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1
Introduction

1.1 Introduction to this Thesis

Most real world phenomena and events have a (possibly time-dependent) spatial ex-
tent, and are relevant during some period of time, as is illustrated by the following
examples. Summer in the northern hemisphere lasts from June until September. A
big rain cloud is located above Belgium on May 1st, and above Germany on May 11th.
Mr. Meylemans was living in Aarschot from 2001 until 2004. Nevertheless, in data-
base research, spatial databases and temporal databases had been studied already for
several years, before the need for spatio-temporal databases was recognized.

In 1993, the “Specialist Meeting on Time in Geographic Space” [23] was organized
with the aim of composing a research agenda for the newly-founded spatio-temporal
databases field. During that meeting, several remarks were made and questions for-
mulated on the nature of space and time. We concentrate on the research agenda for
spatio-temporal data modelling (on an abstract level) and query language design.

Spatio-temporal data modelling questions.

Question 1: Which spatial, temporal and spatio-temporal reference frames should be
used? For representing spatial information, sometimes topological relations between
spatial objects give sufficient information, while at other occasions metric information
is necessary. Is there a difference in using an absolute versus a relative time frame?

Question 2: Can the same rules be applied for the space and time dimensions?
Remark on Question 2: In natural language, time seems to be more restricted than
space, and, there exists more terms to describe spatial relationships than to describe
temporal relationships.

1



2 Introduction

Spatio-temporal query language design questions.

Question 3: What are relevant spatio-temporal relations and operations?

Question 4: Does there exists a finite set of such relations and operations?

Question 5: Is it sufficient to combine purely spatial operations with purely temporal
ones to construct a spatio-temporal query language?

At the moment of the specialist meeting, Question 1 and 3 were not solved yet
for spatial databases. In 1994, Paredaens, Van den Bussche and Van Gucht [58]
suggested a solution to this problem. They introduced the concept of genericity of
spatial (constraint) database queries, a concept well-known in classical database the-
ory [11]. A generic query asks only for properties that are shared by “isomorphic”
encodings of the same data, or, in other words, the result of a generic query de-
pends only to a certain limited extent on the actual internal representation of the
database it is applied to. Whereas Chandra and Harel [11] considered the group of
the isomorphisms (that possibly fix some elements of the domain) in the case of re-
lational databases, Paredaens, Van den Bussche and Van Gucht identified different
geometrical and topological transformation groups (affinities, isometries, homeomor-
phisms, etc.) for spatial database applications. Gyssens, Van den Bussche and Van
Gucht [43] afterwards defined finite sets of spatial predicates yielding (first-order
and computationally) complete languages for the various spatial genericity classes or
transformation groups.

The above two articles [58, 43], although they were a big step towards solving
Questions 1 and 3, did not receive much attention in the spatio-temporal database
community. In fact, those questions were not addressed at all, except for the Mur-
Mur [60] project, where the problem of multiple representations for the same data was
acknowledged. We generalized the notion of genericity to spatio-temporal databases.
This is the main topic of Chapter 4.

We observed that the transformations should first and foremost respect the mo-
notone and unidirectional nature of time, i.e., leave the temporal order of events
unchanged. Remark that this is a very natural restriction. It follows that the rele-
vant transformation groups are the product of a group of time-(in)dependent spatial
transformations and a group of monotone increasing transformations of the time-
component of the spatio-temporal data. Next, we focus on the time-independent
spatial transformation groups and study which of them leave different spatial and
spatio-temporal properties (like collinearity, distance and orientation) unchanged. We
specifically focus on transformation groups that preserve physical properties of spatio-
temporal data, like velocity and acceleration. This last one is particularly interesting
because it preservers all laws of classical mechanics. We also defined several time-
dependent transformation groups as possible genericity classes. They become useful
whenever a spatio-temporal event is watched by a moving observer.

We study the notion of spatio-temporal genericity relative to two popular query
languages in the constraint model: first-order logic over the reals (FO) and an ex-
tension of this logic with a while-loop (FO + While). Both languages are known to
be effectively computable (given termination in the case of FO + While-programs)
and FO + While is known to be a computationally complete language on constraint
databases [71]. First, we show that all the genericity classes are undecidable. We
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Figure 1.1: Three snapshots are shown of a fixed, light shaded rectangle and a trans-
lating white rectangle. Their intersection is the scaling dark shaded rectangle.

show that the considered classes of generic first-order queries are recursively enumer-
able, however. Hereto, we define first-order point-based languages in which variables
are assumed to range over points in (Rn × R) and which contain certain point pred-
icates (such as Between and Before). These point-based languages are shown to
be sound and complete for the first-order queries in the considered genericity classes.
We have also shown that extensions of these point-based logics with a While-loop
give sound and complete programming languages for the computable queries in the
different genericity classes.

It turns out, however, that the generic spatio-temporal query languages we pro-
posed in Chapter 4 are not very intuitive, and hence not of great practical use. As the
data model we used initially was the constraint model, where spatio-temporal data
are semi-algebraic sets, we investigate a simpler data model in Chapter 5. In 1999,
Chomicki and Revesz proposed an object-based data model, based on Worboys’ uni-
fied objects [74]. They represented spatio-temporal information as a set of geometric
objects. A geometric object is a structure containing a spatial reference object, a time
interval and a time-dependent transformation function. Chomicki and Revesz also
proposed several possible classes of geometric objects.

The first requirement for any spatio-temporal data model is closure under certain
operations. A class of objects is closed under an operation if the result of applying that
operation on any member of that class again is an object of that class. The class of
translating rectangles, for example is not closed under intersection. Figure 1.1 shows
some snapshots of two translating rectangles and their intersection at several time
moments during their movement. The intersection clearly is not a translating, but a
“scaling” rectangle. In Chapter 5, we investigate the closure under union, intersection
and set difference of a wide range of classes of geometric objects. The conclusion is
that only few classes are closed, and hence are suitable to model spatio-temporal data.
The most promising is the most general class, that contains all geometric objects that
have a triangle as reference object and are transformed by a time-dependent affinity
with coefficients that are rational functions of time.

In the geometric model, a spatio-temporal object is a finite union of geometric ob-
jects. Here, the need for a normal form becomes clear. For spatial data, triangulations
are used as a normal form. Figure 1.2 shows the triangulations of two star-shaped
figures. For spatio-temporal data, a formal definition of spatio-temporal partitions
was proposed by Erwig and Schneider [29]. However, they do not give a concrete
example of such a spatio-temporal partition or partitioning method.

Affine-invariance, or, independence of the choice of coordinate system, is an im-
portant concept in computer vision, where recognizing pictures that are the same
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Figure 1.2: The triangulations of a star shape (left) and of an affine transformation
of the star shape (right).

up to an affinity is an important issue. In computer graphics, an affine-invariant
norm and triangulation have been developed by Nielson [56]. The motivation behind
the importance of affine-invariance, is the so-called weak perspective assumption [65].
This is the assumption that when an object is repeatedly photographed from dif-
ferent viewpoints, and the object is relatively far away form the camera, that all
pictures of the object are affine images of each other. We generalize this assumption
for spatio-temporal objects as follows. If a spatio-temporal event is filmed by two
moving observers, relatively far away from the event, then both films will be the same
up to a time-dependent affinity. For each time moment, another affinity maps the
snapshots of the different movies onto each other.

In Chapter 6, we develop a new affine-invariant triangulation method for spatial
data and use it to construct an affine-invariant spatio-temporal triangulation of a set
of geometric objects. Figure 1.2 shows an affine-invariant spatial triangulation. We
show that a finite set of geometric objects of the above mentioned most general class
can be converted into a normal form, which is a spatio-temporal partition, with the
relaxation that elements of the partition are allowed to share boundaries. This normal
form partitions the time domain of a finite set of geometric objects in such a way that
for each element in this time partition, the snapshots have the “same” triangulation.
As far as we know, this is the first time a concrete spatio-temporal partitioning method
is proposed. We analyze the computational and output complexity of both methods.

In Chapter 7, we go back to the constraint model, and consider collections of
triangles that can be represented in the constraint model. We develop triangle-based
spatial and spatio-temporal affine-generic query languages. Those languages have the
same expressive power as the ones we proposed in Chapter 4, but are more intuitive,
as they allow the user to express relations between spatial or moving triangles instead
of relations on the points that compose some spatio-temporal object. We find out
that the language for spatial triangle databases that we develop, containing only one
predicate, PartOf, can be extended to a language over more general, convex objects.
This is in line with the work of Aiello and van Benthem [3, 4] on modal spatial
logics. They first propose a topological modal logic over regions, which can express
“connectedness” and “parthood”. By adding a “convexity” operator (expressed using
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a “betweenness” operator), they obtain an affine modal logic. In [4], the authors also
motivate the use of finite unions of convex sets as basic elements for spatial reasoning.
They argue that it is a very natural way for people to reason about objects. A fork,
for example will be described as the union of its prongs and its handle.

1.2 Outline of this Thesis

This thesis is organized as follows. We start, in Section 1.3 with a brief overview on
related work. Next, in Chapter 2, we introduce some notation, and give preliminary
definitions and properties, that will be used in later chapters. In Chapter 3, the con-
straint database model is explained and the query languages FO and FO + While are
described. We also introduce the concept of genericity. Afterwards, spatio-temporal
databases and queries are defined within the constraint model. A hierarchy of gener-
icity classes relevant in the context of spatio-temporal databases is identified, and
languages expressing queries generic for those classes are proposed in Chapter 4. Af-
ter studying spatio-temporal data in its most general form (as permitted within the
constraint model) and appropriate query languages, we consider a more concrete data
model, motivated by spatio-temporal practice. This object-based parametric spatio-
temporal data model is introduced in Chapter 5. For a wide range of classes of objects,
closure under Boolean set operations is investigated. A normal form for parametric
spatio-temporal data is developed next. The first part of Chapter 6 contains a new
affine-invariant spatial triangulation method. This triangulation is then extended to a
spatio-temporal triangulation, in the second part of the same chapter. Triangle-based
logics for both spatial and spatio-temporal databases are proposed in Chapter 7. We
end with some concluding remarks in Chapter 8. A summary in Dutch concludes this
thesis.

1.3 A Short History of Spatio-temporal Database
Research

In this chapter, we describe, in short, the history of the field of spatio-temporal data-
bases. Although we included most of the research important in relation to our work,
we make no claim to be exhaustive. A taxonomy of spatio-temporal applications
ranging from those that rely on a step-wise constant geometry to applications which
need a more complete integration of space and time (like for instance a continuous
description of a trajectory) can be found in Erwig et al. [27]. Although the field of
spatio-temporal databases and the related field of temporal GIS (Geographic Informa-
tion Systems) have the same origin and the research questions in both fields overlap,
they use rather different approaches. In (temporal) GIS on the one hand, the starting
point often is a specific problem that cannot be modelled using existing technologies.
In spatio-temporal databases, on the other hand, research mostly originates from a
more general research question. As a result, the solution is more general than the
solutions found in temporal GIS research, but as a consequence it is also more ab-
stract. Within spatio-temporal databases, research already has been done in a broad
range of areas, including data modelling, query language design, query processing,
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indexing, data mining and dealing with uncertain or incomplete information. As the
main topic of this thesis is modelling and querying spatio-temporal databases, we will
restrict ourselves to an overview of related research on this topic only.

In the early nineties, when research on spatial databases [1, 9, 26, 38, 41, 64, 66]
and GIS was flourishing, questions arose about the role of time in GIS. In 1993, the
“Specialist Meeting on Time in Geographic Space” [23] was organized by Research
Initiative 10 from the U.S. National Center for Geographic Information and Analysis
(NCGIA). This Research Initiative 10 was a research project of the NCGIA titled
“Spatio-temporal Reasoning in GIS”; its co-leaders were Egenhofer and Golledge.
The main goal of the Specialist Meeting was

“to formulate a research agenda for spatio-temporal reasoning about geographic space.
Such reasoning methods should be implementable in a GIS.”

A summary of the discussions at the meeting and the identified research questions
can be found in a technical report of the NCGIA [23].

One of the participants of the Specialist Meeting was Worboys, who in 1994 pro-
posed the first spatio-temporal database model [74]. He defined a spatio-temporal
database as a collection of unified objects, that have a spatial extent (a point, line
segment or triangle) and a temporal extent (a time interval). As the spatial and
temporal extent are completely independent of each other, only piecewise constant
movement can be represented. Chomicki and Revesz [14] propose an extension of this
model, where objects also have a spatio-temporal component. We will discuss this
parametric model in depth in Chapter 5.

In 1996, the CHOROCHRONOS research network [31], a cooperation between ten
European institutes was started. The objective of this network was to work together
on “Spatial and Temporal Databases”. Its main technical goal was

“to study the issues involved in the design and implementation of a STDBMS (Spatio-
temporal Database Management System) and to propose an STDBMS architecture”.

To achieve this goal, research was subdivided into six tasks:

(i) Ontology and Representation for Space and Time,

(ii) Models and Languages for STDBMS,

(iii) Graphical User Interfaces for Spatio-temporal Information,

(iv) Query Processing in Spatio-temporal Databases,

(v) Storage Structures and Indexing Techniques for Spatio-temporal Databases and

(vi) The Architecture of an STDBMS.

In 2003, an overview of the realizations of CHOROCHRONOS was published [48].
We summarize the main achievements of the CHOROCHRONOS network with re-
spect to the second task, Models and Languages for STDBMS.

Two approaches towards spatio-temporal data modelling were explored, an ap-
proach based on data types and one based on constraint databases. We start with
the data type approach [39]. A set of base, spatial, temporal and spatio-temporal
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data types is proposed. The (two-dimensional) spatial data types are point, points
(a finite set of points), line (a finite set of continuous curves) and region. Time is to
be considered linear and continuous. A type constructor named moving exists that,
given any type α, yields a mapping from time to α. Examples of types that can be
constructed this way are moving(point) and moving(region). Next to a set of data
types, a set of spatial operations is proposed, that can be lifted to spatio-temporal
operators. For example, the intersection operator defined on a region and a point can
be lifted in such a way that it can compute the spatio-temporal intersection between
a moving(region) and a point, a moving(point) and a region or a moving(region) and
a moving(point). Those operations are embedded in an SQL-like language. The set
of data types is fixed, but the user is allowed to define new operations using those
data types.

A discrete implementation of this data type approach was proposed. Here, the
data type line is implemented as a set of line segments, the data type region as
a collection of polygons with polygonal holes, etc. A moving(region) is allowed to
change in such a way that its 3-dimensional representation is a polyhedron. As further
work the construction of a set of spatio-temporal predicates [30], based on the well-
known set of eight topological spatial predicates [25] is proposed. Also, the need for
spatio-temporal partitions [28, 29], spatial partitions that are preserved over time, is
recognized.

The second approach of the CHOROCHRONOS network towards spatio-temporal
data modelling is the constraint database approach. We will explain the constraint
database paradigm in Chapter 3. In this approach, the DEDALE data model, spatio-
temporal data is represented using linear constraints. It extends the standard lan-
guage of linear constraints with some additional primitives like dist for computing
distances and connect? for testing connectivity. An SQL-like query language for users
is developed on top of the constraint algebra, hiding the data model from the user.
The DEDALE model was implemented at INRIA [35]. The developers of DEDALE
also introduced the concept of orthographic dimension of a constraint relation, which
can speed up query evaluation on (spatio-temporal) constraint databases [36, 53].

In 1997, the MOST (Moving Objects Spatio-Temporal) data model was proposed
by Sistla, Wolfson, Chamberlain and Dao [68]. In this model, objects can have dy-
namic attributes, having a value, an update time and a function. This function can
be any function f of time for which f(0) = 0. The value is the value of the function
at the current time, and the update time indicates when the value has to be updated.
When functions change, for example when an object has a piecewise linear movement,
the previous function can be kept by computing the database state before the change
and store this state in the database history. A spatio-temporal query is a predicate
over the database history. The FTL (Future Temporal Logic) query language is pro-
posed to query MOST-data. This logic contains two basic future temporal operators
nexttime and until.

In 1999, Chomicki and Revesz [14] proposed the Parametric Data Model, an exten-
sion of the object-data model of Worboys [74]. Spatio-temporal objects were repre-
sented by a spatial reference object and a time domain (analogous to Worboys’ spatial
and temporal extent [74]) and also a spatio-temporal component, namely, a time-
dependent transformation function describing the movement of the spatio-temporal
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reference object throughout the time domain. Several classes of such objects were
proposed, depending on the type of spatial reference objects and the type of trans-
formation functions. Revesz [10, 63] further developed an algebra for the class of
linearly moving rectangles. This algebra includes the specific spatio-temporal opera-
tors buffer, compose and block. Both the general model and the query language for
linearly moving rectangles are also included in the book “Introduction to Constraint
Databases”, by Revesz [62]. In Chapter 5, we will give more details on this parametric
data model and further investigate it. In Chapter 6, we propose a normal form for
the most general class of those parametric objects.

In the same year, the Tripod [34] project emerged, a joint collaboration between
researchers in the computer science departments at Keele and Manchester Univer-
sities. An existing database system was extended with the spatial types proposed
for the ROSE algebra [40], and the temporal types Instants and TimeIntervals. The
Tripod data model can only express discrete changes. Previous states of an object
are kept in histories.

In 2000, a European project called Multi-representations and Multiple Resolutions
in Geographic Databases (MurMur) [60] was started. The participants’ goal was

“enhancing GIS (or STDBMS) functionality so that, relying on more flexible rep-
resentation schemes, users may easily manage information using multiple represen-
tations. The added functionality will support multiple coexisting representations of
the same real-word phenomena (semantic flexibility), including representations of ge-
ographic data at multiple resolutions (cartographic flexibility). This will in particular
make possible a semantically meaningful management of multi-scale, integrated, and
temporal geo-databases”.

MurMur started from an existing spatio-temporal data model, called MADS (Mod-
elling of Application Data with Spatio-temporal features), proposed by Parent, Spac-
capietra and Zimányi [61]. This model contains objects, attributes and relationships
of several types. Special to MADS is the perception stamp, including the viewpoint of
the user (public, manager or technician) and the resolution or level of detail of a rep-
resentation (e.g. 1:2000). These perception stamps allow users to define sub-schemas
in a given schema, personalize data types, etc. A two-sorted algebra (the MADS al-
gebra) and two visual query languages were developed to manipulate spatio-temporal
data.

At the same time, Chen and Zaniolo [13] proposed SQLST, a spatio-temporal
data model and query language. Here, a moving object is modelled as a series of
snapshots, containing directed triangles. The query language is based on SQLT [12]
for its temporal operators, and a set of spatial operations, like intersect, area, etc. No
real spatio-temporal operations are needed because of the snapshot view.

Also in 2000, Kuijpers, Paredaens and Van Gucht [51] proposed a model and query
language for Movie Databases. In this proposal, the constraint database approach is
used. A movie is modelled as a 2-dimensional semi-algebraic figure that can change in
time. A number of computability results concerning movies are given, e.g., it can be
decided whether a frame of a movie is only a topologically transformation of another
frame, a movie has a finite number of scenes and cuts and these can be effectively
computed, etc. Based on these computability results, an SQL-like query language for
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movie databases is developed. This query language supports common movie editing
operations, like cutting, pasting and selection of scenes.

Another constraint database approach to spatio-temporal databases was proposed
in 2001 by Ibarra, Su and Xu [55, 69]. Logical properties of moving objects were
considered in connection with queries over such objects using tools from differential
geometry. An abstract model was proposed, where object locations can be described
as vectors of continuous functions of time. Using this conceptual model, logical rela-
tionships between moving objects were examined, and between moving objects and
(stationary) spatial objects in the database. These relationships were then charac-
terized in terms of position, velocity, and acceleration. Based on this theoretical
foundation, a concrete data model for moving objects was developed, which is an
extension of linear constraint databases. The authors also presented a preliminary
version of a logical query language for moving object databases.





2
Notations and Preliminaries

In this introductory chapter we, explain notations that will be used throughout this
text. Furthermore, we list some preliminary definitions that can be found in literature
on databases [2] and mathematics and logic [8, 71, 72], that the Reader might keep
in mind when going through the next chapters.

2.1 Notations

The set of the natural numbers will be denoted by N, the set of the real numbers by
R and the n-dimensional real space by R

n. When the (n+ 1)-dimensional real space
R
n+1 is interpreted as the space in which we consider spatio-temporal objects having

an n-dimensional spatial extent, varying over time, we denote it by (Rn × R).
Real numbers denoting spatial coordinates are represented by characters a, b, c,

a1, b1, c1, a2, b2, c2, . . ., and real numbers denoting moments in time are represented
by Greek characters τ, τ1, τ2, . . .. Bold characters a,a1,a2, . . . represent n-dimensional
spatial vectors. Vectors (a, τ) containing mixed spatial and temporal information are
denoted p, q, r, p1, q1, r1, p2, q2, r2, . . .. So, we use the notation:

pj = (aj , τj) = (aj,1, . . . , aj,n, τj).

Variables that range over real numbers and indicate spatial coordinates will be
denoted by characters x, y, x1, y1, z1, x2, y2, . . .. For real variables that indicate time
coordinates, we use t, t1, t2, . . .. Variables that range over vectors in R

n and that
represent spatial information are denoted by bold characters x,x1,x2, . . ., while vari-
ables (x, t) containing such vectors together with a time variable will be represented
by characters u, v, w, u1, v1, w1, u2, v2, w2 . . .. To summarize, we use the notation:

ui = (xi, ti) = (xi,1, . . . , xi,n, ti).

11
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Remark 2.1. Note that multiple lower indices will be all written on the same level,
separated by comma’s. The coordinates of an n-dimensional spatial vector xi are xi,1,
x1,2, . . . , xi,n, for example.

Let a, b and c be three points in R
n. The line segment with end points a and

b will be denoted by ab and its length by |ab|. The line through the points a and
b, which we call the carrier of the line segment ab, will be denoted by Lab. If the
three points are not collinear, we denote the triangle that has a, b and c as its corner
points by Tabc.

2.2 Preliminaries

2.2.1 Definitions from Relational Database Theory

Below, we define some basic concepts from database theory [2] that we will use fre-
quently.

Definition 2.2 (Database). Assume a countably infinite set U , also called the un-
derlying domain and a countably infinite set rname of relation names. Each relation
name R has an associated arity, ar(R) ∈ N.

A database schema is a nonempty, finite set σ = {R1, R2, . . . , Rk} of relation
names. A relation (instance) over a relation name R is a (possibly empty) finite set
of tuples d ∈ Uar(R). A database (instance) I over a database schema σ is the set of
relation instances over all relation names in σ.

Definition 2.3 (Query). A database query Q is a partial, computable mapping from
an input schema σin to an output schema σout. Two queries Q1 and Q2 over the input
schema σin are equivalent, denoted Q1 ≡ Q2, if they have the same output schema
and Q1(I) = Q2(I) for each database instance I over σin.

One of the pillars of database theory, is data independence, meaning that a data-
base gives an abstract interface to its contents, hiding the internal representation of
the data. In other words, the database is essentially unchanged if a permutation is
applied to U . An important related property of database queries is genericity.

Definition 2.4 (Genericity). Let σin and σout be database schemas. A mapping
Q from σin to σout is generic if and only if for each database instance I over σin and
each permutation ρ of U , ρ(Q(I)) = Q(ρ(I)).

Note that it is allowed that Q explicitly names a finite set C of constants, which
are not changed by ρ. In that case, Q is called C-generic.

2.2.2 Definitions from Mathematics and Logic

In this subsection, we give some definitions [71] that we will use in Chapter 3, when
explaining the constraint database model.

Definition 2.5 (Signature). A signature Ω consists of a set F of function symbols,
a set P of predicate symbols and a set C of constant symbols. All elements f of F and
all elements P of P have an associated arity ar(f) ∈ N and ar(P ) ∈ N, respectively.



2.2. Preliminaries 13

Definition 2.6 (Structure). Given a set U and a signature Ω, an Ω-structure M
over U , denoted 〈U ,Ω〉, is defined by assigning to each f ∈ F of arity m, a function
fM : Um 7→ U , to each P ∈ P of arity ℓ, an ℓ-ary predicate on U , that is, a set
PM ⊆ Uℓ, and to each κ ∈ C an element κM ∈ U .

We now define, by induction on the structure of its formulas, first-order logic over
a signature Ω.

Definition 2.7 (First-order logic over Ω). Assume a countably infinite set of
variables V = {ν1, ν2, . . .}.

(i) A term is either a variable from V , a constant from C, or f(θ1, θ2, . . . , θm), where
f ∈ F has arity m and θ1, θ2, . . . , θm are terms.

(ii) An atomic formula is a formula of the form θ = θ′ or P (θ1, θ2, . . . , θℓ), where
P ∈ P has arity ℓ and θ, θ′, θ1, θ2, . . . , θℓ are terms.

(iii) A formula in first-order logic over Ω is an atomic formula or a formula of the
form ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∃ν ϕ or ∀ν ϕ, where ϕ and ψ are formulas in first-order
logic over Ω and ν ∈ V .

Given a structure M = 〈U ,Ω〉, a term θ(ν1, ν2, . . . , νm) and elements d1, d2, . . . , dm
of U . The interpretation of θ given d1, d2, . . . , dm in M, denoted by θM[d1, d2, . . . , dm],
is defined as follows.

(i) If θ is a variable νi then θM[d1, d2, . . . , dm] is di (1 ≤ i ≤ m),

(ii) if θ is a constant symbol κ then θM[d1, d2, . . . , dm] is κM, and

(iii) if θ is of the form f(θ1, θ2, . . . , θℓ) then θM[d1, d2, . . . , dm] is

fM(θM1 [d1, d2, . . . , dm], θM2 [d1, d2, . . . , dm], . . . , θMℓ [d1, d2, . . . , dm]).

Given a structure M = 〈U ,Ω〉, a first-order-formula ϕ with free variables ν1, ν2,
. . . , νm and the elements d1, d2, . . . , dm from U , the satisfaction of ϕ by (d1, d2, . . . , dm)
in M, denoted by M |= ϕ[d1, d2, . . . , dm] is defined as follows.

(i) M |= (θ = θ′)[d1, d2, . . . , dm] if θM[d1, d2, . . . , dm] equals θ′M[d1, d2, . . . , dm],

(ii) M |= P (θ1, θ2, . . . , θℓ)[d1, d2, . . . , dm] if

(θM1 [d1, d2, . . . , dm], θM2 [d1, d2, . . . , dm], . . . , θMℓ [d1, d2, . . . , dm]) ∈ PM,

(iii) M |= (¬ϕ)[d1, d2, . . . , dm] if M |= ϕ[d1, d2, . . . , dm] does not hold,

(iv) M |= (ϕ ∧ ψ)[d1, d2, . . . , dm] if both M |= ϕ[d1, d2, . . . , dm] and M |= ψ[d1, d2,
. . . , dm],

(v) M |= (ϕ ∨ ψ)[d1, d2, . . . , dm] if either M |= ϕ[d1, d2, . . . , dm] or M |= ψ[d1, d2,
. . . , dm],

Now let ψ be a first-order-formula with free variables ν1, ν2, . . . , νm, νm+1.
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(vi) M |= (∀νm+1 ψ)[d1, d2, . . . , dm] if for every element κ of U , we have M |= ψ[d1,
d2, . . . , dm, κ], and

(vii) M |= (∃νm+1 ψ)[d1, d2, . . . , dm] if for some element κ of U , we have M |= ψ[d1,
d2, . . . , dm, κ].

We will indicate that a first-order-formula ϕ has free variables ν1, ν2, . . . , νℓ by
writing ϕ(ν1, ν2, . . . , νℓ).

Remark 2.8. The set of all first-order-formulas over Ω is denoted FO(Ω). If M is
an Ω-structure, we sometimes also write FO(M) for FO(Ω).

Example 2.9. Given the signature (+, ×, <, 0, 1) and the set R of real numbers,
first-order logic over the field of the real numbers will be denoted FO(R, +, ×, <, 0,
1). ⊓⊔

Definition 2.10 (Constraint). Let Ω be a vocabulary. A constraint over Ω is an
atomic formula in first-order logic over Ω.

Given a structure M = 〈U ,Ω〉, a set X ⊆ Uk is called definable on M with
Ω-constraints if it can be obtained as a finite Boolean combination of sets of the form

{(d1, d2, . . . , dk) ∈ Uk | M |= ϕ[d1, d2, . . . , dk]},

where ϕ is a constraint over Ω.

We now define an important class of spatial figures, semi-algebraic sets. For more
mathematical background on those figures and their properties, we refer to [8].

Definition 2.11 (Semi-algebraic set). A semi-algebraic set in R
n is a subset of

R
n that can be described as a Boolean combination of sets of the form

{(x1, x2, . . . , xn) ∈ R
n | p(x1, x2, . . . , xn) > 0},

where p is a polynomial in the variables x1, x2, . . . , xn, with integer coefficients.

We immediately point to an important property of semi-algebraic sets:

Property 2.2.1 (Semi-algebraic sets definable with polynomial constraints).
The semi-algebraic sets are exactly the sets definable on (R,+,×, <, 0, 1) with con-
straints over (+, ×, <, 0, 1).

Therefor, we will sometimes use the expression polynomial constraints for the
constraints over (+, ×, <, 0, 1).

It is well-known that the set of semi-algebraic constraints is closed under finite
unions, intersections and complements. Also, the cartesian product A × B of two
semi-algebraic sets A ⊂ R

n and B ⊂ R
m is again a semi-algebraic set in R

(n+m).
Furthermore, let A ⊂ R

(n+1) be a semi-algebraic set and π : R
(n+1) 7→ R

n be the
projection on the first n coordinates, then π(A) is a semi-algebraic subset of R

n.
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Definition 2.12 (Semi-algebraic function). Let A be a semi-algebraic subset of
R
n. A function f : A 7→ R

m is called semi-algebraic if its graph

Γ(f) = {(x,y) ∈ A× R
m | x ∈ A and y = f(x)}

is a semi-algebraic subset of R
n+m.

Now we define semi-algebraic triviality, and give the Triviality Theorem [8, 15, 72],
which we will rely on in Chapter 5. Let A ⊆ R

n be a semi-algebraic set. A continuous
semi-algebraic mapping p : A → R

k is said to be semi-algebraically trivial over a
semi-algebraic subset C ⊂ R

k if there is a semi-algebraic set F and a semi-algebraic
homeomorphism h : p−1(C) → C × F , such that the composition of h with the
projection C × F → C is equal to the restriction of p to p−1(C).

Theorem 2.13 (Semi-algebraic triviality theorem). Let A ⊆ R
n be a semi-al-

gebraic set and p : A → R
k, a continuous semi-algebraic mapping. There is a finite

semi-algebraic partition of R
k into C1, . . . , Cm such that p is semi-algebraically trivial

over each Ci.

In particular, if a and b are in the same Ci, then p−1(a) and p−1(b) are semi-
algebraically homeomorphic.





3
The Constraint Database
Model

An important limitation of the classical relational database model is that it can only
represent a finite amount of data. More specific, a relational database consists of
a finite set of tables, each containing a possibly huge, but finite, amount of tuples.
Although this is sufficient for a lot of applications, there exists infinite information that
we would like to store in a database. Spatial information, for instance, is inherently
infinite. Each figure is, essentially, a possibly infinite set of points in a real space R

n.
Figure 3.1 shows an example of an infinite set of points in R

3.

A recent and much acclaimed method for effectively representing infinite geomet-
rical figures is provided by the constraint database model, that was introduced in 1990
by Kanellakis, Kuper and Revesz [46, 47]. Intensive research on constraint data-
bases has been carried out since, and a few recent books give an overview of the
already well-established field [59, 62]. The main contribution of the constraint data-
base paradigm is that it enables us to represent infinite information in a finite way,
by storing the (finite) formulas describing the infinite information. The information
shown in Figure 3.1, for example, can be represented in a finite way using the formula
{(x, y, t) ∈ R

3 | x2+y2+t2 ≤ 1∨(x2+y2+(t−2)2 = 1∧t ≤ 5/2)∨(x2+y2+(t−3)2 =
1 ∧ t > 5/2)}.

In this chapter, we give a short introduction to the constraint database model
and show how this model can be used for representing spatio-temporal information.
Indeed, each object in R

n moving through time can be seen as a spatial object in the
real space R

(n+1). We start with a formal definition of the constraint database model.

17
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Figure 3.1: An example of a spatial database in R
3.

3.1 The Constraint Database Model

Let σ = {R1, R2, . . . , Rm} be a finite set of relation names. To each relation name Ri,
a natural number is assigned, which we call its arity and denote by ar(Ri), 1 ≤ i ≤ m.

In the constraint framework, an intensional relation of arity k is a quantifier-
free formula ϕ(x1, x2, . . . , xk) in FO(+, ×, <, 0, 1). An intensional instance over a
database schema σ is a mapping D on σ assigning to each relation name Ri of arity
k that appears in σ an intensional relation ϕ of arity k.

An intensional relation R, given by the formula ϕ(x1, x2, . . . , xk), represents on
the extensional level the subset

{(a1, a2, . . . , ak) ∈ R
k | (R,+,×, <, 0, 1) |= ϕ[a1, a2, . . . , ak]}

of R
k. We call this possibly infinite set an extensional relation. In the mathemat-

ical literature, these extensional relations are referred to as semi-algebraic sets (see
Definition 2.11).

An extensional database instance over a database schema σ that intentionally is
represented by a set of FO(+, ×, <, 0, 1)-formulas ϕR1

(x1, x2, . . . , xk1), ϕR2
(x1, x2,

. . . , xk2), . . . , ϕRm(x1, x2, . . . , xkm), where ki = ar(Ri), for i = 1, . . . ,m, represents
on the extensional level a set of constraint relations (or semi-algebraic sets)

{(a1, a2, . . . , aki) ∈ R
ki | (R,+,×, <, 0, 1) |= ϕRi [a1, a2, . . . , aki ]},

for i = 1, . . . ,m.
For a database schema σ, we denote the set of its intensional instances by i-inst(σ)

and the set of its extensional instances by e-inst(σ).

In the remainder of this text, we will use the terms constraint relation and semi-
algebraic set interchangeably, since they refer to the same objects, albeit from different
perspectives.

Remark 3.1. The semi-algebraic sets correspond to the subsets of R
n that can be

specified using polynomial constraints (see Property 2.2.1). Therefor, the constraint
relations and databases defined above can also be referred to as polynomial constraint
relations and polynomial constraint databases.
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Example 3.2. Figure 3.1 gives an example of a constraint relation in R
3. This set

can be described as follows: {(a, b, c) ∈ R
3 | a2 + b2 + c2 ≤ 1 ∨ (a2 + b2 + (c − 2)2 =

1 ∧ c ≤ 5/2) ∨ (a2 + b2 + (c− 3)2 = 1 ∧ c > 5/2)}. ⊓⊔

Example 3.3. Let σ = {R1, R2}, with ar(R1) = 2 and ar(R) = 1 be a database
schema. Then the instance D, where RD1 = {(a, b) ∈ R

2 | a2 + b2 < 1} and RD2 =
{a ∈ R | 0 ≤ a ≤ 1}, is an example of a constraint database over σ that contains the
open unit disk and the closed unit interval. ⊓⊔

3.2 Constraint Database Queries

In this section, we define constraint database queries and describe how first-order
logic is used as a query language for constraint databases. We also define generic
constraint queries and give languages for expressing such generic queries.

Note that two intensional relations are called equivalent if they define the same
extensional relation.

Definition 3.4 (Constraint database query). Let σin and σout be disjoint con-
straint database schemas.

An extensional constraint database query Qext of signature σin → σout is a partial,
computable mapping from e-inst(σin) to e-inst(σout).

An intensional constraint database query Q of signature σin → σout is a partial,
computable mapping from i-inst(σin) to i-inst(σout) that is defined up to equivalence
of the formulas appearing in i-inst(σin) and i-inst(σout), for which there exists an
extensional query Qe of the same signature such that the diagram

ext

i(Sin)
Q

Qe

e(Sin) e(Sout)

ext

i(Sout)

commutes. Here, ext is the function that maps an intensional database instance to
the corresponding extensional instance.

When we refer to a constraint database query, we allude to a query on the inten-
sional level (to which a query on the extensional level corresponds).

Remark 3.5. For the remainder of this chapter, and also for Chapter 4 and Chap-
ter 7, we assume that databases are finitely encoded by systems of polynomial equa-
tions and that a specific data structure is fixed (possible data structures are dense or
sparse representations of polynomials). The specific choice of data structure is not
relevant to the topic of the chapters mentioned above, but we assume that one is
fixed. When we talk about computable queries later on, we mean Turing computable
with respect to the chosen encoding and data structures.
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3.2.1 The Languages FO and FO + While

First-order logic (or FO, in short) over (R,+,×, <, 0, 1) has been well-studied as a
query language in the context of constraint databases [47, 59].

Definition 3.6 (First-order logic with polynomial constraints). Let σin =
{R1, R2, . . . , Rm} be a database schema. A first-order formula over σin is a formula
ϕ(x1, x2, . . . , xk) in the first-order language over the vocabulary (+, ×, <, 0, 1, R1,
R2, . . . , Rm) (also abbreviated as (+, ×, <, 0, 1, σin)).

Given an extensional instance D = (D1,D2, . . . ,Dm) ∈ e-inst(σin) and a first-
order formula ϕ(x1, x2, . . . , xk) over the vocabulary (+, ×, <, 0, 1, R1, R2, . . . , Rm).
The formula ϕ, when evaluated on the input D, defines an extensional relation ϕ(D)
in the natural way by interpreting variables as ranging over the real numbers. More
precisely, if ϕ has k free variables, then ϕ(D) refers to the set

{(a1, a2, . . . , ak) ∈ R
k | (R,+,×, <, 0, 1,D1,D2, . . . ,Dm) |= ϕ[a1, a2, . . . , ak]}.

Every extensional query expressible by a FO(+, ×, <, 0, 1)-formula corresponds
to an intensional query.

Remark 3.7. In the remainder of this text, we will be less formal when we describe
queries and in particular FO(+, ×, <, 0, 1)-queries. We will not always mention the
input and output schema explicitly. Furthermore, we will also use a more relaxed
formalism and omit reference to intensional and extensional for relations, databases
or queries. In most cases, we just refer to formulas when talking about queries. In
should be clear that these formulas express queries in the above introduced senses.

Example 3.8. The query returning all points of a 2-dimensional relation R that lie
on the x-axis can be expressed in first-order logic by the formula ϕ(x, y)

R(x, y) ∧ (y = 0).

⊓⊔

The free variables x and y in the above formula are the coordinates of the points
in the result of the query. Although their variables range over the real numbers, first-
order expressions can be computed effectively. This property is a direct consequence of
the fact that there exists a quantifier-elimination procedure for the first-order theory
of the closed real fields [70].

The expressive power of first-order logic is limited. Examples of properties of
semi-algebraic sets that cannot be expressed in FO(+, ×, <, 0, 1) are parity and con-
nectivity, for instance. Gyssens, Van den Bussche and Van Gucht [43, 71] showed that
adding a while-loop to FO(+, ×, <, 0, 1) (this language will be denoted FO + While)
drastically increases its expressive power; the language FO + While is computation-
ally complete on polynomial constraint databases. This means that for every partial
computable (in the sense of Remark 3.5) query Q on constraint databases, there exists
an expression ϕ in FO + While such that for each constraint database instance D,
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ϕ(D) is defined if and only if Q(D) is defined, and in this case ϕ(D) and Q(D) are
equal.

We give a more precise definition of FO + While-queries, often called programs.
The use of similar languages will be illustrated in Section 4.3. We also refer to [43, 71]
for illustrations.

Definition 3.9 (First-order logic extended with a while loop). Let σ be a
constraint database schema. Syntactically, a program in the language FO(+, ×, <,
0, 1, σ)+While is a finite sequence of statements and while-loops. It is assumed there
is a sufficient supply of new relation variables, each with an appropriate arity.

(i) Each statement has the form

R := {(x1, . . . , xk) | ϕ(x1, . . . , xk)};

Here, R is a relation variable with assigned arity k (the variables xi range over R)
and ϕ is a formula in FO(+, ×, <, 0, 1, σ′), where σ′ is the set of relation names
containing the elements of σ together with the relation variables introduced in
previous statements of the program.

(ii) A while-loop has the form

while ϕ do
P

end while

where P is a program and ϕ is a sentence in FO(+, ×, <, 0, 1, σ′), where σ′ is
again the set of relation names containing the elements of σ together with the
relation variables introduced in previous statements of the program.

(iii) One of the relation names occurring in the program is designated as the output
relation and is named Rout.

Semantically, a program in the query language FO + While expresses a constraint
database query as soon as Rout is assigned a return value. The execution of an FO(+,
×, <, 0, 1, σ)+While-program applied to an input database is performed step-by-
step. A statement is executed by first evaluating the FO(+, ×, <, 0, 1, σ)-formula on
the right hand side on the input database together with the new relations resulting
from previous statements. Next, the result of the evaluation of the right hand side is
assigned to the relation variable on the left-hand side. The effect of a while loop is to
execute the body as long as the condition ϕ evaluates to true.

Note that these programs are not guaranteed to halt. For those input databases
it does not, the query represented by the program is not defined on that particular
input database.

3.2.2 Generic Spatial Database Queries

We defined a constraint database query as a computable mapping. But, in database
theory, it is common to also ask that queries are generic (see Definition 2.4). A
generic query asks only for properties that are shared by “isomorphic” encodings of
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the same data or, in other words, the result of a generic query depends only to a cer-
tain, limited extent on the actual internal representation of the database it is applied
to. Chandra and Harel [11] considered the permutations of the universal domain U of
the database (that possibly fix some elements of the domain) as “isomorphisms” for
relational databases. Paredaens, Van den Bussche and Van Gucht [58] have shown
that for spatial databases, the definition of genericity is not unique and that it de-
pends on the particular kind of geometry in which the spatial information is to be
interpreted. Genericity of spatial databases hence is defined as a function of some
group of geometric transformations.

The following taxonomy of genericity classes was proposed, motivated by spatial
database practice. This taxonomy is indexed by the chain of transformation groups
of R

n:

T ⊂ I ⊂ D ⊂ S ⊂ A ⊂ H ⊂ P,

where T is the group of the translations, I the group of the isometries, D the group
of the direct isometries, S the group of similarities, A the group of the affinities and
H the group of the homeomorphisms. Finally, P is the group of all permutations of
R
n. Clearly, if G′ is a subgroup of G, all G-generic queries are also G′-generic.

An important result regarding genericity of constraint database queries, is the
following [43]. Let G be one of the transformation groups introduced in the previous
paragraph. Then G-genericity is an undecidable property of FO(+, ×, <, 0, 1)-queries.

Gyssens, Van den Bussche and Van Gucht [43, 50] showed, however, that the
G-generic FO(+, ×, <, 0, 1)-queries are recursively enumerable, for G in the chain
T ⊂ I ⊂ D ⊂ S ⊂ A ⊂ H. For each G in this chain, they defined a first-order point
language FO(ΠG), parameterized by a set ΠG of point predicates. These languages
are sound and complete for the corresponding G-generic FO(+, ×, <, 0, 1)-queries.

The point predicates are:

(i) Between(a1,a2,a3), which means that the n-dimensional point a2 lies on the
closed line segment between the n-dimensional points a1 and a3;

(ii) EqDist(a1,a2,a3,a4), which means that the (Euclidean) distance between a1

and a2 equals the distance between a3 and a4;

(iii) UnitDist(a1,a2), which means that the distance between a1 and a2 equals one;

(iv) Pos(a0,a1, . . . ,an), which means that (a0,a1, . . . ,an) is a positively oriented
basis of R

n; and

(v) Smalleri(a1,a2), which means that the i-th coordinate of a1 is less or equal to
the i-th coordinate of a2.

The next table shows for each transformation group G, the corresponding set ΠG
of point predicates.
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G Point predicate set ΠG

A {Between}
S {Between,EqDist}
I {Between,EqDist,UnitDist}
D {Between,EqDist,UnitDist,Pos}
T {Between,EqDist,UnitDist,Pos,Smalleri(1 ≤ i ≤ n)}

3.3 Spatio-temporal Constraint Databases

The constraint model is studied in the context of spatial databases, but it provides an
equally elegant and efficient way to model spatio-temporal data. Any spatio-temporal
object that is a moving n-dimensional spatial object, can be seen as a spatial (n+ 1)-
dimensional object. Figure 3.1 for example, can be described as a spatio-temporal
relation showing a point, followed by a growing and shrinking disk. Afterwards, it
shows a disk that grows, shrinks, grows again and finally shrinks into a point. But,
one could also describe the same figure as a (2 + 1)-dimensional object showing the
union of a filled sphere and the boundary of two intersecting spheres. We now define
spatio-temporal databases, as a special case of constraint databases.

3.3.1 Spatio-temporal Databases as Constraint Databases

The underlying domain of a spatio-temporal database is (Rn × R). We prefer the
notation (Rn×R) over R

n+1 for the domain because it stresses the distinction between
the time coordinate and the n spatial coordinates of the (n+ 1)-dimensional points.
We will also call n the underlying dimension of a spatio-temporal database. For the
remainder of this text, we assume, for technical reasons that will become clear in
Section 4.2, that n ≥ 2.

Throughout this thesis we will often use the canonical bijection

canST : (Rn × R)k → R
(n+1)×k

that maps a tuple ((a1, τ1), . . . , (ak, τk)) to (a1,1, . . . , a1,n, τ1, . . . , ak,1, . . . , ak,n, τk),
where for 1 ≤ i ≤ k and 1 ≤ j ≤ n, ai,j denotes the jth real coordinate of ai.

Definition 3.10 (Spatio-temporal database). A (spatio-temporal) database sche-
ma σst is a finite set of relation names, where each relation name Rst has a natural
number ar(Rst), called its arity, assigned to it.

A subset of (Rn × R)k is a spatio-temporal relation of arity k if its image under
the canonical bijection canST : (Rn×R)k → R

(n+1)×k is a constraint relation of arity
(n+ 1) × k.

Let σst be a (spatio-temporal) database schema. A spatio-temporal database over
σst is a mapping ST on σst assigning to each relation name Rst in σst, a spatio-temporal

relation Rst
ST

of arity k, where k = ar(Rst).

Remark 3.11. A spatio-temporal database ST over σst can be viewed in a natural
way as a constraint database D over the constraint schema σ, which has for each
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relation name Rst of σst, a relation name R of arity (n + 1) × ar(Rst). For each

relation name Rst, RD is obtained from Rst
ST

by applying the canonical bijection
canST : (Rn × R)ar(R) → R

(n+1)×ar(R). We will use the notation introduced here,
throughout this thesis.

Following this remark, we observe that spatio-temporal relations and databases
can be finitely encoded and stored by means of the systems of polynomial equalities
and inequalities, i.e., by means of a quantifier-free formula of first-order logic over the
reals with +, ×, < and the constants 0 and 1, that describe the associated constraint
relations and databases.

We also remark the following.

Remark 3.12. The data model presented here and the query languages presented in
this thesis can be extended straightforwardly to the situation where spatio-temporal
relations are accompanied by classical thematic information. However, because the
problem that is discussed here is captured by this simplified model, we stick to it for
reasons of simplicity of exposition.

Example 3.13. Figure 3.1 gives an illustration of a spatio-temporal database over
a schema σst = {Rst} with underlying dimension 2, where Rst has arity 1. It shows
at its beginning, i.e., at t = −1, a single point in the origin of R

2. Then it shows a
disk whose radius increases and later decreases and ends in a point at moment t = 1,
followed by a circle whose radius increases, decreases, increases and then shrinks to a
point. ⊓⊔

Definition 3.14 (Snapshot). Let σst be a spatio-temporal schema and let ST be a
spatio-temporal database over σst with underlying dimension n. Let Rst be a relation
name in σst and let τ0 be a real number representing a moment in time. We call the
subset

Rst
ST
∩ (Rn × {τ0})

ar(Rst)

of (Rn×{τ0})
ar(R) the snapshot of Rst at the moment τ0. The snapshot of the spatio-

temporal database ST at the moment τ0 is the finite set of snapshots of all its relations
at τ0.

Example 3.15. For the spatio-temporal relation depicted in Figure 3.1, the snapshot
at −1 is {(0, 0,−1)}, the snapshot at 0 is the closed unit disk in the plane t = 0 and
the snapshot at 5 is the empty set. ⊓⊔

3.3.2 Spatio-temporal Constraint Database Queries

We now define spatio-temporal database queries, and show how FO(+, ×, <, 0, 1)
can be used as a spatio-temporal database query language.

Definition 3.16 (Spatio-temporal database query). Let σst be a spatio-tempo-
ral database schema and let us consider input spatio-temporal databases over σst

with underlying dimension n. A k-ary n-dimensional spatio-temporal database query
Q over σst is a partial, computable mapping (in the sense of Remark 3.5) from the
set of spatio-temporal databases over σst to the set of k-ary spatio-temporal relations
with underlying dimension n.
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We also call a k-ary n-dimensional spatio-temporal database query a spatio-temporal
database query of output type (n, k).

Note that we restrict spatio-temporal database queries to preserve the underlying
dimension of the input database.

Example 3.17. Let σst = {Rst}, where Rst has arity 1 and let the underlying
dimension be 2. The query that selects those snapshots from the relation Rst where
Rst shows a circle is a spatio-temporal database query of output type (2, 1). Applied
to the database of Example 3.13 and shown in Figure 3.1, this query returns the union
of its snapshots in the open time interval ]1, 4[. ⊓⊔

There is a natural way to see spatio-temporal queries as constraint queries, that
is captured in the following definition of equivalence of queries. Here, canDB(ST ) is

the database instance consisting of the relation instances canST (Rsti
ST
), for all relation

names Rti of σst.

Definition 3.18 (Spatio-temporal queries and constraint queries). Let σst =
{Rst1 , R

st
2 , . . . , R

st
m} be a spatio-temporal database schema and let us consider input

spatio-temporal databases over σst with underlying dimension n. Let σ be the cor-
responding constraint database schema (see Remark 3.11). Let Q be a k-ary n-
dimensional spatio-temporal database query over σst and let Q′ be a ((n+1)×k)-ary
constraint database query over σ. We say that Q and Q′ are equivalent if for every
database ST over σst we have

canST (Q(ST )) = Q′(canDB(ST )).

We introduce FO(+, ×, <, 0, 1) here as a spatio-temporal query language, albeit
on constraint databases that represent spatio-temporal databases.

Definition 3.19 (First-order logic as a spatio-temporal query language). Let
σst = {Rst1 , R

st
2 , . . . , R

st
m} be a spatio-temporal database schema and let us consider

queries working on input databases over σst with underlying dimension n. Let Ri, 1 ≤
i ≤ m, be the corresponding constraint relation names of arity (n+1)×ar(Rsti ) (we fol-
low the notation of Remark 3.11) and let σ be the constraint schema {R1, R2, . . . , Rm}.

Let ϕ(x1, t1,x2, t2, . . . ,xk, tk), be a first-order logic formula over the alphabet (+,
×, <, 0, 1, R1, R2, . . . , Rm). If xi = (xi,1, . . . , xi,n), then the free variables of ϕ
are x1,1, . . . , x1,n, t1, x2,1, . . . , x2,n, t2, . . . , xk,1, . . . , xk,n, tk. The formula ϕ expresses
a constraint ((n+ 1) × k)-ary query Q′ which is equivalent to a k-ary n-dimensional
spatio-temporal query Q. For each input spatio-temporal database ST over σ, Q(ST ) is
defined as the set of points ((a1, τ1), (a2, τ2), . . . , (ak, τk)) of (Rn × R)k such that

(R,+,×, 0, 1, <,R
canDB(ST )
1 , R

canDB(ST )
2 , . . . , RcanDB(ST )

m ) |= ϕ[a1, τ1,a2, τ2, . . . ,ak, τk],

where ϕ[a1, τ1,a2, τ2, . . . ,ak, τk] denotes the formula ϕ(x1, t1,x2, t2, . . . ,xk, tk) with
its free variables instantiated by a1, τ1,a2, τ2, . . . ,ak, τk.

