names a1, . . . ak, b. Since τ(t, p) → s, we clearly also have
τ(t, qa1 . . . ak) → s1 for some s1 with τ(s1, b) = s. By the induction
hypothesis, we hence have τ ′(λ, qa1 . . . ak) → a1 . . . ak. Now reason as
follows.

Since τ(t, p) → s there must exists s2 such that τ(t, q) → s2 and
τ(s2, a1 . . . ak) → s. Since there are only n types in T , it is readily
verified that there exists some path q′ of length at most n such that also
τ(t, q′) → s2 (q′ can be obtained from q by inspecting the types that
are visited multiple times by τ(t, q), and by removing the corresponding
substrings). Then clearly also τ(t, q′a1 . . . ak)→ s. Since C is k-complete
for (D, t), since τ(t, q′a1 . . . ak)→ s2, and since |(|q′a1 . . . ak) < n+k +1
it follows that q′a1 . . . ak ∈ paths(C). But then τ ′((q′a1 . . . akb)|k, b) =
a2 . . . akb by construction, and hence τ ′(λ, q′a1 . . . akb) → a2 . . . akb, as
desired.

Moreover, since C is k-complete for (D, t), since τ(t, q′a1 . . . akb) → s,
and since |(|q′a1 . . . akb) ≤ n+k +1 we know that k-strings(C, a2 . . . akb)
contains all strings in ρ(s) of length at most m, where m is the number
of element names occurring in ρ(s). By construction,

ρ′(a2 . . . akb) = rwr2
` (2t-inf(k-strings(C, a2 . . . akb)),

and hence L(ρ′(a2 . . . akb) = L(ρ(s)) by Propositions 2.2 and 2.8.

(⇐) Conversely, suppose that τ ′(λ, p) → s′ for some s′ ∈ T . It is readily
verified that then s′ = p|k. We show by induction on |(|p) that there exists
s ∈ T such that τ(t, p)→ s and L(ρ′(p|k)) = L(ρ(s)).
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1. If |(|p) = 0, then p is the empty path λ. In this case, it suffices to take
s = t. Indeed, clearly τ(t, λ) → s. By the reasoning in (⇒) above, we
know that L(ρ′(λ)) = L(ρ(t)).

2. If |(|p) > 0, then p = qa for some path q and some element name a.
Clearly, τ ′(λ, q) → q|k and τ ′(q|k, a) = (qa)|k = p|k. By the induction
hypothesis, there exists s1 ∈ T such that τ(t, q)→ s1. Now observe that
(q|k, a) 7→ (qa)|k is only added to τ ′ if there exists a path q′a ∈ paths(C)
such that q′|k = q|k (and hence (q′a)|k = qa|k). But by Proposition 4.2
such a path q′a can only occur in C if τ(t, q′a)→ s for some s ∈ T . The
clearly, τ(t, q′) → s2 for some s2 ∈ T with τ(s2, a) = s. Since (D, t) is
k-local and since q′|k = q|k it follows that s2 = s1. Hence, τ(t, qa)→ s.
By the reasoning in (⇒) above, we know that L(ρ′(p|k)) = L(ρ(s)), as
desired.

Proposition 4.6. C ⊆ iLocal(k, C), for every C and k.

Proof. By Proposition 4.2 it suffices to show that for each XML fragment
f ∈ C and each path p ∈ paths(f) there exists a type t in ((T, ρ, τ), λ) =
iLocal(k, C) such that τ(λ, p) → t and strings(f, p) ⊆ L(ρ(t)). It is not
difficult to see that it suffices to take p|k for t. Indeed, τ(λ, p) → p|k by
construction, and

strings(f, p) ⊆ k-strings(C, p|k)
⊆ L(rwr2

` (2t-inf(k-strings(C, p|k)))
= L(ρ(p|k)),

by Propositions 2.2 and 2.8. Hence, f ∈ F(iLocal(k, C)).

Minimization Although iLocal is complete on sufficiently large corpora,
it has the disadvantage that the inferred XSDs may have more types than
necessary. For instance, the inferred XSD of Figure 4.5 consists of 16 types,
8 types more than target XSD of Figure 4.2. In the worst case, iLocal(k,
C) may return an XSD with O(nk) types where n is the number of different
element names appearing in C. For subsequent processing and presentation to
the user, it is hence desirable to minimize the results of iLocal.

The algorithm Minimize due to Martens and Niehren [MN07] shown in
Algorithm 13 minimizes an XSD D by unifying equivalent types in D. Here s
is said to be equivalent to t if F(D, s) = F(D, t).

Note that Minimize updates D during its execution. Lines 2 and 3 perform
the actual unification of s and t by replacing t by s. The condition t 6= r in line
1 ensures that the start type r is never removed. The equivalence condition
F(D, s) = F(D, t) in that line can be checked as follows.
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Algorithm 13 Minimize

Input: an XSD D = (T, ρ, τ) and type r ∈ T
Output: (D, r) with redundant types in D removed
1: while there are distinct types s and t in T with t 6= r and F(D, s) =
F(D, t) do

2: replace each (s′, a) 7→ t in τ by (s′, a) 7→ s
3: remove t 7→ ρ(t) from ρ and t from T

Definition 4.7. For an XSD D = (T, ρ, τ), let elemsD(t) denote the set
of all element names a for which τ(t, a) is defined. The set reachD(s, t) of
pairs of types jointly reachable from (s, t) is the least set containing (s, t)
such that (s′, t′) ∈ reachD(s, t) and a ∈ elemsD(s′) ∩ elemsD(t′) implies that
(τ(s′, a), τ(t′, a)) ∈ reachD(s, t).

Clearly, reachD(s, t) can be computed by a standard fixpoint algorithm.
Intuitively, reachD(s, t) is the set of all pairs (s′, t′) for which there exists a
path p such that τ(s, p)→ s′ and τ(t, p)→ t′.

By the following proposition we can check that F(D, s) = F(D, t) by com-
puting reachD(s, t) and verifying that ρ(s′) and ρ(t′) match the same strings
for every pair (s′, t′) ∈ reachD(s, t). The latter can be done in linear time for
SOREs by converting ρ(s′) and ρ(t′) to deterministic finite automata (e.g. by
the Glushkov construction [BK93]) and subsequently checking equivalence.

Proposition 4.8. Let D = (T, ρ, τ) be an XSD and let s and t be two types
in D. Then F(D, s) = F(D, t) if, and only if, L(ρ(s′)) = L(ρ(t′)) for all
(s′, t′) ∈ reachD(s, t).

4.3 Practical heuristics

Unfortunately, when iLocal is run on an incomplete corpus, it will rarely
happen that for distinct inferred types p|k and q|k that actually represent the
same type in the target XSD we have F(D, p|k) = F(D, q|k). For instance, if
k = 2 and C consists solely of the XML fragment in Figure 4.1, then

2-strings(C, order customer) = {name email, name email email},

while 2-strings(C, item supplier) = {name email}. Hence, although order
customer and item supplier both represent the type person in the target
XSD of Figure 4.2, we will infer

ρ(order customer) = name, email,

ρ(item supplier) = name, email+.
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(a) name email
1 1 1

(b) name email
2 2 2

1

Figure 4.7: Inference of SOAs with support. SOA (a) is the
result of 2t-inf({name email}). SOA (b) is the result of
2t-inf({name email, name email email}).

Since order customer and item supplier are hence not equivalent, Minimize
will fail to unify them.

This illustrates that on incomplete corpora, iLocal risks identifying more
types than that are present in the target XSD. In practice, therefore, we need a
minimization algorithm that not only unifies equivalent types, but also unifies
‘similar’ types. Our goal in this section is to present such an algorithm, called
Reduce. Intuitively, Reduce measures the similarity of two types s and t
in an inferred XSD (D,λ) = iLocal(k, C) based on the SOAs learned for s
and t. For all s and t that are similar enough, Reduce subsequently adapts
D such that F(D, s) and F(D, t) become equal. This adaption can be seen
as generalizing the content models of s and t to compensate for missing data.
Finally, the hence modified XSD D is minimized. Clearly, since all similar s
and t have already been made equivalent, this causes all similar s and t to be
unified.

Similarity To define the notion of ‘similarity’ for types in an inferred XSD
(D,λ) = iLocal(k, C) we first adapt 2t-inf such that for each edge (a, b) of
the automaton A learned for a sample S we also keep the support suppA(a, b)
of (a, b). This is the number of strings in S for which (a, b) needed to be added
to the edges of A. Figure 4.7 gives an example.

Next, we adapt iLocal such that for each inferred type s we also keep the
SOA soa(s) learned for s. That is, for s = p|k,

soa(s) := 2t-inf(k-strings(C, p|k)).

Based on these extra data structures, we can define the similarity of two
types s and t in an inferred XSD (D, r) = iLocal(k, C) as follows. Let
dist(A,B) be the normalized edit distance between the support-annotated
SOAs A = (V,E) and B = (W,F ):

dist(A,B) :=

∑
(a,b)∈E−F suppA(a, b)∑

(a,b)∈E suppA(a, b)
+

∑
(a,b)∈F−E suppB(a, b)∑

(a,b)∈F suppB(a, b)
.
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name email
3 3 3

1

Figure 4.8: Adjunction of the SOA in Figure 4.7(a) with the SOA in Fig-
ure 4.7(b).

Intuitively, dist(A,B) measures the dissimilarity of A and B by counting the
number of edges present in A but not in B and the number of edges in B but
not in A, weighted by the support these edges have in the original sample. For
instance, for A the SOA in Figure 4.7(a) and B the SOA in Figure 4.7(b) we
have dist(A,B) = 0 + 1

7 = 1
7 . The smaller the value of dist(A,B), the more

similar A and B are. In particular, L(A) = L(B) if dist(A,B) = 0.
The edit distance distD(s, t) between the inferred types s and t is then

defined as

distD(s, t) := max
(s′,t′)∈reachD(s,t)

dist(soa(s′), soa(t′)).

