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Chapter 1
Introduction and Research Motivation

1.1 INTRODUCTION

1.1.1 BACKGROUND

Obviously, the main objective for scientific and academic researchers all over the
world is to promote and achieve progress and innovation through research. The
mainspring for this common worldwide goal is to improve the standard of living
and/or to increase the general intellectual property of society as a whole. While
some may argue that the added value of one research domain is more limited in
terms of added economic value than the other, the contribution of transportation
research towards the society as a whole is significant.

In a research report by the United Nations (United Nations Economic and Social
Council, 2001), it has been postulated that the transport sector accounts for
about 25 per cent of the total commercial energy consumed worldwide and that it
consumes approximately one half of the total oil produced. The International
Energy Agency (IEA) predicts that the transport sector will overtake industry as
the largest energy user by 2020 (SUT Partnership, 2002).

Unfortunately, the sector has major negative economic, social and environmental
side effects. At the environmental level, transport has proven to be the source of
nitrogen oxides, sulfur oxides and other volatile organic compounds, all which
have negative environmental and health implications. Pollution, environmental
degradation, space consumption and green house gases are receiving increasing
attention as the immediately detectable externalities of transport and land-use
development patterns. At the economic level, accidents and congestions, traffic
gridlocks, stress from pedestrian and vehicular conflict, inefficient public
transport and urban sprawl are all associated with unsustainable transport
systems that indirectly represent costs to society. At the social level, recent
research reports seem to suggest that in areas where public transport is often
second-rate or absent and where the levels of car ownership are significantly
lower, a higher degree of risk for social exclusion is perceived (Transport and
Social Exclusion Workshop, 1998). Whereas a good transport system widens the
opportunities to satisfy interaction needs, a poorly connected transport system
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limits economic and social development (Ortdzar and Willumsen, 2002). The
transport system thus allows individuals to trade time for space when moving to
(activity) locations (Miller, 2003; Rietveld, 1994).

It is clear that all these externalities adversely affect sustainable development.
The concept of sustainable development usually refers to the interplay between
human society and the environment, with the specific goal to meet the needs of
the present without compromising the ability of future generations to meet their
needs. While this might be an all-encompassing term, the concept in itself has
been widely accepted as a recommendable, if not obligatory planning tool by
national governments and international bodies. Rising concerns over these
increasingly intolerable externalities have generated particular interest in how
transport planning policies might at least moderate the pressures in growth in
personal mobility and support the principles of sustainable development (Barret,
1996; Salomon et al., 1993; European Commission, 2001).

1.1.2 TRANSPORT PoLICY AND MODELLING

Originally, transport planning policies focused on mastering the massive growth
in car mobility. These policies were adopted in an immediate response to the
predicted growth in (car) mobility. The estimation and forecasting of travel
demand and behaviour were handled by a standard methodological approach,
commonly referred to as the four-step modelling approach (Ruiter and Ben-Akiva,
1978). This approach was mostly chosen for its convenient mathematical calculus
and for its ability to support the policies of infrastructure expansion (Wilson,
1967, Ortazar and Willumsen, 2002). However, the public scrutiny of prediction,
the substantial errors in model forecasts, and the shift in emphasis from long-
term investment-based strategies to shorter-term demand-driven solutions, have
contributed to the increasing criticism from which these methodologies for
predicting travel demand have suffered during the 1980s (Jones et al., 1983).
Despite this, improved four-step models still remain frequently used by
practitioners to current date, due to their simplicity and ease of understanding.

However, increased concerns about relatively recent phenomena such as
congestion, emission and changing land-use patterns, have motivated
governments to consider policies aimed at reducing and controlling them (Dijst,
1997). These policies are commonly referred to as travel demand management
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(TDM) measures, which objective is to (i) alter travel behaviour without
necessarily embarking on large-scale infrastructure expansion projects, (ii)
encourage better use of available transport resources and (iii) avoid the negative
consequences of continued unrestrained growth in private mobility (Krygsman,
2004). Examples of such measures are the spreading of peak-period traveling
through relaxing working, school and shopping hours, congestion charging, and
the like. In order to effectively implement and analyze these policy objectives, an
increasing amount of awareness emerged with respect to the need for improved
understanding of travel behaviour. Obviously, the four-step methodologies that
were adopted at that point in time and that were mainly focused on policies of
infrastructure expansion, were insufficiently able to achieve this. This resulted in
a need for travel demand models that embody a realistic representation and
understanding of the decision-making process of individuals and that are
responsive to a wider range of transport policy measures.

As some initial modelling efforts slowly started emerging in this field, the use of
transportation models to back up transportation policies even became required by
law (especially in the United States). This legislation includes the Clear Air Act
Amendments (CAAA), the Intermodal Surface Transportation Efficiency Act
(ISTEA), and ISTEA's successor, the Transportation Equity Act for the Twenty First
Century: TEA-21. However, other initiatives, such as the Travel Model
Improvement Program (TMIP), which was established by the Federal Highway
Administration; the Federal Transit Administration; the Office of the Secretary,
U.S. Department of Transportation; and the U.S. Environmental Protection
Agency, have been introduced specifically to encourage improvements in land-use
and transportation modelling. European policies are lagging a bit behind when
compared to the United States, but the topic slowly starts appearing on multiple
European research agendas. For instance in the Scandinavian countries, there is
TLEnet, the Nordic Research Network on Modelling Transport, Land-Use and the
Environment. A good example in Europe is also the ministry of Transportation,
Public Works and Water Management in the Netherlands that actively supports
improvements in land-use and transportation modelling, by means of advanced
modelling techniques such as the activity-based approach that has been
propagated in this dissertation. Following these trends, similar (activity-based
modelling) initiatives have recently started in Switzerland (Raney et al., 2003b),
Sweden (Algers et al., 2005) and Belgium (Janssens and Wets, 2005; Janssens et
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al., 2005g). Given the significant consequences that transportation policies may
have, transportation models are thus often used, with or without a legal
imposition.

1.1.3 THE TRAVEL DEMAND NATURE

The major insight that enabled researchers to gain a better understanding of the
individual decision-making process is the idea that travel demand is derived from
the activities that individuals and households need or wish to perform. Travel is
merely seen as a means to pursue goals in life but not as a goal in itself.
Therefore, modelling efforts should merely concentrate on modelling activities or
on a collection of activities that form an entire agenda which triggers travel
participation.

Travel should therefore be modelled within the context of the entire agenda, or
in other words, as a component of an activity scheduling decision. The concept of
activity scheduling is an important one. A simple example will clarify this (see
also Figure 1.1).

Assume a female person spends time at home in the morning, where she has
breakfast. Hereafter, this person travels to work by car where she arrives at 9 AM
and where she works throughout the day till 17.15 PM. Then this person heads for
home, arrives there at 17.30 PM and spends the whole evening at home. It is
illustrated in this simple example that this person has a certain schedule of
activities and that travel is merely a component of the activity scheduling

N

Time 4 Simple tour Complex tour
21.00
Home Long Term dential Decision
185 Shopping Medium-Term Activity Programme
% — Pick up-child Long Term Household Structure
Work Long Term Lifestyle
el Sport activity Medium-Term Activity Prog
Work
900 / .
;:g Drop off child
Home
Home “ Work Home -~ Work Urban Space ......ccervmnescd Given Land Use & Urban Form

Figure 1.1: An example of an activity scheduling decision
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decision. Alternatively, activity scheduling can also be considerably more
complex, containing several subtours within the daily schedule. An example is
shown in the right part of Figure 1.1. Complexity further increases by several
socio-demographic or personal events that may trigger this change in behaviour.
In short, traffic patterns are the manifestation of the implementation of activity
programs over time and space. In turn, activity patterns emerge as the interplay
between the institutional context, the urban/physical environment, the
transportation system and individuals” and households’ needs to realize particular
goals in life and to pursue activities (Ben-Akiva and Bowman, 1998). This
understanding has lead to the formulation of the activity-analysis framework. The
fundamental contributions of Hagerstrand (1970), Chapin (1974) and Fried et al.
(1977) are the undisputed intellectual roots of activity analysis. Hagerstrand has
put forward the time-geographic approach that characterizes a list of constraints
on activity participation. He made a distinction between “capability constraints”
(e.g. a need for sleeping and eating), “coupling constraints” (e.g. dinner with
the family assumes that all members of the household are present at the same
place and time) and “authority constraints” (e.g. opening hours of shops). This
theory postulates that individuals live in a space-time prism in which they can
only function by being in different locations at different points in time and by
experiencing the time and cost of travel as well as the above listed constraints.
Chapin has identified patterns of behaviour across time and space and is more
concerned with opportunities and choices instead of constraints. The theory
postulates that activity demand is motivated by basic human desires such as ego
gratification and social encounters. This theory has later been modified by Fried,
Havens and Thall (Fried et al, 1977) who have dealt with some more factors
including commitments, capabilities and health. These contributions came
together in a study of Jones et al. (1983), where activities and travel behaviour
were integrated. This was the first initial attempt to model complex travel
behaviour.

In order to summarize the above, the work of McNally (2000) can be cited, in
which he has listed 5 themes that characterize the activity-based modelling
framework:
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(i) Travel is derived from the demand for activity participation;

(ii) Sequences or patterns of behaviour, and not individual trips are the

relevant unit of analysis;

(iii)Household and other social structures influence travel and activity

behaviour;

(iv)Spatial, temporal, transportation and interpersonal interdependencies

constrain activity/travel behaviour;

(v) Activity-based approaches reflect the scheduling of activities in time and

space.
Activity-based approaches to transportation forecasting therefore aim at
predicting which activities are conducted where, when, for how long, with whom,
and the transport mode involved. Taking all this into consideration, it is argued
that the activity-based framework to travel demand modelling is one of the most
detailed frameworks in which travel can be analysed as a daily pattern of
behaviour, related to and derived from differences in lifestyles and the activity
participation among individuals.