Example 3.20. As in Example 3.17, let σst = {Rst}, where Rst has arity 1 and let
the underlying dimension be 2. The formula

∃x0 ∃y0 ∃r (r > 0) ∧ ((x− x0)
2 + (y − y0)

2 = r2 ↔ R(x, y, t))
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expresses a spatio-temporal query of output type (2, 1). It selects those snapshots
from a spatio-temporal relation Rst where Rst shows a circle. As mentioned, applied
to the database of Example 3.13, this query returns all its snapshots in the time
interval ]1, 4[. ⊓⊔

Remark 3.21. An arbitrary FO(+, ×, <, 0, 1)-formula does not necessarily express
a spatio-temporal database query as shown by the following example. The formula

∃t (R(x1, x2, t))

expresses the projection of the spatio-temporal relation Rst on the spatial (x1, x2)-
plane. The formula returns a set of couples (x1, x2) in R

2 that form a semi-algebraic
set with a purely spatial meaning.

In the same way as FO(+, ×, <, 0, 1), also the language FO(+, ×, <, 0, 1)+While
can be used as a spatio-temporal query language.



4
Generic Spatio-temporal
Query Languages

In database theory, it is usually required that queries are generic. On a technical level,
generic queries are defined as being invariant under those transformations of the data
that preserve the relevant aspects of the data. Whereas Chandra and Harel [11] con-
sidered the group of the isomorphisms (that possibly fix some elements of the domain)
in the case of relational databases (see also Definition 2.4), Paredaens, Van den Buss-
che and Van Gucht [43] identified different geometrical and topological transformation
groups for spatial database applications (see Section 3.2.2).

We investigate which notions of genericity are appropriate for spatio-temporal
databases and which transformation groups express them. We observe that the
transformations should first and foremost respect the monotone and unidirectional
nature of time, i.e., leave the temporal order of events unchanged. It follows that
the relevant transformation groups are the product of a group of time-(in)dependent
spatial transformations and a group of monotone increasing transformations of the
time-component of the spatio-temporal data. Next, we focus on the former groups
and study which of them leave different spatial and spatio-temporal properties (like
collinearity, distance and orientation) unchanged. We also focus on physical prop-
erties of spatio-temporal data (like velocity and acceleration). The transformation
groups that we consider are all subgroups of the time-dependent or time-independent
affinities of (Rn × R).

We study the notion of spatio-temporal genericity relative to two popular query
languages in the constraint model: first-order logic over the reals (FO(+, ×, <, 0,
1), see Definition 3.6) and an extension of this logic with a while-loop (FO(+, ×, <,
0, 1)+While, see Definition 3.9). First, we show that all the genericity classes are
undecidable. We show that the considered classes of generic first-order queries are

27
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recursively enumerable, however. Hereto, we define first-order point-based languages
in which variables are assumed to range over points in (Rn × R) and which contain

certain point predicates (such as Between((n+1)) and Before). These point-based
languages are shown to be sound and complete for the first-order queries in the consid-
ered genericity classes. We have also shown that extensions of these point-based logics
with a While-loop give sound and complete languages for the computable queries in
the different genericity classes. Our results are inspired by similar results that were
obtained by Gyssens, Van den Bussche and Van Gucht in the context of spatial data-
bases [43, 71]. Also, the proof techniques we use for time-independent transformation
groups, are generalizations of techniques introduced in those papers. However, our re-
sults for genericity notions described by time-dependent transformations require new
proof techniques.

This chapter is organized as follows. In Section 4.1, we investigate what gener-
icity means in the context of spatio-temporal databases. In Section 4.2, we present
sound and complete first-order query languages for the different genericity classes that
we identified in Section 4.1. In Section 4.3, we present languages for expressing all
computable generic queries, for the proposed genericity classes.

4.1 Spatio-temporal Genericity

As stated in the introduction, we are interested in spatio-temporal database queries
that are invariant under the elements of a certain spatio-temporal transformation
group (for function composition)

F = {f | f = (f1, f2, . . . , fn, ft) : (Rn × R) → (Rn × R)}.

The idea is that the result of spatio-temporal queries should be largely independent
of the particular coordinate system in which the data are presented. In this section,
we formalize this idea by the notion of F-genericity.

In the remainder of this section, we look at different types of transformation groups
and we impose two further conditions on these transformations. Firstly, we look at
purely temporal conditions. Secondly, we look at purely spatial or spatio-temporal
conditions that reflect the nature of the queries one is interested in. We also look at
transformation groups that are suited for applications in which physical notions such
as velocity and acceleration are of importance.

4.1.1 Spatio-temporal Genericity

Let f : (Rn × R) → (Rn × R) be a function, let Rst be a spatio-temporal relation

name of arity k and let Rst
ST

be a spatio-temporal relation instance with underlying

dimension n. In the following, we use the notation f(Rst
ST
) to abbreviate the set

{(f(a1, τ1), f(a2, τ2), . . . , f(ak, τk)) ∈ (Rn × R)
k | (a1, τ1,a2, τ2, . . . ,ak, τk) ∈ Rst

ST
}.

Definition 4.1 (Spatio-temporal genericity). Let Q be a spatio-temporal data-
base query that takes databases of signature σst = {Rst1 , . . . , R

st
m} as input, with
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underlying dimension n. Let F = {f | f : (Rn×R) → (Rn×R)} be a spatio-temporal
transformation group. We say that Q is F-generic if and only if, for any f in F and
for each pair of spatio-temporal databases ST 1 and ST 2 over σst,

ST 2 = (Rst1
ST 2 , . . . , Rstm

ST 2) = (f(Rst1
ST 1), . . . , f(Rstm

ST 1))

implies that f(Q(ST 1)) = Q(ST 2).

This definition will be illustrated in Section 4.1.5. It is clear that if a query is
F-generic, it is also F ′-generic for any subgroup F ′ of F .

4.1.2 Temporal Restrictions

It is very natural to describe spatio-temporal events with the notions “before”, “after”
and “co-temporal”. For instance, when two people arrive shortly after each other, we
say “Mary arrived before Jane” rather than “Mary arrived at 9:31 and Jane at 9:35”.
Another example is any kind of race. The winner is the one that finishes first. So,
foremost the order of arrival of the participants matters. Exact time moments are
only important in very specific situations.

We start with the definition of a spatio-temporal event.

Definition 4.2 (Event). An event is a subset of (Rn × R). The projection of an
event A on the time-axis is denoted by πt(A) and called the time-domain of A.

Let A and B be events. In the terminology of Allen’s interval calculus [5, 6], A
and B are called co-temporal if πt(A) = πt(B) (we denote this by A =t B). Allen
says A is before B if tA < tB for all tA ∈ πt(A) and all tB ∈ πt(B) (we denote this by
A <t B).

Remark that A ≤t B := (A =t B or A <t B) is a pre-order on events.

Definition 4.3 (Temporal order-preserving transformation). We say that a
transformation f : (Rn×R) → (Rn×R) preserves the order of events if for all events
A and B, A =t B implies f(A) =t f(B) and A <t B implies f(A) <t f(B).

Proposition 4.4. A transformation f = (f1, f2, . . . , fn, ft) : (Rn × R) → (Rn × R) :
(x, t) 7→ (f1(x, t), . . . , fn(x, t), ft(x, t)) preserves the order of events if and only if ft
is a strictly monotone increasing bijection of t alone.

Proof. The if-direction is straightforward. To prove the other direction, let f =
(f1, f2, . . . , fn, ft) be a transformation of (Rn × R). Consider any two events A =
{(a1, a2, . . . , an, τ)} and B = {(a′1, a

′
2, . . . , a

′
n, τ)}. Since A =t B, then ft(a1, a2, . . . ,

an, τ) = ft(a
′
1, a

′
2, . . . , a

′
n, τ). This shows that ft is a function of t alone.

Consider any two events A = {(a1, a2, . . . , an, τ1)} and B = {(a1, a2, . . . , an, τ2)}
with τ1 < τ2. Since A <t B, then ft(τA) < ft(τB). This shows that ft is a strictly
monotone function of t.

The transformation groups that we consider are all groups with respect to the
composition operator ◦ of functions. Therefore, for every transformation f also its
inverse exists, and hence f is a bijection. Given the fact that the component ft is a
function of t alone, it has to be a bijection too. ⊓⊔
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We require that transformations preserve the order of events. We can therefore
write the transformation groups of interest as a product of groups, i.e., F = (Fst,Ft),
where

(Fst,Ft) = {(fst, ft) | fst = (f1, f2, . . . , fn) : (Rn × R) → R
n and ft : R → R}.

The particular groups Ft that we will consider in this thesis are:

• At = {t 7→ at + b | a, b ∈ R and a > 0}, i.e., the monotone affinities of the
time-line;

• Tt = {t 7→ t+ b | b ∈ R}, i.e., the translations of the time-line; and

• Id t = {id}, i.e., the identity of time.

Invariance with respect to these types of transformations of time is often encoun-
tered in physics [20].

4.1.3 Spatial and Spatio-temporal Restrictions

In the following, we consider transformations coming from practical situations where
(i) moving objects are monitored from a fixed position, where (ii) a fixed object is
observed from a moving position or where (iii) a moving object is observed from a
moving position. The frame of reference is therefore changing in a time-dependent
way. In real life, this continuous change of reference system arises in different kinds
of situations. For example, when a person in a helicopter and another person on a
motorbike both film a race, the movie they make of the race will be related to their
position and orientation at each time moment.

The general form of the transformation groups Fst that we consider have elements
of the form:
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...
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,

where the αij and βi are functions from R to R. Furthermore, we require that the
transformation groups that we consider are semi-algebraic (we give a precise definition
of semi-algebraic transformation groups in Section 4.3.3).

We will consider the following groups Fst of transformations:

• Ast is the group of transformations of the above form where the αij(t) and βi(t)
are arbitrary functions of t such that the matrix of the αij(t) has an inverse for
each value of t, i.e., these are the time-dependent affinities;

• Af
st is the subgroup of Ast consisting of transformations for which the functions

αij(t) and βi(t) only take a finite number of values, i.e., functions that are
piecewise constant;



4.1. Spatio-temporal Genericity 31

• Ac
st is the subgroup of Af

st consisting of transformations for which the functions
αij(t) are constants and βi(t) are linear functions of t;

• Sst, Sfst and Scst are subgroups of Ast, Af
st and Ac

st respectively, where the
matrix of the αij(t) represents at each moment a similarity, i.e.the composition
of an isometry (given by a matrix with determinant 1) and a scaling (given by
a non-zero multiple of the unit matrix);

• Ist, I
f
st, I

c
st are the subgroups of the above groups where the determinant of

the matrix consisting of the αij(t) equals 1 at each moment, i.e., this matrix
determines an isometry;

• Tst, T
f
st , T

c
st are the subgroups of the above groups where the matrix consisting

of the αij(t) is the identity matrix, i.e., these are groups of translations.

4.1.4 Physical Transformation Groups

The following groups are of interest when notions such as velocity, acceleration and
force are important in an application. These transformation groups can be found
by solving the differential equations that express that these physical entities are pre-
served [20]. We consider these notions for arbitrary and rigid motions, respectively. A
rigid motion is a motion that preserve the shape of a moving body or moving figure,
i.e., it is an isometric movement. To study the velocity and acceleration of a moving
body, we only consider the movement of the center of mass of that figure and do not
take into account the changes in shape of the body.

The transformation groups of interest here are the following.

• Vst is the subgroup of Ac
st where the βi are constants. This group of transfor-

mations preserves the velocity vector of a moving figure.

• V(R)st is the subgroup of Icst where the βi are constants. This group of trans-
formations preserves the velocity vector of a moving figure in rigid motion.

• ACst is the group Ac
st. This group of transformations preserves the acceleration

vector of a moving object.

• AC(R)st is the group Icst. This group of transformations preserves the acceler-
ation vector of a moving figure in rigid motion.

In physics it is customary to consider only translations for what concerns the
time dimension, i.e., the transformations in the group Tt. The group (AC(R)st, Tt) is
also known as the group of the Galilei transformations [20]. It is particularly useful
because all laws of classical mechanics are invariant for this group of transformations
of space-time [20].

4.1.5 Examples of Generic Queries

We end this section with a number of examples of queries that are generic for some
of the genericity classes that we have introduced above.
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Suppose in some city, an experiment is set up to evaluate the traffic situation. A
number of probe cars (for simplicity, we assume two) is continuously driving around
the city in a random way. The trajectories of the cars are stored in a spatio-temporal
database, of underlying dimension 2, over the schema σst = {carA, carB}, where the
spatio-temporal relations carA and carB both have arity 1. For those queries that are
first-order-expressible, we give the formulas expressing them. The constraint relation
names corresponding to the spatio-temporal relation names carA and carB are A and
B, respectively. In these examples, we assume that time is measured in seconds and
distance is measured in meters. We indicate for each example query the most general
transformation group it is generic for.

Example 4.5. Q1 : Does the route followed by car A self-intersect more often than
the route followed by car B does?

This query is (Vst,At)-generic, but not (Ast,At)-generic, for instance. It is not ex-
pressible in first-order logic. In Section 4.3, we will give a “program” expressing this
query. ⊓⊔

Example 4.6. Q2 : Give the places and time moments where it is true for car A that
when it reaches them, it is standing still at that spot for at least 300 more seconds,
( i.e., where and when did car A encounter a traffic jam?).

This query is (Vst, Tt)-generic. Indeed, the fact that a car has speed zero (when it is
standing still) has to be preserved, which requires the group Vst, and the length of
time intervals has to be preserved, which requires Tt. This query is expressed by the
following FO(+, ×, <, 0, 1, A)-formula:

ϕ2(x, y, t) := (A(x, y, t) ∧ ∀t2 ((t ≤ t2 ∧ t2 ≤ t+ 300) → A(x, y, t2)).

⊓⊔

Example 4.7. Q3 : Was there a collision between car A and car B?

This query is (Ast,At)-generic. This query is expressed by the following FO(+, ×,
<, 0, 1, A,B)-formula:

ϕ3 := ∃x∃y ∃t (A(x, y, t) ∧B(x, y, t)).

⊓⊔

Example 4.8. Q4 : Did car A pass at 500 meters north of car B at time moment
t = 5930?

This query is (Tst, Id t)-generic. This query is expressed by the following FO(+, ×,
<, 0, 1, A,B)-formula:

ϕ4 := ∃x1 ∃y1 ∃y2 (A(x1, y1, 5930) ∧B(x1, y2, 5930) ∧ y1 = y2 + 500).

⊓⊔
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Example 4.9. Q5 : Did car A encounter any “empty roads”? (I.e., were there parts
of its trajectory where it could drive at constant speed in a straight line for at least
6000 seconds?)

This query is (ACst, Tt)-generic. The fact that a car drives at constant speed (i.e., has
an acceleration of zero) has to be preserved. Note that, because the car’s movement is
a polynomial function of time, driving at constant speed means driving in a straight
line. Query Q5 can be expressed by the following FO(+, ×, <, 0, 1, A)-formula:

ϕ5 := ∃t1 ∃t2 ∃x1 ∃y1 ∃x2 ∃y2 (A(x1, y1, t1) ∧A(x2, y2, t2)∧

t2 = t1 + 6000 ∧ ∀t3 ((t1 ≤ t3 ∧ t3 ≤ t2) → ∃x3 ∃y3 (A(x3, y3, t3)∧

(t2 − t1)x3 = (t2 − t3)x1 + (t3 − t1)x2 ∧ (t2 − t1)y3 = (t2 − t3)y1 + (t3 − t1)y2))).

⊓⊔

This completes the examples section. We will go back to these examples later on,
when we have defined point languages.

4.2 First-order Generic Spatio-temporal Queries

In this section, we study the (Fst,Ft)-generic queries that are expressible in FO(+,
×, <, 0, 1, σst). To start with, we give a general undecidability result. We prove that
it is undecidable whether a query is (Fst,Ft)-generic, for any nontrivial group (Fst,
Ft).

Next, we show that (Fst,Ft)-generic FO(+, ×, <, 0, 1, σst)-queries are recursive
enumerable, however. We do this by syntactically specifying languages that capture
the (Fst, Ft)-generic queries, for all groups (Fst, Ft) listed in Section 4.1.3 and
Section 4.1.4.

The strategy to prove the following Theorem was introduced by Paredaens, Van
den Bussche and Van Gucht [58].

Theorem 4.10 ((Fst,Ft)-genericity is undecidable). For all non-trivial groups
(Fst, Ft) mentioned in the previous section, (Fst,Ft)-genericity of spatio-temporal
FO(+, ×, <, 0, 1)σst-queries is undecidable, where σst is a non-empty spatio-temporal
database schema.

Proof. Let F be a group of transformations of (Rn × R) that contains an element
f0 that does not map (0, 0) to itself. We show that F-genericity of spatio-temporal
queries over a certain schema σst = {Rst}, where Rst is a one-dimensional unary
spatio-temporal relation, of output type (1,1) is undecidable. For other non-empty
schemas the proof is similar. We will do this by reducing deciding the truth of
sentences of the ∀∗-fragment of number theory to the genericity question. The ∀∗-
fragment of number theory is known to be undecidable since Hilbert’s 10th prob-
lem [54] can be formulated in it.
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We encode a natural number n by the unary one-dimensional spatio-temporal
relation

enc(n) := {(0, 0), (1, 0), . . . , (n, 0)}.

A (k-dimensional) vector of natural numbers (n1, n2, . . . , nk) is encoded by the
relation

enc(n1, n2, . . . , nk) := enc(n1) ∪ (enc(n2) + (n1 + 2, 0)) ∪

. . . ∪ (enc(nk) + (n1 + 2 + · · · + nk−1 + 2, 0)).

For fixed k, the corresponding decoding is expressible in FO(+, ×, <, 0, 1). We thus
associate to the first-order sentence ∀n1 · · · ∀nk ϕ(n1, . . . , nk) of number theory the
following spatio-temporal query Qϕ over the input schema σst = {Rst}:

if Rst encodes a vector (n1, . . . , nk) ∈ N
k then

if ϕ(n1, . . . , nk) then
return ∅

else
return {(0, 0)}

end if
else

return ∅.
end if

This query is expressible in FO(+, ×, <, 0, 1, {R}), where R is the constraint
relation corresponding to Rst.

Claim. The query Qϕ is F-generic if and only if the sentence ∀n1 · · · ∀nk ϕ(n1, . . . ,
nk) holds in the natural numbers.

Now, we prove this claim. First, suppose that, for all (n1, . . . , nk) ∈ N
k, ϕ(n1, . . . ,

nk) holds. Let Rst be a one-dimensional unary spatio-temporal relation and let f be
some transformation of F . We have to prove that

f(Qϕ(Rst)) = Qϕ(f(Rst)).

The result of Qϕ(Rst) will always be ∅: either Rst does not encode a vector (n1,
. . . , nk), or it does and ϕ(n1, . . . , nk) holds. For the same reason, Qϕ(f(Rst)) also
equals ∅. The transformation f maps ∅ to ∅, hence f(Qϕ(Rst)) = ∅, which concludes
the first part of the proof.

Now assume that there exists an (n0,1, . . . , n0,k) such that ϕ(n0,1, . . . , n0,k) is not
true. Let Rst be the relation that decodes (n0,1, . . . , n0,k). The result of Qϕ(Rst)
will be the origin (0, 0) of R × R. If we now apply f0 to this result, the output is
a vector (y, z) 6= (0, 0). On the other side, if we first apply f0 to Rst, there are
three possibilities. Either f0(R

st) encodes a vector (n1, 1, . . . , n1,k) for which ϕ(n1,1,
. . . , n1,k) is true, then the result of Qϕ(f0(R

st)) will be ∅. Or, f0(R
st) encodes a

vector (n1,1, . . . , n1,k) for which ϕ(n1,1, . . . , n1,k) is not true, and Qϕ(f0(R
st)) returns

(0, 0). In the last case, f0(R
st) does not encode a vector of natural numbers, in
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which case the result of Qϕ(f0(R
st)) will be ∅ again. In all cases, we have that

Qϕ(f0(R
st)) 6= f0(Qϕ(Rst)). Therefore, the query Qϕ is not F-generic.

We can conclude that Qϕ is F-generic if and only if the sentence ∀n1 · · · ∀nk
ϕ(n1, . . . , nk) holds in the natural numbers.

Therefore, if F-genericity would be decidable, also the truth of sentences in the
∀∗-fragment of number theory would be decidable. This concludes the proof. ⊓⊔

In the remainder of this section, we show that the first-order queries that are
(Fst,Ft)-generic are recursively enumerable, however. We show this by giving sound
and complete languages for the (Fst,Ft)-generic first-order queries, for the groups
(Fst,Ft) mentioned in Section 4.1.

We first define these sound and complete languages, that are point-based logics.

Definition 4.11 (Spatio-temporal point logic). Let σst = {Rst1 , R
st
2 , . . . , R

st
m} be

a spatio-temporal database schema and let Π be a set of predicates. The first-order
logic over σst and Π, denoted by FO(Π, Rst1 , R

st
2 , . . . , R

st
m) or FO(Π, σ), can be used

as a spatio-temporal query language when variables are interpreted to range over
points in (Rn × R). The atomic formulas in FO(Π, σ) are equality constraints on
point variables, the predicates of Π applied to point variables, and the relation names
Rst1 , R

st
2 , . . . , R

st
m from σst applied to point variables.

A FO(Π, σst)-formula ϕ(v1, v2, . . . , vk) defines for each spatio-temporal database

ST over σst a subset ϕ(ST ) of (Rn × R)
k

defined as

{(p1, . . . , pk) ∈ (Rn × R)
k | ((Rn × R),Π(Rn×R), Rst1

ST
, . . . , Rstm

ST
) |= ϕ[p1, . . . , pk]},

where ϕ[p1, . . . , pk] is obtained from the formula ϕ(v1, . . . , vk) by instantiating the
variables vi by the constant points pi, for 1 ≤ i ≤ k.

We now specify what we mean by sound and complete languages. From Defini-
tion 3.18, it is clear what it means that a FO(Π, σ)-formula expresses a constraint
database query.

Definition 4.12 (Soundness and completeness). A query language L is said to
be sound for the (Fst,Ft)-generic FO(+, ×, <, 0, 1, σ)-queries on spatio-temporal
databases, if formulas in L only express (Fst,Ft)-generic FO(+, ×, <, 0, 1, σ)-queries
on spatio-temporal databases.

A query language L is said to be complete for the (Fst,Ft)-generic FO(+, ×, <,
0, 1, σ)-queries on spatio-temporal databases, if all (Fst,Ft)-generic FO(+, ×, <, 0,
1, σ)-queries on spatio-temporal databases can be expressed in L.

In the following, we will omit the dependence on the input schema when this is
clear from the context, and use the notation FO(Π) for first-order point languages
over the predicate set Π.

In the remainder of this section, we first discuss notions of genericity determined
by time-independent transformations (Section 4.2.1), afterwards we discuss applica-
tions to physics (Section 4.2.2) and we end with genericity for the time-dependent
transformations (Section 4.2.3).
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4.2.1 Genericity for Time-independent Transformations

In this section, we give a general result concerning (Fst,Ft)-generic queries where Fst
is a subgroup of Ac

st, the group of time-independent affinities of (Rn × R). First, we
introduce the point predicates that we will use for the different point languages.

To express the temporal order of events, we use the point predicate Before. Let
p1 and p2 be points in (Rn × R). The expression Before(p1, p2) evaluates to true
if the time coordinate τ1 of p1 is smaller than or equal to the time coordinate τ2
of p2. We will often use the derived binary predicate Cotemp, which expresses for
two points p1 and p2 that τ1 equals τ2. This predicate can be expressed using the
predicate Before as follows:

Cotemp(u, v) := Before(u, v) ∧ Before(v, u).

There are three more other purely temporal predicates: UnitTime, 0t and 1t.
The predicate UnitTime(p1, p2) expresses that the points p1, p2 ∈ (Rn × R) have
time-coordinates τ1 and τ2 such that |τ1 − τ2| = 1. The unary predicates 0t and 1t

are such that 0t(p) and 1t(p) respectively express that the time coordinate τ of the
point p equals to zero and to one, respectively.

The following predicates address spatio-temporal relations between points. The
point-predicate Between(n+1) is defined such that Between(n+1)(p1, p2, p3) expres-
ses that the points p1, p2, p3 in (Rn×R) are collinear (in the space (Rn×R)) and that
p2 is between p1 and p3. The predicates Smalleri(p1, p2) (1 ≤ i ≤ n) express that
the ith spatial coordinate of p1 is less or equal than the ith spatial coordinate of p2.
The fact EqDistst(p1, p2, p3, p4) is true if the distance between the two co-temporal
points p1 and p2 equals the distance between the two co-temporal points p3 and p4.
The binary predicate UnitDistst applied to two points p1 and p2 expresses that they
are co-temporal and that the (spatial) distance between p1 and p2 equals one. Finally,

Pos(n+1)(p0, p1, p2, . . . , pn+1) expresses that the (n+ 2)-tuple (p0, p1, p2, . . . , pn+1) of
points in (Rn ×R) forms a positively oriented (n+ 1)-dimensional coordinate system
with p0 as origin.

Property 4.2.1. The point predicates Before, Between(n+1), UnitTime, 0t, 1t,
Smalleri(1 ≤ i ≤ n), EqDistst, UnitDistst and Pos(n+1) are all expressible in
FO(+, ×, <, 0, 1).

Proof. The FO(+, ×, <, 0, 1)-formulas for the different predicates can be obtained
by expressing the constraints on the coordinates of the points satisfying the predicates.
We denote the coordinates of a point variable vi in (Rn ×R) by (xi1 , xi2 , . . . , xin , ti),
i = 1, 2, . . .. The translation of the expression Before(v1, v2) is t1 ≤ t2 and the
translation of UnitTime(v1, v2) equals | t1 − t2 | = 1. The translation of 0t and 1t

is straightforward.
It is well known (e.g. [43, 71]) that the predicates Between(n+1), Smalleri(1 ≤

i ≤ n), EqDistst and UnitDistst are expressible in FO(+, ×, <, 0, 1). For EqDistst

and UnitDistst it is necessary to use Before to express that their arguments should
be co-temporal.

The expression Pos(n+1)(v0, v1, . . . , vn+1) is translated into FO(+, ×, <, 0, 1)
by expressing that the vectors v1 − v0, . . . , vn+1 − v0 are linearly independent and
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that the (n+ 1) × (n+ 1)-matrix containing their coordinates has a strictly positive
determinant. ⊓⊔

(Fst,Ft) Sets of point predicates Π(Fst,Ft)

(Ac
st,At) {Between(n+1),Before}

(Ac
st, Tt) {Between(n+1),Before,UnitTime}

(Ac
st, Idt) {Between(n+1),Before,UnitTime,0t,1t}

(Scst,Ft) Π(Ac
st,Ft) ∪ {EqDistst }

(Icst,Ft) Π(Ac
st,Ft) ∪ {EqDistst, UnitDistst }

(T c
st,Ft) Π(Icst,Ft) ∪ {Smalleri(1 ≤ i ≤ n),Pos(n+1)}

Table 4.1: An overview of the different sets of point predicates for a number of spatio-
temporal genericity notions. In the three last cases Ft ∈ {At, Tt, Id t}.

Property 4.2.2 (The elements of Π(Fst,Ft) are (Fst,Ft)-invariant). Let (Fst,
Ft) be a group and let Π(Fst,Ft) be a set of point predicates as in Table 4.1. The
point predicates in Π(Fst,Ft) are invariant under elements of (Fst,Ft).

Proof. First, remark that, if we fix Ft to be one of {At, Tt, Id t}, then

(T c
st,Ft) ⊂ (Icst,Ft) ⊂ (Scst,Ft) ⊂ (Ac

st,Ft).

Also, if we fix Fst to be one of {Ac
st,S

c
st, I

c
st, T

c
st}, then

(Fst, Id t) ⊂ (Fst, Tt) ⊂ (Fst,At).

Also, all groups (Fst,Ft) are subgroups of the affinities of (Rn × R). As we already
remarked, if a point predicate is invariant for a certain transformation group (Fst,Ft),
it is also invariant for all subgroups of (Fst,Ft).

We now prove (Fst,Ft)-invariance for each of the predicates in the sets Π(Fst,Ft)
of Table 4.1.

• The predicate Between(n+1) is invariant under elements of (Ac
st,At). It is well

known that affinities preserve the “betweenness” of points. As all groups listed in
Table 4.1 are subgroups of the affinities of (Rn × R), the predicate Between(n+1) is
invariant for all those groups.
• The predicate Before is invariant under elements of (Ac

st,At), since the elements of
At are monotone bijections of time. As shown in Proposition 4.4, the order on time
events is preserved under all strictly monotone increasing bijections of time. The
groups At, It, Id t are all such bijections.
• The predicate UnitTime is invariant under elements of (Ac

st, Tt). It is straight-
forward that all elements of Tt, which are translations in the time direction, preserve
the time difference between any two points p1 and p2 in (Rn × R).
• The predicates 0t and 1t are invariant under elements of (Ac

st, Idt). It is clear that
the identity transformation on the time preserves the fact that a point p in (Rn ×R)
has time coordinate zero or one.



38 Generic Spatio-temporal Query Languages

• The predicate EqDistst is invariant under elements of (Scst,At). It is well known
that isometries and scalings (and thus similarities) preserve the fact that the distance
between one pair of points equals the distance between a second pair of points. The
groups At, Tt, Id t all preserve co-temporality of points.
• The predicate UnitDistst is invariant under elements of (Icst,At), because isome-
tries are distance preserving transformations.
• The predicates Smalleri(1 ≤ i ≤ n) are invariant under elements of (T c

st,At). It is
easy to verify that if for two points p1 and p2 in (Rn×R), Smalleri(p1, p2) is true for
some i in {1, . . . , n}, also Smalleri(f(p1), f(p2)) holds for each f in (T c

st,Ft), where
Ft is one of At, Tt, Id t.
• The predicate Pos(n+1) is invariant under elements of (T c

st,At), since translations
are orientation-preserving transformations. ⊓⊔

Remark 4.13. From now, all results are valid for underlying dimension n ≥ 2.

The following theorem follows directly from the proof of Theorem 5.5 [43].

Theorem 4.14 (Spatial meta-theorem). Let σst be a spatio-temporal database
schema. Let F be a subgroup of the affinities of (Rn × R). Let Π be a set of point-

predicates that contains Between(n+1). If the predicates in Π are FO(+, ×, <, 0,
1, σ)-expressible and invariant under the transformations of F and if the fact “(v0,
v1, . . . , vn+1) is the image of the standard coordinate system of (Rn × R) under some
element f of F” is expressible in FO(Π, σst), then FO(Π, σst) is sound and complete
for the F-generic spatio-temporal database queries that are expressible in FO(+, ×,
<, 0, 1, σ).

We now prove the following theorem.

Theorem 4.15 (Time-independent spatio-temporal meta-theorem). Let σst

be a spatio-temporal database schema. Let Fst be a subgroup of Ac
st and Ft a sub-

group of At. Let Π(Fst,Ft) be a set of point-predicates that contains Between(n+1)

and Before. If the predicates in Π(Fst,Ft) are FO(+, ×, <, 0, 1, σ)-expressible and
invariant under the transformations of (Fst,Ft) and if the fact “(v0, v1, . . . , vn+1) is
the image of the standard coordinate system under some element f of (Fst,Ft)” is
expressible in FO(Π(Fst,Ft), σ

st), then the logic FO(Π(Fst,Ft), σ
st) is sound and

complete for the (Fst,Ft)-generic spatio-temporal database queries that are express-
ible in FO(+, ×, <, 0, 1, σ).

Proof. Let σst be a spatio-temporal database schema and let σ be the corre-
sponding constraint database schema. We first prove this theorem for Π(Ac

st,At) =

{Between(n+1),Before}, using Theorem 4.14. Indeed, it is clear that the group
(Ac

st,At) is a subgroup of the affinities of (Rn × R). Furthermore, the expression
Before(u, v), is expressible in FO(+, ×, <, 0, 1, σ) (see Property 4.2.1). Also, the

predicates Between(n+1) and Before are both invariant under elements of (Ac
st,At)

(see Property 4.2.2).
To conclude this part of the proof, we need to show that there is an expression

in FO({Between(n+1),Before}, σst) that, for n+ 2 arbitrary points p0, p1, . . . , pn+1
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in (Rn × R), states that (p0, p1, . . . , pn+1) is the image of the standard coordinate
system under some element f of (Ac

st,At). It is known (e.g. [43, 67]) that there exists

an expression in the language FO({Between(n+1)}, σst) that, for n+2 points p0, p1,
, . . . , pn+1 of (Rn × R), expresses that (p0, p1, . . . , pn+1) is the image of the standard
(n + 1)-dimensional coordinate system under some affinity of (Rn × R). We refer to
this expression as

CoSysA(v0, v1, . . . , vn+1).

Obviously, this formula also belongs to FO({Between(n+1),Before}, σst). The ex-
pression for the image of the standard coordinate system under some element of
(Ac

st,At) is as follows:

CoSys(Acst,At)(v0, v1, . . . , vn+1) := CoSysA(v0, v1, . . . , vn+1)∧

n
∧

i=1

Cotemp(v0, vi) ∧ ¬Before(vn+1, v0).

It is easy to verify that any coordinate system that is an image of the standard
coordinate system under an element of (Ac

st,At) satisfies this expression. Also, the
reverse is true. For clarity, we show this only for n = 2 (the general case is analogous).

Any coordinate system (p0, p1, p2, p3) satisfying the expression CoSys(Acst,At)(v0,
v1, v2, v3) is of the form p0 = (a0,1, a0,2, τ0), p1 = (a1,1, a1,2, τ0), p2 = (a2,1, a2,2, τ0),
p3 = (a3,1, a3,2, τ3), where τ0 < τ3 and the determinant

∣

∣

∣

∣

∣

∣

a1,1 − a0,1 a1,2 − a0,2 0
a2,1 − a0,1 a2,2 − a0,2 0
a3,1 − a0,1 a3,2 − a0,2 τ3 − τ0

∣

∣

∣

∣

∣

∣

6= 0. (∗)

Now, we have to show that there exists an element f of (Ac
st,At) such that the

image of the standard coordinate system under f equals (p0, p1, p2, p3). As (Ac
st,At)

is a subgroup of the affinities, f is representable by a matrix. It is straightforward to
derive that f = (fst, ft), where

fst(x, y, t) =

(

a1,1 − a0,1 a2,1 − a0,1

a1,2 − a0,2 a2,2 − a0,2

)(

x
y

)

+

(

(a3,1 − a0,1)t+ a0,1

(a3,2 − a0,2)t+ a0,2

)

, and

ft(t) = (τ3 − τ0)t+ τ0.

It is clear that (τ3 − τ0) > 0 and that, because of the inequality (∗), the value of

the determinant

∣

∣

∣

∣

a1,1 − a0,1 a2,1 − a0,1

a1,2 − a0,2 a2,2 − a0,2

∣

∣

∣

∣

differs from zero, hence f is an element of

(Ac
st,At).

So far, we proved that the language FO({Between(n+1),Before}, σst) is sound
and complete for the (Ac

st,At)-generic queries expressible in FO(+, ×, <, 0, 1,
σ). The fact that any other language FO(Π(Fst,Ft), σ), where Π(Fst,Ft) contains

Between(n+1) and Before, is sound and complete for the (Fst,Ft)-generic FO(+,
×, <, 0, 1, σ)-queries for each subgroup (Fst,Ft) of (Ac

st,At), under the conditions
stated in Theorem 4.15, follows from Theorem 4.14 together with the first part of this
proof. ⊓⊔
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Theorem 4.16 (First-order languages for time-independent transforma-
tions). Let σst be a spatio-temporal database schema. Let (Fst,Ft) be a group
and let Π(Fst,Ft) be as in Table 4.1. The point language FO(Π(Fst,Ft), σ

st) is
sound and complete for the (Fst,Ft)-generic queries expressible in FO(+, ×, <, 0, 1,
σ).

Proof. We can apply Theorem 4.15 for all groups in Table 4.1, because they are all
subgroups of (Ac

st,At). From Property 4.2.1 and Property 4.2.2, it follows that all
predicates are expressible in FO(+, ×, <, 0, 1) and that they are invariant under
transformations of the appropriate groups. The only thing left to prove is that, for
all groups (Fst,Ft) from Table 4.1, and for n+2 points v0, v1, , . . . , vn+1 in (Rn×R),
the fact “(v0, v1, . . . , vn+1) is the image of the standard coordinate system under some
element f of (Fst,Ft)” is expressible in FO(Π(Fst,Ft), σ

st). For each group (Fst,Ft)
from Table 4.1, we now give a formula that expresses this fact. The correctness of
these formulas is easy to verify.

• For the group (Ac
st,At), we already gave a formula in the proof of Theorem 4.15.

The desired formula is there denoted by CoSys(Acst,At).

• For the group (Ac
st, Tt), we have

CoSys(Acst,Tt)(v0, v1, . . . , vn+1) :=

CoSys(Acst,At)(v0, v1, . . . , vn+1) ∧ UnitTime(v0, vn+1).

• For the group (Ac
st, Id t), we have

CoSys(Acst,Idt)(v0, v1, . . . , vn+1) :=

CoSys(Acst,Tt)(v0, v1, . . . , vn+1) ∧ 0t(v0) ∧ 1t(vn+1).

Let Ft be an element of {At, Tt, Id t}.
• For the groups (Scst,Ft), we have

CoSys(Scst,Ft)(v0, v1, . . . , vn+1) :=

CoSys(Acst,Ft)(v0, v1, . . . , vn+1) ∧
n
∧

i=1

n
∧

j=1

EqDistst(v0, vi, v0, vj).

• For the groups (Icst,Ft), we have

CoSys(Icst,Ft)(v0, v1, . . . , vn+1) :=

CoSys(Scst,Ft)(v0, v1, . . . , vn+1) ∧
n
∧

i=1

UnitDistst(v0, vi).

• For the groups (T c
st,Ft), we have

CoSys(T cst,Ft)(v0, v1, . . . , vn+1) :=

CoSys(Icst,Ft)(v0, v1, . . . , vn+1)∧

Pos(n+1)(v0, v1, . . . , vn+1) ∧
n
∧

j=1

n
∧

i=1

Smalleri(v0, vj).

⊓⊔
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4.2.2 Applications to Physics

Here, we focus on the transformation groups (Vst, Tt), (V(R)st, Tt), (ACst, Tt) and
(AC(R)st, Tt). To formulate our results we need to define one more point-predicate,
namely EqSpace. If p1 = (a1,1, . . . , a1,n, τ1) and p2 = (a2,1, . . . , a2,n, τ2) are elements
of (Rn × R), then EqSpace(p1, p2) if and only if a1,i = a2,i for all 1 ≤ i ≤ n.

Remark 4.17. The expression

EqSpace(v1, v2) :=
n
∧

i=1

(Smalleri(v1, v2) ∧ Smalleri(v2, v1))

is expressible in FO(+, ×, <, 0, 1).

Theorem 4.18 (First-order languages for transformations from physics). Let
σst be a spatio-temporal database schema. Let the groups (Fst, Tt) and the predicate
sets Π(Fst, Tt) be as in Table 4.2. The point language FO(Π(Fst, Tt), σ

st) is sound
and complete for the (Fst, Tt)-generic spatio-temporal queries that are expressible in
FO(+, ×, <, 0, 1, σ).

(Fst, Tt) Set of point predicates Π(Fst, Tt)

(Vst, Tt) {Between(n+1),Before,UnitTime,EqSpace}

(V(R)st, Tt) {Between(n+1),Before,UnitTime,EqSpace,
EqDistst,UnitDistst }

(ACst, Tt) {Between(n+1),Before,UnitTime}

(AC(R)st, Tt) {Between(n+1),Before,UnitTime,
EqDistst,UnitDistst }

Table 4.2: An overview of the different point-predicate sets for the physical transfor-
mation groups.

Proof. The transformation groups (Fst, Tt) of Table 4.2 are all subgroups of the group
(Ac

st,At). Furthermore, the predicates of Π(Fst, Tt) are expressible in FO(+, ×, <,
0, 1) (see Property 4.2.1 and Remark 4.17). Straightforward geometrical and physical
arguments show that all predicates are invariant under the appropriate transformation
groups. We can now apply Theorem 4.15. We only have to verify that it is possible
to express in the languages FO(Π(Fst, Tt), σ

st) that a coordinate system is the image
of the standard (n+ 1)-dimensional coordinate system under an element of (Fst, Tt).
We now give, for each group (Fst,Ft) from Table 4.2, the expression for the fact that
(v0, v1, . . . , vn+1) is the image of the standard coordinate system under some element
f of (Fst,Ft).

The correctness of these expressions is easy to verify.
• For the group (Vst, Tt), we have

CoSys(Vst,Tt)(v0, v1, . . . , vn+1) :=

CoSys(Ast,Tt)(v0, v1, . . . , vn+1) ∧ EqSpace(v0, vn+1),
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because elements of this group map the origin (0, . . . , 0, 0) and the unit vector in the
time-direction (0, . . . , 0, 1) of the standard coordinate system of (Rn×R) onto points
which have equal spatial coordinates.
• For the group (V(R)st, Tt), we have

CoSys(V(R)st,Tt)(v0, v1, . . . , vn+1) :=

CoSys(Ist,Tt)(v0, v1, . . . , vn+1) ∧ EqSpace(v0, vn+1).

• For the group (ACst, Tt), we have

CoSys(ACst,Tt)(v0, v1, . . . , vn+1) := CoSys(Ast,Tt)(v0, v1, . . . , vn+1).

• For the group (AC(R)st, Tt), we have

CoSys(AC(R)st,Tt)(v0, v1, . . . , vn+1) := CoSys(Ist,Tt)(v0, v1, . . . , vn+1).

⊓⊔
Next, we illustrate the languages summarized in Table 4.1 and Table 4.2 on the

appropriate examples of Section 4.1.5.

Example 4.19. We give the FO({Between(n+1),Before,UnitTime,EqSpace},
σst = {carA, carB})-query Q′

2 equivalent to the (Vst, Tt)-generic query of Exam-
ple 4.6: Give the places and time moments where carA is standing still at that spot
for at least 300 more seconds.

Remember that we assumed before that time is measured in seconds and distance
is measured in meters. We first remark that the fact that one point is a constant
number of seconds before another, can be expressed using UnitTime and Before.
We illustrate this for an easy example where one point is 3 seconds after another:

3sec(u, v) := ∃w1 ∃w2 (Before(u,w1,∧)Before(w1, w2,∧)Before(w2, v,∧)

UnitTime(u,w1,∧)UnitTime(w1, w2,∧)UnitTime(w2, v, )).

Now we give the expression for Q′
2:

carA(u) ∧ ∃v (300sec(u, v)∧

∀w ((Before(u,w,∧)Before(w, v,∧)carA(w)) → EqSpace(u,w))).

⊓⊔

Example 4.20. We give the FO({Between(n+1),Before,UnitTime}, σst = {carA,
carB})-query Q′

5 equivalent to the (ACst, Tt)-generic query of Example 4.9: Did car
A encounter any empty roads? I.e., were there parts of its trajectory where it could
drive at constant speed for at least 6000 seconds.

∃u ∃v (carA(u) ∧ carA(v) ∧ 6000sec(u, v) ∧ ∀w ((carA(w)∧

Before(u,w,∧)Before(w, v, )) → (Between(n+1)(u, v, w)))).

⊓⊔



4.2. First-order Generic Spatio-temporal Queries 43

X

Y

Tt0 t1

X

Y

Tt0 t1tb

Figure 4.1: The elements of (Af
st,At) do not preserve betweenness of points.

4.2.3 Genericity for Time-dependent Transformations

Here, we focus on notions of genericity determined by time-dependent transforma-
tions. Our first result in this context shows that we can restrict our attention, without
loss of generality, to piece-wise constant transformations.

Proposition 4.21. Let Q be a spatio-temporal query expressible in FO(+, ×, <, 0,
1) and let the group Fst be Ast, Sst, Ist or Tst and the group Ft be At, Tt or Id t.

Then Q is (Fst,Ft)-generic if and only if it is (Ff
st,Ft)-generic.

Although we postpone the proof of this proposition until the end of this section,
it allows us to focus on subgroups of (Af

st,At).

We first look at the group (Af
st,At) and next on its subgroups. It will become

clear later, that the proof strategy for these groups is analogous to that for the group
(Af

st,At).

It is important to note that for (Af
st,At) and its subgroups, we cannot apply Theo-

rem 4.15. Indeed, it heavily relies on the fact that, using the predicate Between(n+1),
it can be expressed that n+ 2 points form an affine coordinate system for the space
(Rn×R), and also that some points represent the coordinates of another point, relative
to such an affine coordinate system (the latter is a straightforward consequence of the

former). When using the transformation group (Af
st,At) or one of its subgroups, the

predicate Between(n+1) is too strong. Indeed, transformations of the group (Af
st,At)

do not preserve “betweenness” in (n + 1)-dimensional space of points with different
time coordinates. Therefore, the notion of collinearity in (n + 1)-dimensional space
can no longer be used. Figure 4.1 illustrates this with a line (left) and the image of

the line under some transformation α = (αst, αt) in (Af
st,At) for which αt is the iden-

tity function and αst equals the identity in the time interval [t0, tb[ and is a constant
translation of space for the interval [tb, t1]. In the left part of Figure 4.1, it is true
that all points different from the endpoints at time moments t0 and t1 lie between the
endpoints. For the right part of Figure 4.1 this is not true (the dashed line connecting
the end points indicates all points between them.)
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However, as we want our language to be able to express all first-order (Af
st,At)-

generic queries, somehow there needs to be a link between an (n + 1)-dimensional
point and its coordinates. It will become more clear later that, although we cannot
express projection along the time axis, this link can be expressed using the predicates
BetweenCotemp, Before and a new predicate, EqCrST . The predicate Before has
already been introduced in Section 4.2.1. The expression BetweenCotemp(p, q, r)
states, for three points p, q, r ∈ (Rn × R), that they are co-temporal, collinear in the
space R

n and that q is between p and r. We also introduce a new 6-ary predicate,
EqCrST . For six points p1, p2, p3, q1, q2, q3 ∈ (Rn × R), EqCrST (p1, p2, p3, q1, q2, q3)
expresses that the cross ratio of the three co-temporal and collinear points p1, p2 and
p3 equals the cross ratio of the time coordinates τq1 , τq2 and τq3 of the points q1, q2
and q3. The cross ratio of three collinear points p, q, r is |pq|

|pr| . It is well known that

the cross ratio is invariant under affine transformations.
For example, in (Rn × R),

EqCrST ((0, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 0), (0, 0, 1), (0, 0, 2))

holds, since the former three points have a cross ratio of
√

2
2
√

2
and the latter three

points have a cross ratio of 1
2 .

For ease of use, we will often use the predicates EqCRs for the cross-ratio of
spatial coordinates, and EqCRt for the cross-ratio of temporal coordinates. Both
predicates can be expressed using EqCrST :

EqCRs(u1, u2, u3, v1, v2, v3) := ∃w1 ∃w2 ∃w3

(EqCrST (u1, u2, u3, w1, w2, w3) ∧ EqCrST (v1, v2, v3, w1, w2, w3)),

and

EqCRt(u1, u2, u3, v1, v2, v3) := ∃w1 ∃w2 ∃w3

(EqCrST (w1, w2, w3, u1, u2, u3) ∧ EqCrST (w1, w2, w3, v1, v2, v3)).

Next, we present the main theorem of this section. The proof is composed of three
lemmas, as explained below.

Theorem 4.22 (FO({BetweenCotemp,Before,EqCrST }, σst) is sound and com-

plete for the (Af
st,At)-generic FO(+, ×, <, 0, 1, σ) queries). Let σst be a spatio-

temporal database schema. The language FO({BetweenCotemp,Before,EqCrST },

σst) is sound and complete for the (Af
st,At)-generic spatio-temporal queries that are

expressible in FO(+, ×, <, 0, 1, σ).

For the remainder of this section, we will abbreviate the set {BetweenCotemp,

Before,EqCrST } by Π(Af
st,At).

We prove Theorem 4.22 by three lemmas. First, the soundness is addressed in
Lemma 4.23. Next, we prove completeness in two steps: Lemma 4.24 shows that
every FO(+, ×, <, 0, 1, σ)-formula can be converted into a FO(Π(Af

st,At), σ
st)-

formula, parameterized by a set of coordinate systems and Lemma 4.25 shows then
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that every (Af
st,At)-generic spatio-temporal query that is expressible in FO(+, ×,

<, 0, 1, σ) can be converted into an equivalent query expressible in the language

FO(Π(Af
st,At), σ

st).

Lemma 4.23 (Soundness of FO(Π(Af
st,At), σ

st) ). Let σst be a spatio-temporal

database schema. The language FO(Π(Af
st,At), σ

st) is sound for the (Af
st,At)-generic

spatio-temporal queries expressible in FO(+, ×, <, 0, 1, σ).

Proof. Soundness is proved in two steps. First, we show that every FO(Π(Af
st,At),

σst)-formula is equivalently expressible in FO(+, ×, <, 0, 1, σ) and afterwards that

every FO(Π(Af
st,At), σ

st)-formula is invariant under elements of (Af
st,At). Both are

proved by induction on the structure of FO(Π(Af
st,At), σ

st)-formulas.

Every FO(Π(Af
st,At), σ

st)-formula is expressible in FO(+, ×, <, 0, 1, σ).

The atomic formulas of FO(Π(Af
st,At), σ

st) are equality on point variables, the
predicates BetweenCotemp, Before, EqCrST and formulas of the type Rst(v1, . . . ,
vℓ), where Rst is a relation name from σst, with arity ℓ. We now describe, for each of
the above types of atomic formulas, how they can be translated into FO(+, ×, <, 0,

1, σ). A point variable v occurring in a FO(Π(Af
st,At), σ

st)-formula is translated into
real variables xv1, . . . , x

v
n, t

v. Equality between two point variables is then expressed
in FO(+, ×, <, 0, 1, σ) by requiring that all corresponding coordinates of the two
point variables are equal.

We already know that the predicate Before is expressible in FO(+, ×, <, 0, 1).

The predicate BetweenCotemp is translated in a similar way as Between(n+1), with
the additional restriction that the time coordinates of the variables should be the
same.

The formula EqCrST (u1, u2, u3, v1, v2, v3) is translated as the conjunction of (i)
the translation of the expression CollinearCotemp(u1, u2, u3), which is equal to

BetweenCotemp(u1, u2, u3)∨

BetweenCotemp(u2, u1, u3) ∨ BetweenCotemp(u1, u3, u2)

and (ii) the formula

(tv3 − tv1)2
n

∑

i=1

(xu1
i − xu2

i )2 = (tv2 − tv1)2
n

∑

i=1

(xu1
i − xu3

i )2.

We translate formulas of the type Rst(v1, . . . , vℓ), where Rst is a relation name from
σst with arity ℓ, by the formula R(xv11 , . . . , x

v1
n , t

v1 , . . . , xvℓ1 , . . . , x
vℓ
n , t

vℓ). Composi-
tions of atomic formulas by logical connectives and quantifiers are translated in a
natural way.

Every FO(Π(Af
st,At), σ

st)-formula is invariant for elements of the group (Af
st,At).

The only non-trivial part here is showing that all point predicates are (Af
st,At)-

invariant. The predicate Before is invariant for all transformations f = (f1, f2, . . . ,
fn, ft), that map (Rn×R) to (Rn×R), such that ft is a strictly monotone increasing
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bijection of t alone (Proposition 4.4). Since all elements of At are such bijections, this

condition is satisfied for (Af
st,At). It is well known that affinities preserve the cross-

ratio of three points. Because the predicate BetweenCotemp requires its parameters to
be co-temporal (which is preserved by elements of (Af

st,At)), these co-temporal points
will be transformed by the same affinity and hence their cross-ratio is preserved. Also
the predicate EqCrST is invariant under elements of (Af

st,At), because the group

Af
st preserves the cross-ratio between the spatial coordinates of co-temporal points

and the group At preserves the cross-ratio between time coordinates. ⊓⊔

We now show that every FO(+, ×, <, 0, 1, σ)-formula can be converted into

a FO(Π(Af
st,At), σ

st)-formula, which is parameterized by a finite set of coordinate
systems.