Again, the smaller distD(s, t) is, the more similar s and t are. In particular,
F(D, s) = F(D, t) when distD(s, t) = 0, as L(ρ(s′)) = L(ρ(t′)) for all (s′, t′) ∈
reachD(s, t) in that case.

The algorithm Reduce then operates as shown in Algorithm 14: it merges
types whose edit distance is less than some threshold parameter γ. Lines 4–
10 are responsible for the actual merging of the selected types s and t, and
ensure that F(D, s) becomes equal to F(D, t). In particular, the operation
soa(s′)] soa(t′) in line 6 stands for the adjunction of soa(s′) with soa(t′). This
the SOA we obtain by adding to soa(s′) all states and edges in soa(t′) that are
not in soa(s′) and setting

suppsoa(s′)]soa(t′)(a, b) := suppsoa(s′)(a, b) + suppsoa(t′)(a, b),

(where for simplicity we assume that suppsoa(s′)(a, b) = 0 if (a, b) is not an
edge in soa(s′), and similarly for suppsoa(t′)). For instance, Figure 4.8 shows
the adjunction of the SOAs in Figure 4.7(a) and Figure 4.7(b). Lines 13–
14 converts the updated SOAs into SOREs. Finally, line 15 minimizes the
resulting XSD.
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Algorithm 14 Reduce

Input: an inferred XSD (D, r) = iLocal(k, C) for some k and C, and a
similarity threshold γ

Output: (D, r) with similar types in D merged, and redundant types removed
1: let (T, ρ, τ) = D
2: initialize M := {(s, t) ∈ T 2 | 0 < distD(s, t) < ε}
3: while M is non-empty do
4: for each (s, t) ∈M do
5: for each (s′, t′) ∈ reachD(s, t) do
6: set soa(s′) := soa(s′) ] soa(t′)
7: set soa(t′) := soa(s′)
8: for each a in elemsD(t′)− elemsD(s′) do
9: add (s′, a) 7→ τ(t′, a) to τ

10: for each a in elemsD(s′)− elemsD(t′) do
11: add (t′, a) 7→ τ(s′, a) to τ
12: recompute M := {(s, t) ∈ T 2 | 0 < distD(s, t) < ε}
13: for each type t in T do
14: replace each t 7→ ρ(t) in ρ by t 7→ rwr2

` (soa(t))
15: Minimize(D, r)
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4.4 Experimental evaluation

In this section, we validate our approach by means of an experimental analysis.
Since we used rwr0 rather than rwr2

` , we denote the algorithm iLocal where
the latter is substituted for the former with iLocal0. Let iXSD be the
composition of iLocal0 and Reduce, i.e., let

iXSD(k, C) := Reduce(iLocal0(k, C)).

We first asses iXSD’s precision in Section 4.4.2 by comparing inferred XSDs
with their corresponding target XSDs. We next asses iXSD’s sensitivity to its
parameters (the context size k and the similarity threshold γ) in Section 4.4.3.
We subsequently assess iXSD’s capacity to generalize on corpora with only a
limited amount of data in Section 4.4.4. We conclude in Section 4.4.5 with a
short discussion of the runtime performance. Let us begin with discussing the
corpora used in our experiments and their corresponding target XSDs.

4.4.1 The test corpora and their target XSDs

The first corpus we consider is CXSD, which itself consists purely of XSDs in
XML syntax. Hence when run on this corpus, iXSD will attempt to infer
the XSD for XML Schema Definition documents as it is defined in the W3C
specification [TBMM01]. This corpus is discussed in Section 6.2.

An analysis reveals that XSD for XML Schema Definition is 2-local, and
is therefore a suitable target schema. The elements attributeGroup, group,
and extension occur with different content models in two distinct contexts,
restriction in three. The XSD for XML Schema Definitions contains a few
more context dependent type definitions, but those differ only with respect
to attributes, which we do not take into account here. All in all, this leaves
us with 48 type definitions to infer. The total number of vertices in the
corresponding SOAs is 202, while the number of edges totals 1024.

To gauge the precision of iXSD on XML documents that are described by
a DTD, we reuse the real-world corpora mentioned in our previous work on
DTD inference in Chapter 2.

In the context of our work on DTD inference in Chapter 2, we have already
mentioned that very few corpora of XML documents exist with an interesting
schema. In the present setting, this problem is aggravated by the fact that
one requires an schema with at least some type definitions that depend on the
context. Apart from CXSD, no suitable real-world corpus could be obtained.
Hence we resorted to synthetic XSDs and XML corpora for additional exper-
iments. We hand crafted 8 target XSDs to exhibit a specific set of features
to test. All XSDs are recursive and hence define tree languages of unbounded
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root → a[a1]
a1 → ((b[b1], c[c]) + (d[d ], e[e])), f[f ]∗
a2 → ((b[b2], d[d ]) + (e[e], c[c])), f[f ]?
b1 → (c[c] + d[d ])+
b2 → c[c], d[d ]?
c → ε
d → b[b2]
e → b[b1]
f → a[a2]

Figure 4.9: A hand crafted 2-local XSD.

depth while most have at least one content model that contains strings of
unbounded length so that those tree languages have unbounded width.

In this set of hand crafted XSDs, many of the features that can make
inference hard are present. In particular, all of these XSDs were constructed
such that the content models of types in different contexts have the same
alphabet as for the types b1 and b2 in Figure 4.9. Note that this particular
XSD is 2-local. Our hand crafted set of XSDs, however, also contains XSDs
that are 3-local but not 2-local. Moreover, one of the XSDs is 1-local, i.e., a
DTD. Given that these XSDs had to be crafted by hand, they contain between
12 and 23 types. Multiple types are associated with at least two elements,
while one grammar associates multiple types with six elements. For each of
the XSDs, a corpus of 200 XML documents was generated using the software
described in Section A.5. These corpora will be denoted by Ci for 1 ≤ i ≤ 8.

4.4.2 Precision

In order to assess iXSD’s precision we will compare, for each of the corpora
CXSD, C1, . . . , C8 described in Section 4.4.1, the inferred types with their corre-
sponding types in the respective target XSDs. Here, “corresponding types” is
defined as follows. Let (D1, r1) and (D2, r2) be the inferred and target XSD,
respectively, and let D1 = (T1, ρ1, τ1) and D2 = (T2, ρ2, τ2). Then clearly, type
r1 in D1 corresponds to type r2 in D2, as all fragments f valid w.r.t. r1 in D1

should also be valid w.r.t. r2 in D2 and vice versa. Now, we know that for
each such particular f = <a1>f1</a1> . . . <an>fn</an>, each fi should be valid
with respect to τ1(r1, ai) in D1, and similarly should be valid with regard to
τ2(r2, ai) in D2. Hence, in this sense, τ1(r1, a) corresponds to τ2(r2, a). Extend-
ing this reasoning further, we say that a type t1 in D1 corresponds to a type t2
in D2 if there exists a path p such that τ1(r1, p) → t1 and τ2(r2, p) → t2. We
remark that it is straightforward to compute all pairs of corresponding types
by inspecting τ1 and τ2.
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Now observe that there are four ways in which iXSD may be imprecise.

1. There can be a type t in the target XSD that corresponds to no type
in the inferred XSD. This happens only if the corpus does not contain
fragments in which type t is used.

2. There can be a type t in the target XSD that corresponds to mul-
tiple types s1, . . . , sn in the inferred XSD. This happens when there
are multiple distinct paths p1, . . . , pn such that τ1(r1, pi) → si, whereas
τ2(r2, pi) → t for all i. In this case, iXSD has failed to recognize that
s1, . . . , sn actually represent the same type t and we call s1, . . . , sn false
positives of t.

3. Conversely, there can be a type s in the inferred XSD that corresponds
to multiple types t1, . . . , tm in the target XSD. This happens when there
are distinct paths p1, . . . , pn such that τ1(r1, pi) → s for all i, whereas
τ2(r2, pi)→ ti. In this case, iXSD has falsely merged the types t1, . . . , tm
into s, and we call s a false negative of t1, . . . , tn.

4. Finally, the content models inferred for corresponding types s and t may
differ.

No algorithm can hope to avoid imprecision (1) based solely on positive
examples. We will therefore not consider this imprecision further.

False positives/negatives As far as imprecisions (2) and (3) are concerned,
iXSD produced neither false positives nor false negatives when run on CXSD

with k = 2. Hence the algorithm was successful in identify all and only the
types in the target XSD for XML Schema Definitions. This is quite remarkable
as we will detail in the next paragraph the high level of incompleteness of CXSD.
The case k = 3 will be discussed in Section 4.4.3. The XSD inferred by iLocal
alone contains 29 false positives, clearly illustrating the necessity and indeed
the power of Reduce.

On the synthetic corpora C1, . . . , C8, iXSD performs excellently, reproduc-
ing the target XSD in each case.

Comparison of content models In order to asses imprecision (4) we first
note that, although the XSD corpus CXSD is fairly large, it nevertheless is not
exhaustive. In particular, across the content models r of all target types in
the XSD for XML Schema Definitions actually used in CXSD, there are 511
edges (a, b) in the SOA corresponding to r for which no string in CXSD would
actually add the edge (a, b) when learning r by 2t-inf. This is a large amount
compared to 1024, the total number of edges.
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To obtain a fair assessment, we therefore first compute the adapted content
model r′t for each target type t in the XSD for XML Schema Definitions. This
is the SOA we obtain by transforming the content model r of t into a SOA, and
by subsequently removing all edges for which there is no subfragment of type
t in CXSD that would actually add the edge (a, b). The similarity between the
inferred content model and r should be better than between r and r′t. Here,
similarity is simply the number of edges that are present in the first SOA but
not in the second plus the number of edges present in the second but not in
the first (not taking supports into account).

The experiment for k = 2 then shows that the content models of the
derived XSD are at least as good (38 out of 47) or better than the baseline (9
out of 47), in five cases by more than 10 %. The fact that iXSD exceeds the
baseline expectations is due to the combined effect of Reduce’s smoothing
and rwr0’s generalization capacity.