1.1.4 TRAVEL DEMAND MODELS

While a multitude of modelling approaches have emerged over the years, travel
demand models can be classified in a number of different ways. In this section, a
distinction is made between activity scheduling and simulation models
(Timmermans, 2001). Activity scheduling models involve the application of well-
developed theoretical constructs to empirical data, with the aim of generating a
predictive model that can be used for generalization purposes and for the
evaluation of TDM. Activity scheduling models can be subdivided into
simultaneous, computational process and constraints-based models (see also
Timmermans et al., 2002). Unlike activity scheduling models, simulation models
are more “data-driven”, by relying upon marginal and conditional probability
distributions that are defined for the various choice facets of an activity pattern.
For this reason, simulation models are not primarily developed with the intention
to explicitly capture the process by which people schedule or execute activities
(Timmermans, 2001).

However, one could argue that this difference is one of degree rather than
principle, because the activity scheduling process can be indirectly derived from
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the prediction of each of the individual components of the activity pattern.
Therefore, the process of building, testing and applying a particular model is
fairly similar in both simulation and activity scheduling models. That is, both
approaches finally aim to predict all the typical facets of an activity pattern.

ACTIVITY SCHEDULING MODELS

The distinction between constraints-based, simultaneous and computational
process models is mainly a distinction in terms of the methodology that is used
for capturing decision and scheduling behaviour. The theoretical constructs
respectively originate from geography, micro-economic theory and psychological
decision process theories.

Constraints-Based Models

Constraints-based models typically examine whether particular activity patterns
can be realized within a specified time-space environment (Timmermans et al.,
2002). These models require as input activity programmes, which describe a set
of activities of a certain duration that can be performed at certain times. The
space-time environment is defined in terms of locations, their attributes,
available transport modes and travel times between locations per transport mode.
One of the attributes of interest is the opening hours of the facilities at that
location. To examine the feasibility of a certain activity programme, a
combinatorial algorithm is typically used to generate all possible activity
sequences. The feasibility of each sequence is then tested by checking whether:
(a) the interval between the end time of the previous activity and the start time
of the next activity is sufficient to perform the activity plus the associated travel
time; (b) the activity can start after the earliest possible start time and be
finished before the latest possible end time; (c) conditions about the sequencing
of activities are not violated. The number of feasible activity schedules is often
used as a measure of the flexibility that the time-space environment offers.
Geographers have played a dominant role in developing such models. One of the
first models in this tradition is Lenntorp’s (1976) PESASP model. A similar model
is CARLA, which basically is a combinatorial algorithm for generating feasible
activity patterns (Jones et al., 1983). Huigen (1986) proposed another
combinatorial algorithm, BSP. This programme is similar to CARLA in that it
evaluates the options to maintain the current activity pattern in a changed
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spatial-temporal setting. However, like PESASP, it does so by exhaustively
evaluating all possible sequences of activity/destination combinations.
Furthermore, there are minor differences with respect to how constraints are
incorporated. It allows that different trips in a chain are made by different
modes. Another difference is that it defines available time windows specifically
for destinations and not for activities. Another similar model is MASTIC (Dijst,
1995; see also Dijst and Vidakovic, 1997). Its goal is to identify the action space
of individuals, using the notion of a space-time prism. A potential action space is
defined as the area containing all activity locations that are reachable, subject to
a set of temporal and spatial constraints, including type and location of activity
bases, available time interval, travel speed and the travel time ratio. Kwan's
(1997) GISICAS can be classified as a constraints-based model as well, although
it also makes references to computational process models. Given an activity
agenda, this GIS-based system begins scheduling by fitting the activities on the
agenda into the free time a person has, and orders them into a sequence.
Activities with higher priority are ordered first, and the time constraints for
performing certain activities are also taken into account. Various search
heuristics can be specified to identify the locations where the activities can be
carried out. The system then reports a preliminary schedule and also lists the
activities that cannot be scheduled. The spatial search is based on a dynamic
identification of feasible locations. Compared to other models, constraints-based
models lack the necessary mechanisms to predict adjustment behaviour of
individuals. When faced with a changed time-space environment, individuals are
likely to adjust/reschedule their activity programmes. Consequently, policies may
often have less dramatic social impacts as these models suggest. This is
especially true in urban contexts where often many potential activity patterns
can still be conducted, even after the number of choice alternatives has been
reduced. In addition, these models do not provide any information about people’s
preferences for particular patterns (Timmermans et al., 2002).

Simultaneous Models

Simultaneous models are often based on the assumption of utility-maximising
behaviour. Individuals are assumed to schedule their activities such that their
utility is maximized. The theory is based on the assumption that choice
alternatives can be represented as bundles of attribute levels, for which a
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particular utility can be derived. Constraints are usually not included in much
detail. Activity scheduling behaviour is not addressed specifically in these models
but follows automatically from the prediction of the full activity-travel patterns
(Timmermans, 2001).

The nested logit formulation became the most frequently applied technique in
simultaneous activity-based models of transport demand. However, before this
was established, the seminal work by Adler and Ben-Akiva (1979) and by Recker
et al. (1986a, 1986b) (STARCHILD), rely upon the multinomial logit model. In
STARCHILD, an individual's schedule includes activity purpose, duration and
location. Constraints on tour-sequences such as timing, location and coupling of
activities are incorporated in an external activity program. In this activity
schedule model, scheduling is viewed as the choice between types of activity
patterns. To this end, activity scheduling behaviour is not addressed separately
but follows from the predicted activity-travel patterns. It is assumed that the
utility of a specific activity pattern consists of the utilities of its time-component
parts. The multinomial logit model was used to predict the choice between these
alternative activity patterns. Kitamura et al. (2000) presented a sequential,
simulation approach to the generation of daily activity-travel patterns. The
model, which is also referred to as the Synthetic Travel Pattern Generator (STPG),
can equally be classified as a simulation model because it relies on a series of
conditional probabilities, each representing the dependency of the attributes of
an activity on the past history of activity engagement and travel. However, the
STPG system comprises a number of model components for computing
probabilities and thereby mainly relies upon multinomial logit models.

Despite its considerably more complex nature, the multinomial logit model was
rapidly replaced by the nested logit model, in which the different facets of
activity-travel patterns are treated as nests. Kawakami and Isobe (1982, 1988,
1989) were among the first researchers who introduced this model into the field
of transportation, by conceptualizing the generation of activity patterns as
hierarchical choice processes. However, probably the most popular model in this
field is the daily activity schedule program (Ben-Akiva et al., 1996; Bowman,
1995; Ben-Akiva and Bowman, 1995; Bowman et al., 1998; Bowman and Ben-
Akiva, 1999). In this model, the starting point is a daily activity schedule, which
represents the individual's demand for activity and travel as a multidimensional
choice encompassing all the possible combinations of activity and travel. The
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choice of a daily activity pattern also determines the number of secondary tours.
The choices of secondary tour time, destination and mode are assumed to be
conditional upon the choice of a daily activity pattern. This implies thus that the
utility of a particular alternative in a higher nest is influenced by the utility of
the lower level alternatives comprising it; which is a property that can be
generalized to all nested logit models. Other nested logit models include the
work by Wen and Koppelman (1999), and PETRA (Fosgerau, 1998) which make
limiting assumptions, thereby reducing the complexity of the model.

In addition to these nested logit models, there are other attempts for capturing
decision and scheduling behaviour by means of utility-maximizing theories. A
first example is the PCATS model by Kitamura and Fujii (1998). Unlike the
previous models, PCATS assumes a sequential scheduling process in which
individuals maximize the utility associated with open time periods, subject to
three types of constraints: prism constraints, availability of travel modes and
recognition of potential activity locations. In the work by Recker (1995), the
household activity pattern is formulated in terms of variants of the pickup and
delivery problem with time windows. It is presented in a mathematical
programming form. Finally, the work by Bhat and Singh (2000; Bhat, 1999) also
uses principles of utility-maximizing behaviour by the presentation of a
comprehensive framework for activity-travel generation for workers. In Bhat and
Misra (2001, 2002), a similar approach for non-workers has been suggested. In
addition to this, Bhat also suggested a series of models to predict more separated
components of the activity scheduling decision (Bhat, 1996, Bhat and Singh,
1997). These different models came together in the CEMDAP model (Bhat et al.,
2004), which is the only operational model in this category.

Computational Process Models

The third mainstream of activity scheduling models are computational process
models. Computational process models have received increased attention over the
years because it was claimed by some scholars that utility-maximizing models do
not always reflect the true behavioural mechanisms underlying travel decisions.
The argument is that people may reason more in terms of context-dependent IF-
THEN-ELSE structures when faced with different constraints and circumstances
than in terms of truly maximizing utility-based behaviour. For this reason, several
studies have shown an increasing interest in computational process models in
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order to model activity-diary data. The IF-THEN decision rules are also called
production systems that specify which decision will be made as a function of a
set of explanatory variables (conditions). In its most basic form, a production
system is a set of IF-THEN rules which can be represented in the following form:
IF (condition=X) then (action=Y).

The activity scheduling decision or other transport-related decisions are
represented as the outcome of such a production system, which consists of
several of these decision rules.

The SCHEDULER computational process model, developed by Garling et al. (1989),
is the first conceptual framework for understanding the process by which people
organize their activities. It was later implemented by Kwan (1997). However,
both models are not yet fully operational models.