A coordinate system in a n-dimensional hyperplane of (Rn×R), orthogonal to the
time axis will be referred to as a spatial coordinate system and a coordinate system
on the time-axis will be referred to as a temporal coordinate system.

If p, q and r are collinear points in (Rn×R), then we denote by ~pq
~pr

the real number
α such that ~pq = α~pr.

Lemma 4.24 (Translation of FO(+, ×, <, 0, 1, σ) into FO(Π(Af
st,At), σ

st) ).
Let σst be a spatio-temporal database schema and let the underlying dimension be
n. For every FO(+, ×, <, 0, 1, σ)-formula

ψ(x1, x2, . . . , xm, t1, . . . , tℓ),

there exists a FO(Π(Af
st,At), σ

st)-formula

ψst(utO , utE , u0,0, u0,1, . . . , u0,n, . . . , uℓ,0, uℓ,1, . . . , uℓ,n, v1, v2, . . . , vk),

where ℓ is the number of variables occurring in the formula that refer to a time
dimension and where k is the total number of free variables of ψ, i.e., k = m+ ℓ.

Furthermore, for each spatio-temporal database ST over σst, for each set of spatial
coordinate systems (pi,0, pi,1, . . . , pi,n), i = 0, . . . , ℓ of the spatial component of (Rn×
R), for each temporal coordinate system (ptO , ptE ) of the temporal component of
(Rn × R), and for all points q1, q2, . . . , qk on the line p0,0p0,1:

((Rn × R),Π(Af
st,At)

(Rn×R)
,ST ) |= ψst[ptO , ptE , p0,0, p0,1, . . . , p0,n, . . . ,

pℓ,0, pℓ,1, . . . , pℓ,n, q1, q2, . . . , qk]

if and only if

(R,+,×, <, 0, 1, α(canDB(ST )) |= ψ[
−−−→p0,0q1
−−−−→p0,0p0,1

,
−−−→p0,0q2
−−−−→p0,0p0,1

, . . . ,
−−−→p0,0qk
−−−−→p0,0p0,1

],

where α = (αst, αt) is an element of (Af
st,At) such that (p0,0, . . . , p0,n) is mapped by

αst onto the standard spatial coordinate system in the hyperplane R
n×{(0, . . . , 0, 0)}

of (Rn × R), and each spatial coordinate system (pi,0, pi,1, . . . , pi,n)(i = 1 . . . , ℓ) is
mapped on the standard coordinate system in the hyperplane at time R

n×{α(τpi,0)}
where the temporal part αt of α is the unique time-affinity which maps τpO to 0 and
τpE to 1.
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Proof. Let ψ be a FO(+, ×, <, 0, 1, σ)-formula. We assume that ψ is in prenex nor-

mal form. We now describe the translation of ψ into a formula ψst of FO(Π(Af
st,At),

σst) (by induction on its structure). In this translation, first the quantifier-free part
of ψ is translated and the quantifiers are later added in the obvious way.

To start with, a 2-dimensional “computation plane” is chosen that is used to
simulate real variables and constants and all the polynomial equations, polynomial
equalities and inequalities.
• The choice of a computation plane. First of all, two moments in time utO and utE
(time moments are simulated in ψst by variables in (Rn × R)) are chosen such that
¬Before(utE , utO ). They form a temporal coordinate system; the formula describing
this is as follows:

TCoSysAt(u1, u2) := ¬Before(u2, u1).

Next, in the hyperplane of points co-temporal with utO , n + 1 points u0,0, u0,1, . . . ,
u0,n are chosen such that they form an affine coordinate system for the hyperplane
co-temporal with utO . The predicate CoSysnA, expressing this, is similar the the
previously introduced predicate CoSysA (see the proof of Theorem 4.16), except
that some constraints are added that express that the points should be co-temporal.

As the variables utO , utE , u0,0, u0,1, . . . , u0,n represent arbitrary points (up to the
mentioned restrictions), they parameterise the translation of ψ. To start with, ψst

will contain the sub-formula ψstcomp, defined as

ψstcomp(utO , utE , u0,0, u0,1, . . . , u0,n) := TCoSysA(utO , utE )

∧ CoSysnA(u0,0, u0,1, . . . , u0,n) ∧ Cotemp(utO , u0,0),

as a conjunct.
We will use the 2-dimensional plane through the points u0,0, u0,1 and u0,2 as a

“computation plane”. The idea is that we will simulate real variables and constants
by points on the line through u0,0 and u0,1 and that addition and multiplication of
real terms are simulated by FO(Π) expressions in the plane through u0,0, u0,1 and
u0,2.

• The translation of terms and atomic formulas. A quantifier-free FO(+, ×, <, 0, 1,
σ)-formula may contain the following terms and atomic sub-formulas: real variables;
the constants 0 and 1; polynomial constraints; and relation predicates where the
relation names from σ are used. We translate each separately.

− The translation of real variables. Each real variable x appearing in the formula ψ
is translated into a spatio-temporal variable v. Also, ψst will contain a conjunct

ψstvar(v) := Collinearn(u0,0, u0,1, v),

expressing that v is in the computation plane on the line connecting u0,0 and u0,1.
The idea is that a real variable x taking concrete value a, is simulated by requiring

that v is such that
−−−→u0,0v−−−−−→u0,0u0,1

equals a.

− The translation of the constants 0 and 1. The real constants 0 and 1 that may
appear in ψ are translated into u0,0 and u0,1 respectively.
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− The translation of polynomial constraints. The arithmetic operations (addition and
multiplication) on real terms will be simulated in the computation plane (u0,0, u0,1,
u0,2) It was shown by Tarski [67] (the results of Tarski were also used in [43]) that
all arithmetic operations on points that are located on the line through u0,0 and u0,1

can be simulated in the plane (u0,0, u0,1, u0,2) using only the construct Between(n+1)

(and therefore also using BetweenCotemp). Hence, a sub-formula p(x1, . . . , xm) > 0,
with p a polynomial with integer coefficients, using the translation of the real variables
x1, . . . , xm in point variables v1, . . . , vm, is translated into ψstpoly(u0,0, u0,1, u0,2, v1, . . . ,

vm), defined using the predicate BetweenCotemp.
The correctness of the three above translations can be demonstrated as that of

the similar translations in [43].
− The translation of relation predicates. A sub-formula of ψ of type R(x1,1, . . . , x1,n,
x1,t, . . . , xm,1, . . . , xm,n, xm,t), where R ∈ σ and where m is the arity of Rst in σst, is
translated into a formula

Rst(v1, . . . , vm)

and ψst has a conjunct expressing that the point variables v1,1, . . . , v1,n, v1,t, . . . , vm,1,
. . . , vm,n, vm,t, that are the translations of x1,1, . . . , x1,n, x1,t, . . . , xm,1, . . . , xm,n, xm,t,
are the coordinates of v1, . . . , vm respectively. For the moment, we assume that the
variables xi,t and xj,t are different for 1 ≤ i < j ≤ m and later show how to deal with
the general case. Indeed, recall that each variable xi,j (1 ≤ i ≤ m, 1 ≤ j ≤ n) and
xi,t (1 ≤ i ≤ m) is already translated into a point variable vi,j and vi,t, which are
all collinear with u0,0 and u0,1. To express the link between the coordinates of point
variables v1, . . . , vm and the point variables vi,j and vi,t, we proceed as follows. We
associate with each point variable vi (1 ≤ i ≤ m) the following set of point variables:

1. (n + 1) point variables ui,0, . . . , ui,n representing an n-dimensional coordinate
system which is co-temporal with vi; and

2. n point variables v′i,j which are collinear with ui,0 and ui,1, such that v′i,j repre-
sents the jth coordinate of vi with respect to the coordinate systems specified by
ui,0, . . . , ui,n, and such that the coordinate of v′i,j , on the line through ui,0 and
ui,1, gives the same cross ratio with respect to these points as the coordinate of
vi,j , on the line through u0,0 and u0,1, gives with respect to these points, i.e.,
−−−−−→
ui,0v

′

i,j−−−−−→ui,0ui,1
=

−−−−−→ui,0vi,j−−−−−→u0,0u0,1
.

As explained before, the first set of (n + 1) point variables can be defined using
the expression

CoSysnA(ui,0, ui,1, . . . , ui,n) ∧ Cotemp(ui,0, vi).

For the second set of n point variables, we first observe that from [43], we know
that we can express, using BetweenCotemp, that n point variables v′i,1, . . . , v

′
i,n rep-

resent the spatial coordinates of the point variable vi relative to a chosen spatial
coordinate system (in this case, the coordinate system specified by ui,0, . . . , ui,n). In
order to establish the link between the point variables v′i,j in the plane specified by
ui,0, . . . , ui,n and the point variables vi,j in the computation plane we need to use the
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predicate EqCRs. The predicate EqCRs performs a transformation between the
affine coordinate systems at two different time moments, and so connects each v′i,j
to a vi,j (i = 1, . . . ,m, j = 1, . . . , n). Remark that all v′i,j are collinear with ui,0 and
ui,1, and that all vi,j are collinear with u0,0 and u0,1. Therefore, EqCRs can be used
to express this equality of cross ratios.

Until now, we only considered the spatial coordinates. To link the temporal vari-
ables vi,t to the temporal coordinate of vi, we use the expression EqCrST (u0,0, u0,1,

vi,t, utO , utE , vi). Recall that the predicate EqCrST can be used to relate the cross
ratio of points on the time axis to the cross ratio of points, representing coordinates
on the line through u0,0 and u0,1, and thus connects each vi to a vi,t (i = 1, . . . ,m).

Putting everything together results in the expression ψstrel:

∃v1 ∃v2 . . . ∃vm (Rst(v1, v2, . . . , vm) ∧
m
∧

i=1

CoSysnA(ui,0, ui,1, . . . , ui,n)

∧
m
∧

i=1

Cotemp(ui,0, vi) ∧ ∃v′1,1 . . . ∃v
′
1,n . . . ∃v

′
m,1 . . . ∃v

′
m,n

(

m
∧

i=1

Coordinatesn(ui,0, ui,1, . . . , ui,n, v
′
i,1, . . . , v

′
i,n, vi)

∧
m
∧

i=1

n
∧

j=1

EqCRs(u0,0, u0,1, vi,j , ui,0, ui,1, v
′
i,j)

∧
m
∧

i=1

EqCrST (u0,0, u0,1, vi,t, utO , utE , vi)))

where Coordinatesn(ui,0, . . . , ui,n, v
′
i,1, . . . , v

′
i,n, vi) expresses for each (1 ≤ j ≤ n)

that v′i,j is represents the jth coordinate of vi with respect to the coordinate systems
specified by ui,0, . . . , ui,n.

We now show the correctness of the above translation of a relation predicate. We
have to prove that for each spatio-temporal database ST , and for any points ptO , ptE ,
p0,0, . . . , p0,n, . . . , pm,0, . . . , pm,n, q1,1, . . . , q1,n, q1,t, . . . , qm,1, . . . , qm,n, qm,t:

((Rn × R),Π(Rn×R),ST ) |= ψstrel[ptO , ptE , p0,0, . . . , p0,n, . . . , pm,0, . . . , pm,n,

q1,1, . . . , q1,n, q1,t, . . . , qm,1, . . . , qm,n, qm,t]

if and only if

(R,+,×, 0, 1, α(ST )) |= R[
−−−−→p0,0q1,1
−−−−→p0,0p0,1

, . . . ,
−−−−→p0,0q1,n
−−−−→p0,0p0,1

,
−−−−→p0,0q1,t
−−−−→p0,0p0,1

, . . . ,

−−−−−→p0,0qm,1
−−−−→p0,0p0,1

, . . . ,
−−−−−→p0,0qm,n
−−−−→p0,0p0,1

,
−−−−−→p0,0qm,t
−−−−→p0,0p0,1

],

where α = (αst, αt) ∈ (Af
st,At) is the affinity which maps (p0,0, . . . , p0,n) to the spatial

standard basis at time τ0 = 0, (pi,0, . . . , pi,n) to the spatial standard basis at time
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τi = α(τpi,0), where αt is uniquely determined on the time axis by αt(τpO ) = 0 and
αt(ptE ) = 1. Note that by assumption, xi,t 6= xj,t for (1 ≤ i < j < m) and hence
also τpi,0 and τpj,0 , and consequently τi 6= τj for (1 ≤ i < j < m). This condition
is essential to ensure that αt exists and is well defined. Indeed, suppose that there
exists an i and j such that τpi,0 = τpj,0 and hence τi = τj . Then we would require
that α maps two possibly different co-temporal coordinate systems (pi,0, . . . , pi,n) and

(pj,0, . . . , pj,n) the same standard basis. This can clearly not be done by a (Af
st,At)-

generic query.
We know that the formula ψstrel is true for the points ptO , ptE , p0,0, . . . , p0,n, . . . ,

pm,0, . . . , pm,n, q1,1, . . . , q1,n, q1,t, . . . , qm,1, . . . , qm,n, qm,t if and only if points p1, . . . ,
pm, q

′
1,1, . . . , q

′
1,n, . . . , q

′
m,1, . . . , q

′
m,n exist such that for each i = 1, . . . ,m:

−−−→p0,0pi = −−−→pi,0pi + −−−−→p0,0pi,0 =

n
∑

j=1

−−−−→
pi,0q

′
i,j

−−−−→pi,0pi,j

−−−−→pi,0pi,j + −−−−→p0,0pi,0, (4.1)

and the following equations hold:

−−−−→
pi,0q

′
i,j

−−−−→pi,0pi,1
=

−−−−→p0,0qi,j
−−−−→p0,0p0,1

, 1 ≤ j ≤ n, (4.2)

τpi − τptO
τptE − τptO

=
−−−−→p0,0qi,t
−−−−→p0,0p0,1

. (4.3)

Using Equation (4.2), Equation (4.1) is equivalent to

−−−→p0,0pi =

n
∑

j=1

−−−−→p0,0qi,j
−−−−→p0,0p0,1

−−−−→pi,0pi,j + −−−−→p0,0pi,0. (4.4)

Considering the fact that α is a linear transformation, and using equation (4.4), the
following holds:

α(−−−→p0,0pi) =

n
∑

j=1

−−−−→p0,0qi,j
−−−−→p0,0p0,1

α(−−−−→pi,0pi,j) + α(−−−−→p0,0pi,0).

Moreover, let ei(τ) be the ith vector of the standard spatial basis at time τ and denote
by ei = ei(0). We then have

α(−−−→p0,0pi) =

n
∑

j=1

−−−−→p0,0qi,j
−−−−→p0,0p0,1

−−−−−−−−→
e0(τi)ej(τi) +

−−−−−→
e0e0(τi). (4.5)

As equation (4.3) is invariant under elements of (Af
st,At), we also have that

α(τpi) − α(τptO )

α(τptE ) − α(τptO )
=
τi − 0

1 − 0
= τi =

−−−−→p0,0qi,t
−−−−→p0,0p0,1

. (4.6)

So we have that:

α(−−−→p0,0pi) =

n
∑

j=1

−−−−→p0,0qi,j
−−−−→p0,0p0,1

−−−−−−−−→
e0(τi)ej(τi) +

−−−−→p0,0qi,t
−−−−→p0,0p0,1

−−−−→e0en+1.
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Since all standard bases (e0(τi), . . . , en(τi)) are parallel along the time axis, we
have that

α(−−−→p0,0pi) =

n
∑

j=1

−−−−→p0,0qi,j
−−−−→p0,0p0,1

−−→e0ej +
−−−−→p0,0qi,t
−−−−→p0,0p0,1

−−−−→e0en+1.

This completes the correctness proof for the conversion of relational predicates.

• The translation of composed formulas. When all the atomic sub-formulas of ψ have
been translated as described above, the logical connectives can be added in a natural
way. We assume that two atomic formulas χ1 and χ2 are translated already, into
χst1 and χst2 . The translations of χ1 ∧ χ2 and χ1 ∨ χ2 are χst1 ∧ χst2 and χst1 ∨ χst2 ,
respectively. The formula ¬χ1 is translated into ¬χst1 .

Remember that with the conversion of a formula ψrel of type R(x1,1, . . . , x1,n,
x1,t, . . . , xm,1, . . . , xm,n, xm,t) we assumed that xi,t 6= xj,t for any (1 ≤ i < j < m).
The reason is that we want to have only one affine coordinate system for every different
time moment considered in that formula. Indeed, an element α of (Af

st,At) is a one-
to-one mapping from the snapshots of a certain input database ST to the snapshots
of the output database α(ST ). Therefore, we cannot map two different co-temporal
coordinate systems to the same standard coordinate system using such an affinity.

Suppose now that xi,t = xj,t for some (1 ≤ i < j ≤ m). Then we adapt the
previous translation with the extra requirement that vi,k = vj,k for k = 0, . . . , n and
we have unique coordinate system for each point occurring in time.

When translating an FO(+, ×, <, 0, 1, σ)-formula ψ, it is in general not known
in advance which time coordinates are equal (this may depend on the input database;
and it is undecidable in general which time coordinates are equal in an FO(+, ×,
<, 0, 1, σ)-formula). To circumvent this problem, we consider all possible orders
(using Before) of the time variables of ψ (a real variable denoting a time moment
is recognized as it appears on the i(n + 1)-th place (i = 1, . . . ,m) in the argument
list of a spatio-temporal relation predicate) and take the disjunction over all possible
orders of these time variables. We denote the set of all possible orders by P .

For each ρ ∈ P the formula ψstρ is the translation of ψ taken the (in)equalities
into account according to the order of the time variables corresponding to ρ. Hence,
each ψstρ -formula can have a different number ℓρ of free variables, depending on ρ.
We denote by ℓ the total number of free variables across all formulas ψstρ , ρ ∈ P .

When connecting several sub-formulas, the same principle has to be used, as arith-
metic sub-formulas can impose equality on different time variables.

When applying the thus obtained translation of the quantifier-free part of ψst to
a spatio-temporal database instance, only some of the disjuncts will apply (possibly
depending on the particular input database).

• Formulas with quantifiers. Finally, the quantifier prefix of ψ is translated in the
natural way. Suppose that we already translated the quantifier-free formula χ into the
formula χst. Then the translation of ∃x (χ) is ∃v (χst), where v is the point variable
associated to x which we have already declared to be collinear with u0,0 and u0,1. ⊓⊔

Lemma 4.25 (Completeness of FO(Π(Af
st,At), σ

st) ). Let σst be a spatio-tempo-

ral database schema. For every (Af
st,At)-generic spatio-temporal query expressible

in FO(+, ×, <, 0, 1, σ), there exists an equivalent FO(Π(Af
st,At), σ

st)-query.
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Proof. Given a (Af
st,At)-generic spatio-temporal query of output type (n, k), ex-

pressible in FO(+, ×, <, 0, 1, σ),

ψ(x1,1, . . . , x1,n, x1,t, . . . , xk,1, . . . , xk,n, xk,t).

The conversion procedure, given in Lemma 4.24, returns a formula

ψst(utO , utE , u0,0, . . . , u0,n, u1,0, . . . , u1,n, . . . , uk,0, . . . , uk,n,

v1,1, . . . , v1,n, v1,t, . . . , vk,1, . . . , vk,n, vk,t),

parameterized by one temporal and k spatial coordinate systems and which is, up
to a transformation of the group (Af

st,At), that depends on the coordinate systems,
equivalent to the original formula ψ. Since it has additional free variables, the query
ψst clearly has the wrong output type. A FO(Π(Af

st,At), σ
st)-query equivalent to ψ

should be a formula
ψstfinal(v1, v2, . . . , vk)

having k free variables only. We obtain the desired formula by introducing k new
point variables vi, and for each 1 ≤ i ≤ k, n new point variables v′i,1, . . . , v

′
i,n such

that v′i,j is collinear with ui,0 and ui,1 and

Coordinatesn(ui,0, . . . , , ui,n, v
′
i,1, . . . , v

′
i,n, vi). (1)

Moreover, we require that

EqCrST (u0,0, u0,1, vi,t, utO , utE , vi) (2)

and
n
∧

j=1

EqCRs(u0,0, u0,1, vi,j , ui,0, ui,1, v
′
i,j). (3)

The final formula ψstfinal is now obtained by existentially quantifying all point variables,
except for v1, . . . , vk in the conjunction of ψst with the expressions (1), (2) and (3).

Now consider the (partial) output of ψstfinal when we choose a specific coordinate
system for each set of variables ui,0, . . . , ui,n. By similar reasoning as in Lemma 4.24,
we obtain that this partial output equals

α′−1(ψ(α(canDB(ST ))))

where α′ = (α′
st, α

′
t) and α = (αst, αt) both are transformations as specified in the

statement of Lemma 4.24. This means that they both satisfy the same set of con-
straints, i.e., α′

t = αt and for certain time moments τ , α′
st(τ) = αst(τ). In between

those time moments α′
st and αst can differ. However, it follows from Lemma 4.24

that ψ(α(canDB(ST ))) = ψ(α′(canDB(ST ))), for any two transformations α and α′

satisfying the constraints as described in the statement of Lemma 4.24. Hence,
we can conclude without loss of generality that the partial output of ψstfinal when
we fill in a specific coordinate system for each set of variables ui,0, . . . , ui,n equals
α−1(ψ(α(canDB(ST )))) where α is a transformation as specified in the statement of
Lemma 4.24.
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If we now consider all possible coordinate systems for each set of variables ui,0,
. . . , ui,n

ψstfinal(ST ) =
⋃

c

⋃

αc

(α−1
c (ψ(αc(canDB(ST ))))),

where c ranges over all possible coordinate system assignments and αc ranges over
all transformations satisfying the constraints following from this choice of coordinate
systems.

The union
⋃

c

⋃

αc
(α−1
c (ψ(αc(canDB(ST ))))) is in fact the union over all elements

α of (Af
st,At) of α−1(ψ(α(canDB(ST )))). So,

ψstfinal(ST ) =
⋃

α

(α−1(ψ(α(canDB(ST ))))),

where α ranges over all elements of (Af
st,At).

Since ψstfinal is a (Af
st,At)-generic query and the group (Af

st,At) is semi-algebraic
(we give a precise definition in Section 4.3.3), we have that for every α

α−1(ψ(α(canDB(ST )))) = ψ(canDB(ST )).

So, finally,
ψstfinal(ST ) = ψ(canDB(ST )).

⊓⊔

Proof of Theorem 4.22. Lemma 4.23, Lemma 4.24 and Lemma 4.25 together prove
Theorem 4.22. ⊓⊔

We are now ready to prove Proposition 4.21:

Proof of Proposition 4.21. Note that we only consider a finite number of moments
in time in the proof of Lemma 4.24 (there are only a finite number of time variables
in any FO(+, ×, <, 0, 1, σ)-formula ϕ). This implies that the transformation groups

Af
st and Ast yield the same results. So, we can use the proof given above for the

group (Ast,At). Indeed, in between the moments of time that are considered, it is
indeed not important which transformation function is used. ⊓⊔

Theorem 4.22 has a number of corollaries. We need one more point predicates,
namely Posn before we can state those corollaries. The expression Posn(p0, p1, . . . , pn)
is true for (n+1) co-temporal points p0, p1, . . . , pn if and only if (p0, p1, . . . , pn) forms
a positively oriented coordinate system.

Corollary 4.26. Let σst be a spatio-temporal database schema. Let (Fst,Ft) and
Π(Fst,Ft) be taken from Table 4.3. The language FO(Π(Fst,Ft), σ

st) is sound
and complete for the (Fst,Ft)-generic spatio-temporal queries that are expressible
in FO(+, ×, <, 0, 1, σ).

Proof. It follows directly from the proof of Theorem 4.22 that, for each subgroup

(F
(f)
st ,Ft) of (A

(f)
st ,At), the language FO(Π(F

(f)
st ,Ft), σ

st) is sound and complete for

the (F
(f)
st ,Ft)−generic queries expressible in FO(+, ×, <, 0, 1, σ) if and only if the

following three conditions are satisfied:
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(Fst,Ft) Sets of point predicates Π(Fst,Ft)

(A
(f)
st ,At) {BetweenCotemp,Before,EqCrST }

(A
(f)
st , Tt) {BetweenCotemp,Before,EqCrST ,UnitTime}

(A
(f)
st , Id t) {BetweenCotemp,Before,EqCrST ,UnitTime,0t,1t}

(S
(f)
st ,Ft) Π(A

(f)
st ,Ft) ∪ {EqDistst }

(I
(f)
st ,Ft) Π(A

(f)
st ,Ft) ∪ { EqDistst, UnitDistst }

(T
(f)
st ,Ft) Π(I

(f)
st ,Ft) ∪ {Smalleri(1 ≤ i ≤ n),Posn}

Table 4.3: An overview of the different sets of point predicate for some transformation
groups. We have Ft ∈ {At, Tt, Id t}.

(i) the set Π(F
(f)
st ,Ft) contains the point predicates BetweenCotemp, Before and

EqCrST ;

(ii) all elements of Π(F
(f)
st ,Ft) are FO(+, ×, <, 0, 1, σ)-expressible and invariant

under the transformations of (F
(f)
st ,Ft);

(iii) the facts “(v0, v1, . . . , vn) is the image of the standard coordinate system in the

hyperplane co-temporal with vtO under an element of (F
(f)
st ,Ft)” and “(vtO , vtE )

is the image of the standard temporal coordinate system under an element of

(F
(f)
st ,Ft)”, where v0, v1, . . . , vn, vtO and vtE are points in (n + 1) dimensional

real space, are expressible in FO(Π(F
(f)
st ,Ft), σ

st).

All groups listed in Table 4.3 are subgroups of (A
(f)
st ,At) and satisfy the first

condition. It is also straightforward to verify that they satisfy the second condition.
For the third condition, we list for every group mentioned in Table 4.3 the expres-

sions for the spatial and temporal coordinate system. The proof that these expressions
are correct are straightforward.

• For the group (A
(f)
st ,At), the expressions for TCoSysA(u1, u2) and CoSysnA(u0,

u1, . . . , un) were given in Lemma 4.24.

• For the group (A
(f)
st , It), the expression for the spatial coordinate system does not

change, but

TCoSysT (u1, u2) := TCoSysA(u1, u2) ∧ UnitTime(u1, u2).

• For the group (A
(f)
st , Id t), the expression for the spatial coordinate system does

again not change, but

TCoSysId(u1, u2) := TCoSysT (u1, u2) ∧ 0t(u1) ∧ 1t(u2).

For the following groups, we only list the expression for the spatial coordinate
system. The temporal coordinate system depends on the groups Ft and is completely
analogous to the previous cases.



4.2. First-order Generic Spatio-temporal Queries 55

• For the group (S
(f)
st ,Ft), we have

CoSysS(u0, u1, . . . , un) :=

CoSysnA(u0, u1, . . . , un) ∧
n
∧

i=1

n
∧

j=1

EqDistst(u0, ui, u0, uj).

• For the group (I
(f)
st ,Ft), we have

CoSysI(u0, u1, . . . , un) := CoSysS(u0, u1, . . . , un) ∧
n
∧

i=1

UnitDistst(u0, ui).

• For the group (T
(f)
st ,Ft), we have

CoSysT (u0, u1, . . . , un) :=

CoSysI(u0, u1, . . . , un) ∧
n
∧

i=1

n
∧

j=1

Smalleri(u0, uj) ∧ Posn(u0, u1, . . . , un).

⊓⊔
Next, we illustrate the languages summarized in Table 4.3 with the appropriate

examples of Section 4.1.5.

Example 4.27. We give the FO({BetweenCotemp,Before,EqCrST })-expression ϕ′
3

equivalent to the (Ist,At)-generic query of Example 4.7: Was there a collision between
car A and car B?:

ϕ′
3 := ∃u (carA(u) ∧ carB(u)).

Remark that this query can be expressed without the use of the point predicates from
Π. ⊓⊔

Example 4.28. We give the FO({BetweenCotemp,Before,EqCrST , EqDistst,
UnitDistst, Smalleri(1 ≤ i ≤ n),Posn,UnitTime,0t,1t}) expression ϕ′

4 equiv-
alent to the (Tst, id t)-generic query of Example 4.8: Did car A pass at 500 meters
north of car B at time moment t = 5930?

The fact that a point has time coordinate 5930 can be expressed using UnitTime,
0t, and 1t. We illustrate this with a predicate expressing the fact that a point has
time coordinate 3:

eq3t(u) := ∃v1 ∃v2 (1t(v1) ∧ Before(v1, v2,∧)UnitTime(v1, v2,∧)

Before(v2, u,∧)UnitTime(v2, u, )).

It can be expressed using UnitDistst that the distance between two points is 500 (in
a way comparable to the construction of the predicate 3sec of Example 4.19).

Now we give the expression ϕ′
4:

∃u ∃v ∃w (carA(u) ∧ carB(v) ∧ eq5930t(u) ∧ eq5930t(v) ∧ (Smaller1 (u,w)

∧ Smaller1 (w, u)) ∧ (Smaller2 (v, w) ∧ Smaller2 (w, v)) ∧ 500meters(u,w)).

⊓⊔
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4.3 Computable Generic Spatio-temporal Queries

In this section, we show that the languages FO(Π(Fst,Ft), σ
st) of the previous sec-

tion, when extended with assignment statements and a While loop, yield languages
that are computationally sound and complete for the computable queries that are
(Fst,Ft)-generic. To start with, we explain in more detail how point-based logics
are extended with assignment statements and a while loop. Afterwards, this section
is organized in the same way as Section 4.2. We first discuss sound and complete
languages for the queries generic for time-independent transformation groups. Then
we focus on genericity for groups related to physical notions. Finally, we address
sound and complete languages for the queries that are generic for the time-dependent
transformations.

We start with extending the point-based logics described in Definition 4.11 with
while loops. Remark that this is similar to the extension of FO(+, ×, <, 0, 1) with
a while loop, that we defined earlier in this thesis (see Definition 3.9).

Definition 4.29 (FO(Π, σst) + While-program). Let Π be a finite set of point
predicates, and let σst be a (spatio-temporal) database schema. Syntactically, a
program in the language FO(Π, σst) + While is a finite sequence of statements and
while-loops. It is assumed there is a sufficient supply of new relation variables, each
with an appropriate arity.

(i) Each statement has the form

Rst := {(u1, . . . , uk) | ϕ(u1, . . . , uk)}; .

Here, R is a relation variable with assigned arity k (the variables ui range over
(Rn×R)) and ϕ is a formula in FO(Π, σst

′
), where σst

′
is the set of relation names

containing the elements of σst together with the relation variables introduced in
previous statements of the program.

(ii) A while-loop has the form

while ϕ do
P

end while

where P is a program and ϕ is a sentence in FO(Π, σst
′
), where σst

′
is again the

set of relation names containing the elements of σst together with the relation
variables introduced in previous statements of the program.

(iii) One of the relation names occurring in the program is designated as the output
relation and is named Rstout.

Semantically, a program in the query language FO(Π, σst) expresses a spatio-
temporal query as soon as Rstout is assigned a return value. The execution of a FO(Π,
σst) + While-program applied to an input database is performed step-by-step. A
statement is executed by first evaluating the FO(Π, σst)-formula on the right hand
side on the input database together with the newly created relations resulting from
previous statements. Next, the result of the evaluation of the right hand side is
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assigned to the relation variable on the left-hand side. The effect of a while loop is to
execute the body as long as the condition ϕ evaluates to true.

Note that a FO(Π, σst) + While-program is not guaranteed to halt. For those
input databases it does not, the query represented by the program is not defined on
that particular input database.

Consider the following example which will be used later on to express the query
from Example 4.5.

Example 4.30. Suppose that we have a spatio-temporal database over the schema
σst = {RST, Sst}, where the underlying dimension is two and both Rst and Sst have
arity one. We assume that all points in Rst and Sst have disjoint time coordinates.
This means that we can sort all points according to their time coordinates. We also
assume that Rst and Sst both contain a finite number of points.

The query Q we want to answer is the following: Does Rst contain more points
than Sst?. It is well known that we cannot express this query in first-order logic [37].
The FO(Π, σst) + While-program expressing Q is:

RstNot := {};
SstNot := {};
RstSmallest :=

{(u) | Rst(u) ∧ ¬RstNot(u) ∧ ∀v ((Rst(v) ∧ ¬RstNot(v)) → (Before(u, v)))};

SstSmallest :=

{(u) | Sst(u) ∧ ¬SstNot(u) ∧ ∀v ((Sst(v) ∧ ¬SstNot(v)) → (Before(u, v)))};

while ∃u (RstSmallest(u)) ∧ ∃v (SstSmallest(v)) do
RstNot := {(u) | RstNot(u) ∨R

st
Smallest(u)};

SstNot := {(u) | SstNot(u) ∨ S
st
Smallest(u)};

RstSmallest :=

{(u) | Rst(u) ∧ ¬RstNot(u) ∧ ∀v ((Rst(v) ∧ ¬RstNot(v)) → (Before(u, v)))};

SstSmallest :=

{(u) | Sst(u) ∧ ¬SstNot(u) ∧ ∀v ((Sst(v) ∧ ¬SstNot(v)) → (Before(u, v)))};

end while
Rstout := {() | ∃u (RstSmallest(u))};

Intuitively, this program repeatedly takes the earliest point from both Rst and
Sst until they do not both contain unvisited points anymore. When the while loop
terminates and Rst still contains unvisited points, true is returned. ⊓⊔
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4.3.1 Genericity for Time-independent Transformations

In this section, we prove a general result concerning computable (Fst,Ft)-generic
queries where (Fst,Ft) is a time-independent affinity of (Rn × R), i.e., a group from
Table 4.1. The following theorem follows directly from the proof of Theorem 6.1 [43].

Theorem 4.31 (Computable meta-theorem). Let σst be a spatio-temporal data-
base schema, let F be a subgroup of the affinities of (Rn×R), let Π be a set of point
predicates and let FO(Π, σst) be a point language that is sound and complete for the
F-generic queries expressible in FO(+, ×, <, 0, 1, σ). Then the language FO(Π, σst)
+ While is sound and complete for the F-generic computable queries.

From this, we can derive the following result:

Corollary 4.32 (Complete languages for time-independent groups). Let σ
be a spatio-temporal database schema. Let (Fst,Ft) be a group and let Π(Fst,Ft)
be as in Table 4.1. The point language FO(Π(Fst,Ft), σ

st) + While is sound and
complete for the computable (Fst,Ft)-generic queries.

Proof. The correctness follows from Theorem 4.16 and Theorem 4.31. ⊓⊔

4.3.2 Applications to Physics

Here, we focus again on the transformation groups (Vst, Tt), (V(R)st, Tt), (ACst, Tt)
and (AC(R)st, Tt). As they are all subgroups of the affinities of (Rn × R), we can
apply Theorem 4.31 again.

Corollary 4.33 (Complete languages for transformations from physics). Let
σst be a spatio-temporal database schema. Let (Fst, Tt) be a group from Table 4.2
and let Π(Fst, Tt) be as in Table 4.2. The point language FO(Π(Fst, Tt), σ

st) + While
is sound and complete for the (Fst, It)-generic computable spatio-temporal queries.

Proof. The correctness follows from Theorem 4.18 and Theorem 4.31. ⊓⊔

Example 4.34. We now give the FO({Between(n+1),Before,EqSpace) + While-
program expressing query Q1 of Example 4.5: Does the route followed by car A self-
intersect more often than the route followed by car B does?.

If a car is standing still at a certain position, this will result in an infinite number
of points in (Rn × R) with the same spatial coordinates. However, one would not
consider this situation to be an infinite number of self-intersections. Therefore, when
such a situation happens, we only consider the last moment of the interval during
which the car is at that specific location.

Intuitively, the program first computes the relations containing all self-intersecti-
ons of the trajectories of both cars, and then determines whether the route of car A
self-intersects the most. The program of Example 4.30 can be used to perform this
last task. We slightly adapt it such that it expresses query Q1:

⊓⊔
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A∩ :=

{(u) | carA(u)∧∃v (carA(v)∧Before(u, v)∧EqSpace(u, v)∧∀w ((carA(w)∧

Before(u,w) ∧ Before(w, v) ∧ u 6= w ∧ v 6= w) → ¬(EqSpace(w, v))))};

B∩ :=

{(u) | carB(u)∧∃v (carB(v)∧Before(u, v)∧EqSpace(u, v)∧∀w ((carB(w)∧

Before(u,w) ∧ Before(w, v) ∧ u 6= w ∧ v 6= w) → ¬(EqSpace(w, v))))};

ANot := {};
BNot := {};
ASmallest :=

{(u) | A∩(u) ∧ ¬ANot(u) ∧ ∀v ((A∩(v) ∧ ¬ANot(v)) → (Before(u, v)))};

BSmallest :=

{(u) | B∩(u) ∧ ¬BNot(u) ∧ ∀v ((B∩(v) ∧ ¬BNot(v)) → (Before(u, v)))};

while ∃u (ASmallest(u)) ∧ ∃v (BSmallest(v)) do
ANot := {(u) | ANot(u) ∨ASmallest(u)};
BNot := {(u) | BNot(u) ∨BSmallest(u)};
ASmallest :=

{(u) | A∩(u) ∧ ¬ANot(u) ∧ ∀v ((A∩(v) ∧ ¬ANot(v)) → (Before(u, v)))};

BSmallest :=

{(u) | B∩(u) ∧ ¬BNot(u) ∧ ∀v ((B(v) ∧ ¬BNot(v)) → (Before(u, v)))};

end while
Rout := {() | ∃u (ASmallest(u))};
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4.3.3 Genericity for Time-dependent Transformations

Finally, we study notions of genericity determined by groups of time-dependent trans-
formations. Here, we only show results for the groups of arbitrary time-dependent
transformations Fst. We concentrate on the group (Ast,At). The other time-depen-
dent transformation groups will be addressed afterwards (see Corollary 4.40). For the

groups Ff
st the problem of identifying sound and complete languages is open, we will

discuss the problems concerning this at the end of this section.
We introduce some definitions first. Recall that we introduced, in Section 4.1.1,

the abbreviation f(RST ) for the formula {(f(a1, τ1), f(a2, τ2), . . . , f(ak, τk)) | (a1, τ1,

a2, τ2, . . . ,ak, τk) ∈ Rst
ST
}, where Rst is a relation name and ST a spatio-temporal

database over a schema σst that contains Rst.

Definition 4.35 ((Fst,Ft)-isomorphic databases). Let ST 1 and ST 2 be spatio-
temporal databases over the schema σst = {Rst1 , . . . , R

st
m} with underlying dimension

n. The databases ST 1 and ST 2 are called (Fst,Ft)-isomorphic if and only if there exists

a f = (fst, ft) ∈ (Fst,Ft) such that for all Rsti in σst, f(Rst
ST 1

i ) = Rst
ST 2

i .

Recall that a representation of a spatio-temporal database ST over a schema σst =
{Rst1 , . . . , R

st
m} is a tuple (ϕ1, . . . , ϕm) of quantifier-free formulas in FO(+, ×, <, 0,

1), such that ϕi describes Rst
ST
i .

Assuming some order on the characters or symbols that may appear in a FO(+,
×, <, 0, 1)-formulas, we can lexicographically order the FO(+, ×, <, 0, 1)-formulas.

Definition 4.36 ((Fst,Ft)-canonization). The (Fst,Ft)-canonization of a spatio-
temporal database ST over a schema σst = {Rst1 , . . . , R

st
m}, denoted Canon(Fst,Ft)(ST ),

is the spatio-temporal database ST
′

, which is (Fst,Ft)-isomorphic to ST and has a
representation by quantifier-free FO(+, ×, <, 0, 1)-formulas

(ϕCanon(Fst,Ft)
(Rst1 ), . . . , ϕCanon(Fst,Ft)

(Rstm))

that occurs lexicographically first among the representations of spatio-temporal data-
bases (Fst,Ft)-isomorphic to ST .

Definition 4.37 ((Fst,Ft)-type). Let ST be a spatio-temporal database. The (Fst,
Ft)-type of ST , denoted Type(Fst,Ft)(ST ), equals

{f ∈ (Fst,Ft) | f(ST ) = Canon(Fst,Ft)(ST )}.

We can derive directly from a similar proposition of Gyssens, Van den Buss-
che and Van Gucht [43] that, for a spatio-temporal database ST , a representation of
Canon(Fst,Ft)(ST ) can be computed if and only if (Fst,Ft) is a transformation group.

A transformation group G of (Rn × R) is semi-algebraic if and only if there exists
a semi-algebraic subset of R

ℓ, described by a FO(+, ×, <, 0, 1)-formula ϕG , for some
fixed ℓ, representing all elements of G, such that the set

{(g1, . . . , gℓ, x1, . . . , xn, t, x
′
1, . . . , x

′
n, t

′) |

ϕG(g1, . . . , gℓ) ∧ ϕG−img(g1, . . . , gℓ, x1, . . . , xn, t, x
′
1, . . . , x

′
n, t

′)},
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also called the graph of G, is a semi algebraic subset of R
ℓ+2(n+1). The formula ϕG−img

expresses that, for the element of G represented by the tuple (g1, . . . , gℓ), the tuple
(x1, . . . , xn, t) is mapped to (x′1, . . . , x

′
n, t

′).

Remark 4.38. The transformation group (Ast,At) is semi-algebraic if and only if
the transformation groups Ast and At are both semi-algebraic. The semi-algebraic
set for the group At is ϕAt ≡ {(α, β) ∈ R

2 | α > 0}. The semi-algebraic set associated
to the group Ast is given by the FO(+, ×, <, 0, 1)-formula ϕAst(α1,1, . . . , α1,n, . . . ,
αn,1, . . . , αn,n, β1, . . . , βn, t) expressed by

∣

∣

∣

∣

∣

∣

∣

α1,1 · · · α1,n

... · · ·
...

αn,1 · · · αn,n

∣

∣

∣

∣

∣

∣

∣

6= 0.

We now give the formulas for ϕAt−img and ϕAst−img. The formula ϕAt−img(α, β,
x1, . . . , xn, xt, x

′
1, . . . , x

′
n, x

′
t) can be given as

x′t = αxt + β ∧
n
∧

i=1

x′i = xi.

The formula ϕAst−img(α1,1, . . . , α1,n, . . . , αn,1, . . . , αn,n, β1, . . . , βn, t, x1, . . . , xn, xt,
x′1, . . . , x

′
n, x

′
t) on the other hand is

t = tx ∧ tx = t′x ∧
n
∧

i=1

αi,1x1 + · · · + αi,nxn + βi = x′i.

The graph of the group (Ast,At) is now a semi-algebraic subset of R
ℓ+2(n+1),

where ℓ = n2 + n+ 3, described as follows:

γ(Ast,At)(α1,1, . . . , α1,n, . . . , αn,1, . . . , αn,n, β1, . . . , βn, t,

α, β, x1, . . . , xn, tx, x
′
1, . . . , x

′
n, t

′
x) :=

ϕAst−img(α1,1, . . . , α1,n, . . . , αn,1, . . . , αn,n, β1, . . . , βn, t,

x1, . . . , xn, xt, x
′
1, . . . , x

′
n, xt)

∧ ϕAt−img(α, β, x
′
1, . . . , x

′
n, xt, x

′
1, . . . , x

′
n, x

′
t).

We now prove the main theorem of this section. The proof technique used here
was introduced by Gyssens, Van den Bussche and Van Gucht [43]. We first sketch
the proof technique, but only give details about the aspects of the proof that need
modifications in the context of spatio-temporal databases. These modifications are
based on proof techniques introduced in Section 4.2.

Theorem 4.39 (Computational completeness of FO(Π(Ast,At), σ
st) +While).

Let σst be a spatio-temporal database schema. The point language FO(Π(Ast,At),
σst) +While is sound and complete for the (Ast,At)-generic computable spatio-
temporal queries.
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Proof. It suffices to show that any (Ast,At)-generic computable query Q over σ can
be simulated in the language FO(Π(Ast,At), σ

st) + While. We first briefly sketch
the proof strategy, including the conversion procedure and the encoding and decoding
step, that appear in it. Later the coding and decoding will be explained in more detail.
For the remainder of this proof, we will abbreviate Π(Ast,At) by Π.

We start with the encoding that will be used to convert formulas that represent
spatio-temporal relations into natural numbers

The encoding mechanism.

Let ST be a spatio-temporal database over σst. Let K be the maximum of the
arities of all relations in σst and the query Q. Let n be the underlying dimension.
Then each relation of ST can be represented by a quantifier-free FO(+, ×, <, 0, 1)-
formula using only the variables x1, . . . , x(n+1)K , the symbols ≤,+,×, (, ),∨ and ¬,
and the constants 0 and 1.

We denote these 9 + (n + 1)K by s1, . . . , s9+(n+1)K . Hence, we can encode a
quantifier-free FO(+, ×, <, 0, 1)-formula as a string s = si1 . . . sik and that string as
the natural number N = pi11 . . . pikk , where pj is the j-th prime number. We denote
N by Encode(s).

Proof strategy.

Given a spatio-temporal database ST over a schema σst = {Rst1 , . . . , R
st
m}, the

simulation of a (Ast,At)-generic k-ary computable query on input ST is broken up
into three steps:

(i) The encoding step: The database ST is encoded as a tuple of natural num-
bers (NRst1 , . . . , NRstm), one for each relation of the database. Here, NRsti =
Encode(si), where (s1, . . . , sm) are the string representation of the quantifier-free
formulas ϕCanon(Ast,At)

(Rsti ) (i = 1, . . . ,m) of the database Canon(Ast,At)(ST ).

It will be shown below that this encoding can be performed in the language
FO(Π, σst) + While. The set Type(Ast,At)(ST ) is also computed, to be used in
the decoding step.

(ii) The computing step: It can be shown easily that the language FO(Π, σst) +
While has full computational power on the natural numbers, by simulating a
counter machine (cfr [43]).

More specifically, one can simulate a counter machine M in FO(Π, σst) + While
such that on input (NRst1 , . . . , NRstm), M halts if and only if Q is defined on the
corresponding ST and M will output a natural number Nq which is the encoding
of Q(ST ).

(iii) The decoding step: If M terminates on input (NRst1 , . . . , NRstm) then it outputs
a natural number Nq. Using Type(Ast,At)(ST ), the decoding algorithm computes
the point set of which Nq is the encoding. This can be implemented in the
language FO(Π, σst) + While.

We show next the details in the encoding and decoding algorithms that are differ-
ent for (Ast,At)-generic queries, as compared to the affine-generic queries considered
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in [43]. For ease of exposition, we will assume for the remainder of this proof that
the input spatio-temporal database ST has only one relation, with arity one, i.e.,
σst = {Rst}. For relations with arity greater than one, the encoding algorithm has to
consider more variables. If the input database contains more relations, each relation
has to be encoded separately.

The encoding algorithm can be expressed in FO(Π, σst) + While.

Roughly speaking, the encoding procedure enumerates all natural numbers and
meanwhile stores the evaluation of the terms and formulas that are encoded by those
numbers in relations that are called T and F , respectively. This enumeration con-
tinues until one natural number is found that encodes a relation that is (Ast,At)-
isomorphic to Rst. This relation, for which the evaluation is stored in F , corresponds
to Canon(Ast,At)(R

st). The set Type(Ast,At)(ST ) is also computed, to use in the de-
coding step.

First, we explain the role of the relations T and F in more detail, as well as the
way they are built during the encoding process.

The encoding program builds up terms and formulas until the formula is found
that encodes Canon(Ast,At)(ST ). The terms and formulas are stored in the relations
T and F . In general, the arity of T is (n + 1) + 2 + 2 + l × (n + 1), where n is the
underlying dimension and l = ar(R). Under the assumption that ar(R) = 1 and the
underlying dimension is 2, each tuple in T is of the form

(utO , utE , u0, u1, u2, ut, p1, p2, pt, v),

where (utO , utE ) is a temporal coordinate system, (u0, u1, u2) a spatial coordinate
system, ut the encoding of a term which only uses the variables x1, x2, xt (which
are translated into v1, v2, vt), and v the value of the term when evaluated under the
valuation v1 7→ p1, v2 7→ p2, vt 7→ pt. The arity of F is (n + 1) + 2 + 1 + l × (n + 1).
Under the same assumptions, each tuple in F is of the form

(utO , utE , u0, u1, u2, uf , p1, p2, pt),

where (utO , utE ) and (u0, u1, u2) are as before, uf the encoding of a formula ϕ which
only uses the variables x1, x2, xt, and where ϕ(p1, p2, pt) is true.

In Algorithm 1, we give the structure of the encoding program in FO(Π, σst) +
While. In this algorithm, it is assumed that substrings s′ of a string s is encountered
in the enumeration before s is encountered.

We will discuss in detail

(i) the representation of natural numbers (as we only have point-variables),

(ii) the expression that checks whether a certain natural number encodes a formula
which represents Canon(Ast,At)(ST ), and

(iii) the computation of the set Type(Ast,At)(R
st).

All other elements of the encoding can be adopted from the proof of [43] with only
slight modifications. For ease of exposition, we give the formulas for n = 2.
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Algorithm 1 The encoding program. The input is a FO(+, ×, <, 0, 1)-sentence.

m := 0
T := ∅
F := ∅
found :=False
while not found do
m := m+ 1
if m encodes x1 then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, p1) | p1, p2, pt collinear with
u0 and u1}

else if m encodes x2 then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, p2) | p1, p2, pt collinear with
u0 and u1}

else if m encodes xt then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, pt) | p1, p2, pt collinear with
u0 and u1}

else if m encodes 0 then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, u0) | p1, p2, pt collinear with
u0 and u1}

else if m encodes 1 then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, u1) | p1, p2, pt collinear with
u0 and u1}

else if m encodes (s+ t) then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, pe) | T (utO , utE , u0, u1, u2, enc(s),
p1, p2, pt, pc) ∧ T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt, pd) ∧ Plus(pc, pd, pe)}

else if m encodes (s× t) then
T := T ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt, pe) | T (utO , utE , u0, u1, u2, enc(s),
p1, p2, pt, pc) ∧ T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt, pd) ∧ Times(pc, pd, pe)}

else if m encodes (s ≤ t) then
F := F ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt) | ∃c∃d (T (utO , utE , u0, u1, u2,
enc(s), p1, p2, pt, pc)∧T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt, pd)∧Less(pc, pd))}

else if m encodes (¬ϕ) then
F := F ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt) | ¬F (utO , utE , u0, u1, u2, enc(ϕ),
p1, p2, pt)}

else if m encodes (ϕ ∨ ψ) then
F := F ∪ {(utO , utE , u0, u1, u2,m, p1, p2, pt) | F (utO , utE , u0, u1, u2, enc(ϕ), p1,
p2, pt) ∨ F (utO , utE , u0, u1, u2, enc(ψ), p1, p2, pt)}

end if
found:= m encodes a formula which represents Canon(Ast,At)(R)

end while
NCanon(Ast,At)

(R) := m
Type(Ast,At) := {a ∈ (Ast,At) | a(R) = Canon(Ast,At)(R)}
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(i) Natural numbers can be represented by (n + 1)-dimensional points using the
computation plane technique introduced in Section 4.2. Further on, in de en-
coding and decoding algorithm, we need to simulate assignments such as m := 0
and m := m+ 1 (since we have to run through all natural numbers in those al-
gorithms). As an illustration, we explain here how these are simulated in FO(Π,
σst) + While. The expression m := 0, for example, is translated in FO(Π, σst)
+ While by assigning to a spatio-temporal relation a point that is the origin of
the chosen computation plane. The translated expression is

N := {(utO , utE , u0, u1, u2, v) | TCoSysA(utO , utE )∧

CoSysnA(u0, u1, u2) ∧ Collinear(u0, u1, v) ∧ v = u0}.

