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1
Introduction

The operations of a general-purpose programming language such as C or Java
are only defined on certain kinds of inputs. For example, if a is an array, then
the array indexation a[i] is only defined if i lies within the boundaries of the
array. If, during the execution of a program, an operation is supplied with the
wrong kind of input, then the output of the program is undefined. Indeed,
the program may exit with a runtime error, or worse yet, it may compute the
wrong output.

To detect such programming errors as early as possible, it is hence natural
to ask whether we can solve the well-definedness problem: given an expression
and an input type, decide whether the semantics of the expression is defined
for all inputs adhering to the input type. Unfortunately, this problem is un-
decidable for any computationally complete programming language, by Rice’s
Theorem. Most programming languages therefore provide a static type system
to detect programming errors [42, 49]. These systems ensure “type safety” in
the sense that every expression which passes the type system’s tests is guar-
anteed to be well-defined. Due to the undecidability of the well-definedness
problem, these systems are necessarily incomplete, i.e., there are expressions
which are well-defined, but do not type-check. Such expressions are problem-
atic from a programmer’s point of view, as he must rewrite his code in order
to get it to type-check. As such, a major quest in the theory of programming
languages consists of finding type systems for which the set of well-defined but
ill-typed expressions is as small as possible.

Although the Holy Grail in this quest (i.e., a type system which is both
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2 Introduction

sound and complete) can never be found for general-purpose programming lan-
guages, this does not mean it cannot be found for smaller, specific-purpose pro-
gramming languages. The most prominent examples of the latter are database
query languages such as SQL [40], OQL [11], and XQuery [6].1 Expressions
in all these languages can be undefined. For example, consider the following
OQL expression:

select author: element(b.authors), title: b.title
from books b
where b.pub_year > 2000

This expression returns, for each book published after the year 2000, the book’s
author and title. The subexpression element(b.authors) checks that the set
of b’s authors is a singleton, and if so, extracts this single author. If the book
is written by more than one author however, the result of the expression is
undefined.

As query languages do not have full computational power, Rice’s theorem
does not apply and it is hence worthwhile to investigate if we can’t decide the
well-definedness problem for them. If so, then we obtain in essence a type
system which is both sound and complete. In this dissertation we therefore
study the well-definedness problem for database query languages. We start
our study with well-definedness for the Nested Relational Calculus (NRC for
short). The NRC is a well-known query language for the complex object
data model [1, 9, 60]. It is a conservative extension [59] of the relational
algebra [1, 16] (which serves as the data processing core of SQL) and can
itself be viewed as a data processing core of OQL. Furthermore, the NRC
inspired the design of various semi-structured languages such as UnQL [8],
StruQL [21], and Quilt [13], on which XQuery is based. As such, our study of
well-definedness for the NRC serves as a good starting point for the study of
well-definedness in SQL, OQL, and XQuery.

Certain features of the latter two languages are not captured by the stan-
dard set-based NRC however. Indeed, OQL operates on bags and lists in
addition to sets, while XQuery operates on lists. Both languages have ob-
ject identity and the ability to create new objects. We therefore continue our
study by identifying broad classes of first-order, object-creating query lan-
guages operating on list-based data for which the well-definedness problem is
(un)decidable. Specifically, we identify properties of basic operations in such
languages which can make the well-definedness problem undecidable and give

1XQuery is in fact a full-fledged general-purpose programming language. Most XQuery
programs are of the restricted form “for-let-where-return” however, which we regard as the
true query language part of XQuery.
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corresponding restrictions which are sufficient to ensure decidability. The ob-
tained results can be transfered to a bag-based data model, and are directly
applicable to OQL and XQuery.

A problem which is related to well-definedness is the semantic type-checking
problem: decide, given an input type, an expression and an output type,
whether the expression only produces outputs in the output type on inputs
in the input type. This problem is useful in a “producer-consumer” setting
where a producer generates data, which is processed by a consumer. In or-
der to ensure good operation by the consumer, the producer is expected to
only produce data adhering to a certain type. Unfortunately, the semantic
type-checking problem is also undecidable for any computationally complete
programming language, by Rice’s theorem. In practice however, the producer
will often consist of a query against a database. It is therefore interesting to
see if we can’t solve the semantic type-checking problem for the query lan-
guages mentioned above. We study this problem for the NRC. For XQuery
and other XML-related languages, the problem has already been studied ex-
tensively [2, 3, 37, 38, 41, 52].

Our study will show that both well-definedness and semantic type-checking
remain undecidable for query languages which are powerful enough to simulate
the relational algebra. It follows that a sound and complete type system for
SQL, OQL, or XQuery does not exist (although we will identify several useful
fragments for which such a system does exist). Query languages that want to
verify the absence of certain programming errors statically will hence have to
do so by means of a traditional, incomplete type system.

In the second part of this dissertation we therefore study classical type
system problems from the theory of programming languages in the context of
database query languages. Recently, Van den Bussche and Waller [56] have
noted that the operators of the relational algebra are polymorphic. For in-
stance, we can take the natural join of any two relations, regardless of their
schema. We can take the union of any two relations with the same schema. We
can perform a projection πA,...,B of any relation having at least the attributes
{A, . . . , B}. When combining operators into expressions, these typing condi-
tions become more involved. For example, for the expression

πA(r 1 s) 1 ((r × u)− v)

to be well-typed, the attribute A must be an attribute of r or s (or both).
But if it is an attribute of r, then it must also be one of v. Moreover, by the
subexpression (r × u) − v, the relation schemas of r and s must be disjoint,
and their union must be the schema of v.

A natural question thus arises: given a relational algebra expression e,
under which database schemas is e well-typed? And what is the result rela-
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tion schema of e under these database schemas? In particular, can we give an
explicit description of the typically infinite set of these typings? This is noth-
ing but the relational algebra version of the classical type inference problem.
Type inference is an extensively studied topic in the theory of programming
languages [43, 49] and is used in industrial-strength functional programming
languages such as Standard ML [55] and Haskell [30]. For the relational alge-
bra, this problem was studied by Van den Bussche and Waller [56].

Some expressions, for example σA(πB(R)), are inherently untypable (i.e.,
these expressions do not admit any typing). Checking typability of rela-
tional algebra expressions is the analog in the relational algebra of static type-
checking in implicitly typed programming languages with polymorphic type
systems, such as ML. It is therefore interesting to see what its complexity is.
It is known for instance that typability is P-complete for the simply typed
lambda calculus [19] and Exptime-complete for ML [31, 34]. In contrast, Van
den Bussche and Waller have shown that typability for the relational algebra
is in NP. The precise complexity remained open, however. In this disserta-
tion, we show that the problem is NP-hard, even in various restricted settings.
Finally, we also investigate the type inference and typability problems for the
NNRC, a named version of the Nested Relational Calculus.

1.1 Detailed Overview and Related Work

Well-Definedness and Semantic Type-Checking

We start in Chapter 2 by studying the well-definedness problem for the
NRC in the standard, set-based, complex object data model [1, 9, 60]. In
particular, we obtain that the problem is undecidable for the NRC in general,
but is decidable for the positive-existential fragment of the NRC (PENRC
for short). Next, we study well-definedness for the PENRC in the presence
of the singleton coercion operator extract. This operator, like OQL’s element
operator, extracts v from a singleton set {v} and is undefined on non-singleton
inputs. Alas, this operator causes the well-definedness problem to become
undecidable again. The core difficulty here is the fact that extract({e1, e2}) is
defined if, and only if, expressions e1 and e2 return the same result on every
input. As such, in order to solve the well-definedness problem one also needs
to solve the equivalence problem. We show that the equivalence problem for
the PENRC is undecidable. Finally, we study the well-definedness problem
for the PENRC in the presence of type tests. Such tests allow the inspection
of the type of a value at runtime, and are present for example in XQuery.
Unfortunately, type test also cause the problem to become undecidable again.
Fortunately however, well-definedness remains decidable if we only allow a
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limited form of type tests, which we call kind tests.
Next, we study the semantic type-checking problem for the NRC in the

presence of standard complex object types. Similar to our results for well-
definedness, we obtain that the problem is undecidable for the NRC in general,
but is decidable for the PENRC. The semantic type-checking problem has
already been studied extensively in XML-related query languages [2, 3, 37, 38,
41, 52]. In particular, our setting closely resembles that of Alon et al. [2, 3]
who, like us, study the problem in the presence of data values. In particular
they have shown that (un)decidability depends on the expressiveness of both
the query language and the type system. While the query language of Alon
et al. can simulate the NRC, one needs a feature called specialization in order
to encode complex object types in their type system. In the presence of this
feature, they have shown semantic type-checking for their type system to be
undecidable, even in the positive-existential case. In contrast, semantic type-
checking for the PENRC in the complex object type system is decidable.

In Chapter 3 we study the well-definedness problem for a family of query
languages QL(B) which are evaluated in a tree-structured, list-based data
model. Here, B is a set of base operations (such as an equality test, taking the
children of a certain node in a tree, creating a new node, . . . ) and QL(B) is the
query language obtained from B by adding variables, constants, conditional
tests, let-bindings, and for-loops. Since base operations are free to create new
nodes, every QL(B) is hence a first-order, object-creating query language.

Concretely, we study the well-definedness problem for such QL(B) in the
presence of bounded-depth regular expression types. Regular expression types
are based on regular tree languages [7, 15, 44, 45] and are widely used in
general-purpose programming languages manipulating tree-structured data,
such as XDuce [26, 27, 28], CDuce [23], and XQuery [6, 18]. The bounded-
depth restriction is motivated by the fact that most tree-structured data (such
as for example found in XML documents [61]) in practice has nesting depth at
most five or six, and that unbounded-depth nesting is hence often not needed.

Specifically, we identify properties of base operations which can make
the well-definedness problem undecidable and give corresponding restrictions
which are sufficient to ensure decidability. In essence, we hence identify a
broad class of QL(B) for which a sound and complete static type system does
exist.

Our results are directly applicable to XQuery, as we show that XQuery’s
basic functions and operators [35] are in fact base operations. As such, “for-let-
where-return” XQuery fits nicely into our family of studied query languages.
The decidability of well-definedness for a large fragment of “for-let-where-
return” XQuery immediately follows as we show that, in the absence of au-
tomatic coercions, the various axis movements, node constructors, value and
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node comparisons, and node-name and text-content inspections satisfy our
restrictions. In contrast, well-definedness for this fragment with automatic
coercions is undecidable.

Although both the NRC and QL(B) are first-order languages, this does
not mean that their well-definedness problems are the same. Indeed, QL(B)
operates on a tree-structured, list-based data model, has object identity, and
can create new objects, whereas the NRC operates on a set-based data model
without object identity. Moreover, regular expression types are capable of
specifying both lower-bound and upper-bound constraints on the input, while
the complex object types for which we study well-definedness in the NRC can
only specify upper-bound constraints. For example, it is possible to give a
regular expression type which only recognizes those inputs which contain at
least three items. Such a complex object type does not exist, however.

As a result of these differences we will show that the presence of base op-
erations which are undefined on non-singleton inputs has no impact on the
decidability of the well-definedness problem for QL(B), whereas such base op-
erations already cause the well-definedness problem for the positive-existential
fragment of the NRC to become undecidable. That such operations are not
problematic with regard to well-definedness for QL(B) is entirely due to its
list-based data model. Indeed, we show that well-definedness for the positive-
existential NRC equipped with such a base operation, interpreted in a list-
based data model, is decidable. As the list-based PENRC is a fragment of
OQL, our study of QL(B) hence also leads to a deeper understanding of well-
definedness for OQL.

Type Inference and Typability

In Chapter 4 we study the complexity of deciding typability in the relational
algebra. We obtain that the problem is NP-complete in general. In particular,
we show that the problem becomes NP-hard due to (1) the cartesian product
operator; (2) the selection operator on arbitrary sets of typed predicates; and
(3) the selection operator on “well-behaved” sets of typed predicates together
with join and projection or renaming. However, the problem is in P when
(1) we only allow union, difference, join, and selection on “well-behaved” sets
of typed predicates; or (2) we allow all operators except cartesian product,
where the set of selection predicates can mention at most one base type. Most
of these results follow from a close connection of the typability problem to
non-uniform constraint satisfaction.

In Chapter 5 we study type inference and typability for the NNRC,
a named version of the nested relational calculus that is equipped with a
static type system. Specifically, we propose an explicit description of the set
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of all possible typings of an NNRC expression e by means of a conjunctive
logical formula φe, which is interpreted in the universe of all possible types.
The formula φe is efficiently computable from e. We proceed to show that
the satisfiability of such conjunctive formulas belongs to NP. Consequently,
typability for the NNRC is also in NP. Since the NNRC is an extension of
the relational algebra, for which typability is already NP-complete, this thus
shows that typability for the NNRC is not more difficult than for the special
case of the relational algebra.

In the theory of programming languages one also finds type inference and
type-checking algorithms for languages with sets and records, often in the
presence of even more powerful features such as higher order functions [10,
47, 50, 53, 54, 58]. Indeed, the polymorphic type system of the NNRC can
be encoded in the very general type inference framework of HM(X) [53, 54].
To our knowledge, however, we are the first to study the complexity of the
typability problem for the specific type systems of the relational algebra and
the NNRC. Furthermore, a second goal of our work was to provide an elemen-
tary, self-contained presentation of polymorphic type inference for the NNRC,
accessible for researchers in database query languages who may not be familiar
with type theory.
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Well-Definedness and
Semantic Type-Checking
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2
Well-Definedness and
Semantic Type-Checking for
the Nested Relational
Calculus

In this chapter we study the well-definedness and semantic type-checking prob-
lems for the nested relational calculus. We start in Section 2.1 by introducing
the nested relational calculus data model and query language. Next, we in-
troduce the well-definedness problem in Section 2.2, where we also show that
this problem is undecidable for the NRC in general, but becomes decidable for
the positive-existential fragment of the NRC. We study the well-definedness
problem for this fragment in the presence of singleton coercion in Section 2.3
and in the presence of type tests in Section 2.4. Finally, we study the semantic
type-checking problem in Section 2.5.

2.1 Nested Relational Calculus

Data Model We assume to be given a recursively enumerable set A =
{a, b, . . . } of atoms, which in practice will contain the usual data values such
as integers, strings, and so on. A complex object value is either an atom, a
pair of complex object values, or a finite set of complex object values. For ex-

11



12 Well-Definedness and Semantic Type-Checking for the NRC

ample, {a, (b, c), (a, {a, b})} is a complex object value. For convenience we will
abbreviate “complex object value” by “value” in this chapter. Furthermore,
we will range over complex object values by u, v, and w and over finite sets of
complex object values by U, V, and W .

Syntax We also assume given a set X = {x, y, . . . } of variables. The Nested
Relational Calculus (NRC) is the set of all expressions generated by the fol-
lowing grammar:

e ::= x

| (e, e) | π1(e) | π2(e)

| ∅ | {e} | e ∪ e |
⋃
e | {e | x ∈ e}

| e = e ? e : e | e = ∅ ? e : e

Here, e ranges over NRC expressions and x ranges over variables. We view
expressions as abstract syntax trees and omit parentheses. The set FV (e) of
free variables of an expression e is defined as usual. That is, FV (x) := {x},
FV (∅) := ∅, FV ({e2 | x ∈ e1}) := FV (e1)∪ (FV (e2) \ {x}), and FV (e) is the
union of the free variables of e’s immediate subexpressions otherwise.

Semantics A complex object context σ is a function from a finite set of
variables dom(σ) to complex object values. If dom(σ) is a superset of FV (e),
then we say that σ is a complex object context on e. We denote by x : v, σ
the complex object context σ′ with domain dom(σ)∪ {x} such that σ′(x) = v
and σ′(y) = σ(y) for y 6= x. We will abbreviate “complex object context” by
“context” in this chapter.

The semantics of NRC expressions is described by means of the evaluation
relation, as defined in Figure 2.1. Here, we write σ |= e ⇒ v to denote the
fact that e evaluates to value v on context σ on e. It is easy to see that the
evaluation relation is functional: an expression evaluates to at most one value
on a given context. The evaluation relation is not total however. For example,
if σ(x) is an atom then π1(x) does not evaluate to any value on σ, since π1 is
only defined on pairs. Likewise, we can only take the union of sets, flatten a
set of sets, iterate over sets, test equality on atoms, and test emptiness of sets.
An expression e can hence be viewed as a partial function from contexts on e
to values. We will write e(σ) for the unique value v for which σ |= e ⇒ v. If
no such value exists, then we say that e(σ) is undefined.

We note that the semantics of an expression only depends on its free vari-
ables: if two contexts σ and σ′ on e are equal on FV (e), then σ |= e ⇒ v if,
and only if, σ′ |= e⇒ v.
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Variables

σ |= x⇒ σ(x)

Pair operations

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2

σ |= (e1, e2) ⇒ (v1, v2)
σ |= e⇒ (v1, v2)
σ |= π1(e) ⇒ v1

σ |= e⇒ (v1, v2)
σ |= π2(e) ⇒ v2

Set operations

σ |= ∅ ⇒ ∅
σ |= e⇒ v

σ |= {e} ⇒ {v}
σ |= e1 ⇒ V1 σ |= e2 ⇒ V2

σ |= e1 ∪ e2 ⇒ V1 ∪ V2

σ |= e⇒ {V1, . . . , Vn}
σ |=

⋃
e⇒

⋃
{V1, . . . , Vn}

σ |= e1 ⇒ V ∀v ∈ V : (x : v, σ) |= e2 ⇒ wv

σ |= {e2 | x ∈ e1} ⇒ {wv | v ∈ V }

Conditional tests

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e3 ⇒ v a = b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e4 ⇒ v a 6= b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ V σ |= e2 ⇒ v V = ∅
σ |= e1 = ∅ ? e2 : e3 ⇒ v

σ |= e1 ⇒ V σ |= e3 ⇒ v V 6= ∅
σ |= e1 = ∅ ? e2 : e3 ⇒ v

Figure 2.1: The evaluation relation for NRC expressions.
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Types The free variables of an expression are usually meant to hold only
values of a specific form, which can be specified by means of a type assignment.
A complex object type is a term generated by the following grammar:

τ ::= Atom | Pair(τ, τ) | SetOf(τ) | τ ∪ τ.

A complex object type τ denotes a set of complex object values JτK:

• JAtomK := A,

• JPair(τ1, τ2)K := Jτ1K× Jτ2K,

• JSetOf(τ)K is the set of all finite sets over JτK, and,

• Jτ1 ∪ τ2K := Jτ1K ∪ Jτ2K.

We will abuse notation and identify τ with JτK. A complex object type as-
signment Γ is a function from a finite set of variables dom(Γ) to types. A
complex object type assignment denotes the set of complex object contexts σ
for which dom(σ) = dom(Γ) and σ(x) ∈ Γ(x), for every x ∈ dom(σ). Again,
we will abuse notation and identify a complex object type assignment with
its denotation. Finally, if dom(Γ) is a superset of FV (e), then we say that
Γ is a complex object type assignment on e. We will abbreviate “complex
object type” and “complex object type assignment” by “type” respectively
“type assignment” in this chapter.

Example 2.1. Let friends and John be two variables. Suppose that the value
of friends is a set of friends, as a set of pairs of atoms. Suppose also that the
value of John is a name (an atom). The following expression computes the set
of all of John’s friends:⋃

{π1(x) = John ? {π2(x)} : ∅ | x ∈ friends}.

The set of intended context inputs to this expression is described by the type
assignment Γ on e for which Γ(friends) = SetOf(Pair(Atom,Atom)) and
Γ(John) = Atom.

2.2 Well-Definedness

As we have already noted in the previous section, e(σ) is not necessarily defined
(i.e., e does not necessarily evaluate to a value on σ). This leads us to the
following central notion:
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Definition 2.2. Let e be an NRC expression and let Γ be a type assignment
on e. If e(σ) is defined for every context σ ∈ Γ, then e is well-defined under Γ.
The well-definedness problem for the NRC consists of checking, given e and
Γ, whether e is well-defined under Γ.

Since an actual implementation of the NRC will produce a runtime error
on those contexts σ for which e(σ) is undefined, it is worthwhile to ask whether
we can let a computer solve the well-definedness problem. Unfortunately, we
cannot:

Theorem 2.3. The well-definedness problem for the NRC is undecidable.

Proof. It is well-known that the (finite) satisfiability problem for the relational
algebra is undecidable [1]. That problem consists of checking, given a relational
algebra expression φ over a relational schema S, whether φ returns a non-
empty result on some database instance over S. It is easy to see that a
database instance can be encoded as a context. For example, consider the
database instance D where relation names r and s are assigned the following
respective relations:

A B C

a1 b1 c1
a2 b1 c2

C D

c1 a1

c2 a2

Clearly, D can then be encoded as the context σ where

σ(r) = {(a1, (b1, c1)), (a2, (b1, c2))}
σ(s) = {(c1, a1), (c2, a2)}.

It is well-known [9, 60] that for every φ and S there exists and expression e
and a type assignment Γ such that

1. e is well-defined under Γ,

2. the contexts in Γ are exactly the encodings of database instances over
S, and

3. if D is a database instance over S and σ is an encoding of D, then e(σ)
is an encoding of φ(D).

The fact that e is well-defined under Γ stems from the fact that relational alge-
bra expressions are always well-defined with regard to their database schema.
It is clear that φ is satisfiable if, and only if, e is satisfiable on a context in Γ.
Since the expression {π1(∅) | x ∈ e} is not well-defined under Γ if, and only
if e is satisfiable, we have a reduction from satisfiability to well-definedness.
Hence, well-definedness is undecidable.
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Note that satisfiability for the positive-existential fragment of the relational
algebra (i.e., the relational algebra without difference) is trivially decidable.
Indeed, it is easy to see that every relational algebra expression in this fragment
is satisfiable.1 In order to obtain a fragment of the NRC for which well-
definedness is decidable, it is hence worthwhile to investigate which features
of the NRC allow the simulation of a difference operation. Assume that R and
S are sets of atoms. The following expression then computes the difference of
R and S:⋃{⋃

{x = y ? {x} : ∅ | y ∈ S} = ∅ ? {x} : ∅
∣∣ x ∈ R} .

The inner comprehension returns {x} if x ∈ S and returns ∅ otherwise. The
outer conditional test compares this result with ∅ to filter out those x in S.
Since the ability to test set-emptiness is hence too powerful a feature with
regard to well-definedness checking, we will restrict ourselves in what follows
to expressions in which the emptiness test does not occur.

2.2.1 Positive-Existential Nested Relational Calculus

The Positive-Existential Nested Relational Calculus is the NRC without empti-
ness test expression. Before investigating the well-definedness problem in the
context of the PENRC, we should verify that we cannot simulate the relational
algebra difference operator by the remaining expressions. Otherwise, we will
still be able to simulate the full relational algebra, and the well-definedness
problem will remain undecidable. We therefore introduce the containment
relation v on values as follows [5]:

av a
vv v′ wvw′

(v, w)v(v′, w′)
for all vi there exists wj such that vivwj

{v1, . . . , vn}v{w1, . . . , wm}

This relation is extended component-wise to contexts: if σ and σ′ are two
contexts with the same domain, then σvσ′ if σ(x)vσ′(x) for every x ∈
dom(σ).

Lemma 2.4 (Monotonicity). Let e be a PENRC expression and let σ and
σ′ be contexts on e such that σvσ′. If e(σ) and e(σ′) are defined, then
e(σ)v e(σ′). If e(σ) is undefined, then so is e(σ′).

The proof is by a straightforward induction on e. It is easy to see that
the difference operator is a non-monotone operation. Indeed, let R = {a}

1Here we are referring to the standard version of the relational algebra where selection only
tests equality between attributes. When other selection predicates are allowed, expressions
in the positive-existential fragment of the relational algebra need not be satisfiable.
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and S = ∅, then R − S = {a}. However, if we extend S to S′ = {a} then
R−S′ = ∅, which does not contain {a} although RvR and SvS′. It follows
that difference is not expressible in the PENRC.

We will show that the well-definedness problem for the PENRC is de-
cidable. The key to this decidability is that the PENRC has a small model
property for undefinedness. Let us introduce this property by an example.

Example 2.5. Let e be the expression

e = {{z = y ? π1(z) : y | y ∈ x} | x ∈ R},

and let the type assignment Γ on e be defined by:

Γ(R) = SetOf(SetOf(Atom))
Γ(z) = Atom.

Let the context σ ∈ Γ be defined by σ(R) = {{a, b}, {c}, {d, a, b}}} and σ(z) =
d. Since there is a set in σ(R) which contains σ(z), we will need to evaluate π1

on σ(z) at some point, which is undefined (as σ(z) is an atom). Hence, e(σ)
is undefined. Note that we do not need all elements in σ(R) to reach the state
where e(σ) becomes undefined. Indeed, e(σ′) is also undefined if σ′(R) = {{d}}
and σ′(z) = d . Note that every set occurring in σ′ has cardinality at most
one and that σ′ ∈ Γ.

We will show in Section 2.2.2 that we can generalize this example as follows.
Here, we say that a value v has width at most k if every set occurring in v has
cardinality at most k. Likewise, a context σ has width at most k if σ(x) has
width at most k, for every x ∈ dom(σ).

Proposition 2.6 (Small model for undefinedness). Let e be a PENRC
expression and let Γ be a type assignment on e such that e is not well-defined
under Γ. Then there exists a natural number k, computable from e, and a
context σ′ ∈ Γ of width at most k such that e(σ′) is also undefined.

Before showing how this property allows us to solve the well-definedness
problem, a definition is in order.

Genericity Let ρ be a permutation of A. We extend ρ to values in the
canonical way:

ρ((v, w)) := (ρ(v), ρ(w))
ρ(V ) := {ρ(v) | v ∈ V }
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We also extend ρ component-wise to contexts: ρ(σ)(x) := ρ(σ(x)). Two
contexts σ and σ′ are isomorphic if there exists a permutation ρ such that
ρ(σ) = σ′. It is easy to see that PENRC expressions cannot distinguish
between isomorphic inputs:

Lemma 2.7 (Genericity). Let e be a PENRC expression, let σ be a context
on e, and let ρ be a permutation of A. If e(σ) is defined, then so is e(ρ(σ))
and e(ρ(σ)) = ρ(e(σ)). If e(σ) is undefined, then so is e(ρ(σ)).

Theorem 2.8. The well-definedness problem for the PENRC is decidable.

Proof. Suppose that expression e is not well-defined under type assignment Γ
on e. By Proposition 2.6 there exists a natural number k, computable from e,
and some context σ ∈ Γ of width at most k such that e(σ) is undefined.

Let us denote the maximum number of atoms a value in type τ of width
at most k can mention by rank(τ, k). Then clearly,

rank(Atom, k) = 1
rank(Pair(τ1, τ2), k) = rank(τ1, k) + rank(τ2, k)
rank(SetOf(τ ′), k) = k × rank(τ ′, k)

rank(τ1 ∪ τ2, k) = max{rank(τ1, k), rank(τ2, k)}

Consequently, the maximum number of atoms mentioned in σ is bounded by

l :=
∑

x∈dom(Γ)

rank(Γ(x), k).

Note that l is computable from Γ and e. Now fix some l-element subset A
of A. Since the number of different atoms mentioned in σ is at most l there
surely exists a permutation ρ of A such that ρ(σ) mentions only atoms in A.
By genericity, e(ρ(σ)) is also undefined.

Hence, in order to check if e is well-defined under Γ, it suffices to check
whether e(γ) is defined for all contexts γ ∈ Γ which mention only atoms in A.
It is easy to see that there are only a finite number of such γ, from which the
result follows.

2.2.2 Small Model Properties

In this section we prove the small model property for undefinedness (Propo-
sition 2.6): if there is an input on which an expression e is undefined, then
there is also a “small” input on which it is undefined. We first note:

Lemma 2.9 (Type preservation). Let τ be a type. If w ∈ τ and vvw,
then also v ∈ τ .
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The proof is by a straightforward induction on τ . In order to prove Propo-
sition 2.6 it hence suffices to show that, given an expression e and a context
σ for which e(σ) is undefined, we can deduce σ′vσ whose width depends
only on e such that e(σ′) is also undefined. We will prove this property by
induction on e by “tracing” the reason why e(σ) is undefined through σ (from
the bottom up). In order to do so we will need a small model property for
definedness, as we outline in the following example.

Example 2.10. Let e = {π1(x) | x ∈ e1} and suppose that σ is a context on e
for which e1(σ) = {a, (a, b), (c, d), (a, d)}. Since at some point we will evaluate
π1(x) on (x : a, σ) (which is undefined), it follows that e(σ) is also undefined.
Clearly, the undefinedness of π1(x)(x : a, σ) is solely due to the fact that x is
bound to the atom a. As we are searching for a “small” context σ′vσ on
which the whole expression e is undefined, we want to make sure that at some
point we still evaluate π1(x) under a context in which x is bound to a. That is,
we will want to construct σ′ in such a way that {a}v e1(σ′). If, for example,
e1 = R ∪ S with σ(R) = {a, (a, b)} and σ(S) = {(a, b), (c, d), (a, d)}, then we
could take σ′(R) = {a} and σ′(S) = ∅.

As this example illustrates, we will want to show that, given an expression
e1, a context σ for which e1(σ) is defined, and a value uv e1(σ), we can “trace”
the reason that e1(σ) contains u through σ. In particular we want to show
that we can always deduce a context σ′vσ whose width depends only on e1
and u such that uv e1(σ′). This is our small model property for definedness,
which we prove below. First however, some additional definitions are in order.

Union of Values We start by defining the union operation t on values of
the same kind:

at a := a (u1, u2)t(v1, v2) := (u1 t v1, u2 t v2) U tV := U ∪ V

On all other arguments, t is undefined. It is easy to see that ut v (if it exists)
is a least upper bound (according to v) of values u and v:

Lemma 2.11. If uvw and vvw, then ut v exists, uvut v, vvut v, and
(ut v)vw.

Note that, if u has width at most k and v has width at most l, then ut v (if
it exists) has width at most k+l. The value union is extended component-wise
to contexts: if σ and σ′ are contexts with the same domain, then σ tσ′ is the
context with (σ tσ′)(x) = σ(x)tσ′(x) for every x ∈ dom(σ). It follows from
Lemma 2.11 that, if σv γ and σ′v γ, then σ tσ′ exists, σvσ tσ′, σ′vσ tσ′,
and σ tσ′v γ. Moreover, if σ has width at most k and σ′ has width at most
l, then σ tσ′ (if it exists) has width at most k + l.
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Minimization Next, we introduce the minimization operation minimize on
values:

minimize(a) := a

minimize(u1, u2) := (minimize(u1),minimize(u2))
minimize(V ) := ∅

It is clear that minimize(v)v v and that minimize(v) has width zero. As
before, we extend the minimization operation component-wise to contexts:
minimize(σ)(x) := minimize(σ(x)).

Convention: In what follows we will write Vk for the set of all values of
width at most k and Ck for the set of all contexts of width at most k.

Proposition 2.12 (Small model property for definedness). For every
PENRC expression e there exists a computable function ce mapping natural
numbers to natural numbers such that for every natural number k, every con-
text σ on e for which e(σ) is defined, and every uv e(σ) of width at most k,
there exists a context σ′vσ of width at most ce(k) such that uv e(σ′). More-
over, an arithmetic expression defining ce is effectively computable from e.

Proof. Let e be a PENRC expression. Define the function ce inductively as
follows.

cx(k) := k

c(e1,e2)(k) := ce1(k) + ce2(k)

cπ1(e′)(k) := ce′(k)

cπ2(e′)(k) := ce′(k)

c∅(k) := 0
c{e′}(k) := k × ce′(k)

ce1∪e2(k) := ce1(k) + ce2(k)
cS

e′(k) := ce′(k)

c{e2|x∈e1}(k) := ce1(max{k, ce2(k)}) + k × ce2(k)

ce1=e2 ? e3 : e4(k) := max{ce3(k), ce4(k)}

It is clear from this inductive definition that an arithmetic expression defining
ce can effectively be computed from e. It is also clear that ce is a computable
function mapping natural numbers to natural numbers. Let k be a natural
number, let σ be a context on e for which e(σ) is defined, and let uv e(σ) be
a value of width at most k. Define the predicate P (u, e, σ, k) as follows:

P (u, e, σ, k) := {σ′ | σ′ ∈ Cce(k), σ
′vσ, and uv e(σ′)}.
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We will prove by induction on e that P (u, e, σ, k) is non-empty, from which
the proposition follows. Note that, since e(σ) is defined, e(δ) is also defined
for every δvσ by monotonicity. We also remind the reader that if σ1vσ has
width at most k and σ2vσ has width at most l, then σ1 tσ2 exists and has
width at most k + l. Furthermore, σ1vσ1 tσ2, σ2vσ1 tσ2, and σ1 tσ2vσ
by Lemma 2.11. We will use these facts silently throughout the induction.

• If e = x, then we define σ′ by

σ′(y) =

{
u if y = x

minimize(σ(y)) otherwise

• If e = ∅, then we take σ′ = minimize(σ).

• If e = (e1, e2), then e(σ) is a pair. Hence, u = (u1, u2) for some u1, u2 ∈
Vk. By the induction hypothesis there exist σ1 ∈ P (u1, e1, σ, k) and
σ2 ∈ P (u2, e2, σ, k). Then σ1 t σ2 ∈ Cce1 (k)+ce2 (k) = Cce(k). Moreover, by
monotonicity:

(u1, u2)v(e1(σ1), e2(σ2))v(e1(σ1 t σ2), e2(σ1 t σ2)) = e(σ1 t σ2)

Hence, σ1 tσ2 ∈ P (u, e, σ, k).

• If e = e1 ∪ e2, then e(σ) is a set. Since uv e(σ) there exists, for every
v ∈ u, a wv ∈ e(σ) such that vvwv. Define,

u1 := {v ∈ u | wv ∈ e1(σ)}
u2 := {v ∈ u | wv ∈ e2(σ)}

Then u = u1 ∪ u2, u1v e1(σ), and u2v e2(σ). Moreover, u1, u2 ∈ Vk.
The result then follows from the induction hypothesis by a reasoning
similar to the previous case.

• If e = π1(e′), then e′(σ) is a pair (v, w). Let u′ = (u,minimize(w)).
Then u′v(v, w) since uv v and minimize(w)vw. Moreover, u′ ∈ Vk
since minimize(w) ∈ V0. Hence there exists σ′ ∈ P (u′, e′, σ, k) by the
induction hypothesis. Hence,

u = π1(u′)vπ1(e′(σ′)) = e(σ′).

Since also Cce′ (k) = Cce(k), we have σ′ ∈ P (u, e, σ, k). The case where
e = π2(e′) is similar.
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• If e = {e′}, then we discern two cases. If u = ∅, then it is clear that
uv e(σ′) for any σ′vσ. Hence, it suffices to take σ′ = minimize(σ),
which is in C0 ⊆ Cce(k). Otherwise, u contains at least one and at most
k elements. For each v ∈ u we have that v is of width at most k and
that vv e′(σ). Hence, there exists σv ∈ P (v, e′, σ, k) for every v ∈ u
by the induction hypothesis. Let σ′ =

⊔
v∈u σv. Then σv vσ′ for every

v ∈ u, and σ′vσ. By monotonicity we then have vv e′(σv)v e′(σ′), and
hence uv{e′(σ′)} = e(σ′). Moreover, σ′ ∈ Ck×ce′ (k) = Cce(k). Hence,
σ′ ∈ P (u, e, σ, k).

• If e =
⋃
e′, then e′(σ) is a set of sets. Since uv e(σ) there exists, for

every v ∈ u, a wv ∈ e(σ) such that vvwv. Let e′(σ) = {V1, . . . , Vn}.
Note that e(σ) = V1 ∪ · · · ∪ Vn. Define, for each i ∈ [1, n],

Ui := {v ∈ u | wv ∈ Vi \
⋃
j<i

Vj}.

Note that since u has width at most k, the cardinality of each of the
Ui’s is at most k and at most k of the Ui’s are non-empty. Furthermore,
UivVi. Let u′ be the set of all non-empty Ui’s. Then u′v e′(σ) and
u′ ∈ Vk. The result then follows from the induction hypothesis.

• If e = e1 = e2 ? e3 : e4, then e1(σ), e2(σ) ∈ A. Suppose e1(σ) =
e2(σ), then uv e3(σ). By the induction hypothesis there exists σ′ ∈
P (u, e3, σ, k). Then e1(σ′) = e1(σ) = e2(σ) = e2(σ′) by monotonicity
and hence e(σ′) = e3(σ′). We then have by the induction hypothesis
that uv e3(σ′) = e(σ′). Since also σ′ ∈ Cce3 (k) ⊆ Cce(k), we have σ′ ∈
P (u, e, σ, k). The case where e1(σ) 6= e2(σ) is similar.

• If e = {e2 | x ∈ e1}, then e(σ) is a set. Since uv e(σ) there exists,
for every v ∈ u, a value wv ∈ e(σ) such that vvwv. Since e(σ) is
obtained by a comprehension over e1(σ), there also must exist, for every
v ∈ u, a value zv ∈ e1(σ) such that wv = e2(x : zv, σ). Hence there
exists, for every v ∈ u, a context x : z′v, σ

′
v ∈ P (v, e2, (x : zv, σ), k) by

the induction hypothesis. Let u′ = {z′v | v ∈ u}. Then u′ contains at
most k elements of Vce2 (k). Hence, u′ ∈ Vm with m = max{k, ce2(k)}.
Moreover, x : z′v, σ

′vx : zv, σ by the induction hypothesis, so z′v v zv,
and hence u′v e1(σ).

By applying the induction hypothesis again, there exists σ1 ∈ P (u′, e1,
σ,m). Let σ′ = σ1 t

⊔
v∈u σ

′
v. Note that σ1vσ′ and σ′v vσ′, for every

v ∈ u. Furthermore, σ′vσ and the width of σ′ is bounded by:

ce1(max{k, ce2(k)}) + k × ce2(k) = c(e, k).
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Now u′v e1(σ1)v e1(σ′) by monotonicity. Hence, for every z′v there ex-
ists some z′′v ∈ e1(σ′) with z′v v z′′v . Then x : z′v, σ

′
v vx : z′′v , σ

′. Hence, by
monotonicity:

vv e2(x : z′v, σ
′
v)v e2(x : z′′v , σ

′).

Since this holds for every v ∈ u, we have uv e(σ′).

Lemma 2.13. For every PENRC expression e there exists a natural number
ke, computable from e, such that for every context σ on e for which e(σ)
is undefined, there exists σ′vσ of width at most ke such that e(σ′) is also
undefined.