The AMOS model (Pendyala et al., 1995;1998) is a third example of a typical
computational process model. AMOS is an activity-based model that not only tries
to simulate the scheduling but also does the adaptation of schedules based on a
learning process in which people gain knowledge about the new travel
environment. It was one of the first models that considered the option of
rescheduling (see also Joh, 2004), at least in a conceptual form, but the model
has not been fully operationally implemented to current date. AMOS was applied
in papers by Kitamura et al. (1995) and by Pendyala et al. (1997).

Another model that bears some resemblance with AMOS is the SMASH model
(Ettema et al., 1994;2000). SMASH fully concentrates on the process of activity
scheduling by adding, deleting or substituting an activity in the schedule or by
stopping the scheduling process.

The first fully operational computational process model is the Albatross (“A
Learning-Based Transportation Oriented Simulation System”) model developed by
Arentze and Timmermans (2000). Albatross can be considered as a rule-based
system that predicts activity patterns. The proposed scheduling process model in
Albatross intends to simulate how individuals frame choices and arrange them
into a sequence when they schedule their activities. The scheduling is assumed to
be performed in a priority based manner, where the schedule position and timing
attributes of higher-priority activities tend to be scheduled first and, if there is
space left in the schedule, lower-priority activities are considered next. Albatross
considers a pre-defined sequence of choice facets based on an assumed priority
ranking of activities by type and an assumed priority ranking of activity
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attributes. A more thorough discussion of the Albatross model is provided in
Chapter 2.

Recently, another model has been made operational for the State of Florida under
the name FAMOS: Florida’s Activity Mobility Simulator (Pendyala, 2004). FAMOS is
a comprehensive multi-modal activity-based micro-simulation system that
simulates activity and travel patterns at the level of the individual traveller.

SIMULATION MODELS

The subtle difference between activity scheduling on the one hand and
simulation models on the other hand, has lead to some discomfort in the use of
terminology when describing a particular model in the research literature. It
occurs frequently that activity scheduling models use the term “simulation”,
while simulation models sometimes pretend to “schedule” activities in time and
space. In this section and throughout this dissertation, a number of differences
between both approaches have been advanced. The description of the differences
will help to understand the fundamental reasons for undertaking the research
that has been carried out throughout this dissertation (see also section 1.2).

The first difference was already mentioned previously, i.e. unlike activity
scheduling models, simulation modems are not primarily developed with the
intention to explicitly capture the process by which people schedule or execute
activities. In other words, this means that the subsequence by which people
arrive at their scheduling decision (e.g. first making a transport mode decision,
than an activity decision, than a timing decision, etc.) is not explicitly modeled.
This argument however, is not distinctive since it should be recalled from the
previous section that there are also several simultaneous activity scheduling
models which also did not explicitly model scheduling processes. Indeed, the
activity scheduling behaviour naturally followed from the prediction of the full
activity-travel patterns for some activity scheduling models, and this is equally
the case for simulation models.

A second important difference is related with the above-mentioned. Given the
fact that simulation models are less concerned with activity scheduling
principles, they rely more on probability distributions than on well-developed
theoretical constructs. This does not imply that the techniques which are used
are inferior, but often, simulation models rely more upon the data for deriving
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decision-theories and to a lesser extent on other a-priori made assumptions or
constraints.

This property brings about a third difference, which is that simulation models
focus on the evaluation of other TDM than activity scheduling models. This might
look odd at first glance since both models predict the same facets (which, where,
when, with whom, with which transport mode). Probably, this can be best
understood by means of an example. Consider a scenario implementation where a
change of the start time of the work episode is proposed for 65% of the
population. A feasible way to have such a measure evaluated by an activity
scheduling model, is the implementation of a shift in the fixed schedule for work
activities after and before a particular point in time (change of start time) for
that particular subset of the population. This is more difficult to model by means
of a simulation model because of the lack of an explicit schedule of (fixed)
activities. Generally spoken, a simulation model will have more difficulties with
all kinds of schedule-specific scenarios (another example might be a shift in
working hours during a workweek). However, there are other TDM than can be
equally well analysed by means of simulation models. An example is the
evaluation of population scenarios, such as for instance a change in the
composition of single-adult households, household income, car possession, etc.
on activity-travel patterns.

While this seems to be an important deficiency, the existence of simulation
models is certainly warranted. At a minimum, simulation approaches can be
reduced to activity pattern generation models, which can replace conventional
trip generation models by converting the assigned patterns to trips. More likely,
simulation approaches could replace both the trip generation and distribution
models by producing either static (by aggregating time slices) or dynamic
(minute-by-minute) origin-destination trip-tables through the simulation of fully
specified activity-travel patterns with all activity-scheduling attributes, including
locations that correspond to actual geographical locations (Kulkarni and McNally,
2001). Static trip tables can then be input into the mode choice and route choice
stages of conventional models, while the dynamic trip tables can serve as input
to dynamic traffic assignment or traffic simulation models with the aim of
replacing the conventional forecasting processes which are used in these traffic
or conventional models. The most important reason for this integration is that
the simulation model representation is mostly fairly easy (relying on probability
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distributions), and is often easier when compared to activity scheduling models.
In this respect, simulation models can be some sort of catalyst in making the
transition of conventional four-step methodologies towards activity-based models
which practitioners often perceive as considerably more complex. This is an
important argument in favour of simulation models, certainly in an era where an
increased concern seems to exist to move the activity-based framework to
practice.

Related with this, is the more recent idea of an integrated multi-agent (traffic-)
simulation system (Raney et al.,, 2003a). The idea here is that a systematic
inclusion of transportation network impedance will contribute to better and more
robust models. Thus, if one can generate detailed travel plans for each individual,
these simulations can execute these plans, while recording for example where
conflicts in the form of congestion, delay the plans (Esser and Nagel, 2001).
Several groups are developing simulations which can microscopically simulate
whole metropolitan areas (e.g. DYNAMIT, 2000; Mahmassani et al, 1995
(DYNASMART); Rickert, 1998 (PAMINA); Gawron, 1998 (LEGO); Rakha and Van
Aerde, 1996 (INTEGRATION); Esser, 1998 (OLSIM)). However, the most ambitious
and best-known project in this field of research (inclusion of traffic) is TRANSIMS
(TRANSIMS, 2003, Smith et al., 1995). The goal of the Transportation Analysis
and Simulation System (TRANSIMS) project is to develop a system that combines
the functionalities of activity-based travel demand generation, modal choice and
route assignment and microsimulation, using advanced methodologies. TRANSIMS
predicts trips for individual households, residents, freight loads and vehicles
rather than for zonal aggregations of households. Progress has been reported
along three lines: creating synthetic populations, simulation of traffic, and
generating activity-based transportation demand. The model has caught a lot of
attention for its traffic micro-simulation. This module mimics the movement and
interactions of travellers throughout a metropolitan region’s transportation
system, through the execution of their trip plans using a cellular automata
model.

But also apart from this detailed inclusion of traffic-simulation, there is a fairly
large group of scholars who strongly encourage the use of micro-simulation
techniques as such. For instance, Vovsha et al (2002) claim that micro-
simulation models allow for much greater realism in the classification of travel
demand, when compared to stratified models. Results of validation studies by
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Kitamura et al. (1997, 2000) (STPG-model; see also under Activity scheduling
models) also show that individuals’ daily travel patterns can be practically
synthesized by micro-simulation. Another micro-simulation application is the
RAMBLAS model (Veldhuisen et al., 2000a, 2000b). RAMBLAS aims to assess the
intended and unintended consequences of planning decisions related to land use,
building programmes and road construction for households and firms. Given the
forecasted spatial distribution of dwellings, the distribution of households over
dwellings, and the transport network, activity patterns of individuals and
households and related traffic flows across the day on the regional road network
are predicted. Another application is that by McNally (1995, 1999) and by
Kulkarni and Mcnally (2001), in which the use of representative activity patterns
(RAP) has been proposed to simulate activity facets such as purpose and duration
by drawing from the distributions that are associated with the target pattern. In
the identification of RAP’s, segmentation (clustering) approaches can be adopted
to derive more homogeneous activity patterns, based on variables that are
assumed to influence the activity-travel pattern (for instance socio-demographic
variables). The identified RAP’s are then used for simulating and predicting new
activity patterns. Other applications are the MIDAS model (Kitamura and Goulias,
1991; Goulias and Kitamura, 1992; 1996) and the work by Pribyl and Goulias
(2004) where individual's daily activity-travel patterns are simulated,
incorporating the interactions among members of the household. Cluster analysis
is used to classify activity patterns. Decision trees, particularly the CHAID
algorithm, are used to take into account the personal and household
characteristics. Early micro-simulation work include Brail (1969), Hemmens
(1970), Sparmann (1980), Swiderski (1982), Stopher et al. (1996).

In addition to the above-mentioned, there are some authors who have adopted
simulation techniques as a way of developing synthetic datasets, which can be
used in other application areas (Greaves and Stopher, 2000; Stopher et al., 2003)
in an effort to reduce the costs of data-collection, as far as permitted by the
temporal and spatial resolution of the data.
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1.2 RESEARCH MOTIVATION

The previous section provided the context for the research motivation and for the
methodological contributions that have been advanced in this dissertation.

1.2.1 ACTIVITY-SCHEDULING VERSUS SIMULATION MODELLING

While the activity-based research area made a significant progress during the last
decade, empirical comparisons and benchmarking studies between different types
of models are extremely rare. One of the exceptions, comparing the utility-based
framework with computational process models, is the work by Arentze et al.
(2000). In addition to the absolute performance indicators of a particular model,
these relative performance indicators are extremely important because they shed
light on the more profound and detailed predictive performance of a system.
More specifically, it is the only way to get some idea about whether the lack-of-
fit of the model is the result of the remaining noise in the data or whether it is
due to the model specification as such. Comparisons based on empirical data
between the more theory-driven activity scheduling models and the data-driven
(micro-)simulation models are, to the best of our knowledge, non-existing. This
was one of the main incentives for undertaking the research that has been
described in this dissertation.