For the assignment m := m+ 1, we have:

N := {(utO , utE , u0, u1, u2, v) | ∃w (N(utO , utE , u0, u1, u2, w)

∧ Plus(utO , utE , u0, u1, u2, w, u1, v))}.

The predicate Plus, which expresses that, relative to a computation plane, a
certain point represents the sum of two other points can be written in FO(Π,
σst) + While because of Theorem 4.22.

(ii) We now give the expression ϕ that checks whether a certain natural number m
encodes a formula which represents ϕCanon(Ast,At)

(Rsti ) (i = 1, . . . ,m). Remem-
ber that the evaluation of the formula encoded by m is stored in the relation
F . This relation has arity n + 3 + K, where K is the maximal arity in the
input database schema. Let (p1, p2, . . . , pn+3+K) be a tuple of points satisfying
F . The points p1 and p2 are a temporal coordinate system, pn+3 represents the
natural number m encoding the formula and p3, p4, . . . , pn+2 form a hyperplane
of which the plane through p3, p4 and p5 will be use as a computation plane.
The last K points are the translation of the free variables in the formula encoded
by m.

Let the formula ψ(Ast,At) be the translation of the formula ϕ(Ast,At) from Exam-
ple 4.38. Intuitively, the next formula checks, for a natural number m, whether
there exists an element of the group (Ast,At) that maps each point in Rst to a
point in the set of points satisfying the formula encoded by m, the evaluation
of which is stored in F .

The following formula ψ checks whether the right quantifier-free formula has
been found. It reflects the stop condition of the While-loop that runs through
the natural numbers. This formula ψ can be written as
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∀utO ∀utE ∀u0 ∀u1 ∀u2 (TCoSysA(utO , utE )∧

CoSysnA(u0, u1, u2)) → ∃vα ∃vβ ∃w ∀ut ∃va1,1
∃va1,2

∃va2,1
∃va2,2

∃vb1 ∃vb2 (N(utO , utE , u0, u1, u2, w)∧

∀vx ∀vy ∀vt (F (utO , utE , u0, u1, u2, w, vx, vy, vt) ↔

∃v ∃v′x ∃v
′
y (Rst(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v

′
x, v

′
y, ut)∧

ψ(Ast,At)(utO , utE , u0, u1, u2, va1,1
, va1,2

, va2,1
, va2,2

, vb1 , vb2 , ut, vα, vβ ,

v′x, v
′
y, ut, vx, vy, vt)))).

In the above formula, we omitted, for all point variables except v, the sub
formulas expressing collinearity with v0 and v1. Also, the predicate comp-
coord is an abbreviation for the fact that the translation of v’s coordinates to
the computation plane are v′x, v

′
y and ut. The exact formula expressing this can

be found in the proof of Lemma 4.24, when the translation of relation predicates
is explained.

(iii) For the set Type(Ast,At)(R
st) = {α ∈ (Ast,At) | α(Rst) = Canon(Ast,At)(R

st)},
we compute two separate relations storing the At-type, respectively Ast-type of
the encoded relation. In the previous formula, it was checked whether there
exists a transformation mapping all points in Rst to points in the formula coded
by m (i.e., in F ). Here, we compute that transformation:

TAt := {(utO , utE , u0, u1, u2, vα, vβ) | (TCoSysA(utO , utE )∧

CoSysnA(u0, u1, u2)) → ∃w (N(utO , utE , u0, u1, u2, w)∧

∀vx ∀vy ∀vt (F (utO , utE , u0, u1, u2, w, vx, vy, vt) ↔

∃v ∃v′x ∃v
′
y ∃v

′
t ∃v

′′
x ∃v

′′
y ∃vα0,0

∃vα0,1
∃vα1,0

∃vα1,1
∃vβ0

∃vβ1
)

(Rst(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v
′
x, v

′
y, v

′
t)∧

ψAst(utO , utE , u0, u1, u2, vα0,0
, vα0,1

, vα1,0
, vα1,1

, vβ0
, vβ1

,

v′t, v
′
x, v

′
y, v

′
t, v

′′
x , v

′′
y , v

′
t)∧

ψAt(utO , utE , u0, u1, u2, vα, vβ , v
′′
x , v

′′
y , v

′
t, vx, vy, vt))))}

and
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TAst := {(utO , utE , u0, u1, u2, vα0,0
, vα0,0

, vα0,1
, vα1,0

, vα1,1
, vβ0

, vβ1
, ut) |

(TCoSysA(utO , utE ) ∧ CoSysnA(u0, u1, u2)) →

∃w (N(utO , utE , u0, u1, u2, w) ∧ ∀vx ∀vy ∀vt (

F (utO , utE , u0, u1, u2, w, vx, vy, vt) ↔ ∃v ∃v′x ∃v
′
y ∃v

′
t ∃vα ∃vβ

(Rst(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v
′
x, v

′
y, v

′
t)∧

TAt(utO , utE , u0, u1, u2, vα, vβ)∧

ψAt(utO , utE , u0, u1, u2, vα, vβ , v
′
x, v

′
y, v

′
t, v

′
x, v

′
y, vt)∧

ψAst(utO , utE , u0, u1, u2, vα0,0
, vα0,1

, vα1,0
, vα1,1

, vβ0
, vβ1

,

vt, v
′
x, v

′
y, vt, vx, vy, vt))))}.

The decoding algorithm can be expressed in FO(Π, σst) + While.

Input databases are encoded by natural numbers. A counter machine simulates
the query on this natural number and returns a natural number that encodes the
output. In the decoding algorithm, again all natural numbers are enumerated and
the evaluation of the terms and formulas they encode are stored in relations called T
and F . When the number that is the output of the counter machine is encountered,
the relation F contains all points of the result, up to the transformation stored in
Type(Ast,At) (because the query is (Ast,At)−generic). The result corresponds to the
set Q(Canon(Ast,At)(ST )). As Q is assumed to be a (Ast,At)−generic query, we have
that for all f ∈ Type(Ast,At)(ST )

Q(Canon(Ast,At)(ST )) = Q(f(ST )) = f(Q(ST )),

so Q(ST ) is computed as

⋃

f∈Type(Ast,At)(ST )

f−1(Q(Canon(Ast,At)(ST ))) =
⋃

f∈Type(Ast,At)(ST )

f−1(f(Q(ST ))).

For completeness, we give a program Decode that, when applied to the encoding Nϕ of
a formula ϕ, computes in a relation variable Dec the spatio-temporal relation defined
by ϕ. Thereto it suffices to modify the encode program as shown in Algorithm 2.

The formula constructing the output, using the above, only differs slightly from
the formulas we gave when explaining the encoding algorithm. In the encoding phase,
it had to be checked, for some natural number m, whether there existed a transfor-
mation mapping all points of Rst to the points satisfying the formula encoded by m.
Also, that transformation was computed. Here, we have the transformation stored in
Type(Ast,At), and we know we have the right natural number m, so all points mapped
by the transformation in Type(Ast,At) to points satisfying the formula encoded by m,
are returned.

To conclude we summarize the conversion procedure. Given a k-ary computable
query Q over a schema σst = {Rst1 , . . . , R

st
m}, there exists a counter program M such
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Algorithm 2 The decoding program. The input is a natural number encoding a
relation.
m := 0
T := ∅
F := ∅
found :=False
while not found do
m := m+ 1
build relations T and F
found:= m = Nϕ

end while
Dec := all points which are the image under the transformation stored in
Type(Ast,At) of the points with coordinates (represented as points on the line u0u1)
px, py, pt such that F (utO , utE , u0, u1, u2,m, p1, p2, pt).

that for each database ST over σst, if (nRst1 , . . . , nRstm) are the results of applying the
program Encode to ST then M(nRst1 , . . . , nRstm) is the encoding of the quantifier-free

formula defining Q(ST ), using the variables x1
1, . . . , x

n+1
1 , . . . , x1

K , . . . , x
n+1
K . If Q(ST )

is not defined, then M does not halt on this input. As already noted above, we can
simulate M by a program P in FO(Π, σst) + While. Hence, the query Q is expressed
by the program

Encode;
P ;
Decode;

The reason that the problem of identifying sound and complete languages for the
groups Ff

st is still open, is that for those groups, there is no first-order logic formula
expressing their graph. Indeed, it is not possible to express that there should exist a
finite number of time moments for which there is a different affinity, when describing
the groups Ff

st. Hence, we cannot use the above proof technique.

The previous theorem has a number of corollaries.

Theorem 4.40. Let σst be a database schema. Let (Fst,Ft) be one of the groups
(Ast,At), (Ast, It), (Ast, Id t), (Sst,Ft), (Ist,Ft), or (Tst,Ft) with Ft ∈ {At, Tt, Id t}
and let Π(Fst,Ft) be as in Table 4.3. The point language FO(Π(Fst,Ft), σ)+While
is sound and complete for the (Fst,Ft)-generic computable spatio-temporal queries
over σ.

Proof. The proof of this corollary is similar to the proof of Theorem 4.39. The en-
coding and decoding programs for the various transformation groups only differ where
the transformation in Type(Ast,At) is described, and where a coordinate system needs
to be defined. The rest of the proof is the same, regardless of the transformation
groups considered. The descriptions of the coordinate systems for the various trans-
formation groups can be found in the proof of Corollary 4.26 ⊓⊔



5
The Parametric
Spatio-temporal Data Model

In Chapter 3, we defined spatio-temporal data as a special sort of constraint data, as
semi-algebraic sets in (Rn × R). Although this model has nice properties, the query
languages that were identified in Chapter 4 are not really user-friendly.

In this chapter, we define a more concrete data model for spatio-temporal data.
Hereto, the new concept of spatio-temporal object is introduced. We represent a
spatio-temporal object as a finite number of objects represented by means of a spa-
tial reference object, a temporal object (i.e., a time interval) and a time-dependent
geometric transformation that determines how this spatial object moves or changes
through space during the considered time interval. Although this model is suited
for data in arbitrary dimensions, we focus on two-dimensional reference objects that
move or change during time.

In this framework, a number of classes of practically relevant spatio-temporal ob-
jects arise naturally. These classes are indexed by the type of spatial reference object
and the type of transformation functions that are allowed. On the level of reference
objects, we consider polygons, triangles, triangles with two sides parallel to the co-
ordinate axes of the two-dimensional plane and rectangles with all sides parallel to
the coordinate axes. We consider time-dependent affinities, scalings and translations
for what concerns transformation functions. These functions can be expressed by
coefficients that are rational, polynomial, respectively linear functions of time.

We investigate these classes with respect to closure under Boolean set operations,
namely union, intersection and set-difference.

By definition, these classes are closed under union (a spatio-temporal object is
described as the union of atomic objects). We call a class closed under intersection
(respectively set-difference) if any finite intersection (respectively set-difference) of
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objects from a class can again be described by an object from that class (i.e., as
a union of atomic objects). The classes that we consider are not necessarily closed
under intersection and set-difference.

We provide an in-depth and exhaustive study of their closure with respect to
all set-theoretic operations, and we conclude that our model for representing spatio-
temporal data gives very poor closure results for the classes of objects we considered
important for spatio-temporal practice. The only classes that seems to be useful in
this respect have polygons as spatial reference objects and use rational affinities to
move or change these objects in time.

A conclusion is that we have to enrich the data model by allowing set-theoretic
operations other than union in the construction of geometric objects from atomic geo-
metric objects. As soon as we also allow spatio-temporal objects to be constructed
from atomic ones by means of union and intersection (or union and set-difference)
then the model becomes closed for all Boolean set operations. Indeed, as an impor-
tant result, we show that our classes, that are drawn from practice, have the nice
property that they are closed under intersection if and only if they are closed under
set-difference.

To appreciate the need for applying set-theoretic operators to spatiotemporal ob-
jects, consider the following scenario. Let two spatial objects represent the extents
of the safe areas around two different ships. Taking into account the movement of
ships, the extents of the safe areas over a period of time can be represented as two
spatiotemporal objects. To avoid collisions, one needs to be able to determine the
intersection of those objects.

This chapter is organized as follows: In Section 2, we give definitions and describe
the relevant classes of spatio-temporal objects. The closure results for these classes
with respect to Boolean set operations are given in Section 3. We propose the extended
model in Section 4 and describe a normal form for objects in this extended model.
Section 5 gives comments and concludes the chapter.

5.1 Definitions

In this section, we define the notion of spatio-temporal object. In our approach, a
spatio-temporal object consists of a spatial reference object, a time interval during
which the spatio-temporal object exists and a continuous transformation that defines
how the spatial reference object moves and changes during the interval of time.

5.1.1 Spatio-temporal and Geometric Objects

Definition 5.1 (Spatio-temporal object). A spatial object is a subset of R
2. A

temporal object is a subset of R (we assume a single temporal dimension). A spatio-
temporal object is a subset of (R2 × R).

These definitions are very general and disregard the fact that objects should be
finitely representable in the computer’s memory. In this chapter, we will study more
restricted classes of spatial and spatio-temporal objects that are important from a
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practical point of view and have simple and efficient representations. Such classes
have been identified in the course of spatial and spatio-temporal database research.

Here, we propose a geometric approach: a spatio-temporal object is defined as a
spatial reference object together with a continuous transformation that defines how
the object moves or changes during some time interval.

Definition 5.2 (Atomic geometric object). An atomic geometric object O is a
triple (S, I, f), where

• S ⊂ R
2 is the spatial reference object of O, which is semi-algebraic in R

2;

• I ⊂ R is the time domain of O, which is a connected and bounded semi-algebraic
set in R (i.e., a point or a bounded interval); and

• f : (R2 × R) → R
2 is the transformation function of O, which is semi-algebraic

and continuous both in the time coordinate and in the spatial coordinates.

The semantics of an atomic geometric object O = (S, I, f) is the spatio-temporal
object st(O) =

{(x, y, t) ∈ (R2 × R) | ∃x′ ∃y′ ((x′, y′) ∈ S ∧ t ∈ I ∧ (x, y) = f(x′, y′, t))}.

We remark that this definition guarantees that there is a finite representation of
an atomic geometric object by means of the polynomial inequalities that describe its
reference object, its time domain and the graph of its transformation function. This
means that this data model is within the constraint model for databases.

Definition 5.3 (Geometric object). A geometric object is a finite set of atomic
geometric objects. The semantics of a geometric object {O1, . . . ,On} is the union of
the semantics of the atomic objects that constitute it, i.e., the set

⋃

1≤i≤n
st(Oi).

We agree that whenever we write “the spatio-temporal object O”, where O is an
(atomic) geometric object, we mean the semantics of the (atomic) geometric object
O. Also, when O = (S, I, f) is an atomic object and τ ∈ I, we will refer to the set
{(x, y) | ∃x′ ∃y′ ((x′, y′) ∈ S ∧ (x, y) = f(x′, y′, τ))} as the snapshot of O at time τ
and we will denote it f(S, τ) or Oτ (see also Definition 3.14).

We define the time domain of a geometric object to be the smallest time interval
that contains all the time domains of the composing atomic geometric objects. Recall
that the smallest interval containing a set of intervals is also known as the convex
closure of this set. We denote the convex closure of the sets I1, I2, ..., In by

⋃n

i=1Ii.
Remark that a spatio-temporal object is empty (or non-existing) outside the time

domain of the geometric object that defines it. Also, within its time domain a spatio-
temporal object can be empty (for instance, at any moment when no atomic geometric
object exists).

We conclude this section by remarking that the above introduced notions of spatial
and spatio-temporal object and of (atomic) geometric object can be generalized to
arbitrary dimension d (by simply substituting d for 2 in the above definitions). Since
all the results in this chapter are formulated for dimension 2, we have chosen not to
use this generalization here.
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5.1.2 Practically Relevant Classes of Geometric Objects

Here, we define special classes of geometric objects that are relevant to spatio-temporal
database practice. These classes are denoted by

〈S,F〉

and they are determined by the type S of spatial reference object and the type F of
transformation function. For clarity, a geometric object belongs to a class if all of its
atomic geometric objects belong to that class.

The classes of geometric figures in the plane R
2 that we will consider are

• SPoly, the class of arbitrary polygons,

• STr, the class of arbitrary triangles,

• STrAx, the class of triangles with two sides parallel to the coordinate axes, and

• SRect the class of rectangles with all sides parallel to the coordinate axes.

In this thesis, we assume triangles, polygons and rectangles to be filled objects.
But since we allow two or more corner points of a triangle or rectangle to coincide,
the model can deal with polylines and points too. A line segment and a point are
considered triangles. Also line segments parallel to the axes and points are considered
rectangles. Finally, note that SRect ⊂ STrAx ⊂ STr ⊂ SPoly.

The classes of transformation functions we will consider are

• FAff , the class of the affine transformations,

• FSc, the class of the scalings,

• FTrans, the class of the translations, and

• Fid, the class consisting of the identity mapping.

It is clear that Fid, FTrans and FSc are subclasses of FAff . More technically, these
classes are defined as follows. The class FAff of affine transformations consists of the
mappings (R2 × R) → R

2 of the form

(x, y, t) 7→

(

a(t) b(t)
c(t) d(t)

) (

x
y

)

+

(

e(t)
f(t)

)

,

where a, b, c, d, e, and f are function from R to R with a(t)d(t)− c(t)b(t) 6= 0 for all
t in the relevant time domain.

The class FSc of scalings consists of the affine transformations for which the func-
tions b and c are identical to 0. The class FTrans consists of the scalings for which the
functions a and d are identical to 1.

For practical purposes we will only consider functions a, b, c, d, e, and f that are
semi-algebraic and continuous as required by the definition. These are

• the rational functions (i.e., fractions of polynomial functions),
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t = 0

0 <  t < 1

1 <= t < 2 t = 2

Figure 5.1: Two atomic geometric objects. The time domain can be partitioned in
four parts such that the intersection of the two objects retains the same shape during
each element of the partition.

• the polynomial functions and

• the linear polynomial functions.

The corresponding classes of transformations will be denoted using superscripts
FRat, FPoly, and FLin. For example, FRat

Sc represents the class of rational scalings.
We assume that the time domain of an atomic geometric object belongs to the domain
of the transformation function and that the denominator of a rational function in the
definition of a transformation is never zero in the closure of the time domain (thus,
the moving figure will remain within fixed bounds during the time domain).

Note that the shape of a spatio-temporal object at a certain time instant is not
necessarily the same as the shape of the reference object of the geometric object that
gives rise to the spatio-temporal object. For example, a rectangle is mapped to a
parallelogram under an affinity.

5.1.3 Example

Let OA = (SA, IA, fA) and OB = (SB , IB , fB) be two (atomic) geometric objects
with spatial reference objects SA and SB respectively the triangles with corner points
(−1, 0), (1, 0), (0, 1) and (−1, 0), (1, 0), (0,−1), and time domains IA = IB = [0, 2].
In this time domain, SA remains at its place (i.e., fA(x, y, t) = (x, y) for all t), while
SB is translated with constant speed (equal to 1) in the direction of the positive y-axis
(i.e., fB(x, y, t) = (x, y + t). The functions fA and fB belong to FLin

Trans.

At t = 0 both objects intersect in a line segment. For 0 < t < 1 they intersect in
a hexagon, for 1 ≤ t < 2 in a quadrangle, and finally for t = 2 in a point. Figure 5.1
illustrates their movement.
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5.2 Closure Properties under Boolean Set Opera-
tions

In this section, we work with the classes 〈S,F〉 introduced in the previous section,
and we investigate which of these classes 〈S,F〉 are closed under the Boolean set
operations ∪ (union), ∩ (intersection) and \ (set difference). We first define what
closure means.

Definition 5.4 (Closure). Let θ be one of the operations ∪, ∩ or \. We say that the
class 〈S,F〉 is (atomically) closed under θ if for any two (atomic) geometric objects
O1 and O2 in 〈S,F〉 there exists a geometric object O in 〈S,F〉 such that st(O) =
st(O1) θ st(O2).

We will refer to an object O that satisfies the condition in the definition as an
intersection, union or difference of O1 and O2 (they need not be unique).

For the union operation, the closure follows immediately from the definition of
geometric objects (Definition 5.3).

Property 5.2.1 (Closure for ∪). For any class of objects S and any class of trans-
formations F , 〈S,F〉 is closed under ∪.

For ∩ and \ the situation is more complicated. The next theorem is the main
result that we want to prove in this section. It summarizes the closure results for
intersection and set-difference.

Theorem 5.5 (Closure for ∩ and \). For any class of objects S among SPoly, STr,
STrAx and SRect and any class of transformations F among FAff , FSc, FTrans and Fid,
the closure with respect to ∩ and \ is summarized in the following table.

∩, \ FRat
Aff FPol

Aff FLin
Aff FRat

Sc FPol
Sc FLin

Sc FRat
Trans FPol

Trans FLin
Trans Fid

SPoly + − − − − − − − − +
†

STr + − − − − − − − − +
†

STrAx + − − − − − − − − −
SRect + − − + + + − − − +

Closure is indicated by a + sign, non-closure by a − sign.

The items marked with † are from [74]. The remainder of this section is devoted
to proving this theorem. We do this by first proving some lemmas in a first subsection
that reduce the number of cases that have to be looked at and by then proving the
remaining cases in a second subsection.

5.2.1 Reduction Properties

The properties in this section reduce the number of cases that have to be investigated.
First, we give a set-theoretic lemma that will be used frequently.

Lemma 5.6 (Set-theoretical observations). Let A1, . . . , An and B1, . . . , Bm be
sets. Then
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(i) (
⋃n
i=1Ai) ∩ (

⋃m
j=1Bj) =

⋃n
i=1

⋃m
j=1(Ai ∩Bj),

(ii) (
⋃n
i=1Ai) \ (

⋃m
j=1Bj) =

⋃n
i=1((· · · ((Ai \B1) \B2) \ · · · ) \Bm)

Proof. The first equality follows directly from distributivity of intersection with
respect to union.

The second equality can be proven by induction on m, using the observation that

(

n
⋃

i=1

Ai) \B = (

n
⋃

i=1

Ai) ∩B
c =

n
⋃

i=1

(Ai ∩B
c) =

n
⋃

i=1

(Ai \B),

where Bc denotes the complement of B with respect to some universe. ⊓⊔

The next property says that for ∩ and \ closure and closure on atomic objects
coincide.

Property 5.2.2 (Atomicity). Let S be a class of objects and F a class of transfor-
mations. Then

(i) 〈S,F〉 is closed under ∩ if and only if it is atomically closed under ∩, and

(ii) 〈S,F〉 is closed under \ if and only if it is atomically closed under \.

Proof. Both for (i) and (ii) the only-if direction is obvious. So we concentrate on
the if-direction.

For the if-direction of (i), assume that 〈S,F〉 is atomically closed under ∩ and
let {O1,1,O1,2, . . . ,O1,n} and {O2,1,O2,2, . . . ,O2,m} be two geometric objects from
〈S,F〉. By using Lemma 5.6 (i), we get

(

n
⋃

i=1

st(O1,i)) ∩ (

m
⋃

j=1

st(O2,j)) =

n
⋃

i=1

m
⋃

j=1

(st(O1,i) ∩ st(O2,j)).

Since ∩ is assumed to be atomically closed, each st(O1,i)∩st(O2,j) can be written as a

union
⋃lij
k=1 st(Ok,i,j), where each Ok,i,j is an atomic geometric object. Therefore, the

intersection of {O1,1,O1,2, . . . ,O1,n} and {O2,1,O2,2, . . . ,O2,m} can also be written

as
⋃n
i=1

⋃m
j=1

⋃li,j
k=1 st(Ok,i,j). This completes the proof of the if-direction of (i).

For the if-direction of (ii), assume that 〈S,F〉 is atomically closed under \ and
let {O1,1,O1,2, . . . ,O1,n} and {O2,1,O2,2, . . . ,O2,m} be two geometric objects from
〈S,F〉. By using Lemma 5.6 (ii), we get

(

n
⋃

i=1

st(O1,i))\(
m
⋃

j=1

st(O2,j)) =

n
⋃

i=1

((· · · ((st(O1,i)\st(O2,1))\st(O2,2))\· · · )\st(O2,m)).

We prove, by induction on m, that ((· · · ((st(O1,i) \ st(O2,1)) \ st(O2,2)) \ · · · ) \

st(O2,m)) is of the form
⋃l
k=1 st(O

′
k). Since \ is assumed to be atomically closed,

st(O1i) \ st(O21) can be written as a union
⋃l1
k=1 st(O

′
k), where each O′

k is an atomic
geometric object. This proves the case m = 1. Next, assume we have shown that
((· · · ((st(O1,i) \ st(O2,1)) \ st(O2,2)) \ · · · ) \ st(O2,m−1)) is

⋃l
k=1 st(O

′
k) with all O′

k
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atomic geometric objects. Then ((· · · ((st(O1,i)\st(O2,1))\st(O2,2))\ · · · )\st(O2,m))

is (
⋃l
k=1 st(O

′
k)) \ st(O2,m), which is

⋃l
k=1(st(O

′
k) \ st(O2,m)), using Lemma 5.6 (ii).

Again, since \ is assumed to be atomically closed, each of the sets st(O′
k) \ st(O2,m)

is of the form
⋃lk
r=1 st(O

′′
r ). Therefore, the set-difference of {O1,1,O1,2, . . . ,O1,n} and

{O2,1,O2,2, . . . ,O2,m} is also the semantics of a geometric object from 〈S,F〉. This
completes the proof. ⊓⊔

The following property states that intersection and set-difference are equivalent
with respect to closure.

Property 5.2.3 (Equivalence of ∩ and \). Let S be a class of objects and F a
class of transformations. Then the class 〈S,F〉 is closed under ∩ if and only if it is
closed under \.

Proof. By the atomicity property (Property 5.2.2) it suffices to prove this property
for atomic geometric objects.

For the if-direction, assume that 〈S,F〉 is closed under \ and let O1 and O2 be
two atomic geometric objects from 〈S,F〉. Since,

st(O1) ∩ st(O2) = (st(O1) ∪ st(O2)) \ ((st(O1) \ st(O2)) ∪ (st(O2) \ st(O1)))

and since (st(O1) \ st(O2)) and (st(O2) \ st(O1)) are by assumption
⋃n
i=1 st(O

′
i)

respectively
⋃n
j=1 st(O

′′
j ) with all O′

i and O′′
j atomic geometric objects. Therefore,

st(O1)∩st(O2) equals ((· · · (st(O2)\st(O
′
1))\ · · · )\st(O

′
n))∪ ((· · · (st(O2)\st(O

′′
1 ))\

· · · ) \ st(O′′
m)), using Lemma 5.6 (ii). Using the argumentation from the proof of the

if-direction of (ii) of Property 5.2.2, we can show that this set is again a union of
semantics of atomic geometric objects from 〈S,F〉.

For the only-if direction, assume that 〈S,F〉 is closed under ∩ and let O1 =
(S1, I1, f1) and O2 = (S2, I2, f2) be two atomic geometric objects from 〈S,F〉. We
have to show that st(O1) \ st(O2) can be written as

⋃n
i=1 st(O

′
i), with O′

i atomic
geometric objects. We can restrict our attention to the set st(O1) \ st(O2) in the
interval I1 ∩ I2 rather than in the complete interval I1∪I2 (since the set-difference is
empty in I2 \ I1 and equal to O1 in I1 \ I2). Let I denote the topological closure of
I1 ∩ I2. The set SB = {(x, y) ∈ R

2 | ∃x′ ∃y′ ∃t ((x′, y′) ∈ S1 ∧ t ∈ I ∧ f1(x
′, y′, t) =

f2(x, y, t))} is compact (i.e., topologically closed and bounded) since it is the image
of the compact set S1 × I under the continuous function f−1

2 ◦ f1. Therefore, also
S = S2 ∪ SB is a compact set in R

2. Let α : (x, y) 7→ (ax + b1, ay + b2) be a
scaling followed by a translation that maps S2 to a set that strictly contains S (this
is possible since S is bounded). Remark that α maps any line to a parallel line.
Let O3 be the atomic geometric object (α(S2), I, f2). At any moment t in I, we
thus have that f2(S2, t) ⊂ f2(α(S2), t) (since affinities are monotone mappings) and
f1(S1, t) ⊂ f2(α(S2), t). Therefore, st(O1) \ st(O2) = st(O1) ∩ (st(O3) \ st(O2)).

Now, st(O3)\st(O2) can always be written as the semantics of a geometric object
in 〈S,F〉 where S and F are any pairs allowed in Theorem 5.5. For each of the classes
SPoly, STr, STrAx, and SRect this is illustrated in Figure 5.2. For each of these classes
α(S2) \S2 can be partitioned into a finite number of reference objects T1, ..., Tn from
these classes. So, define the atomic geometric objects O′

i = (Ti, I, f2) (1 ≤ i ≤ n).
Then st(O3)\st(O2) =

⋃n
i=1 st(O

′
i). Therefore, st(O1)∩ (st(O3)\st(O2)) = st(O1)∩
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a(S )2

S2

a(S )2

a(S )2

a(S )2

S2

S2

S2

Figure 5.2: Examples of partitions of the set α(S2) \ S2 for the classes SPoly, STr,
STrAx, and SRect respectively.

⋃n
i=1 st(O

′
i) =

⋃n
i=1(st(O1) ∩ st(O

′
i)). Since we have assumed that 〈S,F〉 is closed

for intersection, the intersections st(O1)∩ st(O
′
i) can be written as

⋃li
k=1 st(O

′′
k) with

O′′
k atomic geometric objects from 〈S,F〉. Therefore also st(O1) ∩ (st(O3) \ st(O2))

can be written as such a union. This completes the proof. ⊓⊔

A final reduction property says that the closure results for polygons and triangles
coincide. We can therefore concentrate on triangles further on.

Property 5.2.4 (Reduction of 〈SPoly,F〉 to 〈STr,F〉). Let F be a class of trans-
formations, and let θ be one of the operations ∪, ∩ or \. Then 〈SPoly,F〉 is closed
under θ if and only if 〈STr,F〉 is closed under θ.

Proof. This property follows from the fact that any atomic geometric object O =
(S, I, f) from 〈SPoly,F〉 corresponds to a geometric object from 〈STr,F〉. Indeed,
let T1, . . . , Tn be an arbitrary triangulation of the polygon S. The geometric object
{O1, . . . ,On} with Oi = (Ti, I, f) (1 ≤ i ≤ n) has the same semantics as O = (S, I, f).

So, if 〈SPoly,F〉 is closed under θ, then also any union, intersection or set-difference
of two elements of 〈STr,F〉 is again a geometric object of 〈SPoly,F〉 and because of
the above argument also of 〈STr,F〉.

On the other hand, suppose that 〈STr,F〉 is closed under θ. If O1 and O2 are
objects in 〈SPoly,F〉, then so are their union, intersection or set-difference, since they
are in 〈STr,F〉, which is a subclass of 〈SPoly,F〉. ⊓⊔
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5.2.2 Closure and Non-closure Proofs

In this section, we complete the proof of Theorem 5.5, by means of a series of lemmas
that cover all the cases presented in the matrix of Theorem 5.5. Here, we take the
reduction results of the previous section into account. In particular, we only consider
intersections or set-differences of atomic geometric objects, and we do not have to
consider polygons any more.

5.2.2.1 Finite Time Partition

Before giving these lemmas we introduce the technical notion of finite time partition.
This will be of use in many of the proofs in this section. The finite time partition
property tells us how and when the form (or appearance) of the intersection or set-
difference of two atomic geometric objects changes. We observe that the intersection of
two moving triangles can be empty, a single point, a straight line segment, a triangle,
a quadrangle, a pentagon and a hexagon. The intersection of two moving rectangles
can be empty, a single point, a line segment or a rectangle. We refer to all these
different forms of the intersection or the set-difference as their possible shapes. Also
the difference of two triangles or two rectangles can take a finite number of different
shapes. In the example in Figure 5.1, the intersection takes four different shapes,
whereas the difference takes five different shapes.

We define this notion now more technically. Let O1 = (S1, I1, f1) and O2 =
(S2, I2, f2) be two atomic geometric objects with rational affine transformations with
time domains I1 and I2. In the following, we denote by I1 ∪ I2 the convex closure
of the set I1 ∪ I2 in R. Let τ be in I1 ∪ I2. Firstly, we call the set of lines that
intersect the border of fi(Si, τ) in infinitely many points, the set of carriers of the
frame fi(Si, τ) and denote it car(fi(Si, τ)) (i = 1, 2).

Definition 5.7 (Finite time partition). We call a finite time partition of O1 and
O2 any partition of the interval I1∪I2 into a finite number of time intervals J1, . . . , Jm
such that for any τ, τ ′ ∈ Ji (and all 1 ≤ i ≤ m), car(f1(S1, τ)) ∪ car(f2(S2, τ)) and
car(f1(S1, τ

′)) ∪ car(f2(S2, τ
′)) are topologically equivalent sets1 in R

2.

Property 5.2.5 (Existence of finite time partition). Let O1 and O2 be two
atomic geometric objects with rational affine transformations with time domains I1
and I2. There exists a finite time partition of O1 and O2.

Proof. Let O1 = (S1, I1, f1) and O2 = (S2, I2, f2) be two atomic geometric objects
satisfying the conditions of the statement of this property. From the assumption that
the reference objects S1 and S2 are semi-algebraic and the transformation functions
f1 and f2 are affine rational functions, it follows that the sets st(O1) and st(O2)
are semi-algebraic subsets of (R2 × R) (for details on this type of basic results on
semi-algebraic sets, we refer to Chapter 2 of [8]). Let I be the set I1 ∪ I2.

Also, the set A =
⋃

t∈I1∪I2(car(f1(S1, t)) ∪ car(f2(S2, t))) is semi-algebraic, since
it can be defined in the first-order logic of the reals over the semi-algebraic sets st(O1)
and st(O2) (this closure property of first-order logic over the reals can be found in

1We call two subsets A and B of R
2 topologically equivalent when there exists an orientation-

preserving homeomorphism h of R
2 such that h(A) = B.



5.2. Closure Properties under Boolean Set Operations 79

Chapter 2 of [59]). We can therefore consider the set A as a subset of (R2 × R)
parameterized by the time parameter t. It follows from Semi-algebraic Triviality (See
Theorem 2.13) that the set A induces a finite partition on I1 ∪ I2 such that in each
partition class A remains topologically equivalent. ⊓⊔

5.2.2.2 Technical Lemmas

The following two lemmas are technical lemmas that say that two/three points that
move with their respective rational affinities can be combined into one line/triangle
that moves by a single rational affinity.

Lemma 5.8. Let Oi = ({(xi, yi)}, I, gi) (i = 1, 2, 3) be three atomic geometric objects
with gi ∈ FRat

Aff . If the three points (x1, y1), (x2, y2) and (x3, y3) form a triangle S
(i.e., are not collinear) and if g1(x1, y1, t), g2(x2, y2, t) and g3(x3, y3, t) form a triangle
St at any moment t ∈ I (i.e., are not collinear), then there exists an atomic geometric
O = (S, I, g) with g ∈ FRat

Aff such that gi(xi, yi, t) = g(xi, yi, t) for all t ∈ I and
i = 1, 2, 3.

Proof. Let (x1, y1), (x2, y2) and (x3, y3) be the three corner points of the triangle S
and let (xi, yi) be transformed by the affinity gi given by

(

ai(t) bi(t)
ci(t) di(t)

)(

x
y

)

+

(

ei(t)
fi(t)

)

, i = 1, 2, 3.

The condition for the existence of a single affine transformation that transforms
these corner points according to their respective affinities is that the first matrix in
the matrix equation below is regular.

















x1 y1 0 0 1 0
0 0 x1 y1 0 1
x2 y2 0 0 1 0
0 0 x2 y2 0 1
x3 y3 0 0 1 0
0 0 x3 y3 0 1

































a(t)
b(t)
c(t)
d(t)
e(t)
f(t)

















=

















a1(t)x1 + b1(t)y1 + e1(t)
c1(t)x1 + d1(t)y1 + f1(t)
a2(t)x2 + b2(t)y2 + e2(t)
c2(t)x2 + d2(t)y2 + f2(t)
a3(t)x3 + b3(t)y3 + e3(t)
c3(t)x3 + d3(t)y3 + f3(t)

















This is the case if and only if the three points (x1, y1), (x2, y2) and (x3, y3) are not
collinear. By assumption, this condition is satisfied. We find the affine transformation
that transforms the triangle S according to the different movements of the corner
points, by solving the above matrix equation.

The result of this computation is the affine transformation with coefficients a(t),
b(t), c(t), d(t), e(t), and f(t) that have the following form (to save space time depen-
dence is omitted):

First, we abbreviate the expression

x1y2 − x1y3 + x2y3 − x3y2 + x3y1 − x2y1

by D. The coefficients a(t), b(t), c(t), d(t), e(t), and f(t) are all of the form a′(t)
D

,
b′(t)
D

, c
′(t)
D

, d
′(t)
D

, e
′(t)
D

, and f ′(t)
D

, respectively, where
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a′(t) = −x1a1y3 + x1a1y2 − y2b3y3 + e2y3 − e1y3 − y2e3 + e1y2 + y1a3x3 + a2x2y3

+ y1e3 − y2a3x3 + b2y2y3 − y1a2x2 + y1b3y3 − y1e2 − y1b2y2 + b1y1y2 − b1y1y3,

b′(t) = x1b2y2+x2a3x3−x2b1y1−x1b3y3+x3a1x1+x1a2x2+x2b3y3+x2e3−x3a2x2

+ x3e1 − x3b2y2 − x1a3x3 − x2a1x1 − x1e3 − x2e1 + x3b1y1 − x3e2 + x1e2,

c′(t) = x1c1y2 − x1c1y3 − y1c2x2 + y1f3 − y2f3 + f1y2 + y1c3x3 − y2d3y3 + y1d3y3

− y1d2y2 + d1y1y2 + f2y3 − y2c3x3 − y1f2 − d1y1y3 + c2x2y3 + d2y2y3 − f1y3,

d′(t) = −x2d1y1−x1d3y3+x3d1y1−x3d2y2+x1c2x2−x3c2x2−x2c1x1+x2f3+x3f1

− x1c3x3 + x2c3x3 + x2d3y3 + x1d2y2 + x3c1x1 − x2f1 − x1f3 + x1f2 − x3f2,

e′(t) = y1x3e2 + y2x1e3 − y2x3e1 − y2x3a1x1 + y2x1b3y3 − e2x1y3

+ e1x2y3 + b1y1x2y3 − a2x2x1y3 − y1x2e3 − b2y2x1y3 + y2x1a3x3

+ y1x3b2y2 + y1x3a2x2 − y1x2b3y3 − y1x2a3x3 − y2x3b1y1 + a1x1x2y3,

and

f ′(t) = −y2x3f1 − y2x3c1x1 + y1x3d2y2 + y1x3c2x2 − y1x2c3x3 − y1x2d3y3

+ c1x1x2y3 + y2x1f3 − y1x2f3 + y1x3f2 + f1x2y3 − f2x1y3

+ y2x1c3x3 − y2x3d1y1 + y2x1d3y3 + d1y1x2y3 − d2y2x1y3 − c2x2x1y3.

Indeed, the transformation matrix
(

a(t) b(t)
c(t) d(t)

)

is regular. Simplifying the expression a(t)d(t) − b(t)c(t) gives the result

x1(t)y2(t) − x2(t)y1(t) − x1(t)y3(t) + x3(t)y1(t) + x2(t)y3(t) − x3(t)y2(t)

y2x1 − y3x1 − y2x3 + y1x3 + y3x2 − y1x2
,

where xi(t) = ai(t)xi+bi(t)yi+ei(t) and yi(t) = ci(t)xi+di(t)yi+fi(t), i = 1, 2, 3. This
denominator of this expression is zero if and only if the three points (x1, y1), (x2, y2)
and (x3, y3) are collinear. By assumption, the points (x1, y1), (x2, y2) and (x3, y3)
form a triangle, however. The numerator is non-zero since the points g1(x1, y1, t),
g2(x2, y2, t) and g3(x3, y3, t) form a triangle St at any moment t ∈ I.

The coefficients of the resulting affine transformation are linear functions of the
coefficients of the original transformations of the corner points (x1, y1), (x2, y2) and
(x3, y3). As the original transformations are rational, the resulting affine transforma-
tion is rational too. ⊓⊔
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Lemma 5.9. Let Oi = ({(xi, yi)}, I, gi) (i = 1, 2) be two atomic geometric objects
with gi ∈ FRat

Aff . If the two points (x1, y1) and (x2, y2) form a line segment L (i.e., are
not equal) and if g1(x1, y1, t) and g2(x2, y2, t) form a line segment Lt at any moment
t ∈ I (i.e., are not equal), then there exists an atomic geometric O = (L, I, g) with
g ∈ FRat

Aff such that gi(xi, yi, t) = g(xi, yi, t) for all t ∈ I and i = 1, 2.

Proof. Let (x1, y1) and (x2, y2) be the two end points of the line segment L and let
(xi, yi) be transformed by the affinity gi given by

(

ai(t) bi(t)
ci(t) di(t)

)(

x
y

)

+

(

ei(t)
fi(t)

)

, i = 1, 2.

We prove that there always exists a rational affine functions a(t), b(t), c(t) and
d(t), such that the matrix

(

a(t) b(t)
c(t) d(t)

)

transforms the line segment as described in the statement of this lemma (so, the
translation components e(t) and f(t) of this affinity are identical zero).

The condition for the existence of a single affinity that transforms the two end-
points of the line segment according to their respective affinities is that the first matrix
in the following equation is regular.









x1 y1 0 0
0 0 x1 y1
x2 y2 0 0
0 0 x2 y2

















a(t)
b(t)
c(t)
d(t)









=









a1(t)x1 + b1(t)y1 + e1(t)
c1(t)x1 + d1(t)y1 + f1(t)
a2(t)x2 + b2(t)y2 + e2(t)
c2(t)x2 + d2(t)y2 + f2(t)









This is true if the two endpoints of the line segment do not coincide.
The affinity that determines the movement of the intersection, can be found by

solving the above equation. First, we abbreviate the expression x1y2 − x2y1 by D.

The coefficients a(t), b(t), c(t) and d(t) are all of the form a′(t)
D

, b′(t)
D

, c′(t)
D

and d′(t)
D

,
respectively, where

a′(t) = e1(t)y2 − y1a2(t)x2 − y1b2(t)y2 − y1e2(t) + a1(t)x1y2 + b1(t)y1y2,

b′(t) = −x2e1(t) + x1a2(t)x2 + x1b2(t)y2 + x1e2(t) − x2a1(t)x1 − x2b1(t)y1,

c′(t) = f1(t)y2 − y1c2(t)x2 − y1d2(t)y2 − y1f2(t) + c1(t)x1y2 + d1(t)y1y2,

and

d′(t) = −x2f1(t) + x1c2(t)x2 + x1d2(t)y2 + x1f2(t) − x2c1(t)x1 − x2d1(t)y1.
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As in the case of the previous lemma, it can be shown that

(

a(t) b(t)
c(t) d(t)

)

is regular and therefore determines an affinity.
This solution is linear in the components of the original rational affine transfor-

mations of O1 and O1, so it is also rational. ⊓⊔

The next lemma shows that if two lines that move with a rational affinity intersect,
also the intersection point is moved by a rational affinity.

Lemma 5.10. Let Oi = (Li, I, gi) (i = 1, 2) be two atomic geometric objects with Li
line segments and gi ∈ FRat

Aff . If the line segments g1(L1, t) and g2(L2, t) intersect at
any moment t ∈ I, then there exists an atomic geometric O = ({(x0, y0)}, I, g) with
g ∈ FRat

Aff that describes the intersection point of g1(L1, t) and g2(L2, t) in I.

Proof. Let (xi, yi) and (ui, vi) be the two end points of the line segment Li (i = 1, 2).
Let Li be transformed by the affinity gi given by

(

ai(t) bi(t)
ci(t) di(t)

)(

x
y

)

+

(

ei(t)
fi(t)

)

, i = 1, 2.

We compute the intersection of g1(L1, t) and g2(L2, t) by solving the equations

λ1(a1(t)x1 + b1(t)y1 + e1(t)) + (1 − λ1)(a1(t)u1 + b1(t)v1 + e1(t))

= λ2(a2(t)x2 + b2(t)y2 + e2(t)) + (1 − λ2)(a2(t)u2 + b2(t)v2 + e2(t))

and

λ1(c1(t)x1 + d1(t)y1 + f1(t)) + (1 − λ1)(c1(t)u1 + d1(t)v1 + f1(t))

= λ2(c2(t)x2 + d2(t)y2 + f2(t)) + (1 − λ2)(c2(t)u2 + d2(t)v2 + f2(t))

in λ1 and λ2. The determinant of the matrix
(

a1(t)x1 + b1(t)y1 − a1(t)u1 − b1(t)v1 a2(t)u2 + b2(t)v2 − a2(t)x2 − b2(t)y2
c1(t)x1 + d1(t)y1 − c1(t)u1 − d1(t)v1 c2(t)u2 + d2(t) − v2c2(t)x2 − d2(t)y2

)

is zero if one of the gi(Li, t) is parallel to one of the coordinate axes or if both line
segments are parallel. The latter case is no problem as we can use the finite time
partition (Property 5.2.5) to consider only those subintervals J of I during which the
intersection exists. We treat the case of line segments parallel to one of the coordinate
axis separately.

If the line segments are not parallel to one of the coordinate axes, the intersection
point is the following. We only give the x-coordinate sx(t) (the y-coordinate sy(t) is
expressed similarly). For clarity time-dependence in the coefficients of the affinities
is omitted.

We have that sx(t)((a1x1 + b1y1 − a1u1 − b1v1)(−d2v2 + c2x2 + d2y2 − c2u2) +
(a2u2 + b2v2 − a2x2 − b2y2)(c1x1 + d1y1 − c1u1 − d1v1)) equals
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((((x2v1 − u2v1)a2 + (−v2v1 + y2v1)b2)d1 + ((f1 − d2v2 − f2)x2 + u2d2y2

+(−f1+f2)u2)a2+(e2c2+b2v2c2)x2+((−f2−c2u2+f1)y2+(−f1 +f2)v2)b2+e2d2y2

− e2d2v2 − e2c2u2)x1 + ((u2u1 − x2u1)a2 + (−y2u1 + v2u1)b2)d1y1 + ((u1d2v2

+(−f1 +f2)u1)x2−u2u1d2y2 +(f1−f2)u2u1)a2 +(−b2v2u1c2−e2u1c2)x2 +((u1c2u2

+ (−f1 + f2)u1)y2 + (f1 − f2)v2u1)b2 − e2u1d2y2 + e2u1d2v2 + e2u1c2u2)a1

+(((−x2v1+u2v1)a2+(−y2v1+v2v1)b2)c1b1+((u2e1−x2e1)a2+(v2e1−y2e1)b2)c1)x1

+ ((((−u2u1 + x2u1)a2 + (−v2u1 + y2u1)b2)c1 + ((f1 − d2v2 − f2)x2 + u2d2y2

+(−f1+f2)u2)a2+(e2c2+b2v2c2)x2+((−f2−c2u2+f1)y2+(−f1 +f2)v2)b2+e2d2y2

− e2d2v2 − e2c2u2)y1 + ((v1d2v2 + (−f1 + f2)v1)x2 − u2v1d2y2 + (f1 − f2)u2v1)a2

+ (−b2v2v1c2 − e2v1c2)x2 + ((v1c2u2 + (−f1 + f2)v1)y2 + (f1 − f2)v2v1)b2 − e2v1d2y2

+ e2v1c2u2 + e2v1d2v2)b1 + ((u2e1 − x2e1)a2 + (v2e1 − y2e1)b2)d1y1

+ ((x2u1e1 − u2u1e1)a2 + (y2u1e1 − v2u1e1)b2)c1

+ ((x2v1e1 − u2v1e1)a2 + (−v2v1e1 + y2v1e1)b2)d1).

For the intersection point to exists, ((a1x1 + b1y1 − a1u1 − b1v1)(−d2v2 + c2x2 +
d2y2 − c2u2) + (a2u2 + b2v2 − a2x2 − b2y2)(c1x1 + d1y1 − c1u1 − d1v1)) should be
different from zero. This condition expresses the fact that the line segments are not
parallel, which is true by assumption.

The intersection point moves rationally, as its functions of time are rational func-
tions in the coefficients of the original transformations. For any choice of reference
point, it is clear that a rational affinity can be found that moves it as described by
the above formulas (sx(t), sy(t)).

If one of the line segments g1(L1, t) or g2(L2, t) is parallel to the x-axis, the
intersection point will have as y-coordinate the y-coordinate of that line segment.
The same holds for segments parallel to the y-axis. In the case that one segment is
parallel to the y-axis and the other to the x-axis, the intersection point moves with
linear, polynomial, respectively rational functions of time, if both the objects O1 and
O2 move with linear, polynomial, respectively rational functions of time. ⊓⊔

5.2.2.3 Results for Affinities

We can now start our series of closure and non-closure lemmas and start with the
affine transformations. For the most general classes we have the following positive
result.

Lemma 5.11 (Closure for 〈STr, F
Rat
Aff 〉). Both the classes 〈SPoly,F

Rat
Aff 〉 and 〈STr,

FRat
Aff 〉 are closed under ∩ and \.

Proof. By Property 5.2.4, it suffices to show this lemma for triangles. By Prop-
erty 5.2.2 (atomicity) and Property 5.2.3, it suffices to show that the intersection of
two atomic geometric objects O1 = (T1, I1, f1) and O2 = (T2, I2, f2) from the class
〈STr, F

Rat
Aff 〉 is represented by an object in 〈STr, F

Rat
Aff 〉.
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According to Property 5.2.5 (finite time partition), the intersection of the two
moving triangles can only take a finite number of different shapes, with each new
shape occurring in an element of a finite partition of I1 ∪ I2 into intervals J1, . . . , Jm
(in fact, we only have to consider I1 ∩ I2 here, since outside this intersection the
intersection of O1 and O2 is empty anyway). Let Jl be an interval in this partition.
The intersection of O1 and O2 can be a convex polygon (with at most six corner
points), a line segment or a single point in Jl.

First, suppose the intersection is a convex polygon. Let τ0 be a point in Jl (even if
it is a degenerated interval, Jl contains at least one point). We take the intersection of
f1(T1, τ0) and f2(T2, τ0) as reference object P . The set P ⊂ R

2 can be triangulated,
for instance by connecting its corner points to its point of gravity: this yields triangles
T ′

1, . . . , T
′
m (with 1 ≤ m ≤ 6). Each of the corner points (x1, y1), (x2, y2), (x3, y3) of

a triangle T ′
j is moved in the time interval Jl by a rational affinity (in particular it is

moved f1 or f2 applied to the inverse image of f1(·, τ0), respectively f2(·, τ0)). More
specifically, a corner point of T ′

j is moved by f1 if it is originating from a corner point
of O1; a corner point of T ′

j is moved by f2 if it is originating from a corner point of O2;
Lemma 5.10 shows that there exists a rational affinity that moves a corner point of
T ′
j if it is an intersection point of side lines of O1 and O2; a corner point of T ′

j can be
taken to be moved by f1 if it is originating from the point of gravity of P . Therefore,
all corner points of T ′

j are moved by a rational affinity. Lemma 5.8 guarantees the
existence of a rational affinity fj that moves T ′

j . The intersection of O1 and O2 in Jl
is therefore described by the atomic geometric objects (T ′

j , Jl, fj) (1 ≤ j ≤ m ≤ 6).

Second, we investigate the situation if the intersection of O1 and O2 is a line
segment. The end points of the intersection originate from O1 or O2 or can be the
result of intersecting side lines of O1 and O2. In both cases, (from Lemma 5.10 for an
intersection point) it is clear that the two end points are moved by a rational affine
transformation. Lemma 5.9 then shows that there exists a single rational affine trans-
formation f to move the intersection. This intersection can therefore be described by
an atomic geometric object (L, Jl, f), where L is some line segment.