Proof. By Proposition 2.12 there exists, for every expression e, a computable
function ce such that for every natural number k, every context σ on e for
which e(σ) is defined, and every uv e(σ) of width at most k, there exists
a context σ′vσ of width at most ce(k) such that uv e(σ′). Let, for every
expression e, the natural number ke be inductively defined as follows:

kx := 0
k(e1,e2) := max{ke1 , ke2}
kπ1(e′) := ke′

kπ2(e′) := ke′

k∅ := 0
k{e′} := ke′

ke1∪e2 := max{ke1 , ke2}
kS

e′ := max{ke′ , ce(1)}
k{e2|x∈e1} := max {ke1 , ce1(max{1, ke2}) + ke2}

ke1=e2 ? e3 : e4(k) := max{ke1 , ke2 , ke3 , ke4}

Since an arithmetic expression defining ce′ is computable from e′ by Propo-
sition 2.12, it follows that ke is effectively computable from e. Let e be a
PENRC expression and let σ be a context on e for which e(σ) is undefined.
We prove by induction on e that there exists σ′vσ of width at most ke such
that e(σ′) is also undefined.

• If e = x or e = ∅, then there is nothing to prove, since e(σ) is always
defined.

• If e = (e1, e2), then either e1(σ) or e2(σ) is undefined. The result then
follows by the induction hypothesis. The case where e = {e′} is similar.
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• If e = π1(e′), then either e′(σ) is undefined, in which case the result
follows from the induction hypothesis, or e′(σ) is not a pair. In that
case, let σ′ = minimize(σ). By monotonicity e′(σ′) cannot be a pair and
hence e(σ′) is also undefined. Moreover, σ′ ∈ C0 ⊆ Cke .

• If e = e1 ∪ e2, then either e1(σ) is undefined, e2(σ) is undefined, e1(σ) is
not a set, or e2(σ) is not a set. In the first two cases the result follows
from the induction hypothesis. In the third case, let σ′ = minimize(σ).
By monotonicity e1(σ) cannot be a set and hence e(σ′) is undefined.
Moreover, σ′ ∈ C0 ⊆ Cke . The last case is similar.

• If e =
⋃
e′, then either e′(σ) is undefined, in which case the result follows

from the induction hypothesis, or e′(σ) is not a set of sets. In that case we
discern two possibilities. If e′(σ) is not a set, then let σ′ = minimize(σ).
By monotonicity, e′(σ′) cannot be a set and hence e(σ) is undefined.
Moreover, σ′ ∈ C0 ⊆ Cke . If e′(σ) is a set, but not a set of sets, then there
exist some u ∈ e′(σ) that is not a set. Then {minimize(u)} ∈ V1 and
{minimize(u)}v e′(σ). By Proposition 2.12 there exists σ′′ ∈ Cce′ (1) ⊆
Cke with σ′′vσ such that {minimize(u)}v e′(σ′′). Hence, e′(σ′′) is not
a set of sets and e(σ′′) is also undefined.

• If e = e1 = e2 ? e3 : e4, then we discern the following possibilities.

1. If e1(σ) or e2(σ) is undefined, then the result follows from the in-
duction hypothesis.

2. If e1(σ) and e2(σ) are defined, but e1(σ) is not an atom, then let
σ′ = minimize(σ). By monotonicity, e1(σ′) cannot be an atom and
hence e(σ′) is undefined. Moreover, σ′ ∈ C0 ⊆ Cke . The case where
e1(σ) and e2(σ) are defined, but e2(σ) is not an atom is similar.

3. If e1(σ) and e2(σ) are defined, e1(σ) and e2(σ) are atoms, and
e1(σ) = e2(σ), then e3(σ) must be undefined. By the induction
hypothesis, there exists σ′ ∈ Cke3

⊆ Cke with σ′vσ such that e3(σ′)
is also undefined. By monotonicity e1(σ′) = e2(σ′), and hence e(σ′)
is undefined. If e1(σ) 6= e2(σ) the reasoning is similar.

• If e = {e2 | x ∈ e1}, then we discern the following possibilities.

1. If e1(σ) is undefined, then the result follows from the induction
hypothesis.

2. If e1(σ) is defined, but is not a set, then let σ′ = minimize(σ). By
monotonicity, e1(σ′) cannot be a set and hence e(σ′) is undefined.
Moreover, σ′ ∈ C0 ⊆ Cke .
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3. Otherwise, e1(σ) is defined and a set, but there is some v ∈ e1(σ)
such that e2(x : v, σ) is undefined. By the induction hypothesis
there then exists x : u, σ2 ∈ Cke2

with x : u, σ2vx : v, σ such that
e2(x : u, σ2) is undefined. Then {u} ∈ Vmax{1,ke2} and {u}v e1(σ).
By Proposition 2.12 there exists σ1 ∈ Cce1 (max{1,ke2}) with σ1vσ
such that {u}v e1(σ1). Since both σ1vσ and σ2vσ, σ1 tσ2 is
defined by Lemma 2.11. Let σ′ = σ1 t σ2. Note that σ1vσ′ and
σ2vσ′ by Lemma 2.11. By monotonicity {u}v e1(σ′). Hence,
there exists some u′ ∈ e1(σ′) such that uvu′. Then clearly

x : u, σ2vx : u′, σ′,

and hence e2(x : u′, σ′) is also undefined by monotonicity. Hence,
e(σ′) is undefined. Moreover, σ′ ∈ Cce1 (max{1,ke2})+ke2

⊆ Cke .

Proposition 2.6 now follows by Lemma 2.13 and Lemma 2.9. Indeed, let
e be a PENRC expression, let Γ be a type assignment on e, and let σ ∈ Γ
such that e(σ) is undefined. By Lemma 2.13 there a natural number ke,
computable from e alone, and σ′vσ of width at most ke such that e(σ′) is
also undefined. Since σ ∈ Γ, it follows that σ′ is also in Γ by Lemma 2.9.
Hence the proposition.

2.3 The Impact of Singleton Coercion

The expressions of the NRC are designed around the guiding principle that
every value constructor should have a corresponding “destructor” [60]. As
such, the pair constructor (e1, e2) has the projection operations π1 and π2 as
destructors, and the set union e1∪e2 has set comprehension as a “destructor”.
The singleton set constructor has no corresponding destructor in the standard
NRC, however. In this section we study the well-definedness problem for the
PENRC in the presence of such a destructor.2

Formally, we denote by PENRC(extract) the version of the PENRC to
which we add extract as an expression:

e ::= · · · | extract(e).

The semantics of extract is defined as follows:

σ |= e⇒ {v}
σ |= extract(e) ⇒ v

2We note that OQL, the object-oriented cousin of SQL, also has such a destructor, written
element(e).



26 Well-Definedness and Semantic Type-Checking for the NRC

That is, extract coerces a singleton {v} into the value v it contains and is
undefined on other inputs.

Although extract appears quite harmless at first sight, it invalidates one
of the fundamental monotonicity properties we use to prove our small model
property for undefinedness. Indeed, it is no longer true that if e(σ) is undefined
and σvσ′, then e(σ′) is also undefined. For example, take e = extract(x),
σ(x) = {{a}, {a, b}}, and σ′(x) = {{a, b}}). It is clear that e(σ) is undefined,
but e(σ′) is not. Note however that {{a}, {a, b}}v{{a, b}} since both {a} and
{a, b} are contained in {a, b}.

One could hope to find another containment relation under which we re-
gain our monotonicity property and can redo the proof in the previous section.
Unfortunately however, such a containment relation does not exist. Indeed,
we will show that the well-definedness problem for PENRC(extract) is unde-
cidable. To see why, the following definition is in order.

Definition 2.14. Let e1 and e2 be two expressions with the same set of free
variables, such that e1 and e2 are well-defined under type assignment Γ. We
say that e1 and e2 are equivalent under Γ when e1(σ) = e2(σ) for every σ ∈ Γ.
The equivalence problem consists of checking, given such e1, e2, and Γ, whether
e1 and e2 are equivalent under Γ.

Note that the well-definedness problem for PENRC(extract) is at least as
difficult as the equivalence problem for the PENRC. Indeed, e1 is equivalent
to e2 under Γ if, and only if, extract({e1} ∪ {e2}) is well-defined under Γ (as
e1 and e2 are already well-defined under Γ). Hence, the undecidability of
well-definedness for PENRC(extract) follows from the following theorem.

Theorem 2.15. The equivalence problem for PENRC is undecidable.3

Proof. In order to focus on the crux of the proof, we will assume without
loss of generality that the PENRC is equipped with tuples of arbitrary (but
fixed) arity. This feature can clearly be encoded using pairs. For exam-
ple, we could encode t = (a1, a2, a3) by t′ = (a1, (a2, a3)). We also assume
that we have projection functions for such tuples. For example, π3(t) can
be simulated by π2(π2(t′)). As an extension of this, if I = i1, . . . , in is
a sequence of positive integers, then we write ΠI(t) for (πi1(t), . . . , πin(t)).
Furthermore, we will use the polyadic type constructor Tuple(τ1, . . . , τn)
which denotes the set of all tuples t of arity n such that πi(t) ∈ τi for all
i ∈ [1, n]. This type constructor can be simulated using the pair type con-
structor. For example, Tuple(Atom,Atom,Atom) can be simulated by

3We note that, in contrast, the containment problem for the PENRC (with regard to v,
not ordinary set-containment) in the absence of union is decidable [33].
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Pair(Atom,Pair(Atom,Atom)). Finally, we will allow conditional tests
to compare entire tuples of atomic values with the same arity. Again, this can
be simulated using only tests on atomic values.

The proof is by a reduction from the implication problem of functional
and inclusion dependencies over a single relation symbol, which is known to
be undecidable [1, 14]. This problem is defined as follows. Let x be a variable,
let n be a natural number, and let Γ be the type assignment with domain {x}
such that

Γ(x) = SetOf(Tuple(Atom,Atom, . . . ,Atom︸ ︷︷ ︸
n times

)).

A functional dependency is a rule of the form X → Y where X and Y are
sequences over [1, n]. We say that a context σ ∈ Γ satisfies X → Y , denoted
by σ |= X → Y , if for all tuples t1, t2 ∈ σ(x), if πX(t1) = πX(t2) then also
πY (t1) = πY (t2). An inclusion dependency is a rule of the form X ⊆ Y where
X and Y are sequences over [1, n] of the same length. We say that σ ∈ Γ
satisfies X ⊆ Y , denoted by σ |= X ⊆ Y if

{πX(t) | t ∈ σ(x)} ⊆ {πY (t) | t ∈ σ(x)}.

Let Σ be a finite set of functional and inclusion dependencies. We say that
σ ∈ Γ satisfies Σ, denoted by σ |= Σ, if σ satisfies every dependency in Σ. Let
ρ be an additional target functional dependency. We say that Σ implies ρ if
every context σ which satisfies Σ also satisfies ρ. The implication problem for
functional and inclusion dependencies consists of checking, given n, Σ, and ρ,
whether Σ implies ρ. It is well-known that this problem is undecidable [1, 14].

We reduce the implication problem to the equivalence problem by con-
structing two expressions which are equivalent under Γ if, and only if, Σ im-
plies ρ. For every functional dependency X → Y ∈ Σ ∪ {ρ} we define the
expression eX→Y as follows:⋃{⋃

{ΠX(t1) = ΠX(t2) ∧ΠY (t1) 6= ΠY (t2) ? {x} : ∅ | t2 ∈ x}
∣∣∣ t1 ∈ x} .

On input σ ∈ Γ this expression returns ∅ if σ |= X → Y and {σ(x)} otherwise.
For every inclusion dependency X ⊆ Y ∈ Σ we define the expression eX⊆Y as
follows: {⋃

{ΠX(t1) = ΠY (t2) ? {x} : ∅ | t2 ∈ x}
∣∣ t1 ∈ x} ∪ {{x}}.

On input σ ∈ Γ this expression returns {{σ(x)}} if σ |= X ⊆ Y and {{σ(x)}, ∅}
otherwise.
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Let φ1, . . . , φk be the functional dependencies in Σ and let ψ1, . . . , ψl be
the inclusion dependencies in Σ. By construction, Σ implies ρ if, and only if,
for every σ ∈ Γ, whenever all the eφi

(σ) = ∅ and all the eψj
(σ) = {{σ(x)}},

then eρ(σ) = ∅. Then let f0 be the expression

f0 := (eφ1 , . . . , eφk
, eψ1 , . . . , eψl

, eρ).

Furthermore, let f1, . . . , fp be all the expressions of the form

(r1, . . . , rk, s1, . . . , sl, t),

where the ri are either ∅ or {x}, the sj are either {{x}} or {{x}} ∪ {∅}, and t
is either ∅ or {x} such that, if the ri are all of the form ∅ and the sj are all of
the form {{x}}, then t is ∅. Then Σ implies ρ if, and only if, for every σ ∈ Γ
there exists j ∈ [1, p] such that f0(σ) = fj(σ). Hence Σ implies ρ if, and only
if,

({f0} ∪ {f1} ∪ · · · ∪ {fp}) (σ) = ({f1} ∪ · · · ∪ {fp}) (σ),

for every σ ∈ Γ.

Corollary 2.16. The well-definedness problem for PENRC(extract) is unde-
cidable.

Interestingly enough, the well-definedness problem for PENRC(extract)
evaluated under a list-based instead of a set-based semantics is decidable, as
we will show in Section 3.7.2.

2.4 The Impact of Type Tests

Modern programming languages have type test expressions which allow the
inspection of the type of a value at runtime. The manner in which the value
is to be processed can depend on the outcome of such an inspection. For
example, the expression

x ∈ Pair(Atom,Atom) ? {π1(x)} : ∅

computes {π1(x)} if x is a pair of atoms and ∅ otherwise. In this section we
study the well-definedness problem for PENRC(type), the PENRC extended
with such a type test expression:

e ::= · · · | e ∈ τ ? e : e.

Here, τ ranges over types. The semantics of a type test is the obvious one:

σ |= e1 ⇒ v1 v1 ∈ τ σ |= e2 ⇒ v

σ |= e1 ∈ τ ? e2 : e3 ⇒ v

σ |= e1 ⇒ v1 v1 6∈ τ σ |= e3 ⇒ v

σ |= e1 ∈ τ ? e2 : e3 ⇒ v
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Proposition 2.17. The NRC is semantically contained in PENRC(type); in
other words, type tests can be used to simulate emptiness tests.

Indeed, the emptiness test e1 = ∅ ? e2 : e3 can be expressed as follows:

{(x, x) | x ∈ e1} ∈ SetOf(Atom) ? e2 : e3.

If e1 returns the empty set, then the comprehension {(x, x) | x ∈ e1} also
returns the empty set (which is a set of atoms) and we evaluate e2. Otherwise,
the comprehension returns a set of pairs (which is not a set of atoms) and we
evaluate e3.

It follows from Theorem 2.3 that well-definedness for PENRC(type) is un-
decidable.

Corollary 2.18. The well-definedness problem for PENRC(type) is undecid-
able.

Type tests are hence too powerful a feature with regard to well-definedness
checking. Still, when dealing with heterogeneous collections a limited form of
type tests is desirable. We clarify this claim by an example.

Example 2.19. Let e = {π1(x) | x ∈ R}. This expression is well-defined
under the type assignment Γ with Γ(R) = SetOf(Pair(Atom,Atom)), but
is undefined under the type assignment Γ′ with

Γ′(R) = SetOf(Pair(Atom,Atom) ∪Atom).

Indeed, every comprehension processes the set over which it iterates in a uni-
form manner. Hence, although a set value can in principle be heterogeneous,
such values cannot be processed in a well-defined manner. When we can check
at runtime whether or not x contains a pair however, then e can be rewritten
as follows:

e′ =
⋃
{x ∈ Pair ? {π1(x)} : ∅ | x ∈ R}.

It is clear that e′ computes the same result as e on contexts Γ and that e′ is
well-defined under Γ′. Therefore, when we wish to query heterogeneous sets,
we need to be able to distinguish the various forms of the elements of the sets
at runtime.

As a limited form of type tests, we propose the following. A kind is a term
generated by the following grammar:

κ ::= Atom | Pair | Set

Here, κ ranges over kinds. A kind denotes a set of values, which is the set of
all atoms, the set of all pairs of values, and the set of all finite sets of values,
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respectively. We will not distinguish between a kind and its denotation. We
extend the PENRC with the ability to test the kind of a value at runtime:

e := · · · | e ∈ κ ? e : e

Here, κ ranges over kinds. We denote the obtained language by PENRC(kind).
The semantics of kind tests is the obvious one:

σ |= e1 ⇒ v1 v1 ∈ κ σ |= e2 ⇒ v

σ |= e1 ∈ κ ? e2 : e3 ⇒ v

σ |= e1 ⇒ v1 v1 6∈ κ σ |= e3 ⇒ v

σ |= e1 ∈ κ ? e2 : e3 ⇒ v

Lemma 2.20. Let κ be a kind and let v and w be values such that vvw.
Then v ∈ κ if, and only if, w ∈ κ.

The proof is by an easy case analysis on κ. As a consequence, it is easy to
see that the PENRC(kind) is also monotone (in the sense of Lemma 2.4). We
can therefore extend the proofs of Proposition 2.12 and Lemma 2.13 to show
that the PENRC(kind) also has the small model properties for definedness and
undefinedness.

Proposition 2.21. For every PENRC(kind) expression e there exists a com-
putable function ce mapping natural numbers to natural numbers such that for
every natural number k, every context σ on e for which e(σ) is defined, and
every uv e(σ) of width at most k, there exists a context σ′vσ of width at
most ce(k) such that uv e(σ′). Moreover, an arithmetic expression defining
ce is effectively computable from e.

Proof. Let e be a PENRC(kind) expression. Add the following induction step
to the definition of the function ce in the proof of Proposition 2.12:

ce1∈κ ? e2 : e3(k) := max{ce2(k), ce3(k)}.

It is clear that an arithmetic expression defining ce remains computable from
e and that ce is a computable function mapping natural numbers to natural
numbers. Let k be a natural number, let σ be a context on e for which e(σ) is
defined, and let uv e(σ) be a value of width at most k. We prove by induction
on e that there exists σ′vσ of width at most ce(k) such that uv e(σ′). We
only treat the case where e = e1 ∈ κ ? e2 : e3, as the other cases are the
same as in the proof of Proposition 2.12.

So, let e = e1 ∈ κ ? e2 : e3. We discern two cases. If e1(σ) ∈ κ
then uv e2(σ). By the induction hypothesis there exist σ′vσ of width at
most ce2(k) such that uv e2(σ′). By monotonicity, e1(σ′)v e1(σ). Hence,
e1(σ′) ∈ κ by Lemma 2.20. Then e(σ′) = e2(σ′), and hence uv e2(σ′) = e(σ′).
Since σ′ ∈ Cce2 (k) ⊆ Cce(k), the result follows. The case where e1(σ) 6∈ κ is
similar.
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Lemma 2.22. For every PENRC(kind) expression e there exists a natural
number ke, computable from e, such that for every context σ on e for which
e(σ) is undefined, there exists σ′vσ of width at most ke such that e(σ′) is also
undefined.

Proof. Let e be a PENRC(kind) expression. Add the following induction step
to the definition of the natural number ke in the proof of Lemma 2.13:

ke1∈κ ? e2 : e3 := max{ke1 , ke2 , ke3}.

It is clear that ke remains computable from e. Let σ be a context on e for
which e(σ) is undefined. We prove by induction on e that there exists σ′vσ
of width at most ke such that e(σ′) is also undefined. We only treat the case
where e = e1 ∈ κ ? e2 : e3, as the other cases are the same as in the proof of
Lemma 2.13.

So, let e = e1 ∈ κ ? e2 : e3. If e1(σ) is undefined, then the result follows
from the induction hypothesis. If e1(σ) is defined and e1(σ) ∈ κ, then e2(σ)
must be undefined. By the induction hypothesis we have σ′ ∈ Cke2

⊆ Cke with
σ′vσ such that e2(σ′) is still undefined. By monotonicity, e1(σ′)v e1(σ), and
hence e1(σ′) ∈ κ by Lemma 2.20. Hence, e(σ′) is also undefined. If e1(σ) is
defined and e1(σ) 6∈ κ, then the reasoning is similar.

As a corollary to this lemma and Lemma 2.9, the small model property
for undefinedness continues to hold in the presence of kind tests. It readily
follows (cf. the proof of Theorem 2.8):

Theorem 2.23. The well-definedness problem for PENRC(kind) is decidable.

2.5 Semantic Type-Checking

A problem that is reminiscent of the well-definedness problem is the semantic
type-checking problem: given an expression e, a type assignment Γ under
which e is well-defined, and an output type τ , check that e(σ) ∈ τ for every
σ ∈ Γ. If so, then we say that e has output type τ under Γ.

It is easily seen that the satisfiability problem for the NRC reduces to the
semantic type-checking problem for the NRC. Indeed, the NRC expression

e = ∅ ? {x} : (x, x)

has output type SetOf(Γ(x)) under type assignment Γ if, and only if, e is
unsatisfiable. As a consequence, the semantic type-checking problem for the
NRC is undecidable.
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Proposition 2.24. The semantic type-checking problem for the NRC is un-
decidable.

On the positive side, the semantic type-checking problem for the PENRC
with kind tests is decidable, as we will show below. We first note:

Lemma 2.25. If τ is a type and v 6∈ τ , then there exists a natural number k,
computable from τ , and a value uv v of width at most k such that u 6∈ τ .

Proof. Let us define the complexity c(τ) of a type τ as follows.

c(Atom) := 0
c(Pair(τ1, τ2)) := max(c(τ1), c(τ2))
c(SetOf(τ ′)) := max(1, c(τ ′))

c(τ1 ∪ τ2) := c(τ1) + c(τ2)

Let τ be a type and let v 6∈ τ . We show that there exists a value u ∈ Vc(τ)
with uv v such that u 6∈ τ by induction on τ .

• If τ = Atom, then take u = minimize(v).

• If τ = Pair(τ1, τ2), then either

1. v is not a pair, in which case we take u = minimize(v); or

2. v = (v1, v2) with v1 6∈ τ1 or v2 6∈ τ2. The result then follows from
the induction hypothesis.

• If τ = SetOf(τ ′), then either

1. v is not a set, in which case we take u = minimize(v), or

2. there exists some v′ ∈ v such that v′ 6∈ τ ′. By the induction hy-
pothesis there exists u′ ∈ Vc(τ ′) such that u′v v′ and u′ 6∈ τ ′. Then
{u′}v v and {u′} 6∈ τ .

• Finally, if τ = τ1 ∪ τ2, then v 6∈ τ1 and v 6∈ τ2. By the induction
hypothesis there exist u1 ∈ c(τ1) and u2 ∈ c(τ2) with u1v v and u2v v
such that u1 6∈ τ1 and u2 6∈ τ2. Take u = u1 tu2 and suppose that
u ∈ τ . Then either u ∈ τ1 or u ∈ τ2. If u ∈ τ1, then also u1vu would
have to be in τ1 by Lemma 2.9, which is a contradiction. If u ∈ τ2, then
also u2vu would have to be in τ2, which is also a contradiction. Hence,
u 6∈ τ . Moreover, u ∈ Vc(τ1)+c(τ2) = Vc(τ).
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Corollary 2.26 (Small model for semantic type-checking). Let e be a
PENRC(kind)-expression, let Γ be a type assignment under which e is well-
defined, and let τ be a type. If e does not have output type τ under Γ, then
there exists a natural number k, computable from e and τ , and a context σ′ ∈ Γ
of width at most k such that e(σ′) 6∈ τ .

Proof. Suppose that e does not have output type τ under Γ. Then there
exists a context σ ∈ Γ such that e(σ) 6∈ τ . There exists a natural number l,
computable from τ , and a value uv e(σ) of width at most l such that u 6∈ τ
by Lemma 2.25. By Proposition 2.21 there exists a computable function ce,
computable from e, and a context σ′vσ of width at most k := ce(l) such that
uv e(σ′). Since u 6∈ τ , e(σ′) is also not in τ by Lemma 2.9. Since σ ∈ Γ, also
σ′ ∈ Γ by Lemma 2.9.

It readily follows (cf. the proof of Theorem 2.8):

Proposition 2.27. The semantic type-checking problem for PENRC(kind) is
decidable.





3
Well-Definedness for
First-Order, Object-Creating
Operations over
Tree-Structured Data

In this chapter we study the well-definedness problem for a family of query
languages QL(B) which are evaluated in a tree-structured, list-based data
model. Here, B is a set of base operations (such as an equality test, taking the
children of a certain node in a tree, creating a new node, . . . ) and QL(B) is the
query language obtained from B by adding variables, constants, conditional
tests, let-bindings, and for-loops. Since base operations are free to create new
nodes, every QL(B) is hence a first-order, object-creating query language.

Concretely, we study the well-definedness problem for such QL(B) in the
presence of bounded-depth regular expression types. Regular expression types
are based on regular tree languages [7, 15, 44, 45] and are widely used in
general-purpose programming languages manipulating tree-structured data,
such as XDuce [26, 27, 28], CDuce [23], and XQuery [6, 18]. The bounded-
depth restriction is motivated by the fact that most tree-structured data (such
as for example found in XML documents [61]) in practice has nesting depth at
most five or six, and that unbounded-depth nesting is hence often not needed.

Specifically, we identify properties of base operations which can make
the well-definedness problem undecidable and give corresponding restrictions

35
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which are sufficient to ensure decidability.
Our study is motivated by XQuery, the XML query language currently

under development by the World Wide Web Consortium [6, 18]. Expressions
in XQuery can be undefined. As an example, consider the following variation
on one of the XQuery use cases [12]:

<bib> {
for $b in $bib/book
where $b/publisher = ’ACM’
return element{$b/author}{$b/title}

} </bib>

This expression should create, for each book published by ACM, a node
whose name equals the author of the book and whose child is the title of the
book. If there is a book with more than one author node however, then the
result of this expression is undefined because the XQuery specification requires
that the first argument to the element constructor is a singleton list.

Since XQuery is in fact a full-fledged programming language, its well-
definedness problem is of course undecidable. The typical XQuery expression
does not use the whole of XQuery’s computational power however. For exam-
ple, sixty-two out of the seventy-seven XQuery uses cases [12] can be written
as a “for-let-where-return” expression without recursive function definitions.
It is hence natural to ask whether we can solve the well-definedness problem
for such expressions.

We will show that XQuery’s basic functions and operators [35] are in fact
base operations. As such, “for-let-where-return” XQuery fits nicely into our
family of studied query languages. The decidability of well-definedness for a
large fragment of “for-let-where-return” XQuery immediately follows as we
show that, in the absence of automatic coercions, the various axis movements,
node constructors, value and node comparisons, and node-name and text-
content inspections satisfy our restrictions. In contrast, well-definedness for
this fragment with automatic coercions is undecidable.

We note that the above decidability result cannot be obtained simply by
using the existing XQuery static type system [18] on this restricted fragment.
Indeed, consider the following expression which is trivially well-defined since
the then-branch of the if-test will never be executed.

if false then element{()}{()} else ()

In the general setting for which the XQuery type system is designed, it is unde-
cidable to check that an expression always evaluates to true. The XQuery type
system is therefore “conservative” in the sense that it requires both branches
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of an if-test to type-check. Since the then-branch in our example is always
undefined, it cannot type-check, and hence the whole expression is ill-typed.
This example clearly illustrates that in order to solve well-definedness one
also has to solve “satisfiability”. We will see, however, that this alone is not
sufficient to solve well-definedness.

We will show that the presence of base operations which are undefined on
non-singleton inputs has no impact on the decidability of the well-definedness
problem for QL(B), whereas we have already shown in Section 2.3 that such
base operations already cause the well-definedness problem for the positive-
existential fragment of the NRC to become undecidable. That such operations
are not problematic with regard to well-definedness for QL(B) is entirely due
to its list-based data model. Indeed, we will show that well-definedness for
PENRC(extract) interpreted in a list-based data model is also decidable.

Organization This chapter is further organized as follows. We formally
introduce the tree-structured, list-based data model in Section 3.1. In Sec-
tion 3.2 we define the notion of a base operation and show how to extend
such base operations to a query language QL(B). In Section 3.3 we introduce
the well-definedness problem for QL(B) and introduce bounded-depth regular
expression types. In Sections 3.4, 3.5, and 3.6 we identify several properties
of base operations which may render the well-definedness problem undecid-
able and propose corresponding restrictions on base operations. We show that
these restrictions are sufficient to ensure decidability in Section 3.7. In that
section we also show that the well-definedness problem for PENRC(extract) is
decidable when we interpret this language in a list-based data model.

3.1 Data Model

Intuitively, every value in our data model is a finite list of atomic data val-
ues and nodes. Nodes are grouped in “stores” (lists of trees). We distin-
guish between nodes that define the structure of a tree (called element nodes)
and nodes that hold actual data information (called text nodes). This tree-
structured, list-based data model can be used to encode the traditional rela-
tional data model (as we show in Section 3.4), a list-based version of the com-
plex object data model (as we show in Section 3.7.2), and the tree-structured
data found in XML documents. For example, Figure 3.1(a) depicts a store
where the first tree represents the XML fragment in Figure 3.1(b) and the
second tree represents the XML fragment in Figure 3.1(c). Here we use circles
to depict element nodes and boxes to depict text nodes. In fact, our data
model is quite close to the one employed by XQuery. Indeed, XQuery expres-
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n1

beer

n2name

n3Duvel

n4

blond

n5

name

n6first

n7John

n8 last

n9 Doe

(a)

<beer>
<name>Duvel</name>
<blond/>

</beer>

(b)

<name>
<first>John</first>
<last>Doe</last>

</name>

(c)

Figure 3.1: A store and the XML fragments it represents.

sions do not operate directly on XML text, but on instances of the XQuery
data model [22]. Every value in this data model is a list of items, where every
item is an atomic value or a node. There are seven node kinds, the most
prominent being the element, attribute, and text nodes. Nodes are grouped in
lists of trees. Granted, we distinguish fewer node kinds than XQuery, but this
is done solely for simplicity. If desired, we could add additional node types
without sacrificing any of our results.

We note that every item in the XQuery data model also carries a type an-
notation. Examples of such annotations are integer (for atoms) and element
of type Bibliography (for element nodes). Potentially, these type annota-
tions can also be untypedAtomic (for atoms) or untyped (for nodes) indicating
that the item was not validated against a schema. XQuery uses the type an-
notations of validated inputs during (1) static and dynamic type-checking1

and (2) the evaluation of type-tests (such as instance-of and typeswitch). In
our context, such type annotations are irrelevant however. Indeed, our aim
is to study well-definedness, which is more fundamental than static or dy-
namic type-checking. Furthermore, we will not consider type tests, as we
have already shown in Section 2.4 that these quickly turn the well-definedness
problem undecidable. Values in our data model therefore correspond to un-

1Static type-checking is an optional feature in XQuery. All XQuery processors have to
perform dynamic type-checking however.
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validated values in the XQuery data model. All references to the semantics of
XQuery should hence also be understood to mean “the semantics of XQuery
when the input is unvalidated”.

3.1.1 Atoms and Nodes

As in Chapter 2, we assume given a recursively enumerable set A = {a, b, . . . }
of atoms which we here assume to contain the booleans true and false. We
further assume given an infinite set N = {n,m, . . . } of nodes, disjoint with A,
which is partitioned into a recursively enumerable infinite set N e of element
nodes and a recursively enumerable infinite set N t of text nodes. Elements of
A ∪N are called items.

3.1.2 Stores

Nodes are given an interpretation inside a store, which is essentially a list
of ordered node-labeled trees.2 Formally, a store Σ is a tuple (V,E, λ,<,≺)
where

• V is a finite set of nodes;

• E is the edge relation: a binary relation on V such that (V,E) is an
acyclic directed graph where every node has in-degree at most one and
text nodes have out-degree zero (hence (V,E) is composed of trees);

• λ : V → A is the labeling function which associates each node in V with
its label ;3

• < is the sibling order : a strict partial order on V that compares exactly
the different children of a common node:

(n<n′) ∨ (n′<n) ⇔ ∃m ∈ V : E(m,n) ∧ E(m,n′);

and

• ≺ is the root order : a strict total order on the roots (i.e., the nodes with
in-degree zero).

As an example, Figure 3.1(a) depicts the store (V,E, λ,<,≺) where

V = {n1, n2, n3, n4, n5, n6, n7, n8, n9}
E = {(n1, n2), (n1, n4), (n2, n3), (n5, n6), (n5, n8), (n6, n7), (n8, n9)}
< = {(n2, n4), (n6, n8)}
≺ = {(n1, n5)},

2The notion of a store was first developed for the XQuery data model [25, 32].
3The label of a text node is called the node’s content in XQuery terminology.
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and where λ is defined by

λ(n1) := beer λ(n2) := name λ(n3) := Duvel
λ(n4) := blond λ(n5) := name λ(n6) := first
λ(n7) := John λ(n8) := last λ(n9) := Doe.

Document Order Using the sibling and root order, we define the document
order � on Σ which intuitively equals the left-to-right, pre-order traversal of
a list of trees. As an example, for the store in Figure 3.1(a) we have ni�nj
if, and only if, i is smaller than j.

Formally, the document order � is the strict total order on V such that (1)
if E(n, n′) then n�n′, and (2) if m<n or m≺n, E∗(m,m′), and E∗(n, n′),
then m′�n′. Here we write E∗ for the reflexive transitive closure of E.

Terminology We will use the standard terminology for trees on stores. That
is, if E(m,n) then m is the parent of n and n is a child of m. A node n ∈ V
is a root node of Σ if it has in-degree zero. We write roots(Σ) for the set of
all root nodes in Σ. If Σ has at most one root node, then we say that Σ is a
tree. Note that the empty store is hence also a tree. For convenience we will
denote the empty store by ∅.

Concatenation Two stores Σ and Σ′ are disjoint when VΣ ∩ VΣ′ = ∅. If
Σ and Σ′ are disjoint stores then the concatenation of Σ and Σ′, denoted by
Σ ◦Σ′, is the store with node set VΣ ∪ VΣ′ , edges EΣ ∪ EΣ′ , labeling function
λΣ ∪ λΣ′ , sibling order <Σ ∪<Σ′ , and root order

≺Σ ∪≺Σ′ ∪ roots(Σ)× roots(Σ′).

Clearly, all stores can be written as a concatenation of trees.

Sub-Trees Finally, if n is a node in Σ, then the sub-tree of Σ rooted at n,
denoted by Σ|n, is the store with nodes V ′ = {m | E∗(n,m)}, edges E ∩ (V ′×
V ′), labeling function λ|V ′ , sibling order <∩(V ′ × V ′), and the empty root
order.

3.1.3 Value-Tuples

A value-tuple of arity p is a tuple (Σ; s1, . . . , sp) where Σ is a store and every
sj is a finite list of atoms and nodes in Σ. A tree value is a value-tuple of
arity one. For convenience we will abbreviate “tree value” by “value” in this
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chapter. Furthermore, we will write Vp for the set of all value-tuples with arity
p and abbreviate V1 by V.

We denote the empty list by 〈〉, non-empty lists by for example 〈a, b, c〉,
and the concatenation of two lists s1 and s2 by s1 ◦ s2. In addition, we will
write s(j) for the j-th item of a list s, |s| for the width of s, and rng(s) for
the set of items occurring in s.

3.1.4 Renamings

A renaming ρ is a permutation of A ∪N that is the identity on the booleans
and maps atoms to atoms, element nodes to element nodes, and text nodes
to text nodes. A node-renaming is a renaming that is the identity on atoms.
Renamings are extended to sets, tuples, and lists in the canonical way:

ρ(S) := {ρ(v) | v ∈ S}
ρ((v1, . . . , vp)) := (ρ(v1), . . . , ρ(vp))
ρ(〈v1, . . . , vp〉) := 〈ρ(v1), . . . , ρ(vp)〉

Note that in particular ρ is thus also extended to stores and value-tuples.
Two value-tuples v and v′ are isomorphic, denoted by v ≡ v′, when there

exists a renaming ρ such that ρ(v) = v′. Two value-tuples v an v′ are node-
isomorphic, denoted by v ≡node v

′, when there exists a node-renaming such
that ρ(v) = v′.

3.1.5 Conventions

We will further use the following conventions throughout this chapter. We
will abbreviate tuples such as t1, . . . , tp by ~t and write |S| for the cardinality
of a set S. Furthermore, if g is a function from set S to set T , then we write
dom(g) for S and rng(g) for {g(i) | i ∈ S}. If S′ is a subset of S then we write
g|S′ for the function from S′ to T which equals g on S. Finally, if g is injective
and j ∈ rng(g), then we write g−1(j) for the unique element i ∈ S for which
g(i) = j.

3.2 Syntax and Semantics

3.2.1 Base Operations

A base operation of arity p is a relation R ⊆ Vp × V which is

1. Computable: it is effectively decidable, given a value-tuple v, whether
there exists a w such that R(v, w), and if so, such a w is effectively
computable from v.
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2. Store-increasing : R only relates value-tuples (Σ;~s) to values of the form
(Σ ◦Σ′; s′) with Σ′ possibly empty. Hence, R can add trees to a store,
but cannot modify existing trees.

3. Node-generic: for every node-renaming ρ we have R(v, w) if, and only if,
R(ρ(v), ρ(w)). As such, R can only interpret nodes by the information
given in the input store. Furthermore, nodes that are added to the input
store are chosen non-deterministically.

4. a Semi-function: R is a function up to node-isomorphism, i.e., if R(v, w)
and R(v, z), then w ≡node z.

5. Reachable-only : R only uses information of those trees in the input store
whose nodes are mentioned in one of the input lists. That is, for all
list-tuples ~s, all (possibly empty) trees Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k such that

Θj = Θ′j if a node of Θj is mentioned in ~s, and all stores Σ disjoint with
Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k, we have

R((Θ1 ◦ · · · ◦Θk;~s), (Θ1 ◦ · · · ◦Θk ◦Σ; s′))
⇔

R((Θ′1 ◦ · · · ◦Θ′k;~s), (Θ
′
1 ◦ · · · ◦Θ′k ◦Σ; s′)).

We write R(v) for the set of all values w for which R(v, w) holds. The first four
properties above capture the notion of a “determinate” transformation from
the theory of object-creating queries [1]. As such, R(v) is finitely representable
and this representation can effectively be computed from v.

Many of the basic functions and operators found in programming and
query languages are in fact base operations. Since our study was motivated
by XQuery, we clarify this claim by some of XQuery’s basic functions and
operators.

• XQuery’s concatenation operator is a binary base operation that relates
(Σ; s, s′) to (Σ; s ◦ s′). Although this operator is denoted by a comma in
XQuery, we will denote it by concat .