1.2.2 EVALUATING DESCRIPTIVE MACHINE LEARNING

However, benchmarking studies were not only conducted between simulation and
activity-scheduling, also within each area, alternative techniques and algorithms
have been evaluated. In order to achieve this, the Machine Learning domain was
taken as a starting point.

Machine learning is a multidisciplinary research field providing a multitude of
induction algorithms which aim at acquiring knowledge by learning patterns from
data. The domain has assisted researchers all over the world in a large number of
application areas in the development of answers towards highly complex
problems. The reason for relying on this knowledge domain was that the
prediction of travel behaviour in fact implies both the scientific understanding of
the mechanisms underlying thought and intelligent behaviour and the possibility
to embody this in machines. Machine Learning is particularly well suited for this.
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While Machine Learning was relatively unexplored until a couple of years ago in
transportation, the area of computational process modelling has introduced
several techniques and algorithms that originate from this field. Recently, the
area is gaining increased popularity in transportation. It can also be used for
solving single facet decision problems, such as the transport mode decision
problem.

However, the techniques which are propagated in these researches are often

quite straightforward predictive learning algorithms. Machine learning can be

Table 1.1: Overview of Machine Learning tasks and techniques

Machine Task Important Technique Example
Learning Characteristic
Supervised Regression Predicting a Linear regression, Predicting sales
(predictive) continuous regression trees, amount
machine variable neural networks,
learning support vector
machines
Classification | Predicting a Decision trees Predicting
categoric (CHAID, C4.5), bankruptcy, transport
dependent Neural networks, mode choice, ...
variable Rule induction (One
R), support vector
machines
Unsupervised Clustering Identifying k-means clustering, | Market segmentation
(descriptive) homogeneous latent class
machine subpopulations | clustering, Kohonen
learning neural networks
Association | Identifying Association rules, Identifying
analysis relationships (Classification based | frequently bought
between items/ | on Association rules | products
variables (CBA))
Sequence Identifying Sequential Identifying time
analysis relationships association rules, sequence of purchase
between items | Markov Chains
over time
Dependence | Identifying Bayesian networks, | Identifying
analysis dependencies graphical methods | dependencies
between items/ between
variables demographic
_________________________________________________________________________ parameters .
(Reinforcement | Multiple Learning Q-learning, Grid World, Elevator
Learning) tasks through Temporal differences | dispatching, Network
experience/ method routing
interaction




18 Chapter 1

subdivided into supervised (predictive), unsupervised (descriptive) and
reinforcement learning. Some traditional characteristics and examples have been
shown in Table 1.1 for each of these machine learning tasks. Predictive machine
learning techniques predict the future value of a dependent variable based on
patterns learnt from past data. Regression and classification are among the most
popular predictive machine learning techniques. In supervised learning, given a
set of cases with class labels, the aim of the supervised learning algorithm is to
build a model (called classifier) to predict future data objects for which the class
label is unknown. Supervised machine learning is perhaps the most frequently
adopted type of learning, and has been used in a plethora of application domains
such as for the prediction of bankruptcy, credit scoring, sales, etc.

In this dissertation, when considering improvements to the area of simulation or
activity scheduling modelling, it was examined whether advanced and more
descriptive oriented learning algorithms can offer a contribution in these
domains. Descriptive machine learning tries to identify patterns or relationships
present in the data without presuming a specific dependent variable. Descriptive
machine learning are also described as unsupervised learning mechanisms.
Unsupervised learning can be defined as the search for a useful structure without
labeled classes, optimization criterion, or any other information beyond the raw
data. Unsupervised learning can help researchers to discover the whole set of
probabilistic relationships existing within the data (association discovery) instead
of only developing a learning function for one specific dependent variable
(supervised learning). It can be seen from Table 1.1 that unsupervised machine
learning consists of several tasks such as clustering, association-, sequence- and
dependence analysis. Reinforcement learning can in fact also be seen as a form of
unsupervised learning, in the way that the only supervisory signal is the reward
that is received when it achieves a goal. Having outlined these general ideas and
machine learning concepts behind the dissertation, the methodological
contributions and choices that were made for both activity scheduling and
simulation models can be defined as follows.



Introduction and Research Motivation 19

1.3 CONTRIBUTIONS OF THE DISSERTATION

1.3.1 ACTIVITY-SCHEDULING MODELS

As mentioned before, within the area of activity-scheduling models,
computational process models are the most susceptible to contributions that
originate from the field of Machine Learning. Although it is hard to find a
detailed comparison in literature about the functionalities of the different
activity scheduling models, some comprehensive reviews are given by
Timmermans (2001) and by Guo and Bhat (2001). Based on these reviews, it
becomes clear that Albatross is one of the most complete activity-based
computational process models to date. Albatross was also the first fully
operational activity-based system. The property that Albatross has been
developed for the ministry of Transportation, Public Works and Water
Management in the Netherlands, probably contributed to this practical
orientation. Especially the next version of the system (see Arentze and
Timmermans, 2002; Arentze et al., 2003), which currently has passed some final
test procedures, has the possibility to evaluate a huge number of policy decisions
and TDM. It is obvious that Albatross has received significant appreciation and
attention in the scientific literature (Axhausen, 2000, Moons, 2005). Taking
these arguments into consideration, it is fair to say that the Albatross model is a
justified starting point for this dissertation.

In the original Albatross model, a standard supervised machine learning approach
has been adopted, based on a decision tree classification method (CHAID) that
has been originally proposed by Kass (1980). Other simple supervised
methodologies that have been tested within this framework include C4.5, One R,
Zero R and Naive Bayes in a study by Moons (2005). The latter study also
examined the effect of feature selection, a well-known principle in Machine
Learning, in Albatross. The Albatross model, the data and a short description of
the supervised models that already have been tested within the context of
Albatross are introduced in Chapter 2.

In order to contribute to the current state-of-the-art, the idea was examined to
evaluate the effect of using unsupervised (descriptive) learning systems as the
basis for coming to supervised (predictive) learning for the different facets (see
Chapter 2) of this transportation model. While this idea of integrating both
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approaches is still seriously lacking in transportation, it is becoming a more
active research topic that is gaining increasing popularity, with some promising
predictive results in the field of machine learning (see also Chapter 3). One
possible explanation for this increased popularity is that these algorithms are
searching globally and are not looking for one specific target attribute. They will
therefore contain the full set of plausible rules, in which more information can be
incorporated. However, this should be interpreted with caution, because the
comprehensiveness and the complexity of dealing with the often large number of
rules have lead to difficulties and (accuracy versus generality) trade-off questions
that are part of a lot of research which is currently going on. In order to deal
with this problem, we have also advanced the methodological state-of-the-art by
proposing adaptations to these original learning systems. A schematic overview
of these contributions is illustrated in the left part of Figure 1.2.

In Chapter 3, a classification based on associations (CBA) algorithm is
introduced. CBA is one of the best known examples about how descriptive and
predictive learning systems can be integrated. The technique focuses on a limited
subset of association rules, i.e. those rules where the consequent of the rule is

Computational Process Modelling Simulation Modelling (New model)

(Albatross)

Chapter 5:
« A more efficient calculation of transition

Chapter 3: matrices in Markov Chains
« Original CBA + Low- and high-order dependencies in
« Adapted CBA (Intensity of Implication) Markov Chains
« Adapted CBA (Dilated Chi-Square) + A heuristic simulation framework
+ Temporal and socio-demographic
Chapter 4: segmentation scheme for transition
- Bayesian Networks (sensitivity-analysis matrices in Markov Chains
and prediction)
« BNT Chapter 6:

« Reinforcement learning technique for the
determination of time and location
information based on the generated
activity-travel sequence

Chapter 7:
Comparison

Figure 1.2: A schematic overview of the contributions of the dissertation
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restricted to the classification class attribute. Next, the prototype algorithm has
been adapted by coupling it with two other measurements of the quality of
association rules: i.e. intensity of implication and an own-developed measure
“dilated chi-square”. As mentioned before, the aim of these adaptations is to
generate a more accurate and compact decision list, because this is one of the
important limitations of integrated approaches as these to current date. These
novel contributions have first been tested on several machine learning datasets
(see also Janssens et al., 2003a; 2004a; 2005b; Lan et al., 2004; 2006) and later
also within the context of the Albatross model (see Janssens et al., 2005¢). The
second part of Chapter 3 elaborates on these contributions and results.

In the first part of Chapter 4, the use of Bayesian networks (BN) has been
evaluated. The descriptive nature of Bayesian networks is an important
characteristic of this technique (see also Janssens et al., 2003b), which makes
that BN are more powerful than CBA because they enable us to conduct detailed
sensitivity analyses. This will be illustrated by means of an empirical application.
Subsequently, Bayesian networks will be tuned for classification purposes and
they will also be tested within Albatross (see also Janssens et al., 2004e; 2004f).
In the second part of Chapter 4, the technique is integrated with a decision tree
structure (referred to as BNT), in which Bayesian networks are used as the
information source for deriving a decision tree. Again (and similar to adapted
CBA), the aim of this novel contribution (see also Janssens et al., 2004b; 2005f)
is to generate more accurate and compact decision lists than from the
straightforward integration of supervised and unsupervised learning.

1.3.2  SIMULATION MODELS

As opposed to activity scheduling models, we did not rely upon an existing model
within the area of simulation models. The reason is the lack of fully operational
and freely available micro-simulation models and the finding that -apart from
work by Kitamura et al. (2000)- there is no simulation model to current date that
explicitly incorporates sequential information in the generation of activity-travel
patterns. We found that this may be a deficiency, especially because some
“skeleton” activity structure (involving sequence information) is often assumed
(and is thus not based on information that is incorporated in the data) and
imposed on most simulation models for generating the additional facets of the
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model. Vaughn et al. (1997) also emphasized the importance of an appropriate
skeletal structure which imposes constraints and simplifies the simulation of the
remaining facets (timing, location, etc.) of the activity-travel pattern. A
schematic overview of the contributions for simulation models can be found in
the right part of Figure 1.2.