Third, we look at the case where the intersection is a single point. This point can
originate from O1 or O2 or can be the result of intersecting side lines of O1 and O2.
In both cases, (from Lemma 5.10 for an intersection point), it is clear that in this
case the intersection’s movement is a rational affine transformation. ⊓⊔

In general, if the affine transformations of O1 and O2 are given by polynomial or linear
functions, the corner points (x1, y1), (x2, y2) and (x3, y3) of triangles in the intersection
(or difference) are in general rational in these functions. The computations in the
proof of the Lemmas 5.8, 5.9 and 5.10 suggest that this leads to non-closure.

Lemma 5.12 (Non-closure for 〈STr,F
Pol
Aff 〉 and 〈STr, F

Lin
Aff 〉). The classes 〈SPoly,

FPol
Aff 〉, 〈SPoly,F

Lin
Aff 〉, 〈STr,F

Pol
Aff 〉 and 〈STr, F

Lin
Aff 〉 are not closed under ∩ and \.

Proof. It suffices to prove the lemma for triangles. We give a counterexample for
intersection that serves for both classes 〈STr, FLin

Aff 〉 and 〈STr, FPol
Aff 〉. Consider

two atomic geometric objects O1 and O2 with reference objects triangles with corner
points (1, 1), (3, 1), (2, 3) and (2, 2), (4, 2), (3, 4), respectively. The affine transforma-
tions of these triangles are given by the matrices
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(

t 2t
3t t

)

and

(

t 2t+ 1
t 3t+ 1

)

,

respectively. Assume these objects are moved in some interval of the strictly positive
t-axis (for example I = [1, 2]), the intersection of the two objects is a triangle with

corner points (6t+ 2, 8t+ 2), (1
2 t

(181t+70)
(13t+4) ,

1
2 t

(243t+70)
(13t+4) ) and (29

4 t,
37
4 t).

Assume that this triangle could be represented as a geometric object {O1, . . . ,Om}
from 〈STr, F

Pol
Aff 〉. Then, there exists some subinterval J of I during which the cor-

ner point (1
2 t

(181t+70)
(13t+4) ,

1
2 t

(243t+70)
(13t+4) ) is the image of a corner point (x0, y0) of a refer-

ence triangle that is transformed by a polynomial (or linear) affinity. We therefore

have that, for instance the x-coordinate 1
2 t

(181t+70)
(13t+4) of the above point is of the form

a(t)x0 + b(t)y0 + e(t) for t ∈ J with a(t), b(t) and e(t) polynomials (or linear polyno-
mials) in t. Therefore, 181t2 +70t−2(a(t)x0 + b(t)y0 +e(t))(13t+4) = 0 for all t ∈ J .
Since the number of zero’s of this polynomial exceeds its degree, it is identical to zero.
Therefore, a(t)x0 + b(t)y0 + e(t) is of the form αt + β. This leads to the conditions
β = 0, 181 = 26α and 70 = 8α. There is no solution and we have a contradiction. ⊓⊔

Lemma 5.13 (Closure for 〈SRect,F
Rat
Aff 〉 and 〈STrAx,F

Rat
Aff 〉). Both the classes

〈SRect,F
Rat
Aff 〉 and 〈STrAx,F

Rat
Aff 〉 are closed under ∩ and \.

Proof. Let us first consider the class 〈SRect,F
Rat
Aff 〉. Because of Lemmas 5.2.2,

and 5.2.3, it suffices to consider the intersection of two atomic geometric objects
O1 = (R1, I1, f1) and O2 = (R2, I2, f2). The image of a rectangle under an affinity is
a parallelogram. The shape of the intersection of f1(R1, t) and f2(R2, t) for some t
in I1 ∩ I2 can therefore be a convex polygon with at most eight corner points, a line
segment or a point. In any of these cases, we can copy the argumentation used in the
proof of Lemma 5.11.

In case the intersection is a line segment or a point, this settles the case. In the
case where it is a convex polygon, we can reuse the triangulation technique presented
in the proof of Lemma 5.11, now noting that it can consist of at most eight triangles
instead of six. So, we get that the intersection of O1 and O2 can be described by the
atomic geometric objects (T ′

j , Jl, fj) (1 ≤ j ≤ m ≤ 8), where the T ′
j are triangles and

the fj are rational affinities.
For the purpose of this lemma, we need to describe the intersection of O1 and O2

by means of moving rectangles, however. This can be achieved by replacing each of
the triangles T ′

j by three rectangles R1j , R2j and R3j . Let the corner points of T ′
j

be (x1, y1), (x2, y2) and (x3, y3). The rectangle Rij are chosen such that a constant
affinity fij maps Rij to the parallelogram with corner points (xi, yi),

1
2 (x1+x2, y1+y2),

1
2 (x1 + x3, y1 + y3) and 1

2 (x3 + x2, y3 + y2) (i = 1, 2, 3). So, T ′
j is the union of the

three parallelograms: T ′
j = f1j(R1j) ∪ f2j(R2j) ∪ f3j(R3j).

So, if we replace (T ′
j , Ji, fj) by (Rij , Jl, fj ◦ fij) we get a description of the inter-

section of O1 and O2 during Jl in terms of atomic geometric objects from the class
〈SRect,F

Rat
Aff 〉.

The closure result for 〈STrAx,F
Rat
Aff 〉 can be obtained by further dividing the rec-

tangles Ri,j along a diagonal into two triangles from STrAx. ⊓⊔

The following lemma concludes the results for affinities.
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Lemma 5.14 (Non-closure for 〈SRect,F
L
Aff 〉 and 〈STrAx,F

L
Aff 〉, L ∈ {Lin,Poly}).

The classes 〈SRect,F
L
Aff 〉 and 〈STrAx,F

L
Aff 〉 are both not closed under ∩ and \ for

L ∈ {Lin,Poly}.

Proof. First, let us look at 〈SRect,F
L
Aff 〉. We give a counterexample for intersection

that serves for both classes 〈SRect, F
Lin
Aff 〉 and 〈SRect, F

Pol
Aff 〉. We modify the coun-

terexample from the proof of Lemma 5.12. Consider two atomic geometric objects
O1 and O2 with reference objects rectangles with corner points (1, 1), (3, 1), (1, 3),
(3, 3) and (2, 2), (4, 2), (2, 4), (4, 4), respectively. The affine transformations of the
rectangles are given by the matrices

(

t 2t
3t t

)

and

(

t 2t+ 1
t 3t+ 1

)

,

respectively.
In some interval of the strictly positive t-axis, the intersection of the two objects

is a triangle with corner points (6t+ 2, 8t+ 2), (t (28t+15)
(3t+2) , 3t

(13t+2)
(3t+2) ) and (21

2 t,
17
2 t).

The same type of argumentation as in the proof of Lemma 5.12, can be used to
show that at least a rational affinity is needed to describe the intersection. Therefore,
both 〈SRect,F

Lin
Aff 〉 and 〈SRect,F

Pol
Aff 〉 are not closed for intersection and set-difference.

Secondly, for 〈STrAx,F
L
Aff 〉, we can reuse the above counterexample leaving out

the corner points (1, 1) and (4, 4) respectively. The intersection remains the same and
the argumentation can be repeated. ⊓⊔

The proof of Lemma 5.11 is based on the property that affinities do not pre-
serve parallelism to the axes. We will see later that for scalings, which do preserve
parallelism to the axes, the class of the objects of STrAx is not closed.

5.2.2.4 Results for Scalings

We divide the results for scalings into one positive and two negative results.

Lemma 5.15 (Closure for 〈SRect, FL
Sc 〉, L ∈ {Lin,Poly,Rat}). 〈SRect, F

L
Sc 〉 is

closed under ∩ and \ for L ∈ {Lin,Poly,Rat}.

Proof. Because of Lemmas 5.2.2, and 5.2.3, it suffices to consider the intersection of
two atomic geometric objects O1 = (R1, I1, g1) and O2 = (R2, I2, g2).

According to Property 5.2.5, the intersection of the two rectangles takes different
shapes in elements of a finite partition of I1 ∩ I2 (we only consider this intersection,
since elsewhere in I1 ∪ I2 the intersection of O1 and O2 is empty in any case). Let
J be an interval in this partition. First, we remark that scalings map lines that are
parallel to the x-axis or to the y-axis to a parallel line. Therefore, at any moment t
in J both the frame of O1 and the frame of O2 are rectangles with sides parallel to
the coordinate axis.

Let us assume that the intersection of O1 and O2 is a rectangle in J .
We remark that this intersection rectangle is uniquely determined by the coordi-

nates of its upper-left corner point (xul(t), yul(t)) and the coordinates of the lower-
right corner point (xlr(t), ylr(t)). Let assume the upper-left corner point of the inter-
section comes from O1 and the lower-right from O2 (possibly we have to work with
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the upper-right and lower-left corners, but this is equivalent). Let the scaling of O1

be determined by a1(t), b1(t), e1(t), f1(t) and the one of O2 by a2(t), b2(t), e2(t),
f2(t) (following the matrix notation of section 5.1.2).

The intersection is an atomic geometric object O = (R, J, f) composed as follows.
The reference rectangle R has as upper-left corner point (xul, yul) the upper-left corner
point of the reference object R1 of O1 and as lower-right corner point (xlr, ylr) the
lower-right corner point of the reference object R2 of O2 (if (xlr, ylr) and (xlr, ylr) have
an x- or y-coordinate in common, we work with (xlr + 1, ylr + 1) instead of (xlr, ylr)
and replace e2(t) with e2(t) − a2(t) and f2(t) with f2(t) − b2(t) in the description of
g2). The transformation function g of O is determined by

a(t) =
(a1(t)xul − a2(t)xlr + e1(t) − e2(t)

xul − xlr
,

b(t) =
(b1(t)yul − b2(t)ylr + f1(t) − f2(t)

yul − ylr
,

e(t) =
((a2(t) − a1(t))xulxlr − e1(t)xlr + e2(t)xul

xul − xlr
, and

f(t) =
((b2(t) − b1(t))yulylr − f1(t)ylr + f2(t)yul

yul − ylr
.

These formulas show that, if the transformations of O1 and O2 are rational, poly-
nomial or linear, respectively, then also a(t), b(t), e(t) and f(t) are rational, polyno-
mial and linear, respectively.

The cases where the intersection of O1 and O2 is a line segment or point in J are
analogous to but simpler than the previous case. ⊓⊔

(A) (B)

Figure 5.3: Counterexamples for intersection (A) and difference (B) for the classes
〈STrAx ,F

Lin
Sc 〉

Lemma 5.16 (Non-closure for 〈STrAx ,FL
Sc 〉 and 〈STrAx , {id}〉). The classes

〈STrAx ,F
L
Sc 〉 and 〈STrAx , {id}〉 are not closed under ∩ and \ for L ∈ {Lin,Poly,Rat}.

Proof. Consider the triangle with corner points (0, 0), (1, 0) and (0, 1) and the
triangle with corner points (1

3 , 1), (2
3 , 1) and (2

3 , 0), both transformed by the identity
transformation. Their intersection (for an illustration see (A) of Figure 5.3) cannot
be described as a finite union of elements of 〈STrAx ,F

L
Sc 〉 since scalings map lines
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that are parallel to a coordinate axis to a parallel line. (Remember, for affinities, this
class was closed, partly because affinities do not necessarily preserve parallelism with
the coordinate axis.) ⊓⊔

The following lemma could be left out since it is implied by Lemma 5.18. We
nevertheless give it, since its proof is conceptually easier.

Lemma 5.17 (Non-closure for 〈STr ,F
L
Sc 〉 and 〈SPoly,F

L
Sc 〉, L ∈ {Lin,Poly}). The

classes 〈STr ,F
L
Sc 〉 and 〈SPoly,F

L
Sc 〉 are not closed under ∩ and \ for L ∈ {Lin,Poly}.

Proof. Because of Properties 5.2.2 and 5.2.4 it suffices to prove this for atomic
geometric objects that have a triangle as a reference object. Consider the triangle
with corner points (0, 0), (0, 1) and (1, 0), and the triangle with corner points (0, 0),
(1, 1) and (1, 0). Their respective transformation functions are the scalings

(

1 0
0 t+ 1

)

and

(

1 0
0 2t+ 1

)

.

We consider for both objects the time interval [0, 5]. At any moment during this inter-

val the intersection is given by the triangle with corner points (0, 0), ( t+1
3t+2 ,

(t+1)(2t+1)
3t+2 )

and (1, 0). Assume that this intersection is described by a geometric object {O1, . . . ,
Om} from 〈 STr, F

L
Sc 〉. At least one of the atomic objects describes a moving triangle

that contains ( t+1
3t+2 ,

(t+1)(2t+1)
3t+2 ) as a corner point during some subinterval of [0, 5].

The x-coordinate t+1
3t+2 is therefore of the form a(t)x0 + e(t) with x0 the x-coordinate

of some corner point of a reference object, and a(t) and e(t) functions appearing in
its transformation matrix. Therefore, a(t)x0 + e(t) has degree 0, i.e., it is a number,
say α. But then α(3t + 2) and t + 1 should be identical polynomials, leading to the
equations 3α = 1 and 2α = 1 that clearly do not have a solution. It can therefore not
be a linear or polynomial transformation. ⊓⊔

The next lemma completes the proofs for scalings.

Lemma 5.18 (Non-closure for 〈STr, FRat
Sc 〉 and 〈SPoly, FRat

Sc 〉). The classes
〈STr, F

Rat
Sc 〉 and 〈SPoly, F

Rat
Sc 〉 are not closed under ∩ and \.

Proof. Because of Properties 5.2.2 and 5.2.4 it suffices to prove this lemma for atomic
geometric objects that have a triangle as a reference object. We give an example of
two atomic geometric objects O1 and O2 that have an intersection that cannot be
described in 〈STr ,F

Rat
Sc 〉.

Let the reference triangle of the atomic geometric object O1 have corner points
(0, 0), (1, 1) and (1

3 ,
1
2 ) and let the transformation of this object be the scaling that

maps (x, y) to
(

− 3(t+1)
t+3 0

0 −(t+ 1)

)(

x
y

)

+

(

3(t+1)
t+3

t+ 1

)

.

Let the reference triangle of the atomic geometric object O2 have corner points (0, 0),
(1, 1) and (0, 1) and let the scaling of this object be the time-independent mapping
that maps (x, y) to

(

4 0
0 4

)(

x
y

)

+

(

−2
−2

)

.
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We consider both objects in the time interval (0, 1
2 ). At any moment during this

interval the intersection is given by the triangle with corner points (0, 0), (3(t+1)
t+3 , t+1)

and (1, 1). We remark that the point (3(t+1)
t+3 , t + 1) is situated above the diagonal

y = x and that in the limit towards 0, this point converges to (1, 1). In other words,
the intersection is always a triangle during the time interval (0, 1

2 ), but it converges
to a line segment for t going to 0. It is easily verified that this intersection cannot be
described as the image of a single triangle under a scaling from FRat

Sc .
More generally, assume that this intersection is described by a geometric object

{O1, . . . ,Om} from 〈 STr, FRat
Sc 〉. At least one of the atomic objects describes a

moving triangle that covers a line segment connecting (0, 0) and (f(t), f(t)) of the
line connecting (0, 0) and (1, 1) during a time interval (0, ε] with ε > 0 (without loss
of generality this interval can be assumed to be closed on the right side). Let the
third cornerpoint (g(t), h(t)) be situated in the interior of the intersection triangle

with cornerpoints (0, 0), (3(t+1)
t+3 , t+1) and (1, 1). Let the scaling of this object be the

one that maps (x, y) to

(

a(t) 0
0 b(t)

)(

x
y

)

+

(

c(t)
d(t)

)

,

where (a(t), b(t), c(t) and d(t) are rational functions of t. Without loss of generality
the reference triangle of this atomic object can be assumed to have cornerpoints (0, 0),
(1, 1), and (a, b), where the first is mapped to (0, 0), the second to (f(t), f(t)) and
the third to (g(t), h(t)). Since we assume this reference object to be a triangle, we
have a 6= b. It then follows that a(t) and b(t) must be equal to f(t) and that c(t) and
d(t) must be constant 0. Therefore, this scaling maps the third cornerpoint (a, b) to
(g(t), h(t)) = (af(t), bf(t)). Both a and b are therefore strictly positive. Since the
point (af(t), bf(t)) is situated at the same side of the diagonal y = x as the point
(0, 1), we get the condition bf(t)− af(t) > 0, or b > a. On the other hand, this point

is situated on the same side as (0, 1) of the line connecting (0, 0) and (3(t+1)
t+3 , t + 1).

Therefore, we get

(t+ 1)af(t) −
3(t+ 1)

t+ 3
bf(t) > 0.

From this a− 3
t+3b > 0 follows, or 3b

a
< t+ 3. Since t 7→ t+ 3 is strictly increasing in

(0, ε] and has infimum 3 over this interval, we get 3b
a

≤ 3, or b ≤ a. This contradicts
b > a, that we obtained before. This concludes the proof. ⊓⊔

5.2.2.5 Results for Translations

We give a general negative result for translations.

Lemma 5.19 (Non-closure for translations). For each of the classes S considered
in the previous section, the class 〈S, FL

Trans 〉 is not closed under ∩ and \, for L ∈
{Lin,Poly,Rat}.

Proof First, we remark that translations preserve the shape and area of objects
and the length of lines. Consider now two reference objects, located in the plane
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t = 0, from each of the relevant classes that have the interval [0, 1] on the x-axis
as one of their sides. Let one reference object be located above the x-axis and the
second be located below the x-axis. Let the first object undergo the translation
(x, y) 7→ (x − t, y) in the direction of the negative x-axis and let the second object
undergo the translation (x, y) 7→ (x+ t, y) in the opposite direction, both in the time
interval [0, t0], for some t0 > 0. Then it is clear that the intersection of these objects
is a shrinking line segment during the time interval [0, t0]. So, in any of the cases, the
intersection cannot be described as a finite union of translated objects. ⊓⊔

5.2.2.6 Results for the Identity

For completeness, we also give the results for the identity mapping.

Lemma 5.20. The classes 〈SPoly,Fid 〉, 〈STr,Fid 〉 and 〈SRect,Fid 〉 are closed under
∩ and \. The class 〈STrAx,Fid 〉 is not closed under ∩ and \.

Proof. For the positive closure results, it suffices to remark the following. The inter-
section of two polygons is again a polygon (if line segments and points are considered
to be in this class). The intersection of two triangles is a convex polygon with at
most six corner points that can be triangulated, i.e., written as a disjoint union of
triangles. The intersection of two rectangles is a rectangle, a line segment parallel to
a coordinate axis, or a point.

For the negative result, we remark that the intersection of two reference objects
from STrAx cannot necessarily be written as a finite union of such objects. Figure 5.3
contains an example. ⊓⊔

Now we have proven all the closure and non-closure results listed in the table of
Theorem 5.5.

5.3 The Extended Data Model

It is clear that the model for representing spatio-temporal data, that we have presented
in Section 5.1, gives mostly negative closure results (see Theorem 5.5) for the classes
of objects we considered important for spatio-temporal practice. The only classes that
seem to be useful for further investigation are 〈S, FRat

Aff 〉, for any of the considered
classes S of reference objects.

In this section, we will enrich the data model and get better closure results. We
will also study normal forms for objects in this enriched model.

In Section 5.1, we defined a geometric object as a finite union of atomic objects. We
could now try to modify this definition by allowing other operations than union in the
construction of geometric objects from atomic geometric objects. The exhaustive list
of alternative definitions that could be considered are: a geometric object is obtained
from atomic geometric objects by means of

(a) union (see Section 5.2);

(b) intersection;

(c) set-difference;
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(d) intersection and set-difference; and finally

(e) union, intersection and set-difference.

In this chapter, we will not investigate alternatives (b), (c) and (d). These alter-
natives may be interesting from a mathematical point of view, but in any practical
application it is natural to allow union in the construction of spatio-temporal objects.
In fact it is easy to see that for instance alternative (b) gives even worse closure
results. Hereto, we first make two basic observations. Firstly, it is clear that the
intersection of convex objects always results in a convex object, and that the affine
transformation of a convex object remains a convex object. Secondly, the intersection
of connected convex objects is again connected. It should be clear therefore that
when the reference objects are triangles or rectangles, then whenever a union has two
connected components, it cannot be written as an intersection of atomic geometric
objects.

For alternative (c), we remark that in contrast to the intersection, the difference
of two convex objects can result in a non-convex object, or in a set of disjoint objects.
So, it is possible to describe a wide class of objects as the difference of some atomic
objects. But, this approach has two major drawbacks:

1. If we want to describe a certain object O as the difference of some other objects
O1 . . .Ok, we have to artificially introduce those objects O1, . . . ,Ok into the
database. There is no way of controlling the number of objects that have to be
introduced, as this depends on the exact shape of the object O.

2. The difference operator is not associative, so in the worst case the depth of the
tree describing the relation between the objects equals the number of objects.
For practical applicability of our model, we should have a tree with limited
depth. (One way of achieving this is to define a normal form, see further).

Only alternative (e) will be further investigated here.

5.3.1 The Extended Data Model

First, we define the extended model. Atomic geometric objects are defined as in
Section 5.1.

Definition 5.21 (Extended data model). An extended geometric object is a binary
tree, where each non-leaf node has two children, where each of the nodes is labeled
with ∪, ∩ or \ and where each leaf is labeled with an atomic geometric object.

The semantics of a geometric object is defined (recursively starting from the root
of the tree) as the semantics of its root. If a node n of the binary three has a left child
lc and a right child rc, and if the root is labeled θ (with θ ∈ {∪,∩, \}), the semantics
sem(n) of node n is by definition sem(lc) θ sem(rc). The semantics of a leaf labeled
with the atomic geometric object O is st(O).

We define the time domain of an extended geometric object to be the convex
closure of the union of the time domains of all the composing atomic geometric objects.
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By slight abuse of notation, we will write down binary trees as in Definition 5.21 in
the usual set-theoretic notation. The expression O1 ∪ (O2 ∩ (O3 \O1)) is an example.

The following property is trivial and says that this model is closed for all Boolean
set operations.

Property 5.3.1. For all the classes 〈S,F〉 considered in Section 5.1.2 the extended
version of the data model is closed for union, intersection and set-difference.

5.3.2 Normal Forms for CSG

By allowing geometric objects to be constructed from atomic objects via union, in-
tersection and difference, we arrive at a situation that is similar to what is used in
the field of “Constructive Solid Geometry” (CSG) [45]. This is a method of geomet-
ric modeling, where complex static objects are constructed out of simple objects by
taking the union, intersection and difference.

Looking at literature on CSG, we find that there exists a normal form for objects
composed as Boolean combinations (with the operators ∪, ∩, \) from atomic objects.

A tree representing a complex object (called a CSG tree) is in normal form when
all intersection and subtraction operators have a left subtree which contains no union
operators and a right subtree which is simply a primitive (a set of polygons represent-
ing a single solid object). All union operators are pushed towards the root, and all
intersection and subtraction operators are pushed towards the leaves. In our setting,
the primitives are atomic geometric objects and the complexes are geometric objects.

A CSG tree can be converted to normal form by repeatedly applying the following
set of rewrite rules (which have the Church-Rosser property) to the tree and then its
subtrees:

A \ (B ∪ C) ; (A \B) \ C (Rule 1)
A ∩ (B ∪ C) ; (A ∩B) ∪ (A ∩ C) (Rule 2)
A \ (B ∩ C) ; (A \B) ∪ (A \ C) (Rule 3)
A ∩ (B ∩ C) ; (A ∩B) ∩ C (Rule 4)
A \ (B \ C) ; (A \B) ∪ (A \ C) (Rule 5)
A ∩ (B \ C) ; (A ∩B) \ C (Rule 6)
(A \B) ∩ C ; (A ∩ C) \B (Rule 7)
(A ∪B) \ C ; (A \ C) ∪ (B \ C) (Rule 8)
(A ∪B) ∩ C ; (A ∩ C) ∪ (B ∩ C) (Rule 9)

where A, B, and C here can be both primitives or subtrees.

5.3.3 Normal Forms for Geometric Objects

First, we define the notion of normal form for a geometric object in the extended data
model.

Definition 5.22 (Normal form). We say that a geometric object (in the extended
version) is in normal form if every ∩- or \-labeled node has no ∪-labeled node in the
left subtree and has a right child that is labeled by an atomic object.
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A \

B C

C\

A B

\

Figure 5.4: Tree notation for Rule 1. A, B, and C denote arbitrary subtrees. The
arrow indicates how a subtree can be replaced by another subtree.

By Rule 7, differences can be pushed down with respect to intersections and we
obtain, in the set-theoretic notation, that a geometric object is in normal form if it is
of the form

n
⋃

i=1

((Oi,1 ∩ · · · ∩ Oi,ki) \ Oi,ki+1 \ · · · \ Oi,ki+li)

where Oi,j is an atomic object.
The rewrite Rules 1–9 can be easily converted to tree notation, as illustrated for

Rule 1 in Figure 5.4. The following property says that any geometric object can be
rewritten in normal form. For the proof, we refer to [33].

Property 5.3.2. Any geometric object in the extended data model can be rewritten,
using Rules 1–9, into a geometric object with the same semantics that is in normal
form. Furthermore, this system of rewrite rules has the Church-Rosser property.





6
Triangulated Spatial and
Spatio-temporal Data

In the previous chapter (Chapter 5), we modelled spatio-temporal objects as triples
(S, I, f), where S is a spatial reference object in R

2, I a time interval and f a trans-
formation function which is, in general, a time-dependent affine transformation. We
investigated the closure properties of several classes of spatio-temporal objects, and
concluded that the class 〈STr,F

Rat
Aff 〉 was interesting with respect to applications, as

it is both the most general and closed under Boolean set operations.

However, a drawback of modelling an object as an arbitrary set of atomic objects,
is that it is not clear immediately how the spatio-temporal object represented by the
atomic objects looks like. Its time domain has to be computed from the time domains
of all atomic objects, which might overlap. Also, there may be gaps, i.e., moments
when the spatio-temporal object does not exist, and two sets of atomic objects can
represent the same spatio-temporal object. Or, there might be elements in the set of
atomic objects that do not contribute to the spatio-temporal object at all, as they
are overlapped totally by other atomic objects. In short, the model proposed would
benefit from a normal form that supports visualization and describes the objects in
a unique way.

The normal form that we develop will also be affine-invariant. The importance
of affine-invariance is generally recognized in the computer graphics, robotics and
computer vision communities. This is reflected in the widely-adopted weak perspective
assumption. This is the assumption that when an object is repeatedly photographed
from different viewpoints, and the object is relatively far away form the camera, that
all pictures of the object are affine images of each other. We generalize this assumption
for spatio-temporal objects as follows. If a spatio-temporal event is filmed by two
moving observers, relatively far away from the event, then both films will be the same

95
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up to a time-dependent affinity. For each time moment, another affinity maps the
snapshots of the different movies onto each other.

As the objects we will consider have triangles as reference objects, we further refer
to the normal form as a triangulation. We choose to define a spatial triangulation as a
“partition” of the plane into triangles, that are allowed to share boundaries with each
other. This is definition is commonly used (e.g. [28]). We will define a spatio-temporal
triangulation later.

For spatial data, there exist several triangulation algorithms, but, apart from the
triangulation of Nielson [56], their output is not affine-invariant. The method pro-
posed by Nielson to triangulate a set of points in an affine-invariant way computes
an affine-invariant norm using the coordinate information of all points, and then uses
this norm in the triangulation algorithm. In Section 6.2, we will develop a spatial
triangulation algorithm, that is more intuitive, is efficiently computable and naturally
extends to a spatio-temporal triangulation algorithm. Afterwards, in Section 6.3, we
develop a spatio-temporal triangulation method, based on this new spatial triangula-
tion algorithm. We start with some definitions.

6.1 Affine-invariant Triangulation Methods

We first define the notions of spatial and spatio-temporal affine triangulation. We use
the definition of spatio-temporal objects and geometric objects from Chapter 5 (see
Definitions 5.1, 5.2 and 5.3).

Definition 6.1 (Spatial and spatio-temporal triangulation). Let {O1, . . . ,On}
be a geometric object and τ0 be a time moment in the time domain of {O1, . . . ,On}.
• A collection of triangles1 {T1, T2, . . . , Tm} in R

2 is a triangulation of the snapshot
{O1, . . . ,On}

τ0 if the interiors2 of different Ti are disjoint and the union ∪mi=1Ti equals
{O1, . . . ,On}

τ0 .

• A geometric object {T1, . . . , Tm} is a triangulation of a geometric object {O1, . . . ,
On} if for each τ0 in the time domain of {O1, . . . ,On}, {T1, . . . , Tm}τ0 is a triangula-
tion of the snapshot {O1, . . . ,On}

τ0 and if st({O1, . . . ,On}) = st({T1, . . . , Tm}).

We remark that in the second part of Definition 6.1, at each moment τ0, the T τ0
i

are allowed to be empty (i.e., τ0 may be outside the time domain of Ti).
In Figure 6.1, two stars with their respective triangulations are shown. Note

that, although triangulations of spatial sets intuitively are partitions of such sets into
triangles, they are not partitions in the mathematical sense. Indeed, the elements
of the partition may have common boundaries. For spatial data, it is customary to
allow the elements of a partition to share boundaries (see for example [28]).

A spatial triangulation method is a procedure that on input (some representation
of) a snapshot of a spatio-temporal object produces (some representation of) a trian-
gulation of this snapshot. A spatio-temporal triangulation method is a procedure that

1Remark that we consider filled triangles and we allow a triangle to degenerate into a closed line
segment or a point.

2We define the interior as follows: the interior of a triangle is its topological interior; the interior
of a line segment is the segment without endpoints; and the interior of a point is the point itself.
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Figure 6.1: The triangulations of a snapshot (left) and of an affine transformation of
the snapshot (right).

(A) (B) (C)

Figure 6.2: Two different triangulations ((B) and (C)) of a convex polygon ((A)).

on input (some representation of) a geometric object, produces (some representation
of) a triangulation of this geometric object.

Next, we define what it means for such methods to be affine-invariant.

Definition 6.2 (Affine-invariant triangulation methods). A spatial triangula-
tion method TS is called affine invariant if and only if for any two snapshots A and B,
for which there is an affinity α : R

2 → R
2 such that α(A) = B, also α(TS(A)) = TS(B).

A spatio-temporal triangulation method TST is called affine invariant if and only
if for any geometric objects {O1, . . . ,On} and {O′

1, . . . ,O
′
m} for which for each mo-

ment τ0 in their time domains, there is an affinity ατ0 : R
2 → R

2 such that if
ατ0({O1, . . . ,On}

τ0) = {O′
1, . . . ,O

′
m}τ0 , also ατ0(TST ({O1, . . . ,On})

τ0) = TST ({O′
1,

. . . ,O′
m})τ0 .

Example 6.3. Given a convex polygon as shown in Part (A) of Figure 6.2. A spatial
triangulation method that takes the leftmost of the corner points with the smallest
y-coordinates of the polygon and connects it with all other corner points, is not affine
invariant. It is not difficult to see that, when an affine transformation is applied to
the polygon, another point may become the leftmost lowest corner point. Part (B)
of Figure 6.2 shows the result of applying this triangulation method to the convex
polygon shown in Part (A).

A triangulation method that computes the barycenter of a convex polygon and
connects it with all corner points is affine-invariant. An illustration is shown in Part
(C) of Figure 6.2. ⊓⊔
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We now propose an affine-invariant spatial triangulation method for spatial figures
that are snapshots of geometric objects, or, that can be represented as finite sets of
triangles.

6.2 An Affine-invariant Spatial Triangulation

We next propose an affine-invariant triangulation method. Later on, in Section 6.3,
we will use the technique proposed here to construct a spatio-temporal triangulation
algorithm. We first explain the intuition behind the triangulation method, and then
give the details in Algorithm 3. We illustrate the algorithm with an example, prove its
correctness and end with determining the size of the output and the time complexity
of the algorithm.

Intuitively, the algorithm is as follows. The input is a snapshot S, given as a finite
set of triangles. In Figure 6.3 (A), for example, a snapshot of a house-like shape is
given by four triangles. One of those triangles is degenerated into a line segment
(representing the chimney). To make sure that the triangulation is independent of
the exact representation of the snapshot by means of triangles, the boundary of the
snapshot, i.e., the boundary of the union of the triangles composing S, is computed.
For the snapshot of Figure 6.3, the boundary is shown in Part (B). The (triangle
degenerated into a) line segment contributes to the boundary. Therefor, we label it,
the reason for this will become clear in a further stage of the procedure. Also, the
(triangles degenerated into) points of the input that are not part of a line segment
or real triangle, i.e., the ones contributing to the boundary, are added to the output
immediately.

The set of all lines through the edges of the boundary partitions the plane into a
set of open convex polygons, open line segments, open (half-) lines and points. The
(half-) lines and some of the polygons can be unbounded, so we use the convex hull
CH(S) of the corner points of all triangles in the input as a bounding box. In Part
(C) of Figure 6.3, the grey area is the area inside of the convex hull. The partition
of the area inside the convex hull is computed. The points in this partition are not
considered. The points contributing to the boundary were already added to the output
in an earlier stage. For each open line segments, it is checked whether it is part of a
labelled line segment of the input. Recall that only line segments that contribute to
the boundary are labelled in an earlier stage of the algorithm. Only if an open line
segment is part of a labelled segment, as is the case for the one printed in bold in
Figure 6.3 Part (D), its closure (i.e., a closed line segment) is added to the output.
For each open polygon in the partition, we compute the polygon that is its closure
and triangulate this polygon using its center of mass (see Figure 6.3 Part (D) for a
polygon in the partition and Part (E) for its triangulation). Some open polygons are
only part of the convex hull of S, but not of the snapshot itself. The polygons shaded
in grey in Part (D) of Figure 6.3 are an example of such polygons. If a polygon does
not belong to S, we do not triangulate it. The triangulations of all other polygons
are added to the output. Note that we can decide whether a polygon belongs to the
snapshot by first computing the planar subdivision U(S) (which we will define next)
of the input snapshot and then test for each open polygon whether its center of mass
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(A) (B) (C)

(D) (E)

Figure 6.3: The several steps in the spatial triangulation algorithm.

belongs to the interior of a region or face in the subdivision. We will explain this in
more detail when analyzing the complexity of the algorithm.

In the detailed description of the algorithm, we will use some well known tech-
niques. One of those is the doubly-connected edge list [18], used to store planar
subdivisions.

Definition 6.4 (Planar subdivision). A planar subdivision is a subdivision of the
plane into labelled regions (or faces), edges and vertices, induced by a plane graph.
The complexity of a subdivision is the sum of the number of vertices, the number of
edges and the number of faces it consists of.

Next, we describe the doubly-connected edge list, a data structure to store planar
subdivisions. For this structure, each edge is split into two directed half-edges. In
general, a doubly-connected edge list contains a record for each face, edge and vertex
of the planar subdivision.

Definition 6.5 (Doubly-connected edge list). Given a planar subdivision S. A
doubly-connected edge list for S, denoted DCEL(S), is a structure containing a record
for each face, edge and vertex of the subdivision. These records store the following
geometric and topological information:

(i) The vertex record of a vertex a stores the coordinates of a and a pointer to an
arbitrary half-edge that has a as its origin;

(ii) The face record of a face f stores a pointer to an arbitrary half-edge on its
boundary. Furthermore, for each hole in f , it stores a pointer to an arbitrary
half-edge on its boundary;
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(iii) The half-edge record of a half-edge e stores five pointers. One to its origin-vertex,
one to its twin half-edge, one to the face it bounds, and one to the previous and
next half-edge on the boundary on that face.

Example 6.6. Figure 6.4 shows a planar subdivision (Part (B)) and its topological
structure (Part (C)), that is reflected in the doubly-connected edge list represented
in Table 6.1. ⊓⊔

Algorithm 3 (or TS) gives the triangulation procedure more formally. The input of
this triangulation algorithm is a snapshot S, consisting of a geometric object which we
assume to be given as a finite set of (possibly overlapping and possibly degenerated)
triangles. We further assume that each triangle is represented as a triple of pairs of
coordinates, which are rational numbers.

To shorten and simplify the exposition of Algorithm 3, we assume that S is fully
two-dimensional, or equivalently, that points and line segments that are not adjacent
to a polygon belonging to S are already in the output. Including their triangulation
in the algorithm would make its description tedious, as we would have to add, and
consider, more node and edge labels.

We use C programming-style notation for pointers to records and elements of
records. For example, Let a = (a1, a2). In the vertex record Va of a, Va.x = a1 and
Va.y = a2. Let e be an edge record. The coordinates of the origin e→ origin of e are
e→ origin → x and e→ origin → y.

Before proving the correctness of the algorithm and determining the size of the
output and the time complexity of the algorithm, we give an example.

Example 6.7. Let S be the set {T1, T2}, where T1 is the triangle with corner points
v1, v3 and v4, and T2 the triangle with corner points v2, v3 and v4, as depicted in
Figure 6.4. The doubly-connected edge list corresponding to Part (C) is shown in
Table 6.1. We omitted the structures for vertices and faces, as we don’t need them
for the second part of the algorithm.

After the doubly-connected edge list is constructed, we create and output the
triangles. This is done by visiting all half-edges once. Suppose we start with e2,1.
The next-pointers lead to e1,5 and e5,2. The next pointer of the last one points to
e2,1, which we visited already. This means we visited all edges of one polygon. The
center of mass can now be computed and the triangles added to the output. This is
done for all polygons that are part of the input. In this example, the polygon with
corner points v1, v5 and v2 will not be triangulated, as it is not part of the input.
The algorithm stops when there are no more unvisited edges left. ⊓⊔

Note that, as an optimization, we could decide to not triangulate faces that are
triangles already. This does not influence the complexity results, however. Therefor,
and also for a shorter and more clear exposition, we formulated the algorithm in a
more general form.

We now prove compute the complexity of both the output and execution time of
the triangulation method described in Algorithm 3 and afterwards show that it is
affine-invariant. First, we show that TS is indeed a triangulation method.
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Algorithm 3 TS (Input: S = {T1, T2, . . . , Tk}, Output: {T ′
1, T

′
2, . . . , T ′

ℓ})

1: Out:= ∅.
2: Compute the set B(S) containing all line segments, bounding a triangle of the

input, that contribute to the boundary of S (i.e., that contain an edge of the
boundary). Meanwhile, construct the planar subdivision U(S) induced by the
triangles composing S.

3: Compute the convex hull CH(S) of S.
4: Construct the doubly connected edge list DCEL(S), induced by the planar sub-

division defined by the lines through the segments of B(S), using CH(S) as a
bounding box.

5: while there are any unvisited half-edges in DCEL(S) left do
6: Let e be an unvisited edge.
7: Σx := 0, Σy := 0, count := 0, Elist := ∅.
8: while e is unvisited do
9: Mark e with the label visited.

10: Elist := Elist ∪ {(e→ origin, e→ next → origin)}, Σx := Σx + e→ origin →
x, Σy := Σy + e→ origin → y, count := count + 1.

11: e := e→ next.
12: end while
13: x := ( Σx

count ,
Σy

count ).
14: if the point a in x belongs to a face of U(S) then
15: for all elements (as,ae) of Elist do
16: Out := Out ∪{Taasae}, where Taasae is the (closed) triangle with corner

points a, as and ae.
17: end for
18: end if
19: end while
20: return Out.
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(C) (D)

T T
1 2

v3

v1
v2

v5

v4

v1

v2

v5

v3 v4

f1

f2 f3

f4

f5

v1

v2

v3
v4

e2,1

e5,2e1,5

Figure 6.4: The different steps of Algorithm 3 applied to S = {T1, T2}. In this
example, all boundary segments of all triangles of S contribute to the boundary of
S. The line arrangement induced by the carriers of the edges of the input triangles is
bounded by the convex hull of the input (Part (B)). A doubly-connected edge list is
constructed out of the line arrangement, storing its topological structure (Part (C)).
Finally, the triangulation is computed (Part (D)).

Property 6.2.1 (Algorithm 3 describes a triangulation method). Let S be a
snapshot. The output TS(S) of Algorithm 3 applied to S is a triangulation of S.

Proof. Let S = {T1, T2, . . . , Tk} be a snapshot. It is easy to see that the output
TS(S) = {T ′

1, T
′
2, . . . , T

′
ℓ} of TS is a triangulation. By construction, TS(S) is a set of

triangles that either have no intersection, or share a corner point or bounding segment.
It is clear from the algorithm that

⋃

i=1k Ti =
⋃

j=1ℓ T
′
j , because each triangle in TS(S)

is tested for membership of S. The other direction also holds, because initially, the
convex hull of S is triangulated, which contains S.

Property 6.2.2 (Quadratic output complexity). Given a snapshot S = {T1,
T2, . . . , Tm}, represented by m triangles. The triangulation TS(S), where TS is the
triangulation method described in Algorithm 3, contains O(m2) triangles.

Proof. It is well-known (e.g., [16]), that an arrangement of m lines in the plane
results in a subdivision of the plane containing O(m2) lines, O(m2) edges and O(m2)
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Half-edge Origin Twin IncidentFace Next Prev

e1,2 v1 e2,1 f5 e2,4 e3,1
e2,1 v2 e1,2 f1 e1,5 e5,2
e1,3 v1 e3,1 f2 e3,5 e5,2
e3,1 v3 e1,3 f5 e1,2 e4,3
e1,5 v1 e5,1 f1 e5,2 e2,1
e5,1 v5 e1,5 f2 e1,3 e3,5
e2,4 v2 e4,2 f5 e4,3 e1,2
e4,2 v4 e2,4 f3 e2,5 e5,4
e2,5 v2 e5,2 f3 e5,4 e4,2
e5,2 v5 e2,5 f1 e2,1 e1,5
e3,4 v3 e4,3 f4 e4,5 e5,3
e4,3 v4 e3,4 f5 e3,1 e2,4
e3,5 v3 e5,3 f2 e5,1 e1,3
e5,3 v5 e3,5 f4 e3,4 e4,5
e4,5 v4 e5,4 f4 e5,3 e3,4
e5,4 v5 e4,5 f3 e4,2 e2,5

Table 6.1: The half-edge records of the doubly-connected edge list corresponding to
Figure 6.4.

faces. It follows that the structure DCEL(S) will contain O(m2) half-edges, i.e., two
half-edges for each edge in the arrangement. In the worst case scenario, when all faces
of the partition of the bounding box belong to S, one triangle is added to the output
for each half-edge in DCEL(S) (connecting that half-edge with the center of mass of
the face it bounds). Therefor, the output contains O(m2) triangles. ⊓⊔

In the following analysis of the running time of Algorithm 3, we assume that
triangles are represented as triples of points, and that a point is represented as a
pair of real numbers. We further assume that all basic arithmetic operations on
coordinates of points require constant time.

Property 6.2.3 (O(m2 logm) running time). Given a snapshot S = {T1, T2, . . . ,
Tm} containing m triangles. The triangulation method TS , described in Algorithm 3,
computes the triangulation TS(S) of S in time O(m2 logm).

Proof. Given a snapshot S = {T1, T2, . . . , Tm}. Using a plane-sweep algorithm [19],
we compute both the list of segments contributing to the boundary of S and the
planar subdivision U(S) induced by

⋃m
i=1 Ti. This takes O(m2 logm), as there are at

most m2 intersection points between boundary segments of triangles of S.
The n triangles composing S together have at most 3m different corner points.

Computing the convex hull of m points in the plane can be done in time O(m logm)
(see [17]). The same authors propose, in [16], an algorithm to compute a doubly-
connected edge list, representing an arrangements of m lines, in time O(m2). We
next show that the changes we make to this algorithm do not influence its running
time. So, as B(S) contains at most all 3m line segments, it induces an arrangement
of at most 3m lines. Hence, Step 3 of Algorithm 3 also takes time O(m2).
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Line(s) Step Time complexity

2 Compute B(S) and U(S) O(m2 logm)
3 Compute CH(S) O(m logm)
4 Compute DCEL(S) O(m2)

5 − 19 Polygon extraction and triangulation O(m2 logm)

Overall time complexity O(m2 logm)

Table 6.2: The time complexity of the various parts of Algorithm 3, when the input
is a snapshot represented by n triangles.

We changed the original algorithm [16] for computing the doubly-connected edge
list of an arrangement of lines as follows:

(i) We computed the convex hull of the input to serve as a bounding box instead of
an axis-parallel rectangle containing all intersection points of the arrangement.
The complexity of computing such an axis-parallel rectangle is higher (O(m2))
than that of computing the convex hull (O(m logm)).

(ii) The cost of constructing the doubly-connected edge list of the convex hull is
O(m), as the convex hull contains at most 3m corner points and the algorithm
for computing it, as described in [17], already outputs the corner points of the
convex hull in circular order. In the original algorithm [16] with an axis-parallel
bounding rectangle, computing the doubly-connected edge list of this rectangle
only takes constant time. This extra time does, however, not affect the overall
complexity.

(iii) The next step of both algorithms involves finding the intersection points between
the lines to be inserted and the partial arrangement induced by the previously
inserted lines. In the original algorithm, this is easier only for the intersection
of a line with the bounding box. For the intersections with all other lines in the
arrangement, the cost is the same.

The next part of Algorithm 3 (starting from Line 5) takes time O(m2 logm). Each
half-edge of the doubly-connected edge list is visited only once. Also, each half-edge
is only inserted once into the set Elist, and consulted only once therein to create
a triangle. As an arrangement of m lines in the plane results in O(m2) edges, the
number of half-edges in DCEL(S) also is O(m2). We can, in time O(m2), preprocess
U(S) into a structure that allows point location in O(logm) time [22]. Therefor,
testing for each of the O(m2) centers of mass whether they are part of the input takes
O(m2 logm).

We can conclude that all parts of Algorithm 3 run in time O(m2 logm). ⊓⊔

Table 6.2 summarizes the computational complexity of the various parts of Algo-
rithm 3.

Property 6.2.4 (TS is affine-invariant). The triangulation method TS is affine-
invariant.
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Proof. According to the definition of affine-invariance of spatial triangulation meth-
ods (Definition 6.2), we have to prove the following. Let A = {Ta,1, Ta,2, . . . , Ta,k}
and B = {Tb,1, Tb,2, . . . , Tb,ℓ} be snapshots, given as sets of triangles, such that there
exists an affinity α : R

2 → R
2 for which B = α(A). Then, for each triangle T of

TS(A), it holds that the triangle α(T ) is a triangle of TS(B).
We prove this by going through the steps of the triangulation procedure TS . Let

A = {Ta,1, Ta,2, . . . , Ta,k} and B = {Tb,1, Tb,2, . . . , Tb,ℓ} be such snapshots.

The convex hull and boundary of spatial figures are both affine-invariant (more
specific, the boundary is a topological invariant). Intersection points between lines
and the order of intersection points on one line with other lines are affine-invariant
(even topological invariant). The subdivision of the convex hull CH(B) of B induced
by the arrangement of lines through the boundary of B is hence the image under α
of the subdivision of the convex hull CH(A) of A induced by the arrangement of lines
through the boundary of A. The doubly-connected edge list only stores topological
information about the arrangement of lines, i.e., which edges are incident to which
vertices and faces. Naturally, this information is preserved by affine transformations.
The center of mass of a convex polygon is an affine invariant. Finally, the fact that
a triangle is inside the boundary of the input and the fact that it is not are both
affine-invariant. This completes the proof. ⊓⊔

Summarizing this section, we proposed a spatial triangulation method that, given
a snapshot consisting of m triangles, returns an affine-invariant triangulation of this
snapshot containing O(m2) triangles, in time O(m2 logm).

We remark here that the idea of using carriers of boundary segments to partition
figures was also used in an algorithm to decompose semi-linear sets by Dumortier,
Gyssens, Vandeurzen and Van Gucht [21].

In the next section, we will use the affine triangulation method TS to construct a
spatio-temporal triangulation of geometric objects.

6.3 An Affine-invariant Spatio-temporal Triangula-
tion Method

In this section, we present an spatio-temporal triangulation algorithm that takes as
input a geometric object, i.e., a finite set of atomic objects of the class 〈STr,F

Rat
Aff 〉.

We will adapt the spatial triangulation method TS , described in Algorithm 3, for
time-dependent data.

The proposed spatio-temporal triangulation algorithm TST will have three main
construction steps. First, in the partitioning step, the time domain of the geometric
object will be partitioned into a set of points and open time intervals. For each element
of this partition, all its snapshots have an isomorphic triangulation, when computed
by the method TS . We refer to Definition 6.8 below for a formal definition of this
isomorphism. Second, in the triangulation step, the spatio-temporal triangulation is
computed for each element in the time partition, using the fact that all snapshots
have isomorphic triangulations. Third, in the merge step, we merge objects when
possible, to obtain a unique (and minimal) triangulation.
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t=0 t=1 t=2 t=3 t=4 t=5

Figure 6.5: Snapshots of a traffic sign as seen by an observer circularly moving around
it.

We will start this section by defining isomorphic triangulations. Then we explain
the different steps of the algorithm for computing a spatio-temporal affine-invariant
triangulation of geometric objects separately. We illustrate the algorithm with an
example and end with some properties of the triangulation.

Definition 6.8 (TS-isomorphic snapshots). Let S1 and S2 be two snapshots of a
geometric object. We say that S1 and S2 are TS-isomorphic, denoted S1 ≡TS S2, if
there exists a bijective mapping h : R

2 → R
2 with the following property: A triangle

T = (a1,a2,a3) of TS(S1) is incident to the triangles T1,2, T2,3 and T3,1 (where each
Ti,((i+1) mod 3) is either a triangle of TS(S1) that shares the segment aia((i+1) mod 3)

with T, a triangle of TS(CH(S1) \ S1) that shares the segment aia((i+1) mod 3) with
T, or is ǫ, which means that no triangle shares that boundary segment with T)
if and only if, the triangle h(T) = (h(a1), h(a2), h(a3)) belongs to TS(S2) and is
bounded by h(T1,2), h(T2,3) and h(T3,1). Moreover, if Ti,((i+1) mod 3) is a triangle of
TS(S1), then h(Ti,((i+1) mod 3)) is a triangle of TS(S2) that shares the line segment
h(ai)h(a((i+1) mod 3)) with h(T), if Ti,((i+1) mod 3) is a triangle of TS(CH(S1) \ S1),
then h(Ti,((i+1) mod 3)) is a triangle of TS(CH(S2) \ S2) that shares the line seg-
ment h(ai)h(a((i+1) mod 3)) with h(T) and if Ti,((i+1) mod 3) equals ǫ, then so does
h(Ti,((i+1) mod 3)).

So, two snapshots S1 and S2 are TS-isomorphic if the triangles in TS(S1) ∪
TS(CH(S1) \ S1) and TS(S2) ∪ TS(CH(S2) \ S2) have the same (topological) adja-
cency graph. In particular, if S1 and S2 are equal up to an affinity of R

2, then they
are TS-isomorphic.

Example 6.9. The triangulations shown in Figure 6.1 are TS-isomorphic to each
other. In Figure 6.5, all snapshots shown except the one at time moment t = 3 are
TS-isomorphic. The snapshot at time moment t = 3 is clearly not isomorphic to the
others, since it consists only of one line segment. ⊓⊔

Remark that for Figure 6.1, the mapping h is an affinity. In Figure 6.5, this is not
the case.

Now, we introduce a spatio-temporal triangulation method TST that constructs
a time-dependent affine triangulation of spatio-temporal objects that are represented
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Figure 6.6: The snapshots at time moments t = 1
4 (A), t = 1

2 (B), t = 1 (C), t = 3
2

(D), t = 2 (E), t = 5
2 (F), t = 3 (G), t = 7

2 (H) and t = 4 (I) of the geometric object
of Example 6.10.

by geometric objects. We will explain its three main steps, i.e., the partitioning step,
the triangulation step and the merge step separately in the next subsections.

We will illustrate each step on the following example.