4.4.3 Sensitivity to parameters

An important consideration is the sensitivity of the algorithm with respect to
the choice of the parameters, the context size k and the similarity threshold
γ.

A low number of false positives implies good generalization, while a low
number of false negatives is a mark of precision. Ideally, neither should occur,
but it is obvious that trying to minimize the number of false positives will cause
an increase of the number of false negatives and vice versa. The parameters
fine tune iXSD’s performance. For increasing context size k, the number of
false positives will increase, the same effect occurs for decreasing similarity
threshold γ.

If the target schema of the corpus is a DTD, iXSD produces no false
positives for k = 2. This is the case for the real-world corpora and as well as
the synthetic corpus mentioned in Section 4.4.1.

For context size k = 2, the XSD derived from CXSD has neither false
positives, nor false negatives, which confirms the quality of the algorithm. For
k = 3, 11 false positives crop up in the derived XSD. For example, as illustrated
in Figure 4.10 for restriction, we have three types for k = 2, which are
subsequently refined into false positives for k = 3. We note, however, that
2 of them can be identified as such since they are caused by 0.5 % or less of
the examples that make up the corresponding type for k = 2 and hence are
very unlikely. We consider this a good rule of thumb for the identification of
false positives when the target schema is not known. So, iXSD can be run for
increasing values of k until too large discrepancies are encountered.

The sensitivity of the algorithm with respect to the similarity threshold
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k = 1

k = 2

k = 3

1.000

0.971 0.013 0.016

0.969 0.001 0.002 0.013 0.016

Figure 4.10: Distribution of the number of examples over types as a function
of k for XSD’s restriction element.

γ is illustrated in Table 4.1 which shows the number of false positives and
false negatives as a function of γ. It is clear that the algorithm is not overly
sensitive to its value: the target XSD is derived whenever 0.05 ≤ γ ≤ 0.15.
The results are similar for each of the synthetic corpora Ci.

γ false pos. false neg.
0.01 2 0
0.05 0 0
0.10 0 0
0.15 0 0
0.20 0 3
0.50 0 3

Table 4.1: Sensitivity of the algorithm with respect to the similarity threshold
γ for an 3-local XSD.

4.4.4 Generalization

In order to assess iXSD’s robustness with respect to missing data, we split one
of the corpora Ci into two parts: the first is used to derive an XSD, the second
to validate that XSD. The generalization is the number of XML documents in
the validation set that is valid with respect to the inferred XSD. In Figure 4.11
we show the generalization as a function of the training set size. Here the
corpora for two of the synthetic XSDs were used with k = 2, the second of
which (denoted by ×’s in Figure 4.11) has a content model containing a term
of the form (a1 + · · · + a12)+ which is quite hard to derive. It is clear from
the plot that the algorithm performs well for even a relatively small number
of XML documents as training set, 50 and 200 in this case.

4.4.5 Runtime performance

Although the Java code is in a prototype stage and hence not optimized for
speed, the algorithm runs quite fast. The process of parsing the 697 XSDs
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Figure 4.11: Generalization as function of the corpus size for two XSDs, one
(×) with a large fan out.

of the W3C XML Schema Document corpus, a total of over 40 Mb, and the
derivation of its XSD for k = 2 takes less than 15 seconds on an off the shelf
laptop with a 1.73 GHz Pentium-M processor. Deriving a k = 3 XSD from the
same set of data takes 17 seconds. Given that the number of distinct ancestor
strings is 136 for k = 2 and 299 for k = 3, the algorithm’s scales well with
the complexity of the target XSD. Even non-optimized, the algorithm can be
comfortably used for real-world applications.

4.5 Conclusions

We introduced two novel algorithms for the inference of concise XSDs. iLocal
is theoretically complete in the sense that it derives any target local SOXSD
given enough data. A second algorithm, iXSD , is the algorithm iLocal
followed by a smoothing of the obtained XSD through Reduce to compensate
for the lack of data. We have shown that iXSD performance is excellent
on both real-world and synthetic data. One of the main open issues in our
framework is how to determine the best value of k. Although, we provide
a rule of thumb which gave optimal results in our experiments, it would be
worthwhile to look into machine learning techniques for parameter estimation.
In future work, we want to extend our algorithms to larger classes of XSDs.





5
SchemaScope

The SchemaScope application was developed to address the issues mentioned
in Chapter 1. SchemaScope supports (1) the automatic inference of Docu-
ment Type Definitions (DTDs) and XML Schema Definitions (XSDs) from
corpora of sample XML documents and (2) tools to visualize, clean, and re-
fine existing or inferred schemas. It can be used to assist schema developers
in three scenarios: (1) schema inference, (2) schema cleaning, and (3) schema
refinement.

Schema inference The automatic inference of schemas from a corpus of
XML documents is particularly useful in those situations when no existing
schema is available. Although several command-line tools are available for this
task [BNST06, BNV07, Cla03, GGR+03] the quality of the inferred schema is
always heavily dependent on the quality of the XML corpus: when the corpus
does not completely cover the intended schema the inferred schema may be
too specific; when the corpus contains errors the inferred schema may be too
general. For this reason, SchemaScope not only allows automatic inference of
DTDs and XSDs (using the algorithms presented in Chapters 2 and 4), but
also provides appropriate visualization tools to allow a human expert to fine-
tune the inferred schema based on the actual corpus. Furthermore, as more
sample documents become available, the schema can be evolved to capture
the corpus more precisely.

121
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Schema cleaning A related, but distinct setting is the one where one has
a corpus of XML documents, as well as an existing schema that is supposed
to describe it, but for which some documents fail to validate. In order to use
the schema to aid in further efficient processing or querying of the corpus,
it is then desirable to clean the schema based on the corpus. SchemaScope
supports such cleaning by allowing users to interactively relax the content
models of the original schema, at each step showing the parts of the corpus
that become valid during this relaxation, and measuring how many fragments
in the corpus actually necessitate the relaxation. The latter helps in rejecting
those schema changes which are due to errors in the corpus.

Schema refinement A final setting is where one has a corpus of XML
documents, as well as an existing schema that describes the corpus, but where
the schema is too general in the sense that some parts of its content models
are never realized in a document. Since schemas that better describe the true
structure of the data provide more information to be exploited with regard
to storage and query optimization, it is in this case preferable to refine the
existing schema. SchemaScope supports such refinement by visualizing the
support each content model part has in the corpus, and by indicating those
XML document fragments that become invalid when the user modifies the
schema.

5.1 System components

SchemaScope consists of a number of interacting modules that provide the
required functionality. A schematic overview of the application’s modules and
their interactions is shown in Figure 5.1.

XML

XML
import
export

XML DB

XML corpus schema

inference
engine

schema
import
export

DTD XSD

schema
comparator

schema
visualization

corpus
visualization

Figure 5.1: Schematic overview of the SchemaScope system’s components.
Figures 5.2 and 5.3 show details of the schema visualization component.
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Import and export XML documents or fragments of such documents can
be imported (depicted by “XML import” in Figure 5.1) from a range of data
sources including files, URLs, and XML database query results. XML schemas
in DTD or XSD syntax can be imported (“schema import” in Figure 5.1)
and are converted to an internal representation, simply denoted by the term
“schema”. A derived or modified schema can be saved as a DTD or XSD (in
the former case with potential loss of precision).

Schema inference engine The inference module generates a DTD or XSD
from the imported XML corpus using the algorithms presented in previous
work [BNST06, BNV07]. Although these algorithms cannot infer every possi-
ble target DTD or XSD (a classical result of Gold [Gol67] states that no such
algorithm exists), they can infer those subclasses of DTDs and XSDs that are
used in practice [BNST06, BNV07]. Furthermore, the inferred content models
are always concise and human-readable.

The user actually has a choice between several algorithms for the inference
of complex type content models. Some algorithms work well when only a
small number of sample documents are available, while others yield better
content models, but require more data. Simple type content models (like int,
base64, string, . . . ) and types of attributes are inferred based on a number of
heuristics.

Schema visualization Imported or inferred schemas can be visualized by
the schema representation module. A textual, outline, or graph view (cf. Fig-
ure 5.2) is provided to inspect the ancestor relationship between the elements
in the schema, while content models can be viewed as text, e.g.,

annotation? (attribute | attributeGroup)∗ anyAttribute?

or as hierarchical graphs (cf. Figure 5.3). All views are annotated and color
coded with frequency information calculated from the imported XML corpus.
Parts of content models that are realized by only few members of the cor-
pus are brightly rendered, so as to call attention to opportunities for schema
cleaning or refinement. Using these views the schema can be edited, while
the impact of the changes on the frequency information can be used as feed-
back and guidance. An additional view provides a number of metrics of the
schema [Cho02, BNV04, MSbY04].

XML data visualization Individual imported documents or fragments can
be viewed using the corpus visualization module. More importantly, the corpus
as a whole can be visualized in a list layout based on its properties with respect
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schema attributeGroup
0.37 annotation

attribute

0.05

simpleType0.63

0.03

0.89

attributeGroup

0.08

anyAttribute

0.00
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0.00

Figure 5.2: Schema view centered on the XML Schema for XSD’s
attributeGroup element, showing its parent (schema) and children
(annotation, attribute, attributeGroup, and anyAttribute). Rectangu-
lar elements are fully expanded, upward pointing elements are partially ex-
panded, and downward pointing elements are not expanded. Numbers and
colors indicate the elements’ support in the corpus.

annotation? (attribute | attributeGroup)* anyAttribute?

annotation?

(attribute | attributeGroup)+

anyAttribute?
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Figure 5.3: Content model view of the XML Schema for XSD’s
attributeGroup element, shown here as a fully expanded deterministic fi-
nite automaton. As in Figure 5.2, numbers and colors show the support for
the syntactic structure of the model.
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to the current schema. One can view the data that realizes a particular content
model part in the schema or one can view and inspect those XML documents
or fragments that are no longer valid after the user has modified the schema.
The XML documents can also be ranked in the list according to one of several
measures that quantify the degree of conformance to the schema. In this view
a cut-off can be set so that one obtains subsets of the corpus. Those can
subsequently be used to attempt to infer more appropriate schema for the
individual subsets. An additional view provides metrics and statistics of the
corpus.