As a first contribution, we have developed and evaluated the implementation of
an adapted Markov Chain modelling heuristic and simulation framework in
Chapter 5. A Markov Chain is a technique for sequential pattern recognition,
which is a common task in unsupervised learning. The presented approach is
innovative (see also Janssens et al., 2004c; 2004d; 2005c; 2005d) in storing the
sequential information in ‘activity bundles’, a term which is introduced to reflect
that the information which is kept here represents low- and/or high-order
combinations of activities that typically sequentially occur in one particular
activity pattern. By doing this, transition probabilities can be calculated in a
modified and more efficient way than by means of traditional Markov Chains and
the computation of high-order dependencies remains computationally feasible. In
addition to this, a novel segmentation procedure has been proposed that is able
to cluster sequential activity-travel combinations in terms of socio-demographic
or other explanatory information. The segmentation scheme that has been
developed is a modified version of a decision tree approach, in the sense that
sequential probability information can be used during induction and in the leaves
(terminal nodes) of the tree as apposed to the traditional way of only using one
single classification attribute (represented by one dependent variable). This type
of clustering/segmentation is novel and it may generate promising future
applications, that can go beyond the application area of transportation.

While Chapter 5 provided us with a sequence of activities and travel modes, that
are derived from sequential dependencies that are present in data, the aim of
Chapter 6 is to allocate time and location information to this framework in order
to end up with a more consistent and complete activity pattern. To this end, a
reinforcement learning technique has been advanced which makes it possible to
allocate location and time information through “trial and error” within a
particular space-time prism. Reinforcement learning goes back to the very first
stages of artificial intelligence and machine learning and has only been rarely
applied within the research area. Consistent with previous research contributions
of the dissertation, the reinforcement learning approach is unsupervised in
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nature. The first contribution of the chapter is the adaptation, evaluation and
elaboration of a recently proposed approach (Charypar and Nagel, 2005) towards
real empirical data, including a more complex order of activity-travel
combinations, the non-restriction to a fixed number of limited activities and the
incorporation of real-world and non-fixed travel times. The most important
contribution however, is the incorporation of location information in a
reinforcement learning environment. As a third contribution, time and location
allocation were integrated, which means that the reinforcement simultaneously
solves the optimal location and time allocation decision.

The performance of the individual components of the simulation model was
evaluated separately in Chapters 5 and 6. While these analyses give us a good
idea about the predictive performance of the individual facets of a model, a more
thorough validation is required in an integrated model. This validation has been
provided in Chapter 7. In this final chapter, results have been presented that
compare the predicted activity patterns of the simulation model with the
predicted activity patterns of the Albatross model. The learning algorithms that
have been used within Albatross and that were chosen for comparison were
selected from the research that has been conducted in Chapters 3 and 4. As a
result of this, the contributions of the dissertation were united and a competitive
environment was created for both models.






Chapter 2
Data and Architecture of the Albatross Model

2.1 INTRODUCTION

In this chapter, a description of the architecture of the Albatross model is given
in order to improve the general understanding and provide the necessary
background of the system. Albatross consists of several components that perform
specialized functions in the scheduling and the schedule execution process. In
our overview, we will focus on the core components of the system, i.e. the
Scheduling Engine and the Decision Unit. The latter will be subject to research
contributions of Chapters 3 and 4 that were already introduced previously.

Along with the description of the Scheduling Engine and the Decision Unit, an
overview of the Albatross-data is given. These data will be used throughout the
entire dissertation (also in Chapters 5 and 6), in order to make a feasible
comparison. We are grateful to the Urban Planning Group at the TU Eindhoven for
providing these data. The chapter concludes with a validation of the predictive
capabilities of the model.

2.2 THE ALBATROSS ARCHITECTURE

In order to give a general overview of Albatross, this section discusses the main
features of the system. A more detailed description of the Scheduling Engine and
the Decision Unit will be provided in sections 2.2.2 and 2.2.3. The overview that
is described in these sections mainly relies upon the work by Arentze and
Timmermans (2000).

2.2.1 MAIN FEATURES

The Scheduling Engine is one of the main components of the Albatross system. At
various moments in the scheduling process, decisions and information about
options and conditions for decisions are required. To this end, the Scheduling
Engine identifies which condition information is relevant for the Decision Unit,
activates the appropriate analytical and rule-based models in the Inference
Engine (see infra) to obtain the information and translates the decisions that are
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returned by the Decision Unit into appropriate operations on the evolving
schedule.

The Decision Unit incorporates for each step in the scheduling process a set of
decision rules that represent conditional preferences of individuals with
constraints regarding the decision options. Only the relevant condition variables
(see sections 2.3.1-2.3.6) and decision options are defined in the program code
of the system. All decision rules together form a rule-base, which is in fact
external to the system and which can be loaded from data files. As mentioned
before, in the present system, rules are derived from the data based on principles
of supervised learning.

The third main part of the system is an Inference Engine, which consists of a
collection of logic-based rules, representing basic knowledge about scheduling
constraints. Unlike the decision rules, the Inference Engine is a fixed part of the
system, reflecting the assumption that the knowledge it conveys is basic and
does not vary across individuals or environments. The incorporated logic-based
rules implement dynamic constraints to determine the availability of decision
options in each stage of the process, such as for example whether or not an
activity fits in a given time slot, possible locations for the activity, etc.

The final two components of the system are a reporter and a scenario agent.
Amongst others, the reporter agent provides information to the end user with
respect to frequency and contingency analyses and the goodness-of-fit between
the observed and the predicted schedules. The scenario agent enables users to
define multiple scenarios, e.g. these that are needed for TDM. There are other
components which are not mentioned here, i.e. the simulator agent, and the
database layers. For a more detailed discussion see Arentze and Timmermans
(2000).

2.2.2 THE SCHEDULING ENGINE

The model assumes a pre-defined order of decisions, derived from an assumed
priority ranking of choice facets of activities and a priority ranking of activities
by type. Decisions are made from high to low priority for each choice facet and
within each facet from high to low priority activity. The incorporated model is
written in pseudo-code in Figure 2.1 and illustrated by means of a graphical
representation in Figure 2.2 (Arentze and Timmermans, 2000).
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Step 0: For each individual, initialise the current schedule with the given set of fixed
activities. Fixed activities are those activities for which the adoption in the schedule,
location start time and end time are taken as given (e.g. a work activity)

Step 1: For each individual and for each primary work activity, choose transport mode.

Step 2: For each individual and flexible activity:

1. Initialise an episode of activity type a by setting the earliest and latest possible start
time, the earliest and latest possible end time and minimum and maximum duration to
given values

2. choose whether an activity episode T is to be added to the current schedule

3. if Tis to be added, then

3.1. set activity type a(1)=a

3.2. choose with whom the activity is to be conducted

3.3. choose the duration of the activity

3.4. re-define the minimum and maximum duration

3.5. add it to the current sequence in an arbitrary, preliminary position

4. if an episode of a has been added, then repeat from 1 (to decide whether a next episode
of the activity is to be added)

Step 3: for each individual

1. define the initial sequence

2. for each activity and episode

2.1. choose the time-of-day for the start time of the episode

2.2. re-define start and end times, given the time-of-day choice

2.3. add to the schedule in an appropriate position and determine an initial value for the
earlier possible start time of the episode

Step 4: For each individual, determine the organisation

of trips into tours, as follows:

1. define the initial sequence

2. for each activity and episode

2.1. choose whether the activity is conducted directly after, directly before, in-between
specific activities in the sequence, or as a separate trip.

2.2. add the activity to the sequence in the position that is consistent with the choice of
trip type

2.3. if needed, initialise and add an in-home activity before or after the scheduled activity.
for each consecutive pair of fixed activities, add an in-home activity in-between the two
activities, only if the time gap after subtracting estimated travel time is larger than a pre-
defined maximum waiting time.

Step 5: For each individual and each activity episode, determine the transport mode, as
follows:

1. Identify trip-chains as any subsequence of activities beginning and ending at home, and
including at least one out-of-home activity

2. For each trip chain:

2.1 If the trip chain includes a primary work-activity, then set the transport mode equal to
the transport mode of the primary-work activity, else choose the transport mode

Step 6: For each individual, activity episode:
1. Choose the location
2. Determine the travel time

Figure 2.1: A pseudo-code representation of the Scheduling engine in Albatross
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The keyword choose indicates the positions where decision rules deliver inputs.
They are indicated by means of ovals in Figure 2.2. As said before, each oval in
the figure (decision point) will indicate a set of relevant condition variables for
that particular choice facet (see sections 2.3.1-2.3.6). The model first decides on
the transport mode for the work activity. Mode choice for work is considered the
highest-level decision because this decision determines which person can use the
car for a substantial part of the day in cases where there is only one car and more
than one drivers' license available in the household.

The second step determines which activities and the number of episodes per
activity are added to the skeleton. Time constraints for each candidate activity
episode are initialised based on given static household and institutional
constraints, if any. When added, the with-whom and duration dimensions are first
determined before considering adding a following activity (episode). This reflects
the assumption that these two dimensions further define the nature of the
activity. For example, individuals may consider a leisure activity of long duration
together with others as qualitatively distinct from a leisure activity of short

Ernpty list — List of activities =~ Schedule

Nezxt activity MNezt activity

Mezzt activity

INeszt actiwity

Add to list

List of activities Schedule — Schedule + Mode + Location

Figure 2.2: A graphical representation of the Scheduling engine in Albatross
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duration performed alone. Duration is not exactly specified. Rather the system
chooses between typical duration classes for the activity. A duration class defines
a normal duration and a range of possible durations within that class.