Example 6.10. Let O = {O1,O2} be a geometric object, where O1 is given as (((−1,
0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f) and
f is the element of FRat

Aff mapping triples (x, y, t) to pairs (x+ t, y). Figure 6.6 shows
the snapshots of O at time moments t = 1

4 (A), t = 1
2 (B), t = 1 (C), t = 3

2 (D),
t = 2 (E), t = 5

2 (F), t = 3 (G), t = 7
2 (H) and t = 4 (I). ⊓⊔

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be a geo-
metric object of the class 〈STr,F

Rat
Aff 〉. We assume that the Si are given as triples of

points (i.e., pairs of real numbers), the Ii as structures containing two real numbers
and two flags (indicating whether the interval is closed on the left or right side) and,
finally, the fi are given as vectors of integer coefficients, for i = 1, . . . ,m.

6.3.1 The Partitioning Step.

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be a geometric
object. In the first step of TST , the time domain I of O, i.e., the convex closure
⋃m

i=1Ii of the union of all the time domains Ii(i = 1 . . .m) is partitioned in such a
way that, for each element of that partition, all its snapshots are TS-isomorphic.

Recall that, in Chapter 5, we defined the finite time partition P (see Definition 5.7)
of the time domain of two atomic objects in such a way that for each element P of P,
the carrier sets of each snapshot of P are topologically equivalent. This definition can
easily be extended to an arbitrary number of atomic objects. Also Property 5.2.5,
stating that the finite time partition exists, still holds in the extended setting. To keep
this chapter self-contained, we explicitly give the extended version of Definition 5.7
and Property 5.2.5:
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Definition 6.11 (Generalized finite time partition). We call a finite time par-
tition of a geometric object O = {O1,O2, . . . ,Om} any partition of the interval

I =
⋃m

i=1Ii into a finite number of time intervals J1, . . . , Jk such that for any τ, τ ′ ∈ Jℓ
(and all 1 ≤ ℓ ≤ k),

⋃m
i=1 car(fi(Si, τ)) and

⋃m
i=1 car(fi(Si, τ

′)) are topologically
equivalent sets in R

2.

Here, two subsets A and B of R
2 are called topologically equivalent when there

exists an orientation-preserving homeomorphism h of R
2 such that h(A) = B.

Property 6.3.1 (Existence of the generalized finite time partition). Let O =
{O1,O2, . . . ,Om} be a geometric object of the class 〈STr,F

Rat
Aff 〉. There exists a finite

time partition of O.

The proof of this property is completely analog to the proof of Property 5.2.5 in
Chapter 5.

We now proceed with the partitioning step of the spatio-temporal triangulation
algorithm. In this step, a generalized finite time partition of O is computed, using
the information of the time-dependent carriers of the atomic objects in O. Each time
an intersection point between two or more time-dependent carriers starts or ceases to
exist, or when intersection points change order along a line, a new time interval of the
partition is started. Given three continuously moving lines, the intersection points of
the first line with the two other lines only change order along the first line, if there
exists a moment where all three lines intersect in one point. Algorithm 4 describes
the partitioning step in detail.

We will show later that the result of the generalized finite time partition is a set of
intervals during which all snapshots are TS-isomorphic. This partition is, however, not
the coarsest possible partition having this property, because there might be atomic
objects that, during some time, are completely overlapped by other atomic objects.
Therefor, we will later, after the triangulation step, again merge elements of the
generalized finite time partition, whenever possible.

We illustrate Algorithm 4 on the geometric object of Example 6.10.

Example 6.12. Recall from Example 6.10 that O = {O1,O2}, where O1 is given as
(((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f)
and f is the element of FRat

Aff mapping triples (x, y, t) to pairs (x+ t, y).
We now illustrate the partitioning algorithm on input O. First, the list χ will con-

tain the time moments 0 and 4. The list C will contain six elements. Table 6.3 shows
these segments and the formulas describing their time-dependent carriers. All pairs
of segments have an intersection that exists always, except for the pairs (Oc,2,Oc,5),
(Oc,3,Oc,6) and (Oc,1,Oc,4). The intersections of Oc,2 with Oc,5 and Oc,3 with Oc,6

exist only at respectively t = 5
2 , t = 3

2 . The segments Oc,1 and Oc,4 never intersect.
Of all possible triples of carriers, only two triples have a common intersection within
the interval [0, 4]. The carriers of Oc,2, Oc,4 and Oc,6 intersect at t = 1

2 and the
carriers of Oc,3, Oc,4 and Oc,5 intersect at t = 7

2 . The partitioning step will hence
return the list

χ = (0,
1

2
,
3

2
,
5

2
,
7

2
, 4).

⊓⊔
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Algorithm 4 Partition (Input: O = {O1, ...,On}, Output: χ = {τ1, τ2, . . . , τm})

1: Let χ = (τ1 ≤ τ2 ≤ . . . ≤ τk)(2 ≤ k ≤ 2n) be a sorted list of time moments that
appear either as a begin or endpoint of Ii for any of the objects Oi = (Si, Ii, fi),
1 ≤ i ≤ n.

2: C = ∅.
3: for all atomic objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n do
4: Add the new atomic objects (Si,1, Ii, fi), (Si,2, Ii, fi) and (Si,3, Ii, fi) to C, where

Si,1, Si,2 and Si,3 are the boundary segments of Si.
5: end for
6: for all pairs of objects (Si,ℓ1 , Ii, fi) and (Sj,ℓ2 , Ij , fj) of C (1 ≤ i < j ≤ n; 1 ≤
ℓ1, ℓ2 ≤ 3) do

7: if Ii ∩ Ij 6= ∅ then
8: Compute the end points of the intervals during which the intersection of the

carriers of both time-dependent line segments does exist. Add those such end
points that lie within the interval Ii ∩ Ij to χ, in a sorted way.

9: end if
10: end for
11: for all triples of objects (Si,ℓ1 , Ii, fi), (Sj,ℓ2 , Ij , fj) and (Sk,ℓ3 , Ik, fk) of C (1 ≤

i < j < k ≤ n; 1 ≤ ℓ1, ℓ2, ℓ3 ≤ 3) do
12: if Ii ∩ Ij ∩ Ik 6= ∅ then
13: Compute the end points of the intervals during which the carriers of the

three time-dependent line segments intersect in one point. Add those such
end points that lie within the interval Ii ∩ Ij ∩ Ik to χ, in a sorted way.

14: end if
15: end for
16: Return χ.

Element Carrier

Oc,1 = (((−1, 0), (1, 0)), [0, 4], Id) y = 0
Oc,2 = (((−1, 0), (0, 2)), [0, 4], Id) y = 2x+ 2
Oc,3 = (((0, 2), (1, 0)), [0, 4], Id) y = −2x+ 2
Oc,4 = (((−3, 1), (−1, 1)), [0, 4], f) y = 1
Oc,5 = (((−3, 1), (−2, 3)), [0, 4], f) y = 2x+ 7 − 2t
Oc,6 = (((−2, 3), (−1, 1)), [0, 4], f) y = −2x− 1 + 2t

Table 6.3: The elements of the list C during the execution of the partitioning algorithm
(Algorithm 4) on the geometric object from Example 6.12.
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We analyze both the output complexity and sequential time complexity of the
partition step. First remark that the product of ℓ univariate polynomials of degree
d is a polynomial of degree ℓd. Let the transformation function of an atomic object
consists of rational coefficients, being fractions of polynomials of degree at most d.
It follows that the time-dependent line segments and carriers can be defined using
fractions of polynomials in t of degree O(d). Also, the time-dependent intersection
point of two such carriers and the time-dependent cross-ratio of an intersection point
compared to two moving end points of a segment, can be defined using fractions of
polynomials in t of degree O(d).

Property 6.3.2 (Partition output complexity). Given a geometric object O =
{O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic
objects. Let d be the maximal degree of any polynomial in the definition of the
transformation functions fi, 1 ≤ i ≤ n. The procedure Partition, as described in
Algorithm 4, returns a partition of I =

⋃n

i=1Ii containing O(n3d) elements.

Proof. It is clear that the list χ contains O(n) elements after Line 1 of Algorithm 4.
Indeed, at most two elements are added for each atomic object. The list C will contain
at most 3n elements. For each atomic object with a reference object that is a “real”
triangle, 3 elements will be added to C. In the case that one or more corner points
coincide, one or two objects will be added to C.

Now we investigate the number of time moments that will be inserted to χ while
executing the for-loop starting at Line 6 of Algorithm 4. The intervals during which
the intersection of two time-dependent carriers exists are computed. The intersection
of two time-dependent line segments doesn’t exist at time moments where the denom-
inator of the rational function defining it is zero. Because this denominator always is
a polynomial P in t, it has at most deg(P ) zeroes, where deg(P ) denotes the degree
of P . Accordingly, at most deg(P ) = O(d) elements will be added to χ. Hence, in
total, O(n2d) time moments are added in this step.

For the intersections of three carriers, a similar reasoning can be used. Hence, dur-
ing the execution of the for-loop starting at Line 11 of Algorithm 4, O(n3d) elements
are added to χ.

We can conclude that the list χ will contain O(n3d) elements. ⊓⊔

Now we analyze the time complexity of Partition. We first point out that finding
all roots of an univariate polynomial of degree d, with accuracy ǫ can be done in
time O(d2 log d log log(1

ǫ
)) [57]. We will use the abbreviation z(d, ǫ) for the expression

O(d2 log d log log(1
ǫ
)). Note also that, although the product of two polynomials of

degree d is a polynomial of degree 2d, the computation of the product takes time
O(d2). To keep the proofs of the complexity results as readable as possible, we will
consider the complexity of any manipulation on polynomials (computing zeros, adding
or multiplying) to be z(d, ǫ), where a precision of ǫ is obtained.

Property 6.3.3 (Partition computational complexity). Given a geometric ob-
ject O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n
atomic objects. Let d be the maximal degree of any polynomial in the definition of the
transformation functions fi, 1 ≤ i ≤ n and let ǫ be the desired precision for comput-
ing the zeros of polynomials. The procedure Partition, as described in Algorithm 4,
returns a partition of I =

⋃n

i=1Ii in time O(n3(z(d, ǫ) + d log n)).
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Proof. Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} be a
geometric object. Let d be the maximum degree of any of the polynomials used in
the definition of the functions fi, 1 ≤ i ≤ n.

Constructing the initial list χ, on Line 1, takes time O(n log n) (it is well known
that the inherent complexity of sorting a list of n elements is O(n log n)). Computing
the set C can be done in time O(nd): all n elements of O are considered, and the time
needed to copy the transformation functions fi depends on the maximal degree the
polynomials defining them have. Recall that C contains at most 3n elements.

The first for-loop, starting at Line 6 of Algorithm 4 is executed O(n2) times. One
execution of its body takes z(d, ǫ). Indeed, computing the formula representing the
time-dependent intersection, checking whether its denominator is always zero and
finding the zeros of the denominator (a polynomial of degree linear in d) have all time
complexity z(d, ǫ). Therefor, the first for-loop takes time O(n2z(d, ǫ)) in total.

The second for-loop has time complexity O(n3z(d, ǫ)). The reasoning here is the
same as for the previous for-loop.

Finally, sorting the list χ, which contains O(n3d) elements at the end, requires
time O(n3d log(nd)).

If we summarize the complexity of all the separate steps, we obtain O(n3(z(d, ǫ)+
d log n)). ⊓⊔

We now proceed with the triangulation step.

6.3.2 The Triangulation Step.

Starting with a geometric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On =
(Sn, In, fn)}, the partitioning algorithm identifies a list χ of time moments that is

used to partition the time domain I =
⋃n

i=1Ii of O into points and open intervals.
For each element in that partition (point or open interval), we now triangulate the
part of O restricted to that point or open interval.

The triangulation of the snapshots of O at the time moments in χ is straightfor-
ward. For each of the time moments τ of χ, the spatial triangulation method TS is
applied to the snapshot Oτ . For each of the triangles T in TS(Oτ ), an atomic object
is constructed with T as reference object, the singleton {τ} as time domain and the
identity as its transformation function.

The triangulation of the parts of O restricted to the open intervals in the time par-
tition requires a new technique. We can however benefit from the fact that throughout
each interval, all snapshots of O have an TS-isomorphic triangulation. For each of
the open intervals defined by two subsequent elements ]τj , τ(j+1)[ of χ, we compute

the snapshot at the middle τm = 1
2 (τj + τ(j+1)) of ]τj , τ(j+1)[ and its triangulation

TS(Oτm). Each triangle boundary segment that contributes to the boundary of Oτm

at time moment τm, will also contribute to the boundary of O at the snapshot of O
at any time moment τ ∈]τj , τ(j+1)[. So, the moving line segment can be considered a
boundary segment throughout ]τj , τ(j+1)[. If two carriers of boundary segments inter-
sect at time moment τm, the intersection of the moving segments will exist throughout
]τj , τ(j+1)[, and so on. Therefor, we will compute the spatial triangulation of the snap-
shot Oτm using the procedure TS , but we will copy every action on a point or line
segment at time moment τm on the moving point of line segment of which the point or
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(A) (B) (C) (D) (E)

(F) (G) (H) (I)

Figure 6.7: The triangulations of the objects of Example 6.10 at time moments t = 1
4

(A), t = 1
2 (B), t = 1 (C), t = 3

2 (D), t = 2 (E), t = 5
2 (F), t = 3 (G), t = 7

2 (H) and
t = 4 (I).

segment is a snapshot. The triangles returned by the spatial triangulation algorithm
when applied to Oτm will be reference objects for the atomic objects, returned by
the spatio-temporal triangulation algorithm. These atomic objects exist during the
interval ]τj , τ(j+1)[. Knowing the functions representing the time-dependent corner
points of the triangles (because of the copying), together with the time interval and
the reference object, we can deduce the transformation function and construct atomic
objects (see Lemma 5.8 of Chapter 5 for the formula computing this transformation).

Next, a detailed description of the spatio-temporal triangulation is given in Al-
gorithm 5. In this description of the spatio-temporal triangulation procedure, we
will use the data type Points which is a structure containing a (2-dimensional) point
(represented using a pair of real numbers), a pair of rational functions of t (a rational
function is represented using a pair of vectors of integers, denoting the coefficients of
a polynomial), representing a moving point, and finally a time interval (represented
as a pair of real numbers and two flags indicating whether the interval is open or
closed at each end point). We will only use or fill in this time information when
mentioned explicitly. Given an element Pt of type Points, we address the point it
stores by Pt → Point, the functions of time by Pt → fx and Pt → fy respectively,
and the begin and end point of the time interval by Pt→ Ib and Pt→ Ie. The flags
Pt → Cb and Pt → Ce are true when the interval is closed at its begin or end point
respectively. A pair of elements of the type Points is denoted an element of the type
Segments.

We again illustrate the spatio-temporal triangulation algorithm on the geometric
object of example 6.10.

Example 6.13. Recall from Example 6.10 that O = {O1,O2}, where O1 is given as
(((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f)
and f is the element of FRat

Aff mapping triples (x, y, t) to pairs (x+ t, y).
From Example 6.12, we recall that the output of the procedure partition on input

O was the list χ = (0, 1
2 ,

3
2 ,

5
2 ,

7
2 , 4).



6.3. An Affine-invariant Spatio-temporal Triangulation Method 113

Algorithm 5 Triangulate (Input: O = {O1, ...,On}, χ = {τ1, . . . , τk}, Output =
{O′

1, . . . ,O
′
ℓ})

1: for all time moments τj , j = 1 . . . k, of χ do
2: for all triangles T in TS(Oτj ) do
3: return the atomic element (T, {τj}, Id).
4: end for
5: end for
6: Let S< be the list containing all atomic objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n, sorted

by the begin points Ii,b of their time domains.
7: Let SActive be a list of elements of the type Segments, SActive = ().
8: for all pairs (τj , τj+1), j = 1 . . . (k − 1)), in χ do
9: τm:= 1

2 (τj + τj+1).
10: Remove all elements (Pt1, P t2) of SActive for which τj = Pt1 → Ie = Pt2 → Ie.
11: for all elements (Pt1, P t2) remaining in SActive do
12: Ptr → Point := (Ptr → fx(τm), P tr → fy(τm)), r = 1, 2.
13: end for
14: for all Oi = (Si = (a1,a2,a3), Ii, fi) in S< for which Ii,b is τi do
15: Construct three Points Pt1, Pt2 and Pt3 such that Ptr → Point = ar,

Ptr → fx = fi(ar,x, τm), Ptr → fy = fi(ar,y, τm) and Ptr → Ib and Ptr → Ie
respectively contain τj and τj+1 (r = 1, . . . , 3).

16: Construct three Segments St1, St2 and St3, containing two different elements
from the set {Pt1, P t2, P t3}. Add them to SActive.

17: end for
18: Compute the set Bt(SActive) of elements of the type Segments, using only the

constant point information of the elements of SActive. Meanwhile, construct the
subdivision U(Oτm).

19: Compute the convex hull CHt(SActive), using only the constant point informa-
tion of the elements of SActive, a list of elements of the type Points.

20: Construct DCELt(SActive), where each half-edge (resp. origin) is now an ele-
ment of the type Segments (resp. Points). Use CHt(SActive) as a bounding box.
Each time the intersection of two constant carriers is computed, also compute
the formula representing the moving intersection point.

21: while there are any unvisited Segments St in DCELt(S) left do
22: Compute the list Etlist of Segments that form a convex polygon. Compute

the Points structure Ptm containing both the constant and time-dependent
center of mass of that polygon

23: if Ptm → Point belongs to a face of U(Oτm) then
24: for all elements St = (Pt1, P t2) of Etlist do
25: Output the atomic object (S, I, f), where S is the triangle with corner

points Pt1 → Point, Pt2 → Point and Ptm → Point and I is ]τj , τj+1[.
The transformation function f is computed using the functions Pt1 →
fx, Pt1 → fy, Pt2 → fx, Pt2 → fy, Ptm → fx and Ptm → fy.

26: end for
27: end if
28: end while
29: end for
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The triangulation of the snapshots at one of the time moments in χ are shown in
Figure 6.7. To keep the example as simple as possible, we did not further triangulate
convex polygons that are triangles already.

The open intervals to be considered are ]0, 1
2 [, ]12 ,

3
2 [, ]32 ,

5
2 [, ]52 ,

7
2 [ and ]72 , 4[. We

illustrate the triangulation of the interval ]0, 1
2 [. During the time interval ]0, 1

2 [, the
triangulation will always look like the one shown in Part (A) of Figure 6.7. Hence,
O2 will not change, and O1 will be partitioned into seven triangles. The top one
will not change, so the atomic object (((0, 2), (1, −1

2 ), (1, 1
2 )), ]0, 1

2 [, Id) will be part
of the output. For the others, we have to compute the time-dependent intersections
between the carriers and afterwards apply the formula from Lemma 5.8 of Chapter 5.
We illustrate this for O2. the snapshot of O2 at the middle point 1

4 of ]0, 1
2 [ is the

triangle with corner points (−11
4 , 1), (−3

4 , 1) and (−7
4 , 3). Its time-dependent corner

points are (−3 + t, 1), (−1 + t, 1) and (−2 + t, 3). Solving the matrix equation
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gives the transformation function f ′ that maps triples (x, y, t) to pairs (x− 1
4 + t, y).

⊓⊔

We also give the output complexity and time complexity for this triangulation
step.

Property 6.3.4 (Triangulation step: output complexity). Given a geometric
object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of
n atomic objects and a finite partition χ of its time domain into k time points and
k − 1 open intervals. The procedure Triangulation, as described in Algorithm 5,
returns O(n2k) atomic objects.

Proof. The number of atomic objects returned by the triangulation procedure for
one time interval is the same as the number of triangles returned by the spatial
triangulation method on a snapshot in that interval. We know from Property 6.2.2
that the number of triangles in the triangulation of a snapshot composed from n
triangles is O(n2). Since their are O(k) moments and intervals for which we have to
consider such a triangulation, or a slightly adapted version of it, this gives O(n2k). ⊓⊔

Property 6.3.5 (Triangulation step: computational complexity). Given a
geometric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}
consisting of n atomic objects and a finite partition χ of its time domain into k time
points and k − 1 open intervals. Let d be the maximal degree of any polynomial
in the definition of the transformation functions fi, 1 ≤ i ≤ n and let ǫ be the
desired precision for computing the zeros of polynomials. The procedure Partition,
as described in Algorithm 4, returns a spatio-temporal triangulation of O in time
O(kz(d, ǫ)n2 log n).
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Proof. The first for-loop of Algorithm 5 is executed k times. The time needed for
computing the snapshot of one atomic object at a certain time moment is z(d, ǫ). The
spatial triangulation algorithm TS runs in time O(n2 log n), as was shown in Prop-
erty 6.2.3. So we can conclude that the body of the first for-loop needs O(n2 log n+
nz(d, ǫ)) time. Sorting the atomic objects by their time domains takes O(n log n).

The second for loop is executed once for each open interval, defined by two con-
secutive elements of χ. In the body of this loop, first the list SActive is updated. Each
insertion or update takes time z(d, ǫ). At most all objects are in the list SActive, so
this part, described in the Lines 10 through 18 of Algorithm 5, needs time O(nz(d, ǫ)).
The next part, described in the Lines 19 through 29 essentially is the spatial trian-
gulation algorithm, but, any time the intersection between two line segments is com-
puted, also the rational functions defining the time-dependent intersection of their
associated time-dependent line segments are computed. Computing those functions
takes time z(d, ǫ). So the second part of the body of the second for loop requires
O(z(d, ǫ)n2 log n).

If we add up the time complexity of two for-loops and the sorting step, we have
O(k(nz(d, ǫ)+n2 log n)+n log n+kz(d, ǫ)(n+n2 log n)), which is O(kz(d, ǫ)n2 log n).

⊓⊔

6.3.3 The Merge Step.

We already mentioned briefly in the description of the partitioning step that the
partition of the time domain, as computed by Algorithm 4, might be finer than
necessary. The partitioning algorithm takes into account all line segments, also those
of objects that, during some time span, are entirely overlapped by other objects. To
solve this, we merge as much elements of the time partition as possible.

The partition of the time domain is such that the merging algorithm will either try
to merge a time point τ and an interval of the type ]τ, τ ′) or (τ ′, τ [, or two different
intervals of the type (τ ′′, τ ] and ]τ, τ ′) or (τ ′′, τ [ and [τ, τ ′). Here, ( and ) can be either
[ or ].

The simplest case is when a time moment and an interval have to be tested.
Assume that these are (τ ′, τ [ and τ , respectively. These elements can be merged if
there is a one to one mapping M from the atomic elements with time domain (τ ′, τ [ to
those with time domain {τ} in the triangulation. Furthermore, for each pair of atomic
objects O1 = (S1, (τ

′, τ [, f1) and O2 = (S2, {τ}, Id), O2 = M(O1) if and only if the
left limit limt→τ f1(S1, t) = S2. Note that, for rational functions f of t, limt→τ f(t)
equals f(τ), provided that τ is in the domain of f 3.

When two intervals are to be merged, the procedure involves some more tests. Let
(τ ′′, τ [ and [τ, τ ′) be the intervals to be tested. First, we have to verify that for each
atomic object O1 = (S1, (τ

′′, τ [, f1), [τ, τ ′) is in the domain of f1 and that for each
atomic object O2 = (S2, [τ, τ

′), f2), (τ ′′, τ [ is in the domain of f2. Second, we have
to test whether (τ ′′, τ [ can be continuously expanded to (τ ′′, τ ]. This involves the
same tests as for the simple case where an interval and a point are tested. Finally,
two atomic object can only be merged if the combined atomic object again is an

3Note that τ is in the domain of f only if all coefficients of the transformation function f are
well-defined for t = τ and if the determinant of f is nonzero for t = τ .
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element of the class 〈STr, FRat
Aff 〉. This means that, if S2 would have been chosen

as a reference object for O1, then f1 would be equal to f2, and vice versa. Using
Lemma 5.8 of Chapter 5, this can be tested.

This merge step guarantees that the atomic objects exist maximally and that
the resulting triangulation is the same for geometric objects that represent the same
spatio-temporal object. Algorithm 6 shows this merging step in detail.

We illustrate Algorithm 6 on the geometric object of Example 6.10.

Example 6.14. Recall from Example 6.10 that O = {O1,O2}, where O1 is given as
(((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f)
and f is the element of FRat

Aff mapping triples (x, y, t) to pairs (x+ t, y).
From Example 6.12, we recall that the output of the procedure partition on input

O was the list χ = (0, 1
2 ,

3
2 ,

5
2 ,

7
2 , 4). This resulted in a partition of the interval [0, 4]

consisting of the elements {0}, ]0, 1
2 [, { 1

2}, ]12 ,
3
2 [, { 3

2}, ]32 ,
5
2 [, { 5

2}, ]52 ,
7
2 [, { 7

2}, ]72 , 4[
and {4}. For each of these elements, (a snapshot of) their triangulation is shown in
Figure 6.7.

During the merge step, the elements t = 0 and ]0, 1
2 [ of the time partition will be

merged. ⊓⊔

It is straightforward that the output and input of the merging algorithm have the
same order of magnitude. Indeed, it is possible that no intervals are merged, and
hence no objects. We discuss the computational complexity of the algorithm next.
Note that the complexity is expressed in terms of the size of the input to the merging
algorithm, which is the output of the spatio-temporal triangulation step.

Property 6.3.6 (Merge step computational complexity). Given a geometric
object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}, which is the
output of the triangulation step, and a finite partition χ of its time domain into K
time moments and open intervals. Let d be the maximal degree of any polynomial in
the definition of the transformation functions fi(1 ≤ i ≤ n) and let ǫ be the desired
precision for computing the zeros of polynomials. The procedure Merge, as described
in Algorithm 6, merges the atomic objects in O in time O(n log n

K
+ nz(d, ǫ)).

Proof. Sorting all atomic objects by their time domains can be done in time
O(n log n). Computing the list χ′ can be straightforwardly done in time O(K). This
list will contain 2K − 1 elements. We assume that K > 1 (in case K = 1 the merging
algorithm is not applied). The while-loop starting at Line 4 of Algorithm 6, is exe-
cuted at most 2K − 2 times. Indeed, at each execution of the body of the while-loop,
one new element of χ′ is considered. The if-else structure in the body of the while-
loop distinguishes three cases. All cases have the same time complexity, as they are
analogous. We explain the first case in detail.

The number of atomic objects having the same time domain is of the order of mag-
nitude of O( n

K
). This follows from Property 6.3.4. The preprocessing of the snapshot

takes O( n
K

) time [22]. The for-loop, starting at Line 9 of Algorithm 6 is executed
at most O( n

K
) times. The time needed for checking whether an atomic object exists

at some time moment and computing the snapshot (a triangle) is z(d, ǫ). Because
of the preprocessing on the snapshot at time moment J1, testing the barycenter of
the triangle against that snapshot can be done in O(log n

K
) time [22]. In case the
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Algorithm 6 Merge (Input: O = {O1, ...,On}, χ = {τ1, τ2, . . . , τk}, Output:
{O′

1,O
′
2, . . . ,O

′
ℓ}

1: Sort all atomic objects Oi by their time domains.
2: Let χ′ be the list (τ1, ]τ1, τ2[, τ2, . . . , ]τk−1, τk[, τk).
3: Let J1 be the first element of χ′ and J2 the second.
4: while there are any elements in χ′ left do
5: S1 (resp. S2) is the set of all objects having J1 (resp. J2) as their time domain.
6: if J1 is a point then
7: Preprocess the reference objects of the elements of S1 such that we can search

the planar subdivision U1 they define.
8: let Found be true.
9: for all objects Oi = (Si, J2, fi) in S2 do

10: Check whether J1 is part of the time domain of fi.
11: Compute their snapshot at time J1 (which is a triangle T).
12: Do a point location query with the center of mass of T in U1 and check

whether the triangle found in S1 has the same coordinates as T. If not,
Found becomes false.

13: if Found is false then
14: break;
15: end if
16: end for
17: if found is true then
18: remove all elements of S1 from O and extend the time domain of all ele-

ments of S2 to J1 ∪ J2.
19: J1 = J1 ∪ J2 and J2 is the next element of χ′ if any exists.
20: else
21: J1 = J2 and J2 is the next element of χ′, if any exists.
22: end if
23: else
24: if J2 is a point then
25: do the same as in the previous case, but switch the roles of J1 and J2.
26: else
27: Let J ′

1 be the element of {J1, J2} the form (τ ′′, τ [ and J ′
2 the one of the

form [τ, τ ′).
28: Check whether (τ ′′, τ [ and {τ} can be merged.
29: if this can be done then
30: Check for each pair of matching atomic objects whether their transfor-

mation functions are the same (using Lemma 5.8 of Chapter 5).
31: end if
32: end if
33: end if
34: end while
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Step Time complexity Output complexity

Partition O(z(d, ǫ)n3 log n) O(n3d)
Triangulate O(z(d, ǫ)dn5 log n) O(n5d)
Merge O(n5d(log n+ z(d, ǫ))) -

Overall O(z(d, ǫ)dn5 log n) -

Table 6.4: The output and time complexity of the various parts of Algorithm 7, when
the input is a geometric object of the class 〈STr,F

Rat
Aff 〉, composed of n atomic objects,

where the maximal degree of the polynomials describing the transformation functions
is d and the desired precision for computing the zeros of polynomials is ǫ.

snapshots are the same, adjusting the time domains of all atomic objects takes time
O( n

K
). Summarizing, the time complexity of the first case is O( n

K
log n

K
+ n

K
z(d, ǫ)).

Combining this with the fact that the while-loop is executed O(K) times, and
the time complexity of the first two steps of the algorithm, we get an overall time
complexity of O(n log n

K
+ nz(d, ǫ)). ⊓⊔

Finally, the spatio-temporal triangulation procedure TST combines the partition,
triangulation and merging step. Algorithm 7 combines all steps.

Algorithm 7 TST (Input: O = {O1, ...,On}, Output: {O′
1,O

′
2, . . . ,O

′
ℓ})

1: χ = Partition(O);
2: {O′′

1 ,O
′′
2 , . . . ,O

′′
m} = Triangulate(O, χ);

3: if χ has more than one element then
4: {O′

1,O
′
2, . . . ,O

′
ℓ} = Merge({O′′

1 ,O
′′
2 , . . . ,O

′′
m}, χ);

5: return {O′
1,O

′
2, . . . ,O

′
ℓ}.

6: else
7: return {O′′

1 ,O
′′
2 , . . . ,O

′′
m}.

8: end if

The following property follows from Property 6.3.2 and Property 6.3.4.

Property 6.3.7 (TST output complexity). Given a geometric object O = {O1 =
(S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects.
Let d be the maximal degree of any polynomial in the definition of the transformation
functions fi(1 ≤ i ≤ n). The spatio-temporal triangulation method TST , as described
in Algorithm 7, returns O(n5d) atomic objects.

The next property follows from Property 6.3.3, Property 6.3.5 and Property 6.3.6.
Table 6.4 summarizes the time complexity of the different steps.

Property 6.3.8 (TST computational complexity). Given a geometric object
O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n
atomic objects. Let d be the maximal degree of any polynomial in the definition
of the transformation functions fi(1 ≤ i ≤ n) and let ǫ be the desired precision for
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computing the zeros of polynomials. The spatio-temporal triangulation method TST ,
as described in Algorithm 7, returns a spatio-temporal triangulation of O in time
O(z(d, ǫ)dn5 log n).

We now show that Algorithm 7 describes an affine-invariant spatio-temporal tri-
angulation method. We remark first that the result of the procedure TST is a spatio-
temporal triangulation. Given a geometric object O. It is clear that each snapshot of
TST (O) is a spatial triangulation. Also, st(O) = st(TST (O)). This follows from the
fact that the time partition covers the whole time domain of O and that the method
TS produces a spatial triangulation.

Property 6.3.9 (TST is affine-invariant). The spatio-temporal triangulation meth-
od TST , described in Algorithm 7, is affine-invariant.

Proof. Recall Definition 6.2. A spatio-temporal triangulation method TST is called af-
fine invariant if and only if for any geometric objects {O1, . . . ,On} and {O′

1, . . . ,O
′
m}

for which for each moment τ0 in their time domains, there is an affinity ατ0 : R
2 → R

2

such that if ατ0({O1, . . . ,On}
τ0) = {O′

1, . . . ,O
′
m}τ0 , also ατ0(TST ({O1, . . . ,On})

τ0)
equals TST ({O′

1, . . . ,O
′
m})τ0 .

Let O = {O1, . . . ,On} and O′ = {O′
1, . . . ,O

′
m} be geometric objects for which for

each moment τ0 in their time domains, there is an affinity ατ0 : R
2 → R

2 such that
ατ0({O1, . . . ,On}

τ0) = {O′
1, . . . ,O

′
m}τ0 .

It follows from the construction of the spatio-temporal triangulation that TST ({O1,
. . . ,On})

τ0 equals TS({O1, . . . ,On}
τ0) and TST ({O′

1, . . . ,O
′
m})τ0 equals TS({O′

1, . . . ,
O′
n}
τ0). The property now follows from the affine-invariance of the spatial triangula-

tion method TS . ⊓⊔

The following corollary follows straightforwardly from Property 6.3.9:

Corollary 6.15. Let O = {O1, . . . ,On} and O′ = {O′
1, . . . ,O

′
m} be two geometric

objects such that there is an affinity α : R
2 → R

2 such that, for each moment τ0 in
their time domains α(Oτ0) = O′τ0 holds. Then, for each atomic element (S, I, f) of
TST (O), the element (α(S), I, f) belongs to TST (O′).

This shows that the partition is independent of the coordinate system used to
represent the spatio-temporal object. The affine partitions of two spatio-temporal
objects that are affine images of each other only differ in the coordinates of the
spatial reference objects of the atomic objects.





7
Triangle-based
Spatio-temporal Query
Languages

In this chapter, we study affine-generic first-order logic queries, applied to databases
consisting of (spatio-temporal) triangles, instead of n-dimensional points (as in Chap-
ter 4) or real numbers (as in Chapter 3). When we were developing spatio-temporal
point languages, in Chapter 4, we could build on the previous work of Gyssens, Van
den Bussche and Van Gucht [42, 43] on spatial databases. Spatial triangle-based lan-
guages were not previously studied. After giving some definitions, we develop a spatial
triangle logic and then extend our results to the case of spatio-temporal triangles (i.e.,
triples of co-temporal points in (R2 × R).)

7.1 Notations

In this chapter, we introduce triangle variables and constants. We work in R
2. Spatial

triangle variables will be denoted △1,△2, . . .. Constants containing such triples of
points will be denoted T1, T2, . . ., or Tabc when we want to emphasize the relationship
between a triangle and its corner points a, b, c ∈ R

2. We remark that triangles can
be modelled as triples of points in R

2. Occasionally, we will need to refer to the area
of a triangle. As in the previous chapter, the area of a triangle T will be abbreviated
A(T).

We also introduce spatio-temporal triangles, which can be modelled as triples of
moving points in R

2. Variables referring to spatio-temporal triangles are distinguished
from spatial triangle variables by a superscript: △

st
1 ,△

st
2 , . . .. The same holds for

121
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constants, which are denoted T st1 , T
st
2 , T

st
pqr . . .. We will also define triangle databases.

For the spatial and spatio-temporal case respectively, we will use the symbols D and
Dst to indicate triangle database instances.

The names of (spatio-temporal) triangle relations and database schemas containing
such relation names will be recognizable by their hat: R̂, σ̂ and R̂st, σ̂st, respectively.
Spatial and spatio-temporal point relation names and schemas are denoted Ṙ and σ̇,
Ṙst and σ̇st, respectively.

7.2 Definitions

We start with the definition of a triangle database, i.e., a database that contains a
(possibly infinite) collection of triangles. We define both spatial triangle databases
and spatio-temporal triangle databases. We model triangles by triples of points of R

2,

i.e., by elements of (R2)
3
. Moving or changing (i.e., spatio-temporal) triangles are

modelled by sets of triples of co-temporal points in (R2 × R),i.e., by sets of elements
of (R2 × {τ0})

3, for some τ0 ∈ R. Triangles can degenerate, i.e., corner points are
allowed to coincide. For the remainder of this chapter, the term triangle refers to a
triple of points. We refer to the set of points that is represented by a triangle as the
drawing of that triangle.

Definition 7.1 (Drawing of a triangle). • Let △= (a1,a2,a3) ∈ (R2)
3

be a spatial
triangle. The drawing of △ is the subset of R

2 that is the convex closure of the points
a1, a2 and a3.

• Let △
st= (p1, p2, p3) ∈ (R2 × R)

3
be a spatio-temporal triangle. The drawing of △

st

is the subset of co-temporal points of (R2×R) that is the convex closure of the points
p1, p2 and p3.

In Chapter 3, the canonical bijection canST : (Rn × R)
k → R

(n+1)×k was intro-
duced , mapping k-tuples of (n+ 1)-dimensional vectors to ((n+ 1)× k)-dimensional

vectors of real numbers. We also define the bijection can : (Rn)
k → R

nk.

Here, we introduce the bijections cantr : ((R2)
3
)
k
→ (R2)

3k
, mapping k-tuples of

triangles to (3k) tuples of points in R
2 and cantrST : ((R2 × R)

3
)
k
→ (R2 × R)

3k
,

mapping k-tuples of spatio-temporal triangles to (3k)-tuples of points in (R2 × R).

Definition 7.2 (Triangle relations and databases). A (triangle) database schema
σ̂ is a finite set of relation names, where each relation name R̂ has a natural number
ar(R̂), called its arity, associated to it.

• A subset C of ((R2)
3
)
k

is a spatial triangle relation of arity k if

(i) its image under the canonical bijection can ◦ cantr : ((R2)
3
)
k
→ R

6k is a semi-
algebraic relation of arity 6k, and

(ii) for each element c = ((a1,1,a1,2,a1,3), (a2,1,a2,2,a2,3), . . . , (ak,1,ak,2,ak,3)) ∈
C, also the elements ((a1,j1,1 ,a1,j1,2 ,a1,j1,3), (a2,j2,1 ,a2,j2,2 ,a2,j2,3), . . . , (ak,jk,1 ,
ak,jk,2 ,ak,jk,3)) are in C, where σi(1, 2, 3) = (ji,1, ji,2, ji,3) with 1 ≤ i ≤ k and
σi ∈ S3 where S3 is the set of all permutations of {1, 2, 3}.
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Let σ̂ be a triangle database schema. A spatial triangle database over σ̂ in (R2)
3

is a structure D over σ̂ with domain (R2)
3

such that, for each relation name R̂ of σ̂,
the associated triangle relation R̂D in D is a spatial triangle relation of arity ar(R̂).

• A subset C of ((R2 × R)
3
)
k

is a spatio-temporal triangle relation of arity k if

(i) its image under the canonical bijection cantrST ◦ canST : ((R2 × R)
3
)
k
→ R

9k

is a semi-algebraic relation of arity 9k, and

(ii) for each element c = ((p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), . . . , (pk,1, pk,2, pk,3)) ∈ C,
also ((p1,j1,1 , p1,j1,2 , p1,j1,3), (p2,j2,1 , p2,j2,2 , p2,j2,3), . . . , (pk,jk,1 , pk,jk,2 , pk,jk,3)) are
in C, where σi(1, 2, 3) = (ji,1, ji,2, ji,3)(1 ≤ i ≤ k;σi ∈ S3). Here, S3 is the set of
all permutations of {1, 2, 3}.

Let σ̂st be a triangle database schema. A spatio-temporal triangle database over

σ̂st is a structure Dst over σ̂st with domain (R2 × R)
3

such that, for each relation

name R̂st of σ̂st, the associated triangle relation R̂stD
st

in Dst is a spatio-temporal
triangle relation of arity ar(R̂st).

We want to remark two things about the definition of triangle relations (as given
in Definition 7.2), one about the items (i) and one about the items (ii) of the definition
of triangle relations. They are discussed in Remark 7.3 below and Remark 7.6, which
is postponed until after the definition of triangle database queries.

Remark 7.3. A triangle database D over σ̂ in (R2)
3

can be viewed naturally as a
geometric database S over the schema σ̇, which has, for each relation name R̂ of σ̂,
a relation name Ṙ with arity 3 × ar(R̂). For each relation name R̂, of arity k, ṘS

is obtained from R̂D by applying the canonical bijection cantr : ((R2)
3
)
k
→ (R2)

3k
.

Analogously, a spatio-temporal triangle database Dst over σ̂st can be viewed naturally
as a spatio-temporal database ST over the schema σ̇st, which has, for each relation
name R̂st of σ̂st, a relation name Ṙst with arity 3 × ar(R̂st). For each relation name

R̂st, of arity k, ṘstST is obtained from R̂stD
st

by applying the canonical bijection

cantrST : ((R2 × R)
3
)
k
→ (R2 × R)

3k
.

Example 7.4. It follows from the definition of triangle relations that they can be fi-
nitely represented by polynomial constraints on the coordinates of their corner points.

For example, the unary spatial triangle relation containing all triangles with one
corner point on the x-axis, one on the y-axis and one on the diagonal y = x, can be
finitely represented as follows:

{(a1,a2,a3) = ((a1,x, a1,y), (a2,x, a2,y), (a3,x, a3,y)) ∈ (R2)
3

|

(a1,x = 0 ∧ a2,y = 0 ∧ a3,x = a3,y) ∨ (a1,x = 0 ∧ a3,y = 0 ∧ a2,x = a2,y)

∨ (a2,x = 0 ∧ a1,y = 0 ∧ a3,x = a3,y) ∨ (a2,x = 0 ∧ a3,y = 0 ∧ a1,x = a1,y)

∨ (a3,x = 0 ∧ a2,y = 0 ∧ a1,x = a1,y) ∨ (a3,x = 0 ∧ a1,y = 0 ∧ a2,x = a2,y)}.
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Figure 7.1: Some elements of the relation represented in Example 7.4.

Figure 7.1 gives some elements of this relation. Each triangle that is drawn is
stored three times in the relation.

⊓⊔

We now define spatial and spatio-temporal triangle database queries.

Definition 7.5 (Triangle database queries). • Let σ̂ be a triangle database
schema and let us consider input spatial triangle databases over σ̂. A k-ary spa-
tial triangle database query Q over σ̂ is a computable partial mapping (in the sense
of Remark 3.5) from the set of spatial triangle databases over σ̂ to the set of k-ary
spatial triangle relations.

• Let σ̂st be a database schema and let us consider input spatio-temporal tri-
angle databases over σ̂st. A k-ary spatio-temporal triangle database query Q over
σ̂st is a computable partial mapping (in the sense of Remark 3.5) from the set of
spatio-temporal triangle databases over σ̂st to the set of k-ary spatio-temporal trian-
gle relations.

Remark 7.6. In the (ii)-items of the definition of triangle relations, we require that,
if a triangle T is involved in a relation, that also all other triangles with the same
drawing are stored in that relation. The reason for this is that we do not want
the triangle queries to be dependent of the actual order and orientation used when
enumerating the corner points of a triangle. When emphasizing property (ii) of a
relation, we will call it consistency and talk about consistent triangle relations. Also,
a database is said to be consistent, if all its relations are consistent.

We illustrate the consistency property with some examples:

Example 7.7. Let σ̂ = {R̂} be a database schema. First, we list some queries over
σ̂ that are not consistent:

• Q6: Give all triangles in R̂ for which their first and second corner points coincide.

• Q7: Give all triangles for which the segment defined by their first and second corner
point is a boundary segment of one of the triangles in R̂.

Now some consistent queries follow:
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• Q8: Give all triangles in R̂ that are degenerated into a line segment.

• Q9: Give all triangles that share a boundary segment with some triangle in R̂.
It is clear that the inconsistent queries are rather artificial. When a user specifies

the triangles that should be in the result of a query, she intuitively thinks of the
drawings of those triangles. The order of the corner points used in the construction
of those triangles should not be important. ⊓⊔

In Chapter 3 we remarked that spatial and spatio-temporal database queries
could be naturally interpreted as constraint queries. Analogously, spatial and spatio-
temporal triangle database queries can be seen as constraint queries, and as spatial
and spatio-temporal (point) database queries. We prefer the latter view, as we already
developed affine-generic spatio-temporal point languages in Chapter 4, and there al-
ready exist affine-generic spatial point languages, as we described in Chapter 3. We
define the equivalence between triangle queries and point queries formally:

Definition 7.8 (Equivalence of point queries and triangle queries). • Let σ̂ be
a triangle database schema and let us consider input spatial triangle databases over
σ̂. Let σ̇ be the corresponding spatial point database schema (see Remark 7.3). Let
Q̂ be a k-ary spatial triangle database query over σ̂ and let Q̇ be a (3k)-ary spatial
(point) database query over σ̇. We say that Q̂ and Q̇ are equivalent, denoted Q̂ ≡△ Q̇
if for every database D over σ̂ we have

cantr(Q̂(D)) = Q̇(cantr(D)).

• Let σ̂st be a triangle database schema and let us consider input spatio-temporal
triangle databases over σ̂st. Let σ̇st be the corresponding spatio-temporal point data-
base schema (see Remark 7.3). Let Q̂ be a k-ary spatio-temporal triangle database
query over σ̂st and let Q̇ be a (3k)-ary spatio-temporal (point) database query over
σ̇st. We say that Q̂ and Q̇ are equivalent, denoted Q̂ ≡△ Q̇, if for every database Dst

over σ̂st we have

cantrST (Q̂(Dst)) = Q̇(cantrST (Dst)).

Since we have defined equivalence between triangle database queries and point
database queries, we can now discuss how the point languages FO({Between(2)}) and
FO({BetweenCotemp,Before,EqCrST }) can be used to query triangle databases.
We have to keep in mind that only spatial and spatio-temporal (point) databases can
be considered that are the image under the bijections cantr and cantrST of spatial
and spatio-temporal triangle databases.

Definition 7.9 (FO({Between}) as a triangle query language). • Let σ̂ =
{R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let Ṙi be the corresponding
spatial point relation names of arity 3 × ar(R̂i), for i = 1 . . .m, and let σ̇ be the
spatial database schema {Ṙ1, Ṙ2, . . . , Ṙm}.

Let ϕ(x1,1,x1,2,x1,3,x2,1,x2,2,x2,3, . . . ,xk,1,xk,2,xk,3) be a FO({Between}) -

formula, expressing a spatial (3k)-ary query Q̇ which is equivalent to a k-ary spa-
tial triangle query Q̂. For each input spatial triangle database D over σ̂, Q̂(D) is

defined as the set of points (a1,1,a1,2,a1,3,a2,1,a2,2,a2,3, . . . ,ak,1,ak,2,ak,3) in (R6)
k
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such that

(R2,=,Between(2), ṘS
1 , Ṙ

S
2 , . . . , Ṙ

S
m) |=

ϕ[a1,1,a1,2,a1,3,a2,1,a2,2,a2,3, . . . ,ak,1,ak,2,ak,3].

Here, S is the image of D under the canonical bijection cantr.
• Let σ̂st = {R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a spatio-temporal triangle database schema. Let

Ṙsti (1 ≤ i ≤ m) be the corresponding spatio-temporal point relation names of arity

3 × ar(R̂sti ) and let σ̇st be the spatio-temporal database schema {Ṙst1 , Ṙ
st
2 , . . . , Ṙ

st
m}.

Let ϕ(u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, . . . , uk,1, uk,2, uk,3) be a FO({Between}) -for-

mula, expressing a spatio-temporal (3k)-ary query Q̇ which is equivalent to a k-ary
spatial triangle query Q̂. For each input spatio-temporal triangle database Dst over
σ̂st, Q̂(Dst) is defined as the set of points (p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2,

pk,3) of (R9)
k

such that

(((R2 × R)),=,BetweenCotemp,Before,EqCrST , ṘstD
st

1 , ṘstD
st

2 , . . . , ṘstD
st

m ) |=

ϕ[p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3].

Here, ST is the image of Dst under the canonical bijection cantrST .

The languages FO({Between(2)}, σ̇) and FO({Between,Before,EqCrST }, σ̇st)
were designed to formulate queries on spatial and spatio-temporal point databases
over some input schema σ̇, resp. σ̇st. Using those languages to query triangle data-
bases, involves expressing relations between the point sets that compose the triangles.
This is a rather indirect way of expressing triangle relations. In the spirit of Chapter 4,
we now construct affine-generic query languages based on triangle variables. As they
directly express relations between the triangles, this results in a more intuitive way
of querying spatial and spatio-temporal triangle databases. We define triangle-based
logics next. Afterwards, we propose a specific spatial triangle logic in Section 7.3, and
a spatio-temporal triangle logic in Section 7.4.

Definition 7.10 (Triangle logics). • Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle data-
base schema and let ∆ be a set of predicates of a certain arity over triangles in R

2.
The first-order logic over σ̂ and ∆, denoted by FO(∆, σ̂), can be used as a spatial
triangle query language when variables are interpreted to range over triangles in R

2.
The atomic formulas in FO(∆, σ̂) are equality constraints on triangle variables, the
predicates of ∆, and the relation names R̂1, R̂2, . . . , R̂m from σ̂, applied to triangle
variables.
• Let σ̂st = {R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a database schema and let ∆ be a set of predi-

cates of a certain arity over spatio-temporal triangles in (R2 × R). The first-order
logic over σ̂st and ∆, denoted by FO(∆, σ̂st), can be used as a spatio-temporal tri-
angle query language when variables are interpreted to range over spatio-temporal
triangles in (R2 × R). The atomic formulas in FO(∆, σ̂st) are equality constraints
on spatio-temporal triangle variables, the predicates of ∆, and the relation names
R̂st1 , R̂

st
2 , . . . , R̂

st
m from σ̂st, applied to spatio-temporal triangle variables.

A FO(∆, σ̂)-formula ϕ(△1,△2, . . . ,△k) (resp., FO(∆, σ̂st)-formula ϕ(△st1 ,△
st
2

, . . . ,△stk )) defines for each spatial (resp., spatio-temporal) database D (resp., Dst)
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over σ̂ (resp. σ̂st) a subset ϕ(D) (resp., ϕ(Dst)) of ((R2)
3
)
k

(resp., ((R2 × R)
3
)
k
)

defined as

{(T1, T2, . . . , Tk) ∈ (R2)
3k

|

(R2,∆R
2

, R̂D
1 , R̂

D
2 , . . . , R̂

D
m) |= ϕ[T1, T2, . . . , Tk] },

respectively,

{(T st1 , T
st
2 , . . . , T

st
k ) ∈ (R2 × R)

3k
|

((R2 × R),∆(R2×R), R̂stD
st

1 , R̂stD
st

2 , . . . , R̂stD
st

m ) |= ϕ[T st1 , T
st
2 , . . . , T

st
k ] }.

Remark 7.11. We use the symbol =△ to indicate equality of triangle variables, as
opposed to equality of point variables. If it is clear from the context of a formula
which type of variables is used, we will omit the index.

In Section 7.3 (resp., Section 7.4), we will develop languages that have the same
expressive power as FO({Between}) and FO({BetweenCotemp,Before,EqCrST })
on spatial triangle databases and on spatio-temporal triangle databases, respectively.
We will prove this by showing both soundness and completeness of those trian-
gle languages with respect to FO({Between}) and FO({BetweenCotemp,Before,
EqCrST }). The concepts of soundness and completeness were introduced in Defini-
tion 4.12

7.3 Affine-invariant Spatial Triangle Queries

In this section, we propose a spatial triangle logic that captures exactly the class of
first-order affine-generic queries on spatial triangle databases. First, we remark the
following:

Remark 7.12. We defined a triangle database as a special type of geometric data-
base. Accordingly, we take the affine image of a triangle for affinities of R

2, and not
of R

6. This corresponds to our intuition. One triangle is an affine image of another
triangle, if the drawing of the first one is the affine image of the drawing of the second
one. Hence, the affine image of a triangle with corner points x1, x2 and x3 under
some affinity α of the plane, is the triangle with corner points α(x1), α(x2) and α(x3).

We introduce one binary triangle predicate, i.e., PartOf. Intuitively, when applied
to two triangles, this predicate expresses that the drawing of the first triangle is a

subset (⊆) of the drawing of the second triangle. We only consider (R2)
3

as the
underlying domain. We show that the triangle predicate PartOf allows a natural
extension to higher dimensions and other types of objects (instead of triangles).