Schema comparator During schema refinement or correction, it is impor-
tant to be able to compare the obtained schema with its previous versions.
This module allows semantic containment tests of individual content models
and even whole schemas. An example is given in Figure 5.4 where two content
models are compared; differences are shown using colors.

annotation

(attribute | attributeGroup)+

anyAttribute

attibute

Figure 5.4: Schema comparator focused on two content models for
attributeGroup, syntactic structures present in both models are shown in
black, those only present in either one in red or blue.

XML generation Finally, we come full circle with the XML generator mod-
ule that can synthesize a collection of XML documents valid to the specified
schema. Such a corpus can be used, e.g., to test external applications that
use the schema. The generation process is parametrized in order to allow fine-
tuning to many requirements. It should be noted that the generator’s expres-
sive power complements that of ToXgene, the current state of the art [BM06].
Whereas ToXgene strictly respects the metrics specified by the user, thus po-
tentially generating invalid documents, our implementation yields documents
that are guaranteed to be valid. This component is described in more detail
in Section A.5.
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5.2 Demo overview

SchemaScope has been presented as a demonstration at SIGMOD 2008, and
the scenario we used is presented in this Section. We focused on a number
of real-world use cases that serve as motivating examples for the features
implemented in SchemaScope and illustrate its versatility.

Schema inference For the purpose of demonstrating the automatic infer-
ence of schemas, we use a corpus of XSD documents; infer a schema from it;
and compare this inferred schema with the actual XSD for XML Schema Defi-
nitions [TBMM01]. Aided by the various schema visualization views, we refine
the inferred schema based on the semantics implied by the corpus’ ontology
and frequency information. Figure 5.5, for instance, shows the content model
for the attributeGroup element inferred from incomplete and noisy data. Us-
ing this view of the content model, it is immediately clear to a human expert
that the element attribute (versus attribute) is due to noise. Finally, we
save the resulting schema as an XSD using the schema export component to
illustrate that the result is concise and human readable.

annotation? (((attribute | attributeGroup)+ | anyAttribute | attibute+)
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Figure 5.5: Content model for attributeGroup derived from incomplete and
noisy data.

Schema cleaning To demonstrate schema cleaning, we have harvested a
corpus of real-world XHTML documents from the World Wide Web (all on a
specific topic) that—although well-formed—are not all valid according to the
specified XHTML DTD. Starting from this real-world corpus and the W3C
XHTML DTD specification, we derive a more relaxed DTD that validates a
larger fraction of the corpus, while still rejecting those documents that deviate
too much from the specification. Crucial in this relaxation is the XML data
visualization component that allows us to determine the balance between the
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number of valid documents and the precision of the schema. Furthermore,
the XML schema visualization component (cf. Figure 5.5) helps in identifying
noisy data.

Schema refinement For the purpose of demonstrating schema refinement,
we consider Microsoft’s WordML document format. WordML specifies the
syntax of Microsoft Word documents in XML form. While developing a con-
verter from some arcane and obsolete document format to WordML, we noted
that some documents that were valid according to WordML’s XSD were nev-
ertheless incorrectly processed by Microsoft Word. The WordML XSD is in
fact too general since a number of syntactic constraints are coded in the appli-
cation’s logic, rather than in the documents’ specification. In this part of the
demonstration, we therefore import a corpus of WordML documents and the
XSD provided by Microsoft and gradually refine the schema to capture some of
the logic that is imposed by the application, but that is not integrated into the
original schema. The schema comparator is used to visualize the differences
between the refined and the original content models.





6
Data collection

In the context of learning, data is very important. We will first analyze real-
world Document Type Definitions and XML Schema Definitions to determine
their characteristics. It will turn out that these schemas’ properties can guide
us to design effective learning algorithms. A description of how the real-world
corpus was obtained and the results of the analysis are presented in Section 6.1.

Given that the learning process is based on XML document instances,
one needs example documents for relevant schemas. For schemas such as
those describing W3C’s XHTML and XML Schema Definition, Microsoft’s
WordML and other important standards XML documents are easy to come
by. However, it is fairly difficult or even impossible to find XML documents
that are instances of less popular schemas that are nevertheless interesting
from a technical point of view. Details on our XML document corpus are
given in Section 6.2.

In this chapter, we use the convention that if we refer to the W3C standard
for Document Type Definitions and XML Schema Definitions, we will use the
term in full, while we reserve the use of the abbreviations DTD and XSD for
specific instances.

To make this chapter more self-contained, we list the relevant definitions
here, although they have already been introduced in previous chapters.

129
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6.1 Schema corpus

6.1.1 Sources

Our research is driven by a real-world problem, i.e., deriving schemas from
XML data, so the corpus should contain a sizable number of DTDs and XSDs
as used in applications. We gathered schemas from various sources.

Standards Various high-quality schemas representing web standards such as
those for RDF, SMIL, SVG, XHTML, XML Schema Definition were obtained
from the W3C. Other standards, such as the schemas for office application file
formats from Microsoft Office and OpenOffice were included as well.

Cover Pages The Cover Pages website [Cov03] is a valuable resource that
contains a large collection of schemas developed for a wide range of applications
such as, e.g., telecommunications, financial transactions and bioinformatics.
The Cover Pages list approximately 600 DTDs and XSDs, but of those, only
109 DTDs and 93 XSDs could actually be retrieved. The latter illustrates
the phenomenon of “link rot” that contributes substantially to the transient
nature of the web [Koe02, Koe03]. The schemas were retrieved using a crawler.

Web To widen the scope further, DTDs and XSDs were obtained from the
web at large using the results of the Google and Yahoo! web search engines.
The engines were accessed using the respective APIs offered by the respective
companies for that purpose. Both engines obviously support keyword queries,
but also allow the specification of file types to restrict the search. To wrap this
functionality and facilitate the extension to other web search engines, “Web-
HunterGatherer”, a lightweight Java framework was developed that allows to
first retrieve query results from one or more search engines, and subsequently
download the documents using the provided URLs (see Appendix A.1). It is
obvious that the quality of this sample falls short of that of the other sources.
Whereas the schemas representing various standards have been developed by
experts in the field, and most of those mentioned on the Cover Pages have at
least been used in applications, no such guarantees exist for schemas retrieved
from the web. Indeed, it turns out that approximately two out of every three
XSDs is either not well formed, invalid with respect to the schema definition
or contains errors according to IBM’s SQC [IBM03]. A similar observation
was made by Sahuguet in his study of DTDs [Sah00].

All in all, we obtained 109, respectively 225 valid and correct DTDs and
XSDs. The total number of XSDs is 819. The corpus has been available upon
request since 2004 and has been provided to several researchers.
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Synthetic schemas For a number of applications, a small number of XSDs
has been crafted by hand since specific quantitative features were required.
More importantly however, on a number of occasions regular expressions with
specific properties were needed that are hard to find in the real-world content
models. Software was developed to generate regular expressions of the types
described in Section 6.1.3. This functionality is part of the Formal Languages
Toolkit (FLT) that forms the foundation of most of our software and that is
described in more detail in Appendix A.4.

6.1.2 XML Schema Definition’s features quantified

A number of authors [LC00, Jel01, DuC02] discuss various drawbacks of Doc-
ument Type Definitions, such as, among others,

� very few datatypes,

� no user defined types,

� almost no value constraints, only for attributes,

� no derived types

� no support for unordered sequences.

� lack of support for namespaces,

� very limited import facilities,

� very limited support for keys

� DTDs are not formulated in XML,

Although the Document Type Definition specification [BPSM+06] offers lim-
ited support for a number of the desired features, the W3C’s XML Schema
Definition [TBMM01, BM01] has been developed to alleviate these shortcom-
ings. Several other proposals have been formulated with various degrees of
success [Cla01, CM01, VAG03, KMS02, Sch06], however, here we will limit
ourselves to a discussion of XML Schema Definition, while a comparison of
the feature set of six schema definition specifications was given by Lee and
Chu [LC00]. Below a number of features are introduced only briefly since
we merely wanted to determine how frequently they are used in real-world
schemas. Given the complexity of some, a detailed explanation is beyond the
scope of this chapter. Several sources [Fal01, vdV02] give a good introduction.

The goal of our analysis is to quantify the degree to which each of these
features has percolated into the design of real-world schemas. Figures such as
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these may help guide development of schema related software, but also steer
extension to existing schema languages or even proposals for new languages.
The results on single type schemas have influenced the design of our algorithm
for schema inference.

Modularity The Document Type Definition specification provides an im-
port mechanism for element, attribute and entity definitions through the ex-
ternal entity definition. Although this allows for a limited form of modular-
ization, reuse is hampered nevertheless. Element names have to be unique
throughout the DTD and all its modules. The XML Schema Definition spec-
ification introduced the concept of namespaces for XML definitions, allowing
for modular design of schemas. Definitions can be imported explicitly, adding
to XML Schema Definition’s modularity.

Basic type definitions Basic types in Document Type Definitions are lim-
ited to the most generic #PCDATA for element contents, and a slightly wider
range for attributes (e.g., ID, IDREF, value enumerations, NMTOKEN, CDATA,...).
This implies that one can not restrict the content of an element or attribute
to, e.g., an integer or a date. In contrast, XML Schema Definition has an
extensive set of basic types (“simple types” in XSD parlance).

Linking Although one can refer to elements in XML documents using Doc-
ument Type Definition’s ID/IDREF mechanism. An element can have an ID

attribute that has to be unique in the document it occurs in, and that can
be referred to by the IDREF or IDREFS attribute of other elements in that doc-
ument. XML Schema Definition extends this notion to arbitrary attributes
and elements, or even combinations thereof using the key/keyref mechanism.
Moreover, it is possible to ensure that values of elements and attributes are
unique in a specified scope. The selection mechanism for both features is very
similar and is based on XPath expressions [CD99].