The third step determines the time of day for each flexible activity in the current
schedule. This is modelled as a choice between different time periods assuming a
pre-defined subdivision of the day (e.g., early morning, late morning, around
noon, etc.). Next, the chosen time of day defines a time interval in which the
start time of the activity should fall. The system reconsiders the current position
of the activity. In some cases, the choice of time-of-day uniquely determines a
position. In other cases, there remains a choice between several feasible
positions. Then, the system decides arbitrarily.

The fourth step determines the organisation of trips into tours by choosing for
each flexible activity whether it is conducted on a Before stop (directly before
another out-of-home activity in the schedule) an After stop (directly after
another out-of-home activity), an In-between stop or on a single stop trip. The
choices made in this stage are materialised in the schedule in two ways. First,
the activity is repositioned if needed to realise the trip type. After this step, the
position of the activity is considered definite. A flexible activity being assigned a
definite position is considered a candidate for establishing a trip link as well as a
fixed activity. Therefore, the procedure also allows the choice of establishing a
trip link between flexible activities. Second, in-home activities are inserted where
needed to make the origin or destination locations of activities consistent with
the chosen trip types. The final two steps are concerned with the allocation
(choice) of transport modes and location.

When the decision engine has made a decision for each choice dimension and
when the different choice dimensions are coupled together by means of the
inference engine, a predicted activity pattern emerges for every person-day.

The present system is still open for improving the handling of shared activities,
i.e. activities that are performed jointly by different household members. In this
version, there are no mechanisms incorporated to ensure that coupling
constraints in the form of start and end times, as well as car availability between
activities in different schedules are met (Arentze and Timmermans, 2000).
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2.2.3 THE DEcISION UNIT

INTRODUCTION

For each choice situation in the scheduling procedure of Figure 2.1, the decision-
rule base includes a decision table (DT). Each DT consists of a list of condition
variables, a list of action variables and a structure that interconnects these
variables. The action variable represents the available choice alternatives for that
particular choice facet in the model. The condition variables, possible condition
states per variable and the action variables are predefined in a DT. Given this
fixed structure, every alternative learning mechanism that is evaluated within
this context, needs to be converted to the decision table formalism. A brief
explanation is given about this formalism, because of the relevance of these
conversions (from a set of decision rules to a DT formalism) in this dissertation.
In the second subsection, a couple of alternative methods were given that have
been tested in Albatross for inducing decision rules from empirical data.

DECISION TABLE FORMALISM

The DT has been introduced in the late fifties as a tool to structure complex
decisions in manufacturing. DT were frequently used to verify the exhaustiveness,
the exclusiveness and the consistency of a set of decision rules. Because of this
property, for every possible case within the domain a determined response is
returned. This behaviour is not guaranteed by means of traditional production
systems and it represents a clear advantage of DTs for any modelling purpose. An
example of a DT, taken from Arentze and Timmermans (2000), is given in Table
2.1.

The upper part of the table lists the condition subjects C, (C,=Distance; C,=Parking
Facilities) for i=1,...,c. The symbol “-“ in a condition subject represents the
entire domain of the concerned condition, implying indifference for the state of

Table 2.1: Example of a simple decision table

C1 Distance D<500 500<D<1000 D>1000

C2 | Parking Facilities - Bad Good Bad Good
Al Bike X X - - -
A2 Car - - X - X
A3 Public Transport - - - X -
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the condition. The lower part of the table contains the action subject A, (A=bike,
A,=car, A=PT) for k=1,..., a. The symbols “X” and “-“ respectively indicate that
action A, is or is not to be executed for that particular combination of conditions.
The second advantage of representing a rule set in the form of a DT, is that the
latter provides a suitable formalism for representing various types of interactions
between variables, such as conditional relevance and conceptual interaction. To
illustrate this, consider the first column in Table 2.1. This is an example of
conditional relevance, because the quality of parking facilities is relevant for the
choice of transport mode, only if travel distance is equal or larger than 500
metres. Conceptual interaction is present in the different ways of classifying a
distance. If parking facilities are good, the critical travel distance equals 500
meter (below this level bike is chosen and otherwise car). If parking facilities are
bad, the critical travel distance equals 1000 meter (below this level bike is
chosen and PT). As a result, different attribute profiles of locations can lead to
the same mode choice. Besides the traditional focus on knowledge validation and
verification stages, applications in knowledge acquisition have been reported in
previous work. See Lucardie (1994) and Wets (1998) for an extensive overview.

INDUCING DECISION RULES BY MEANS OF SUPERVISED LEARNING IN ALBATROSS

As mentioned before, in the present system, rules are derived from the data
based on principles of supervised learning. The original Albatross system uses a
standard supervised machine learning approach, based on a tree classification
method (CHAID) that has been originally proposed by Kass (1980). In CHAID, the
data are successively bisected using a predictor, preserving the ordered nature of
the categories where appropriate. CHAID operates on a nominal scaled dependent
variable and maximizes the significance of a chi-squared statistic at each
partition. CHAID proceeds in steps: it first detects the best partition for each
predictor. Then the predictors are compared and the best one is chosen. The data
are subdivided according to this chosen predictor. Each of these subgroups are
then re-analysed independently, to produce further subdivisions for analysis.
Other simple supervised methodologies that have been tested within this
framework include C4.5 (Quinlan, 1993), One R (Holte, 1993), Naive Bayes (Good,
1965) and feature selection and bagging and boosting variants of each of them
in a study by Moons (2005). The C4.5 algorithm is more commonly used than
CHAID in the Machine Learning literature. C4.5 recursively splits the sample space
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into increasingly homogeneous partitions in terms of the response variable, until
the leaf nodes contain only cases from a single response class. Increase in
homogeneity is achieved by a candidate split that is measured in terms of an
information gain ratio. We will rely on this principle for developing other
alternative methods within the course of this dissertation. The One R algorithm is
an extremely simple classifier, containing one single rule, based on the value of a
single attribute. The Naive Bayes classifier uses the naive assumption of
independence to build a conditional independence model of each attribute given
the class. The results of this study are summarized in section 2.4. They can be
used for benchmarking with our own results in the first part of the dissertation
(Chapters 3 and 4). The research presented in these chapters and the work by
Moons (2005) can thus be considered as the conclusion of a joint research effort
to explore alternative methodologies for developing rule-based models of travel
demand, using the activity diary data underlying Albatross.

2.3 THE ALBATROSS DATA

The activity diary data used in this dissertation were collected in 1997 in the
municipalities of Hendrik-Ido-Ambacht and Zwijndrecht in the Netherlands (South
Rotterdam region) to develop the Albatross model system. The data involve a full
activity diary, implying that both in-home and out-of-home activities were
reported. The sample covered all seven days of the week, but individual
respondents were requested to complete the diaries for two designated
consecutive days. Respondents were asked, for each successive activity, to
provide information about the nature of the activity, the day, start and end time,
the location where the activity took place, the transport mode, the travel time,
accompanying individuals and whether the activity was planned or not. Open
time intervals were used to report the start and end times of activities. A pre-
coded scheme was used for activity reporting. Different administration modes
were used. The response rates varied by mode of administration, and typically
ranged between 64 and 82 percent. There were substantial problems with
incomplete and inconsistent diaries. To diagnose and correct these problems of
data quality, an intelligent computer program, called Sylvia (Arentze et al.,
1999), was developed and used to improve the quality of the diary data. The
corrected diaries were used for the analyses described in this dissertation. After
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cleaning, a data set containing a random sample of 1649 respondents was
formed. The description of these data is similar to previous data descriptions by
Arentze and Timmermans (2000) and Moons (2005). The data did not only include
full diary information; there are also additional data files such as household
attribute data, facilities data, travel time and distance data that provide useful
information for analysis. We will rely upon most of these data in the remainder of
the dissertation. The data are presented in more detail in Appendix A.

In order to use this information within the context of the Albatross model,
separate datasets need to be formed. The data can be roughly separated as a
description of general variables that are used for each choice facet of the
Albatross model and a description of more specific variables per choice facet. The
general variables include household and person characteristics that might be
relevant for the segmentation of the sample, including socio-economic variables
such as household type, age group, child index and socio-economic class. The
general variables also include information about the activity program at a weekly
basis with regard to time engaged in work at the household or person level.
Finally, the availability of the car at the household level is incorporated in the
general variables. Table 2.2 summarizes these general characteristics.

The specific variables that differ per choice facet, have been summarized in the
remainder of the section and are described in detail in Appendix B.