We define the predicate PartOf and equality on triangles more precisely:

Definition 7.13 (The triangle predicate PartOf). Let T1 = (a1,1,a1,2,a1,3) and
T2 = (a2,1,a2,2,a2,3) be two triangles. The binary predicate PartOf, applied to T1

and T2 expresses that the convex closure of the three points a1,1, a1,2 and a1,3 is a
subset of the convex closure of the three points a2,1, a2,2 and a2,3.
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a1 a2

a3

c1
c2

c3 b3

b1 b2

Figure 7.2: An illustration of the predicate PartOf. Let T1 = (a1,a2,a3), T2 =
(b1,b2,b3) and T3 = (c1, c2, c3) The expressions PartOf(T2, T1) and PartOf(T3, T1)
are true, the expression PartOf(T3, T2) is not true.

Figure 7.2 illustrates the predicate PartOf.
We also define triangle-equality, which differs from the standard meaning of equal-

ity.

Definition 7.14 (Equality of triangles). Let T1 and T2 be two triangles. The
expression T1 =△ T2 is true iff both PartOf(T1, T2) and PartOf(T2, T1) are tue.

From now on, in the remainder of this section, we will assume that

∆ = {PartOf}.

Before analyzing the expressiveness of the language FO(∆), we prove that the
FO(∆)-queries are well-defined on consistent triangle databases. More concretely,
given a triangle database schema σ̂, we prove that the result of a k-ary FO(∆, σ̂)
query on a consistent input database over σ̂ is a consistent triangle relation of arity
k.

Lemma 7.15 (FO(∆) is well-defined). Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial
triangle database schema. Let D be a consistent spatial triangle database over σ̂. For
each FO(∆, σ̂)-query Q̂, Q̂(D) is a consistent triangle relation.

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let D be a
consistent spatial triangle database over σ̂.

We prove this lemma by induction on the structure of FO(∆, σ̂)-queries. The
atomic formulas of FO(∆) are equality expressions on triangle variables, expressions
of the form PartOf(△1,△2), and expressions of the form R̂i(△1,△2, . . . ,△ar(R̂i)),

where R̂i(1 ≤ i ≤ m) is a relation name from σ̂. More complex formulas can be
constructed using the Boolean operators ∧, ∨ and ¬ and existential quantification.

For the atomic formulas, it is easy to see that, if two triangles T1 and T2 sat-
isfy the conditions T1 =△ T2 or PartOf(T1, T2), that also T ′

1 =△ T ′
2 respectively
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PartOf(T ′
1, T

′
2) are true iff T1 =△ T

′
1 and T2 =△ T

′
2 are true. As we assume the input

database D to be consistent, the atomic formulas of the type R̂i(△1,△2, . . . ,△ar(R̂i)),

where (1 ≤ i ≤ m), trivially return consistent triangle relations.

Now we have to prove that the composed formulas always return consistent triangle
relations. Let ϕ̂ and ψ̂ be two formulas in FO(∆, σ̂), of arity kϕ and kψ respectively,

already defining consistent triangle relations. Then, the formula (ϕ̂∧ψ̂) (resp., (ϕ̂∨ψ̂))
also defines a triangle relation. This follows from the fact that the free variables of
(ϕ̂ ∧ ψ̂) (resp., (ϕ̂ ∨ ψ̂)) are free variables in ϕ̂ or ψ̂. The universe of all triangles is
trivially consistent. If a consistent subset is removed from this universe, the remaining
part is still consistent. Therefor, ¬ϕ̂ is well-defined. Finally, because consistency is
defined argument-wise, the projection ∃T1 ϕ̂(T1, T2, . . . , Tkϕ) is consistent. ⊓⊔

After proving that the language FO(∆) is well-defined, we can analyze its expres-
siveness.

7.3.1 Expressiveness of FO(∆)

We now determine the expressiveness of the language FO(∆). We prove that it
is sound and complete for the affine-invariant fragment of first-order logic over the
reals, on triangle databases. We prove this by comparing the languages FO(∆) and

FO({Between(2)}). From Chapter 3, we already know that FO({Between}) is
sound and complete for the affine-invariant fragment of first-order logic over the reals,
on spatial point databases.

The soundness and completeness of the query language FO(∆) with respect to

the language FO({Between(2)}) is proved using two separate lemmas (Lemma 7.16
and Lemma 7.17). In both lemmas, formulas are translated from one language in

the other, by using induction on the structure of FO(∆) and FO({Between(2)})-
formulas, respectively. This proof technique will be used several times in this chapter.
Therefor, we explain the first such proofs in detail. Later on, we will only develop the
crucial points in similar proofs.

Lemma 7.16 (soundness of FO(∆)with respect to FO({Between(2)})). Let σ̂ =
{R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let Ṙi be the corresponding
spatial point relation names of arity 3 × ar(R̂i), for (1 ≤ i ≤ m), and let σ̇ be the
spatial database schema {Ṙ1, Ṙ2, . . . , Ṙm}. Every FO(∆, σ̂)-expressible query can be

expressed equivalently in FO({Between(2)}, σ̇).

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let Ṙi be
the corresponding spatial point relation names of arity 3×ar(R̂i), for (1 ≤ i ≤ m), and
let σ̇ be the corresponding spatial database schema {Ṙ1, Ṙ2, . . . , Ṙm}. We translate

each formula of FO(∆, σ̂) into an equivalent formula in FO({Between(2)}, σ̇). We
do this by induction on the structure of FO(∆, σ̂)-formulas.

First, we translate the variables of ϕ̂. Each triangle variable △ is naturally trans-
lated into three spatial point variables x1, x2 and x3. We allow one or more of the
corner points of a triangle to coincide, so there are no further restrictions on the
variables xj , 1 ≤ j ≤ 3.
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The atomic formulas of FO(∆, σ̂) are equality expressions on triangle variables,
expressions of the form PartOf(△1,△2), and expressions of the form R̂i(△1,△2, . . . ,
△k), where k = ar(R̂i) and 1 ≤ i ≤ m. More complex formulas can be constructed
using the Boolean operators ∧, ∨ and ¬ and existential quantification.

The translation of atomic formulas.

We first show that all atomic formulas of FO(∆, σ̂) can be expressed in the language
FO({Between}, σ̇) .

(i) The translation of (△1=△2), where T1 is translated into x1,1, x1,2 and x1,3 and
T2 is translated into x2,1, x2,2 and x2,3, equalsLet T st1 = (p1,1, p1,2, p1,3) and
T st2 = (p2,1, p2,2, p2,3) be two triangle snapshots. The binary predicate PartOf,
applied to T st1 and T st2 expresses that p1,1, p1,2 and p1,3 (resp., p2,1, p2,2 and p2,3)
are co-temporal and that the convex closure of the three points p1,1, p1,2 and
p1,3 is a subset of the convex closure of the three points p2,1, p2,2 and p2,3. ⊓⊔

∨

σ(1,2,3)=(j1,j2,j3),σ∈S3

(x1,1 = x2,j1 ∧ x1,2 = x2,j2 ∧ x1,3 = x2,j3),

where S3 is the set of all permutations of {1, 2, 3}.

The correctness of this translation follows trivially from the definition of triangle
equality (see Definition 7.14).

(ii) The translation of PartOf(△1,△2), where T1 is translated into x1,1, x1,2 and
x1,3 and T2 is translated into x2,1, x2,2 and x2,3, is

3
∧

i=1

InTriangle(x1,i,x2,1,x2,2,x2,3),

where the definition of InTriangle is:

InTriangle(x,x1,x2,x3) :=

∃x4(Between(2)(x1,x4,x2) ∧ Between(2)(x4,x,x3)).

Figure 7.3 illustrates the corresponding geometric construction.

The correctness of this translation follows from the definition of the predicate
PartOf (see Definition 7.13).

(iii) The translation of R̂i(△1,△2, . . . ,△k), where Ti is translated into xi,1, xi,2 and
xi,3 for 1 ≤ i ≤ k, is

Ṙi(x1,1,x1,2,x1,3,x2,1,x2,2,x2,3, . . . ,xk,1,xk,2,xk,3).

The correctness of this translation follows from Definition 7.2 and Remark 7.3.
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a1

a2

a3

a4

a

Figure 7.3: An illustration of the predicate InTriangle. The expression
InTriangle(a,a1,a2,a3) is true because there exists a point a4 between a1 and a2

such that a lies between a4 and a3.

The translation of composed formulas.

Assume that we already correctly translated the FO(∆, σ̂)-formulas ϕ̂ and ψ̂ into the

FO({Between(2)}, σ̇)-formulas ϕ̇ and ψ̇. Suppose that the number of free variables in

ϕ̂ is kϕ and that of ψ̂ is kψ. Therefor, we can assume that, for each triangle database
D over the input schema σ̂, and for each kϕ-tuple of triangles (T1, T2, . . . , Tkϕ) given
as ((a1,1,a1,2,a1,3), (a2,1,a2,2,a2,3), . . . , (akϕ,1,akϕ,2,akϕ,3)) that

D |= ϕ̂(T1, T2, . . . , Tkϕ) if and only if

S |= ϕ̇(a1,1,a1,2,a1,3,a2,1,a2,2,a2,3, . . . ,akϕ,1,akϕ,2,akϕ,3)

is true when S is the spatial (point) database over the input schema σ̇, obtained from

D by applying the canonical bijection cantr between ((R2)
3
)
kϕ

and (R2)
3kϕ , on D.

For the formula ψ̂ the analog holds.

In the following, we omit the kϕ-tuples (resp., kψ-tuples) of triangles and 3kϕ-
tuples (resp., 3kψ-tuples) of points the formulas are applied on, to make the proofs
more readable.

(i) The translation of ϕ̂ ∧ ψ̂ is ϕ̇ ∧ ψ̇. Indeed,

S |= (ϕ̇ ∧ ψ̇)

iff. S |= ϕ̇ and S |= ψ̇

iff. D |= ϕ̂ and D |= ψ̂

iff. D |= (ϕ̂ ∧ ψ̂).

(ii) The translation of ϕ̂ ∨ ψ̂ is ϕ̇ ∨ ψ̇. Indeed,

S |= (ϕ̇ ∨ ψ̇)

iff. S |= ϕ̇ or S |= ψ̇

iff. D |= ϕ̂ or D |= ψ̂

iff. D |= (ϕ̂ ∨ ψ̂).

(iii) The translation of ¬ϕ̂ is ¬ϕ̇. Indeed,
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S |= ¬ϕ̇
iff. it is not true that S |= ϕ̇
iff. it is not true that D |= ϕ̂
iff. D |= ¬ϕ̂.

(iv) Assume that ϕ̂ has free variables △,△1, . . . ,△k and △ is translated into x1, x2,
x3 and △i is translated into xi,1, xi,2, xi,3. The translation of

∃ △ ϕ̂(△,△1,△2, . . . ,△k)

is ∃x1 ∃x2 ∃x3 ϕ̇(x1,x2,x3,x1,1,x1,2,x1,3, . . . ,xk,1,xk,2,xk,3).

Indeed,

S |=
∃x1 ∃x2 ∃x3 ϕ̇(x1,x2,x3)[a1,1,a1,2,a1,3, . . . ,ak,1,ak,2,ak,3]

iff. there exist points a1, a2, a3) in R
2 such that

S |= ϕ̇[a1,a2,a3,a1,1,a1,2,a1,3, . . . ,ak,1,ak,2,ak,3]
iff. there exists a triangle T such that D |= ϕ̂[T, T1, . . . , Tk], where

Ti is the triangle with corner points ai,1, ai,2 and ai,3 for 1 ≤ i ≤ k
iff. D |= ∃T ϕ̂(T)[T1, . . . , Tk].

To summarize, let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema.
Let σ̇ = {Ṙ1, Ṙ2, . . . , Ṙm} be the corresponding spatial point database schema.
Each formula ϕ̂ in FO(∆, σ̂), with free variables △1,△2, . . . ,△k can be translated

into a FO({Between(2)}, σ̇)-formula ϕ̇ with free variables x1,x2,x3,x1,1,x1,2,x1,3,
x2,1,x2,2,x2,3, . . . ,xk,1,xk,2,xk,3. This translation is such that, for all triangle data-
bases D over σ̂, D |= ϕ̂ iff. S |= ϕ̇. Here, S is the spatial point database over σ̇ which

is the image of D under the canonical bijection between ((R2)
3
)
k

and (R2)
3k

. This
completes the soundness proof. ⊓⊔

For completeness, we translate FO({Between(2)})-formulas into FO(∆)-formulas.

We again prove this by induction, this time on the structure of FO({Between(2)})-
formulas. This translation is not as straightforward as the translation in the other
direction, however.

Lemma 7.17 (Completeness of FO(∆) with respect to FO({Between}) ). Let
σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema and σ̇ be the correspond-

ing spatial database schema. Every FO({Between(2)}, σ̇)-expressible query can be
expressed equivalently in FO(∆, σ̂).

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema and σ̇ be
the corresponding spatial database schema. We have to prove that we can translate
every triangle database query, expressed in the language FO({Between(2)}, σ̇), into
a triangle database query in the language FO(∆, σ̂) over trangle databases.

We first show how we can simulate point variables by a degenerated triangle, and
any FO({Between(2)}, σ̇)-formula ϕ̇(x1,x2, . . . ,xk) by a formula ϕ(△1,△2, . . . ,△k),
where △1,△2, . . . ,△k represent triangles that are degenerated into points. We prove
this by induction on the structure of FO({Between(2)}, σ̇)-formulas. Initially, each
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Tp

Tr

Tq

Figure 7.4: Illustration of the translation of the predicate Between(2). The (degen-
erated) triangle Tq lies between the (degenerated) triangles Tp and Tr iff all triangles
that contain both Tp and Tr, also contain Tq.

FO({Between(2)}, σ̇)-formula ϕ̇(x1,x2, . . . ,xk) will be translated into a FO(∆, σ̂)-
formula ϕ̂(△1,△2, . . . ,△k) with the same number of free variables.

The translation of a point variable x is the triangle variable △, and we add the
condition Point(△) as a conjunct to the beginning of the translation of the formula.
The definition of Point(△) is

∀ △
′ (PartOf(△′,△) → (△=△

′)).

In the following, we always assume that such formulas Point(△) are already added
to the translation as a conjunct.

The translation of atomic formulas.

The atomic formulas of the language FO({Between(2)}, σ̇) are equality constraints

on point variables, formulas of the form Between(2)(x1,x2,x3), and formulas of the
type Ṙi(x1,x2, . . . ,xk), where k = 3 × ar(R̂i). We show that all of those can be
simulated into an equivalent FO(∆, σ̂) formula.

(i) The translation of (x1 = x2) is (△1=△△2).

(ii) The translation of Between(2)(x1,x2,x3), where △1, △2 and △3 (which as as-
sumed are already declared points) are the translations of x1, x2 and x3, re-
spectively, is expressed by saying that all triangles that contain both △1 and
△3 should also contain △2. It then follows from the convexity of triangles (or
line segments, in the degenerated case) that △2 lies on the line segment be-
tween △1 and △3. Figure 7.4 illustrates this principle. We now give the formula
translating Between(2)(x1,x2,x3):

∀ △4 ((PartOf(△1,△4) ∧ PartOf(△3,△4)) → PartOf(△2,△4)).

The correctness of this translation follows from the fact that triangles are convex
objects.
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(iii) Let Ṙj be a relation name from σ̇ = {Ṙ1, Ṙ2, . . . , Ṙm}. Let ar(R̂j) = k and

thus ar(Ṙj) = 3k, for 1 ≤ j ≤ m. The translation of Ṙj(x1,1,x1,2,x1,3,x2,1,
x2,2,x2,3, . . . ,xk,1,xk,2,xk,3) is:

∃ △1 ∃ △2 . . . ∃ △k (R̂j(△1,△2, . . . ,△k) ∧
k

∧

i=1

CornerP(△i,1,△i,2,△i,3,△i)).

The definition of CornerP is:

CornerP(△1,△2,△3,△) := ∀ △4 ((Point(△4) ∧ PartOf(△4,△))

→ Intriangle
△
(△4,△1,△2,△3)).

The predicate InTriangle
△

is the translation of the FO({Between(2)}) pred-
icate InTriangle as described in the proof of Lemma 7.16, into FO(∆). The

FO({Between(2)}) formula expressing InTriangle only uses Between(2). In
the previous item of this proof, we already showed how this can be translated
into FO(∆).

Given a (3k)-tuple of points (a1,1,a1,2,a1,3,a2,1,a2,2,a2,3, . . . ,aa,1,ak,2,ak,3) in
R

2. There will be (6k) k-tuples of triangles (T1, T2, . . . , Tk) such that, for each
of the Ti, 1 ≤ i ≤ k, the condition CornerP(Ti,1, Ti,2, Ti,3, Ti) is true. There
will, however, only be one tuple of triangles that is the image of the (3k)-tuple
of points (a1,1,a1,2,a1,3,a2,1,a2,2,a2,3, . . . ,aa,1,ak,2,ak,3) under the inverse of
the canonical bijection cantr. Therefor, the simulation is correct.

The translation of composed formulas.

Now suppose that we already simulated the FO({Between(2)}, σ̇) formulas ϕ̇(x1,

x2, . . . ,xkϕ) and ψ̇(x1,x2, . . . ,xkψ ) into formulas ϕ̂ and ψ̂ in FO(∆, σ̂) with free
variables △1, △2, . . ., △kϕ and △

′
1, △

′
2, . . ., △

′
kψ

, respectively. We can hence assume

that, for each triangle database D over σ̂ and for each kϕ-tuple of triangles (T1,
T2, . . ., Tkϕ) = ((a1,a1,a1), (a2,a2,a2), . . . , (akϕ ,akϕ ,akϕ)), which are required to be
degenerated into points, that

D |= ϕ̂[T1, T2, . . . , Tkϕ ] iff. S |= ϕ̇[a1,a2, . . . ,akψ ].

For ψ̂ we have analogue conditions.
The composed formulas ϕ̇ ∧ ψ̇, ϕ̇ ∨ ψ̇, ¬ϕ̇ and ∃x ϕ̇, are translated into ϕ̂ ∧ ψ̂,

ϕ̂ ∨ ψ̂, ¬ϕ̂ and ∃ △ (ϕ̂), respectively if we assume that x is translated into △. The
correctness proofs for these translations are similar to the proofs in Lemma 7.16.
Therefor, we do not repeat them here. This concludes the proof of Lemma 7.17. ⊓⊔

Remark 7.18. So far, we showed that we can simulate any FO({Between(2)}, σ̇)
formula ϕ̇(x1,x2, . . . ,xk) by a formula ϕ′(△1,△2, . . . ,△k), where Point(△i) is true
for all △i (1 ≤ i ≤ k). If ϕ̇ expresses a k-ary triangle database query Q however (i.e.,
ϕ̇ has (3k) free variables), we can do better.
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Let ϕ̇ be the FO({Between(2)}, σ̇)-formula expressing a k-ary triangle database
query Q̂. The free variables of ϕ̇ are x1,1,x1,2,x1,3,x2,1,x2,2,x2,3, . . . ,xk,1,xk,2,xk,3.

We now construct the FO(∆, σ̂) formula ϕ̂ expressing the query Q̂ as follows:

ϕ̂(△1,△2, . . . ,△k) ≡

∃ △1,1 ∃ △1,2 ∃ △1,3 ∃ △2,1 ∃ △2,2 ∃ △2,3 . . . ∃ △k,1 ∃ △k,2 ∃ △k,3 (

k
∧

i=1

CornerP(△i,1,△i,2,△i,3,△i) ∧

ϕ̂′(△1,1,△1,2,△1,3,△2,1,△2,2,△2,3, . . . ,△k,1,△k,2,△k,3)),

For each triple of points, there are 6 different representations for the triangle
having those points as its corner points. Therefor, for each tuple returned by ϕ̂′, 6k

tuples will be returned by ϕ̂. But, we know that ϕ̇ is a well-defined triangle query.
This means that, for each (3k) tuple of points ((a1,1,a1,2,a1,3), (a2,1,a2,2,a2,3), . . . ,
(ak,1,ak,2,ak,3)) satisfying ϕ̇, also the tuples ((a1,j1,1 ,a1,j1,2 ,a1,j1,3), (a2,j2,1 ,a2,j2,2 ,
a2,j2,3), . . . , (ak,jk,1 ,ak,jk,2 ,ak,jk,3)), where σi(1, 2, 3) = (ji,1, ji,2, ji,3)(1 ≤ i ≤ k;σi ∈
S3) and S3 is the set of all permutations of {1, 2, 3}, satisfy ϕ̇. Therefor, ϕ̂ and ϕ̇ are
equivalent according to definition 7.8.

We now combine the soundness and completeness lemmas, and use them to prove
our main theorem for this section:

Theorem 7.19 (Expressiveness of FO(∆) ). Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a
spatial triangle database schema. Let Ri be the corresponding constraint relation
names of arity 6 × ar(R̂i), for 1 ≤ i ≤ m, and let σ be the spatial database schema
{R1, R2, . . . , Rm}. The language FO(∆, σ̂) is sound and complete for the affine-
generic FO(+, ×, <, 0, 1, σ)-queries on triangle databases.

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let Ṙi be
the corresponding spatial point relation names of arity 3×ar(R̂i), for 1 ≤ i ≤ m, and
let σ̇ be the spatial database schema {Ṙ1, Ṙ2, . . . , Ṙm}. Let Ri(1 ≤ i ≤ m) be the
corresponding constraint relation names of arity 6 × ar(R̂i) and let σ be the spatial
database schema {R1, R2, . . . , Rm}.

From Lemma 7.16 and Lemma 7.17, we can conclude that FO(∆, σ̂) is sound and

complete for the FO({Between(2)}, σ̇)-queries on triangle databases.

Gyssens, Van den Bussche and Van Gucht showed that FO({Between(2)}, σ̇) is
sound and complete for the affine-generic FO(+, ×, <, 0, 1, σ)-queries on geometric
databases [43].

From the definition of triangle databases, we know that they are geometric data-
bases. This concludes the proof. ⊓⊔

The following remark is important, we will come back to it at the end of this
section.

Remark 7.20. In the proofs of Lemma 7.16 and Lemma 7.17, we only use the
fact that triangles are convex objects having three corner points. We use no other
properties of triangles.
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The following corollary follows from the fact that FO({Between}, σ̇) +While
is sound and complete for the computable affine-generic queries on geometric data-
bases [43]. The language FO(∆, σ̂) + While is a language in which FO(∆, σ̂)-
definable relations can be created and which has a while-loop with FO(∆, σ̂) -definable
stop conditions.

Corollary 7.21 (Expressiveness of FO(∆, σ̂)+ While). Let σ̂ be a spatial tri-
angle database schema. The language FO(∆, σ̂)+ While is sound and complete for
the computable affine-generic queries on triangle databases.

We now give some examples of FO(∆, σ̂)-queries. We illustrate some geometrical
constructions in Example 7.22. Afterwards, we formulate queries on an example
spatial triangle database in Example 7.23.

Example 7.22. We illustrate how to express that two triangles are similar, i.e., each
side of the first triangle is parallel to a side of the second triangle. We denote the
formula expressing this by Sim.

We use the predicates ColSeg and ParSeg, expressing that two line segments are
collinear and parallel respectively, to simplify the expression for Sim.

ColSeg(△1,△2) := Seg(△1) ∧ Seg(△2)∧

∃ △3 (Seg(△3) ∧ PartOf(△1,△3) ∧ PartOf(△2,△3)).

Here, Seg(△1) is a shorthand for

∃ △4 ∃ △5 (Point(△4) ∧ Point(△5)∧

∀ △6 ((Point(△6) ∧ PartOf(△6,△1)) → (Between∆(△4,△6,△5)))).

The fact that two line segments are parallel is now defined as follows:

ParSeg(△1,△2) := Seg(△1) ∧ Seg(△2) ∧ ∀ △3 ∀ △4 (

(ColSeg(△1,△3) ∧ ColSeg(△2,△4)) →

¬∃ △5 (PartOf(△5,△3) ∧ PartOf(△5,△4))).

Now we can write the expression for Sim:

Sim(△1,△2) :=

∃ △1,1 ∃ △1,2 ∃ △1,3 ∃ △1,4 ∃ △1,5 ∃ △1,6 ∃ △2,1 ∃ △2,2 ∃ △2,3 ∃ △2,4 ∃ △2,5 ∃ △2,6 (
2

∧

i=1

(CornerP(△i,1,△i,2,△i,3,△i) ∧ CornerP(△i,1,△i,1,△i,2,△i,4)∧

CornerP(△i,2,△i,2,△i,3,△i,5) ∧ CornerP(△i,3,△i,3,△i,1,△i,6))∧
∨

σ(1,2,3)=(i1,i2,i3),σ∈S3

(ParSeg(△1,4,△2,(3+i1)) ∧ ParSeg(△1,5,△2,(3+i2))

∧ ParSeg(△1,6,△2,(3+i3)))),

where S3 is the set of all permutations of {1, 2, 3}.
⊓⊔
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We proceed with an example of a spatial database containing information about
butterflies, and some FO(∆)-queries that can be asked to such a database.

Example 7.23. Consider a triangle database D over the schema σ̂ = {ButterflyB,
P lantP,Rural} that contains information about butterflies and flowers. The unary
triangle relation ButterflyB contains all regions where some butterfly B is spotted.
The unary triangle relation PlantP contains all regions where some specific plant P
grows. We also have a unary triangle relation Rural, containing rural regions. It is
known in biology that each butterfly appears close to some specific plant, as cater-
pillars only eat the leaves of their favorite plant. Suppose that it is also investigated
that butterflies like to live in rural areas.

• Q10 : Are all butterflies B spotted in regions where the plant P grows? This query
can be used to see if it is possible that a butterfly was spotted in a certain region.
The query Q10() can be expressed by the formula

¬(∃ △1 ∃ △2 (ButterflyB(△1) ∧ RealTriangle(△2) ∧

PartOf(△2,△1) ∧ ¬(∃ △3 (PlantP (△3) ∧ PartOf(△2,△3))))).

Here, RealTriangle(△) is a shorthand for ¬Point(△) ∧ ¬Line(△).

• Q11 : Give the region(s) where we have to search if we want to see butterfly B. The
query Q11(△) can be expressed by the formula

∃ △2 ∃ △3 (PlantP (△2) ∧ Rural(△3) ∧ PartOf(△,△2) ∧ PartOf(△,△3)).

• Q12 : Give the region inside the convex hull of the search region for butterfly B. It
is much more convenient to search a convex region than having to deal with a very
irregularly shaped region.

We first express how to test whether the region is convex (Q′
12), this will help

understand the formula that computes the convex hull. The query Q′
12() can be

expressed by the formula

∀ △1 ∀ △2 ∀ △3 ∀ △4 ((
3

∧

i=1

Point(△i) ∧
3

∧

i=1

Q11(△i) ∧

CornerP(△1,△2,△3,△4)) ⇒ (Q11(△4))).

The expression

∃ △1 ∃ △2 ∃ △3 ∃ △4 ∃ △5 ∃ △6 (
3

∧

i=1

Point(△i) ∧

3
∧

i=1

PartOf(△i,△i+3) ∧
6

∧

i=4

Q11(△i) ∧ CornerP(△1,△2,△3,△))

hence defines the query Q12(△). For any three points in some triangles in Q11,
the triangle connecting them is added to Q12. Figure 7.5 illustrates this. ⊓⊔
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Figure 7.5: The convex hull of a set S of triangles is computed by adding all triangles
constructed from three points that are inside three triangles of S.

Remark 7.24. The first two queries of Example 7.23 ask for relations between re-
gions that can be expressed by the so-called 9-intersection model [24]. This model
defines a relation between two regions by investigating the intersections between their
boundaries, interiors and exteriors. As the boundary, interior and exterior of a region
can be expressed in FO(+, ×, <, 0, 1, σ), and are affine invariant concepts 1, all rela-
tions that can be expressed by the 9-intersection model, can be expressed in FO(∆,
σ̂).

We now reconsider Remark 7.20. In the proofs of Lemma 7.16 and Lemma 7.17,
we only used the fact that triangles are convex objects having three corner points. It
is not difficult to prove that the predicate PartOf can be generalized to a predicate
PartOf(n,k), which arguments are n-dimensional convex objects with k corner points
((n,k)-objects) and that the language FO({PartOf(n,k)}) is sound and complete for
the first-order affine-generic queries on (n, k)-objects.

In the context of this remark, we also want to refer to the work of Aiello and
van Benthem [3, 4] on modal logics of space. They first propose a topological modal
logic over regions, which can express “connectedness” and “parthood”. By adding
a “convexity” operator (expressed using a “betweenness” operator), they obtain an
affine modal logic. Essentially, we do the same, as triangles are convex and connected
sets, and we add the “parthood” operator PartOf.

In [4], the authors also motivate the use of finite unions of convex sets as basic
elements for spatial reasoning. They argue that it is a very natural way for people to
reason about objects. A fork, for example will be described as the union of its prongs
and its handle.

1To be exact, they are topological concepts. The affinities of the plane are a subgroup of the
homeomorphisms of the plane, so the invariance under the boundary and interior operations carry
over naturally.
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7.3.2 Safety of Triangle Database Queries

Triangle relations can represent infinite sets of triangles. In practice, however, spatial
databases will contain only finite sets of triangles. TheButterflyB andRural triangle
relations of Example 7.23, for instance, will be modelled in practice using a finite
number of triangles.

The question that arises naturally is whether the language FO(∆) returns a finite
set of triangles when the input relations represent finite sets of triangles. The answer
is “no” (see Example 7.25 below). In database theory this problem is usually referred
to as the safety problem. Safety of FO(+, ×, <, 0, 1)-queries is undecidable in
general [7], so we cannot decide a priori whether a triangle database query will return
a finite output or not.

The following example illustrates the fact that the language FO(∆) does not
necessarily return finite output on finite input.

Example 7.25. Let σ̂ = {R̂} be a spatial triangle database schema, with R̂ a triangle
relation containing a finite number of triangles. Consider the following spatial triangle
database queries:

• Q13 : Give all triangles that are part of some triangle of R̂.
The query Q13(△) is expressed in FO(∆, σ̂) by the formula

∃ △
′ (R̂(△′) ∧ PartOf(△,△′)).

• Q14 : Give all triangles that intersect some triangle of R̂. The query Q14(△)
can be expressed by the formula

∃ △
′ (R̂(△′) ∧ Intersect(△,△′)).

• Q15 : Give all the corner points of all triangles of R̂. The query Q15(△) can
be expressed by the formula

∃ △1 ∃ △1,2 ∃ △1,3 (R̂(△1) ∧ (CornerP(△,△1,2,△1,3,△1)

∨ CornerP(△1,2,△,△1,3,△1) ∨ CornerP(△1,2,△1,3,△,△1))).

The queries Q13 and Q14 return an infinite set of triangles. The query Q15 returns a
finite number of triangles on the condition that the input relation R̂ is finite. ⊓⊔

As we cannot decide whether a given triangle database query will return a finite
result, we turn to the question of determining whether the result of the query is finite
or not, after executing the query. The answer is affirmative:

Proposition 7.26 (Finiteness of triangle relations is decidable). It is decidable
whether a triangle relation consists of a finite number of triangles. Moreover, there
exists a FO(∆){R̂} query that decides whether the triangle relation named R̂ consists
of a finite number of triangles.

Proof. A triangle relation of arity k corresponds to a semi-algebraic set in R
6k. The

canonical bijection can ◦ cantr : ((R2)
3
)
k
→ R

6k establishes this correspondence. A
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triangle relation is finite if and only if the corresponding semi-algebraic set contains
a finite number of points (in R

(6k)). It is well known that there exists a FO(+, ×,
<, 0, 1)-formula deciding whether a semi-algebraic set contains a finite number of
points. Also, the fact that a triangle relation contains a finite number of k-tuples
of triangle is affine-invariant. From the fact that the property is affine-invariant and
expressible in FO(+, ×, <, 0, 1), it follows (from Theorem 7.19) that there is a a
FO(∆, {R̂})-formula expressing whether a triangle relation R̂ is finite or not. ⊓⊔

We now have a means of deciding whether a triangle relation is finite, but it seems
this requirement is too restrictive.

In Definition 7.1 in Section 7.2, we introduced the concept drawing of a triangle.
We now straightforwardly extend this definition to spatial triangle databases.

Definition 7.27 (Drawing of a triangle relation). Let R̂ be a triangle relation
of arity one. The drawing of R̂ is the two-dimensional figure that is the union of the
drawings of all triangles in R̂.

For the remainder of this text, we restrict triangle relations (and triangle database
queries) to be unary. It is not clear immediately if it would make sense to define
drawings on relations or queries with an arity greater than one. For example, consider
a binary relation containing only one tuple of line-adjacent non-degenerated triangles.
If we draw this relation, we would like to draw both triangles participating in the
relation. This gives the same result as the drawing of a unary relation containing two
tuples. So the drawing apparently “wipes out” the relationship between the triangles.

We also remark the following.

Remark 7.28. Different triangle relations can have the same drawing. Therefore,
it seems natural to extend the strict notion of finiteness of a triangle relation to
the existence of a finite triangle relation having the same drawing. Query Q1 from
Example 7.25, for instance, seems to be a query we would like to call “finite”, because
there exists a finite union of triangles with the same drawing. Indeed, the drawing of
the union of all triangles that are part of a given triangle, is the same as the drawing
of the given triangle itself. Query Q2 clearly returns an infinite set of triangles that
is cannot be represented as a finite union of triangles. This is the type of query we
don’t want to allow.

Fortunately, given the output of a unary query, we can determine whether its
drawing can be represented as a finite union of triangles.

Proposition 7.29 (Finite triangle representation). Let σ̂ be a spatial triangle
database schema. Given a unary triangle database query Q̂ that is expressible in
FO({PartOf}, σ̂) and a spatial triangle database D over σ̂, it is decidable whether
the unary relation, named R̂Q̂, containing Q̂(D) can be represented as a finite union

of triangles. Furthermore, there exists a FO(∆, σ̂′)-formula deciding this for σ̂′ =
σ̂ ∪ {R̂Q̂}.

Proof. It is clear that if the drawing of a triangle relation can be represented as a
finite union of triangles, it can be represented by a FO(+, ×, <, 0, 1)-formula using
only polynomials of degree at most one. A set that can be described using polynomials



7.3. Affine-invariant Spatial Triangle Queries 141

of at most degree one, is called a semi-linear set. It is well-known that the bounded
semi-linear sets are the same as finite unions of bounded polytopes (which triangles
are).

So, if we can check whether the drawing of a (possibly infinite) set of triangles is
bounded and can be represented using polynomials of degree at most one, we know
that the set can be represented by a finite number of triangles.

Checking whether the drawing of a triangle relation R̂ is bounded can be done
easily in FO({PartOf}){R̂}. The following formula performs this check.

IsBounded() := ∃ △1 ∀ △2 (R̂(△2) → PartOf(△2,△1)).

Also, we can decide whether a two-dimensional2 semi-algebraic set can be repre-
sented using polynomials of degree at most k, for any natural number k [52]. There
exists a FO(+, ×, <, 0, 1)-formula deciding this [52]. It is clear that the drawing of
a unary triangle relation is a semi-algebraic set.

From the facts that (i) computing the drawing of a triangle relation is an affine-
generic query that can be expressed in FO(+, ×, <, 0, 1) and that (ii) checking
whether a triangle relation has a bounded drawing can be expressed in FO({PartOf},
σ̂) and that (iii) there exists a FO(+, ×, <, 0, 1)-formula deciding whether the
drawing of a triangle relation can be expressed by polynomials of degree at most one
can be done in FO(+, ×, <, 0, 1) and, finally, that (iv) the fact that the drawing of
a triangle relation can be expressed by polynomials of degree at most one is affine-
invariant, we conclude that we can decide whether a triangle relation has a finite
representation, and that we can construct a FO({PartOf}, σ̂)-formula deciding this.

⊓⊔

We now show that, if the drawing of the output of a triangle database query is repre-
sentable as a finite set of triangles, we can compute such a finite triangle representation
in FO({PartOf}, σ̂).

In Chapter 6, we proposed an algorithm (Algorithm 3) that computes an affine
invariant triangulation of a set of triangles. Recall that this algorithm computes
the drawing of the input triangles, then partitions this drawing into a set of convex
polygons according to the carriers of its boundary segments and finally triangulates
convex polygons by connecting their center of mass to their corner points.

We assumed in Chapter 6 that the input set of triangles for Algorithm 3 was
finite. On an infinite collection of triangles for which there exists a finite collection
of triangles with the same drawing, this algorithm would work also correctly, how-
ever. The triangulation described by Algorithm 3 therefor seems a good candidate
for representing infinite sets of triangles by finite sets of triangles. But, in [44], we
conjectured that the triangulation described in Algorithm 3 cannot be expressed in
FO({PartOf}, {R̂}). The reason for this is the conjecture [49] that the center of
mass of a polygon, which is an affine-invariant, cannot be expressed in FO(+, ×, <,
0, 1), and therefore, also not in FO({PartOf}, {R̂}).

Conjecture 7.3.1 (Center of mass of a convex polygon not expressible in
FO(+, ×, <, 0, 1) ). [49] Let P = {a1,a2, . . . ,ak} be a set of corner points that

2Note that this is not true for arbitrary dimensions.
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represent a convex polygon. Assume that k > 3. The center of mass of the polygon
represented by P cannot be expressed in FO(+, ×, <, 0, 1).

Remark that the center of mass of an arbitrary set of points is not expressible in
FO(+, ×, <, 0, 1).

So, Algorithm 3 cannot be used. But, this algorithm computes a partition of the
input into triangles, which is not a requirement here. If we relax the requirement
of having a partition of the original figure into triangles down to having a finite
union of (possibly overlapping) triangles representing the figure, we can avoid the
computation of the center of mass. The adapted algorithm (Algorithm 8) is given
below. It is described at an higher level than the description of Algorithm 3, as we
are not interested in computational complexity here.

Algorithm 8 AfTr(S).

Require: S is a unary triangle relation that can be represented as a finite union of
triangles.

1: Compute the boundary BS of S. BS is a finite set of line segments and points.
2: Compute the set of carriers for all line segments of BS . Those carriers partition
S into a finite union of open convex polygons, points and open line segments. All
closures of line segments that do not form a side of one of the convex polygons,
together with all points that are not a corner point of one of the convex polygons
are returned as degenerated triangles. Remark that we can return the closures of
the line segments as S originally is a union of closed triangles, closed line segments
and points.

3: for each polygon do
4: output the finite set of triangles that connect three distinct corner points of the

polygon
5: end for

Given an unary triangle relation R̂, we denote the result of Algorithm 8 on input
R̂ by the affine finite triangle representation of R̂, or, abbreviated, AfTr(R̂). Now
we show that AfTr(R̂) can be computed in FO(Delta, R̂), provided that R̂ can be
represented as a finite union of triangles.

Proposition 7.30 (Affine finite triangle representation). Given a unary triangle
relation R̂ that can be represented as a finite union of triangles, then there exists an
FO(∆, {R̂})-formula returning AfTr(R̂).

Proof. We use the fact that all affine-generic semi-algebraic queries on triangle
databases can be expressed in FO(Delta, R̂). Therefor, we have to prove that, first,
the affine finite triangle representation is affine-invariant and, second, that the affine
finite representation is expressible in FO(+, ×, <, 0, 1).

The affine finite representation is an affine invariant.

We only have to prove this for Step 3 of Algorithm 8. The rest is shown in Prop-
erty 6.2.4 of Chapter 6.

Let {a1,a2, . . . ,ak} be the set of corner points of a convex polygon P , where k ≥ 3.
Let α be an affinity of the plane. The set {α(a1), α(a2), . . . , α(ak)} contains the corner
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points of the convex polygon α(P ). It is clear that, for each triangle (ah,ai,aj) (such
that h 6= i, i 6= j, h 6= j and 1 ≤ h, i, j ≤ k) connecting three corner points of P ,
the triangle α(ah,ai,aj) = (α(ah), α(ai), α(aj)) is an element of the set of triangles
connecting three corner points of α(P ).

The affine finite representation is computable in FO(+, ×, <, 0, 1).

In FO(+, ×, <, 0, 1), it is possible to compute the boundary of a semi-linear set
(Line 1 of Algorithm 8). It is also possible to compute the carriers of all boundary
line segments, and their intersection points (Line 2). It can be expressed that two
points belong to the same convex polygon, namely, by expressing that the line segment
in between them is not intersected by a carrier. Finally, the set of all triples of
intersection points between carriers that belong to the same convex polygon can be
computed in FO(+, ×, <, 0, 1) (Lines 3 through 5). From the fact that the triangle
representation is affine invariant and computable in FO(+, ×, <, 0, 1), it follows that
it is computable in FO(∆). ⊓⊔

This section on safety finishes the “spatial” part of this chapter. In the remaining
part, we develop a query language for spatio-temporal triangle databases.

7.4 Spatio-temporal Triangle Queries

In this section, we will extend the spatial triangle logic FO({PartOf}) to a logic over
spatio-temporal triangles, i.e., triples of co-temporal points in (R2×R). The genericity
classes we consider in this section, are the group (Ast,At) of time-dependent affinities,
the group (Vst,At) of velocity-preserving transformations and the group (ACst,At) of
acceleration-preserving transformations. The first group is a natural spatio-temporal
extension of the affinities of space. We also include the two other groups, because
they are very relevant from a practical point of view, and because the point languages
we previously identified as generic for those groups were not very intuitive.

Recall that At is the group of the affinities on the time line and that the elements
of Ast are of the form
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where the matrix of the αij(t) is an affinity for each value of t. The group
(ACst,At) is the subgroup of (Ast,At) in which the functions αij are constants and
the functions βij are linear functions of time. The group (Vst,At) is the subgroup of
(ACst,At) where the βij are constants too.

In Chapter 4, we proposed point languages capturing exactly those genericity
classes. Table 7.1 summarizes the point languages expressing all (Fst,Ft)-generic
queries, for the above groups (Fst,Ft). As we will always assume, in this section, that
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the underlying dimension is 2, we adapted the table accordingly. Now we propose
spatio-temporal point languages that have the same expressivity as the languages
listed in Table 7.1, but on spatio-temporal triangle databases.

(Fst, Tt) Set of point predicates Π(Fst, Tt)

(Ast,At) {BetweenCotemp,Before,EqCrST }

(ACst,At) {Between(2+1),Before}

(Vst,At) {Between(2+1),Before,EqSpace}

Table 7.1: The point logics FO(Π(Fst, Tt)) capturing the FO (Fst, Tt)-generic queries,
for the classes (Ast,At), (ACst,At) and (Vst,At).

We will start with the most general transformation group, the group (Ast,At) of
time-dependent affinities.

7.4.1 Predicates Invariant under Time-dependent Affinities

In this section, we propose a set of spatio-temporal triangle predicates such that the
spatio-temporal triangle logic with this predicate set, captures exactly the (Ast,At)-
generic queries on spatio-temporal triangle databases that are expressible in FO(+,
×, <, 0, 1). We can prove this by comparing the expressiveness of this spatio-
temporal triangle logic with the language FO({BetweenCotemp,Before,EqCrST }),
when used as a spatio-temporal triangle query language (see Definition 7.9). Recall
also that we will have to make sure that the result of a spatio-temporal triangle query
is a consistent spatio-temporal triangle relation.

The nature of the class (Ast,At) is such that (Ast,At)-generic queries can describe
snapshots of a spatio-temporal database in fairly much detail, i.e., all affine-invariant
properties of the snapshot can be expressed. In between snapshots, the expressive
power of (Ast,At)-generic queries is more limited. This follows directly from the
fact that an element of (Ast,At) transforms each snapshot with another affinity.
We now want to construct a (Ast,At)-generic query language for spatio-temporal
triangle databases. This means we will be able to describe a spatio-temporal triangle
database by means of its snapshots, which are collections of snapshots of spatio-
temporal triangles in (R2 × {τ0})

3, for some τ0 ∈ R. The basic objects for our new
language will be, accordingly, triples of co-temporal points. In this section, we will
call these triples of points triangle snapshots. Triangle snapshot variables will be
denoted △

st,△st1 ,△
st
2 , . . . and triangle snapshot constants by T st, T st1 , T

st
2 , . . .. If we

want to emphasize the connection between a triangle snapshot and its corner points,
we use the notation T stpqr.

In our search for a set of predicates on triangle snapshots for a (Ast,At)-generic
query language, or, a language with the same expressive power as the language
FO({BetweenCotemp,Before,EqCrST }) on spatio-temporal triangle databases, the
following observations are helpful.

(i) In Chapter 4, we showed that we need the binary predicate Before on points to
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reflect the monotonicity of time, which is preserved by the transformation group
(Ast,At).

(ii) The predicate BetweenCotemp is used to express affine-invariant properties of
co-temporal points.

(iii) In Section 7.3, we showed that the predicate PartOf has the same expressive
power as the predicate Between, on (spatial) triangles.

From observation (i) it follows that the query language we want to construct should
be able to express the order on triangle snapshots. We introduce the triangle snapshot
predicate Before△, which, when applied to two triangle snapshots, expresses that the
first one is strictly before or co-temporal with the second one. We will define this
more formally later.

From observation (ii) and (iii), we conclude that we can use, slightly adapted, the
predicate PartOf on co-temporal triangle snapshots, we will denote it PartOfCotemp.
This will allow us to express snapshots of spatio-temporal triangle databases in an
affine-invariant way. Concluding, the set of spatio-temporal triangle predicates we
are looking for should contain the elements PartOfCotemp and Before△. Because, in
the end, we want to express al queries expressible in FO({BetweenCotemp,Before,
EqCrST }), on spatio-temporal triangle databases, we still have to look for a (set
of) triangle snapshot predicate(s) capturing the expressive power of the predicate
EqCrST .

We repeat the definition of the point predicate EqCrST . For six spatio-temporal
points p1, p2, p3, q1, q2, q3 ∈ ((R2 × R)), EqCrST (p1, p2, p3, q1, q2, q3) expresses that
the cross-ratio of the three co-temporal and collinear points p1, p2 and p3 equals
the cross-ratio of the time coordinates τq1 , τq2 and τq3 of the points q1, q2 and q3.

The expression EqCrST (p1, p2, p3, q1, q2, q3) implicitly refers to a movement. Indeed,
the line segment defined by the points p1 and p3 and the interval [τq1 , τq3 ] can be
interpreted as the spatial and temporal projection of a linear movement with constant
speed and we can then interpret EqCrST (p1, p2, p3, q1, q2, q3) as an expression of the
fact that when an object moves with constant speed from p1 to p3 during the interval
[τq1 , τq3 ], it passes p2 at time moment τq2 .

There is one obvious way to define the speed of a moving point. For moving tri-
angles, or moving objects in general, the definition of speed is somewhat ambiguous.
Triangles can move by changing their position, but also by changing their shape. We
define the speed (resp., acceleration) of a moving triangle as the speed (resp., acceler-
ation) of is moving center of mass. Hence, a triangle that is growing or shrinking, but
its center of mass remains in the same position, has zero speed. Based on that defini-
tion, we propose a spatio-temporal triangle database query language, with the triangle
predicates PartOfCotemp, Before△ and Cas (which is an abbreviation of “Constant
Average Speed”). The predicate Cas takes six arguments △

st
1 ,△

st
2 , . . . ,△

st
6 . The first

three triangle snapshots, △
st
1 ,△

st
2 and △

st
3 , are co-temporal and their barycenters are

collinear. The last three triangle snapshots, △
st
4 ,△

st
5 and △

st
6 , indicate three different

time moments. Furthermore, the cross-ratio of the barycenters of △
st
1 ,△

st
2 and △

st
3 is

the same as the cross-ratio of the time coordinates of △
st
4 ,△

st
5 and △

st
6 . Intuitively,

this predicate, similar to the point predicate EqCrST , approximates or estimates a
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linear movement. Given the time interval during which a triangle moves from the first
position to the second one, it estimates, assuming the triangle moves with constant
speed, how long it will take to reach the position of the third triangle.

It turns out, however, that the language with these three triangle predicates is not
very intuitive to express properties of the shape of triangles, e.g., their relative areas.
Therefor, we will also propose an alternative language. This language has exactly the
same expressivity as the first one, but offers a more direct means to express shape
properties of triangles. We propose to replace the predicate Cas by the predicate
Lex (which is an abbreviation for “Linear Expansion”). This predicate also takes
six arguments △

st
1 , △

st
2 , . . ., △

st
6 . The first three triangle snapshots, △

st
1 ,△

st
2 and △

st
3 ,

are co-temporal and both PartOfCotemp(△st1 ,△
st
2 ) and PartOfCotemp(△st2 ,△

st
3 ) hold.

The other three triangle snapshots exist at three different time moments. Finally, the
cross-ratio of the time coordinates of △

st
4 ,△

st
5 and △

st
6 equals the cross ratio of the

areas of the three first triangles. More exactly,

|A(△st2 ) −A(△st1 )|

|A(△st3 ) −A(△st1 )|
=

|τ△st2 − τ△st1 |

|τ△st3 − τ△st1 |
,

where τ△sti denotes the time moment at which △
st
i exists and A(△sti ) denotes the

area of the triangle △
st
i . Intuitively, this predicate approximates or estimates a linear

growth or expansion. Given the time interval during which the first triangle expanded
into the second one, it estimates, assuming the triangle grows linearly, how long it
will take to reach the area of the third triangle.

In applications where objects are not growing or shrinking, a language with the
predicate Cas may be preferred, whereas in applications where objects do change
their shape, the predicate Lex may be preferred. Of course, one can also include
both predicates to make the language suitable for all types of applications.

We will prove that the both the languages FO({PartOfCotemp,Before△,Cas})
and FO({PartOfCotemp,Before△,Lex}) are sound and complete for the (Ast,At)-
generic first-order spatio-temporal database queries.

7.4.1.1 Expressiveness of the Language FO({PartOfCotemp,Before△,Cas})

In this section, we first give the definitions of the triangle predicates PartOfCotemp,
Before△ and Cas. Next, we show that the language FO({PartOfCotemp,Before△,
Cas}) produces queries that are well-defined on spatio-temporal triangle databases.
After that, we show its expressive power. We end with some examples.

Definition 7.31 (The triangle snapshot predicate PartOfCotemp). Let T st1 =
(p1,1, p1,2, p1,3) and T st2 = (p2,1, p2,2, p2,3) be two triangle snapshots. The binary

predicate PartOfCotemp, applied to T st1 and T st2 expresses that p1,1, p1,2 and p1,3

(resp., p2,1, p2,2 and p2,3) are co-temporal and that the convex closure of the three
points p1,1, p1,2 and p1,3 is a subset of the convex closure of the three points p2,1, p2,2

and p2,3.

Definition 7.32 (The triangle snapshot predicate Before△). Let T st1 = (p1,1,
p1,2, p1,3) and T st2 = (p2,1, p2,2, p2,3) be two triangle snapshots. The binary predicate
Before△, applied to T st1 and T st2 expresses that p1,1, p1,2 and p1,3 (resp., p2,1, p2,2
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and p2,3) are co-temporal and that the time coordinate τp1,1 of p1,1 is smaller than or
equal to the time coordinate τp2,1 of p2,1.

Definition 7.33 (The triangle snapshot predicate Cas). Let T st1 = (p1,1, p1,2,
p1,3), T

st
2 = (p2,1, p2,2, p2,3), . . . , T

st
6 = (p6,1, p6,2, p6,3) be six triangle snapshots. Let

q1 (resp., q2, q3) be the barycenter of T st1 (resp., T st2 , T st3 ). The 6-ary predicate Cas,
applied to T st1 , T st2 , . . . , T st6 expresses that pi,1, pi,2 and pi,3 are co-temporal for
i = 1 . . . 6, that q1, q2 and q3 are collinear and that the cross-ratio of the points q1,
q2 and q3 is the same as the cross-ratio of the time coordinates τp4,1 , τp5,1 and τp6,1
of p4,1, p5,1 and p6,1, respectively.