Interleaving When the content model of an element has to contain some
subelements, but their order is irrelevant, specifying this in Document Type
Definitions is cumbersome to say the least. One has no alternative but to
enumerate all permutations of the subelements in a disjunction to list all or-
derings. XML Schema Definition reintroduces the interleaving operator (all)
that is part of SGML Document Type Definitions. The operands of the all-
operator must all occur, but may do so in any order.
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Inheritance Development time and effort is greatly reduced by being able
to adapt existing type definitions to varying requirements by extending or re-
stricting the original definition. XML Schema Definition has borrowed this
feature—that has no counterpart in Document Type Definition—from the ob-
ject oriented programming paradigm. XML Schema Definition furthermore
supports the notion of abstract types for elements and attributes. Using an
abstract type in a content model implies that an instance document should
specify the element’s type using the xsi:type attribute. Hence the abstract-
attribute enforces the use of a derived type. Conversely, the block-attribute
ensures that an element of the original type is used in an instance document,
rather than a derived type. It is possible to prevent derivation by restriction
or extension of a particular type by specifying that it is final. Similarly, on
the level of instance documents, one can force the content of an element or
attribute to equal a specified value using the fixed-attribute. A substitution
group is used to indicate that an element occurring in an instance document
should conform to any of the types listed in the substitution group’s definition.

Redefine XML Schema Definition allows to redefine existing type defini-
tions, however, the W3C primer explicitly advises caution when using this
feature.

Single type definitions The most interesting feature that sets XML Schema
Definition apart from Document Type Definition is the notion of context of
a type definitions. In Document Type Definitions, the type definition of an
element is absolute in the sense that it is independent of the context it occurs
in. However, in an XML Schema Definition, an element can be of a different
type depending on its context. Martens et al. [MNSB06] have shown that
the context of an element is uniquely determined by the path from the docu-
ment root to that element. In contrast, the type of an element in a document
described by a Document Type Definition depends only on its name.

Results of the analysis The results are summarized in Table 6.1. For
an analysis of syntactic features the schemas need not necessarily be valid,
so for all but the single type definition feature the full corpus of 819 XSDs
has been used, while for the latter only the 225 correct one were taken into
consideration. It is clear that simple types and derivations thereof are quite
heavily used. For complex types on the other hand, only one in five schemas
employs inheritance.
The majority of XSDs in our corpus are structurally equivalent to a DTD, i.e.,
the definition of content models is independent of the context they occur in.
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However, this is not the case for 15 % of the schema definitions, indicating
that this feature is deemed useful by schema developers. The most interesting
examples showing this feature are W3C XSD for XML Schema Definition, and
Microsoft’s XSD for WordML, the file format for the Word text processing
application.

feature XSDs (%)
derivation

simpleType extension 18.9
simpleType restriction 45.5
complexType extension 20.7
complexType restriction 3.6
abstract attribute 9.8
final attribute 0.9
block attribute 0.0
fixed attribute 6.4
substitutionGroup 6.4
redefine 1.0

interleaving
xs:all 5.5

modularity
namespaces 12.1
import 27.7

linking
key/keyref 4.1
unique 2.9

structure
true single type definitions 15.0

Table 6.1: XML Schema features use in the corpus

6.1.3 Regular expressions

Another interesting question we try to answer is how sophisticated regular ex-
pressions tend to be in real-world DTDs and XSDs. If simple expressions make
up the vast majority of schema definitions, it is worthwhile to take this into
account when developing implementations of XML related applications and
fine-tune algorithms to take advantage of this simplicity whenever possible.

In the context of DTDs and XSDs, a regular expression over the alphabet
Σ can be defined as follows:

Definition 6.1. ∅ and ε are regular expressions. For each alphabet symbol a is
a non-trivial regular expression. If r and s are non-trivial regular expressions,
so are r?, r+, r∗, rs and r + s. Any non-trivial regular expression is a regular
expression.
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The regular expression ∅ represents the empty language, while the expres-
sion ε denotes the language that only contains the empty string. The semantics
of r?, r+ and r∗ are customary: zero or one, one or more and zero or more
repetitions of strings accepted by r respectively. The expressions rs and r + s
denote the concatenation and disjunction respectively. Although this defini-
tion deviates from the textbook formulation, we nevertheless prefer it since it
corresponds to what can be expressed in Document Type Definition and XML
Schema Definition. Note that XML Schema Definition’s interleaving operator
has not been represented in the definition since we will not consider it any
further.

In order to facilitate the analysis some preprocessing was performed. For
the DTDs parsed entities were resolved and conditional sections included/ex-
cluded as appropriate. Since we are only concerned with the schema structure,
the DTD element definitions were extracted and converted to a canonical form,
which abstracts away the actual node labels and replaces them by canonical
names c1, c2, c3, . . . For example,

<!ELEMENT lib ((book | journal )*)>

is represented by a canonical form (c1 | c2)∗ to preserve only the information
necessary to gauge the expression’s complexity. Given the lack of a DTD
parser at the time, we developed one that was adequate for our purposes, see
Appendix A.2.

The XSDs were preprocessed using XSLT to the canonical representa-
tion mentioned above for DTDs. To capture multiplicity constraints, ’?’ is
used, e.g. for an element a with minOccurs="1", maxOccurs="3", \lstinlinea
(a a?)?— is substituted. This approach allows us to reuse much of the software
developed to analyze DTDs for XSDs as well.

For all DTDs, there is a total of 11802 element definitions which reduce to
750 distinct canonical forms. The 1016 element definitions in the XSDs yield
138 distinct canonical forms, totaling 838 for both types of schemas combined.
Note that for this analysis the XSDs retrieved from the web were not yet used.

Simple regular expressions

The majority of the regular expressions encountered in real-world DTDs and
XSDs can be classified in one of the categories of “simple regular expres-
sions”, which are subclasses of the expressions studied by Martens, Neven,
and Schwentick [MNS04].

Definition 6.2. A base symbol is a regular expression a, a?, or a∗ where a ∈ Σ;
a factor is of the form e, e∗, or e? where e is a disjunction of base symbols. A
simple regular expression is ε, ∅, or a sequence of factors.
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The following is an example of a simple regular expression: (a∗ + b∗)(a +
b)?b∗(a + b)∗.

We introduce a uniform syntax to denote subclasses of simple regular ex-
pressions by specifying the allowed factors. We distinguish base symbols ex-
tended by ? or ∗. Further, we distinguish between factors with one disjunct
or with arbitrarily many disjuncts; the latter is denoted by (+ · · · ). Finally,
factors can again be extended by ∗ or ?. For example, we write RE((+ a)∗, a?)
for the set of regular expressions e1 · · · en where every ei is (a1 + · · ·+ an)∗ for
some a1, . . . , an ∈ Σ and n ≥ 1, or a? for some a ∈ Σ. Table 6.2 provides an
overview.

factor abbr. factor abbr.
a a (a1 + · · ·+ an)∗ (+a)∗
a∗ a∗ (a1 + · · ·+ an)? (+a)?
a? a? (a∗1 + · · ·+ a∗n) (+a∗)

(a1 + · · ·+ an) (+a) (a∗1 + · · ·+ a∗n)∗ (+a∗)∗

Table 6.2: Possible factors in simple regular expressions and how they are
denoted (a, a1, . . . , an ∈ Σ).

We analyze the DTDs and XSDs to characterize their content models ac-
cording to the subclasses defined above. The result is represented in Ta-
ble 6.3 that lists the non-overlapping categories of expressions having a sig-
nificant population (i.e., more than 0.5%). Two prominent differences be-
tween DTDs and XSDs immediately catch the eye: XSDs have (1) more
simpleType elements (denoted by #PCDATA) and (2) less expressions in the cat-
egory RE(a, (+ a)∗). The first difference is due to the fact that it pays to
introduce more distinct simpleType elements in XSD since thanks to type re-
striction, it is now possible to fine tune the specification of an element’s content
(cfr. the discussion in Section 6.1.2). The second distinction is most proba-
bly due to the nature of the XSDs in the sample since those describing data
are overrepresented with respect to those describing meta documents [Cho02].
The latter tend to have more complex recursive structures than the former.

To gauge the quality of our sample of XSDs, we compared DTDs and
XSDs using several of the measures proposed by Choi [Cho02]. No significant
differences between the two samples are observed, which is confirmed by an
additional measure in Figure 6.1, the density of XSDs. The density of a schema
is defined as the number of elements occurring in the right hand side of its rules
divided by the number of elements. DTDs and XSDs do not fundamentally
differ in this respect. Several other measures such as the width and depth of
canonical forms viewed as expression trees show no significant differences.
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Figure 6.1: Fraction of DTDs (left) and XSDs (right) versus their density

DTDs (%) XSDs (%)
#PCDATA 34 48
EMPTY 16 10
ANY 1 0
RE(a) 5 5
RE(a, a?) 2 10
RE(a, a∗) 8 10
RE(a, a?, a∗) 1 4
RE(a, (+ a)) 3 3
RE(a, (+ a)?) 0 1
RE(a, (+ a)∗) 20 2
RE(a, (+ a)?, (+ a)∗) 0 1
RE(a, (+ a∗)∗) 0 2
total simple expr. 92 97
non-simple expr. 8 3

Table 6.3: Relative occurrence of various types of regular expressions given in
% of element definitions
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More importantly though, it is clear that the vast majority of expressions
are simple regular expressions, i.e., 92% and 97% of all element definitions
in DTDs and XSDs respectively. Figure 6.2 shows the fraction of DTDs and
XSDs versus the fraction of their simple content models: the majority of
documents have 90% or more simple content models.