• XQuery’s children axis is a unary base operation that relates (Σ; s),
with s a list of nodes, to (Σ; s′) where s′ is the unique list containing the
children of nodes in s in document order. Formally this means that

rng(s′) = {n | ∃m ∈ rng(s) : E(m,n)},

and that if i < j, then s′(i)� s′(j). Note that there are no repeated
nodes in s′, since � is a strict order. XQuery’s other axes (i.e., parent ,
descendant , following-sibling , . . . ) can similarly be viewed as unary base
operations.
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• XQuery’s atomization function data can be modeled as a unary base
operation that relates (Σ; s) to (Σ; s′) where s′ has the same width as s,
and s′(j) is the coercion of s(j) to an atom. That is, s′(j) = s(j) when
s(j) is an atom, s′(j) = λ(s(j)) if s(j) is a text node, and s′(j) = fold(r)
if s(j) is an element node. Here, r is the unique list containing all
text node descendants of s(j) in document order and fold is an abstract
function mapping lists of text nodes to atoms. In XQuery, fold returns
the string concatenation of the text nodes’ labels. Figure 3.2 illustrates
the behavior of data under this interpretation of fold .

• The atomic value comparison eq is a binary base operation that relates
(Σ; s, s′) to (Σ; 〈〉) if s or s′ is the empty list, and relates (Σ; 〈a〉, 〈b〉)
to (Σ; 〈a = b〉). We will use a C-style notation for comparisons: a = b
evaluates to true when a equals b, and evaluates to false otherwise. We
note that in XQuery, eq will actually first atomize its arguments using
the data function described earlier, and then compare the obtained lists
according to our semantics. We show how this behavior can be simulated
in our query language QL(B) in Example 3.2.

• XQuery’s node comparisons is and� are binary base operations that re-
late (Σ; s, s′) to (Σ; 〈〉) if s or s′ is the empty list, and relate (Σ; 〈n〉, 〈m〉)
to (Σ; 〈n = m〉) respectively (Σ; 〈n�m〉).

• XQuery’s kind tests is-element and is-text are unary base operations
that relate (Σ; 〈n〉) to (Σ; 〈n ∈ N e〉) respectively (Σ; 〈n ∈ N t〉).4 We
will also consider a kind test is-atom which relates (Σ; 〈i〉) with i an
item to (Σ; 〈i ∈ A〉).

• XQuery’s node-name function is a unary base operation that relates
(Σ; 〈〉) to (Σ; 〈〉), relates (Σ; 〈n〉) to (Σ; 〈λ(n)〉) when n ∈ N e, and relates
(Σ; 〈n〉) to (Σ; 〈〉) when n ∈ N t. We will also consider a base operation
content which behaves like node-name, but then on text nodes.

• The element node constructor element is the most involved operation
in XQuery. In order to simplify our proofs later on, we here present a
simplified version of this constructor as a base operation. By composition
with other base operations we are capable of simulating the XQuery
version in our query language QL(B), as we show in Example 3.3.

The element node constructor element is a binary base operation that
relates (Σ; 〈a〉, 〈n1, . . . , nk〉) to (Σ ◦Θ, 〈m〉) where Θ is a tree, disjoint
with Σ whose root element node m is labeled by a such that

4Kind tests are part of XPath expressions in XQuery, and are written as for example
$x/self::element() or $x/self::text().
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– m has exactly k children, and

– if mj is the j-th child of m (in sibling order), then Σ|nj ≡node Θ|mj .

Note that there can be duplicates in n1, . . . , nk. Figure 3.2 illustrates
the behavior of element .

• XQuery’s text node constructor text is a unary base operation that re-
lates (Σ; 〈a〉) to (Σ ◦Θ, 〈m〉) where Θ is a tree, disjoint with Σ, whose
root text node m is labeled by a.

• After constructing a new element node, XQuery merges adjacent text
node children into a single text node whose label is the concatenation of
the labels of the original text nodes. This behavior can be modeled as
a unary base operation merge-text that relates (Σ; 〈n〉) to (Σ ◦Θ; 〈m〉)
where Θ is a tree with root node m, disjoint with Σ, which is isomor-
phic to Σ|n after we merge all adjacent text nodes in Σ|n into a single
text node by means of the abstract fold function introduced above for
the atomization function data. Figure 3.2 illustrates the behavior of
merge-text .

• A final example of a unary base operation is XQuery’s emptiness test
function empty that relates (Σ; s) to (Σ; 〈true〉) when s = 〈〉, and relates
(Σ; s) to (Σ; 〈false〉) otherwise.

3.2.2 Expressions

We create a query language QL(B) out of a finite set of base operations B by
adding variables, constants, and basic control-flow as follows. For each base
operation R we assume to be given a base expression f : a unique syntactical
entity which denotes R. For ease of notation we will often not distinguish
between a base operation and its associated base expression. As such we will
write for example v ∈ f(w) to denote v ∈ R(w).

The syntax of QL(B) is defined by the following grammar:5

e ::= x | a | () | f(e1, . . . , ep)
| if e1 then e2 else e3
| let x := e1 return e2
| for x in e1 return e2

5One may wonder why we consider let-expressions of the form let x := e1 return e2.
As will become clear from the semantics as defined in Section 3.2.3, such expressions are
not redundant. This is due to the fact that base operations can create new nodes. Hence,
let x := e1 return e2 is not necessarily equivalent to the expression we obtain by replacing
every free occurrence of x in e2 by e1.
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〈Dagstuhl, n3, n5〉

n1

beer

n2

name

n3

Duvel

n4

blond

n5

name

n6

first

n7

John

n8

last

n9

Doe

(a) Value u

〈Dagstuhl,Duvel, John Doe〉

n1

beer

n2

name

n3

Duvel

n4

blond

n5

name

n6

first

n7

John

n8

last

n9

Doe

(b) Value in data(u)

〈bought〉

〈n2, n4, n4〉

n1

likes

n2

name

n3

J.D.

n4

beer

n5

Duvel

(c) Value-tuple v

〈m1〉

n1

likes

n2

name

n3

J.D.

n4

beer

n5

Duvel

m1

bought

m2

name

m3

J.D.

m4

m5

Duvel

m6

beer

m7

Duvel

b
e
e
r

(d) Value in element(v)

〈n1〉

n1

person

n2

John

n3

Doe

n4

email

n5

jd@cs.com

(e) Value w

〈m1〉

n1

person

n2

John

n3

Doe

n4

email

n5

jd@cs.com

m1

person

m2

John Doe

m3

email

m4

jd@cs.com

(f) Value in merge-text(w)

Figure 3.2: Illustration of the base operations data, element , and merge-text .
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Here, e ranges over QL(B) expressions, x ranges over variables, a ranges over
atoms, f ranges over base expressions in B, and p is the arity of f . We view
expressions as abstract syntax trees and omit parentheses. The set FV (e)
of free variables of an expression e is defined as usual. That is, the free
variables of x is {x}, the free variables of a and () is the empty set, the free
variables of f(e1, . . . , ep) and if e1 then e2 else e3 is the union of the free
variables of their immediate subexpressions, and the free variables of let x :=
e1 return e2 and for x in e1 return e2 is FV (e1) ∪ (FV (e2) \ {x}).

3.2.3 Semantics

The input to a QL(B) expression e is described by a tree context (Σ;σ) on
e, consisting of a store Σ and a function σ from a finite superset {x, . . . , y}
of the free variables of e to lists of items such that (Σ;σ(x), . . . , σ(y)) is a
value-tuple. A function from a finite set of variables to lists of items is called
an environment. Using a similar notation as in Chapter 2 we write x : s, σ
for the environment σ′ with domain dom(σ) ∪ {x} such that σ′(x) = s and
σ′(y) = σ(y) for y 6= x. For convenience we will abbreviate “tree context” by
“context” in this chapter.

The semantics of QL(B) expressions is described by means of the evalua-
tion relation, as defined in Figure 3.3. Here, we write (Σ;σ) |= e⇒ (Σ′; s) to
denote the fact that e evaluates to value (Σ′; s) on context (Σ;σ) on e. We note
that the disjointness requirements in the rules for base operation invocation
and for loop ensure that different invocations of a subexpression add different
nodes to the input store. We will write e(Σ;σ) for the set of all values to which
e can evaluate on context (Σ;σ). It is easy to see that the semantics of an
expression only depends on its free variables: if two environments σ and σ′ are
equal on FV (e), then (Σ;σ) |= e⇒ (Σ′; s) if, and only if, (Σ;σ′) |= e⇒ (Σ′; s).

Example 3.1. XPath expressions like $bib/child::book can be simulated
in QL(children, is-element ,node-name, eq) as follows:

for b in children(bib) return
if is-element(b) then

if eq(node-name(b), ’book’) then b else ()
else ()

Example 3.2. In Section 3.2.1 we noted that XQuery’s value comparison first
atomizes its arguments and then compares them using the semantics of our
base operation eq . Since QL(B) allows composition of base operations, we
can simulate this behavior. For example, $x eq ’ACM’ can be simulated by
eq(data(x ), ’ACM’). Note that there is actually no need to apply data to the
constant ’ACM’, as this returns ’ACM’ itself.
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σ(x) = s

(Σ;σ) |= x⇒ (Σ; s) (Σ;σ) |= a⇒ (Σ; 〈a〉) (Σ;σ) |= () ⇒ (Σ; 〈〉)

(Σ;σ) |= e1 ⇒ (Σ1; 〈true〉)
(Σ;σ) |= e2 ⇒ (Σ2; s2)

(Σ;σ) |= if e1 then e2 else e3 ⇒ (Σ2; s2)

(Σ;σ) |= e1 ⇒ (Σ1; 〈false〉)
(Σ;σ) |= e3 ⇒ (Σ3; s3)

(Σ;σ) |= if e1 then e2 else e3 ⇒ (Σ3; s3)

(Σ;σ) |= e1 ⇒ (Σ1; s1)
(Σ1;x : s1, σ) |= e2 ⇒ (Σ2; s2)

(Σ;σ) |= let x := e1 return e2 ⇒ (Σ2; s2)

(Σ;σ) |= ej ⇒ (Σ ◦Σj ; sj) j ∈ [1, p]
Σj is disjoint with Σj′ when j 6= j′

(Σ′; s′) ∈ f(Σ ◦Σ1 ◦ · · · ◦Σp; s1, . . . , sp)
(Σ, σ) |= f(e1, . . . , ep) ⇒ (Σ′, s′)

(Σ;σ) |= e1 ⇒ (Σ0; s) (Σ0;x : 〈s(j)〉, σ) |= e2 ⇒ (Σ0 ◦Σj ; sj) j ∈ [1, |s|]
Σj is disjoint with Σj′ when j 6= j′

(Σ;σ) |= for x in e1 return e2 ⇒ (Σ0 ◦ · · · ◦Σ|s|; s1 ◦ · · · ◦ s|s|)

Figure 3.3: The evaluation relation for QL(B) expressions.
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Example 3.3. In Section 3.2.1 we also noted that XQuery’s element construc-
tor is more complex than our base operation element . Indeed, the XQuery
expression element{$x}{$y} will create a new tree whose root node is la-
beled by x (after atomization) and whose children are copies of the items in
y where new text nodes are created for the atoms, and where adjacent text
nodes are merged. Using the base operations element , text , is-atom, data,
and merge-text we can simulate this behavior as follows:

let z:= for u in y return
if is-atom(u) then text(u) else u

return merge-text(element(data(x ), z ))

Example 3.4. XQuery’s quantified expressions can be simulated using the
emptiness test. For example,

some $x in data($pubs) satisfies $x eq ’ACM’

can be expressed in QL(eq , data, empty) as follows:

let z :=
for x in data(pubs) return

if eq(x, ’ACM’) then x else ()
return

if empty(z ) then false else true

It immediately follows that XQuery’s generalized comparisons (such as $pubs
= "ACM") can also be simulated using the emptiness test, as such comparisons
are just syntactic sugar for quantified expressions like the one shown above.

Example 3.5. We can simulate the XQuery expression

for $b in $bib/book
where $b/publisher eq ’ACM’
return element{$b/author}{$b/title}

in QL(children, data, eq , is-element , node-name, element , merge-text) as fol-
lows. For the sake of brevity we will not expand XPath expressions such as
$bib/book, as we have already shown how to simulate these in Example 3.1.

for b in bib/book return
if eq(data(b/publisher), ’ACM’) then

merge-text(element(data(b/author), b/title))
else ()

Here we omit the creation of new text nodes for atoms returned by b/title,
as XPath expressions always return nodes, never atoms.
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When we fix some order on the set of all variables, a tree context (Σ;σ) with
dom(σ) = {x, . . . , y} is fully determined by the value-tuple (Σ;σ(x), . . . , σ(y)).
Since the semantics of an expression only depends on its free variables, every
expression e ∈ QL(B) hence defines a relation on Vp×V, where p is the number
of free variables in e.

In the remainder of this section we will prove the following proposition.

Proposition 3.6. Every expression e in QL(B) defines a base operation.

The store-increasing and node-generic properties follow by an easy induc-
tion on e. For the reachable-only property we first state the following lemma.

Lemma 3.7. If R is a reachable-only relation relating value-tuples to values
and

(Θ1 ◦ · · · ◦Θk ◦Σ′; s′) ∈ R(Θ1 ◦ · · · ◦Θk;~s),

then s′ only contains a node in Θj if ~s contains a node in Θj, for every
j ∈ [1, k].

Proof. Let j ∈ [1, k], let Π1 = Θ1 ◦ · · · ◦Θj−1, and let Π2 = Θj+1 ◦ · · · ◦Θk.
Suppose, for the purpose of contradiction, that s′ contains a node n in Θj , but
~s does not. Since Θ1, . . . ,Θk, and Σ′ all have pairwise disjoint sets of nodes,
n cannot be a node of Π1 ◦Π2 ◦Σ′. Hence, (Π1 ◦Π2 ◦Σ′; s′) is not a value.
Since (Π1 ◦Θj ◦Π2 ◦Σ′; s′) ∈ R(Π1 ◦Θj ◦Π2;~s) and since R is reachable-only,
we should also have

(Π1 ◦Π2 ◦Σ′; s′) ∈ R(Π1 ◦Π2;~s).

This is a contradiction, since R relates value-tuples to values.

Proposition 3.8. Every expression in QL(B) defines a reachable-only rela-
tion.

Proof. Let e be an expression in QL(B) and let σ be an environment on e.
Let Θ1, . . . ,Θk and Θ′1, . . . ,Θ

′
k be trees such that Θ1, . . . ,Θk are all pairwise

disjoint, Θ′1, . . . ,Θ
′
k are all pairwise disjoint, and Θj = Θ′j if a node of Θj

is mentioned in σ. Let Π = Θ1 ◦ · · · ◦Θk, Π′ = Θ′1 ◦ · · · ◦Θ′k, and let Σ be a
store disjoint with Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k. We prove by induction on e that

(Π ◦Σ; s) ∈ e(Π;σ) if, and only if, (Π′ ◦Σ; s) ∈ e(Π′;σ). In every step we only
show the “only if” direction, the “if” direction is similar.

• The cases where e = x, e = a, or e = () are trivial.
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• If e = if e1 then e2 else e3, then (Π ◦Σ; s) ∈ e(Π;σ) only if there
exists (Π ◦Σ′; 〈b〉) ∈ e1(Π;σ) with b = true or b = false such that
(Π ◦Σ; s) ∈ e2(Π ◦Σ; s) if b = true and (Π ◦Σ; s) ∈ e3(Π ◦Σ; s) if b =
false. The result then readily follows by the induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ′; 〈b〉) ∈ e1(Π;σ) and (Π ◦Σ; s) ∈ e2(Π;σ) ∪ e3(Π;σ)
⇒ (Π′ ◦Σ′; 〈b〉) ∈ e1(Π′;σ) and (Π′ ◦Σ; s) ∈ e2(Π′;σ) ∪ e3(Π′;σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

• If e = let x := e1 return e2, then (Π ◦Σ; s) ∈ e(Π;σ) only if, there
exists (Π ◦Σ1; s1) ∈ e1(Π;σ) such that (Π ◦Σ; s) ∈ e2(Π ◦Σ1;x : s1, σ).
Since e1 defines a reachable-only relation by the induction hypothesis, it
follows from Lemma 3.7 that s1 contains a node in Θj only if σ contains
a node in Θj , for every j ∈ [1, k]. Hence, Θ′j = Θj when the environment
(x : s1, σ) contains a node in Θj . The result then readily follows by the
induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ1; s1) ∈ e1(Π;σ) and (Π ◦Σ; s) ∈ e2(Π ◦Σ1;x : s1, σ)
⇒ (Π′ ◦Σ1; s1) ∈ e1(Π′;σ) and (Π′ ◦Σ; s) ∈ e2(Π′ ◦Σ1;x : s1, σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

• If e = f(e1, . . . , ep), then (Π ◦Σ; s) ∈ e(Π;σ) only if for every i ∈ [1, p]
there exists (Π ◦Σi; si) ∈ ei(Π;σ) such that the Σi are all pairwise dis-
joint and

(Π ◦Σ; s) ∈ f(Π ◦Σ1 ◦ · · · ◦Σp; s1, . . . , sp).

By Lemma 3.7 it follows that si contains a node in Θj only if σ contains
a node in Θj , for every i ∈ [1, p] and every j ∈ [1, k]. Hence, Θj = Θ′j
when the list-tuple s1, . . . , sp contains a node in Θj . Let us abbreviate
Σ1 ◦ · · · ◦Σp by Σ′ and let us write ~s for s1, . . . , sp. The result then
readily follows by the induction hypothesis and the fact that f itself is
reachable-only:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σi; si) ∈ ei(Π;σ) for every i ∈ [1, p]

and (Π ◦Σ; s) ∈ f(Π ◦Σ′;~s)
⇒ (Π′ ◦Σi; si) ∈ ei(Π′;σ) for every i ∈ [1, p]

and (Π′ ◦Σ; s) ∈ f(Π′ ◦Σ′;~s)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)
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• If e = for x in e1 return e2, then (Π ◦Σ; s) ∈ e(Π;σ) only if there
exists a value (Π ◦Σ0; s0) ∈ e1(Π;σ) such that for every i ∈ [1, |s0|] there
exists (Π ◦Σ0 ◦Σi; si) ∈ e2(Π ◦Σ0;x : 〈s0(i)〉, σ), with the Σi’s pairwise
disjoint, Σ = Σ0 ◦ · · · ◦Σ|s0|, and s = s1 ◦ · · · ◦ s|s0|. Since e1 defines
a reachable-only relation by the induction hypothesis, it follows from
Lemma 3.7 that s0 contains a node in Θj only if σ contains a node in Θj ,
for every j ∈ [1, k]. Hence, Θj = Θ′j when the environment (x : 〈s0(i)〉, σ)
contains a node in Θj , for every j ∈ [1, k] and every i ∈ [1, |s0|]. The
result then readily follows by the induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ0; s0) ∈ e1(Π;σ)

and ∀i ∈ [1, |s0|] : (Π ◦Σ0 ◦Σi; si) ∈ e1(Π;x : 〈s0(i)〉, σ)
⇒ (Π′ ◦Σ0; s0) ∈ e1(Π′;σ)

and ∀i ∈ [1, |s0|] : (Π′ ◦Σ0 ◦Σi; si) ∈ e1(Π′;x : 〈s0(i)〉, σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

In order to prove that every expression e defines a semi-function, we first
state the following lemmas.

Lemma 3.9. Let ρ1, . . . , ρk be node-renamings and let N1, . . . , Nk be pairwise
disjoint finite sets of nodes such that ρj(Nj)∩ρj′(Nj′) = ∅ when j 6= j′. There
exists a node-renaming ρ such that ρ|Nj = ρj |Nj for all j ∈ [1, k].

Proof. Let X = N1 ∪ · · · ∪ Nk and let Y = ρ1(N1) ∪ · · · ∪ ρk(Nk). Let γ be
the function on X which equals ρj on Nj for every j ∈ [1, k]. Note that, since
the Nj are pairwise disjoint, γ is indeed a function. Further note that γ is
injective since every ρj is injective and since ρj(Nj)∩ρj′(Nj′) = ∅ when j 6= j′.
Hence, γ is a bijection from X to Y . Hence, |X| = |Y |, and consequently,
|Y −X| = |X − Y |. We can therefore extend γ to a permutation γ′ of X ∪ Y
by picking for each n ∈ Y −X a unique element γ′(n) in X − Y . Let π be a
permutation of N − (X ∪Y ). Then π∪ γ′ is a permutation of N which equals
ρj on Nj for every j ∈ [1, k]. Hence, the node-renaming ρ which equals π ∪ γ′
on N also has this property.

Lemma 3.10. Let Σ1 ◦Σ2 and Σ3 ◦Σ4 be two stores such that Σ1 is node-
isomorphic to Σ3. If ρ is a node-renaming such that ρ(Σ1 ◦Σ2) = (Σ3 ◦Σ4),
then ρ(Σ1) = Σ3 and ρ(Σ2) = Σ4.

Proof. It is easy to see that node-renamings commute with concatenation.
Hence, ρ(Σ1) ◦ ρ(Σ2) = ρ(Σ1 ◦Σ2) = Σ3 ◦Σ4, which implies that the first j
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trees of ρ(Σ1) ◦ ρ(Σ2) equal the first j trees of Σ3 ◦Σ4. Since Σ1 is node-
isomorphic to Σ3 it follows that they consists of exactly the same number of
trees. Hence, ρ(Σ1) = Σ3 and thus ρ(Σ2) = Σ4.

Lemma 3.11. Let (Σ ◦Σ1; ~s1), . . . , (Σ ◦Σk; ~sk), (Σ′ ◦Σ′1; ~s
′
1), . . . , (Σ

′ ◦Σ′k;
~s′k)

be value-tuples such that Σ,Σ1, . . . ,Σk are all pairwise disjoint, Σ′,Σ′1, . . . ,Σ
′
k

are all pairwise disjoint, Σ is node-isomorphic to Σ′, and such that (Σ ◦Σj ; ~sj)
is node-isomorphic to (Σ′ ◦Σ′j ; ~s

′
j), for every j ∈ [1, k]. Then

(Σ ◦©k
j=1 Σj ; ~s1, . . . , ~sk) ≡node (Σ′ ◦©k

j=1 Σ′j ; ~s′1, . . . , ~s
′
k).

Proof. Since (Σ ◦Σj ; ~sj) and (Σ′ ◦Σ′j ; ~s
′
j) are node-isomorphic value-tuples for

every j ∈ [1, k], there exist node-renamings ρj such that

ρj(Σ ◦Σj ; ~sj) = (Σ′ ◦Σ′j ; ~s′j).

Since Σ is node-isomorphic to Σ′, it follows from Lemma 3.10 that ρj(Σ) = Σ′

and that ρj(Σj) = Σ′j . Let N be the set of nodes in Σ. Then in particular
we have that ρj |N = ρj′ |N for every j and j′ in [1, k] (as the nodes in a store
are ordered). Let π = ρ1|N . Since Σ,Σ1, . . . ,Σk are all pairwise disjoint and
since Σ′,Σ′1, . . . ,Σ

′
k are also all pairwise-disjoint it follows from Lemma 3.9

that there exists a node-renaming ρ such that ρ equals π on nodes in Σ and
equals ρj on nodes in Σj , for every j ∈ [1, k]. Hence,

ρ(Σ ◦©k
j=1 Σj ; ~s1, . . . , ~sk) = (ρ(Σ) ◦©k

i=1 ρj(Σj); ρ(~s1), . . . , ρ(~sk))

= (Σ′ ◦©k
j=1 Σ′j ; ~s′1, . . . , ~s

′
k),

as desired.

Corollary 3.12. If R ⊆ Vp×V is a store-increasing semi-function and (Σ1; s1)
and (Σ2; s2) are two values in R(Σ;~s), then (Σ1; s1, ~s) is node-isomorphic to
(Σ2; s2, ~s).

Proof. Since R is store-increasing, there exist Σ′1 and Σ′2 such that Σ1 = Σ ◦Σ′1
and Σ2 = Σ ◦Σ′2. Since R is also a semi-function, (Σ ◦Σ′1; s1) and (Σ ◦Σ′2; s2)
are node-isomorphic. Furthermore, Σ is certainly node-isomorphic to itself.
The result then follows by applying Lemma 3.11 on (Σ;~s), (Σ ◦Σ′1; s1) and
(Σ;~s), (Σ ◦Σ′2; s2).

In a similar way we obtain:

Corollary 3.13. If R ⊆ Vp×V is a store-increasing semi-function and (Σ1; s1)
and (Σ2; s2) are two values in R(Σ;~s), then |s1| = |s2| and (Σ1; 〈s1(j)〉, ~s) is
node-isomorphic to (Σ2; 〈s2(j)〉, ~s), for every j ∈ [1, |s1|].
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Proposition 3.14. The relation defined by an expression in QL(B) is a semi-
function.

Proof. The proof goes by induction on e.

• The cases where e = x, e = a, or e = () are trivial.

• If e = if e1 then e2 else e3, then it follows from the induction hy-
pothesis that e1, e2 and e3 are all semi-functions. Therefore, if e1(Σ;σ)
contains a value of the form (Σ1; 〈true〉), then all values in e1(Σ;σ)
have that form. Similarly, if e1(Σ;σ) contains a value of the form
(Σ1; 〈false〉), then all values in e1(Σ;σ) have that form. Consequently,
if e1(Σ;σ) is defined, then either e(Σ;σ) = e2(Σ;σ) or e(Σ;σ) = e3(Σ;σ).
Since e2 and e3 are semi-functions it follows that e is also a semi-function.

• If e = let x := e1 return e2, then it follows from the induction hy-
pothesis that e1 and e2 are semi-functions. Suppose that v and w
are two values in e(Σ;σ). Then there exists (Σ1; s1) ∈ e1(Σ;σ) such
that v ∈ e2(Σ1;x : s1, σ) and there exists (Σ′1; s

′
1) ∈ e1(Σ;σ) such that

w ∈ e2(Σ′1;x : s′1, σ). Since e1 is a store-increasing semi-function it fol-
lows from Corollary 3.12 that there exists a node-renaming ρ such that
ρ(Σ1;x : s1, σ) = (Σ′1;x : s′1, σ). Since e1 is node-generic, we have

ρ(v) ∈ e2(ρ(Σ1;x : s1, σ)) = e2(Σ′1;x : s′1, σ).

Since we also have w ∈ e2(Σ′1;x : s′1, σ) and since e2 is a semi-function
there exists a node-renaming π such that π(ρ(v)) = w, from which the
result follows.

• If e = f(e1, . . . , ep), then it follows from the induction hypothesis that
e1, . . . , ep are all semi-functions. Suppose that v and w are two values
in e(Σ;σ). Then there exist (Σ ◦Σj ; sj) and (Σ ◦Σ′j ; s

′
j) in ej(Σ;σ) for

every j ∈ [1, p] such that the Σj are all pairwise disjoint, the Σ′j are all
pairwise disjoint, and

v ∈ f(Σ ◦©p
j=1 Σj ; s1, . . . , sp)

w ∈ f(Σ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p).

Since every ej is a semi-function we know that (Σ ◦Σj ; sj) is node-
isomorphic to (Σ ◦Σ′j ; sj), for every j ∈ [1, p]. By Lemma 3.11 it follows
that there exists a node-renaming ρ such that

ρ(Σ ◦©k
j=1 Σj ; s1, . . . , sk) = (Σ ◦©k

j=1 Σ′j ; s
′
1, . . . , s

′
k).
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Since f is node-generic we hence have

ρ(v) ∈ f(ρ(Σ ◦©k
j=1 Σj ; s1, . . . , sk)) = f(Σ ◦©k

j=1 Σ′j ; s
′
1, . . . , s

′
k).

Since we also have w ∈ f(Σ ◦©k
j=1 Σ′j ; s

′
1, . . . , s

′
k) and since f is a semi-

function, there exists a node-renaming π such that π(ρ(v)) = w, from
which the result follows.

• If e = for x in e1 return e2, then it follows from the induction hy-
pothesis that e1 and e2 are semi-functions. Suppose that v and w are
two values in e(Σ;σ). Then there exists (Σ0; s) ∈ e1(Σ;σ) and values
(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ) for every j ∈ [1, |s|] such that the Σj

are all pairwise disjoint and

v = (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj).

Moreover, there exists (Σ′0; s
′) ∈ e1(Σ;σ) and values (Σ′0 ◦Σ′j ; s

′
j) ∈

e2(Σ′0;x : 〈s′(j)〉, σ) for every j ∈ [1, |s′|] such that the Σ′j are all pairwise
disjoint and

w = (Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

Since e1 is a store-increasing semi-function, it follows from Corollary 3.13
that |s| = |s′| and that there exists a node-renaming ρj for every j ∈
[1, |s|] such that

ρj(Σ0;x : 〈s(j)〉, σ) = (Σ′0;x : 〈s′(j)〉, σ). (3.1)

Since e2 is node-generic it follows that

ρj(Σ0 ◦Σj ; sj) ∈ e2(ρj(Σ0;x : 〈s(j)〉, σ)) = e2(Σ′0;x : 〈s′(j)〉, σ).

Since also (Σ′0 ◦Σ′j ; s
′
j) ∈ e2(Σ′0;x : 〈s′(j)〉, σ) and since e2 is a semi-

function there exists, for every j ∈ [1, |s|], a node-renaming πj such
that πj(ρj(Σ0 ◦Σj ; sj)) = (Σ′0 ◦Σ′j ; s

′
j). Hence, (Σ0 ◦Σj ; sj) is node-

isomorphic to (Σ′0 ◦Σ′j ; s
′
j) for every j ∈ [1, |s|]. As in addition, (3.1)

implies that Σ0 is node-isomorphic to Σ′0, it follows from Lemma 3.11
that

(Σ0 ◦©|s|j=1 Σj ; s1, . . . , s|s|) ≡node (Σ′0 ◦©
|s|
j=1 Σ′j ; s

′
1, . . . , s

′
|s|).

It is now easy to see that this implies

(Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj) ≡node (Σ′0 ◦©
|s|
j=1 Σ′j ;©

|s|
j=1 s

′
j),

from which the result follows.

Using the fact that every e ∈ QL(B) is a node-generic, store-increasing
semi-function, an easy induction shows that e is also computable. Hence, e
defines a base operation.
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3.3 Well-Definedness

The evaluation of an expression e on an input (Σ;σ) may be undefined, i.e.,
potentially e(Σ;σ) = ∅. For example, the expression

if eq(publisher , ’ACM’) then element(authors, title) else ()

returns the empty set when

1. publisher is the empty list (as the subexpression eq(publisher , ’ACM’)
then returns the empty list, on which the conditional test is undefined);

2. publisher is not a singleton atom and not the empty list (as the subex-
pression eq(publisher , ’ACM’) is then undefined); or

3. publisher is the singleton atom 〈ACM〉 and authors is not a singleton atom
(as the element constructor is then evaluated on a value-tuple of the form
(Σ; s, s′) with s not a singleton atom, which is undefined).

Since the fact that e is undefined on (Σ;σ) models the situation where an
actual implementation would produce a runtime error, it is a natural question
to ask whether we can decide, given an expression e and a (possibly infinite)
set S of tree contexts on e, whether e is defined on every tree context in S. The
answer to this problem clearly depends on both the set B of base operations
and the class of tree context sets used as inputs. Here, we will focus on the
class of tree context sets specified by bounded-depth regular expression types.
Regular expression types are based on regular tree languages [7, 15, 44, 45]
and are widely used in general-purpose programming languages manipulating
tree-structured data, such as XDuce [26, 27, 28], CDuce [23], and XQuery [6,
18]. The bounded-depth restriction is motivated by the fact that most tree-
structured data (such as for example found in XML documents [61]) in practice
has nesting depth at most five or six, and that unbounded-depth nesting is
hence often not needed.

Formally, a (bounded-depth) regular expression type is a term generated by
the following grammar:

τ ::= Atom | Text | Element(a, τ)
| Empty | τ + τ | τ ◦ τ | τ∗

A regular expression type denotes a set of values, as defined in Figure 3.4. Here
we denote trees by Θ. For ease of notation we will not distinguish between a
regular expression type and the set of values it denotes. A regular expression
type assignment Γ on an expression e is a function from a finite superset
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a ∈ A
(∅; 〈a〉) ∈ Atom

n ∈ N t is Θ’s root
(Θ, 〈n〉) ∈ Text

n ∈ N e is Θ’s root λΘ(n) = a
children of n in Θ are n1< . . .<nk
(Θ|n1 ◦ · · · ◦Θ|nk

; 〈n1, . . . , nk〉) ∈ τ
(Θ, 〈n〉) ∈ Element(a, τ) (∅, 〈〉) ∈ Empty

(Σ, s) ∈ τ1 or (Σ, s) ∈ τ2
(Σ, s) ∈ τ1 + τ2

(Σ1, s1) ∈ τ1 (Σ2, s2) ∈ τ2
Σ1 is disjoint with Σ2

(Σ1 ◦Σ2, s1 ◦ s2) ∈ τ1 ◦ τ2

(Σ1, s1) ∈ τ · · · (Σp, sp) ∈ τ p ≥ 0
Σj is disjoint with Σj′ when j 6= j′

(Σ1 ◦ · · · ◦Σp, s1 ◦ . . . ◦ sp) ∈ τ∗

Figure 3.4: The denotation of regular expression types.

{x, . . . , y} of the free variables of e to regular expression types. A regular
expression type assignment denotes the set of contexts

{(Σx ◦ · · · ◦Σy;σ) | (Σz;σ(z)) ∈ Γ(z) for all z ∈ {x, . . . , y}}.

Again we will not distinguish between a regular expression type assignment
and the set of contexts it denotes. For convenience we will abbreviate “reg-
ular expression type” and “regular expression type assignment” by “type”
respectively “type assignment” in this chapter.

Definition 3.15. Let B be a finite set of base operations. We say that
e ∈ QL(B) is well-defined under a regular expression type assignment Γ on e
if e(Σ;σ) 6= ∅ for every context (Σ;σ) ∈ Γ. The well-definedness problem for
QL(B) consists of checking, given e and Γ, whether e is well-defined under Γ.

3.4 Satisfiability and The Restriction to Monotone
Base Operations

It is not obvious that the well-definedness problem is decidable. Indeed, we will
next identify several properties of B which can make the problem undecidable.
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Definition 3.16. Let B be a finite set of base operations. Let e be an expres-
sion in QL(B) and let Γ be a type assignment under which e is well-defined.
We say that e is satisfiable under Γ if there exists a context (Σ;σ) ∈ Γ such
that s is non-empty for every value (Σ′; s) ∈ e(Σ;σ). The satisfiability problem
for QL(B) consists of checking, given e and Γ, whether e is satisfiable under
Γ.

Since every expression defines a semi-function by Proposition 3.6, s is non-
empty for some (Σ′; s) ∈ e(Σ;σ) if, and only if, all values in e(Σ;σ) have a
non-empty list. Hence, e is satisfiable under Γ if, and only if, there exists a
context (Σ;σ) ∈ Γ and a value (Σ′; s) in e(Σ;σ) such that s is non-empty.

The satisfiability problem is reducible to the well-definedness problem.
Indeed, let e be an expression in QL(B) and let Γ be a type assignment under
which e is well-defined. It is easy to see that e is satisfiable under Γ if, and
only if, the expression

for x in e return (if () then () else ())

is not well-defined under Γ (as the subexpression if () then () else () is
always undefined). We have hence shown:

Proposition 3.17. If the satisfiability problem for QL(B) is undecidable, then
the well-definedness problem for QL(B) is also undecidable.

The converse is not true however. Indeed, in Section 3.6.1 we will give a set
of base operations B for which the well-definedness of QL(B) is undecidable,
but the satisfiability problem of QL(B) is nevertheless decidable.

Unsurprisingly, there are QL(B) for which satisfiability is undecidable, as
exemplified by the following proposition.

Proposition 3.18. If B includes the base operations concat, children, eq,
node-name, content, element, and empty, then QL(B) can simulate the re-
lational algebra. Concretely, for every relational algebra expression φ over
database schema S there exists an expression eφ ∈ QL(B) and a type assign-
ment Γ such that

• every database over S can be encoded as a context in Γ,

• eφ is well-defined under Γ, and,

• eφ evaluated on an encoding of database D equals an encoding of φ(D).

Consequently, satisfiability for QL(B) is undecidable, as it is already undecid-
able for the relational algebra.
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Proof. We use a well-known, straightforward, one-to-many encoding of rela-
tions as values. For example, the relation R in Figure 3.5(a) can be encoded
as the value (Σ; s) in Figure 3.5(b). Specifically, we encode each tuple t in R
as a tree in Σ. The root node n of this tree is labeled by some arbitrarily fixed
atom T . Furthermore, n has one element child node mA for every attribute
name A in the schema of R, and this child is labeled by A. The node mA itself
has exactly one child, which is a text node labeled by the value of t on A. The
whole relation is then encoded by the value (Σ; s) such that

1. for each tuple t ∈ R the root node of a tree encoding t is mentioned in
s, and

2. each node mentioned in s is the root node of an encoding of a tuple in
R.

The order in which these root nodes are mentioned in s does not matter and
there can be multiple nodes whose trees encode the same tuple. As such, the
value in Figure 3.5(c) is also a valid encoding of the relation in Figure 3.5(a).

Let S be a database schema. A database D over S can then be encoded
as a context (Σ;σ) such that (Σ;σ(r)) is an encoding of the relation assigned
to relation name r by D, for every relation name r in S. Let Γ be the type
assignment on the relation names in S such that

Γ(r) := Element(T,Element(A1,Text) ◦ · · · ◦Element(Ak,Text))∗

where {A1, . . . , Ak} is the relation schema assigned to r by S. It is easy to see
that for every database D over S there exists a context in Γ which encodes it
and that every context in Γ encodes a database over S.

We will now show how to construct, for every relational algebra expression
φ over S, an expression eφ ∈ QL(B) such that eφ(Σ;σ) is an encoding of φ(D)
whenever (Σ;σ) is an encoding of a databaseD over S. Note that in particular,
eφ(Σ;σ) is hence well-defined on Γ. In order to simplify presentation, we will
allow to bind multiple variables in one for loop. We will also allow boolean
combinations in the condition of an if test. Both features can clearly be
simulated in QL(B). The construction is by induction on φ:

• If φ is the relation name r, then eφ = r.