Table 2.2: General variables used in the different choice facets of Albatross

Name Description Categories

Day Day of the week 1:Monday...7: Sunday

Csec Socio-economic class of the household 1: low...4: high

Cage Age of the oldest person in the household | 1: < 25; 2: 25-44; 3: 45-64;4:> 64
Ccomp | Household type 1: single, no work; 2: single, work

3: double, one work; 4: double,
two work; 5: double, no work
Cchild | Presence of children in the household 1: none; 2: younger than 6

3: 6-12; 4: older than 12
Gend Gender of the person 1: male; 2: female
Ncar Ratio between number of cars and number | 1: less than one; 2: one or more
of adults
Hwork1 | Hours official work of the person per week |0: 0; 1: 1-24; 2: 25-32; 3: 33-38;
4:>38
Hwork | Hours official work of the household per|0: 0; 1: 1-32; 2: 33-38; 3: 39-60;
week 4:> 60
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2.3.1 MobE For Work

As mentioned before, the choice of transport mode for primary out-of-home work
activities is considered to be the highest-level decision because this decision
determines often which person can use the car for a significant part of the day.
Especially in households where there is only one car and more than one driving
license, this decision is likely to affect subsequent decisions substantially during
the rest of the day. The transport-mode alternatives which are considered in
Albatross are: slow transport mode (walk, bike); car driver, public transport (bus,
train, taxi, etc.) and car passenger. As trips may involve more combinations of
several transport modes, the system defines mode choice as choice of the main
mode. Since we are only looking at the first decision in the schedule; public
transport, slow transport and car passenger are always available. The availability
of car driver is dependent on the presence of a car in the household and whether
or not the person has a driving license. Characteristics of the spouse and
schedule-skeleton decisions are included as well as conditions for the decision.
To this end, a first group of variables describe the activity program at the level of
the person's schedule skeleton and that of the partner, while a second series of
variables determine the work-chain for which the choice of transport mode needs
to be made. These latter series include work and travel time information. Both
series of variables are further detailed in section B.1 of Appendix B. This dataset
is referred to as “Mode for work ” in the remainder of the dissertation.

2.3.2  ACTIVITY SELECTION, TRAVEL PARTY AND DURATION

As mentioned in Figure 2.1, the second step in the system is concerned with the
decision about the activity selection, the travel party and the duration
dimensions.

Obviously, the activity selection includes only two choice outcomes: an activity is
added or not added to the current schedule. For flexible activities, this
judgement is based upon the opening hours of facilities, if applicable and on a
minimum duration that is assumed per activity type.

In case of a positive selection decision, the travel party and the duration
dimensions are specified before considering the selection of next activities.
Choice alternatives for the travel party dimension are: alone, with others
exclusively within the own household and with others including persons outside



Data and Architecture of the Albatross Model 35

the own household. The “alone” and “others outside the household” options are
considered available in every case, while the availability of “others inside the
household” is conditional upon the household composition. Only in multiple-
person households, this option is considered available.

For the duration facet, Albatross uses a classification of activities in short,
average and long duration activities. These activities are defined relative to
activity type so that, for example, a long-duration daily shopping activity may
still be shorter than a short-duration social activity. The short-duration is always
available, while the feasibility of the long and average classes depend upon
temporal constraints. The independent variables for all these facets can be
divided into program-, and schedule-level variables and other specific variables
for each choice facet that determine some constraints (see section B.2 of
appendix B). The data discussed in this section are respectively referred to as
“Selection”, “With Whom" and “Duration” in the remainder of the dissertation.

2.3.3 ACTIVITY START TIME

For the specification of start time (see Figure 2.1, step 3), the system
distinguishes six episodes of the day: before 10 AM, between 10 and 12 AM,
between 12 and 2 PM, between 2 and 4 PM, between 4 and 6 PM and after 6 PM.
Temporal constraints are the only binding constraints on time-of day choice. For
instance, for shopping, service and leisure activities, the opening hours of the
facilities further restrict possible start times. For social activities, there are no
timing constraints. There are also no logical constraints imposed on possible
sequences of activity types. At this stage, the scheduling process is complete in
terms of the selection of activities that need to be done that day. At the
schedule and activity level, a significant number of independent variables that
have been used in the previous steps, re-occur at this stage. These variables are
not only added to cover the extra information given by the previous travel party
and duration decisions, but they also describe specific conditions for start time
decisions (see section B.3 of appendix B). The dataset is referred to as “Start
time” in the remainder of the dissertation.
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2.3.4 TRIP CHAINING

The fourth step in the system is concerned with the decision about whether or
not to include trip-chaining in the current schedule. It is assumed that a trip link
exists between two consecutive out-of-home activities, unless they are separated
by an in-home activity. Therefore, to organize trips into trip-chains of one or
more trips, this step may lead to the repositioning of existing, flexible activities
and inserting new in-home activities. Assuming that A denotes the concerned
activity, 0 an existing out-of-home activity and H a home-based activity, the trip
chaining choice alternatives for each feasible out-of-home activity are as follows:
after stop (0-A-H), before stop (H-A-0), in-between stop (0-A-0) and single stop
(H-A-H). The single stop option is considered feasible in every case. The
feasibility of inserting a after stop, before stop or in-between stop depends on
the possibility to bridge the end time and start time of consecutive activities by
travelling time. The set of variables that were used to describe the cases at the
program-level, schedule-level and activity-level are summarised in section B.4 of
appendix B. This dataset is referred to as “Trip Chain” in the remainder of the
dissertation.

2.3.5 TRIP CHAIN TRANSPORT MODE

The fifth step assumes that transport mode decisions are made at trip-chain
rather than trip level. A distinction is made between trip-chains including a
primary work activity and other trip-chains. The same choice alternatives as
defined in section 2.3.1 are considered for this choice. The availability of the car-
driver option is evaluated based on driving license, the number of cars in the
household and use of car by the spouse. A detailed list of independent variables
necessary to determine the transport mode, describe the cases at
household/individual, activity-program and tour level. The activity-program and
tour-level variables are summarised in section B.5 of appendix B. This dataset is
referred to as “Mode other” in the remainder of the dissertation.

2.3.6 LOCATIONS

The final step in Figure 2.1 is concerned with the location choice for each flexible
out-of-home activity. For each location choice, the system determines a dynamic
location choice-set, dependent on the available time-window for the activity,
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available locations, travel times and flexible activity duration. There are 7
different categories which can be distinguished in the choice facet, i.e. (i) the
nearest location from home, (ii) the nearest location in the context of the tour,
(iii) the highest-order location within 5 minutes, (iv) the highest-order location
within 10 minutes, (v) the highest-order location within 20 minutes, (vi) the
highest-order location and (vii) none of the foregoing. Based on the category
that is chosen, a specific location is then chosen. As individuals may choose
“other” locations than those defined in the choice set (choice 7), the system
considers the selection of a travel-time band as a subsequent and additional
choice. If the location choice-set includes more than one location in that band, a
location is selected randomly. Just as in previous dimensions, each case is
described at different levels including the household/individual, activity
program/schedule, tour and activity level. The independent variables used for this
facet can be found in section B.6 of Appendix B. The data discussed in this
section are respectively referred to as “Location 1” and “Location 2” in the
remainder of the dissertation.

2.3.7 FuLL ActiviTy DIARIES

As explained at the beginning of section 2.3, activity diary data are used in the
original Albatross system. The separate datasets discussed in sections 2.3.1 -
2.3.6 are derived from these full activity diary data. To this end, and to make the
separate datasets suitable for the prediction of individual facets of the Albatross
model, some variables changed their nature (continuous versus categorical),
others were added and some were left out. The 32 (41-9) explanatory variables of
the original diary data, containing 2974 person-day diaries (or 2198 household-
day diaries), including a total of 4810 tours, have been described in Table 2.3.
The other 9 socio-demographic explanatory variables (or a total of 41 explanatory
variables) were already introduced in Table 2.2. The dependent variable that is
used in this dataset is transport mode choice. The choice alternatives are slow
mode (i.e. walk and bike), car driver and car passenger or public transport (bus,
train, taxi, etc.). There are other full diary datasets available, containing only
work tours, only non-work tours or alternatives with respect to the transport
mode decision (only 2 choice alternatives instead of 3), but these are not used
within the context of this dissertation.
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Table 2.3: Activity pattern and tour characteristics
(AP = activity pattern of the concerned person on the concerned day in which the
concerned tour is embedded; C = the concerned tour)

Label Definition Categories
Avcar Car is available in terms of 0: no, 1: yes
availability driving license and car
in household
Nsec Number of non-work outhome 0:0,1:1,2:2,3:3-4, 4:> 4
activities in AP
Two Total time of work in AP (in 0: 0, 1: 1-90, 2: 91-392, 3: 393-507,
minutes) 4: 508-545, 6: > 545
Ttot Total time of primary and secondary 1: < 60, 2: 61-150, 3: 151-248, 4: 249-
work out-of-home in AP (minutes) 375, 5:376-525, 6: 526-609, 7: > 609
Yserv There is at least one shopping or  0: no, 1: yes
service activity in AP
ySolLei same for social/leisure outhome 0: no, 1: yes
activity
YBget same for a bring/get person or 0: no, 1: yes
goods activity
CBT Earliest possible begin time of C (in 1: < 815, 2: 816-1045, 3: 1046-1335,
24 hour notation) 4:1336-1710, 5: > 1710
CET Latest possible end time of C (in 24 1: < 1230, 2: 1231-1540, 3: 1541-
hour notation) 1730, 4: 1731-1950, 5: > 1950
Cdur Difference between CET and CBT (in 1: < 30, 2: 31-45, 3: 46-75, 4: 76-105,
minutes) 5:106-138, 6: 139-190, 7: 191-265, 8:
266-442, 9: > 442
CNout Number of out-home activities in C 1-4
Ctwo Total time of work in C (in minutes) 0: 0, 1: 1-70, 2: 71-250, 3: 251-460,
4: 461-520, 5: 521-554: 6: > 554
CTtot Total time of primary and secondary 0: 0, 1: 1-135, 2: 136-265, 3: 266-465,
work out-of-home in C (minutes) 4: 466-520, 5: 521-555, 6: > 555
CyServ There is at least one shopping or  0: no, 1: yes
service activity in C
CySolei  same for social/leisure outhome 0: no, 1: yes
activity
CyBget  same for a bring/get person or 0: no, 1: yes
goods activity
Atyl Type of the first activity in C 1: work, 2: bget, 3: grocery, 4: service,
5: non-groc, 6: leisure, 7: social, 8:
other
Aty2 Type of the second activity in C 0: home, 1: work, 2: bget, 3: grocery,
service or non-groc, 4: leisure or
social, 5: other
Awith Persons with whom first activity in  0: none, 1: only others inside