Figure 6.2: Fraction of DTDs (left) and XSDs (right) having a given % of
simple expression content models

The relative simplicity of most DTDs and XSDs is further illustrated by the
star height that is given in Table 6.4. The star height of a regular expression
is the maximum nesting depth of Kleene stars occurring in the expression,
e.g. 2 for the last example given below, 1 for all others. Content models with
star height larger than 1 are very rare. No significant differences are observed
between DTDs and XSDs, except for the star height but this is consistent
with the relative abundance of RE(a, (+ a)∗) type of expressions in DTDs
with respect to XSDs.

star height DTDs (%) XSDs (%)
0 61 78
1 38 17
2 1 4
3 0 ≈ 0

Table 6.4: Star height observed in DTDs and XSDs

In a sense this should not come as too great a surprise: DTDs and XSDs
model data that reflect real-world entities. Mostly those entities are subject
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to simple relations among one another such as is-a, or is-part-of relations
that are very often quite simple to express.

Here we show some randomly chosen examples of non-simple regular ex-
pressions that we encountered:

c1
+ | (c2?c3

+)
(c1c2?c3?)?c4?(c5 | . . . | c18)

∗

c1?(c2c3?)?(c4 | . . . | c44)
∗c45

+

c1?c2c3?c4?(c5
+ | ((c6 | . . . | c61)

+c5
∗))

c1(c2 | c3)
∗(c4, (c2 | c3 | c5)

∗)∗

k-occurrence expressions

Regular expressions defining content models in real-world DTDs and XSDs
exhibit an additional feature that turns out to be very useful. We define a
Single Occurrence Regular Expression (SORE) as follows:

Definition 6.3. A regular expression r over the alphabet Σ is a single occur-
rence regular expression over Σ iff each alphabet symbol occurs at most once
in the regular expression r that is of the form defined in Definition 6.1.

The regular expression a(b+cd?)+(ef)? is a SORE, while a(b+cd?)+(af)?
that has exactly the same syntactic structure is not, since the symbol a occurs
twice.

An analysis of the DTDs and XSDs in our corpus reveals that 98 % of all
regular expressions are in fact SOREs, a feature that will turn out to be quite
convenient.

More generally, we can define the set of k-occurrence regular expressions.

Definition 6.4. A regular expression r over the alphabet Σ is a k-occurrence
regular expression over Σ iff each alphabet symbol occurs at most k times in
the regular expression r that is of the form defined in Definition 6.1.

The expression (a + b+)c(baa)+ is a 3-occurrence regular expression since
the alphabet symbol a occurs 3 times. If we denote the set of k-occurrence
regular expressions by REk, then obviously RE1 ⊂ RE2 ⊂ · · · ⊂ REk for any
k. In the set of all regular expressions obtained from the real-world DTDs,
the number of regular expressions that are proper members of REk is given
in Table 6.5. As mentioned previously, single occurrence regular expressions
make up to vast majority of regular expression, while expressions with k-values
over 3 are exceedingly rare, and none are found with k > 5.
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maximal k expressions (%)
1 98.3
2 1.25
3 0.32
4 0.03
5 0.01

Table 6.5: Number of regular expressions that are proper k-occurrence regular
expressions in real-world DTDs

However, the complexity of a regular expression in terms of the symbols
that occur in it is not only determined by the k-value, but also by the number
of symbols that occurs multiple times. To this end, we define the quantity κ.

Definition 6.5. Given a regular expression that has alphabet symbols in Σ,
the symbol density is defined as the total number of alphabet symbols in the
expression, divided by the size of the alphabet |Σ|.

For example, the symbol density of the 3-occurrence regular expression
(a + b+)c(baab)+ is κ = 7/3 = 2.33. By definition, a single occurrence regular
expression has κ = 1. In Figure 6.3 the distribution of the κ-values computed
for the regular expressions occurring in real-world DTDs is shown. Again, it
is clear that sophisticated expression are very rare in the real-world.
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Figure 6.3: number of regular expression (%) versus symbol density κ in a
real-world DTD corpus

Another way to characterize k-occurrence regular expressions is by the
number of symbols that occur multiple times. The relative symbol multiplicity
is defined as follows:
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Definition 6.6. Given a regular expression that has alphabet symbols in Σ,
the symbol multiplicity is defined as the number of alphabet symbols that
occur more than once in the expression, divided by the size of the alphabet
|Σ|.

For single occurrence regular expressions, every symbol occurs once, and
hence this measure is zero. For the regular expression (a + b+)c(baab)+, the
symbol multiplicity is 2/3 = 0.67 since the symbols a and b occur multiple
times in the expression. The distribution of the symbol multiple for expression
from real-world DTDs is shown in Figure 6.4.

 0.01

 0.1

 1

 10

 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.4: number of regular expression (%) versus symbol multiplicity in a
real-world DTD corpus

Chain regular expressions

We consider one more subclass of regular expressions that bears a relationship
with both simple and single occurrence regular expressions. A CHAin Regular
Expression (CHARE) over the alphabet Σ is defined as:

Definition 6.7. ∅ and ε are chain regular expressions. The expressions f ,
f?, f+ and f∗ are factors, where f is a disjunction of alphabet symbols.
A concatenation of one or more factors is a chain regular expression iff the
expression is single occurrence.

The chain regular expression are a proper subset of both the single occur-
rence regular expressions and the simple regular expressions. The expression
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(a + b)∗c?(d + e) is a CHARE, while (a + b)∗c?(d + e∗) is not since the con-
catenation’s last operand in not a factor.

Although this subclass of regular expressions may seem construed, it is
nevertheless quite interesting. It is very common in real-world schema defini-
tions: 90 % of all regular expressions in DTDs and XSDs are CHAREs.

6.1.4 Expression size

A measure for the complexity of a regular expression representing a content
model in a schema is the number of alphabet symbols in that expression.
The number of transitions in an automaton representing this expression can
roughly scale quadratic with the number of symbols.

Definition 6.8. The size of a regular expression over the alphabet Σ is defined
as the number of symbols of Σ that occur in the expression.

Hence the expression (a+b+)c(baab)+ has size 7. A distribution of the reg-
ular expressions in real-world DTDs is shown in Figure 6.5. Most expressions
have just a single alphabet symbol, while only 39 % have multiple symbols.
Approximately 86 % of the expressions have 10 symbols or less, about 95 % of
expressions have 30 symbols or less, while the largest expression occuring in
the corpus has 239. One can conclude that most expressions are fairly small,
but nevertheless some very large ones occur in practice.
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Figure 6.5: number of regular expression (%) versus expression size in a real-
world DTD corpus
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6.1.5 Language density

A useful measure to characterize regular expressions is the size of the language
they represent.

Definition 6.9. Given a regular language L, the set of strings in L with length
` is denoted by L`.

Definition 6.10. The language density of a regular language L over the al-
phabet Σ is defined as

1 +
1∑`max

`=0 log(1 + |Σ`|)

`max∑
`=0

log
1 + |L`|
1 + |Σ`|

The language Σ∗ has size 1, while finite languages have values close to 0.
Figure 6.6 shows the distribution of the language size over the corpus of DTD
regular expressions. It is immediately clear that the regular expression Σ∗ is
used quite frequently, while the finite language a with size 0.2 is extremely
common at 53 %.
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Figure 6.6: number of regular expression (%) versus language density in a
real-world DTD corpus
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6.2 XML corpus

Whereas the corpus of XML schemas is a prerequisite to design appropriate
learning algorithms in the context of real-world applications, a corpus of XML
documents and subsets of regular languages are required as training and test
data. For a number of schemas such as W3C’s XHTML and XML Schema
Definition, Microsoft’s WordML it is relatively easy to obtain a corpus of
documents. We reused the software developed to obtain schema definitions
from the web in order to search and retrieve appropriate XML documents.

XHTML All in all, we gathered 2092 XML documents from the web, or
48.4 MB of data. Remarkably though, a staggering 89 % of these documents
is, although well-formed, nevertheless invalid with respect to the XHTML
DTD [BNST06]. An observation such as this underscores the need for schema
inference algorithms [BNV08].

XML Schema Definition W3C’s XML Schema Definition is expressed in
XML format. Hence each XSD is an XML document so that our corpus of
real-world XSDs can actually be co-opted as an XML corpus for learning. We
assembled CXSD from XSD documents found on the the Cover Pages [Cov03],
as well as from the web at large using the Google and Yahoo! search engines,
bringing the total number of fragments in CXSD to 697.

WordML The WordML corpus was not obtained directly, rather a corpus
of Microsoft Word documents was retrieved from the web. Care was taken
to diversify the documents’ subjects and the natural language by adding ad-
ditional search keywords such as “analysis”, “beispiel” or “student”. These
documents were subsequently automatically converted to XML, so the docu-
ments are well-formed and valid by construction. In total, we obtained 11018
XML documents.

Synthetic XML Unfortunately, XML documents can not be obtained that
easily for all schema definitions. We developed software to generate XML
documents given a schema definition. Although ToXgene [BM06] serves a
similar purpose, it does not suite our particular needs for recursive schema
definitions. A more detailed description is given in Appendix A.5. Often
however, generating a sample of strings that is a subset of a regular language
described by some expression is all that is needed. This functionality that is
part of the XML generation process can also be used in isolation.
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Software

Here we give a short overview of some of the software that has been developed
over the years to facilitate the experiments reported upon. A packages such as
WebHunterGatherer, see Section A.1, can be of interest to any researcher who
needs to search for and collect data from the web. Experimentor can be useful
to any researcher doing experimental work on algorithms (see Section A.3).
The Formal Language Toolkit (see Section A.4) may be useful to researcher
working with formal languages, but it can also serve as the basis for XML
related software since it is a library, not an application. XMLGenerator (see
Section A.5 is build upon FLT and can be used to generate XML documents
from a given schema.