• If φ = σA1=A2(ψ), then eφ is defined as follows:

for t in eψ return
for x1, x2 in children(t) return

if eq(node-name(x1), A1)
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Figure 3.5: Encoding relations as values.
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and eq(node-name(x2), A2)
and eq(content(children(x1)), content(children(x2)))

then t else ()

• If φ = πA1,...,Ak
(ψ), then eφ is defined as follows:

for t in eψ return
element(T,

for x in children(t) return
if eq(node-name(x1), A1)

or ...
or eq(node-name(xk), Ak)

then x else ()
)

• If φ = ρB←A(ψ), then eφ is defined as follows:

for t in eψ return
element(T,

for x in children(t) return
if eq(node-name(x), A)
then element(B, children(x)) else x

)

• If φ = ψ1 × ψ2, then eφ is defined as follows:

for t1 in eψ1 return
for t2 in eψ2 return

element(T, concat(children(t1), children(t2)))

• If φ = ψ1 ∪ ψ2, then eφ = concat(eψ1 , eψ2).

• If φ = ψ1 − ψ2, then we note that ψ1 and ψ2 have the same output
schema {A1, . . . , Ak}. We define eφ as follows:

for t1 in eψ1 return
let z:= for t2 in eψ2 return

if same-tuple(t1,t2) then t2 else ()
return
if empty(z) then t1 else ()
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Here, same-tuple(t1,t2) is an abbreviation for the following expression,
which returns true if t1 and t2 encode the same tuple over {A1, . . . , Ak},
and false otherwise.

let z :=
for x1, . . . , xk in children(t1) return
for y1, . . . , yk in children(t2) return

if eq(node-name(x1), A1)
and ...
and eq(node-name(xk), Ak)
and eq(node-name(y1), A1)
and ...
and eq(node-name(yk), Ak)
and eq(content(children(x1)), content(children(y1)))
and ...
and eq(content(children(xk)), content(children(yk)))

then t1 else ()
return

if empty(z) then false else true

In eφ we hence compute, for each node t1 returned by eψ1 , the nodes
returned by eψ2 which encode the same tuple as t1. If there are no such
encodings, then t1 is returned (as it’s encoding is hence not in the result
of ψ2), otherwise it is filtered out.

It is easy to verify that eφ indeed returns an encoding of φ(D) when evaluated
on an encoding of D. In particular, eφ is hence defined on such encodings, as
desired.

Corollary 3.19. If B includes the base operations concat, children, eq, node-
name, concat, element, and empty, then the well-definedness problem for
QL(B) is undecidable.

We note that the fact that XQuery’s atomic value comparison and element
constructor are more complex than the eq and element base operations we use
above has no effect on the undecidability of the well-definedness problem.
Indeed, it is easily verified that the simulation in the proof of Proposition 3.18
still works if we replace eq and element by their XQuery counterparts (whose
semantics was given in Examples 3.2 and 3.3).

3.4.1 Monotone Base Operations

Corollary 3.19 is the QL(B) equivalent of Theorem 2.3 in the NRC. We
obtained a fragment of the NRC for which well-definedness is decidable by
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Figure 3.6: Containment of stores. Store Σ1 is not contained in Σ2 or in Σ3.
Store Σ2 is contained in Σ3.

restricting ourselves to the positive-existential expressions, which are mono-
tone by Lemma 2.4. In the hope of finding QL(B) for which well-definedness
is decidable, it may hence be worthwhile to restrict ourselves to those base
operations which are in a sense also “monotone”. For this purpose, we adapt
the notion of (unordered) complex object value containment to (ordered) tree
values.

Containment of Stores Intuitively, a store Σ is contained in a store Σ′ if
Σ can be obtained by removing nodes from Σ′ in such a way that if we remove
a node, we also remove all of its descendants. Formally, Σ is contained in
Σ′ when every component of Σ is a subset of the corresponding component
of Σ′, i.e., VΣ ⊆ VΣ′ , EΣ ⊆ EΣ′ , λΣ ⊆ λΣ′ , <Σ ⊆ <Σ′ , ≺Σ ⊆ ≺Σ′ , and
roots(Σ) ⊆ roots(Σ′).

As an example of store containment, consider the three stores depicted in
Figure 3.6. It is easy to verify that Σ2 is contained in Σ3. Store Σ1 is not
contained in Σ2 however, as n1 is a root in Σ1, but not in Σ2. It can similarly
be seen that Σ1 is also not contained in Σ3.

We note that store-containment is closely related to the notion of simula-
tion [8]: there exists a simulation from Σ to Π which respects document order
and relates all roots of Σ to roots of Π if, and only if, there exists a store Σ′,



3.4. Satisfiability and Monotonicity 63

node-isomorphic to Π, such that Σ is contained in Σ′.

Containment of Lists Intuitively, a list s is contained in a list s′ if s can
be obtained from s′ by deleting items in it. Formally, s is contained in s′

if there exists a strictly increasing function h : [1, |s|] → [1, |s′|] such that
s(j) = s′(h(j)) for every j ∈ [1, |s|]. Such a function h is called a witness of
the fact that s is contained in s′.

As an example, consider the lists s = 〈a, b, c〉 and s′ = 〈a, b, b, a, c〉. Then
s is contained s′, as witnessed by the function h : [1, 3] → [1, 5] with h(1) = 1,
h(2) = 2, and h(3) = 5. In contrast, when s = 〈a, a, b, c〉 then s is not
contained in s′, as we cannot obtain s from s′ simply by deleting items in s′.

Containment of Value-Tuples Finally, containment extends naturally to
value-tuples: (Σ; s1, . . . , sp) is contained in (Σ′; s′1, . . . , s

′
p) if Σ is contained in

Σ′ and every sj is contained in the corresponding s′j . We are now ready to
introduce the notion of a monotone base operation.

Monotonicity A set of value-tuples S is contained in a set of value-tuples
S′ if for every v′ ∈ S′ there exists v ∈ S such that v is contained in v′. In what
follows we will denote the containment relation on stores, lists, value-tuples
and sets of value-tuples by v. A relation R ⊆ Vp × V is monotone if for all v
and w in Vp with R(v) 6= ∅, R(w) 6= ∅, and vvw, we have R(v)vR(w).

Example 3.20. Let us give some examples of monotone base operations:

• The concatenation operator concat is clearly monotone.

• The children axis is also monotone. Indeed, let (Σ; s)v(Σ′; s′) and sup-
pose that children is defined on (Σ; s) and (Σ′; s′). Since sv s′ we know
that every node mentioned in s is also mentioned in s′. Furthermore,
since ΣvΣ′ we know the set of children of a node n in Σ is a subset of
the set of children of n in Σ′. Finally, since ΣvΣ′ we know that if n pre-
cedes m in document order in Σ, it also precedes m in document order
in Σ′. Hence, if (Σ; t) is the result of children on (Σ, s) and (Σ′; t′) is the
result of children on (Σ′; s′), then it is easily seen that tv t′. Therefore,

children(Σ; s) = {(Σ; t)}v{(Σ′; t′)} = children(Σ′; s′).

• The atomic value comparison eq is another example of a monotone base
operation. Indeed, let (Σ; s, s′)v(Π; t, t′) and suppose that eq is defined
on (Σ; s, s′) and (Π; t, t′). There are two possibilities:
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1. If s or s′ is the empty list, then eq relates (Σ; s, s′) only to (Σ; 〈〉).
Monotonicity is immediate, since 〈〉 is contained in every other list.

2. Otherwise, we know that s = 〈a〉 and s′ = 〈b〉 with a and b atoms
since eq is defined on (Σ; s, s′). Since sv t and s′v t′, it follows
that t and t′ cannot be empty. Since eq is also defined on (Π; t, t′),
it hence follows that t = 〈c〉 and t′ = 〈d〉 with c and d atoms. Since
〈a〉v〈c〉 and 〈b〉v〈d〉, it follows that a = c and b = d. Hence,

eq(Σ; s, s′) = {(Σ; 〈a = b〉)}v{(Π; 〈c = d〉} = eq(Σ; t, t′).

• Finally, the element constructor element is also a monotone base oper-
ation. Indeed, suppose that vvw and that element is defined on v and
w. Then v and w must be of the form:

v = (Σ; 〈a〉, 〈n1, . . . , nk〉)
w = (Σ′; 〈a〉, 〈n′1, . . . , n′l〉).

Let (Σ′ ◦Θ′; 〈m′〉) be a value in element(w). We show that there exists
a value in element(v) which is contained in (Σ′ ◦Θ′; 〈m′〉). By definition
of element , we know that the root element node m′ of the tree Θ′ is
labeled by a, that m′ has exactly l children, and that if m′j is the j-th
child of m′ (in sibling order), then there exists a node-renaming ρj such
that ρj(Σ′|n′

j
) = Θ′|m′

j
. Let h be a witness of 〈n1, . . . , nk〉v〈n′1, . . . , n′l〉.

Since ΣvΣ′ it follows that Σ|nj vΣ′|n′
h(j)

for every j ∈ [1, k]. Hence, we
also have

ρh(j)(Σ|nj )v ρh(j)(Σ′|n′
h(j)

) = Θ′|m′
h(j)

.

Then let Θ be the tree whose root element node m′ is labeled by a
such that m′ has k children and that the j-th child of m′ (in docu-
ment order) is ρh(j)(Σ|nj ). It is clear that (Σ ◦Θ; 〈m′〉) ∈ element(v).
Moreover, it is easy to see that (Θ; 〈m′〉)v(Θ′; 〈m′〉). It follows that
(Σ ◦Θ; 〈m′〉)v(Σ′ ◦Θ′; 〈m′〉), as desired.

Using similar reasonings as the ones employed in Example 3.20 we obtain:

Proposition 3.21. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, eq, is, �, is-element, is-text,
is-atom, node-name, content, element, and text are all monotone.

Note that if our restriction to monotone base operations is to have any
chance of leading to QL(B) for which well-definedness is decidable, empty
must be non-monotone. Indeed, all other base operations mentioned in Corol-
lary 3.19 are monotone by Proposition 3.21. Fortunately:
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Example 3.22. The emptiness test is not monotone. Indeed, let Σ be a
store. The emptiness test relates (Σ; 〈〉) only to (Σ; 〈true〉) and (Σ; 〈a〉) only
to (Σ; 〈false〉). However, 〈true〉 6v 〈false〉, although (Σ; 〈〉)v(Σ; 〈a〉).

3.4.2 The Impact of Automatic Coercions

We note that the atomization function data, depending on the concrete in-
terpretation of the abstract function fold which maps lists of text nodes to
atoms, is potentially not monotone. Indeed, suppose for example that fold ,
when viewed as a base operation, relates (Σ; 〈n〉) with n a text node labeled by
a to (Σ; 〈a〉) and relates (Σ; 〈n1, . . . , nk〉) with k ≥ 2 and n1, . . . , nk text nodes
labeled by a to (Σ; 〈b〉) for some b 6= a.6 Then clearly fold (and hence data) is
not monotone. Note that with this interpretation of fold we can simulate the
emptiness test in QL(B). Indeed, empty(e) is simulated by

let y := (for x in e return text(a)) return
let z := concat(text(a), y) return

eq(data(element(c,z )), a)

Here, c is an arbitrary atom. In y we first compute a list of text nodes, all
labeled by a. Note that y is empty if, and only, if e is empty. Hence, z contains
a single text node labeled by a if, and only if, e is empty. The atomization of
a newly created element node with z as children hence returns a if, and only
if, e is empty.

Note that, since fold is also used to merge adjacent text nodes into a single
text node in the merge-text base operation, it follows that hence merge-text is
also not monotone. Also note that with this interpretation of merge-text we
can again simulate the emptiness test in QL(B). Indeed, empty(e) is simulated
by

let y := (for x in e return text(a)) return
let z := concat(text(a), y) return
let w := merge-text(element(c,z )) return

eq(content(children(w)), a)

Indeed, using a similar reasoning as above, it is easy to see that the single text
node child of w is labeled by a if, and only if, e is empty.

As such, we obtain that QL(concat , children, eq , node-name, content ,
element , text , data) and QL(concat , children, eq , node-name, content , el-
ement , text , merge-text) are at least as expressive as QL(concat , children,

6The actual interpretation of fold in XQuery (i.e., string concatenation of the text nodes’
labels) has this kind of behavior: concatenating a non-empty string k times does not produce
the string itself.
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eq , node-name, element , empty). It follows by Propositions 3.17 and 3.18
that their well-definedness problem is hence also undecidable. This reasoning
clearly illustrates that automatic coercions, such as the ones performed by
atomization and text node merging, are not harmless with regard to deciding
well-definedness.

3.4.3 Monotone Expressions

In this section we show that if B is a set of monotone base operations, then
monotonicity transfers to all expressions in QL(B). Hereto, we first state the
following lemma’s.

Lemma 3.23. Let R ⊆ Vp×V be a monotone base operation and let (Σ;~s) and
(Σ′; ~s′) be value-tuples of arity p such that (Σ;~s)v(Σ′; ~s′) and R(Σ;~s) 6= ∅. For
every (Σ′ ◦Σ′1; s

′
1) ∈ R(Σ′; ~s′) there exists (Σ ◦Σ1; s1)v(Σ′ ◦Σ′1, s

′
1) in R(Σ;~s)

such that Σ1vΣ′1.

Proof. Every store can be written as a concatenation of trees. Let Θ′1, . . . ,Θ
′
k

be the non-empty trees such that Σ′ = Θ′1 ◦ · · · ◦Θ′k. Since ΣvΣ′, we can
write Σ as a concatenation of trees Θ1 ◦ · · · ◦Θk such that Θj vΘ′j for every
j ∈ [1, k], where if Σ does not contain any node in Θ′j , we take Θj to be
the empty tree. Let ∆1, . . . ,∆k be the trees such that, for every j ∈ [1, k],
∆j = Θj if Θj is non-empty, and ∆j = Θ′j otherwise. In particular, ∆j = Θj

whenever ~s mentions a node in Θj . Since R is reachable-only and since
R(Θ1 ◦ · · · ◦Θk;~s) is defined, it is easy to see that R(∆1 ◦ · · · ◦∆k;~s) is also de-
fined. Moreover, by construction we have ∆j vΘ′j for every j ∈ [1, k]. Hence,
(∆1 ◦ · · · ◦∆k;~s)v(Θ′1 ◦ · · · ◦Θ′k; ~s′). Since R is a monotone base operation,
there exists (∆1 ◦ · · · ◦∆k ◦Σ1; s1) ∈ R(∆1 ◦ · · · ◦∆k;~s) such that

(∆1 ◦ · · · ◦∆k ◦Σ1; s1)v(Θ′1 ◦ · · · ◦Θ′k ◦Σ′1; s
′
1).

Hence, Σ1vΘ′1 ◦ · · · ◦Θ′k ◦Σ′1. Assume, for the purpose of contradiction, that
Σ1 has some node m in common with Θ′j , for some j ∈ [1, k]. Let n be the root
node of m in Σ1. In particular there exists a path from n to m in Σ1. Since
Σ1vΘ′1 ◦ · · · ◦Θ′k ◦Σ′1, n must also a root node in Θ′1 ◦ · · · ◦Θ′k ◦Σ′1. By defi-
nition of v there must also exist a path from n to m in Θ′1 ◦ · · · ◦Θ′k ◦Σ′1. By
definition of concatenation however, there can be no path in Θ′1 ◦ · · · ◦Θ′k ◦Σ′1
connecting a node not in Θ′j to a node in Θ′j . Hence, n must be the root node
of Θ′j . As Θ′j is non-empty, ∆j is also non-empty by construction. Let n′ be
the root node of ∆j . Since ∆j vΘ′j , n

′ must also be a root node in Θ′j . Since
trees have at most one root node, n = n′. Hence, n is a node in ∆j . This
is a contradiction however, as (∆1 ◦ · · · ◦∆k ◦Σ1; s1) is a value and ∆j should
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hence be disjoint with Σ1. It follows that Σ1 is disjoint with Θ′j for every
j ∈ [1, k] and hence that Σ1vΣ′1.

Finally, since R is reachable-only, since ∆j = Θj whenever ~s mentions
a node in ∆j , and since (∆1 ◦ · · · ◦∆k ◦Σ1; s1) ∈ R(∆1 ◦ · · · ◦∆k;~s) we have
(Θ1 ◦ · · · ◦Θk ◦Σ1; s1) ∈ R(Θ1 ◦ · · · ◦Θk;~s), as desired.

Lemma 3.24. If R ⊆ Vp ×V is a base operation which is defined on v and if
w is node-isomorphic to v, then R is also defined on w.

Proof. Since R is defined on v there exists u ∈ R(v). Since v is node-
isomorphic to w there exists a node-renaming ρ such that ρ(v) = w. Since
R is node-generic we have ρ(u) ∈ R(ρ(v)) = R(w), from which the result
follows.

We are now ready to prove:

Proposition 3.25. Let B be a finite set of monotone base operations. Every
expression e in QL(B) defines a monotone relation.

Proof. Let e be an expression in QL(B). Let (Σ;σ) and (Σ′;σ′) be two contexts
on e such that e(Σ;σ) 6= ∅, e(Σ′;σ′) 6= ∅, and (Σ;σ)v(Σ′;σ′).7 Let w ∈
e(Σ′;σ′). We will prove by induction on e that there exists v ∈ e(Σ;σ) such
that vvw. Throughout the induction we will use the fact that expressions
define base operations (Proposition 3.6) and that if an expression is defined
on an input, it is also defined on all the node-isomorphic copies of this input
(Lemma 3.24).

• If e = x, e = a or e = (), then the result follows immediately.

• If e = if e1 then e2 else e3, then there exists (Σ′1; 〈b〉) ∈ e1(Σ′;σ′)
with b either true or false such that w ∈ e2(Σ′;σ′) if b = true
and w ∈ e3(Σ′;σ′) otherwise. Suppose that b = true. Since e(Σ;σ)
is defined, e1(Σ;σ) must also be defined. There hence exists a value
(Σ1; s1)v(Σ′1; 〈true〉) in e1(Σ;σ) by the induction hypothesis. Then s1
is either 〈〉 or 〈true〉. Note however that if s1 = 〈〉, then all values
in e1(Σ;σ) are of the form (Σ1; 〈〉) since e1 is a semi-function. Hence,
e(Σ;σ) would be undefined. Therefore, s1 = 〈true〉. Since e1 is a semi-
function it follows that all values in e1(Σ;σ) are of the form (Σ1; 〈true〉).
Hence, e2(Σ;σ) = e(Σ;σ) 6= ∅. Since w ∈ e2(Σ′;σ′) there then exists v ∈
e2(Σ;σ) with vvw by the induction hypothesis. Since e2(Σ;σ) = e(Σ, σ)

7Here we extend the containment relation to contexts in the obvious way: if σ
and σ′ are two environments with the same domain {x, . . . , y}, then (Σ; σ)v(Σ′; σ′) if
(Σ; σ(x), . . . , σ(y))v(Σ′; σ′(x), . . . , σ′(y)).
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we hence have v ∈ e(Σ;σ) with vvw, as desired. If b = false, then the
reasoning is similar.

• If e = let x := e1 return e2, then there exists (Σ′1; s
′
1) ∈ e1(Σ′;σ′)

such that w ∈ e2(Σ′1;x : s′1, σ
′). Moreover, since e(Σ;σ) is defined there

must exist a (Π1; t1) ∈ e1(Σ;σ) such that e2(Π1;x : t1, σ) is defined.
Note that in particular, e1(Σ;σ) is defined. Hence there exists a value
(Σ1; s1)v(Σ′1; s

′
1) in e1(Σ;σ) by the induction hypothesis. Since e1 is a

store-increasing semi-function, it follows from Corollary 3.12 that (Σ1;
x : s1, σ) is node-isomorphic to (Π1;x : t1, σ). Since e2 is a node-generic
and since e2(Π1;x : t1, σ) is defined, it follows that e2(Σ1;x : s1, σ) is
also defined. Since also (Σ1;x : s1, σ)v(Σ′1;x : s′1, σ

′), it follows by the
induction hypothesis that there exists v ∈ e2(Σ1;x : s1, σ) with vvw.
The result then follows since v ∈ e(Σ;σ).

• If e = f(e1, . . . , ep), then there exist (Σ′ ◦Σ′j ; s
′
j) ∈ ej(Σ′;σ′) for every

j ∈ [1, p] such that the Σ′j are all pairwise disjoint and

w ∈ f(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p).

Moreover, since e(Σ;σ) is defined there must also exist (Σ ◦Πj ; tj) ∈
ej(Σ;σ) for every j ∈ [1, p] such that the Πj are pairwise disjoint and

f(Σ ◦©p
j=1 Πj ; t1, . . . , tp) 6= ∅.

Note that in particular, ej(Σ;σ) is defined for every j ∈ [1, p]. Since
every ej defines a monotone base operation by the induction hypothesis,
it hence follows from Lemma 3.23 that there exist (Σ ◦Σj ; sj) ∈ ej(Σ; s)
for every j ∈ [1, p] such that (Σ ◦Σj ; sj)v(Σ′ ◦Σ′j ; s

′
j) and Σj vΣ′j .

Since the Σ′j are all pairwise disjoint and Σj vΣ′j , it follows that the
Σj are also pairwise disjoint. Moreover, (Σ ◦Σj ; sj) is node-isomorphic
to (Σ ◦Πj ; tj) for every j ∈ [1, p] since every ej is a semi-function. By
Lemma 3.11 we hence obtain that

(Σ ◦©p
j=1 Σj ; s1, . . . , sp) ≡node (Σ ◦©p

j=1 Πj ; t1, . . . , tp).

Since f is a node-generic and since f(Σ ◦©p
j=1 Πj ; t1, . . . , tp) is defined,

it follows that f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) is also defined. Moreover, since

ΣvΣ′, Σj vΣ′j and sj v s′j for every j ∈ [1, p] we have

(Σ ◦©p
j=1 Σj ; s1, . . . , sp)v(Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p).

Since f is a monotone base operation, there hence exists

v ∈ f(Σ ◦©p
j=1 Σj ; s1, . . . , sp)

such that vvw. The result then follows since v ∈ e(Σ;σ).
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• If e = for x in e1 return e2, then there exists (Σ′0; s
′) ∈ e1(Σ′;σ′)

and values (Σ′0 ◦Σ′j ; s
′
j) ∈ e2(Σ′0;x : 〈s′(j)〉, σ′) for every j ∈ [1, |s′|] such

that the Σ′j are all pairwise disjoint and

w = (Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

Moreover, since e(Σ;σ) is defined there exists (Π0; t) ∈ e1(Σ;σ) such
that e2(Π0;x : 〈t(j)〉, σ) 6= ∅ for every j ∈ [1, |t|]. Note that in par-
ticular, e1(Σ;σ) is defined. Since (Σ;σ)v(Σ′;σ′) there hence exists
(Σ0; s)v(Σ′0; s

′) in e1(Σ;σ) by the induction hypothesis. Since e1 is a
store-increasing semi-function, it follows from Corollary 3.13 that |s| =
|t| and that (Σ0;x : 〈s(j)〉, σ) is node-isomorphic to (Π0;x : 〈t(j)〉, σ), for
every j ∈ [1, |t|]. Since e2 is node-generic and since e2(Π0;x : 〈t(j)〉, σ)
is defined for every j ∈ [1, |t|], it follows that e2(Σ0;x : 〈s(j)〉, σ) is also
defined for every j ∈ [1, |s|]. Let h be a witness of sv s′. It is easy to
see that for every j ∈ [1, |s|] we have

(Σ0;x : 〈s(j)〉, σ)v(Σ′0;x : 〈s′(h(j))〉, σ).

Since e2 is a monotone base operation by the induction hypothesis, it
hence follows from Lemma 3.23 that there exist

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ)

for every j ∈ [1, |s|] such that (Σ0 ◦Σj ; sj)v(Σ′0 ◦Σ′j ; s
′
j) and Σj vΣ′j .

Since the Σ′j are all pairwise disjoint and Σj vΣ′j , it follows that the Σj

are also pairwise disjoint. It is easy to see that hence

(Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj)v(Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

The result then follows since the left-hand side is in e(Σ;σ).

3.5 Interpretation of Atoms and the Restriction to
Generic Base Operations

Another potential source of undecidability is the interpretation of atoms by
base operations. Indeed, suppose that B includes base operations + and ×
which interpret the atoms as integers and simulate the addition respectively
multiplication on them. That is, + and × relate (Σ; 〈k〉, 〈l〉) to (Σ; 〈k + l〉)
respectively (Σ; 〈k×l〉). Note that with this definition, + and × are monotone.
It is easy to see that for every polynomial P (x1, . . . , xk) with integer coefficients
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there exists an expression eP with free variables x1, . . . , xk that simulates P .
Hence, the expression

if eq(eP , 0) then (if () then () else ()) else ()

is well-defined under the type assignment which maps every xj to Atom if, and
only if, the Diophantine equation P (x1, . . . , xk) = 0 has no integer solution.
Since we now have a reduction from Hilbert’s undecidable tenth problem [39],
well-definedness for QL(B) is undecidable.

Generic Base Operations We will therefore restrict ourselves to base op-
erations which do not interpret the atoms, except for the booleans true and
false. Formally, we require that all base operations R are generic: for every
renaming ρ it must hold that

w ∈ R(v) ⇔ ρ(w) ∈ R(ρ(v)).

It is easy to see that for example concat , children and element are generic
base operations. In fact:

Proposition 3.26. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, eq, is, �, is-element, is-text,
is-atom, node-name, content, element, text, and empty are all generic.8

Note that hence genericity alone is not powerful enough to prevent the
construction of QL(concat , children, eq , node-name, content , elem, empty)
for which well-definedness is undecidable.

Semi-Generic Expressions In contrast to monotonicity, genericity does
not transfer literally from base operations to expressions. Indeed, it is obvious
that expressions can always interpret the constants they mention. An easy
induction shows that expressions cannot interpret more than those constants
however:

Proposition 3.27. If B is a finite set of generic base operations, then for
every expression e ∈ QL(B) and every renaming ρ which is the identity on the
atoms mentioned in e it holds that w ∈ e(v) ⇔ ρ(w) ∈ e(ρ(v)).

We say that e is semi-generic in this case.

8Remember that renamings are the identity on the booleans. This explains why for
example eq can be generic.
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3.6 Non-local Behavior and the Restriction to Local
and Locally-Undefined Base Operations

In this section we will show that, even if B is a set of monotone and generic
base operations, well-definedness for QL(B) need not be decidable. In order
to illustrate this, we first introduce the following problem.

Definition 3.28. Let e1 and e2 be two expressions with the same set of
free variables, and let Γ be a type assignment under which e1 and e2 are
well-defined. We say that the list-width of e1 is less than the list-width of e2
under Γ, denoted by |e1| ≤Γ |e2| if for all v ∈ Γ, all (Σ1; s1) ∈ e1(v) and all
(Σ2; s2) ∈ e2(v) it holds that |s1| ≤ |s2|. The list-width problem consists of
deciding, given e1, e2, and Γ whether |e1| ≤Γ |e2|.

Lemma 3.29. The list-width problem for QL(concat) is undecidable.

Proof. Our proof is based on the reduction used to show that containment of
unions of conjunctive queries on bags is undecidable [29]. Let P1(x1, . . . , xp)
and P2(x1, . . . , xp) be two polynomials in p variables, with natural number co-
efficients and without constant terms. It was shown by Ioannidis and Ramakr-
ishnan [29] (p. 317) that it is undecidable to check whether P1(x1, . . . , xp) ≤
P2(x1, . . . , xp) for all natural number assignments to x1, . . . , xp.

We will encode natural numbers k as lists of width k. Note that under this
encoding we can simulate addition by concatenation and multiplication by the
for loop. Indeed, let (Σ;σ) be a context such that |σ(x)| = k and |σ(y)| = l.
The list of the value returned by concat(x, y) on (Σ;σ) then has width k + l.
Moreover, the list of the value returned by for z in x return y on (Σ;σ)
has with k × l. Hence, we can construct an expression e1 with free variables
x1, . . . , xk which simulates P1(x1, . . . , xp) in the sense that

(Σ1; s1) ∈ e1(Σ;σ) ⇒ P1(|σ(x1)|, . . . , |σ(xp)|) = |s1|.

We can similarly construct an expression e2 which simulates P2(x1, . . . , xp).
Let Γ be a type assignment on e1 and e2 such that Γ(xj) = Atom∗ for all xj .
Since concat is defined on every input, it is easy to see that e1 and e2 are also
defined on every input. Hence e1 and e2 are well-defined under Γ. Finally, as
Γ contains encodings of all possible natural number assignments to x1, . . . , xp
it follows that it is undecidable to check whether |e1| ≤Γ |e2|.

As a side note, we state the following corollary which is interesting in its
own right.

Corollary 3.30. The containment problem for QL(concat) is undecidable: it
is undecidable to check, given two expressions e1 and e2 with the same set of
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free variables and a type assignment Γ under which e1 and e2 are well-defined,
whether e1(v)v e2(v), for all v ∈ Γ.9

Proof. Let e1 and e2 be two expressions in QL(concat) with the same set
of free variables and let Γ be a type assignment under which e1 and e2 are
well-defined. Since we cannot create new nodes in QL(concat), it follows that
if (Σ1; s1) ∈ e1(Σ;σ) and (Σ2; s2) ∈ e2(Σ;σ), then Σ1 = Σ = Σ2. Hence
|e1| ≤Γ |e2| if, and only if, for all v ∈ Γ we have

(for x in e1 return a)(v) v (for x in e2 return a)(v).

As we now have a reduction from the list-width problem for QL(concat) which
is undecidable by Lemma 3.29, it follows that the containment problem is also
undecidable.

3.6.1 Non-Local Undefinedness Behavior

The undefinedness behavior of base operations such as children, eq , and el-
ement is quite simple: the input list contains an atom where it should only
contain nodes; one of the input lists contains two or more items; or the first
input list is not a singleton atom respectively. Base operations with more com-
plex undefinedness behavior are problematic with regard to well-definedness
checking, as the following proposition shows.

Proposition 3.31. Let smaller-width be the binary base operation which re-
lates (Σ; s, s′) to (Σ; 〈〉) when |s| ≤ |s′| and which is undefined otherwise. The
well-definedness problem for QL(concat , smaller-width) is undecidable.

Proof. Let e1 and e2 be expressions in QL(concat) with the same set of free
variables and let Γ be a type assignment under which e1 and e2 are well-
defined. It is easy to see that smaller-width(e1, e2) is well-defined under Γ if,
and only if, |e1| ≤Γ |e2|. Since we now have a reduction from the list-width
problem for QL(concat) which is undecidable by Lemma 3.29, it follows that
well-definedness for QL(concat , smaller-width) is also undecidable.

Note, however, that concat and smaller-width are both monotone and
generic. Hence, monotonicity and genericity alone do not imply decidabil-
ity. In fact, we will prove in Section 3.7.1:

Proposition 3.32. The satisfiability problem for QL(concat , smaller-width)
is decidable.

9We note that, in contrast, the corresponding problem in a set-based data model is
decidable [17].
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Hence, decidability of the satisfiability problem is not sufficient to obtain
decidability of the well-definedness problem.

The core difficulty with well-definedness in QL(concat , smaller-width) is
that smaller-width can switch arbitrarily from defined to undefined and back
again when the input “grows” according to the containment relation. In-
deed, smaller-width is defined on (Σ; 〈〉, 〈〉); undefined on (Σ; 〈a〉, 〈〉); and
defined again on (Σ; 〈a〉, 〈b〉). As such, smaller-width is non-monotone in
its undefinedness behavior: if smaller-width(v) is undefined and vvw, then
smaller-width(w) is not necessarily undefined. In contrast, we have shown
in Section 2.2.1 that the PENRC is monotone in its undefinedness behavior
(Lemma 2.4), and we have used this property to show decidability of well-
definedness for the PENRC in Section 2.2.2. In order to obtain QL(B) for
which well-definedness is decidable, we could hence restrict ourselves to base
operations which are also monotone in their undefinedness behavior. In that
case, however, we would disallow base operations such as is-element , is-text ,
is-atom, element , and text which are undefined when their (first) argument is
empty, but are defined when this is a singleton. As we would like to obtain a
language with these operators for which well-definedness is decidable, we will
use another, looser restriction.

Specifically, we note that smaller-width’s undefinedness on a certain input
depends on the whole input, and not on a local part of it. We will therefore
restrict ourselves to base operations which are undefined on an input due to
a local reason. We make this notion precise as follows.

Requirements A requirement w is a tuple (V ;P1, . . . , Pp) where V is a set of
nodes and the Pj are sets of non-zero natural numbers. Let w = (Σ; s1, . . . , sp)
be a value-tuple. We say that w is a requirement on w when V is a subset
of the nodes in Σ and Pj is a subset of [1, |sj |], for every j ∈ [1, p]. A value-
tuple (Σ′; s′1, . . . , s

′
p) satisfies w on w if (Σ′; s′1, . . . , s

′
p)vw, V is a subset of

the nodes in Σ′, and for every j ∈ [1, p] there exists a witness hj for s′j v sj
such that Pj ⊆ rng(hj). Note that w itself trivially satisfies w on w. We will
denote the set of all value-tuples which satisfy w on w by [w, w].

As an example, let Σ2 and Σ3 be the stores depicted in Figure 3.6(b)
respectively Figure 3.6(c). Then w = ({n7}; {2}) is clearly a requirement
on w = (Σ3; 〈n1, n4, a, n4〉). Furthermore, the value (Σ2; 〈n4〉) satisfies w on
w. Indeed, it is clear that (Σ2; 〈n4〉)v(Σ3; 〈n1, n4, a, n4〉) and that {n7} is a
subset of the nodes in Σ2. Moreover, the function which maps 1 to 2 is a
witness of 〈n4〉v〈n1, n4, a, n4〉 whose range obviously includes {2}. The value
(∅; 〈a, n4〉) does not satisfy w on w however. Indeed, {n7} is not a subset
of the nodes in ∅ and there exists no witness h of 〈a, n4〉v〈n1, n4, a, n4〉 for
which {2} ⊆ rng(h).
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The following lemma establishes some basic properties of requirements.

Lemma 3.33. Let (V ;P1, . . . , Pp) be a requirement on (Σ; s1, . . . , sp), let
(Σ′; s′1, . . . , s

′
p) be a value-tuple which satisfies this requirement, and let j ∈

[1, p]. Then |Pj | ≤ |s′| and {sj(i) | i ∈ Pj} ⊆ rng(s′j).

Proof. Trivial.

Undefinedness Reasons Let R ⊆ Vp ×V and w ∈ Vp such that R(w) = ∅.
A requirement w on w is a reason why R(w) = ∅ if R(v) = ∅ for every
v ∈ [w, w]. Intuitively, a reason why R(w) = ∅ describes a “part” of w which
causes R to be undefined on w.

For example, w = (∅; {2}) is a reason why children is undefined on w =
(Σ; 〈n, a,m, a〉). Indeed, if (Σ′; s′) ∈ [w, w], then it follows by Lemma 3.33 that
{a} ⊆ rng(s′). Since s′ hence mentions an atom, children is also undefined
on (Σ′; s′). Likewise, w′ = (∅; {1}, {1, 2}) is a reason why eq is undefined on
w′ = (∅; 〈a, c〉, 〈a, b, c〉). Indeed, if (Σ′; s′1, s

′
2) ∈ [w′, w′], then it follows by

Lemma 3.33 that |s′1| ≥ 1 and |s′2| ≥ 2. Hence, eq is undefined on (Σ′; s′1, s
′
2).

Note that reasons are not necessarily unique. For example, (∅; {1, 2}, {2})
is another reason why eq is undefined on (∅; 〈a, c〉, 〈a, b, c〉). Also note that
there always exists a reason why R is undefined on w = (Σ; s1, . . . , sp). Indeed,
it suffices to take w = (V ;P1, . . . , Pp) with V the set of nodes in Σ and
Pj = [1, |sj |], for every j ∈ [1, p].

Locally-Undefinedness The size of a requirement w = (V ;P1, . . . , Pp),
denoted by |w|, is the maximum of |V |, |P1|, . . . , |Pp|. We say that R is
locally-undefined if there exists a constant k such that for every v on which R
is undefined there exists a reason why R(v) = ∅ of size at most k. We call k a
witness of the fact that R is locally-undefined. Intuitively, a locally-undefined
base operation cannot base its decision to be undefined on a certain input on
the whole input, but only on a small part of it.

Example 3.34. Let us give some examples of locally-undefined base opera-
tions.

• The concatenation operator concat , the atomization function data, and
the emptiness test empty are always defined. Hence, they are also locally-
undefined.

• The children axis is locally-undefined with witness 1. Indeed, suppose
that children is undefined on w = (Σ; s). Then there exists j ∈ [1, s]
such that s(j) is a atom. Let w be the requirement (∅; {j}) on (Σ; s). It
is clear that w has size 1. Furthermore, let (Σ′; s′) ∈ [w, w]. It follows
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by Lemma 3.33 that s(j) ∈ rng(s′). As s′ thus mentions an atom, it
follows that children is undefined on (Σ′; s′). Hence, w is a reason why
children(w) = ∅.

• The atomic value comparison eq is locally-undefined with witness 2.
Indeed, suppose that eq(w) is undefined. We discern two cases.

1. If w = (Σ; 〈i1〉, 〈i2〉) with i1 or i2 a node, then let w be the require-
ment (∅; {1}, {1}) on w. It is clear that w has size 1. Furthermore
let (Σ′; s′1, s

′
2) ∈ [w, w]. It follows by Lemma 3.33 that i1 ∈ rng(s′1)

and i2 ∈ rng(s′2). Since s′1 or s′2 are then non-empty and since
one of them mentions a node, it follows that eq is undefined on
(Σ′; s′1, s

′
2). Hence, w is a reason why eq(w) = ∅.

2. Otherwise, w must be of the form (Σ; s1, s2) with s1 and s2 non-
empty and one of s1 or s2 containing two or more items. We assume
without loss of generality that |s1| ≥ 2, the other case is similar.
Let w be the requirement (∅; {1, 2}, {1}). It is clear that w has size
2. Furthermore, let (Σ′; s′1, s

′
2) ∈ [w, w]. It follows by Lemma 3.33

that |s′1| ≥ 2 and |s′2| ≥ 1. Hence, eq is undefined on (Σ′; s′1, s
′
2).

As such w is a reason why eq(w) = ∅.

• The kind test is-element is locally-undefined with witness 2. Indeed,
suppose that is-element(w) is undefined. We discern three cases.

1. If w = (Σ; 〈〉), then let w be the requirement (∅; ∅) on w. It is clear
that w has size 0. Let (Σ′; s′) ∈ [w, w]. Since in particular s′v〈〉,
it follows that is-element is undefined on (Σ′; s′). Hence, w is a
reason why is-element(w) = ∅.