We now show, by induction on their structure, that the FO({PartOfCotemp,
Before△,Cas})-queries are well-defined on spatio-temporal triangle databases.

Lemma 7.34 (FO({PartOfCotemp,Before△,Cas}) is well-defined). Let σ̂st =
{R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a spatio-temporal triangle database schema. Let Dst be a

consistent spatio-temporal triangle database over σ̂st. For each FO({PartOfCotemp,
Before△,Cas}, σ̂st)-query Q̂, Q̂(Dst) is a consistent triangle relation.

Proof. Let σ̂st = {R̂st1 , R̂
st
2 , . . . , R̂

st
m} be a spatio-temporal triangle database schema.

Let Dst be a consistent spatial triangle database over σ̂st.
We prove this lemma by induction on the structure of FO({PartOfCotemp,Before△,

Cas}, σ̂)-queries. The atomic formulas of FO({PartOfCotemp,Before△,Cas}, σ̂)
are equality expressions on spatio-temporal triangle variables, expressions of the form
PartOfCotemp(△st1 ,△

st
2 ), expressions of the form Before△(△st1 ,△

st
2 ), expressions of the

form Cas(△st1 ,△
st
2 , . . . ,△

st
6 ), and expressions of the form R̂sti (△st1 ,△

st
2 , . . . ,△

st

ar(R̂i)
),

where R̂sti (1 ≤ i ≤ m) is a relation name from σ̂st. More complex formulas can be
constructed using the Boolean operators ∧, ∨ and ¬ and existential quantification.

For the atomic formulas, it is easy to see that, if two triangles T st1 and T st2 satisfy
the conditions T st1 =△ T st2 , PartOfCotemp(T st1 , T

st
2 ), or Before△(T st1 , T

st
2 ) that also

T st3 =△ T
st
4 respectively PartOfCotemp(T st3 , T

st
4 ), Before△(T st3 , T

st
4 ) are true iff T1 =△

T3 and T2 =△ T4 are true. As we assume the input database D to be consistent, the
atomic formulas of the type R̂sti (△st1 ,△

st
2 , . . . ,△

st

ar(R̂sti )
), where (1 ≤ i ≤ m), trivially

return consistent triangle relations.
For the predicate Cas, the proof is less straightforward. First, it is true that any

pair of triangles T st and T st
′
such that T st =△ T

st′ have the same center of mass. Note
that this center of mass, which is represented by a degenerated triangle, only has one
representation. Second, all corner points representing a spatio-temporal triangle are
co-temporal. Therefor, we can conclude that the cross-ratio of the time coordinates of
three triangles T st1 , T st2 and T st3 is the same as the cross-ratio of the time coordinates
of any triple of triangles T st1

′
, T st2

′
and T st3

′
, such that T stl =△ T

st
l

′
(1 ≤ l ≤ 3). It now

follows from the first and second statements, that given the spatio-temporal triangles
T st1 , T st2 , T st3 , T st4 , T st5 and T st6 ,

Cas(T st1 , T
st
2 , T

st
3 , T

st
4 , T

st
5 , T

st
6 ) ↔ Cas(T st1

′
, T st2

′
, T st3

′
, T st4

′
, T st5

′
, T st6

′
),

for any T stl
′
such that T stl =△ T

st
l

′
(1 ≤ l ≤ 6).
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Now we have to prove that the composed formulas always return consistent triangle
relations. Let ϕ̂ and ψ̂ be two formulas in FO({PartOfCotemp,Before△,Cas}, σ̂st),
of arity kϕ and kψ respectively, already defining consistent triangle relations. Then,

the formula (ϕ̂ ∧ ψ̂) (resp., (ϕ̂ ∨ ψ̂)) also defines a triangle relation. This follows

from the fact that the free variables of (ϕ̂ ∧ ψ̂) (resp., (ϕ̂ ∨ ψ̂)) are free variables in

ϕ̂ or ψ̂. The universe of all triangles is trivially consistent. If a consistent subset
is removed from this universe, the remaining part is still consistent. Therefor, ¬ϕ̂
is well-defined. Finally, because consistency is defined argument-wise, the projection
∃T st1 ϕ̂(T st1 , T

st
2 , . . . , T

st
kϕ

) is consistent. ⊓⊔

Theorem 7.35 (Expressiveness of the language FO({PartOfCotemp,Before△,
Cas}) ). Let σ̂st be a database schema. The language FO({PartOfCotemp,Before△,
Cas}, σ̂st) is sound and complete for the (ACst,At)-generic FO-queries on spatio-
temporal triangle databases.

As usual, we prove this theorem using the following two lemma’s:

Lemma 7.36 (Soundness of the language FO({PartOfCotemp,Before△,Cas})
with respect to FO({BetweenCotemp,Before,EqCrST }) ). Let σ̂st be a spatio-
temporal triangle database schema. The language FO({PartOfCotemp,Before△,Cas},
σ̂st) is sound for the (ACst,At)-generic FO-queries on spatio-temporal triangle data-
bases.

Proof.
Let σ̂st = {R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a spatio-temporal triangle database schema. Similar

to the proof of Lemma 7.16, this proof consists of two parts.
First, let σ̇st = {Ṙst1 , Ṙ

st
2 , . . . , Ṙ

st
m} be a spatio-temporal point database schema

where the arity of Ṙsti is 3×ar(R̂sti ), for i = 1, 2, . . . ,m. We show that each formula of
FO({PartOfCotemp,Before△,Cas}, σ̂st) can be translated in FO({BetweenCotemp,
Before,EqCrST }, σ̇st) . We to this by induction on FO({PartOfCotemp,Before△,
Cas}, σ̂st)-formulas. Next, we have to prove that each FO({PartOfCotemp,Before△,
Cas}, σ̂st)-query defines a consistent spatio-temporal triangle relation.

We start with the first part of this proof. Let Ṙsti (1 ≤ i ≤ m) be the cor-

responding spatio-temporal point relation names of arity 3 × ar(R̂sti ) and let σ̇st

be the spatio-temporal (point) database schema {Ṙst1 , Ṙ
st
2 , . . . , Ṙ

st
m}. Let ϕ̂ be a

FO({PartOfCotemp,Before△,Cas, σ̂st})-formula.
Each triangle variable △

st in ϕ̂ is translated naturally by three spatio-temporal
point variables u1, u2, u3. As we assume that all points composing a spatio-temporal
triangle are co-temporal, we add the formula

Cotemp(u1, u2) ∧ Cotemp(u2, u3)

to the beginning of the translation of the sub-formula where △
st appears first. In

the remainder of this proof we will omit these temporal constraints to keep formulas
shorter and hence more readable, but always assume them.

The formulas in FO({PartOfCotemp,Before△,Cas}, σ̂st) are build from atomic
formulas, composed by the operators ∧, ∧ and 6= and quantification. The atomic
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Figure 7.6: The center of mass of the triangle pqr is the intersection of the medians
pt, qu and rs. Also, the lines tu, us and st are parallel to pq, qr and rp, respectively.

formulas of FO({PartOfCotemp,Before△,Cas}, σ̂st) are equality constraints between
spatio-temporal triangle variables, the triangle predicates PartOfCotemp, Before△

and Cas applied to spatio-temporal triangle variables, and predicates of the form
R̂sti (△st1 ,△

st
2 , . . . ,△

st

ar(R̂sti )
)(1 ≤ i ≤ m), where R̂sti ∈ σ̂st. As this proof is analogous

to the proof of Lemma 7.16, we only give the translation of the atomic formulas:

(i) The translation of (△st1 =△
st
2 ) is

∨

σ(1,2,3)=(i1,i2,i3),σ∈S3

(u1,1 = u2,i1 ∧ u1,2 = u2,i2 ∧ u1,3 = u2,i3),

where S3 is the set of all permutations of {1, 2, 3}.

(ii) In the proof of Lemma 7.16, we already showed that the predicate PartOf can
be expressed in FO({Between}).

(iii) Expressions of the form Before△(△st1 ,△
st
2 ) are translated as follows:

Before(u1,1, u2,1).

Recall that the formulas expressing that the corner points of each triangle should
be co-temporal are already added to the translation.

(iv) For the predicate Cas, first we need to to express in FO({BetweenCotemp,
Before,EqCrST }, σ̇st) that some point (in (R2 ×R)) is the center of mass of a
triangle, represented by three other points, all co-temporal with the first point.

Figure 7.6 illustrates the construction of the center of mass of a triangle. Given
a triangle T stpqr. There is only one way of constructing a triangle T ststu inscribed
in T stpqr such that each side of T ststu is parallel to a side of T stpqr. The corner points
of T ststu are in the middle of the sides of T stpqr. Hence, the center of mass of T stpqr
is the intersection of the line segments connecting the corner points of stu with
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the opposite corner point of T stpqr. The next formula expresses the predicate

CenterOM in the language FO({BetweenCotemp,Before,EqCrST }). The
free variables are v (representing the center of mass), u1, u2 and u3 (repre-
senting the corner points of the triangle).

∃w1 ∃w2 ∃w3 (BetweenCotemp(u1, w1, u2) ∧ BetweenCotemp(u2, w2, u3)∧

BetweenCotemp(u3, w3, u1) ∧ Par(u1, u2, w2, w3) ∧ Par(u2, u3, w1, w3)∧

Par(u3, u1, w1, w2) ∧ BetweenCotemp(u1, v, w2)∧

BetweenCotemp(u2, v, w3) ∧ BetweenCotemp(u3, v, w1)).

Here, Par(v1, v2, v3, v4) is an abbreviation for the sub-formula

¬∃w (Collinear(w, v1, v2) ∧ Collinear(w, v3, v4)).

We now give the expression translating Cas(△st1 ,△
st
2 ,△

st
3 ,△

st
4 ,△

st
5 ,△

st
6 ). The

following formula has (6 × 3) free point variables u1,1u1,2, u1,3, u2,1, u2,2, u2,3,
. . . , u6,1, u6,2, u6,3 that are the translation of the triangle variables △

st
1 ,△

st
2 , . . . ,

△
st
6 .

∃v1 ∃v2 ∃v3 (
3

∧

i=1

CenterOM(vi, ui,1, ui,2, ui,3) ∧ EqCrST (v1, v2, v3, u4,1, u5,1, u6,1)).

(v) The translation of a formula of the type R̂st(△st1 ,△
st
2 , . . . ,△

st
k ), where R̂st ∈ σ̂st

is
Ṙ(u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, . . . , uk,1, uk,2, uk,3).

The correctness of this translation follows from Definition 7.2 and Remark 7.3.
⊓⊔

We can also show the possibility of the translation in the other direction. As the
proof of Lemma 7.37 is completely analogous to the proof of Lemma 7.17, we omit
it. The only new items are the translations of the spatio-temporal point predicates
Before and EqCrST into FO({PartOfCotemp,Before△,Cas}). It is easy to see that
these translations involve only replacing point variables by triangle variables that
represent points.

Lemma 7.37 (Completeness of FO({PartOfCotemp,Before△,Cas}) ). Let σ̂st

be a spatio-temporal triangle database schema. The language FO({PartOfCotemp,
Before△,Cas}, σ̂st) is complete for the (ACst,At)-generic FO-queries on spatio-
temporal triangle databases.

We now propose an alternative language, with the same expressiveness as the
language FO({PartOfCotemp,Before△,Cas}), which allows us to talk about areas of
triangles.
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Figure 7.7: The area of Tpqr is to the area of Tpqs as the length of pr to the length of
ps.

7.4.1.2 Expressiveness of the Language FO({PartOfCotemp,Before△,Lex})

We start this subsection with some geometric constructions. We will use those to
express the predicate Lex in the language FO({BetweenCotemp,Before,EqCrST }).
For these constructions, we assume that all spatio-temporal points and triangles are
co-temporal.

Observation 7.4.1. Let two triangles T stpqr and T stpqs be given. If the point s is
chosen on the line segment pr such that the cross ration of p, s and r equals c, then
the areas of T stpqr and T stpqs have a ratio which is also equal to c. The correctness of
this construction is easy to verify because the area of a triangle is half the length
of its base line multiplied by its height. As T stpqr and T stpqs have both height h, their
areas have the same relation as the lengths of their base lines ps and pq. Figure 7.7
illustrates this observation.

Suppose we have three triangles T stpqr, T
st
pqs and T stpqt, such that the points q,r, s

and t are all collinear (suppose they are arranged as in Figure 7.7). Then it is true
that

A(T stpqt) −A(T stpqs)

A(T stpqr) −A(T stpqs)
=

| st |

| sr |
.

So it turns out to be possible to convert area ratios to cross-ratios of collinear
points, for triangles that have the special configuration as described in Observa-
tion 7.4.1. We will observe next that it is possible, given three triangles T st1 , T st2

and T st3 such that T st1 is part of T st2 and T st2 part of T st3 , to construct triangles T st4

and T st5 with the same area as T st1 and T st2 , respectively, such that T st4 , T st5 and T st3

have this special configuration.

Observation 7.4.2. Given a pair of triangles T st1 and T st2 such that T st1 is part of
T st2 . Following the construction steps described below, we can construct a triangle
T st3 , with the same area as T st1 . The triangle T st3 shares one side with T st2 and its
third corner point is on one of the other sides of T st2 .

Construction step 1:
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Figure 7.8: Area-preserving affine-invariant constructions.



7.4. Spatio-temporal Triangle Queries 153

Given a triangle T stpqr and a line L, we construct a triangle with the same area as T stpqr,
but one side parallel to L. We do this by moving the point r over the line through
r and parallel with pq until one of the line segments pr or qr is parallel to L. The
resulting triangle T stpqr′ has the same area as T stpqr because it has the same base line

segment and the same height as T stpqr. Figure 7.8, part A, illustrates this construction.
If we apply this construction twice, we can construct a triangle with two sides

parallel to two given (different) lines. This is shown in Figure 7.8, part B, where the
triangle T stpqr is first transformed into T stpqr′ and, in a second step, into T stp′qr′ .

Construction Step 2:

Let a triangle T stpqr and a smaller triangle, either T ststu or T stst′u, which has two sides
parallel to the sides pq and qr respectively of T stpqr, be given. There are two possible
orientations for the smaller triangle. Either it is oriented in such a way that the corner
point t′ is on the opposite side of su than the point q, as is the case for triangle T stst′u
in Figure 7.8, part C, or it is oriented otherwise, as is the case for triangle T ststu. In the
first case, we flip T stst′u by constructing the parallelogram st′ut, and then considering
the triangle T ststu.

Next, starting from a triangle T ststu with the right orientation, we construct a
triangle T stqs′u′ which has the same area as T ststu, but shares a corner point with T stpqr
and has its other corner points on the two sides of T stpqr, adjacent to the common
corner point. This transformation involves only a translation, which can be carried
out by constructing a set of parallel lines.

Construction Step 3:

Given a triangle T stpqr, and a triangle T stsqt such that s lies on the line through pq and
t lies on the line through qr. We can construct a triangle T stpqt′ that has the same

area as T stsqt by making sure that the cross-ratio of the points p, s and q equals the
cross-ratio of the points t, t′ and q. Figure 7.8, part D, illustrates this construction.

Using the above three steps, we constructed, starting from two arbitrary triangles,
one being part of the other, two triangles that have the desired configuration.

We now can prove that our alternative language, FO({PartOfCotemp,Before,
Lex}) also is sound and complete for the (ACst,At)-generic FO-queries on triangle
databases. As the proof is completely analog as the proof of Theorem 7.35, except for
the translations of the predicates Lex and EqCrST , we only give those translations.

Theorem 7.38 (Expressiveness of FO({PartOfCotemp,Before△,Lex}) ). Let
σ̂st be a spatio-temporal triangle database schema. The language FO({PartOfCotemp,
Before△,Lex}, σ̂st) is sound and complete for the (ACst,At)-generic FO(+, ×, <,
0, 1)-queries on spatio-temporal triangle databases.

Proof. First, let σ̂st = {R̂st1 , R̂
st
2 , . . . , R̂

st
m} be a spatio-temporal triangle database

schema and let σ̇st = {Ṙst1 , Ṙ
st
2 , . . . , Ṙ

st
m} be a spatio-temporal point database schema

where the arity of Ṙsti is 3 × ar(R̂sti ), for i = 1, 2, . . . ,m.
We first show that the predicate Lex can be expressed in FO({BetweenCotemp,

Before,EqCrST }, σ̇st) . We verify that this predicate is invariant for transformations
in (ACst,At). The proportion of the areas of two co-temporal triangles is invariant
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Figure 7.9: An illustration of the predicate SameRelArea. The expression
SameRelArea(p1, p2, . . . , p11) will be true if and only if two conditions are met.
First, the triangle with corner points p7, p8 and p9 (the light shaded one) is part of
the triangle with corner points p4p, p5 and p6 (the dark shaded one), which is part
of the triangle with corner points p1, p2 and p3 (the white triangle). Second, The
areas of the light and dark shaded triangles are to the area of the white triangle as
the areas of the triangles with corner points p1, p2 and p10, resp. p1, p2 and p11 to
the area of the white triangle.

under affinities. This, together with the fact that cross-ratios of time moments are
invariant under affine transformations of the time, shows that the predicate Lex is
(ACst,At)-invariant.

The constructions described in Observation 7.4.2 can all be expressed in the lan-
guage FO({BetweenCotemp,Before,EqCrST }). They mainly involve parallelism-
constraints on points.

Let SameRelArea be the abbreviation for a predicate in FO({BetweenCotemp,
Before,EqCrST }) of arity 11. The first nine free variables represent the corner
points of three co-temporal triangles, such that the first triangle is part of the second,
which is again part of the third triangle. The two last point variables are located on
one side of the third triangle, in such a way that the parts they define of the third
triangle (denoted triangle four and five), are part of each other also. Finally, the
proportion of the areas of the first three triangles is the same as the proportion of the
areas of the fourth, fifth and third triangle. Fig 7.9 illustrates this predicate.

The translation of Lex(△st1 ,△
st
2 , . . . ,△

st
6 ) then is the following expression:

∃v1 ∃v2 (SameArea(u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3, v1, v2)∧

EqCrST (v1, v2, u3,3, u4,1, u5,1, u5,2)),

if △
st
i is translated by ui,1, ui,2 and ui,2 for i = 1, . . . , 6.

The translation in the other direction is simpler. The formula EqCrST (u1, u2, u3,
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u4, u5, u6) can be expressed as

∃ △
st
7 ∃ △

st
8 ∃ △

st
9 ∃ △

st
10 ∃ △

st
11 (

CornerP(△st7 ,△
st
8 ,△

st
1 ,△

st
9 ) ∧ CornerP(△st7 ,△

st
8 ,△

st
2 ,△

st
10)

∧ CornerP(△st7 ,△
st
8 ,△

st
3 ,△

st
11) ∧ Lex(△st9 ,△

st
10,△

st
11,△

st
4 ,△

st
5 ,△

st
6 )).

⊓⊔

7.4.2 Physics-based Classes

In the previous section, we investigated a triangle language for (ACst,At)-generic
triangle queries. Next, we focus on triangle languages for the physics-based queries,
i.e., those generic for the group (Vst,At) of velocity-preserving transformations and
the group (ACst,At) of acceleration-preserving transformations.

In Chapter 4, the query languages expressing queries generic for the physics-based
transformation groups were found by starting with the languages expressing the affine-
invariant spatial point queries. The reason was that the physics-based transformation
groups of ((R2 × R)) are a subgroup of the affinities of R

3, and that spatio-temporal
points in ((R2 × R)) can be interpreted equally well as points in R

3.
Here, it is not expedient to do so. We can see spatio-temporal triangles in ((R2 ×

R)) as convex objects in R
3, but then the predicate PartOf would not make much

sense, as spatio-temporal triangles can only overlap when they exist at the same
moment in time. Another solution would be to choose other convex objects, that
have a temporal extend of more than one time moment. But, these objects would
make rather poor spatio-temporal objects. Indeed, even if all corner points of a
triangle in R

2 move with a linear function of time, this movement can result in a
3-dimensional object bounded by non-planar surfaces, and hence possibly not convex.

Therefor, we take another approach and start with the predicates PartOfCotemp

and Before△, as in the previous section, and add other predicates until the resulting
language is expressive enough. In concrete, this means that we have to be able to
translate the point predicate Between(n+1) in that language.

As (Vst,At) ⊂ (ACst,At), we start with the acceleration preserving transforma-
tions first, and later extend the language expressing all (ACst,At)-generic queries in
such a way we obtain a language expressing the (Vst,At)-generic queries.

7.4.2.1 (ACst,At)-generic Queries

For the acceleration-preserving queries, we introduce the spatio-temporal triangle
predicate SAS (which is an abbreviation for “Same Average Speed”). Let △

st
1 ,△

st
2

,△st3 and △
st
4 be four triangles that have center of mass pi = (ai, bi, τi), i = 1 . . . 4.

Furthermore, τ1 ≤ τ2 and τ3 ≤ τ4. Then SAS(△st1 ,△
st
2 ,△

st
3 ,△

st
4 ) is true if and only if

a2 − a1

τ2 − τ1
=
a4 − a3

τ4 − τ3
and

b2 − b1
τ2 − τ1

=
b4 − b3
τ4 − τ3

.

In other words, the movement from △
st
1 to △

st
2 has the same average speed, in both

x- and y-direction, as the movement from △
st
3 to △

st
4 .
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We now show that the language FO({PartOfCotemp,Before△,SAS}) is sound
and complete for the (ACst,At)-generic FO(+, ×, <, 0, 1)-queries on triangle data-
bases.

As soundness and completeness proof are completely analogous to those of the
previous section, we only give the translations of the triangle predicates from the
set {PartOfCotemp,Before△,SAS} into FO({Between(2+1)}) and of Between(2+1)

into FO({PartOfCotemp,Before△,SAS}).

Theorem 7.39 (Expressiveness of the language FO({PartOfCotemp,Before△,
SAS}) ). Let σ̂st ba a triangle database schema. Let σst be the corresponding semi-
algebraic database schema. The language FO({PartOfCotemp,Before△,SAS}, σ̂st)
is sound and complete for the (ACst,At)-generic FO(+, ×, <, 0, 1, σst)-queries on
triangle databases over σ̂st.

Proof sketch.
Let σ̂st = {R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a spatial triangle database schema. Let Ṙsti , 1 ≤

i ≤ m be the corresponding spatial point relation names of arity 3 × ar(R̂sti ) and let

σ̇st be the spatial database schema {Ṙst1 , Ṙ
st
2 , . . . , Ṙ

st
m}. Let R

st

i , 1 ≤ i ≤ m be the
corresponding constraint relation names of arity 6×ar(R̂sti ) and let σst be the spatial

database schema {R
st

1 , R
st

2 , . . . , R
st

m}.

In this proof sketch, we only give the translation of SAS into FO({Between(2+1)},
σ̇st). For the translations of PartOfCotemp and Before△, see Section 7.3 and Sec-
tion 7.4.1 respectively.

Given the expression SAS(△st1 ,△
st
2 ,△

st
3 ,△

st
4 ). The following formula is its trans-

lation into FO({Between(2+1)}, σ̇st):

∃v1 ∃v2 ∃v3 ∃v4 (
4

∧

i=1

CenterOM(vi, ui,1, ui,2, ui,3) ∧ Before(v1, v2) ∧ Before(v3, v4)

∧CoPlanar(v1, v2, v3, v4)∧¬∃w (Collinear(w, v1, v2)∧Collinear(w, v3, v4))).

We have omitted the sub formulas expressing that the corner points of a triangle
should be co-temporal. The predicate CoPlanar expresses that four 3-dimensional
points are co-planar. It is clear that this is an affine invariant and FO-expressible.

For the definition of CenterOM, we refer to the proof of Lemma 7.36.
We next prove that the predicate Between(2+1) can be expressed in the language

FO({PartOfCotemp,Before△,SAS}, σ̂st). This translation is not complicated. If the

expression Between(2+1)(p, q, r) holds for three points p, q and r, then either they
are all co-temporal or they all exist at a different time moment. In the first case, we
can translate Between using PartOf, as we showed in the proof of Lemma 7.17. If
they all have a different time coordinate, we can express that q is between p and r
using SAS:

(CoTemp(△st1 ,△
st
2 ) ∧ CoTemp(△st2 ,△

st
3 )∧

Between∆(△p,△q,△r)) ∨ (SAS(△st1 ,△
st
2 ,△

st
2 ,△

st
3 )).
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In the previous formula, we have omitted the sub-formulas expressing that the
triangles translating the point variables should be points. ⊓⊔

Since the group (Vst,At) is a subgroup of the group (ACst,At), we use our
knowledge from this subsection to extend the language FO({PartOfCotemp,Before△,
SAS}, σ̂), which we will do next.

7.4.2.2 (Vst,At)-generic Queries

In this subsection, we propose a language sound and complete of the first-order
(Vst,At)-generic triangle queries. We add the element NoSp (which is an abbre-
viation for “No Speed”) to the predicate set {PartOfCotemp,Before△,SAS}.

Suppose two spatio-temporal triangles T st1 and T st2 have center of mass pi = (ai,
bi, τi), i = 1, 2. If we furthermore assume that τ1 ≤ τ2, then NoSp(△st1 ,△

st
2 ) is true

if and only if a1 = a2 and b1 = b2. In other words, the average speed is zero, both
triangles are on the same position.

We now show that the language FO({PartOfCotemp,Before△,SAS,NoSp}) is
sound and complete for the (ACst,At)-generic FO(+, ×, <, 0, 1)-queries on triangle
databases.

As soundness and completeness proof are completely analogous to those of the
previous section, we only give the new translations.

Theorem 7.40 (Expressiveness of the language FO({PartOfCotemp,Before△,
SAS,NoSp}) ). Let σ̂st be a triangle database schema. Let σst be the correspond-
ing semi-algebraic database schema. The language FO({PartOfCotemp,Before△,
SAS,NoSp}, σ̂st) is sound and complete for the (ACst,At)-generic FO(+, ×, <,
0, 1, σst)-queries on triangle databases over σ̂st.

Proof sketch.
Let σ̂st = {R̂st1 , R̂

st
2 , . . . , R̂

st
m} be a spatial triangle database schema. Let Ṙsti , 1 ≤

i ≤ m be the corresponding spatial point relation names of arity 3 × ar(R̂sti ) and let

σ̇st be the spatial database schema {Ṙst1 , Ṙ
st
2 , . . . , Ṙ

st
m}. Let R

st

i , 1 ≤ i ≤ m be the
corresponding constraint relation names of arity 6×ar(R̂sti ) and let σst be the spatial

database schema {R
st

1 , R
st

2 , . . . , R
st

m}.
In this proof sketch, we only give the translation of the predicate NoSp into

FO({Between(2+1),Before,EqSpace}) and of the predicate EqSpace into the lan-
guage FO({PartOfCotemp,Before△,SAS,NoSp}).

The next formula, with free variables u1, u2, u3, v1, v2, v3 is the translation of
NoSp(△u,△v) into FO({Between(2+1),Before,EqSpace}, σ̂).

∃w1∃w2(CenterOM(w1, u1, u2, u3)∧CenterOM(w2, v1, v2, v3)∧EqSpace(w1, w2)).

Finally, the formula

Point(△stu ) ∧ Point(△stv ) ∧ NoSp(△stu ,△
st
v )

translates EqSpace(u, v) into FO({PartOfCotemp,Before△,SAS,NoSp}). Note
that, if a triangle is degenerated into a point, its center of mass is equal to the triangle
itself. ⊓⊔





8
Conclusion

In this thesis, we started with defining spatio-temporal databases as a special type
of constraint databases, meaning that we defined spatio-temporal objects to be semi-
algebraic subsets of (Rn × R). A consequence of this choice is that spatio-temporal
data can be described by Boolean combinations of polynomial equations, which can
be expressed in the language FO(+, ×, <, 0, 1).

Although spatio-temporal databases have been studied for a decade already, the
question “What are spatio-temporal database queries” is still actual. In relational
database theory, it is common to require queries to be generic. A generic query asks
only for properties that are shared by “isomorphic” encodings of the same data or,
in other words, the result of a generic query depends only to a certain, limited ex-
tent on the actual internal representation of the database it is applied to. Chandra
and Harel [11] considered the permutations of the universal domain U of the data-
base (that possibly fix some elements of the domain) as “isomorphisms” for relational
databases. Paredaens, Van den Bussche and Van Gucht [58] have shown that for
spatial databases, the definition of genericity is not unique and that it depends on
the particular kind of geometry in which the spatial information is to be interpreted.
Genericity of spatial databases hence is defined as a function of some group of geo-
metric transformations.

Spatio-temporal Genericity

We investigated which notions of genericity are appropriate for spatio-temporal
databases and which transformation groups express them. In Chapter 4, we proposed
a hierarchy of genericity classes for spatio-temporal databases. We observed that the
transformations should first and foremost respect the monotone and unidirectional
nature of time, i.e., leave the temporal order of events unchanged. It followed that
the relevant transformation groups are the product of a group of time-(in)dependent
spatial transformations and a group of monotone increasing transformations of the

159
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time-component of the spatio-temporal data.
First, we showed that all the genericity classes are undecidable, but that the

considered classes of generic first-order queries are recursively enumerable, however.
Hereto, we defined first-order point-based languages in which variables are assumed
to range over points in (Rn × R) and which contain certain point predicates (such

as Between(n+1) and Before). We showed that these point-based languages are
sound and complete for the first-order queries in the considered genericity classes. We
also showed that extensions of these point-based logics with a While-loop give sound
and complete languages for the computable queries in the different genericity classes.
Some results were obtained by techniques introduced by Gyssens, Van den Bussche
and Van Gucht [43], but for time-dependent transformations we have introduced new
proof techniques.

For what concerns computationally complete languages these techniques seem to
be insufficient to deal with the genericity notions that are expressed by the groups
(Af

st,At), (Af
st, It), (Af

st, Id t), (Sfst,Ft), (Ifst,Ft), and (T f
st ,Ft), for Ft ∈ {At, Tt, Id t}.

The problem in adapting the proof technique of Theorem 4.39 to these groups is that
it is not clear how we can express in the respective point-based logics that two spatio-
temporal databases can be mapped to each other by some piece-wise constant affinity.
Indeed, since the number of pieces is not defined a priori, this might not be expressible.
This would imply that yet another new proof technique would be required to deal with
the remaining cases.

A limitation of the constraint model that possibly is more apparent in the context
of spatio-temporal databases than it was for spatial databases, is the fact that the
movement of spatio-temporal objects is restricted to rational functions of time. A
helicopter flying at constant speed in circles around some event, cannot be modelled.
This would require the use of the sin and cos functions. It would be possible however
to model a helicopter flying in circles, albeit not at constant speed. This is possible
because conic sections can be parameterized by rational functions of t [32].

Parametric Spatio-temporal Objects

The constraint model allowed us to describe a wide range of spatio-temporal phe-
nomena, but, users tend to think about spatio-temporal data as “moving objects”
rather than sets in (Rn × R). Therefor, we investigated a more concrete data model
in Chapter 5. We introduced the concept of spatio-temporal object to model events
and objects that change in time. More general objects can be constructed from ba-
sic, or atomic objects using the union operation. For a variety of special classes of
spatio-temporal objects of practical relevance, we investigated their closure properties
with respect to Boolean set operators. An exhaustive study of these closure proper-
ties shows that the chosen approach leads to mostly negative closure results, except
for the class of scaling rectangles (that is developed further in [62]) and the class of
triangles that are moving by rational affinities. Therefore, we proposed an adaptation
to the model, which led to better closure properties.

To implement our approach, it is sufficient to be able to represent in a database
the following:

• spatial objects (a solved problem for many classes of such objects),
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• temporal objects (again a solved problem),

• function objects (rational functions can be represented as lists of coefficients.
For linear polynomials, such lists are of fixed length, opening the possibility
of representing the corresponding spatiotemporal objects using the standard
relational data model).

In addition to implementation issues, it would be challenging to develop a type sys-
tem that captures different dimensions of specialization present in geometric objects:
region specialization (polygon, rectangle, ...), transformation specialization (affine
mapping, scaling, ...) and time function specialization (rational, polynomial, ...).

Spatial and Spatio-temporal Triangulations

We discussed the need for a normal form in the context of the adapted data model,
where also intersection and difference were allowed, in addition to union, to construct
more complex objects out of atomic objects. But, also the original data model, where
only union is used to construct more complex objects, would benefit from a normal
form. Indeed, a drawback of modelling an object as an arbitrary set of atomic objects,
is that it is not clear immediately how the spatio-temporal object represented by the
atomic objects looks like. Its time domain has to be computed from the time domains
of all atomic objects, which might overlap. Also, there may be gaps, i.e., moments
when the spatio-temporal object does not exist, and two sets of atomic objects can
represent the same spatio-temporal object. Or, there might be elements in the set of
atomic objects that do not contribute to the spatio-temporal object at all, as they
are overlapped totally by other atomic objects.

We developed a normal form for the class of triangles that are moving by ratio-
nal affinities. Because the spatial reference objects are triangles, a spatio-temporal
triangulation would seem a natural normalization. Motivated by the importance of
affine-invariance in the computer graphics, robotics and computer vision communi-
ties (expressed in the weak perspective assumption), we developed an affine-invariant
spatio-temporal triangulation. To our knowledge, only one affine-invariant triangula-
tion for spatial data exists yet [56].

Therefor, we first developed an affine-invariant spatial triangulation method. We
then “extended” this affine-invariant spatial triangulation to an time-dependent affine-
invariant spatio-temporal triangulation. This spatio-temporal triangulation is a spe-
cial type of spatio-temporal partition. A formal definition of spatio-temporal par-
titions was proposed by Erwig and Schneider [29]. However, they did not give a
concrete example of such a spatio-temporal partition or partitioning method. The
proposed method is, to our knowledge, the first spatio-temporal partitioning method.

An interesting follow-up to this spatio-temporal triangulation would be to develop
an affine-invariant way of storing the result of this triangulation. Knowledge of this
affine-invariant representation only would naturally limit users to posing affine-generic
queries.

We now describe some applications that we believe can benefit from the spatio-
temporal triangulation.

• Efficient rendering of objects: When a geometric object that is not in normal
form has to be displayed to the user, the displaying algorithm would have to
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keep track of the time domains of the individual atomic objects and keep a list
of active ones at the moment under consideration, which has to be updated
every instant. If the geometric object is in normal form, the atomic objects can
be sorted by their time domains, and during each interval in the partition of
time domain, the list of active atomic objects will remain the same.

Also, if the geometric object is not in normal form, the snapshots of the atomic
objects may overlap, so pixels will be computed more than once. When a
geometric object is in normal form, no triangles overlap, so each pixel will be
computed only once.

• Moving object retrieval: The triangulation provides a means of automatic affine
invariant feature extraction for moving object recognition. Indeed, the number
of intervals in the time domain indicates the complexity of the movement of
the geometric object. This can be used as a first criterium for object matching.
For objects having approximately the same number of intervals in their time
domains, the snapshots at the middle of each time interval can be compared. If
they are all similar, which can be, for example, defined as TS-isomorphic, the
objects match.

• Surveillance Systems: In some applications, e.g., surveillance systems, it is im-
portant to know the time moments when something changed, when some dis-
continuity appeared. This could mean that an unauthorized person entered a
restricted area, for example, or that a river has burst its banks. Triangulating
the contours of the recorded images and reporting all single points and end
points of intervals of the partition of the time domain indicates all moments
when some discontinuity might have occurred.

• Pre-computing queries: The atomic objects in the triangulation of a geometric
object which is, essentially the union of a set of geometric objects having dif-
ferent labels will have the following nice property. We can label each atomic
element of the spatio-temporal triangulation of the database with the set of id’s
of the geometric objects it belongs to. We illustrate this for the spatial case
only in Figure 8.1. Suppose we have two triangles A and B. The set A is the
union of the light grey and white parts of the figure, the set B is the union of
the dark grey and white parts of the figure. After triangulation, we can label
the light grey triangles with {A}, the white triangle with {A,B}, and the dark
grey triangles with {B}.

Using this triangulation of databases in a preprocessing stage, means that the
results of queries that ask for set operations between geometric objects are also
pre-computed. A lot of spatio-temporal queries essentially involve set opera-
tions.

We end the paragraph on triangulations with a note on maintaining the trian-
gulation. If a geometric object has to be inserted into or removed from a database
(i.e., a collection of geometric objects), the triangulation has to be recomputed for
the intervals in the partition of the time domain that contain the time domain of the
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A

B

Figure 8.1: The set operations between objects are pre-computed in the triangulation.

object under consideration. This may require that the triangulation in total has to
be recomputed.

However, the nature of a lot of spatio-temporal applications is such that updates
involve only the insertion of objects that exists later in time than the already present
data. In that case, only the triangulation at the latest time interval of the partition
should be recomputed together with the new object, to check whether the new data
are a continuation of the previous. Also, data is removed only when it is outdated.
In that case a whole time interval of data can be removed. Examples of such spatio-
temporal applications are surveillance, traffic monitoring and cadastral information
systems.

Triangle-based Languages

Although the results of Chapter 4 are important to understand the nature of
spatio-temporal database queries, it turned out that the generic spatio-temporal query
languages we proposed were not very intuitive, and hence not of great practical use.
We simplified the data model from semi-algebraic sets in (Rn×R) to sets of triangles,
that can be described using the constraint model. We investigated whether knowledge
about the nature of the data, i.e., collections of triangles, could lead to more intuitive
languages.

When we were developing spatio-temporal point languages in Chapter 4, we could
build on the previous work of Gyssens, Van den Bussche and Van Gucht [43] on
spatial databases. Spatial triangle-based languages were not previously studied, so
we started there. Given the fact that a spatial database contains a (possible infinite)
set of triangles, we obtained a triangle-based affine-invariant query language only
containing the binary predicate PartOf. Safety of queries in this language is not
guaranteed, i.e., the result of a query on a finite collection of triangles is possibly an
infinite collection of triangles. We showed that it is decidable whether the result of a
query is finitely representable, however, and that this can be decided by a formula in
the triangle language.

At this point, we want to mention an interesting direction for further work on
triangle-based languages. One of the main reasons that the triangle query language we
propose is not safe, is that one can, using an infinite collection of triangles, represent
a non-linear figure. Vandeurzen et al. [73] developed languages capturing exact the
linear queries definable with polynomial constraints. A triangle-based query language
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that has the same expressiveness as the affine-invariant fragment of the language of
Vandeurzen et al, would be safe.

We also found that the predicate PartOf can be generalized to PartOf(n,k),
which arguments are n-dimensional convex objects with k corner points, abbreviated
as (n, k)-objects, and that the language FO({PartOf(n,k)}) is sound and complete
for the first-order affine-generic queries on (n, k)-objects. This finding is particularly
interesting in comparison with the work of Aiello and van Benthem [3, 4] on modal
logics of space. They proposed a topological modal logic over regions, which can ex-
press “connectedness” and “parthood”. By adding a “convexity” operator (expressed
using a “betweenness” operator), they obtained an affine modal logic. Essentially, we
obtain the same result for first-order logic, as triangles (or (n, k)-objects) are convex
and connected regions, and we add the “parthood” operator PartOf.

After investigating spatial triangle-based queries, we continued with the actual
purpose, developing spatio-temporal triangle-based languages, generic for the time-
dependent affinities, the velocity-preserving and acceleration preserving transforma-
tions, respectively. For the time-dependent affinities, we developed two equally ex-
pressive languages. The first one can be used when data is interpreted as objects that
are retaining their shape and move along a curve. The second language is more useful
when data changes its shape. For the acceleration and velocity-preserving transfor-
mations, we proposed triangle predicates expressing that objects have linear speed or
no speed at all.
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Samenvatting

De periode dat gegevensbanken enkel toelieten alfa-numerieke gegevens te stockeren
of te manipuleren ligt reeds geruime tijd achter ons. Multimedia-toepassingen vereisen
gegevensbanken die beelden (zowel stilstaand als bewegend), geluid of een combinatie
van beide kunnen verwerken. In deze thesis, getiteld Tijdsafhankelijke ruimtelijke
gegevens modelleren en bevragen, concentreren we ons op het relatief jonge gebied
van de tijdruimtelijke of spatio-temporele gegevensbanken of gegevensbanken die ti-
jdsafhankelijke, ruimtelijke informatie bevatten. Dit gebied is voornamelijk geënt op
de uitgebreide kennis die men in de jaren 1980–90 verwierf in het onderzoek naar
ruimtelijke gegevensbanken en ook, maar in mindere mate, op kennis over temporele
gegevensbanken.

Het onderzoek naar ruimtelijke gegevensbanken leidde al tot commerciële toepassin-
gen. Populaire gegevensbanksystemen voorzien modules die toelaten ruimtelijke in-
formatie op te slaan en te ondervragen. Geografische informatiesystemen (GIS)
worden ontwikkeld voor en gebruikt in diverse toepassingsgebieden: GPS-systemen,
ruimtelijke ordening, bosbeheer, het in kaart brengen van pijpleidingen, etc. In GIS
zijn er twee basismethodes voor het modelleren van ruimtelijke informatie. Bij de
eerste manier legt men een denkbeeldig rooster op een beeld, en wijst aan elk vakje
een kleur (of een attribuut) toe. Afhankelijk van de vereiste nauwkeurigheid is het
rooster fijner of grover. Een beeld wordt dan gestockeerd als een matrix van kleuren.
Bij de tweede manier legt men het beeld vast door middel van de lijnen en/of krom-
men die de contouren van het beeld bepalen. Een beeld wordt dan bijvoorbeeld door
middel van een verzameling polynomiale formules gestockeerd, die deze lijnen en/of
krommen beschrijven. De gegevensbanken die ruimtelijke informatie opslaan als een
verzameling formules, worden aangeduid met de term constraint databases. Het on-
derzoek in deze thesis volgt deze laatste aanpak.

In het begin van de jaren 1990 erkende men de nood aan gegevensbanken die ti-
jdsafhankelijke, ruimtelijke informatie konden bewaren en bewerken, en niet louter
statische beelden. Gegevensbanken die tijd en ruimte combineren werden aangeduid
met de term tijdruimtelijke of spatio-temporele gegevensbanken of ook wel temporele
GIS, als de nadruk ligt op het uitbreiden van geografische informatie met tijdsin-
formatie. We beschrijven de diverse onderzoeksinitiatieven die ondertussen werden
genomen om de rol van tijd in ruimtelijke gegevensbanken te doorgronden. We geven
telkens de vooropgestelde probleemstelling aan, en bespreken de voorgestelde oplossin-
gen. Omdat ook in deze thesis een algemeen model wordt voorgesteld, beperken we
ons in het overzicht tot onderzoek dat tracht tijdsafhankelijke ruimtelijke gegevens
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in het algemeen te modelleren, eerder dan een concreet probleem op te lossen dat de
opslag van zulke gegevens vereist.

We gebruiken het constraint database model voor het modelleren van tijdsafhanke-
lijke ruimtelijke informatie. Daarom herhalen we kort de basisprincipes van constraint
databases. We leggen in het bijzonder de nadruk op het concept genericiteit van
gegevensbankbevragingen. Een vraag om informatie die aan een gegevensbank wordt
gesteld is generisch, als haar antwoord onafhankelijk is van de precieze manier waarop
de informatie werd gestockeerd. Toegepast op ruimtelijke gegevensbanken kan dit
betekenen dat de keuze van referentiestelsel of afstandsmaat (bijvoorbeeld centimeter
versus inch) niet belangrijk is voor het antwoord. Formeel kan dit worden aangeduid
door te eisen dat het antwoord van een vraag precies is tot op een welbepaalde trans-
formatie van de ruimte na. We bespreken ook enkele talen die zo ontwikkeld werden
dat ze enkel toelaten generische vragen te stellen aan ruimtelijke gegevensbanken.

Vervolgens onderzoeken we de betekenis van genericiteit voor vragen aan gegevens-
banken die tijdsafhankelijke, ruimtelijke informatie bevatten. We stellen voorop dat
het uni-directionele karakter van de tijd steeds bewaard moet blijven en stellen een
aantal genericiteitsklassen voor waarin zowel temporele, ruimtelijke als meer typ-
isch tijdruimtelijke aspecten als snelheid en versnelling belangrijk zijn. Als meest
algemene klasse kiezen we de tijdsafhankelijke affiene transformaties. In robotica,
computer graphics en ruimtelijke gegevensbanken werd het belang van affiene gener-
iciteit reeds onderstreept door de algemeen aanvaarde weak perspective assumption.
Deze veronderstelling gaat er vanuit dat de foto’s die een observeerder, indien hij re-
latief ver verwijderd is van een driedimensionaal object, neemt van dat object vanuit
diverse standpunten, alle gelijk zijn tot op een affiniteit van het vlak na. We geven
een temporele veralgemening van deze veronderstelling: indien twee zich verplaat-
sende observatoren relatief ver van een, mogelijk bewegend, driedimensionaal object
verwijderd, dit object filmen, zullen beide films gelijk zijn tot op een tijdsafhankelijke
affiene transformatie na. Anders gezegd, men kan op elk moment, of voor elk paar
snapshots van beide films, een affiene transformatie van het vlak vinden die de ene
op de andere afbeeldt.

Gebaseerd op de voorgestelde genericiteitsklassen voor tijdruimtelijke gegevens-
banken, ontwikkelen we bevragingstalen die, gegeven een bepaalde genericiteitsklasse,
enkel toelaten vragen te stellen die generisch zijn voor de transformaties van die klasse.
In navolging van de reeds voor ruimtelijke gegevensbanken ontwikkelde generische
ondervragingstalen, zijn dit puntgebaseerde tijdsruimtelijke talen. De tijdruimtelijke
gegevens worden voorgesteld als een collectie punten met een aantal ruimtelijke en één
tijdscoördinaat. Later zullen we, omdat het beschrijven van gegevens als een verza-
meling punten heel wat wiskundig inzicht van de gebruiker vergt, talen ontwikkelen
die toelaten objecten te manipuleren.

In het eerste deel van ons onderzoek stelden we de gegevens zo ruim mogelijk voor
als toegelaten in het constraint databases model. In het tweede deel onderzoeken
we het gedrag van tijdsafhankelijke, ruimtelijke objecten die meer overeenstemmen
met het intüıtieve beeld dat men heeft van tijdsafhankelijke, ruimtelijke informatie:
een (eindige) collectie bewegende objecten. Een gegevensbank bevat een eindig aan-
tal objecten die een bepaalde vorm hebben, gedurende een welbepaalde periode in
de tijd, hun tijdsdomein, bestaan en bewegen of veranderen in de tijd volgens een
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Figuur 8.2: Deze figuur toont, op drie verschillende momenten, de doorsnede van een
vaste rechthoek (lichtgrijs gekleurd) en een verschuivende rechthoek (wit gekleurd).
Deze doorsnede, die een scalering ondergaat, is donkergrijs gekleurd.

welbepaalde bewegingsfunctie. Bovendien beperken we de ruimte tot het vlak. We
analyseren diverse klassen van vormen en bewegingsfuncties, en onderzoeken of de
daaruit samengestelde objecten goede kandidaten zouden zijn als basisobjecten voor
tijdruimtelijke gegevensbanken. Een belangrijk criterium hiervoor is geslotenheid on-
der verzameling-theoretische operaties: indien een eindige verzameling objecten tot
een bepaalde klasse behoort, behoren dan ook de doorsnede, het verschil en de unie van
deze objecten tot deze klasse? Figuur 8.2 illustreert dat de klasse van de verschuiv-
ende rechthoeken niet gesloten is voor de operatie doorsnede. We constateren dat
slechts twee (niet-triviale) klassen van objecten voldoen aan de eigenschap gesloten-
heid. De eerste klasse omvat objecten die als vorm een rechthoek hebben, waarvan de
zijden parallel zijn met de coordinaat-assen, en als bewegingsfunctie een tijdsafhanke-
lijke scaling. De tweede en meest algemene klasse omvat objecten die een driehoek
als vorm hebben, en bewegen volgens een tijdsafhankelijke affiene transformatie. We
halen ook het normalisatie probleem aan: kunnen verzamelingen van objecten op een
uniforme manier worden voorgesteld? Immers, twee verschillende verzamelingen van
objecten kunnen hetzelfde fenomeen modelleren.

We onderzoeken dit probleem in detail, toegepast op de meest algemene klasse van
objecten die voldoet aan de geslotenheideigenschap: de affien bewegende driehoeken.
Het genericiteitsprincipe in het achterhoofd houdend, eisen we dat deze normaalvorm
de gegevens slechts tot op een tijdsafhankelijke affiniteit nauwkeurig bepaalt. Aangezien
de objecten bewegende driehoeken zijn, is een affien-invariante triangulatie een geschikte
normalisatie. We ontwikkelen eerst een nieuw algoritme voor het affien-generisch tri-
anguleren van een verzameling driehoeken (of polygonen) in het vlak. Figuur 8.3
illustreert de triangulatie van een stervorm en een affien beeld van deze vorm via het
door ons ontworpen algoritme. In de literatuur bestond er slechts één ander zulk algo-
ritme, gebaseerd op een affien-invariante norm. Het door ons voorgestelde algoritme
is zeer intüıtief en efficiënt berekenbaar.

Deze triangulatie gebruiken we dan als basis voor een triangulatie-algoritme voor
tijdruimtelijke informatie. Het resultaat van dit algoritme is een opdeling van het ti-
jdsdomein van een verzameling objecten in intervallen, zodanig dat de schikking van
de objecten isomorph blijft gedurende een interval in deze opdeling. Met isomorph
bedoelen we dat de ruimtelijke triangulatie dezelfde structuur heeft. Het resultaat
van deze tijdruimtelijke triangulatie wordt nog steeds voorgesteld door middel van
ruimtelijke en tijdscoördinaten van hoekpunten. Daarom stellen we een datastruc-
tuur voor om het resultaat van ruimtelijke en tijdruimtelijke triangulaties zodanig op
te slaan dat er geen exacte coördinaten meer nodig zijn. Het resultaat is een nor-
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Figuur 8.3: De triangulatie van een stervorm (links) en de triangulatie van het beeld
van deze ster onder affiniteit van het vlak (rechts).

maalvorm die gegevens tot op een tijdsafhankelijke affiene transformatie na bepaalt.
Het bevragen van deze normaalvorm beperkt de gebruiker op natuurlijke wijze tot
het stellen van affien-generische vragen.

Vervolgens grijpen we terug naar de generische punt-talen die we ontwikkelden
voor tijdruimtelijke gegevensbanken. We veronderstellen dat tijdruimtelijke gegevens
worden voorgesteld als een, mogelijk oneindige, verzameling vlakke driehoeken die
gelijktijdig of voor of na mekaar in de tijd bestaan. Waar we voor de punt-talen kon-
den steunen op eerder onderzoek in het gebied van de ruimtelijke gegevensbanken, is
dat hier niet het geval. We ontwikkelen eerst een driehoekgebaseerde affien-generische
taal voor vlakke figuren. We tonen aan dat de gevonden vlakke driehoektaal kan
worden uitgebreid voor algemenere objecten in hogere dimensies. Vanuit praktis-
che overwegingen onderzoeken we ook of we van een mogelijk oneindige verzameling
driehoeken kunnen bepalen of diezelfde verzameling ook kan worden voorgesteld ge-
bruik makend van een eindig aantal driehoeken. Het eerder ontwikkelde triangulatie
algoritme voor ruimtelijke figuren helpt ons deze vraag positief te beantwoorden. Na-
dien stellen we driehoekgebaseerde tijdruimtelijke ondervragingstalen voor, voor de
genericiteitsklasse van de tijdsafhankelijke affiene transformaties, maar ook voor de
snelheid- en versnelling- bewarende transformaties, die we in het eerste deel van dit
werk identificeerden.

We besluiten deze thesis met een samenvatting van de beschreven onderzoeksre-
sultaten. Tenslotte wijzen we op enkele interessante mogelijke voortzettingen van het
in deze thesis beschreven onderzoek.