A.1 WebHunterGatherer

WebHunterGatherer is a Java framework to perform queries and retrieve in-
formation from the World Wide Web. The package defines an interface for
a search engine that is currently implemented for Google and Yahoo encap-
sulating the APIs provided by these companies. Subsequently, the results
returned by the search engine can be retrieved easily. A web crawler compo-
nent can extract links from a web page and retrieve the gathered URLs. The
LinkExtractor is an implementation of the Extractor interface, so other extrac-
tors can easily be developed and plugged into the framework. The framework
has proved to be quite useful when searching and gathering XML corpora on
the web.

A.2 DTDParser

In order to perform our study of regular expressions that occur as content
models in Document Type Definitions, real-world DTDs had to be parsed.
However, DTD features such as internal and external entities make this task
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non trivial. At the time, no parser for DTDs was available, motivating us
to develop our own implementation. To this end JavaCC1, a Java parser
generator, was used to develop a parser that supports the complete DTD
syntax. DTDParser was used to extract the content models from the corpus
of real-world DTDs described in Section 6.1.1. However, it can easily be
adapted for other purposes as well.

A.3 Experimentor

The Experimentor Java framework has been developed in an attempt to sup-
port a rigorous setup for computer experiments. A series of experiments is
described by an agenda, an XML file that defines the classes to be used and
the methods that code the experiments. It also specifies the parameters to be
used in the experiments, hence providing a complete description of a set of
concrete experiments.

An actual experiment is implemented as a method in a class that extends
AbstractExperiment. This base class provides methods to handle input and
output. The framework provides support for timing and logging. It owes
considerably to ideas developed in the context of unit testing, popularized by
the Extreme Programming community [Fow99]. As such, it follows a similar
pattern as, e.g., the JUnit testing framework.

When used properly, Experimentor offers considerable time savings, but its
primary benefit is in the way that an agenda XML file provides documentation
for the experiments that one carries out.

A.4 Formal Language Toolkit

The Formal Language Toolkit is a Java library developed to deal with formal
languages, primarily with regular languages. It traces its history to a students’
project in 2003 when it was developed as a reference platform to assess the
difficulties involved in the project from a software engineering point of view,
as well as a baseline to evaluate the students’ work and track bugs in their
implementation.

Although the initial scope was fairly limited, reuse ability has always been
a primary design objective. And indeed, the library has been used in every
research project reported here. This implies that FLT has been extended on
several occasions to meet fairly diverse requirements. Since this was an almost
painless process from a software engineering point of view, the initial design
seems to have been adequate, even if it proved to be far from ideal. Hence it

1https://javacc.dev.java.net/

https://javacc.dev.java.net/
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seems a useful exercise to cast a look over once shoulder on the road traveled
and assess the good, the bad and the ugly.

Since this text discusses the implementation of a particular library, it is
not of general interest. It may be convenient to read it with FLT’s source code
at hand. Although the latter has not been released, it is available from the
author upon request.

Currently FLT’s main strength is in the domain of regular languages. It is
centered around the NFA class that implements non-deterministic finite state
automata.
The class has a basic constructor and automata can be build by adding tran-
sitions, setting the initial and final states. Since a transition is a three-tuple
of an alphabet symbol and two states, adding one to the automaton will auto-
matically update its alphabet and set of states. However, symbols and states
can be added or removed at any time just like transitions, and care is taken
to maintain correctness, e.g., removing a state implies the removal of all of its
incoming and outgoing transitions. To aid debugging, a string representation
of the NFA can be computed at any time.
Several composition methods such as concatenation, union, intersection,... are
available to create NFAs as well. True to its origins, these are implemented
using the Thompson construction, starting from basic automata. Given that
the intersection is essentially based on the product of automata, this opera-
tion was implemented as its basis and can be used independently. All relevant
composition operators are n-ary rather than binary since their arguments are
arrays of NFAs. An NFA can be converted to a DFA or a minimal automaton
and its complement can be computed. Finally, a simplification method re-
moves unused alphabet symbols, states that can’t be reached from the initial
states, and states from which no final state can be reached.
Several methods are provided to query the structure of the automaton such
as testing whether a symbol is part of its alphabet, whether it has a given
state, whether a state is initial or final, what state is initial,... Basic graph
queries are possible as well: what states can be reached from a given state,
or vice versa in a single transition with a specific or any alphabet symbol.
The basic NFA class also implements some qualitative queries: one can test
the equivalence of NFAs; whether an NFA is deterministic, or compute the
shortest accepted strings.
String matching logic, i.e., checking whether a given string is a member of
the automaton’s language is also hosted in this class. A nice feature is that
one can “step through” the matching process in the sense that a run of the
automaton can be performed one symbol at the time.

Regex is a factory class that creates an NFA using the Thompson construc-
tion from a given regular expression. A default syntax for prefix regular ex-
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pressions is defined, but this can be overridden by setting the appropriate
properties. Regular expression can be serialized and deserialized to and from
XML. Another factory class Glushkov has been designed to facilitate the con-
struction of an NFA from a regular expression using the Glushkov construction.
Additionally it provides a test for the ambiguity of regular expressions.
Conversely, the class NFAGraph implements a generalized NFA and can convert
an NFA to a regular expression using the naive state elimination algorithm.

A number of extensions of the basic NFA class are implemented. CostNFA can
be used to compute the MDL of a given NFA and a set of strings. AnnotatedNFA

provides facilities to associate information with the automaton’s states and
transitions. The implementation uses Java 5’s generics, making it quite ver-
satile. GeneratingNFA provides logic to generate a subset of the language rec-
ognized by the automaton, either in the form of a random sample, or of all
strings up to a given length.

Finally, an NFAWriter interface provides an API that is implemented by
the DotWriter class. This is a very useful class since it computes a dot repre-
sentation of an NFA so that its structure can be visualized using the excellent
GraphViz package2. If desired, NFAWriter could be implemented to provide
an XML representation of an NFA for persistence since it is complemented
by a NFAReader interface. Classes implementing the latter read some textual
representation to construct an NFA.

Several classes are provided to test properties of regular expressions and
automata such as ambiguity, or measures such as coverage and language size.
These classes implement the interfaces LanguageTest and LanguageMeasure re-
spectively, so that it is easy to develop additional tests and measures.

Very basic support for context-free languages is provided: context-free
grammars must be in Chomsky normal form and a CYK-parser has been
provided.

Several utility classes implement some basic algorithms such as computing
all permutations of a list; the carthesian product of a list of Collection; and
an enumerator of all sequences of a given length based on a set of objects.
All those operations have been implemented through lazy iterators to avoid
memory consumption exponential in the size of the constituents.

FLT has proved to be a nice and versatile library to work with, although
it would markedly benefit from a number of improvements, mainly in the area
of defining more interfaces and a finer granularity of the implementation.

2http://www.graphviz.org/

http://www.graphviz.org/
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A.5 XMLGenerator

Although ToXgene [BM06] is a very nice and polished tool for generating
XML documents based on an annotated schema, it can generate documents
that are invalid with respect to that schema. It is also limited in its options
to deal with recursive schemas. We developed XMLGenerator to overcome
these limitations. The generation process can be completely parametrized
by specifying probability distributions for individual operators that allows
a choice such as the disjunction, the zero-or-one, zero-or-more and one-or-
more operators. The depth of generated documents can also be controlled by
setting hard limits or a probability distribution. Values can either be generated
randomly, or selected from user-defined dictionaries. A drawback of generator
is that the schema specification is non-standard, although it would be feasible
to adapt it to use annotated XSDs.





Samenvatting

Motivatie

XML (eXtensible Markup Language) is uitgegroeid tot de lingua franca voor
data-uitwisseling via het internet. Het is op dit ogenblik waarschijnlijk het
meest populaire formaat voor semi-gestructureerde data. XML-documenten
kunnen om het even welke vorm aannamen, zodat gebruikersgemeenschappen
en toepassingen bepaalde structurele beperkingen opleggen aan de documenten
die uitgewisseld of verwerkt moeten worden. Deze beperkingen kunnen formeel
gespecificeerd worden met behulp van een schema, dat opgesteld wordt in een
schemataal zoals Document Type Definition (DTD) of XML Schema Definition
(XSD) [TBMM01].

De beschikbaarheid van een volledig gespecificeerd schema heeft vele voor-
delen. Eerst en vooral kan men met behulp van een schema automatisch
nagaan of de structuur van een document geldig is, hetgeen automatische ver-
werking toelaat, maar het verzekert ook — in zeker mate — dat de invoer
betrouwbaar is. Niet-valide gegevens doorgestuurd naar web servers worden
gezien als de kwetsbare plek bij uitstek van webtoepassingen [OWA04]. De
aanwezigheid van een schema laat tevens automatisatie en optimalisatie van
zoekfunctionaliteit, integratie and verwerking van XML-gegevens toe (zie bij-
voorbeeld [BFG05, DFS99, KSSS04, MFK01, NS03, WLY+03]). Er zijn bo-
vendien een aantal software-ontwikkelingswerktuigen zoals Castor3 en SUNs
JAXB4 die steunen op schema’s voor het opstellen van object-relationele ver-
talingen voor opslag in gegevensbanken. Het bestaan van schema’s is onont-
beerlijk wanneer men (meta)data integreert door gebruik te maken van over-
eenkomsten tussen schema’s [RB01], zowel als op het terrein van generisch
beheer van datamodellen [Ber03, Mel04]. Een laatste belangrijk voordeel van
schema’s is dat het betekenis toekent aan de gegevens. Het biedt de gebrui-

3http://www.castor.org/
4http://java.sun.com/webservices/jaxb/
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ker een concrete semantiek voor het document en helpt dus bij het opstellen
van zinvolle queries voor de XML-gegevens. Hoewel de hier vermelde voor-
beelden slechts een greep vertegenwoordigen uit het geheel van toepassingen,
onderstrepen ze duidelijk het belang van de aanwezigheid van schema’s bij
XML-gegevens.