2. If w = (Σ; 〈a〉) with a an atom, then let w be the requirement
(∅; {1}) on w. It is clear that w has size 1. Furthermore, let
(Σ′; s′) ∈ [w, w]. It follows by Lemma 3.33 that a ∈ rng(s′). As s′

hence mentions an atom, it follows that is-element is undefined on
(Σ′; s′). Hence, w is a reason why is-element(w) = ∅.

3. Otherwise, w must be of the form (Σ; s) with |s| ≥ 2. Let w be
the requirement (∅; {1, 2}) on w. It is clear that w has size 2.
Furthermore, let (Σ′; s′) ∈ [w, w]. It follows by Lemma 3.33 that
|s′| ≥ 2. Hence, is-element is undefined on (Σ′; s′). As such, w is a
reason why eq(w) = ∅.

• As a final example, let R be the base operation that relates (Σ; s) to
(Σ; 〈〉) if s is a sequence of items in which no element node has an a-
labeled element child. If some element node in s does have an a-labeled
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element child, then R(Σ; s) is undefined. Note that R is not some ar-
tificially contrived example. Indeed, R can be defined by the following
expression.

for y in x return
if is-element(y) then

for z in children(y) return
if is-element(z ) then

if eq(node-name(z ), a) then
if () then () else ()

else ()
else ()

else ()

We claim that R is locally-undefined with witness 1. Indeed, suppose
that R is undefined on w = (Σ; s). Then there exists a position j ∈ [1, |s|]
such that s(j) is an element node which has an a-labeled element child
node n. Let w be the requirement ({n}, {j}) on w. It is clear that
w has size 1. Furthermore, let (Σ′; s′) ∈ [w, w]. Since {n} is a subset
of the nodes in Σ′ and since Σ′vΣ, it follows that n is an a-labeled
element child of s(j) in Σ′. Furthermore, s(j) ∈ rng(s′) by Lemma 3.33.
As s′ thus mentions an element node with an a-labeled element child,
it follows that R is undefined on (Σ′; s′). Hence, w is a reason why
R(Σ; s) = ∅.

Using similar reasonings as the ones employed in Example 3.34 we obtain:

Proposition 3.35. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, data, eq, is, �, is-element,
is-text, is-atom, node-name, content, element, merge-text, text, empty, +,
and × are all locally-undefined.

Note that hence locally-undefinedness alone is not powerful enough to pre-
vent the construction of QL(concat , children, eq , node-name, content , ele-
ment , empty) and QL(+,×), for which well-definedness is undecidable.

3.6.2 Non-Local Behavior

Unfortunately, locally-undefinedness does not transfer from base operations to
expressions, a fact which can also cause trouble as we show next.

Let zip be a binary base operation which relates (Σ; r, s) to (Σ ◦Π; t) where
Π has the form
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|r| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s|−|r| times

︷ ︸︸ ︷

true

false

. . .

true

false

if |r| ≤ |s| and is otherwise of the form

|s| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|r|−|s| times

︷ ︸︸ ︷

true

true

. . .

true

true

In both cases t is the list of Π’s root nodes in document order. Note that Π
always has width max(|r|, |s|). Intuitively, every natural number i between
1 and max(|r|, |s|) gets represented as a root node, which has a true-labeled
child if i ≤ |r| and has a false-labeled child if i ≤ |s|. Note that zip is defined
on every input and is hence locally-undefined.

Now let has-false be the base operation which relates (Σ; 〈n〉) to (Σ; 〈〉)
if n has a false-labeled child, and which is undefined otherwise. Since the
undefinedness behavior of has-false is equal to the undefinedness behavior of
is-element , which we already showed to be locally-undefined in Example 3.34,
it follows that has-false is also locally-undefined.

Although zip and has-false are hence both locally-undefined, there are ex-
pressions in QL(zip, has-false) which are not locally-undefined, as the following
lemma shows.

Lemma 3.36. The expression

for x in zip(y , z ) return has-false(x )

is not locally-undefined.

Proof. Let us denote the expression above by e. Suppose, for the purpose
of contradiction, that there does exist a natural number k such that for all
contexts v on e for which e(v) = ∅, there exists a reason why e(v) = ∅ of size
at most k. Then let (Σ; y : s1, z : s2) be a context on e such that |s1| = k + 1
and |s2| = k. Clearly, e(Σ; y : s1, z : s2) = ∅. Hence, there exists a reason
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w := (V ; y : P1, z : P2) why this is so of size at most k. Since P1 has at most
k elements, there must exist a list s′1v s1 of width k for which there exists a
witness h of s′1v s1 such that P1 ⊆ rng(h). Then clearly

(Σ; y : s′1, z : s2) ∈ [w, (Σ; y : s1, z : s2)].

Since |s′1| = |s2| it follows however that e(Σ; y : s′1, z : s2) 6= ∅, which contra-
dicts the fact that w is a reason why e is undefined on (Σ; y : s1, z : s2).

In fact, expressions as in Lemma 3.36 are quite problematic with regard to
well-definedness checking. Indeed, let e1 and e2 be expressions with the same
set of free variables and let Γ be a type assignment under which e1 and e2 are
well-defined. Then |e1| ≤Γ |e2| if, and only if,

for x in zip(e1, e2) return has-false(x)

is well-defined under Γ. As we now have a reduction from the list-width
problem to well-definedness, it follows from Lemma 3.29 that

Proposition 3.37. Well-definedness for QL(concat , zip, has-false) is unde-
cidable.

This undecidability is not due to the fact that our set of base operations
contains a non-monotone or non-generic base operation. Indeed, we already
know that concat is monotone and generic from Propositions 3.21 and 3.26.
Similarly, it is quite easy to see that both zip and has-false are generic.10 Since
has-false(Σ; s) when defined always returns (Σ; 〈〉) it follows that has-false is
also monotone. Finally, we show that zip is also monotone.

Lemma 3.38. The base operation zip is monotone.

Proof. Suppose that zip is defined on (Σ; r, s) and (Σ′; r′, s′) and that (Σ; r, s)
is contained in (Σ′; r′, s′). Let (Σ′ ◦Π′; t′) ∈ zip(Σ′; r′, s′). We will show that
we can always find (Σ ◦Π; t) ∈ zip(Σ; r, s) such that ΠvΠ′. Since by definition
of zip we know that t is the list of all of the root nodes in Π in document order,
and that t′ is the list of all of the root nodes in Π′s in document order, we
then also have tv t′. Hence (Σ ◦Π; t)v(Σ′ ◦Π′; t′), i.e., zip is monotone.

We only treat the case where |r′| ≤ |s′|, the other case is similar. By
definition of zip we know that Π′ is of the form

10Remember that generic base operations can interpret true and false, which explains
why zip and has-false can be generic. The use of true and false in these base operations
is done solely for simplicity of exposition however. Indeed, zip and has-false could just as
easily have taken extra atoms as input and used those atoms instead of true and false.
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|r′| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s′|−|r′| times

︷ ︸︸ ︷

true

false

. . .

true

false

We observe the following cases.

• If |r| > |s|, then for every (Σ ◦Π; t) ∈ zip(Σ; r, s) we know that Π is of
the form

|s| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|r|−|s| times

︷ ︸︸ ︷

true

true

. . .

true

true

In particular we know that Π consists of |r| trees. Furthermore, |r| ≤
|r′| since rv r′. It is then easy to see that there exists at least one
(Σ ◦Π; t) ∈ zip(Σ; r, s) for which Π is contained in the first |r′| trees of
Π′. Hence, ΠvΠ′, as desired.

• If |r| ≤ |s|, then for every (Σ ◦Π; t) ∈ zip(Σ; r, s) we know that Π is of
the form

|r| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s|−|r| times

︷ ︸︸ ︷

true

false

. . .

true

false

In particular we know that Π consists of |s| trees. Furthermore, |r| ≤ |r′|
and |s| ≤ |s′| since rv r′ and sv s′. If |s|− |r| ≤ |s′|− |r′|, then it is easy
to see that there exists at least one (Σ ◦Π; t) ∈ zip(Σ; r, s) for which the
first |r| trees of Π are contained in the first |r| trees of Π′ and the other
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|s| − |r| trees of Π are contained in the last |s| − |r| trees of Π′. Hence,
ΠvΠ′, as desired. If on the other hand |s| − |r| > |s′| − |r′|, then

|r|+ (|s| − |r|)− (|s′| − |r′|) = |s| − |s′|+ |r′| ≤ |r′|

Hence there exists at least one (Σ ◦Π; t) ∈ zip(Σ; r, s) for which the first
|r|+(|s|−|r|)−(|s′|−|r′|) trees of Π are contained in the first |r′| trees of
Π′ and the other (|s′| − |r′|) trees of Π are contained in the last |s′| − |r′|
trees of Π′. In both cases we hence have ΠvΠ′, as desired.

Hence our restriction to monotone, generic, and locally-undefined base op-
erations does not prevent the definition of QL(concat , zip, has-false) for which
well-definedness is undecidable. The core difficulty here is that zip is non-
local in the sense that the presence of a tree without false-labeled child in
the output depends on the whole input, and not on a local part of it. We will
therefore restrict ourselves to base operations where every part of the output
depends only on a local part of the input. We make this notion precise as
follows.

Parts Let R ⊆ Vp × V be a base operation and let v be an input on which
R is defined. If w ∈ R(v) and if w is a requirement on w, then we say that
the set [w, w] is a part of R(v), denoted by [w, w] /R(v).

The set [w, w] intuitively describes a property of values. For example,
consider a value w = (Σ; s) where s mentions a node n in Σ without a-labeled
child but with a b-labeled child m. Let w = ({m}, {j}) be the requirement
on w where s(j) = n. The set [w, w] then contains all values (Σ′; s′)vw such
that s′ mentions n; n does not have an a-labeled child in Σ′; and m is a b-
labeled child of n in Σ′. Indeed, n ∈ rng(s) by Lemma 3.33; n does not have
an a-labeled child in Σ′ since Σ′vΣ; and m is a b-labeled child of n in Σ′ since
Σ′vΣ and since {m} is a subset of the nodes in Σ′. The fact that [w, w] is a
part of R(v) hence registers the fact every value in R(v) has a node in its list
without an a-labeled child, but with a b-labeled child (as R is a semi-function).

Output Reasons A requirement v on v is a reason why [w, w] /R(v) if for
every v′ ∈ [v, v] on which R is defined, [w, w] ∩R(v′) 6= ∅.

Intuitively, the fact that [w, w]∩R(v′) 6= ∅ implies that the values in R(v′)
also satisfy the property described by [w, w]. For our earlier example, this
implies that the values in R(v′) mention a node in their list without an a-
labeled child, but with a b-labeled child. Since this is true for every v′ which
satisfies v on v, we can say that v is a “reason” why R(v) has the property
described by [w, w].
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Example 3.39. The requirement (∅; {1}) is a reason why

[(∅; ∅), (∅; 〈false〉)] / empty(∅; 〈a, n〉).

Indeed, let (Σ′; s′) ∈ [(∅; {1}), (∅; 〈a, n〉)]. By Lemma 3.33 it follows that
|s′| ≥ 1. Hence, s′ is non-empty, and thus empty(Σ′; s′) = {(Σ′; 〈false〉)}. It
is easy to see that hence [(∅; ∅), (∅; 〈false〉)] ∩ empty(Σ′; s′) 6= ∅.

Locality We say that R is local if there exists a computable increasing func-
tion c mapping natural numbers to natural numbers such that for every input
v and every part [w, w] of R(v) there exists a reason v why [w, w] /R(v) of
size at most c(|w|). We call c a witness of the fact that R is local.

Example 3.40. Let us give some examples of local base operations.

• The base operation smaller-width introduced in Section 3.6.1 is local as
witnessed by the identity function. Indeed, suppose that [w, w] is part
of R(v), for some v = (Σ; s1, s2). Since smaller-width(v) = {(Σ; 〈〉)},
it follows that w = (Σ; 〈〉). Let (V ;P ) = w. Since P ⊆ [1, |〈〉|] = ∅,
it follows that P is the empty set. It is clear that v = (V ; ∅, ∅) is a
requirement on v of size |V | ≤ |w|. We claim that v is a reason why
[w, w] / smaller-width(v). Indeed, let v′ = (Σ′; s′1, s

′
2) ∈ [v, v] and sup-

pose that smaller-width(v′) is defined. Since v′ ∈ [v, v], Σ′vΣ and
V is a subset of the nodes in Σ′. Hence, (Σ′; 〈〉) ∈ [w, w]. Since
smaller-width(v′) can only be {(Σ′; 〈〉)}, we have smaller-width(v′) ∩
[w, w] 6= ∅, as desired.

• The children axis is local as witnessed by the function which maps k to
2k. Indeed, suppose that [w, w] is part of R(v), for some v = (Σ; s).
Since children(v) = {(Σ; t)} with t containing the children of nodes in s
in document order, this implies that w = (Σ; t). Let w = (V ;P ). Let,
for each j ∈ P , ij be the position in [1, |s|] such that s(ij) is the parent
of t(j). Let P ′ = {ij | j ∈ P} and V ′ = V ∪ {t(j) | j ∈ P}. Clearly,
v = (V ′;P ′) is a requirement on v of size

max{|V ′|, |P ′|} ≤ max{|V |+ |P |, |P |} ≤ 2|w|.

We claim that v is a reason why [w, w] / children(v). Indeed, let v′ =
(Σ′; s′) ∈ [v, v] and suppose that children(v′) is defined. It follows in par-
ticular that V ′ ⊇ V is a subset of the nodes in Σ′ and that (Σ′; s′)v(Σ; s).
Let (Σ′; t′) be the value related to v′ by children (where t′ hence con-
tains the children of nodes in s′ in document order). Since every child
of a node m in Σ′ is also a child of m in Σ (as Σ′vΣ) and since
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rng(s′) ⊆ rng(s) (as s′v s), it follows that rng(t′) ⊆ rng(t). More-
over, {t(j) | j ∈ P} ⊆ rng(t′) since {s(ij) | ij ∈ P ′} ⊆ rng(s′) by
Lemma 3.33 and since V ′ ⊇ {t(j) | j ∈ P} is a subset of the nodes in
Σ′. It is not difficult to see that, since the nodes mentioned in t′ and
t occur in document order and since this document order is maintained
by the fact that Σ′vΣ, there hence exists a witness h of t′v t for which
P ⊆ rng(h). Hence, (Σ′; t′) ∈ [w, w]. Since children(v′) = {(Σ′; t′)}, we
have children(v′) ∩ [w, w] 6= ∅, as desired.

• The element constructor element is also a local base operation as wit-
nessed by the identity function. Indeed, suppose that [w, w] is part of
element(v). We know that v and w are of the form

v = (Σ; 〈a〉, 〈n1, . . . , nk〉)
w = (Σ ◦Θ; 〈m〉).

Here, Θ is a tree, disjoint with Σ, whose root element node m is labeled
by a such that

– m has exactly k children m1, . . . ,mk with m1<Θ . . . <Θmk, and

– for every j ∈ [1, k] there exists a node-renaming ρj such that
ρj(Σ|nj ) = Θ|mj .

Let (V ;P ) = w. We partition V into VΣ and VΘ such that VΣ is a subset
of the nodes in Σ and VΘ is a subset of the nodes in Θ. Then let, for
every j ∈ [1, k], Vj be the maximal subset of VΘ which is also a subset
of Θ|mj . Let Wj = ρ−1

j (Vj) for every j ∈ [1, k]. Since ρj is a bijection, it
is clear that |Wj | = |Vj |. Hence

|
k⋃
j=1

Wj | = |
k⋃
j=1

Vj | ≤ |VΘ|.

Let Q be the set of all j ∈ [1, k] for which Vj 6= ∅. It is clear that
|Q| ≤ |VΘ|. Then let v be the requirement on v defined by

v := (VΣ ∪
k⋃
j=1

Wj ; ∅, Q).

It is clear that the size of v is given by

max

|VΣ ∪
k⋃
j=1

Wj |, |Q|

 ≤ max {|VΣ|+ |VΘ|, |VΘ|} ≤ |w|.
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We claim that v is a reason why [w, w] / element(v). Indeed, let v′ ∈
[v, v] and suppose that element(v′) is defined. In particular we know
that v′v v. Since element(v′) is defined, we hence know that v′ is of the
form

v′ = (Σ′; 〈a〉, 〈n′1, . . . , n′l〉).

Furthermore, since v′ ∈ [v, v], there exists a witness h of

〈n′1, . . . , n′l〉v〈n1, . . . , nk〉

such that Q ⊆ rng(h). Note that, by definition of v, we have n′i = nh(i)
for every i ∈ [1, l]. Then let Θ′ be the tree with the a-labeled root node
m in which m has mh(1), . . . ,mh(l) as children with

mh(1)<Θ′ . . . <Θ′ mh(l),

such that for every i ∈ [1, l]:

ρh(i)

(
Σ′|n′

i

)
= Θ′|mh(i)

.

It is easy to see that Θ′vΘ and hence (Σ′ ◦Θ′; 〈m〉)v(Σ ◦Θ; 〈m〉). Fur-
thermore, since for every j ∈ [1, k] for which Vj 6= ∅ there exists i ∈ [1, l]
such that h(i) = j and since Wj is a subset of the nodes in Σ′, it fol-
lows by construction that Vj is a subset of the nodes in Θ′|mj , for ev-
ery j ∈ [1, k]. Hence, VΘ is a subset of the nodes in Θ. Since VΣ

is also subset of the nodes in Σ′, it follows that hence VΣ ∪ VΘ = V
is a subset of the nodes in Σ′ ◦Θ′. Furthermore, the identity func-
tion is certainly a witness of 〈m〉v〈m〉 whose range contains P (as
P ⊆ {1}). Hence, (Σ′ ◦Θ′; 〈m〉) ∈ [w, w]. Finally, it is easy to see
that (Σ′ ◦Θ′; 〈m〉) ∈ element(v′). Hence, element(v′) ∩ [w, w] 6= ∅, as
desired.

Using similar reasonings as the ones employed in Example 3.40 we obtain:

Proposition 3.41. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, data, eq, is, �, is-element,
is-text, is-atom, node-name, content, element, merge-text, text, empty, +,
×, and smaller-width are all local.

Note that hence locality alone is not powerful enough to prevent the con-
struction of QL(concat , children, eq , node-name, content , element , empty),
QL(+,×), and QL(concat , smaller-width), for which well-definedness is unde-
cidable.
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3.6.3 Local and Locally-Undefined Expressions

In this section we show that if B is a finite set of monotone, local, and locally-
undefined base operations, then locally-undefinedness transfers to expressions
in QL(B). Moreover, a witness of the fact that e ∈ QL(B) is locally-undefined
can be computed from e. This property lies at the heart of our decidability
result in Section 3.7. Before we are able to prove it we first show that if B is
a finite set of monotone and local base operations, then locality transfers to
expressions in QL(B). We start out by stating the following technical lemmas.

Lemma 3.42. Let (V ;P ) be a requirement on (Σ0 ◦©p
j=1 Σj ;©p

j=1 sj). Let
V0, . . . , Vp be the partition of V such that V0 is a subset of the nodes in Σ0 and
Vj is a subset of the nodes in Σj, for every j ∈ [1, p]. Let for each j ∈ [1, p],
Pj be the subset of P defined by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.

Let, for every j ∈ [1, p], (Σ′0 ◦Σ′j ; s
′
j) be a value in [(V0 ∪ Vj ;Pj), (Σ0 ◦Σj ; sj)]

such that Σ′0vΣ0 and Σ′j vΣj. Then

(Σ′0 ◦©
p
j=1 Σ′j ;©

p
j=1 s

′
j) ∈ [(V ;P ), (Σ0 ◦©p

j=1 Σj ;©p
j=1 sj)].

Proof. It immediately follows that

(Σ′0 ◦©
p
j=1 Σ′j ;©

p
j=1 s

′
j)v(Σ0 ◦©p

j=1 Σj ;©p
j=1 sj).

Since Σ′0 ◦Σ′j contains all nodes in V0 ∪ Vj for every j ∈ [1, p] it follows that
Σ′0 ◦©

p
j=1 Σ′j contains all nodes in

V0 ∪
p⋃
j=1

Vj = V.

Furthermore, for every j ∈ [1, p] there exists a witness hj of s′j v sj such
that Pj ⊆ rng(hj). Then let h be the function mapping [1, |©p

j=1 s
′
j |] to

[1, |©p
j=1 sj |] defined by

h(q) := hj

(
q −

j−1∑
i=1

|s′i|

)
+

j−1∑
i=1

|si| when
j−1∑
i=1

|s′i| < q ≤
j∑
i=1

|s′i|.

It is easy to see that h is a witness of ©p
j=1 s

′
j v©

p
j=1 sj . It remains to show

that P ⊆ rng(h). Let k ∈ P . Since P ⊆ [1, |©p
j=1 sj |], there exists j ∈ [1, p]

such that
j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|.
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It follows that hence

k −
j−1∑
i=1

|si| ∈ Pj .

Since Pj ⊆ rng(hj) there exists l ∈ [1, |s′j |] such that

hj(l) = k −
j−1∑
i=1

|si|.

Then obviously
j−1∑
i=1

|s′i| < l +
j−1∑
i=1

|s′i| ≤
j∑
i=1

|s′i|,

and hence

h(l +
j−1∑
i=1

|s′i|) = hj(l) +
j−1∑
i=1

|si| = k.

Hence, k ∈ rng(h), as desired.

Lemma 3.43. Let R be a base operation, let (Σ ◦Σ1; s1) ∈ R(Σ;~s), and let
(V, ~P ) be a reason why [(W,Q), (Σ ◦Σ1; s1)] /R(Σ;~s) such that V contains all
nodes of W in Σ. For every (Σ′; ~s′) ∈ [(V, ~P ), (Σ;~s)] on which R is defined
there exists

(Σ′ ◦Σ′1; s
′
1) ∈ R(Σ′; ~s′) ∩ [(W,Q), (Σ ◦Σ1; s1)]

with Σ′1vΣ1.

Proof. Every store can be written as a concatenation of trees. Let Θ1, . . . ,Θk

be the non-empty trees such that Σ = Θ1 ◦ · · · ◦Θk. Since Σ′vΣ, we can
write Σ′ as a concatenation of trees Θ′1 ◦ · · · ◦Θ′k such that Θ′j vΘj for every
j ∈ [1, k], where if Σ′ does not contain any node in Θj , we take Θ′j to be the
empty tree. Let ∆1, . . . ,∆k be the trees such that, for every j ∈ [1, k], ∆j = Θ′j
if Θ′j is non-empty, and ∆j = Θj otherwise. In particular, ∆j = Θ′j whenever ~s′

mentions a node in Θj . Since R is reachable-only and since R(Θ′1 ◦ · · · ◦Θ′k; ~s′)
is defined, it is easy to see that R(∆1 ◦ · · · ◦∆k; ~s′) is also defined. Moreover,
by construction we have ∆j vΘj for every j ∈ [1, k]. Hence,

(∆1 ◦ · · · ◦∆k; ~s′) ∈ [(V, ~P ), (Σ;~s)].

Since (V, ~P ) is a reason why [(W,Q), (Σ ◦Σ1; s1)] /R(Σ;~s), there exists

(∆1 ◦ · · · ◦∆k ◦Σ′1; s
′
1) ∈ R(∆1 ◦ · · · ◦∆k; ~s′) ∩ [(W,Q), (Σ ◦Σ1; s1)].
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Hence, Σ′1vΣ ◦Σ1. Using a similar reasoning as in the proof of Lemma 3.23
it now follows that Σ′1vΣ1. Then, since R is reachable-only, since ∆j =
Θ′j whenever ~s′ mentions a node in ∆j , and since (∆1 ◦ · · · ◦∆k ◦Σ′1; s

′
1) ∈

R(∆1 ◦ · · · ◦∆k; ~s′) we have (Σ′ ◦Σ′1; s
′
1) ∈ R(Σ′; ~s′). Moreover, since V con-

tains all nodes of W in Σ, it is easy to see that W is a subset of the nodes in
Σ′ ◦Σ′1. Hence, (Σ′ ◦Σ′1; s

′
1) ∈ [(W,Q), (Σ ◦Σ1; s1)], as desired.

Proposition 3.44. If B is a finite set of monotone and local base operations,
then every expression e ∈ QL(B) is also local. Moreover, an arithmetic ex-
pression defining a witness of this locality can effectively be computed from e.

Proof. Let cf be a witness of the fact that base operation f ∈ B is local. For
every e ∈ QL(B) we then define the function ce inductively as follows:

cx(k) := k

ca(k) := k

c()(k) := k

cif e1 then e2 else e3(k) := max{ce2(k), ce3(k)}
clet x:=e1 return e2(k) := ce1(ce2(k)) + ce2(k)

cfor x in e1 return e2(k) := ce1(max{k + 2kce2(k), 2k}) + 2kce2(k)
cf(e1,...,ep)(k) := cf (k) + ce1(cf (k)) + · · ·+ cep(cf (k))

It is clear from this inductive definition that an arithmetic expression defining
ce can effectively be computed from e. It is also clear that ce is a computable,
increasing function mapping natural numbers to natural numbers. Let v be a
context of e and let [w, w] be a part of e(v). We will prove by induction on e
that there exists a reason why [w, w′] / e(v) of size at most ce(|w|). During our
induction we will often use the fact that every expression e′ ∈ QL(B) defines
a monotone base operation by Propositions 3.6 and 3.25. We will also use the
fact that if e′ ∈ QL(B) is defined on input v′, then e′ is also defined on every
input node-isomorphic to v′ by Lemma 3.24.

• If e = x, then let (Σ;σ) = v. Since e(v) = {(Σ;σ(x))} and since
[w, w] / e(v), it follows that w = (Σ;σ(x)). Let (V ;P ) = w and let
v be the requirement (V ;φ) on v such that φ is defined by

φ(y) :=

{
P if y = x

∅ otherwise.

It is easy to see that v is a reason why [w, w] / e(v) of size |w|.11

11Here we extend the notion of a requirement to contexts in the obvious way: if σ is an
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• If e = a, then let (Σ;σ) = v. Since e(v) = {(Σ; 〈a〉)} and since
[w, w] / e(v), it follows that w = (Σ; 〈a〉). Let (V ;P ) = w and let v
be the requirement (V ;φ) on v such that φ is defined by

φ(x) := ∅ for all x.

It is easy to see that v is a reason why [w, w] / e(v) of size |w|.

• The case where e = () is similar.

• If e = if e1 then e2 else e3, then there exists (Σ1; 〈b〉) ∈ e1(v) with
b a boolean such that [w, w] / e2(v) if b = true and [w, w] / e3(v) oth-
erwise. Suppose that b = true. Then there exists a reason v why
[w, w] / e2(v) of size at most ce2(|w|) by the induction hypothesis. We
claim that v is also a reason why [w, w] / e(v). Indeed, suppose that
v′ ∈ [v, v] and that e(v′) is defined. In particular e1(v′) must then also
be defined. Since e1 is monotone, there exists (Σ′1; s

′) ∈ e1(v′) with
(Σ′1; s

′)v(Σ1; 〈true〉). It follows that s′ = 〈〉 or s′ = 〈true〉. Suppose
that s′ = 〈〉. Then we know that the list of all values in e1(v′) is empty,
since e1 is a semi-function. Hence, e(v′) would be undefined, a contra-
diction. Hence, s′ must be 〈true〉. Since e1 is a semi-function, it follows
that the list of every value in e1(v′) is 〈true〉. Hence, e(v′) = e2(v′) and
thus

e(v′) ∩ [w, w] = e2(v′) ∩ [w, w] 6= ∅.

In a similar way we can show that if b = false, then the reason v why
[w, w] / e3(v) of size at most ce3(|w|) as given by the induction hypothesis
is also a reason why [w, w] / e(v). Hence, we can always find a reason
why [w, w] / e(v) of size at most max{ce2(|w|), ce3(|w|)} = ce(|w|).

• If e = let x := e1 return e2, then let (Σ;σ) = v. Since [w, w] / e(v)
there exists (Σ1; s1) ∈ e1(v) such that [w, w] / e2(Σ1;x : s1, σ). By the
induction hypothesis there exists a reason (V1;x : P1, φ1) why this is so of
size at most ce2(|w|). We have in particular that (V1;P1) is a requirement
on (Σ1; s1). By the induction hypothesis there hence exists a reason
(V ;φ) why [(V1;P1), (Σ1; s1)] / e1(v) of size at most ce1(ce2(|w|)). Let φ′

be the function with domain dom(σ) defined by

φ′(y) := φ(y) ∪ φ1(y),

environment with domain {x, . . . , y} and φ is function from {x, . . . , y} to the positive natural
numbers, then (V ; φ) is a requirement on context (Σ; σ) if (V ; φ(x), . . . , φ(y)) is a requirement
on (Σ; σ(x), . . . , σ(y)). We say that (Σ′; σ′) satisfies (V ; φ) on (Σ; σ) if (Σ′; σ′(x), . . . , σ′(y))
satisfies (V ; φ(x), . . . , φ(y)) on (Σ; σ(x), . . . , σ(y)).
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and let v = (V ;φ′). It is easy to see that v is a requirement on v.
Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(ce2(|w|)), ce1(ce2(|w|)) + ce2(|w|)}
= ce1(ce2(|w|)) + ce2(|w|)
= ce(|w|).

We claim that w is a reason why [w, w] / e(v). Indeed, let v′ = (Σ′;σ′) ∈
[v, v] and suppose that e(v′) is defined. There hence exists (Σ′1; s

′
1) ∈

e1(v′) such that e2(Σ′1;x : s′1, σ
′) is defined. Since e1(v′) is hence defined;

since (V ;φ) is a reason why

[(V1;P1), (Σ1; s1)] / e1(Σ;σ);

and since v′ ∈ [(V ;φ′), (Σ;σ)] ⊆ [(V ;φ), (Σ;σ)], it follows that

e1(v′) ∩ [(V1;P1), (Σ1; s1)] 6= ∅.

Let (Σ′′1; s
′′
1) be a value in this non-empty intersection. Then clearly

(Σ′′1;x : s′′1, σ
′) ∈ [(V1;x : P1, φ

′), (Σ1;x : s1, σ)]
⊆ [(V1;x : P1, φ1), (Σ1;x : s1, σ)].

(3.2)

Furthermore, since e1 is a base operation it follows that

(Σ′′1;x : s′′1, σ
′) ≡node (Σ′1;x : s′1, σ

′)

by Corollary 3.12. Since e2(Σ′1;x : s′1, σ
′) is defined and since e2 is node-

generic, it follows that

e2(Σ′′1;x : s′′1, σ
′) 6= ∅. (3.3)

Since (V1;x : P1, φ1) is a reason why [w, w] / e2(Σ1;x : s1, σ) it follows
from (3.2) and (3.3) that e2(Σ′′1;x : s′′1, σ

′) ∩ [w, w] 6= ∅. Hence, e(v′) ∩
[w, w] 6= ∅, as desired.

• If e = f(e1, . . . , ep), then let (Σ;σ) = v. Since [w, w] / e(v) there exists
(Σ ◦Σj ; sj) ∈ ej(v) for every j ∈ [1, p] such that the Σj are all pairwise
disjoint and

[w, w] / f(Σ ◦©p
j=1 Σj ; s1, . . . , sp).

Since f is a local base operation with witness cf there hence exists a
reason (V ∪

⋃p
j=1 Vj ;P1, . . . , Pp) why this is so of size at most cf (|w|).
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Here, V is a subset of the nodes in Σ and Vj is a subset of the nodes
in Σj , for every j ∈ [1, p]. We have in particular that (V ∪ Vj ;Pj) is
a requirement on (Σ ◦Σj ; sj). By the induction hypothesis there hence
exists for every j ∈ [1, p] a reason (Wj ;φj) why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v)

of size at most cej (cf (|w|)). Let v be the requirement (V ∪
⋃p
j=1Wj ;φ)

on v such that φ is the function with domain dom(σ) defined by

φ(y) :=
p⋃
j=1

φj(y).

Clearly,

|v| ≤ max

|V |+
p∑
j=1

|Wj |,
p∑
j=1

|φj(x)|
∣∣∣ x ∈ dom(σ)


≤ cf (|w|) +

p∑
j=1

cej (cf (|w|)) = ce(|w|).

Moreover, since [v, v] ⊆ [(Wj ;φj), v] for every j ∈ [1, p], v is a reason
why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v).

We claim that v is also a reason why [w, w] / e(v). Indeed, let v′ =
(Σ′;σ′) ∈ [v, v] and suppose that e(v′) is defined. There hence exist
(Σ′ ◦Σ′j ; s

′
j) ∈ ej(v′) for every j ∈ [1, p] such that the Σ′j are all pairwise

disjoint and
f(Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p) 6= ∅. (3.4)

Since ej(v′) is hence defined; since ej is a base operation; since v is a
reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v);

and since v contains all nodes of V ∪Vj in Σ, it follows from Lemma 3.43
that for every j ∈ [1, p] there exists

(Σ′ ◦Σ′′j ; s
′′
j ) ∈ ej(v′) ∩ [(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)],

with Σ′′j vΣj . Since in particular V ∪Vj is a subset of the nodes in Σ′ ◦Σ′′j ,
it follows that V ∪

⋃p
j=1 Vj is a subset of the nodes in Σ′ ◦©p

j=1 Σ′′j .
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Hence,

(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ∈

[(V ∪
p⋃
j=1

Vj ;P1, . . . , Pp), (Σ ◦©p
j=1 Σj ; s1, . . . , sp)]. (3.5)

Since every ej is a semi-function, it follows that (Σ′ ◦Σ′j ; s
′
j) is node-

isomorphic to (Σ′ ◦Σ′′j ; s
′′
j ). Since Σ′′j vΣj and since the Σj are all pair-

wise disjoint, it follows that the Σ′′j are also pairwise disjoint. Since the
Σ′j are also pairwise disjoint, it follows by Lemma 3.11 that

(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) ≡node (Σ′ ◦©p

j=1 Σ′′j ; s
′′
1, . . . , s

′′
p). (3.6)

Since f is node-generic it follows from (3.4) and (3.6) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) 6= ∅. (3.7)

Furthermore, since (V ∪
⋃p
j=1 Vj ;P1, . . . , Pp) is a reason why

[w, w] / f(Σ ◦©p
j=1 Σj ; s1, . . . , sp),

it follows from (3.5) and (3.7) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ∩ [w, w] 6= ∅.

Hence, e(v′) ∩ [w, w] 6= ∅, as desired.

• If e = for x in e1 return e2 then let (Σ;σ) = v. Since [w, w] / e(v)
there exists (Σ0; s) ∈ e1(v) and values

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ)

for every j ∈ [1, |s|] such that the Σj are all pairwise disjoint and

w = (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj).

Let w = (V ;P ). Note that in particular V is a subset of the nodes in

Σ0 ◦©|s|j=1 Σj .

Hence, we can partition V into V0, . . . , V|s| such that V0 is contained
in the nodes of Σ0 and Vj is contained in the nodes of Σj , for every
j ∈ [1, |s|]. Let, for every j ∈ [1, |s|], Pj be the subset of P defined by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.



3.6. Non-Local Behavior, Locally-Undefinedness, and Locality 91

We have in particular that (V0∪Vj ;Pj) is a requirement on (Σ0 ◦Σj ; sj).
By the induction hypothesis there hence exists, for every j ∈ [1, |s|], a
reason (Wj ;x : Qj , φj) why

[(V0 ∪ Vj ;Pj), (Σ0 ◦Σj ; sj)] / e2(Σ0;x : 〈s(j)〉;σ) (3.8)

of size at most
ce2(|(V0 ∪ Vj ;Qj)|) ≤ ce2(|w|).

Let J be the set of j in [1, |s|] for which Vj or Pj is non-empty. Note
that there can be at most |w| of the Vj non-empty and that there can
be at most |w| of the Pj non-empty. Hence, J contains at most 2|w|
elements. Hence, the requirement (V0 ∪

⋃
j∈JWj ;J) on (Σ0; s) has size

at most

max{|V0 ∪
⋃
j∈J

Wj |, |J |} ≤ max{|V0|+
∑
j∈J

|Wj |, |J |}

≤ max{|w|+
∑
j∈J

ce2(|w|), |J |}

≤ max{|w|+ 2|w|ce2(|w|), 2|w|}.

Hence, by the induction hypothesis there exists a reason (W ;φ) why

[(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] / e1(v)

of size at most

ce1

|(V0 ∪
⋃
j∈J

Wj ;J)|

 ≤ ce1(max{|w|+ 2|w|ce2(|w|), 2|w|}).

Let φ′ be the function with domain dom(σ) defined by

φ′(y) := φ(y) ∪
⋃
j∈J

φj(y),

and let v = (W ;φ′). It is easy to see that v is a requirement on v of size
at most

ce1 (max{|w|+ 2|w|ce2(|w|), 2|w|}) +
∑
j∈J

ce2(|w|)

≤ ce1(max{|w|+ 2|w|ce2(|w|), 2|w|}) + 2|w|ce2(|w|) = ce(|w|).
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We claim that v is a reason why [w, w] / e(v). Indeed, let v′ = (Σ′;σ′) ∈
[v, v] such that e(v′) is defined. In particular there must hence exist
(Σ′0; s

′) ∈ e1(v′) such that e2(Σ′0;x : 〈s′(j)〉, σ′) is defined for every j ∈
[1, |s′|]. Since e1(Σ′;σ′) is hence defined; since (W,φ) is a reason why

[(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] / e1(Σ;σ);

and since
(Σ′;σ′) ∈ [(W ;φ′), (Σ;σ)] ⊆ [(W ;φ), (Σ;σ)],

it follows that

e1(Σ′;σ′) ∩ [(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] 6= ∅.

Let (Σ′′0; s
′′) be a value in this non-empty intersection. Since e1 is a store-

increasing semi-function, it follows from Corollary 3.13 that |s′| = |s′′|
and that

(Σ′0;x : 〈s′(j)〉, σ′) ≡node (Σ′′0;x : 〈s′′(j)〉, σ′)

for every j ∈ [1, |s′|]. Since e2 is node-generic and since e2 is defined on
(Σ′0;x : 〈s′(j)〉, σ′) for every j ∈ [1, |s′|], it follows that e2 is also defined
on (Σ′′0;x : 〈s′′(j)〉, σ′) for every j ∈ [1, |s′′|]. Since

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

there exists a witness h of s′′v s such that J ⊆ rng(h). We will prove
below that for every j ∈ rng(h) there exists

(Σ′′0 ◦Σ′′j ; s
′′
j ) ∈ e2(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)

∩ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)], (3.9)

such that Σ′′j vΣj . Note that h−1(j) is uniquely determined as h is
strictly increasing and hence injective. Let Σ′′j = ∅ and s′′j = 〈〉 for every
j ∈ [1, |s|] \ rng(h). Then

(Σ′′0 ◦©
|s′′|
i=1 Σ′′h(i);©

|s′′|
i=1 s

′′
h(i)) = (Σ′′0 ◦©

|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j ).