Ondanks de hierboven vermelde voordelen is de aanwezigheid van een sche-
ma bij XML-documenten niet vereist, sterker nog, voor veel XML-documenten
is er geen schema gegeven. Recent onderzoek van Barbosa et al. [BMV05,
MBV03] toont aan dat ongeveer de helft van de XML-documenten beschik-
baar op het web niet refereren naar een schema. In een andere studie hebben
Bex et al. [BNV04, MNSB06] opgemerkt dat ongeveer tweederde van de XSDs
in schema verzamelingen en op het web niet valide zijn ten opzichte van de
XML Schema specificatie van het W3C. Dit betekent dat deze schema’s on-
bruikbaar zijn voor toepassingen. Sahuguet [Sah00] observeerde een gelijkaar-
dig fenomeen voor DTDs. Gegeven dit gebrek aan (bruikbare) schema’s is het
essentieel algoritmen te ontwikkelen die een schema kunnen afleiden uit een
verzameling XML-documenten wanneer hiervoor geen syntactisch correct, of
zelfs helemaal geen schema beschikbaar is.

Het is belangrijk op te merken dat zelf wanneer een schema beschikbaar
is, er toch omstandigheden zijn waarin het afleiden van een schema nuttig kan
zijn. Een dergelijke situatie is schema verbetering : soms is een gegeven schema
te algemeen ten opzichte van de XML-gegevens dat het moet beschrijven. In
een dergelijk geval kan het nuttig zijn een nieuw schema af te leiden dat uitslui-
tend gebaseerd is op de beschikbare gegevens. Dit wordt goed gëıllustreerd
aan de hand van het volgende voorbeeld uit de Protein Sequence Database
DTD [Mik02]. Deze geeft de volgende definitie voor het refinfo-element:

authors , citation , volume?, month?, year , pages?,
(title | description )?, xrefs?

Een analyse van het beschikbare XML-corpus (683 megabyte gegevens) met
behulp van ons algoritme voor het afleiden van schema’s genereert de volgende
uitdrukking:

authors , citation , (volume | month), year , pages?,
(title | description )?, xrefs?

Merk op dat deze strikter is dan deze uit het originele schema aangezien ze
benadrukt dat het volume- en het month-element niet samen voorkomen voor
een gegeven tijdschriftartikel. Men specificeert hetzij het volumenummer, het-
zij de maand, maar niet beide. Dit voorbeeld illustreert dat algoritmes voor
het afleiden van schema’s gebruikt kunnen worden om de betekenis van de
XML-gegevens beter te begrijpen, zodat het mogelijk wordt bestaande sche-
ma’s aan te passen als dat nodig blijkt. Meer algemeen kan het afleiden van



Samenvatting 163

schema’s gebruikt worden om schema’s te beperken tot een relevant deel van
de gegevens die nodig zijn voor een toepassing. Hierdoor kunnen moeilijke
taken zoals het zoeken van overeenkomsten tussen schema’s en data-integratie
vergemakkelijkt worden. Hinkelman [Hin05] merkt in deze context op dat in-
dustriële standaarden vaak te onnauwkeurig gedefinieerd zijn. Dit uit zich in
schema’s waarin veel business-structuren formeel als optioneel gespecificeerd
worden.

Een tweede situatie waarin het afleiden van schema’s nuttig kan zijn, zelfs
wanneer een schema beschikbaar is, is de aanwezigheid van fouten in de gege-
vens. Door deze fouten kan een groot gedeelte van de te verwerken gegevens
geweigerd worden door het bestaande schema. We hebben een corpus van
XHTML documenten van het web verzameld en bestudeerd. Het blijkt dat
een verbazend groot percentage (89 %) van deze 2092 documenten niet valide
was ten opzichte van de XHTML Transitional specificatie [PAA+02]. In dit
geval kan een afgeleid schema gebaseerd op het corpus en de vergelijking ervan
met de officiële specificatie een overzicht geven van de fouten die men maakt.
Verder heeft men vaak weinig keus: de foutieve data moet verwerkt worden.
Men kan dan een nieuw schema afleiden uit het corpus, met weglating van die
documenten waarin onacceptabele fouten gemaakt worden, om zo te kunnen
werken met het nieuwe schema eerder dan met het originele om zo toch een
minimale validatie te kunnen verzekeren.

Probleemstelling en bijdrage

Gezien deze observaties, lijkt het essentieel algoritmes te ontwikkelen die au-
tomatisch een DTD of een XSD kunnen afleiden uit een gegeven verzameling
van XML-documenten.

Een DTD is een afbeelding van namen van XML-elementen naar regulie-
re expressies over namen van elementen. Een XML-document is valide ten
opzichte van een DTD wanneer de kinderen van elk element voldoen aan de
reguliere expressie geassocieerd met dat element.

Dit betekent dat om een DTD af te leiden uit een verzameling XML-
documenten, het volstaat om voor elk element e in een document een reguliere
expressie op te stellen waaraan de woorden, gevormd door de elementen onder
e, voldoen. Het afleiden van een DTD is dus gereduceerd tot het afleiden van
een reguliere expressie uit een verzameling woorden.

Het afleiden van XSDs is meer gecompliceerd dan het afleiden van DTDs,
maar een recente karakterisatie [MNSB06] toont aan dat de structurele kern
van XML Schema Definition (d.w.z. de boomtalen die gedefinieerd kunnen
worden door XSDs) overeenkomen met DTDs, uitgebreid met verticale regu-
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liere expressies. Dit illustreert dat het niet mogelijk is XSDs af te leiden zonder
een goed algoritme voor het afleiden van reguliere expressies.

De klasse van alle reguliere expressies is echter te groot voor onze doelein-
den: DTDs zowel als XSDs eisen dat de reguliere expressies die ze bevatten
deterministisch zijn. Er bestaan niet-deterministische reguliere expressies die
niet herschreven kunnen worden in een deterministische vorm die dezelfde taal
beschrijft [BKW98]. De klasse van de deterministische reguliere expressies is
dus een strikte deelklasse van de reguliere expressies.

In de context van het afleiden van DTDs uit een verzameling XML-docu-
menten zoeken we dus een algoritme dat deterministische reguliere expressies
kan afleiden uit positieve voorbeelden. Er bestaat echter een beroemd re-
sultaat van Gold [Gol67] dat een dergelijk algoritme voor algemene reguliere
expressies niet bestaat. Ook voor deterministische reguliere expressies bestaat
een dergelijk algoritme niet. Hoewel het dus niet mogelijk is het probleem
algemeen op te lossen, blijkt uit een analyse van een groot aantal DTDs en
XSDs dat de reguliere expressies die hierin voorkomen voldoen aan de volgen-
de eigenschap: elk alfabetsymbool komt ten hoogste k keer voor in de reguliere
expressie. Het blijkt zelfs dat meer dan 98 % van de gevallen k = 1.

We beperken ons dus tot de deelklasse van deterministische reguliere ex-
pressies waarin een alfabetsymbool ten hoogste k maal voorkomt. Voor deze
deelklasse zijn we in staat algoritmes te formuleren die een reguliere expressie
uit een verzameling van voorbeelden kunnen afleiden. Voor k = 1 wordt een
familie algoritmes gegeven in hoofdstuk 2, voor k > 1 in hoofdstuk 3.

Zoals ook hoger reeds aangegeven is het afleiden van XSDs een meer com-
plex probleem dan het afleiden van DTDs. Waar bij DTDs de inhoud van
een element uitsluitend bepaald wordt door de naam van dat element, is dit
voor XSDs niet het geval. De inhoud van een element in een XSD wordt
namelijk bepaald door de context waarin het voorkomt, d.w.z., de elementen
waarin het zelf voorkomt tot aan het element dat de wortel van het document
vormt [MLMK05, MNSB06]. Het is precies deze extra uitdrukkingskracht die
het afleiden van XSDs bemoeilijkt in vergelijking met DTDs.

Aangezien elke DTD kan uitgedrukt worden door een equivalente XSD, en
het in het algemeen niet mogelijk is een willekeurige DTD af te leiden, is het
dus ook niet mogelijk elke willekeurige XSD af te leiden. Net als voor DTDs
zullen we dus een deelklasse van de XSDs identificeren die afgeleid kan worden,
en hiervoor een algoritme geven.

Wanneer men XSDs analyseert die in de praktijk gebruikt worden merken
we op dat de context die de inhoud van een element bepaalt in de overgrote
meerderheid van de gevallen vrij beperkt is. Deze hangt af van ten hoogste en-
kele voorouder-elementen, meestal enkel het element zelf, het vader- of — zel-
den —het grootvader-element. We noemen een XSD k-lokaal indien de inhoud
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van elk element afhangt van ten hoogste k voorouders. We beperken de klasse
van XSDs die we beschouwen verder door op te leggen dat een alfabetsym-
bool slechts eenmaal mag voorkomen in een reguliere expressie die de inhoud
van een element beschrijft. Voor deze deelklasse kunnen we een algoritme op-
stellen dat dergelijke XSDs afleidt uit een verzameling XML-documenten, zie
hiervoor hoofdstuk 4.

De studie van DTDs en XSDs die in de praktijk gebruikt worden heeft
ons veel geleerd, en vooral ons geholpen zinvolle deelklasses van DTDs en
XSDs te identificeren die (1) belangrijk zijn in de praktijd, en (2) waarvoor
we algoritmes kunnen formuleren die DTDs en XSDs afleiden uit een gegeven
verzameling XML-documenten. Deze studie wordt besproken in hoofdstuk 6.
Hierin worden ook nuttige eigenschappen van reguliere expressies bestudeerd,
zoals de grootte van de talen die ze representeren.

Tenslotte, rekening houdend met de scenario’s uiteengezet in de sectie over
de motivatie van dit werk, werd SchemaScope ontwikkeld. Dit is een program-
ma dat ontwikkelaars van XML-schema’s kan bijstaan in hun werk. Het laat
toe DTDs of XSDs af te leiden uit een verzameling XML-documenten, een
bestaand schema te verbeteren, te verfijnen, of te veralgemenen zodat het ge-
bruikt kan worden voor XML-documenten met fouten. SchemaScope wordt
beschreven in hoofdstuk 5.
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