Since the left-hand side is in e(v′), it follows that

(Σ′′0 ◦©
|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j ) ∈ e(v′). (3.10)
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Note that, if j ∈ [1, |s|] \ rng(h), then also j 6∈ J as rng(h) ⊇ J . Hence,
for such j we know that Vj and Pj are empty. Then

(Σ′′0 ◦Σ′′j ; s
′′
j ) ∈ [(V0 ∪ Vj ;Pj), (Σ0 ◦Σj ; sj)]

and Σ′′j vΣj for every j ∈ [1, |s|]. Note that, since Σ′′j vΣj and since
the Σj are all pairwise disjoint, it follows that the Σ′′j are also pairwise
disjoint. By Lemma 3.42 and (3.10) it then follows that

(Σ′′0 ◦©
|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j ) ∈ [(V ;P ), (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj)] ∩ e(v

′).

Hence, e(v′) ∩ [w, w] 6= ∅, as desired.

It remains to show (3.9). Let j ∈ rng(h). Since h is a witness of
s′′v s we have s′′(h−1(j)) = s(j). (Remember that h−1(j) is uniquely
determined as h is strictly increasing and hence injective.) We discern
two possibilities.

– Case j ∈ J . Since we have chosen (Σ′′0; s
′′) such that

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

Wj is a subset of the nodes in Σ′′0. Moreover, since Qj is a subset of
[1, |〈s(j)〉|] = {1} it is clear that the identity function is a witness of
〈s′′(h−1(j))〉v〈s(j)〉 whose range includes Qj . Since also φj(y) ⊆
φ′(y) for every y ∈ dom(φ′) by construction, it follows that

(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)
∈ [(V0 ∪Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)] . (3.11)

Since [(V0 ∪Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)] is clearly a subset of
[(Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)], it follows by (3.8) that (V0 ∪
Wj , x : Qj , φj) is a reason why

[(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)] / e2(Σ0;x : 〈s(j)〉, σ).

Then, since V0 ∪ Wj contains the nodes of V0 ∪ Vj in Σ0; since
e2 is defined on (Σ′′0;x : 〈s′′(h−1(j))〉, σ′); and since (3.11) holds, it
follows by Lemma 3.43 that there exists (Σ′′0 ◦Σ′′j ; s

′′
j ) in

e2(Σ′′0;x : 〈s′′(h−1(j)〉, σ′) ∩ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)]

with Σ′′j vΣj , as desired.
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– Case j 6∈ J . Note that

(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)v(Σ0;x : 〈s(j)〉, σ).

Since e2 is monotone; since

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ);

and since e2 is defined on (Σ′′0;x : 〈s′′(h−1(j))〉, σ′), there exists
(Σ′′0 ◦Σ′′j ; s

′′
j )v(Σ0 ◦Σj ; sj) in e2(Σ′′0;x : 〈s′′(h−1(j))〉, σ′) such that

Σ′′j vΣj by Lemma 3.23. Since

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

we know that V0 is a subset of the nodes in Σ′′0. Since j 6∈ J , we
have by construction that both Vj and Qj are empty. Hence

(Σ′′0 ◦Σ′′j ; s
′′
j ) ∈ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)] ,

as desired.

We are now ready to prove the main proposition of this section.

Proposition 3.45. If B is a finite set of monotone, local, and locally un-
defined base operations, then every expression e in QL(B) is also locally-
undefined. Moreover, a witness ke for this locally-undefinedness can effectively
be computed from e.

Proof. Let kf be a witness for the locally-undefinedness of base operation
f ∈ B. Let e ∈ QL(B). We then define the natural number ke inductively as
follows:

kx = ka = k() := 0

kif e1 then e2 else e3 := max{ke1 , ke2 , ke3 , ce1(2)}
klet x:=e1 return e2 := max{ke1 , ce1(ke2) + ke2}

kf(e1,...,ep) := max{ke1 , . . . , kep , kf + ce1(kf ) + · · ·+ cep(kf )}
kfor x in e1 return e2 := max{ke1 , ce1(ke2 + 1)}

Here, ce′ denotes a witness for the locality of e′ ∈ QL(B), which exists by
Proposition 3.44. Since by the same proposition an arithmetic expression
defining ce′ is moreover computable from e′, it follows that ke is effectively
computable from e. Let v be a context such that e(v) is undefined. We will
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prove by induction on e that there exists a reason v why e(v) = ∅ of size at
most ke. During our induction we will often use the fact that every expression
e′ ∈ QL(B) defines a monotone, local base operation by Propositions 3.6, 3.25,
and 3.44. We will also use that fact that if e′ ∈ QL(B) is undefined on input v′,
then e′ is also undefined on every input node-isomorphic to v′ by Lemma 3.24.

• If e = x, e = a or e = (), then there is nothing to prove since e(v) is
always defined.

• If e = if e1 then e2 else e3, then we make a case distinction.

– Case e1(v) = ∅. By the induction hypothesis there then exists a
reason v why e1(v) = ∅ of size at most ke1 . We claim that v is also
a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v]. Since e1(v′) is then
undefined, e(v′) is also undefined, as desired.

– Case e1(v) 6= ∅ and there exists (Σ1; s1) ∈ e1(v) with s1 = 〈〉 or
s1 = 〈a〉 with a not a boolean. Since e1 is a semi-function, it follows
that every value in e1(v) is of this form. Then take v = (∅; ∅).
Obviously, v is a requirement on v of size zero. We claim that
v is a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v]. If e1(v′) is
undefined then e(v′) is also undefined, in which case we are done.
Hence, suppose that e1(v′) is defined. Since e1 is a monotone base
operation; since (Σ1; s1) ∈ e1(v); since v′v v; and since e1(v′) 6= ∅,
there exists (Σ′1; s

′
1)v(Σ1; s1) in e1(v′). Since s′1v s1 it follows that

either s′1 = 〈〉 or s′1 = 〈a〉. Since e1 is a semi-function, it follows that
all values in e1(v′) are of this form. Hence, e(v′) = ∅, as desired.

– Case e1(v) 6= ∅ and there exists (Σ1; 〈true〉) ∈ e1(v). Since e1
is a semi-function, it follows that every value in e1(v) is of this
form. Hence e2(v) = e(v) = ∅. By the induction hypothesis there
then exists a reason v why e2(v) = ∅ of size at most ke2 . We
claim that v is also a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v].
If e1(v′) is undefined then e(v′) is also undefined, in which case
we are done. Hence suppose that e1(v′) is defined. Since e1 is a
monotone base operation; since (Σ1; 〈true〉) ∈ e1(v); since v′v v;
and since e1(v′) 6= ∅, there exists (Σ′1; s

′
1)v(Σ1; 〈true〉) in e1(v′).

In particular we have s′1v〈true〉. If s′1 = 〈〉, then every value in
e1(v′) is of the form (Σ′′1; 〈〉) since e1 is a semi-function. Hence, e(v′)
is undefined in that case. If on the other hand s′1 = 〈true〉, then
every value in e1(v′) is of the form (Σ′′1; 〈true〉) since e1 is a semi-
function. Hence, e(v′) = e2(v′). Since v is a reason why e2(v) = ∅
and since v′ ∈ [v, v], it follows that e(v′) = e2(v′) = ∅, as desired.
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– Case e1(v) 6= ∅ and there exists (Σ1; 〈false〉) ∈ e1(v). Since e1 is
a semi-function, it follows that every value in e1(v) is of this form.
Hence, e3(v) = e(v) = ∅. By the induction hypothesis there then
exists a reason v why e2(v) = ∅ of size at most ke3 . By a reasoning
similar to the previous case it can be seen that v is also a reason
why e(v) = ∅.

– Case e1(v) 6= ∅ and there exists (Σ1; s1) ∈ e1(v) with |s1| ≥ 2. It is
easy to see that (∅; {1, 2}) is a requirement on (Σ1; s1) of size two.
By Proposition 3.44 there exists a reason v why

[(∅; {1, 2}), (Σ1; s1)] / e1(v)

of size at most ce1(2). We claim that v is a also reason why e(v) = ∅.
Indeed, let v′ ∈ [v, v]. If e1(v′) is undefined then e(v′) is also
undefined, in which case we are done. Hence, suppose that e1(v′)
is defined. Then e1(v′) ∩ [(∅; {1, 2}), (Σ1; s1)] 6= ∅. Let (Σ′1; s

′
1) be

a value in this non-empty intersection. It follows by Lemma 3.33
that |s′1| ≥ 2. Since e1 is a semi-function, it follows that all values
in e1(v′) are of this form. Hence, e(v′) = ∅, as desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ke2 , ke3 , ce1(2)}, as desired.

• If e = let x := e1 return e2, then we make a case distinction.

– Case e1(v) = ∅. By the induction hypothesis there exists a reason
v why e1(v) = ∅ of size at most ke1 . It is easily seen that v is also
a reason why e(v) = ∅.

– Case e1(v) 6= ∅. Let (Σ;σ) = v and let (Σ1; s1) ∈ e1(v). Since
e(v) is undefined it follows that e2(Σ1;x : s1, σ) is undefined. By
the induction hypothesis there hence exists a reason (V1;x : P1, φ1)
why this is so of size at most ke2 . In particular we have that (V1;P1)
is a requirement on (Σ1; s1) of size at most ke2 . By Proposition 3.44
there exists a reason (V ;φ) why

[(V1;P1), (Σ1; s1)] / e1(v)

of size at most ce1(ke2). Let φ′ be the function with domain dom(σ)
defined by

φ′(y) := φ(y) ∪ φ1(y),
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and let v = (V ;φ′). It is easy to see that v is a requirement on v.
Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(ke2), ce1(ke2) + ke2}
= ce1(ke2) + ke2 .

We claim that v is a reason why e(v) = ∅. Indeed, let v′ = (Σ′;σ′) ∈
[v, v]. If e1(v′) is undefined then e(v′) is also undefined, in which
case we are done. Hence, suppose that e1(v′) is defined. Since
(V ;φ) is a reason why

[(V1;P1), (Σ1; s1)] / e1(v)

and since v′ ∈ [(V ;φ′), v] ⊆ [(V ;φ), v], it follows that

e1(v′) ∩ [(V1;P1), (Σ1; s1)] 6= ∅.

Let (Σ′1; s
′
1) be a value in this non-empty intersection. Then clearly

(Σ′1;x : s′1, σ
′) ∈ [(V1;x : P1, φ

′), (Σ1;x : s1, σ)]
⊆ [(V1;x : P1, φ1), (Σ1;x : s1, σ)].

Since (V1;x : P1, φ1) is a reason why e2(Σ1;x : s1, σ) = ∅, it follows
that also e2(Σ′1;x : s′1, σ

′) = ∅. Furthermore, since e1 is a base
operation it follows by Corollary 3.12 that for every other value
(Σ′′1; s

′′
1) in e1(Σ′;σ′) we have

(Σ′′1;x : s′′1, σ
′) ≡node (Σ′1;x : s′1, σ

′).

Since e2 is node-generic and since e2(Σ′1;x : s′1, σ
′) is undefined, it

follows that e2(Σ′′1;x : s′′1, σ
′) is also undefined for every other value

(Σ′′1; s
′′
1) in e1(Σ′;σ′). Hence, e(v′) = ∅, as desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ce1(ke2) + ke2}, as desired.

• If e = f(e1, . . . , ep), then we make a case distinction.

– Case ej(Σ;σ) = ∅ for some j ∈ [1, p]. By the induction hypothesis
there exists a reason v why this is so of width at most kej . It is
easily seen that v is also a reason why e(v) = ∅.
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– Case ej(Σ;σ) 6= ∅ for all j ∈ [1, p]. Let (Σ;σ) = v. Since every ej is
node-generic and store-increasing there certainly exist (Σ ◦Σj ; sj) ∈
ej(v) for every j ∈ [1, p] such that the Σj are pairwise disjoint. Since
e(v) is undefined it follows that

f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) = ∅.

Since f is a locally-undefined base operation with witness kf there
hence exists a reason (V ∪

⋃p
j=1 Vj ;P1, . . . , Pp) why this is so of

size at most kf . Here, V is a subset of the nodes in Σ and Vj is a
subset of the nodes in Σj , for every j ∈ [1, p]. We have in particular
that (V ∪Vj ;Pj) is a requirement on (Σ ◦Σj ; sj) of size at most kf .
By Proposition 3.44 there hence exists for every j ∈ [1, p] a reason
(Wj ;φj) why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v)

of size at most cej (kf ). Let v be the requirement (V ∪
⋃p
j=1Wj ;φ)

on v such that the function φ with domain dom(σ) is defined by

φ(x) :=
p⋃
j=1

φj(x) for all x.

Clearly,

|v| ≤ max

|V |+
p∑
j=1

|Wj |,
p∑
j=1

|φj(x)|
∣∣∣ x ∈ dom(σ)


≤ kf +

p∑
j=1

cej (kf ).

Moreover, since [v, v] ⊆ [(Wj ;φj), v] for every j ∈ [1, p], v is a
reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v).

We claim that v is a also reason why e(v) = ∅. Indeed, let v′ =
(Σ′;σ′) ∈ [v, v]. If ej(v′) is undefined for some j ∈ [1, p] then e(v′)
is also undefined, in which case we are done. Hence, suppose that
ej(v′) is defined for all j ∈ [1, p]. Since ej is a base operation; since
v is a reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v);
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and since v contains all nodes of V ∪ Vj in Σ, it follows from
Lemma 3.43 that for every j ∈ [1, p] there exists

(Σ′ ◦Σ′j ; s
′
j) ∈ ej(v′) ∩ [(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)],

with Σ′j vΣj . Since Σ′j vΣj and since the Σj are all pairwise dis-
joint, it follows that the Σ′j are also all pairwise disjoint. Since V ∪Vj
is a subset of the nodes in Σ′ ◦Σ′j , it follows that V ∪

⋃p
j=1 Vj is a

subset of the nodes in Σ′ ◦©p
j=1 Σ′j . Hence,

(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) ∈

[(V ∪
p⋃
j=1

Vj ;P1, . . . , Pp), (Σ ◦©p
j=1 Σj ; s1, . . . , sp)].

Since (V ∪
⋃p
j=1 Vj ;P1, . . . , Pp) is a reason why

f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) = ∅,

it follows that hence

f(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) = ∅. (3.12)

Furthermore, since every ej is a node-generic it follows from Lemma
3.11 that for every j ∈ [1, p] and every (Σ′ ◦Σ′′j ; s

′′
j ) in ej(v′) for

which the Σ′′j are disjoint we have

(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ≡node (Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p). (3.13)

Since f is node-generic it follows by (3.12) and (3.13) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) = ∅

for all (Σ′ ◦Σ′′j ; s
′′
j ) in ej(v′) for which the Σ′′j are disjoint. Hence,

e(v′) = ∅, as desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , . . . , kep , ce1(kf ) + · · ·+ cep(kf )}, as desired.

• If e = for x in e1 return e2 then we make a case distinction.

– Case e1(v) = ∅. By the induction hypothesis there exists a reason
v why this is so of width at most ke1 . It is easily seen that v is also
a reason why e(v) = ∅.
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– Case e1(v) 6= ∅. Let (Σ;σ) = v and let (Σ1; s) ∈ e1(v). Since
e(v) is undefined it follows that there exists j ∈ [1, |s|] such that
e2(Σ1;x : 〈s(j)〉, σ) is undefined. By the induction hypothesis there
hence exists a reason (V1;x : P1, φ1) why this is so of size at most
ke2 . In particular, (V1; {j}) is a requirement on (Σ1; s) of size at
most max{ke2 , 1}. By Proposition 3.44 there hence exists a reason
(V ;φ) why

[(V1; {j}), (Σ1; s)] / e1(v)

of size at most ce1(max{ke2 , 1}). Let φ′ be the function with domain
dom(σ) defined by

φ′(y) := φ(y) ∪ φ1(y),

and let v = (V ;φ′). It is easy to see that v is a requirement on v.
Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(max{ke2 , 1}), ce1(max{ke2 , 1}) + ke2}
= ce1(max{ke2 , 1}) + ke2 .

We claim that v is a reason why e(v) = ∅. Indeed, let v′ = (Σ′;σ′) ∈
[v, v]. If e1(v′) is undefined then e(v′) is also undefined, in which
case we are done. Hence suppose that e1(v′) is defined. Since (V ;φ)
is a reason why

[(V1; {j}), (Σ1; s)] / e1(v)

and since v′ ∈ [(V ;φ′), v] ⊆ [(V ;φ), v] it follows that

e1(v′) ∩ [(V1; {j}), (Σ1; s)] 6= ∅.

Let (Σ′1; s
′) be a value in this non-empty intersection. It follows

by Lemma 3.33 that s(j) ∈ rng(s′). There hence exists i ∈ [1, |s′|]
such that s′(i) = s(j). Since hence 〈s′(i)〉 = 〈s(j)〉 and since P1 ⊆
[1, |〈s′(j)〉|] = {1}, it follows that the identity function is a witness
of 〈s′(i)〉v〈s(j)〉 whose range includes P1. Then clearly

(Σ′1;x : 〈s′(i)〉, σ′) ∈ [(V1;x : P1, φ
′), (Σ1;x : 〈s(j)〉, σ)]

⊆ [(V1;x : P1, φ1), (Σ1;x : s, σ)].

Since (V1;x : P1, φ1) is a reason why e2(Σ1;x : 〈s(j)〉, σ) = ∅, it
follows that also e2(Σ′1;x : 〈s′(i)〉, σ′) = ∅. Furthermore, since e1
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is a node-generic it follows by Corollary 3.13 that for every other
value (Σ′′1; s

′′) in e1(Σ′;σ′) we have that |s′′| = |s′| and

(Σ′′1;x : 〈s′′(i)〉, σ′) ≡node (Σ′1;x : 〈s′(i)〉, σ′).

Since e2 is node-generic and since e2(Σ′1;x : 〈s′(i)〉, σ′) is undefined,
it follows that e2(Σ′′1;x : 〈s′′(i)〉, σ′) is also be undefined for every
other value (Σ′′1; s

′′) in e1(Σ′;σ′). Hence e(v′) = ∅, as desired.

Hence there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ce1(max{ke2 , 1}) + ke2}, as desired.

3.7 Decidability Results

The restrictions proposed in Sections 3.4, 3.5, and 3.6 are strong enough to
guarantee decidability of well-definedness:

Theorem 3.46. If B is a finite set of monotone, generic, local, and locally-
undefined base operations, then the well-definedness problem for QL(B) is de-
cidable.

In order to prove this theorem, we first introduce the following notions.

Definition 3.47. The size |Σ| of a store Σ is the number of nodes in Σ. The
size |(Σ; s1, . . . , sp)| of a value-tuple (Σ; s1, . . . , sp) is the sum

|Σ|+ |s1|+ · · ·+ |sp|.

Lemma 3.48. For every type τ there exists a computable function cτ mapping
natural numbers to natural numbers such that for every w ∈ τ and every re-
quirement w on w there exists v ∈ [w, w]∩τ of size at most cτ (|w|). Moreover,
an arithmetic expression defining cτ is effectively computable from τ .

Proof. Let cτ (k) be defined by induction on τ as follows:

cAtom(k) := 1
cText(k) := 1

cElement(a, τ ′)(k) := 1 + cτ ′(k)
cEmpty(k) := 0
cτ1+τ2(k) := max{cτ1(k), cτ2(k)}
cτ1 ◦ τ2(k) := cτ1(k) + cτ2(k)
cτ ′∗(k) := 2kcτ ′(k)
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It is clear from this inductive definition that an arithmetic expression defining
cτ can effectively be computed from τ . It is also clear that cτ is a computable
function mapping natural numbers to natural numbers. Let w ∈ τ and let
w = (V ;P ) be a restriction on w. We prove that there exists v ∈ [w, w]∩ τ of
size at most cτ (k) by induction on τ :

• Case τ = Atom. Since w ∈ τ we know that w = (∅; 〈a〉). Then clearly
w ∈ [w, w]. The result then follows since |w| = 1.

• The cases where τ = Text or τ = Empty are similar.

• Case τ = Element(a, τ ′). Since w ∈ τ , we know that w is of the
form (Θ; 〈n〉) with Θ a tree such that n is the root element node of Θ
which is labeled by a. Furthermore, if n1, . . . , np are the children of n
in Θ in document order, we have (Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉) ∈ τ ′.
Let V ′ = V \ {n}. It is clear that then (V ′; ∅) is a requirement on
(Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉) of size at most |w|. By the induction
hypothesis there exists

(Σ; 〈n′1, . . . , n′p′〉) ∈ [(V ′; ∅), (Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉)] ∩ τ ′,

of size at most cτ ′(|w|). Since n′1, . . . , n
′
p′ are hence all nodes and since

(Σ; 〈n′1, . . . , n′p′〉) ∈ τ ′, it is easy to see by another induction on τ ′ that
Σ is of the form Θ′1 ◦ . . . ◦Θ′p′ such that Θ′j is a tree with root node n′j
for every j ∈ [1, p′]. Since Θ′1 ◦ . . . ◦Θ′p′ vΘ|n1 ◦ · · · ◦Θ|np , and since n
is not a node in Θ|n1 ◦ · · · ◦Θ|np , n cannot be a node in Θ′1 ◦ . . . ◦Θ′p′ .
Then let Θ′ be the tree with a-labeled root node n in which n has
children n′1, . . . , n

′
p′ such that n′1<Θ′ . . . <Θ′ n′p′ and Θ′|n′

j
= Θ′j for every

j ∈ [1, p′]. Now define v := (Θ′; 〈n〉). Then

|v| = |Θ′1 ◦ · · · ◦Θ′p′ |+ 1 ≤ cτ ′(|w|) + 1 = cτ (|w|).

We claim that v ∈ [w, w]∩ τ . Indeed, it is easy to see that (Θ′; 〈n〉) ∈ τ .
Furthermore, since Θ′1 ◦ . . . ◦Θ′p′ contains all nodes in V ′, it follows that
Θ′ contains all nodes in V . Since P ⊆ [1, |〈n〉|] = {1}, it is easy to see
that the identity function is a witness of 〈n〉v〈n〉 whose range certainly
contains P . It is also easy to see that Θ′vΘ, and hence v ∈ [w, w] ∩ τ ,
as desired.

• If τ = τ1 + τ2, then w ∈ τ1 or w ∈ τ2. In both cases the result follows
immediately from the induction hypothesis.

• Case τ = τ1 ◦ τ2. Then w is of the form (Σ1 ◦Σ2; s1 ◦ s2) with (Σ1; s1) ∈
τ1 and (Σ2; s2) ∈ τ2 since w ∈ τ . Let V1, V2 be the partition of V such
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that V1 is a subset of the nodes in Σ1 and V2 is a subset of the nodes in
Σ2. Let P1 and P2 be the subsets of P defined by

P1 = {k | k ∈ P and 1 < k ≤ |s1|}
P2 = {k − |s1| | k ∈ P and |s1| < k ≤ |s|} .

It is clear that (V1;P1) and (V2;P2) are requirements on (Σ1; s1) respec-
tively (Σ2; s2) of size at most |w|. By the induction hypothesis there
hence exist

(Σ′1; s
′
1) ∈ [(V1, P1), (Σ1; s1)] ∩ τ1

(Σ′2; s
′
2) ∈ [(V2, P2), (Σ2; s2)] ∩ τ2

of size at most cτ1(|w|) respectively cτ2(|w|). Note that Σ′1 is disjoint
with Σ′2 since Σ1 is disjoint with Σ2, Σ′1vΣ1, and Σ′2vΣ2. Let v =
(Σ′1 ◦Σ′2; s

′
1 ◦ s′2). Then,

|v| = |Σ′1 ◦Σ′2|+ |s′1 ◦ s′2| = |Σ′1|+ |Σ′2|+ |s′1|+ |s′2|
≤ cτ1 |w|+ cτ2 |w| = cτ (|w|).

We claim that v ∈ [w, w] ∩ τ . Indeed, it is easy to see that v ∈ τ .
Moreover, since Σ′1vΣ1 and Σ′2vΣ2 it follows by Lemma 3.42 that
v ∈ [(V ;P ), (Σ1 ◦Σ2; s1 ◦ s2)].

• Case τ = τ ′∗. Since w ∈ τ we know that w is of the form

(©p
j=1 Σj ;©p

j=1 sj)

for some p ≥ 0 such that (Σj ; sj) ∈ τ for every j ∈ [1, p]. Let, V1, . . . , Vp
be the partition of V such that Vj is a subset of the nodes in Σj for every
j ∈ [1, p]. Let for each j ∈ [1, p], Pj be the subset of P defined by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.

It is clear that (Vj ;Pj) is a requirement on (Σj ; sj) of size at most |w| for
every j ∈ [1, p]. Let J be the set of j in [1, p] for which Vj 6= ∅ or Pj 6= ∅.
By the induction hypothesis there exists, for every j ∈ J , a value

(Σ′j ; s
′
j) ∈ [(Vj ;Pj), (Σj ; sj)] ∩ τ ′

of size at most cτ ′(|w|). Then let v = (©j∈J Σ′j ;©j∈J s
′
j). Note that

there can be at most |w| of the Vj non-empty and that there can be at
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most |w| of the Pj non-empty. Hence, J contains at most 2|w| elements.
Hence,

|v| =
∑
j∈J

|Σ′j |+
∑
j∈J

|s′j | =
∑
j∈J

(|Σ′j |+ |s′j |) ≤
∑
j∈J

cτ ′(|w|)

≤ 2|w|cτ ′(|w|) = cτ (|w|).

We claim that v ∈ [w, w] ∩ τ . Indeed, it is easy to see that v ∈ τ .
Furthermore, let Σ′j = ∅ and s′j = 〈〉 for every j ∈ [1, p] \ J . Since
Vj = ∅ and Pj = ∅ for j 6∈ J , we have in particular that for such j:

(Σ′j ; s
′
j) ∈ [(Vj ;Pj), (Σj ; sj)].

Since by construction we then have Σ′j vΣj for every j ∈ [1, p], it follows
by Lemma 3.42 that

(©p
j=1 Σ′j ;©

p
j=1 s

′
j) ∈ [(V ;P ), (©p

j=1 Σj ;©p
j=1 sj)].

Hence, v ∈ [w, w] ∩ τ , as desired.

We are now ready for:

Proof of Theorem 3.46. Suppose that e ∈ QL(B) is not well-defined under
type assignment Γ on e. Then there exists some context w ∈ Γ such that
e(w) = ∅. By Proposition 3.45 there exists a natural number k, computable
from e, and a requirement w on w of size at most k such that e(v) = ∅ for all
v ∈ [w, w]. By Lemma 3.48 there exists v ∈ [w, w] ∩ Γ of size at most

l :=
∑

x∈dom(Γ)

cΓ(x)(k).

Here, cΓ(x) is a function for which a defining arithmetic expression is com-
putable from Γ(x), for every x ∈ dom(Γ). Hence, l is computable from e and
Γ. It is easy to see that v contains at most l nodes and that v can mention
at most l different atoms. Let N be a set of nodes consisting of l element
nodes and l text nodes. Let A be a set of atoms containing all constants men-
tioned in e and l other atoms. Then surely there exists a renaming ρ which
is the identity on constants in e such that ρ(v) contains only nodes in N and
mentions only atoms in A. By Proposition 3.27, e(ρ(v)) is also undefined.

Hence, in order to check if e is well-defined under Γ, it suffices to enumerate
all contexts v′ ∈ Γ of size at most l with nodes in N and atoms in A, and
check whether e(v′) is defined. There are only a finite number of such v′, from
which the result follows.
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Since all base operations mentioned in Section 3.2, except data,merge-text ,
and empty are monotone, generic, locally-undefined and local by Proposi-
tions 3.21, 3.26, 3.35, and 3.41, it follows in particular:

Corollary 3.49. Well-definedness for the XQuery fragment QL(concat, chil-
dren, descendant, parent, ancestor, preceding-sibling, following-sibling, eq,
is, �, is-element, is-text, is-atom, node-name, content, element, text) is
decidable.

It follows from Proposition 3.17 that satisfiability for this fragment is also
decidable. In contrast, the semantic type-checking problem (i.e., is, for every
input in a given input type, the output of a given expression always in a given
output type) for this fragment is known to be undecidable [3].

3.7.1 Satisfiability for QL(concat, smaller-width)

Remember from Section 3.6.1 that the well-definedness problem for QL(concat ,
smaller-width) is undecidable. Using Proposition 3.44 we are able to show,
however, that the satisfiability problem for QL(concat , smaller-width) is de-
cidable. Hence decidability of the satisfiability problem does not imply decid-
ability of the well-definedness problem.

Proposition 3.50. The satisfiability problem for QL(concat , smaller-width)
is decidable.

Proof. Let e be an expression in QL(B) and let Γ be a type assignment on
e such that e is well-defined under Γ. Suppose that e is satisfiable under Γ.
Then let w be a context in Γ and let (Σ; s) be a value in e(w) such that
s is non-empty. Let w = (∅; {1}). It is clear that w is a requirement on
(Σ; s) of size one. Since concat and smaller-width are monotone and local by
Propositions 3.21 and 3.35, it follows from Proposition 3.44 that e is local
and that an arithmetic expression defining a witness c of this locality can
effectively be computed from e. In particular there hence exists a reason w
why [(∅; {1}), (Σ; s)] / e(w) of size at most c(1). By Lemma 3.48 there then
exists v ∈ [w, w] ∩ Γ of size at most

l :=
∑

x∈dom(Γ)

cΓ(x)(c(1)).

Here, cΓ(x) is a function for which a defining arithmetic expression is com-
putable from Γ(x), for every x ∈ dom(Γ). Hence l is computable from e and
Γ. Since e is well-defined under Γ, it follows that e is defined on v. Further-
more, since v ∈ [w, w] and since w is reason why [(∅; {1}), (Σ; s)] / e(w), it
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follows that e(v) ∩ [(∅; {1}), (Σ; s)] 6= ∅. Let (Σ′; s′) be a value in this non-
empty intersection. Then it follows from Lemma 3.33 that |s′| ≥ 1. Hence s′

is non-empty.
It is easy to see that v contains at most l nodes and that v can mention

at most l different atoms. Let N be a set of nodes consisting of l element
nodes and l text nodes. Let A be a set of atoms containing all constants
mentioned in e and l other atoms. Then surely there exists a renaming ρ which
is the identity on constants in e such that ρ(v) contains only nodes in N and
mentions only atoms in A. It is easy to see that concat and smaller-width are
both generic. By Proposition 3.27 it hence follows that (ρ(Σ′); ρ(s′)) ∈ e(ρ(v)).
Since renamings do not alter the width of a list, it follows that ρ(s′) is non-
empty. Furthermore, since e is a semi-function by Proposition 3.6, it follows
that every value in e(ρ(v)) has a non-empty list.

Hence, in order to check if e is satisfiable under Γ it suffices to enumerate
all contexts v′ ∈ Γ of size at most l with nodes in N and atoms in A, and
check whether some e(v′) contains a value with a non-empty list. There are
only a finite number of such v′, from which the result follows.

3.7.2 Well-definedness for the Nested Relational Calculus over
Lists

In Section 2.3 we have shown that the well-definedness problem for the PENRC
in the presence of the singleton coercion operator extract is undecidable. The
core difficulty there was that extract is undefined on non-singleton inputs. As
such, extract({e1, e2}) is defined if, and only if, expressions e1 and e2 return the
same result on every input. Therefore, in order to solve the well-definedness
problem one also needs to solve the equivalence problem, which we have shown
to be undecidable for the PENRC.

Note that, in contrast, the presence of an operator which becomes un-
defined due to a non-singleton input does not necessarily cause the well-
definedness problem for QL(B) to become undecidable. For example, the
operation is-element mentioned in Corollary 3.49 is only defined on singleton
inputs. Decidability in the presence of this operation is due to the fact that
the difficulty with sets, where {e1, e2} is a singleton if, and only if, e1 and e2
are equivalent, no longer holds for lists. Indeed, in this section we will show
that well-definedness for the PENRC with extract interpreted in a list-based
data model is decidable.

List-based Complex Object Data Model A list-based complex object
value (LB-value for short) is either an atom, a pair of LB-values, or a finite
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list of LB-values. Note that, in contrast to the QL data model, lists can hence
contain other lists.

List-Based PENRC with Singleton Coercion A list-based complex ob-
ject context (LB-context for short) is a function σ from a finite set of variables
dom(σ) to LB-values. The list-based semantics of PENRC(extract) expres-
sions on LB-contexts is described by means of the evaluation relation defined
in Figure 3.7. It is easy to see that the evaluation relation remains functional:
an expression evaluates to at most one LB-value on a given LB-context. The
evaluation relation also remains partial. Indeed, we can only project on pairs,
concatenate lists, flatten lists of lists, iterate over lists, and test equality on
atoms. Finally, the list-based semantics of an expression only depends on its
free variables: if two LB-contexts σ and σ′ on e are equal on FV (e), then
σ |= e⇒ v if, and only if, σ′ |= e⇒ v.

List-based NRC types A list-based complex object type (LB-type for short)
is a term generated by the following grammar:

τ ::= Atom | Pair(τ, τ) | ListOf(τ) | τ ∪ τ.

An LB-type τ denotes a set JτK of LB-values:

• JAtomK := A;

• JPair(τ1, τ2)K := Jτ1K× Jτ2K;

• JListOf(τ)K denotes the set of all finite lists over JτK; and

• Jτ1 ∪ τ2K := Jτ1K ∪ Jτ2K.

We will abuse notation and identify τ with JτK. An LB-type assignment Γ
is a function from a finite set of variables dom(Γ) to LB-types. An LB-type
assignment denotes the set of LB-contexts σ for which dom(σ) = dom(Γ) and
σ(x) ∈ Γ(x), for every x ∈ dom(σ). Again, we will abuse notation and identify
an LB-type assignment with its denotation.

Well-Definedness

Definition 3.51. Let e be a PENRC(extract) expression and let Γ be an LB-
type assignment on e. If e(σ) is defined for every context σ ∈ Γ (according
to the semantics in Figure 3.7), then e is well-defined under Γ. The well-
definedness problem for the list-based PENRC(extract) consists of checking,
given e and Γ, whether e is well-defined under Γ.
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Variables

σ |= x⇒ σ(x)

Pair operations

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2

σ |= (e1, e2) ⇒ (v1, v2)
σ |= e⇒ (v1, v2)
σ |= π1(e) ⇒ v1

σ |= e⇒ (v1, v2)
σ |= π2(e) ⇒ v2

List operations

σ |= ∅ ⇒ 〈〉
σ |= e⇒ v

σ |= {e} ⇒ 〈v〉

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
v1 and v2 lists

σ |= e1 ∪ e2 ⇒ v1 ◦ v2

σ |= e⇒ 〈v1, . . . , vk〉
v1, . . . , vn lists

σ |=
⋃
e⇒ v1 ◦ · · · ◦ vk

σ |= e1 ⇒ 〈v1, . . . , vk〉
(x : vj , σ) |= e2 ⇒ wj j ∈ [1, k]
σ |= {e2 | x ∈ e1} ⇒ 〈w1, . . . , wk〉

Conditional test

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e3 ⇒ v a = b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e4 ⇒ v a 6= b

σ |= e1 = e2 ? e3 : e4 ⇒ v

Figure 3.7: The list-based semantics of PENRC(extract) expressions.
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Theorem 3.52. Well-definedness for the list-based PENRC(extract) is decid-
able.

Proof. We give a reduction to the well-definedness problem for QL(concat ,
children, eq , �, node-name, content , element) which is decidable by Corol-
lary 3.49. Specifically, let e be a PENRC(extract) expression in and let Γ be
a LB-type assignment on e. We will show that there exists

1. a one-to-many encoding of LB-values as tree values;

2. a regular expression type assignment enc(Γ), computable from Γ, such
that every tree context in enc(Γ) is an encoding of some LB-context in
Γ and every LB-context in Γ has an encoding in enc(Γ); and

3. an expression enc(e) in QL(B), computable from e, such that e is defined
on an input if, and only if, enc(e) is defined on every encoding of this
input.

Note that hence e is well-defined under Γ if, and only if, enc(e) is well-defined
under enc(Γ). Since enc(e) and enc(Γ) can moreover be computed from e
respectively Γ, we hence have a reduction to well-definedness in QL(concat ,
children, eq , �, node-name, element), as desired.

Let v be an LB-value. We define the set enc(v) of tree values which encode
v by induction on v as follows. Here, we assume without loss of generality that
the special labels atom, pair, and list are atoms.

• If v = a, then enc(v) is the set of all tree values (Σ; 〈n〉) where n is an
element node labeled by atom which has exactly one leaf child text node
n′, which is labeled by a.

• If v = (v1, v2), then enc(v) is the set of all tree values (Σ; 〈n〉) where n
is an element node labeled by pair which has exactly two children n1

and n2 such that n1<n2, (Σ; 〈n1〉) ∈ enc(v1), and (Σ; 〈n2〉) ∈ enc(v2).

• If v = 〈v1, . . . , vk〉, then enc(v) is the set of all tree values (Σ; 〈n〉)
where n is an element node labeled by list which has exactly k children
n1, . . . , nk such that n1< . . .<nk and (Σ; 〈nj〉) ∈ enc(vj) for all j ∈
[1, k].

For example, a value in enc(〈(a, b), 〈a〉〉) is shown in Figure 3.8. The set enc(σ)
of QL-contexts which encode a list-based NRC-context σ is then defined as

enc(σ) := {(Σ;σ′) | (Σ;σ′(x)) ∈ enc(σ(x)) for all x ∈ dom(σ)}.

Next, we define enc(Γ). If τ is an LB-type, then we define the regular
expression type enc(τ) which simulates τ as follows by induction on τ .
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〈n1〉

n1

list

n2

pair

n3

atom

n4

a

n5

atom

n6

b

n7

list

n8 atom

n9

a

Figure 3.8: One encoding of the LB-value 〈(a, b), 〈a〉〉 in the QL data model.

• If τ = Atom, then enc(τ) is Element(atom,Text).

• If τ = Pair(τ1, τ2), then enc(τ) is Element(pair, enc(τ1) ◦ enc(τ2)).

• If τ = ListOf(τ ′), then enc(τ) is Element(list, enc(τ ′)∗).

• If τ = τ1 ∪ τ2, then enc(τ) is enc(τ1) + enc(τ2).

The type assignment enc(Γ) is then defined by

enc(Γ)(x) := enc(Γ(x))

for all x ∈ dom(Γ). It is easy to see that every context in enc(Γ) is an encoding
of some context in Γ, and that every context in Γ has an encoding in enc(Γ).

Finally, we construct enc(e) by induction on e. In order to simplify pre-
sentation, we will allow to bind multiple variables in one for loop, and we will
also allow boolean combinations in the condition of an if test. Both features
can clearly be simulated in QL(B).

• If e = x, then enc(e) = x.

• If e = (e1, e2), then enc(e) is defined as

element(pair, concat(enc(e1), enc(e2)))

• If e = π1(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x ),pair) then
for y,z in children(x ) return

if �(y, z ) then y else ()
else if () then () else ()
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• If e = π2(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x ),pair) then
for y,z in children(x ) return

if �(z, y) then y else ()
else if () then () else ()

• If e = ∅, then enc(e) is defined as element(list, ()).

• If e = {e′}, then enc(e) is defined as element(list, enc(e′)).

• If e =
⋃
e′, then enc(e) is defined as

let x := enc(e′) return
element(list,

if eq(node-name(x ),list) then
for y in children(x ) return

if eq(node-name(y),list) then
children(y)

else if () then () else ()
else if () then () else ()

)

• If e = {e2 | x ∈ e1}, then enc(e) is defined as

let y := enc(e1) return
if eq(node-name(y),list) then
for x in children(y) return enc(e2)

else if () then () else ()

Here we assume without loss of generality that y is not free in e2.

• If e = extract(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x ),list) then
let y := is-element(children(x )) return

children(x )
else if () then () else ()

• If e = e1 = e2 ? e3 : e4, then enc(e) is defined as
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let x1 := enc(e1) return
let x2 := enc(e2) return
if eq(node-name(x1),atom) and eq(node-name(x2),atom) then
if eq(content(children(x1)),content(children(x2)))
then enc(e3) else enc(e4)

else if () then () else ()

Here we assume without loss of generality that x1 and x2 are not free in
e3 or e4.

A straightforward induction on e no shows that

1. if e(σ) = v, then enc(e)(Σ;σ′) ⊆ enc(v) for every (Σ;σ′) ∈ enc(σ); and
that

2. e(σ) is defined if, and only if, enc(e)(Σ;σ) is defined for every (Σ;σ′) ∈
enc(σ).
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4
The Complexity of Deciding
Typability for the Relational
Algebra

As we have seen in Chapters 2 and 3, both the well-definedness problem and
the semantic type-checking problem remain undecidable for database query
languages which are powerful enough to simulate the relational algebra. It
follows that a sound and complete type system for such languages does not
exist (although we have identified several useful fragments for which such a
type system does exist). For such languages, static verification of the absence
of certain programming errors hence has to be done by means of a traditional,
incomplete type system.

In the second part of this dissertation we therefore study classical type
system problems from the theory of programming languages in the context of
database query languages. In this chapter we study the complexity of deciding
typability for the relational algebra. Checking typability of relational algebra
expressions is the analog in the relational algebra of static type-checking in
implicitly typed programming languages with polymorphic type systems, such
as ML [55]. It is therefore interesting to see what its complexity is. It is
known for instance that typability is P-complete for the simply typed lambda
calculus [19] and Exptime-complete for ML [31, 34]. In contrast, Van den
Bussche and Waller have shown that typability for the relational algebra is
in NP [56]. The precise complexity remained open, however. In this chapter
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we will show that the problem is NP-complete in general. In particular, we
show that the problem becomes NP-hard due to (1) the cartesian product
operator; (2) the selection operator on arbitrary sets of typed predicates; and
(3) the selection operator on “well-behaved” sets of typed predicates together
with join and projection or renaming. However, the problem is in P when
(1) we only allow union, difference, join, and selection on “well-behaved” sets
of typed predicates; or (2) we allow all operators except cartesian product,
where the set of selection predicates can mention at most one base type. Most
of these results follow from a close connection of the typability problem to
non-uniform constraint satisfaction.

Organization This chapter is further organized as follows. We introduce
the relational algebra type system in Section 4.1, including the notions of
well-typedness and typability. We then show that the typability problem is
NP-complete in its most general setting in Section 4.2. In Section 4.3 we
illustrate the close connection between the typability problem and constraint
satisfaction problems, which allows us to obtain most of the results mentioned
above.

4.1 Preliminaries

We assume given a sufficiently large set {A,B, . . . } of attribute names. We
also assume given a finite, non-empty set of base types (such as int, string,
bool, . . . ) and a sufficiently large set of predicates (such as =,≤, . . . ). Every
predicate θ has an arity |θ|, which is a natural number, and a signature ς(θ),
which is a non-empty, |θ|-ary relation over the set of base types. An example
of a signature for the binary predicate has length is {(string, int)}, while an
example of a signature for the binary predicate = is

{(int, int), (bool, bool), (string, string)}.

Base types will be denoted by β, possibly subscripted. Predicates will be
denoted by θ, possibly subscripted. Finite sets of predicates will be denoted
by Θ. The set of all base types mentioned in signatures of predicates in Θ will
be denoted by β(Θ).

The relational algebra with selection predicates in Θ, denoted by RΘ, is
the set of all expressions generated by the following grammar:

e ::= x

| (e ∪ e) | (e− e) | (e 1 e) | (e× e)
| σθ(A1,...,An)(e) | πA1,...,An(e) | ρA/B(e)
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Here e ranges over relational algebra expressions, x ranges over variables, θ
ranges over selection predicates in Θ, n is the arity of θ, and A, B, and Ai
are attribute names. If V is a set of operators, then RΘ

V denotes the subset
of expressions in RΘ using only operators in V . The semantics of relational
algebra is the well-known one [1, 16] and will actually not concern us in the
present chapter. The set of all variables occurring in expression e is denoted
by FV (e) and the set of all attributes occurring in e is denoted by Specattrs(e).

A relational type τ is a function from a finite set of attribute names dom(τ)
to the set of base types. Two relational types are compatible, denoted by
τ1 ∼ τ2, if τ1(A) = τ2(A) for every A in dom(τ1)∩dom(τ2). Clearly, the union
of two compatible relational types is defined, and is again a relational type. If
τ is a relational type, then ρA/B(τ) is the relational type with domain dom(τ)\
{A} ∪ {B} such that ρA/B(τ)(B) = τ(A) and ρA/B(τ)(C) = τ(C) for every
C ∈ dom(τ)\{A,B}. A relational type assignment Γ is a function from a finite
set of variables dom(Γ) to relational types. If dom(Γ) is a superset of FV (e)
then we say that Γ is a relational type assignment on e. For convenience we
will abbreviate “relational type” and “relational type assignment” by “type”
respectively “type assignment” in this chapter.

The typing relation for the relational algebra is defined in Figure 4.1. Here
we write Γ ` e : τ to indicate that expression e ∈ RΘ has type τ under type
assignment Γ on e. Note that e has at most one type under Γ, which can easily
be derived from Γ by applying the rules in an order determined by the syntax
of expression e. If A ∈ dom(τ), then we say that A is present in e under Γ.
We say that A is absent in e under Γ otherwise. If Γ ` e : τ , then we call
(Γ, τ) a typing of e.

Some expressions, such as for example πA(ρA/B(x)) and σA=5(x) 1 (x ×
πA(y)), do not have any typing. We will refer to such expressions as untypable.

Definition 4.1. Let e be an expression in RΘ and let Γ be a relational type
assignment on e. If there exists a τ such that Γ ` e : τ , then we say that e is
well-typed under Γ. Expression e is called typable if there exists a relational
type assignment Γ on e such that e is well-typed under Γ.

Let V be a subset of the relational algebra operators. We denote the set
of all typable expressions in RΘ

V by T (RΘ
V ). Deciding membership of T (RΘ

V )
is called the typability problem for RΘ

V .

4.2 Deciding Typability

Van den Bussche and Waller noted that the typability problem for the rela-
tional algebra can be solved in non-deterministic polynomial time [56]. We
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Γ(x) = τ

Γ ` r : τ
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ∪ e2 : τ
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 − e2 : τ

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 ∼ τ2

Γ ` e1 1 e2 : τ1 ∪ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
dom(τ1) ∩ dom(τ2) = ∅

Γ ` e1 × e2 : τ1 ∪ τ2

Γ ` e : τ A1, . . . , An ∈ dom(τ)
(τ(A1), . . . , τ(An)) ∈ ς(θ)

Γ ` σθ(A1,...,An)(e) : τ
Γ ` e : τ A1, . . . , An ∈ dom(τ)
Γ ` πA1,...,An(e) : {A1, . . . , An}

Γ ` e : τ A ∈ dom(τ) B 6∈ dom(τ)
Γ ` ρA/B(e) : ρA/B(τ)

Figure 4.1: The typing relation for the relational algebra.

reiterate their result here for completeness’ sake. If τ is a type and S is a set
of attribute names, then we write τ |S for the type defined by τ |S(A) := τ(A)
for every A in dom(τ) ∩ S. If Γ is a type assignment, then we write Γ|S for
the type assignment defined by Γ|S(r) := Γ(r)|S .

Lemma 4.2 (Van den Bussche and Waller). If (Γ, τ) is a typing of e and
Specattrs(e) ⊆ S, then (Γ|S , τ |S) is also a typing of e.

The proof is straightforward. As a consequence, in order to decide whether
there exists a type assignment under which e is well-typed, it suffices to con-
sider type assignments Γ with the property that

dom(Γ(x)) ⊆ Specattrs(e),

for every x ∈ FV (e). It follows immediately that typability is in NP. This
upper bound is tight, as the following theorem shows.

Theorem 4.3. T (RΘ) is NP-complete for any predicate-set Θ.

Proof. We give a Logspace reduction from Positive one-in-three 3SAT,
which is known to be NP-hard [24]. The Positive one-in-three 3SAT
problem consists of deciding for a given 3CNF formula with only positive
clauses of the form (x ∨ y ∨ z), whether there exists a truth assignment that
makes exactly one literal per clause true.
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Let φ = (x1 ∨ y1 ∨ z1) ∧ · · · ∧ (xn ∨ yn ∨ zn) be a 3CNF formula where
every clause is positive. Let X be the set of all variables occurring in φ. We
construct the expression eφ with FV (eφ) = X such that φ is one-in-three
satisfiable if, and only if, eφ is typable:

eφ :=
n⋃
i=1

πA(xi × yi × zi).

It is clear that eφ can be constructed from φ in logarithmic space.
Suppose φ is one-in-three satisfiable. Then there exists a truth assignment

w on X such that for every i exactly one of w(xi), w(yi), and w(zi) is true. To
show that eφ is typable, we construct the type assignment Γ on eφ as follows.
Let τ be a type with domain {A}. We define Γ(x) := τ if w(x) is true and
Γ(x) := ∅ otherwise, for every x ∈ X. Since exactly one of w(xi), w(yi), and
w(zi) is true for every i, we have by construction that exactly one of Γ(xi),
Γ(yi), and Γ(zi) is τ , the others being ∅. Since the domains of Γ(xi), Γ(yi),
and Γ(zi) are then disjoint and since Γ(xi)∪Γ(yi)∪Γ(zi) = τ , the expressions
xi × yi × zi have type τ under Γ. Then every πA(xi × yi × zi) also has type τ
under Γ. Therefore every operand of the union operator has type τ , and thus
eφ is well-typed under Γ.

Conversely, suppose eφ is typable. Then there exists a type assignment Γ
on eφ such that every subexpression of e (including e) is well-typed under Γ.
To show that φ is satisfiable, we construct the truth assignment w on X such
that w(u) is true if, and only if, A ∈ dom(Γ(u)). Since every πA(xi × yi × zi)
is well-typed under Γ, the type of xi × yi × zi must be defined on A. Because
of the typing rule for ×, this means that exactly one of Γ(xi),Γ(yi), or Γ(zi)
is defined on A. Hence, exactly one of w(xi), w(yi), or w(zi) is true for every
i, and φ is one-in-three satisfiable.

The following natural question now arises: for which operators of the re-
lational algebra can typability be decided in polynomial time? We note that
expressions inRΘ

∪,−,1,× are always well-typed under the type assignment which
maps every variable to the empty type. Hence T (RΘ

∪,−,1,×) is trivially in P.
Adding π, ρ, or σ to the set of operators, however, immediately makes the
problem NP-complete. This is clear for π from the reduction above. Also, the
reduction still works if we define eφ as

eφ :=
n
×
i=1

ρA/Bi
(xi × yi × zi).

Here the Bi are auxiliary attribute names used to make sure that the various
operands of × have a disjoint domain. Finally, if θ ∈ Θ, then we can define
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eφ as:

eφ :=
n⋃
i=1

σθ(A1,...,Ak)(xi × yi × zi).

Indeed, if φ is one-in-three satisfiable, then we can show typability of eφ simply
by taking τ in the reasoning above to be a type for which

(τ(A1), . . . , τ(Ak)) ∈ ς(θ).

Conversely, if eφ is typable, we can show one-in-three satisfiability of φ by
taking w in the reasoning above such that w(u) is true if, and only if, A1 ∈
dom(Γ(u)).

Hence, deciding typability for restrictions of the relational algebra contain-
ing {−,×, π}, {−,×, σ}, {∪,×, σ}, or {×, ρ} as a subset of operators remains
NP-complete for any (non-empty) predicate-set Θ.

4.3 Typability and Constraint Satisfaction

The results of Section 4.2 seem to imply that the cartesian product operator
is the main reason why the typability problem for the relational algebra is
NP-hard. Consider expressions of the following form however:

σθ1(A1,...,Ak) . . . σθn(B1,...,Bl)(x).

In order to decide typability of such expressions, we need to make sure that
there are no base-type clashes between the various uses of an attribute. It is
not hard to see that this is another potential source of intractability.

We will formalize this intuition by showing that typability in RΘ
σ is a

disguised form of the non-uniform constraint satisfaction problem, which is
known to be NP-complete in general.

A relational structure is a tuple (C,R1, . . . , Rn) where C is a finite set
and R1, . . . , Rn are relations over C. Let A = (C,R1, . . . , Rn) and B =
(D,S1, . . . , Sn) be two relational structures where the arity of Ri equals the
arity of Si for every i ∈ [1, n]. A homomorphism from A to B is a function h
from C to D such that for every i ∈ [1, n]:

(c1, . . . , cki
) ∈ Ri ⇒ (h(c1), . . . , h(cki

)) ∈ Si.

Here, ki denotes the arity of Ri and Si.
The constraint satisfaction problem consists of deciding, given relational

structures A and B whether there is a homomorphism from A to B. This
problem is NP-complete in general, since it is clearly in NP and it contains
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NP-hard problems as special cases. For example, 3-Colorability is equiv-
alent to the problem of deciding whether there is a homomorphism from a
given graph H to the complete graph with 3 nodes

K3 = ({r, g, b}, {(r, b), (b, r), (r, g), (g, r), (b, g), (g, b)}).

The constraint satisfaction problem for which B is fixed is called the non-
uniform constraint satisfaction problem (non-uniform CSP for short). Let us
define H(B) as the set of all structures for which there exists a homomorphism
to B. It is well-known that there exist structures B such that H(B) is NP-
complete (K3 being an example).

We will now relate the typability problem to non-uniform CSP. Let Θ =
{θ1, . . . , θn} be a set of predicates. We define the structure of an expression
e ∈ RΘ, denoted by Struc(e), as the relational structure

(Specattrs(e), θ1(e), . . . , θn(e)),

where

θi(e) = {(A1, . . . , A|θi|) | σθi(A1,...,A|θi|)
(e′) is a subexpression of e}.

Likewise, we define the structure of Θ, denoted by Struc(Θ), as the rela-
tional structure (β(Θ), ς(θ1), . . . , ς(θn)). Here, β(Θ) denotes the set of all base
types mentioned in the signatures of predicates in Θ.

Lemma 4.4. If Θ is a finite set of predicates and e ∈ RΘ
∪,−,1,σ, then e is

typable if, and only if, there is a homomorphism from Struc(e) to Struc(Θ).

Proof. Intuitively, we need to make sure that there are no base-type clashes
between the various uses of an attribute in e in order to decide typability of
e. This is exactly what the existence of a homomorphism from Struc(e) to
Struc(Θ) indicates.

Suppose that there is a homomorphism h from Struc(e) to Struc(Θ). Let
Γ be the type assignment defined by Γ(x) = h for every x ∈ FV (e). In order
to show that e is typable, it suffices that to show that every subexpression e′

of e has type h under Γ. We do so by induction on e′.

• Clearly, Γ ` r : h.

• If e′ = e1 ∪ e2 or e′ = e1 − e2, then Γ ` e1 : h and Γ ` e2 : h by the
induction hypothesis. Hence, all the premises of the type rule for union,
respectively difference, are met and Γ ` e′ : h holds.

• If e′ = e1 1 e2, then Γ ` e1 : h and Γ ` e2 : h by the induction
hypothesis. Clearly, h ∼ h and h = h∪h. Hence, all the premises of the
type rule for join are met and Γ ` e′ : h holds.
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• If e′ = σθi(A1,...,Ak)(e′′), then we have by the induction hypothesis that
Γ ` e′′ : h. By definition, (A1, . . . , Ak) ∈ θi(e). Since {A1, . . . , Ak} ⊆
Specattrs(e) and since h is a homomorphism from Struc(e) to Struc(Θ)
we have (h(A1), . . . , h(Ak)) ∈ ς(θi). Hence, all the premises of the type
rule for selection are met and Γ ` e′ : h holds.

Conversely, suppose that there exists a type assignment Γ under which e is
well-typed. Let us write τe for the type of e under Γ, and let us write H(e) for
the set of homomorphisms from Struc(e) to Struc(Θ). We prove by induction
on e that τe|Specattrs(e) ∈ H(e).

• This is clear if e = r.

• If e = e1 ∪ e2, then τe = τe1 = τe2 by the type rule for union. Then
τe|Specattrs(e1) ∈ H(e1) and τe|Specattrs(e2) ∈ H(e2) by the induction hy-
pothesis. Since Struc(e) is the component-wise union of Struc(e1) and
Struc(e2), it follows that τe|Specattrs(e) ∈ H(e). If e = e1− e2 we make an
analogous reasoning.

• If e = e1 1 e2, then τe1 ∼ τe2 and τe = τe1 ∪ τe2 by the type rule
for join. Moreover, τe1 |Specattrs(e1) ∈ H(e1) and τe2 |Specattrs(e2) ∈ H(e2)
by the induction hypothesis. Since τe1 |Specattrs(e1) ⊆ τe|Specattrs(e) and
τe2 |Specattrs(e2) ⊆ τe|Specattrs(e), and since Struc(e) is the component-wise
union of Struc(e1) and Struc(e2), it follows that τe|Specattrs(e) ∈ H(e).

• If e = σθi(A1,...,Ak)(e′), then τe′ |Specattrs(e′) ∈ H(e′) by the induction hy-
pothesis. Furthermore, (τe′(A1), . . . , τe′(Ak)) ∈ ς(θi) and τe = τe′ by the
type rule for σ. For every i ∈ [1, n] we have

θj(e) =

{
θi(e′) ∪ {(A1, . . . , Ak)} if i = j

θj(e′) otherwise.

Hence, τe|Specattrs(e) ∈ H(e).

Using this lemma, we may conclude that typability is as least as difficult
as non-uniform CSP.

Theorem 4.5. If Θ is a finite, non-empty set of predicates and V is a subset of
the relational algebra operators containing σ, then H(Struc(Θ)) is Logspace
reducible to T (RΘ

V ).
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Proof. We show that for every relational structure A we can create an ex-
pression e ∈ RΘ

σ (in logarithmic space) such that there is a homomorphism
from A to Struc(Θ) if, and only if, there is a homomorphism from Struc(e) to
Struc(Θ). The result then follows by Lemma 4.4.

Let Θ = {θ1, . . . , θn} and let A = (C,R1, . . . , Rn) be a relational structure
where the arity of Ri equals |θi|. Let adom(A) denote the active domain of
A, i.e., the set of all elements in C actually mentioned in one of the Ri. It is
easy to see that there is a homomorphism from A to Struc(Θ) if, and only if,
there is a homomorphism from (adom(A), R1, . . . , Rn) to Struc(Θ).

We now create e such that Struc(e) = (adom(A), R1, . . . , Rn). This is true
whenever e is of the form σ . . . σ(r) such that for every Ri and every tuple
(c1, . . . , ck) in Ri there is a subexpression of the form σθi(c1,...,ck)(e′) in e. Here
we view c1, . . . , ck as attribute names. It is easy to see that we can create such
an e in logarithmic space: we simply iterate over the tuples in A, and in each
iteration add an extra selection operator of the correct form to the expression
built so far.

Corollary 4.6. Let V be a subset of the relational algebra operators containing
σ. Then T (RΘ

V ) is NP-complete if H(Struc(Θ)) is.

As we have noted before, there are structures B for which H(B) is NP-
complete. For every such structure B = (C,S1, . . . , Sn) we can create a set of
predicates Θ such that Struc(θ) = B. Indeed, we simply take Θ to contain
predicates θ1, . . . , θn such that |θi| equals the arity of Si and such that ς(θi) =
Si. Hence, there are predicate sets Θ for which T (RΘ

V ) is NP-complete.
On the positive side, the following corollary to Lemma 4.4 tells us that the

complexity of T (RΘ
∪,−,1,σ) is in P when H(Struc(Θ)) is in P.

Corollary 4.7. If Θ is a finite, non-empty set of predicates, then T (RΘ
∪,−,1,σ)

is Logspace reducible to H(Struc(Θ)).

This result cannot be generalized further to include π or ρ. To see why, let
us fix a set of unary predicates Ω = {θ1, θ2} where ς(θ1) = {0} and ς(θ2) = {1}.
Here, 0 and 1 are base types. Note that such predicates will occur in practice.
For instance, we can interpret θ1 by “equals 5” with 0 being the base type int
and θ2 by “equals Mary” with 1 being the base type string.

Theorem 4.8. With Ω the set of predicates described above, H(Struc(Ω)) is
in P, but T (RΩ

1,σ,π) and T (RΩ
1,σ,ρ) are NP-complete.

Proof. Obviously, A = (C,R1, R2) ∈ H(Struc(Ω)) if, and only if, R1∩R2 = ∅,
which can be checked in polynomial time.

By Lemma 4.2 we only need to show NP-hardness of T (RΩ
∪,−,1,σ,π,ρ), for

which we modify a reduction invented by Ohori and Buneman [46]. The
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reduction is from Monotone 3SAT [24]: decide whether there is a satisfying
truth assignment for a given 3CNF boolean formula φ whose clauses are either
all variables (called a positive clause) or all negated variables (called a negative
clause).

Let φ = (a1
1 ∨ a1

2 ∨ a1
3)∧ · · · ∧ (an1 ∨ an2 ∨ an3 ) be such a formula. Here, every

aij is hence a proposition variable x, or a negated proposition variable x. We
assume without loss of generality that a1

1, . . . , a
n
3 are members of our fixed set

of variables X .
We will create an expression eφ such that eφ is typable if, and only if, φ

is satisfiable. Intuitively, we encode truth assignments w on the set X of all
variables in φ by type assignments Γ where A ∈ dom(Γ(x)) if, and only, if
w(x) is true and A ∈ dom(Γ(x)) if, and only if, w(x) is false.

Let us first define, for every proposition variable x in φ, the expression:

ex := πBσθ1(A)(x 1 x1) 1 πBσθ2(A)(x 1 x2) 1 πBπA,B(x 1 x).

Intuitively, ex is used to verify that every type assignment under which eφ is
well-typed is indeed an encoding of a truth assignment. The whole expression
is now defined by:

eφ := 1
x∈X

ex 1
n
1
i=1

πBπA,B(ai1 1 ai2 1 ai3).

It is clear that eφ can be constructed from φ in logarithmic space.
Suppose that φ is satisfiable. Then there exists a satisfying truth assign-

ment w on the variables of φ. To show that eφ is typable, we construct the
type assignment Γ on e as follows. Let τ be a type which is undefined on all
attributes except B. Let τ1 and τ2 be the types with domain {A} such that
τ1(A) = 0 and τ2(A) = 1. If w(x) is true, then we define

Γ(x) := τ ∪ τ1 Γ(x) := ∅
Γ(x1) := ∅ Γ(x2) := τ ∪ τ2.

Otherwise, we define

Γ(x) := ∅ Γ(x) := τ ∪ τ2
Γ(x1) := τ ∪ τ1 Γ(x2) := ∅.

The reader is asked to verify that every ex has output type τ under Γ. Since
every clause in φ consists entirely of un-negated variables or entirely of negated
variables, and since by construction Γ(x) ∼ Γ(y) and Γ(x) ∼ Γ(y) for every
variable x and y, the subexpressions (ai1 1 ai2 1 ai3) are well-typed under Γ.
Moreover, since w(ai1∨ai2∨ai3) is true, at least one of Γ(ai1), Γ(ai2) and Γ(ai3) is
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defined on A and B. Since Γ(ai1)∪ Γ(ai2)∪ Γ(ai3) is the type of (ai1 1 ai2 1 ai3)
under Γ, we know that πBπA,B(ai1 1 ai2 1 ai3) also has type τ under Γ. Then
eφ is well-typed under Γ since it is a join of subexpressions of type τ and since
τ is certainly compatible with itself.

Conversely, suppose eφ is typable. Then there exists a type assignment Γ
on e such that every subexpression of e is well-typed under Γ. In particular, ex
is well-typed under Γ for every variable x. Then Γ encodes a truth assignment.
Indeed, the subexpression πBπA,B(x 1 x) of ex requires that A ∈ dom(Γ(x))
or A ∈ dom(Γ(x)). However, if A ∈ dom(Γ(x)), then subexpression σθ1(A)(x 1

x1) of ex requires Γ(x)(A) = 0, while subexpression σθ2(A)(x 1 x2) requires
Γ(x)(A) = 1 when A ∈ dom(Γ(x)). Since subexpression x 1 x of ex requires
that Γ(x) and Γ(x) are compatible, we have A ∈ dom(Γ(x)) if, and only if,
A 6∈ dom(Γ(x)). Let w be the truth assignment such that w(x) is true if, and
only if, A ∈ dom(Γ(x)). Let i ∈ [1, n]. Since πA,B(ai1 1 ai2 1 ai3) is well-typed
under Γ, the type of ai1 1 ai2 1 ai3 must be defined on A. Hence, Γ(aij) is
defined on A for some j ∈ [1, 3]. We discern two cases. Either aij = x for some
variable x, meaning that the i-th clause in φ is positive. Then w(ai1 ∨ ai2 ∨ ai3)
is true since w(aij) is true. Otherwise, aij = x for some variable x and the i-th
clause of φ is negative. Then Γ(x) cannot be defined on A since Γ(x) is defined
on A. Hence, w(x) is false which means w(x) is true and thus w(ai1 ∨ ai2 ∨ ai3)
is true. Hence, φ is satisfiable.

To show NP-hardness of T (RΩ
1,σ,ρ) a similar reduction can be made: we

define

ex :=ρA/Cx
σθ1(A)(x 1 x1) 1 ρA/Dx

σθ2(A)(x 1 x2) 1 ρA/Ex
(x 1 x)

eφ := 1
x∈X

ex 1
n
1
i=1

ρA/Fi
(ai1 1 ai2 1 ai3).

Here the auxiliary attributes Cx, Dx, Ex, and Fi are used to prevent base-type
clashes between the various subexpressions.

As a consequence, T (RΩ
V ) is NP-complete whenever V includes {1, σ, π}

or {1, σ, ρ} as a subset of operators.
The predicate set Ω depends heavily on the presence of more than one

base type. What is the complexity of deciding typability when we have only
one base type? As we will show, this can be done in polynomial time. This
implies that we can at least efficiently check expressions for mistakes that
require an attribute to be present and absent at the same time, as for example
in ρA/B(πB(x)).

Theorem 4.9. Let Θ be a finite set of predicates over at most one base type,
so |β(Θ)| = 1. Then T (RΘ

∪,−,1,σ,π,ρ) is in P.
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To prove this theorem, we will show that we can always reformulate the
typability problem as a non-uniform CSP which is solvable in polynomial time.
Since |β(Θ)| = 1, there can be no base-type clashes in an expression e, and
hence we only need to verify that attributes are used consistently, i.e. that an
attribute is not required to be present and absent at the same time.

We will record the requirements the type system makes on the presence or
absence of attributes in an relational structure as follows. Let e′� e denote
the fact that e′ is a subexpression of e. To each expression e ∈ RΘ

∪,−,1,σ,π,ρ we
then associate the relational structure

Ae = (Ce, De, Ue, Ee, Je)

where

• Ce is a set of proposition variables of the form Ae
′
where e′ is a subex-

pression of e and A is an attribute occurring in e;

• De is the set of proposition variables Ae
′

for which the type system
requires that A is present in the output type of subexpression e′ under
any type assignment Γ which makes e well-typed:

De = {Ae′ | σθ(B1,...,A,...,Bn)(e′)� e}
∪ {Ae′ | πB1,...,A,...,Bn(e′)� e}
∪ {Ae′ , BρA/B(e′) | ρA/B(e′)� e};

• Ue is the set of proposition variables Ae
′
for which the type system re-

quires that A is absent in the output type of e′ under any type assignment
Γ which makes e well-typed:

Ue = {AπB1,...,Bn (e′) | πB1,...,Bn(e′)� e,A 6∈ {B1, . . . , Bn}}
∪ {AρA/B(e′), Be′ | ρA/B(e′)� e};

• Ee is the set of pairs of proposition variables (Ae
′
, Be′′) for which the

type system requires that A is present in the output type of e′ under a
type assignment which makes e well-defined, if, and only if, B is present
in the output type of e′′ under this assignment:

Ee = {(Ae1 , Ae2), (Ae1∪e2 , Ae1) | e1 ∪ e2� e,A ∈ Specattrs(e)}
∪ {(Ae1 , Ae2), (Ae1−e2 , Ae1) | e1 − e2� e,A ∈ Specattrs(e)}
∪ {(Aσθ(A1,...,An)(e

′), Ae
′
) | σθ(A1,...,An)(e′)� e,A ∈ Specattrs(e)};

• Je captures the relations between the attributes imposed by the type
rule for join:

Je = {(Ae11e2 , Ae1 , Ae2) | e1 1 e2� e,A ∈ Specattrs(e)}.
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It is clear that e is typable if, and only if, the requirements made by the
type system can be met, i.e., if there is a homomorphism from Ae to the
structure B = ({0, 1}, D, U,E, J) where

• D is used to verify that the attributes mentioned in De are actually
present: D = {1};

• U is used to verify that the attributes mentioned in Ue are actually
absent: U = {0};

• E is used to verify that for the pairs of proposition variables (Ae
′
, Be′′)

mentioned in Ee, A is present in the output type of e′ if, and only if, B
is present in the output type of e′: E = {(0, 0), (1, 1)}; and

• J is used to verify that for the triples (Ae11e2 , Ae1 , Ae2) in Je, the pres-
ence of A in the output type of e1 1 e2 follows the type rule for join:
J = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0)}.

Such a relational structure, where the domain contains only two elements, is
called a boolean structure.

Lemma 4.10. Let Θ be a finite set of predicates. If |β(Θ)| = 1 and e ∈
RΘ
∪,−,1,σ,π,ρ, then e is typable if, and only if, there is a homomorphism from

Ae to B.

Proof. Suppose that e is well-typed under type assignment Γ. Then every
subexpression e′ of e is well-typed under Γ. Let τe′ be the type of e′ under Γ.
Define the function h from Ce to {0, 1} such that h(Ae

′
) = 1 if, and only if,

A ∈ dom(τe′). It is easy to show that h is a homomorphism from Ae to B.
For example, if (Ae1∪e2 , Ae1) ∈ Ee, then e1 ∪ e2� e by construction. By the
type rule for union, we know that τe1 = τe1∪e2 . Hence h(Ae1) = h(Ae1∪e2) and
thus (h(Ae1∪e2), h(Ae1)) ∈ E. Similar reasonings can be made for the other
cases.

Conversely, let h be a homomorphism from Ae to B. Let b be the single
base type in β(Θ). For every subexpression e′ of e we define τe′ such that
τe′(A) = b if h(Ae

′
) = 1, and τe′ is undefined on A otherwise. Let Γ be the

type assignment such that Γ(r) = τr for every r ∈ FV (e). It is easy to show
by induction on e′ that Γ ` e′ : τe′ . For example, if e′ = σθ(A1,...,An)(e′′),
then Γ ` e′′ : τe′′ by the induction hypothesis. By construction, Ae

′′
i ∈ De for

1 ≤ i ≤ n. Hence, h(Ae
′′
i ) ∈ D = {1} and thus A ∈ dom(τe′′). Moreover,

(τe′′(A1), . . . , τe′′(An)) = (b, . . . , b). Since |β(Θ)| = 1, ς(θ) = {(b, . . . , b)}, and
hence (τe′′(A1), . . . , τe′′(An)) ∈ ς(θ). By the type rule for selection, Γ ` e′ : τe′′ .
Since (Ae

′
, Ae

′′
) ∈ Ee, we know that (h(Ae

′
), h(Ae

′′
)) ∈ E. Hence, h(Ae

′
) =
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h(Ae
′′
), τe′ = τe′′ , and Γ ` e′ : τe′ . Similar reasonings can be made for the

other cases.

We recall the following important theorem from constraint satisfaction
theory, due to Shaefer [51]:

Theorem 4.11 (Shaefer’s Dichotomy Theorem).

• If B is a Boolean structure, then H(B) is in P or it is NP-complete.

• In particular, if every relation in a Boolean structure B is closed under
the function g(x, y) = x ∨ y, then H(B) is in P.

An n-ary relation R is closed under the function g(x, y) if for any two tuples
(a1, . . . , an) and (b1, . . . , bn) in R the tuple (g(a1, b1), . . . , g(an, bn)) is also in
R. It is easy to see that every relation in B is closed under g. Theorem 4.9
then follows from this theorem and Lemma 4.10.

As a corollary to Theorem 4.9, T (RΘ′
∪,−,1,π,ρ) is in P for any predicate

set Θ′, since RΘ′
∪,−,1,π,ρ ⊆ RΘ

∪,−,1,σ,π,ρ for all predicate sets Θ (and hence in
particular for those with |β(Θ)| = 1).



5
Polymorphic Type Inference
for the Named Nested
Relational Calculus

In this chapter we study the type inference and typability problems for the
named version of the nested relational calculus (NNRC for short).

The NNRC comes equipped with a natural static type system to detect
programming errors. In this type system, the basic operators of the NNRC
are polymorphic. For example, we can inspect the A attribute of any record,
as long as it has an attribute A. We can take the cartesian product of any
two records whose attribute sets are disjoint. We can take the union of any
two sets of the same type. Similar typing conditions can be formulated for the
other operators of the NNRC. When combining operators into expressions,
these typing conditions become more evolved. For example, for the expression

{(x× y).A | x ∈ R}

to be well-typed, R must have a set type containing the type of x; x and
y must have record types whose attribute sets are disjoint; and one of these
attribute sets must contain A.

A natural question thus arises: given an NNRC expression e, under which
assignments of free variables in e to types is e well-typed? And what is the
resulting output type of e under these assignments? In particular, can we
give an explicit description of the typically infinite collection of these typings?

129
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This is nothing but the NNRC version of the classical type inference problem.
Type inference is an extensively studied topic in the theory of programming
languages [42, 49], and is used in industrial-strength functional programming
languages such as Standard ML [55] and Haskell [30].

In this chapter, we propose an explicit description of the set of all possible
typings of an NNRC expression e by means of a conjunctive logical formula
φe, which is interpreted in the universe of all possible types. The formula φe
is efficiently computable from e. We proceed to show that the satisfiability
problem of such conjunctive formulas belongs to NP. Consequently, typability
for the NNRC is also in NP. Since the NNRC is an extension of the relational
algebra, for which typability is already NP-complete, this thus shows that
typability for the NNRC is not more difficult than for the special case of the
relational algebra.

Organization This chapter is further organized as follows. We introduce the
named nested relational calculus and its static type system in Section 5.1. In
Section 5.2 we show that the set of all typings of an expression can be described
by a logical formula. Finally, we show in Section 5.3 that satisfiability of such
formulas is in NP.

5.1 Named Nested Relational Calculus

Data Model As in Chapter 4, we assume given a sufficiently large set
{A,B, . . . } of attribute names. A row over a set S is a function r from a
finite set dom(r) of attribute names to S. We write π̂A(r) for the restriction
of r to dom(r) \ {A}. We use an intuitive notation for rows, which we illus-
trate with an example. If r is the row with domain {A,B,C} and r(A) = a,
r(B) = b, and r(C) = c, then we write r as {A : a,B : b, C : c}.

As in Chapters 2 and 3, we also assume given a recursively enumerable set
A = {a, b, . . . } of atoms. A named complex object value v is either an atom,
a record [r] with r a row over named complex object values, or a finite set
of named complex object values. The natural join [r] 1 [s] of two records is
defined as follows:

[r] 1 [s] :=

{
{[r ∪ s]} if r(A) = s(A) for all A ∈ dom(r) ∩ dom(s)
∅ otherwise.

Note that, since r and s agree on their common attributes, r ∪ s is again a
row and [r ∪ s] is thus indeed a record.

We will abbreviate “named complex object value” by “value” in the rest
of this chapter. Furthermore, we will denote named complex object values by
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v and w, rows over named complex object values by r and s, and finite sets of
named complex object values by V and W .

Syntax The named nested relational calculus (NNRC for short) is the set of
all expressions generated by the following grammar:

e ::= x

| [ ] | [A : e] | e.A | e× e | e 1 e | π̂A(e)

| ∅ | {e} | e ∪ e |
⋃
e | {e | x ∈ e}

| e = e ? e : e

Here, e ranges over NNRC expressions, x ranges over variables, and A ranges
over attribute names. We view expressions as abstract syntax trees and omit
parentheses. The set FV (e) of free variables of an expression e is defined as
usual. That is, FV (x) := {x}, FV (∅) := ∅, FV ({e2 | x ∈ e1}) := FV (e1) ∪
(FV (e2) \ {x}), and FV (e) is the union of the free variables of e’s immediate
subexpressions otherwise.

Semantics A named complex object context σ is a function from a finite set
of variables dom(σ) to named complex object values. If dom(σ) is a superset
of FV (e), then we say that σ is a named complex object context on e. Using a
similar notation as in the previous chapters, we denote by x : v, σ the context
σ′ with domain dom(σ)∪ {x} such that σ′(x) = v and σ′(y) = σ(y) for y 6= x.

The semantics of NNRC expressions is described by means of the evalua-
tion relation, as defined in Figure 5.1. Here, we write σ |= e ⇒ v to denote
that e evaluates to value v under named complex object context σ on e. In the
rule for e1 × e2, note that dom(r1) and dom(r2) are required to be disjoint.
This implies that r1 ∪ r2 is again a function and that [r1 ∪ r2] is a record.
Further note that, in contrast to the NRC, conditional tests can compare ar-
bitrary values. Equivalently, we could have restricted conditional tests to only
compare atoms, and added an emptiness test.

Intuitively, the NNRC is the extension of the NRC to named records. It
should hence come as no surprise that the evaluation relation for the NNRC,
like the evaluation relation for the NRC, is functional, not total, and only
depends on the free variables of an expression. Indeed, it is easy to see that
the evaluation relation for the NNRC is functional. Furthermore, we can only
inspect the attributes of records, concatenate disjoint records, join records,
project out attributes of records, take the union of sets, flatten a set of sets,
and iterate over sets. Finally, it is also easy to see that the semantics of an
expression only depends on its free variables. We will write e(σ) for the unique
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value v for which σ |= e⇒ v. If no such value exists, then we say that e(σ) is
undefined.

Example 5.1. Let friends and John be two variables. Suppose that the
value of friends is a set of pairs of friends, as a set of records of the form
[{Name : a,Friend : b}] where Name and Friend are attributes. Suppose also
that the value of John is a name (an atom). The following expression computes
the set of all of John’s friends:⋃

{x.Name = John ? {x.Friend} : ∅ | x ∈ friends}.

Note 5.2. Although we have not included the analog of the relational algebra
renaming operation ρA/B, which renames the attribute A of a record to the
attribute B, such an operation is expressible in the NNRC. Indeed, ρA/B(x)
can be expressed as π̂A(x)× [B : x.A].

Type System In order to ensure that an expression evaluates to a value for
every input context in a desired set of contexts, the NNRC comes equipped
with a static type system. We will focus on a traditional homogeneous type
system, where values cannot contain heterogeneous sets. A named complex
object type is a term generated by the following pseudo-grammar:

τ ::= Atom | Record(ρ) | SetOf(τ)

Here, x ranges over variables and ρ ranges over rows of named complex object
types. A named complex object type τ denotes a set of values JτK:

• JAtomK := A,

• JRecord(ρ)K is the set of all records [r] with dom(r) = dom(ρ) and
r(A) ∈ Jρ(A)K, for every A ∈ dom(r); and,

• JSetOf(τ)K is the set of all finite sets over JτK.

We will abuse notation and do not distinguish between τ and JτK. A named
complex object type assignment Γ is a function from a finite set dom(Γ) of
variables to named complex object types. Using a similar notation as in the
previous chapters, we denote by x : τ,Γ the named complex object type assign-
ment Γ′ with domain dom(Γ) ∪ {x} such that Γ′(x) = τ and Γ′(y) = Γ(y) for
y 6= x. A named complex object type assignment Γ denotes the set of named
complex object contexts σ such that dom(σ) = dom(Γ) and σ(x) ∈ Γ(x), for
all x ∈ dom(Γ). We will abuse notation and do not distinguish between a type
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Variables

σ |= x⇒ σ(x)

Record operations

σ |= [ ] ⇒ [∅]
σ |= e⇒ v

σ |= [A : e] ⇒ [{A : v}]
σ |= e⇒ [r] A ∈ dom(r)

σ |= e.A⇒ r(A)

σ |= e1 ⇒ [r1] σ |= e2 ⇒ [r2]
dom(r1) ∩ dom(r2) = ∅
σ |= e1 × e2 ⇒ [r1 ∪ r2]

σ |= e1 ⇒ [r1] σ |= e2 ⇒ [r2]
σ |= e1 1 e2 ⇒ [r1] 1 [r2]

σ |= e⇒ [r] A ∈ dom(r)
σ |= π̂A(e) ⇒ [π̂A(r)]

Set operations

σ |= ∅ ⇒ ∅
σ |= e⇒ v

σ |= {e} ⇒ {v}
σ |= e1 ⇒ V1 σ |= e2 ⇒ V2

σ |= e1 ∪ e2 ⇒ V1 ∪ V2

σ |= e⇒ {V1, . . . , Vn}
σ |=

⋃
e⇒

⋃
{V1, . . . , Vn}

σ |= e1 ⇒ V ∀v ∈ V : (x : v, σ) |= e2 ⇒ wv

σ |= {e2 | x ∈ e1} ⇒ {wv | v ∈ V }

Conditional test

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
σ |= e3 ⇒ v v1 = v2

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
σ |= e4 ⇒ v v1 6= v2

σ |= e1 = e2 ? e3 : e4 ⇒ v

Figure 5.1: The evaluation relation for NNRC expressions.
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assignment and its denotation. Finally, if dom(Γ) is a superset of FV (e), then
we say that Γ is a named complex object type assignment on e. For conve-
nience, we will abbreviate “named complex object type” and “named complex
object type assignment” by “type” respectively “type assignment” in the rest
of this chapter.

The typing relation for the NNRC is defined in Figure 5.2. Here we write
Γ ` e : τ to indicate that expression e has type τ under type assignment Γ on
e. Note that e has at most one type under Γ, which can easily be derived from
Γ by applying the rules in an order determined by the syntax of expression e.
If Γ ` e : τ , then we call (Γ, τ) a typing of e.

We note that the type system is sound:

Proposition 5.3 (Soundness). Let e be an expression, let Γ be a type as-
signment on e, and let let τ be a type. If Γ ` e : τ , then e(σ) is defined and
e(σ) ∈ τ , for every σ ∈ Γ.

The proof is by an easy induction on e. Due to the undecidability of well-
definedness and semantic type-checking for the NNRC (cf. the undecidability
of those problems for the NRC as shown in Chapter 2), the NNRC type system
cannot be “complete” however. Indeed, there are examples of e, Γ, and τ such
that e(σ) ∈ τ for every σ ∈ Γ, but yet Γ 0 e : τ . A simple example is the
expression e0 = ∅ ? [ ] : ∅ where e0 is an expression of set type that is actually
unsatisfiable. In Chapter 2 we have studied fragments of the NRC where sound
and complete type systems do exist. In the current chapter, however, we will
continue with the full language and the present type system which, though
necessarily incomplete, is still very natural.

5.2 Type Inference

In this section we show that we can describe the set of all typings of an NNRC
expression e by a logical formula. We assume the reader to be familiar with
many-sorted first-order logic [20].

Let L be the many-sorted first-order language over the sorts {type, row} in
the signature consisting of

• a binary relation symbol = of sort (type, type);

• a binary relation symbol ⊆ of sort (row, row);

• a binary relation symbol # of sort (row, row);

• a unary function symbol Set of sort type → type;
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Variables

Γ ` x : Γ(x)

Record operations

Γ ` [ ] : Record(∅)
Γ ` e : τ

Γ ` [A : e] : Record({A : τ})

Γ ` e1 : Record(ρ1) Γ ` e2 : Record(ρ2)
dom(ρ1) ∩ dom(ρ2) = ∅

Γ ` e1 × e2 : Record(ρ1 ∪ ρ2)

Γ ` e1 : Record(ρ1) Γ ` e2 : Record(ρ2)
ρ1(A) = ρ2(A) for all A ∈ dom(ρ1) ∩ dom(ρ2)

Γ ` e1 1 e2 : SetOf(Record(ρ1 ∪ ρ2))

Γ ` e : Record(ρ) A ∈ dom(ρ)
Γ ` e.A : ρ(A)

Γ ` e : Record(ρ) A ∈ dom(ρ)
Γ ` π̂A(e) : Record(π̂A(ρ))

Set operations

τ a type
Γ ` ∅ : SetOf(τ)

Γ ` e : τ
Γ ` {e} : SetOf(τ)

Γ ` e1 : SetOf(τ) Γ ` e2 : SetOf(τ)
Γ ` e1 ∪ e2 : SetOf(τ)

Γ ` e : SetOf(SetOf(τ))

Γ `
⋃
e : SetOf(τ)

Γ ` e1 : SetOf(τ1) x : τ1,Γ ` e2 : τ2
Γ ` {e2 | x ∈ e1} : SetOf(τ2)

Conditional test

Γ ` e1 : τ Γ ` e2 : τ Γ ` e3 : τ ′ Γ ` e4 : τ ′

Γ ` e1 = e2 ? e3 : e4 : τ ′

Figure 5.2: The typing relation for NNRC expressions.
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• a unary function symbol Record of sort row → type;

• for every attribute A, a unary function symbol A : of sort type → row;

• a binary function symbol , of sort (row, row) → row.

We will interpret L in the many-sorted relational structure T where

• the universe of type is the set of all types;

• the universe of row is the set of all rows over types;

• = relates equal types;

• ⊆ relates ρ to ρ′ if ρ (as a function, i.e., a set of pairs) is a subset of ρ′;

• # relates ρ to ρ′ if dom(ρ) is disjoint with dom(ρ′);

• Set maps τ to SetOf(τ);

• Record maps ρ to Record(ρ);

• A : maps τ to the singleton row {A : τ}; and

• , is the “assymetric” concatenation operation: it maps ρ and ρ′ to the
row that equals ρ on dom(ρ) and ρ′ on dom(ρ′) \ dom(ρ).

It will be convenient to use the same set X from the syntax of the NNRC
as the set of variables of sort type in L. Variables of sort row in L will be
denoted using letters from the beginning of the Greek alphabet.

Definition 5.4. A type formula is a first-order formula in L built up from
atomic formulas using only existential quantifiers and conjunction.

Example 5.5. The following is an example of a type formula.

φ(x, y) ≡ (∃α)(∃β)x = Record(α) ∧ y = Record(β)
∧ α # β ∧ (∃z) : (A : z) ⊆ α, β.

Evaluated on the structure T, φ defines the set of all pairs of record types
(x = Record(ρ1), y = Record(ρ2)) such that dom(ρ1) ∩ dom(ρ2) = ∅ and
A ∈ dom(ρ1) ∪ dom(ρ2).

Definition 5.6. A type formula φ is principal for an NNRC expression e if

• φ contains no free variables of sort row ;
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• the free variables of sort type in φ are the free variables of e, plus one
additional variable z; and

• Γ ` e : τ if, and only if, T |= φ(z : τ,Γ).

Example 5.7. For a simple example, consider the expression e1 = x∪y. Then
the following is a principal type formula for e1:

(∃u)x = Set(u) ∧ y = Set(u) ∧ z = Set(u).

For a more complicated example, consider the expression:

e2 = {{[B : t.A]} ∪ {r × s} | t ∈ x 1 y}.

Then the following is a principal type formula for e2:

(∃α)(∃β)(∃µ)(∃ν)x = Record(α) ∧ y = Record(β) ∧ (∃β′)α ⊆ β, β′

∧ (∃α′)β ⊆ α, α′ ∧ t = Record(α, β) ∧ r = Record(µ) ∧ s = Record(ν)
∧ µ # ν ∧ (∃q)(A : q) ⊆ α, β ∧ (B : q) ⊆ µ, ν ∧ µ, ν ⊆ (B : q)

∧ z = Set(Set(Record(B : q)))

Theorem 5.8. Every NNRC expression e has a principal type formula φe, of
size linear in the size of e, and computable from e in polynomial time.

Proof. Let e be an expression and let x1, . . . , xn be the free variables of e.
Let z be a variable different from x1, . . . , xn. We construct the type formula
φe(z, x1, . . . , xn) on e by induction on e.

• If e = x, then φe := (z = x).

• If e = [ ], then e does not have any free variables. Define

φe := (∃α)z = Record(α) ∧ α # α.

• If e = [A : e′], then x1, . . . , xn are also the free variables of e′. Define

φe := (∃x0)φe′(x0, x1 . . . , xn) ∧ z = Record(A : x0).

• If e = e′.A, then x1, . . . , xn are also the free variables of e′. Define

φe := (∃α)φe′(Record(α), x1 . . . , xn) ∧ (A : z) ⊆ α.
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• If e = e1 × e2, then let {y1, . . . , yk} be the subset of {x1, . . . , xn} which
are free in e1 and let {y′1, . . . , y′l} be the subset of {x1, . . . , xn} which are
free in e2. Define

φe := (∃α)φe1(Record(α), y1 . . . , yk)
∧ (∃α′) φe2(Record(α′), y′1, . . . , y

′
l)

∧ α # α′ ∧ z = Record(α, α′).

• If e = e1 1 e2, then let {y1, . . . , yk} be the subset of {x1, . . . , xn} which
are free in e1 and let {y′1, . . . , y′l} be the subset of {x1, . . . , xn} which are
free in e2. Define

φe := (∃α)φe1(Record(α), y1 . . . , yk)
∧ (∃α′) φe2(Record(α′), y′1, . . . , y

′
l)

∧ (∃β′)α ⊆ α′, β′ ∧ (∃β)α′ ⊆ α, β

∧ z = Set(Record(α, α′)).

• If e = π̂A(e′), then x1, . . . , xn are also the free variables of e′. Define

φe := (∃α)φe′(Record(α), x1 . . . , xn) ∧ (∃β)(∃y)(A : y) # β

∧ α ⊆ (A : y), β ∧ (A : y), β ⊆ α ∧ z = Record(β).

• If e = ∅, then φe := (∃y)z = Set(y).

• If e = {e′} then x1, . . . , xn are also the free variables of e′. Define

φe := (∃x0)φe′(x0, x1, . . . , xn) ∧ z = Set(x0).

• If e = e1 ∪ e2, then let {y1, . . . , yk} be the subset of {x1, . . . , xn} which
are free in e1 and let {y′1, . . . , y′l} be the subset of {x1, . . . , xn} which are
free in e2. Define

φe := φe1(z, y1 . . . , yk) ∧ φe2(z, y′1, . . . , y′l) ∧ (∃y)z = Set(y).

• If e =
⋃
e′, then x1, . . . , xn are also the free variables of e′. Define

φe := φe′(Set(z), x1, . . . , xn) ∧ (∃y)z = Set(y).

• If e = {e2 | x ∈ e1}, then let {y1, . . . , yk} be the subset of {x1, . . . , xn}
which are free in e1 and let {x, y′1, . . . , y′l} be the subset of {x1, . . . , xn}
which are free in e2. Define

φe := (∃x)φe1(Set(x), y1, . . . , yk)
∧ (∃y′0)φe2(y′0, x, y′1, . . . , y′l) ∧ z = Set(y′0).
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• If e = e1 = e2 ? e3 : e4, then let u1, . . . , uk be the free variables of e1, let
u′1, . . . , u

′
l be the free variables of e2, let y1, . . . , yp be the free variables

of e3, and let y′1, . . . , y
′
q be the free variables of e4. Define φe as

(∃z′)φe1(z′, u1, . . . , uk) ∧ φe2(z′, u′1, . . . , u′l)
∧ φe3(z, y1, . . . , yp) ∧ φe4(z, y′1, . . . , y′q).

Clearly, φe is computable from e in polynomial time. It is easy to see that φe
is indeed a principal type formula for e and that φe is indeed of size linear in
the size of e.

5.3 Typability

Some expressions, such as for example [ ].A, x ∪ x.A, [A : x].B, and x.A 1

(x × [A : y]) do not have any typing. We will refer to such expressions as
untypable.

Definition 5.9. An NNRC expression e is called typable if there exists a type
assignment Γ on e and a type τ such that Γ ` e : τ . Deciding whether a given
expression e is typable is called the typability problem for the NNRC.

It follows from Theorem 5.8 that deciding whether an expression e is ty-
pable is equivalent to computing the principal type formula φe for e and then
deciding whether φe is satisfiable in T. We will now show that deciding the lat-
ter is in the complexity class NP. Since φe is computable from e in polynomial
time, it then follows that the typability problem is also in NP.

We first note that, since φe is an conjunctive formula, it is very easily
put in existential prenex normal form (∃x1) . . . (∃xn)ψ with ψ quantifier free.
Clearly, φe is satisfiable in T if, and only if, ψ is. We will therefore restrict
our attention to quantifier free type formulas.

Definition 5.10. The set Specattrs(φ) of a type formula φ is the set of at-
tributes A for which a term of the form A : t occurs in φ.

Definition 5.11. The restriction ρ|S of a row ρ to a set of attributes S is
the row ρ′ with domain dom(ρ)∩ S such that for each A ∈ dom(ρ)∩ S, ρ′(A)
is the restriction of the type ρ(A) to S. Here, the restriction τ |S of a type τ
to S is the type obtained from τ by restricting every row occurring in τ to
S. So, this is a recursive definition. In addition, we define the restriction h|S
of a valuation h to S as the valuation h′ such that h′(x) = h(x)|S for every
x ∈ dom(h).
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Lemma 5.12. If φ is a type formula and h is a valuation such that T |= φ(h),
then also T |= φ(h|Specattrs(φ)).

Proof. It is easy to see by induction on t that, for any term t in L we have
h|Specattrs(φ)(t) = h(t)|Specattrs(φ). The lemma then follows by an easy induction
on φ.

Theorem 5.13. Deciding satisfiability in T of a quantifier free type formula
is in NP.

Proof. Let ψ be a quantifier free type formula. Let, for every attribute name
A and every variable α of sort row in ψ, xαA be a distinct type variable not in
ψ. An attribute assignment on ψ is a function f which maps each variable α
of sort row in ψ to a term in L of sort row of the form

A : xαA, . . . , B : xαB

where {A, . . . , B} ⊆ Specattrs(ψ). Note that, in particular, the size of f
is polynomial in the size of ψ. Let ψf be the quantifier-free type formula
obtained from ψ by replacing each variable α of sort row in ψ by the term
f(α). Clearly, ψf can be computed from e in polynomial time.

We now claim that ψ is satisfiable in T if, and only if, there exists an
attribute assignment f on ψ such that ψf is satisfiable in T. Indeed, suppose
that ψ is satisfiable in T. By Lemma 5.12 there exists a valuation h of ψ such
that T |= ψ(h) and such that dom(h(α)) ⊆ Specattrs(ψ), for all variables α of
sort row in ψ. Then let f be the attribute assignment on ψ defined by

f(α) := A : xαA, . . . , B : xαB

where dom(h(α)) = {A, . . . , B}. Let hf be the valuation on ψf which equals
h on type variables in ψ and for which hf (xαA) = h(α)(A). It is easy to see
that T |= ψf (hf ).

Conversely, suppose that there exists an attribute assignment f on ψ such
that ψf is satisfiable in T. Then let hf be a valuation of ψf such that T |=
ψf (hf ). Let h be the valuation on ψ which equals hf on the type variables
in ψ and for which h(α) is the row ρ with domain {A, . . . , B} where f(α) =
A : xαA, . . . , B : xαB such that ρ(A) = hf (xAα ). It is easy to see that T |= ψ(h).

Hence, in order to check satisfiability of ψ, it suffices to guess an attribute
assignment on ψ (which is polynomial in the size of ψ) and check whether ψf
is satisfiable. The latter can be done in polynomial time, as we show in the
following theorem.

Theorem 5.14. Satisfiability in T of quantifier free type formulas without
variables of sort row can be decided in polynomial time.
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Proof. Let ψ be a quantifier free type formula without variables of sort row.
Since ψ is a conjunction of atomic formulas, we can view ψ as a set of atomic
formulas. Moreover, since there are no variables of sort row in ψ, every term of
sort row in ψ is of the form A : t, . . . , B : t′. We assume without loss of general-
ity that an attribute occurs at most once in such a term. Indeed, for example
the term A : x,B : y,A : z, C : u is equivalent to the term A : x,B : y, C : u.
Without loss of generality we will then treat such terms as rows over terms of
sort type. Let ψ1 be the subset of ψ defined by

ψ1 := {u1 # u2 | (u1 # u2) ∈ ψ} ∪ {u1 ⊆ u2 | (u1 ⊆ u2) ∈ ψ}.

Let ψ2 be defined by

ψ2 := {t1 = t2 | (t1 = t2) ∈ ψ}
∪ {u1(A) = u2(A) | (u1 ⊆ u2) ∈ ψ and A ∈ dom(u1) ∩ dom(u2)}.

It is clear that ψ1 and ψ2 can be computed from ψ in polynomial time. Let us
call ψ1 consistent if for every u1 # u2 in ψ1 we have dom(u1) ∩ dom(u2) = ∅
and for every u1 ⊆ u2 we have dom(u1) ⊆ dom(u2).

We claim that ψ is satisfiable in T if, and only if, ψ1 is consistent and
ψ2 is satisfiable in T. Indeed, it is easy to see that if ψ is satisfiable, then
ψ1 must be consistent. Furthermore, if h is a valuation for which T |= ψ(h),
then h(t1) = h(t2) for every t1 = t2 in ψ and h(u1)(A) = h(u2)(A) for every
u1 ⊆ u2 in ψ and every A ∈ dom(u1) ∩ dom(u2). Hence, T |= ψ2(h).

Conversely, suppose that ψ1 is consistent and that ψ2 is satisfiable in T.
Let h be a valuation such that T |= ψ2(h). Then h(t1) = h(t2) for every
t1 = t2 in ψ. Furthermore, since dom(u1) ∩ dom(u2) = ∅ for every u1 # u2

in ψ (as ψ1 is consistent), and since there are no variables of sort row in ψ,
it follows that dom(h(u1)) ∩ dom(h(u2)) = ∅ for every u1 # u2 in ψ. Finally,
since dom(u1) ⊆ dom(u2) for every u1 ⊆ u2 in ψ (as ψ1 is consistent) and
since h(u1(A)) = h(u2(A)) for every A ∈ dom(u1) ∩ dom(u2) (as T |= ψ2(h)),
it follows that h(u1) ⊆ h(u2) for every u1 ⊆ u2 in ψ. Hence, T |= ψ(h).

In order to check satisfiability of ψ, it hence suffices to check consistency
of ψ1 and satisfiability of ψ2. Consistency of ψ1 can clearly be checked in
polynomial time. We now show that satisfiability of ψ2 in T can also be
checked in polynomial time. Let ≺ be some arbitrarily fixed order on the
special attributes of ψ2. We assume without loss of generality that every
term of sort row in ψ2 is of the form (A1 : t1), (A2 : t2), . . . , (Am : tm) with
A1 ≺ A2 ≺ · · · ≺ Am (as such terms can clearly be reordered in polynomial
time without affecting satisfiability otherwise). Note that ψ2 is simply a set
of equations between terms of sort type. It is then easy to see that checking
satisfiability of ψ2 in T amounts to finding a substitution θ of variables in ψ2
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to terms in L of sort type such that θ(t1) and θ(t2) are syntactically equal for
every equation t1 = t2 in ψ2. Hence, satisfiability of ψ2 reduces to finding a
unifier of every equation in ψ2, which is known to be decidable in polynomial
time [4, 36, 48].

The complexity upper bound of NP provided by Theorem 5.13 is actually
tight:

Proposition 5.15. Typability for the NNRC is NP-complete.

Proof. Since typability of an expression e is equivalent to computing the type
formula φe for e and then deciding whether φe is satisfiable in T, it follows
from Theorems 5.8 and 5.13 that typability for the NNRC is in NP.

We already know that typability for the relational algebra is NP-complete
from Chapter 4. Furthermore, it is well-known that the relational algebra can
be simulated in the NNRC [9, 60]. It is not difficult to see that this simulation
preserves typability. Hence, typability for the NNRC is also NP-complete.

By the reduction of typability of an NNRC expression to satisfiability in
T of a type formulas it also follows:

Corollary 5.16. Deciding satisfiability in T of a type formula is NP-complete.



6
Conclusions

In this dissertation we have studied problems related to the static detection
of programming errors in database query languages. Such errors are perhaps
even more critical for databases than for programming languages. Indeed, if
a runtime error occurs during a transaction, an expensive recovery procedure
has to be invoked to keep the database in a consistent state.

To detect such programming errors as early as possible, we have studied
the well-definedness and semantic type-checking problems in the context of
database query languages. Specifically, we have shown the well-definedness
and semantic type-checking problems to be undecidable in general. In Chap-
ter 3 we have identified several sources of undecidability for well-definedness:
(1) non-monotonic behavior; (2) interpretation of atomic data values; (3) non-
local behavior; or (4) non-local undefinedness behavior. In contrast, when we
restricted our set of base operations to include only monotone, generic, local,
and locally-undefined base operations, well-definedness became decidable. Al-
though these results were obtained for first-order, object-creating languages
interpreted in a tree-structured, list-based data model, we are confident that
they can easily be transfered to first-order languages interpreted in other data
models. For example, if we adapt the notion of a monotone, generic, local
and locally-undefined base operation to a bag-based data model, then it is not
hard to see that we can obtain equivalent versions of Propositions 3.25, 3.27,
3.44, and 3.45. Hence, the well-definedness problem remains decidable in this
case.

From a practical point of view, however, it is clear that the number of
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possible counter-examples we need to check according to the decision proce-
dure outlined in the proofs of Theorems 2.8 and 3.46 can grow huge very fast.
A future study of the computational complexity of well-definedness is hence
desirable in order to obtain a practical algorithm.

Since both the well-definedness problem and the semantic type-checking
problem are undecidable for database query languages that are expressive
enough to simulate the relational algebra, a sound and complete type system
for such languages does not exist. This observation can be seen as a formal
motivation for the common use of incomplete static type systems in database
query languages such as SQL, OQL, and XQuery. Nevertheless, it would
be interesting to see if a hybrid approach can be made to work in practice:
use the well-definedness and semantic type-checking decision procedures when
possible, and use the static type system otherwise.

We have also studied classic problems from the theory of programming
languages, such as type inference and typability, in the context of database
query languages. Specifically, we have shown that typability is NP-complete
for the relational algebra, even under various restrictions. On the positive
side, typability does not become more complex when we move from the flat
relational algebra to the named nested relational calculus.

Compared to the Exptime-completeness of typability for ML [31, 34], the
NP-completeness of typability for the relational algebra or the NNRC may not
seem that bad. It is important to note, however, that the relational algebra
and the NNRC are essentially simply typed languages, i.e., languages without
parametric polymorphism [42, 49]. It is exactly this feature that causes the
typability problem for ML [31, 34] to be Exptime-hard. The correct pro-
gramming language to compare against is therefore the simply typed lambda
calculus, for which typability is P-complete [19].
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Samenvatting

De operaties van algemene programmeertalen zoals C of Java zijn slechts op
bepaalde invoeren gedefinieerd. Zo is bijvoorbeeld de array-indexatie a[i] en-
kel gedefinieerd wanneer i binnen het bereik van de array a ligt. Wanneer,
gedurende de uitvoering van een programma, een operatie uitgevoerd wordt
op een foutieve invoer, dan is de uitvoer van het programma ongedefinieerd.
Inderdaad, in dat geval stopt het programma met een uitvoeringsfout of, nog
erger, berekent het een onjuist resultaat.

Om zulke programmeerfouten zo vroeg mogelijk te detecteren is het in-
teressant om na te gaan of we het welgedefinieerdheidsprobleem algoritmisch
kunnen oplossen. Dit probleem bestaat er uit om, gegeven een expressie en een
invoertype, te beslissen of de semantiek van de expressie gedefinieerd is voor
elke invoer in het invoertype. Volgens de stelling van Rice is dit probleem
jammer genoeg onbeslisbaar. De meeste programmeertalen bieden daarom
een statisch typesysteem aan om bovenstaande programmeerfouten te detecte-
ren [42, 49]. Deze typesystemen verzekeren “typeveiligheid” in de zin dat elke
expressie die door het typesysteem aanvaard wordt gegarandeerd welgedefini-
eerd is. Wegens de onbeslisbaarheid van het welgedefinieerdheidsprobleem zijn
deze typesystemen noodzakelijkerwijze incompleet: er zijn welgedefinieerde ex-
pressies die niet door het typesysteem aanvaard worden. Zulke expressies zijn
problematisch vanuit het standpunt van de programmeur, aangezien hij zijn
code moet herschrijven vooraleer die door het typesysteem aanvaard wordt.
In de theorie der programmeertalen is men dan ook steeds op zoek naar type-
systemen waarvoor de verzameling van welgedefinieerde maar niet-aanvaarde
expressies zo klein mogelijk is.

Alhoewel de heilige graal in deze zoektocht (met name, een typesysteem
dat precies alle welgedefinieerde expressies aanvaardt) onvindbaar is voor al-
gemene programmeertalen, is dat niet noodzakelijk zo voor gespecialiseerde
gegevensbanktalen zoals SQL [40], OQL [11] en XQuery [6].1 Ook in deze ta-

1XQuery is in principe een volledige programmeertaal. De meeste XQuery programma’s
zijn echter van de vorm “for-let-where-return”, wat we als de gegevensbankstaal van XQuery
beschouwen.
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len kunnen expressies ongedefinieerd zijn. Beschouw bijvoorbeeld de volgende
OQL expressie:

select author: element(b.authors), title: b.title
from books b
where b.pub_year > 2000

Deze expressie zal voor elk boek dat na het jaar 2000 gepubliceerd is de auteur
en titel teruggeven. De deelexpressie element(b.authors) gaat na dat het
boek b door precies één auteur geschreven is. Indien dat zo is wordt deze
unieke auteur teruggegeven, anders is het resultaat van deze deelexpressie
ongedefinieerd.

Aangezien gegevensbanktalen een beperktere uitdrukkingskracht hebben
dan algemene programmeertalen is de stelling van Rice niet op hen van toe-
passing. Bijgevolg is het interessant om na te gaan of het welgedefinieerd-
heidsprobleem voor zulke talen beslisbaar is. In dit proefschrift bestuderen we
daarom het welgedefinieerdheidsprobleem voor gegevensbanktalen. We begin-
nen onze studie met welgedefinieerdheid voor de geneste relationele calculus
(afgekort als NRC). De NRC is een canonieke gegevensbanktaal voor het com-
plexe object datamodel [1, 9, 60]. Het is een conservatieve extensie [59] van
de relationele algebra (dewelke het hart van SQL vormt), en kan zelf gezien
worden als het hart van OQL. Bovendien inspireerde de NRC ook het ontwerp
van verscheidene gegevensbanktalen voor semi-gestructureerde data zoals Un-
QL [8], StruQL [21], en Quilt [13] waarop XQuery gebaseerd is. Onze studie
van welgedefinieerdheid voor de NRC is dan ook een goed startpunt voor de
studie van welgedefinieerdheid in SQL, OQL en XQuery.

Concreet gezien bestuderen we het welgedefinieerdheidsprobleem voor de
NRC in het standaard, verzamelingengebaseerde, complexe object datamo-
del [1, 9, 60]. We tonen aan dat het probleem onbeslisbaar is voor de NRC in
zijn algemeenheid, maar beslisbaar wordt wanneer we ons beperken tot diens
positief existentieel fragment (dewelke we als PENRC afkorten). Vervolgens
bestuderen we welgedefinieerdheid voor de PENRC in de aanwezigheid van
extract, een operator die, net zoals OQL’s elementoperator, ongedefinieerd is
op niet-singleton verzameling invoeren. We tonen aan dat deze operator het
welgedefinieerdheidsprobleem opnieuw onbeslisbaar maakt. Tenslotte bestu-
deren we het welgedefinieerdheidsprobleem voor de PENRC in de aanwezigheid
van typetesten, die onder andere in XQuery voorkomen. Aan de hand van zul-
ke testen kan men tijdens de uitvoering van een programma het type van een
waarde inspecteren. We tonen aan dat ook typetesten het probleem opnieuw
onbeslisbaar maken. We identificeren wel een beperkte vorm van typetesten
waarvoor het probleem beslisbaar blijft.
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Bepaalde eigenschappen van OQL en XQuery zijn echter niet aanwezig
in de standaard, verzamelinggebaseerde NRC. Inderdaad, OQL werkt ook op
bags en lijsten, terwijl XQuery op lijsten werkt. Beide talen bezitten ob-
jectidentiteit en de mogelijkheid om nieuwe objecten aan te maken. Daar-
om bestuderen we ook welgedefinieerdheid voor een familie QL(B) van ge-
gevenbanktalen die in een boomgestructureerd, lijstengebaseerd datamodel
gëınterpreteerd worden. Hierbij is B een verzameling van basisoperaties (zoals
een gelijkheidstest, het berekenen van de kinderen van een bepaalde knoop in
een boom, . . . ). De gegevensbanktaal QL(B) wordt dan bekomen door aan
B variabelen, constanten, conditionele testen, variabelebindingen en iteratie
toe te voegen. Als dusdanig is elke QL(B) een eerste orde objectcreërende
gegevensbanktaal. We identificeren eigenschappen van basisoperaties die het
welgedefinieerdheidsprobleem mogelijkerwijze onbeslisbaar maken en stellen
beperkingen voor die beslisbaarheid garanderen. De behaalde resultaten zijn
rechtstreeks toepasbaar op OQL en XQuery.

Een probleem dat gerelateerd is met welgedefinieerdheid is het semantisch
typeberekeningsprobleem. Dat probleem bestaat er uit om, gegeven een ex-
pressie, een invoertype en een uitvoertype, na te gaan of de expressie enkel
resultaten in het uitvoertype produceert wanneer we ze evalueren op invoe-
ren in het invoertype. Het semantisch typeberekeningsprobleem is nuttig in
een “producent-consument” scenario waarin een producent data genereert, de-
welke verwerkt wordt door een consument. Om een goede communicatie te
verzekeren mag de producent enkel data behorende tot een zeker type pro-
duceren. Spijtig genoeg is dit probleem ook onbeslisbaar voor algemene pro-
grameertalen volgens de stelling van Rice. In de praktijk is de producent
echter vaak een expressie in een gegevensbanktaal. Het is daarom nuttig om
het semantisch typeberekeningsprobleem voor gegevensbanktalen te onderzoe-
ken. In dit proefschrift doen we dat voor de NRC. Voor XQuery en andere
XML-gerelateerde gegevensbanktalen werd dat probleem reeds uitvoerig be-
studeerd [2, 3, 37, 38, 41, 52]. We tonen aan dat ook het semantisch type-
berekeningsprobleem onbeslisbaar is voor de NRC in zijn algemeenheid, maar
beslisbaar wordt voor de PENRC.

Aangezien zowel het welgedefinieerdheidsprobleem als het semantisch ty-
peberekeningsprobleem in het algemeen onbeslisbaar blijven voor gegevens-
banktalen, volgt hieruit dat ook in gegevensbanktalen de detectie van pro-
grammeerfouten door middel van een incompleet statisch typesysteem moet
gebeuren. In het tweede gedeelte van dit proefschrift bestuderen we daarom
klassieke problemen voor typesystemen in de context van gegevensbanktalen.

Vooreerst bestuderen we de complexiteit van typeerbaarheid voor de re-
lationele algebra. Dat probleem bestaat er uit om, gegeven een relationele
algebra-expressie, na te gaan of de expressie door het statisch typesysteem
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van de relationele algebra aanvaard wordt. Typeerbaarheid in de relationele
algebra is het equivalent van typechecking in impliciet getypeerde program-
meertalen met polymorfe typesystemen, zoals ML [55] en Haskell [30]. Het
is daarom ook interessant om na te gaan wat de complexiteit ervan is. Zo is
het bijvoorbeeld bekend dat typeerbaarheid voor de simpel getypeerde lamb-
da calculus P-compleet is, terwijl het Exptime-compleet is voor ML [31, 34].
Van den Bussche en Waller hebben reeds aangetoond dat typeerbaarheid voor
de relationele algebra in NP zit. De precieze complexiteit was echter onbe-
kend. We tonen aan dat het probleem in zijn algemeenheid NP-compleet is.
In het bijzonder tonen we aan dat het probleem NP-hard wordt door (1) de
productoperator; (2) de selectie-operator op willekeurige verzamelingen van
getypeerde predikaten; en (3) de selectie-operator op “brave” verzamelingen
van getypeerde predikaten tezamen met join en projectie of hernoeming. Het
probleem zit in P wanneer (1) we enkel unie, verschil, join en selectie op “bra-
ve” verzamelingen van getypeerde predikaten toelaten; of (2) we alle operaties
behalve product toelaten en de verzameling van selectiepredikaten ten hoogste
één basistype vermeldt. De meeste van deze resultaten volgen uit een hecht
verband van typeerbaarheid met niet-uniforme constraint-satisfaction.

Vervolgens bestuderen we het statisch typesysteem van de genaamde ver-
sie van de geneste relationele calculus (afgekort als NNRC). De basisoperaties
van de NNRC zijn polymorf ten opzichte van dit typesysteem. Zo kunnen we
het attribuut A inspecteren van eender welk record, zolang dat een attribuut
A bevat. We kunnen het product nemen van eender welke twee records, zo-
lang hun verzameling van attributen disjunct is. We kunnen de unie nemen
van eender welke twee verzamelingen van hetzelfde type. Deze typeringsvoor-
waarden worden complexer wanneer we operators in expressies combineren.
Beschouw bijvoorbeeld de expressie {(x×y).A | x ∈ R}. Opdat deze expressie
door het typesysteem van de NNRC aanvaard zou worden moet R een verza-
melingtype hebben dewelke het type van x bevat; moeten x en y recordtypes
hebben wiens verzamelingen van attributen disjunct zijn; en moet één van
deze verzamelingen van attributen A bevatten.

Dan stelt zich de vraag onder welke toekenningen van types aan de vrije
variabelen van een NNRC-expressie e de expressie door het typesysteem aan-
vaard wordt. En wat is het overeenkomstige type van de expressie onder deze
toekenningen? Kunnen we in het bijzonder een expliciete beschrijving geven
van deze, typisch oneindige, verzameling van typeringen? Dit probleem is
niets anders dan de NNRC-versie van het klassieke type-inferentie probleem.
Type-inferentie is een uitvoerig bestudeerd onderwerp in de theorie van pro-
grammeertalen [42, 49] en wordt in geavanceerde functionele programmeerta-
len zoals ML [55] en Haskell [30] gebruikt.

In dit proefschrift stellen we een expliciete beschrijving van de verzameling
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van alle mogelijke typeringen van een NNRC-expressie e voor door middel van
een conjunctieve logische formule φe dewelke in het universum van alle mo-
gelijke types gëınterpreteerd wordt. Deze formule φe is efficiënt berekenbaar
uit e. Vervolgens tonen we aan dat het satisfiability-probleem van zulke con-
junctieve formules in NP zit. Hieruit volgt dat typeerbaarheid voor de NNRC
ook in NP zit. Aangezien de NNRC een uitbreiding is van de relationele al-
gebra, waarvoor typeerbaarheid reeds NP-compleet is, is typeerbaarheid voor
de NNRC dus niet moeilijker dan voor het speciale geval van de relationele
algebra.