Cis conducted

household, 2: others outside
household involved
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TThike Shortest travel time by bike of tour 0: 0, 1: 1-10, 2: 11-28, 3: 29-36, 4:

C (in minutes) 37-56, 5: 57-72, 6: 73-94, 7: 95-132,
8:>132
Rcabi Ratio car and bike travel time (in 1: <21, 2: 22-30, 3: 31-50, 4: 51-100,
%, shortest tour times) 5:>100

Rpubi Ratio public transport and bike 1: €100, 2: 101-139, 3: 140-200, 4:
travel time (in %, shortest tour 201-250, 5: 251-282; 6: > 282
times)
Rpuca Ratio public transport and car travel 1: < 100, 2: 101-523, 3: 524-646, 4:
time (in %, shortest tour times) 647-875; 5: > 875
Textra2  Extra travel time to reach location 0: 0 or not available, 1: < 10, 2; 11-
of order 2 (min. obj. bike time) 20, 3: 21-24, 4: 25-30, 5: > 30
Textra3  same for order 3 0: 0 or not available, 1: <12, 2: 13-
20, 3: 21-24, 4: 25-34, 5: 35-38, 6: >
38
Textras  same for order 4 0: 0 or not available, 1: < 24, 2: 25-
38, 3: 39-108, 4: 109-124, 5: 125-132,
6: > 132
Pbrget Partner has a bring or get activity  0: no, 1: yes
during tour C
Pserv Partner has a grocery, service or 0: no, 1: yes
shopping activity during tour C
PTmax Partner maximum objective hike 0: 0, 1: 1-18, 2: 19-36, 3: 37-59, 4: >
travel time across activities during 59
tour C
yAvSlo Minimum sum of duration of 0: no, 1: yes
activities in C plus minimum bike
travel time < maximum duration of

C (= CDu)
yAvPu same for public transport travel 0: no, 1: yes
time
Aprim Primary activity of the tour 1: work, 2: service, 3: bget, 4: social,

5: leisure, 6: other
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2.4 VALIDATION OF THE MODEL

It became clear from the previous sections that the Albatross model contains
nine different facets, that is to say: nine different decisions that are returned by
the Decision Unit. For every dimension, a separate model needs to be built by
relying on the set of independent variables. Independent from the model that is
used for these predictions, a methodology should be developed to test the
validity of the model.

Assessing the predictive performance is by no means a trivial exercise. One could
use the same data for both training and estimating the accuracy of the developed
model (resubstitution estimate). However, this estimate is often biased towards
the training data because the model has been built on the training data as well.
Another popular method for performance assessment is the k-fold cross-validation
method where the data set is typically split into k mutually exclusive folds of
nearly equal size. The developed model is then trained k times, each time using
k-1 folds for training and the remaining fold for evaluation. The cross-validation
performance estimate is then obtained by averaging the k validation fold
estimates found during the k runs of the cross-validation procedure. The variance
of this estimate can also be easily computed. The most common value for k is 10.
The advantage of using cross-validation is that the variance of the resulting
estimate is reduced as k is increased. The disadvantage of the method is that the
training algorithm has to be rerun from scratch k times, which means it takes k
times as much computation to make an evaluation. Within a data
mining/machine learning literature, cross-validation is often used for assessing
the performance of predictive classification techniques on small datasets. For
large datasets, one may also use cross-validation but a single training/test set
split up is also quite commonly adopted. In this latter approach, only a subset of
the cases is used to build the models (i.e. “training set”), while the other part of
the cases is presented as “unseen” data to the models (“validation or test set”).
The decline in goodness-of-fit between this “training” set and the validation set
is taken as an indicator of the degree of overfitting.

A random sample of 75% of the cases formed the training set; the remaining 25%
of the cases were used as a test set in this dissertation. Clearly, the larger the
size of the training set, the greater the power of the algorithm to find
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relationships in the data. Given the size of the total sample, the 25% subset was
judged to be sufficient to allow a sufficiently reliable validation test (Arentze and
Timmermans, 2000, p. 252). The same splitting criterion has also been used in
previous Albatross-related research efforts and thus allows for a fair and equal
comparison of results. The splitting criterion has been applied throughout the
whole dissertation, except for some of the experiments in Chapter 4, where the
75-25 split will be enhanced by additional cross-validation experiments in order
to support the argument of stability that will be introduced in
Chapter 4.

Also consistent with previous studies, the predictive performance has been
evaluated at three different levels. The first level is the choice facet level. This
level simply measures the accuracy of the learning algorithm before full activity-
travel patterns are predicted by the Albatross model. The second level of
evaluation was carried out at activity pattern level. To this end, Sequence
Alignment Measures (SAM) were used to measure the degree of similarity between
the observed and the fully predicted activity sequences by Albatross. Finally, an
additional validation measure was used, the trip matrix level, to compare the
correlation coefficients between the observed and predicted origin-destination
matrices. The remainder of this section discusses each of these validation
measures in more detail and gives an overview of the empirical results that have
been achieved by previous empirical studies.

2.4.1 CHoICE FACET LEVEL

The presentation of the choice facet level does not need a lot of additional
explanation. The idea is simple: a learning algorithm acquires knowledge through
the observation of the training sample. Next, the knowledge in the model is
adopted for the prediction of the nine dependent variables, i.e. for each of the
nine choice facets in the Albatross model. Finally, the prediction of the model is
evaluated by comparison on a —-for the model unseen- test set.

The partial results of the study by Moons (2005) have been summarized in Table
2.4. As mentioned before, a random sample of 75% of the cases were used as a
training set; the remaining 25% were used as test set (see supra). For this
reason, no variances (standard errors) of accuracies were reported in the study
but the size of the test set has been considered as sufficiently large, such that
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variations were included in the test data distribution and as a result reliable
accuracy estimates were reported.

The study examined -among others— the result of extremely simple classifiers in
Albatross. The algorithms of these simple classifiers that are shown in Table 2.4
are zero R (containing no rules, simply the majority class is used), one R
(containing one single rule) and Naive Bayes (assuming no dependent
relationship between the explanatory variables). These simple classifiers have
been compared with the standard CHAID-algorithm that is used in Albatross.
Obviously, the higher the accuracy estimate, the better the prediction capability
of the learning algorithm. To better understand the meaning and impact of these
accuracy percentages, a so-called null-model can be used for evaluation. A null-
model is a model that does no partitioning of the condition space and in fact
classifies every case in the dataset according to the majority class of the data.
The difference between the accuracy of the null-model and the accuracy of the
learning algorithm can be seen as a measure of improvement that can be fully
attributed through the use of the learning algorithm. In the comparison by
Moons (2005), the zero-R algorithm is equivalent to the null-model, and can
therefore be used as a measure for comparison.

It was already briefly mentioned in Table 1.1 that regression methods could also
have been used as alternative techniques for classification and supervised
learning. However, their application is less suited within the Albatross model,
given the categorical nature of the dependent variables for each of the nine
facets of the model. While this drawback may be solved, it should be pointed out
that a regression technique that can be tuned for classification on the one hand
and the standard classification methods that are shown in Table 2.4 on the other

Table 2.4: Benchmarking results at choice facet level (accuracy percentages)

Choice Facet Zero R One R Naive Bayes CHAID
Selection 66.9 67.7 67.4 72.4
With Whom 35.5 40.8 45.8 50.9
Duration 33.4 34.8 37.0 41.3
Start time 17.2 22.7 31.8 39.8
Trip Chain 53.3 69.9 76.5 83.3
Mode for work 52.5 59.5 64.1 64.8
Mode other 38.8 41.3 45.0 52.8
Location 1 37.5 43.5 47.5 57.5
Location 2 20.0 23.4 28.1 35.4
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hand, differ conceptually. First of all, standard regression techniques have a
strong linearity assumption which is often an unplausible assumption in reality.
Even when the non-linearity restriction can be relaxed through the use of a more
advanced regression specification (see Hastie et al.,, 2001 for a comprehensive
overview), it is assumed that the nonlinear specification is known in advance
through domain knowledge and/or exists in the data. In order to relax both
assumptions (linearity and existence of domain knowledge), a nonparametric
approach is recommended. Nonparametric methods are defined as not relying on
the estimation of parameters that describe the distribution of the variable of
interest in the population. Decision trees or other general rule based methods
(see Chapter 3 and 4) are particularly well suited for this purpose. Both
techniques are also favoured in terms of interpretation, especially because the
relationships between the independent variables of a regression model are
somewhat more problematic and less intuitive. Apart from these differences,
previous research is mainly inconclusive in terms of predictive comparison and
depends upon the model specification of the regression technique, the
(in)availability of domain knowledge and application field (e.g. size of the
dataset) (Perlich et al., 2004, Stark and Pfeiffer, 1999).

2.4.2  AcTivITy PATTERN LEVEL

The assessment of the goodness-of-fit of the Albatross model at pattern level
requires the choice of an appropriate measure. The problem at hand, predicting
activity patterns, implies that the goodness-of-fit measure needs to be flexible in
that it allows the inclusion of sequential and categorical information. Most of the
facets of activity patterns, such as mode choice, activity type, etc. are
categorical in nature, but the facet of activity scheduling implies sequential
information. Most similarity measures developed in transportation science,
however, do not properly capture sequential differences among activity patterns.
The Sequence Alignment Method (SAM), originally introduced in time use
research by Wilson (1998) and later adapted by Joh et al. (2001b) towards an
activity-based modelling framework is one of the exceptions that is able to
capture both sequential and categorical differences among activity patterns
(Arentze and Timmermans, 2000). The fundamental features of the Sequence
Alignment Method can be summarized as follows.
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Let two sequences to be compared, s and g, and let they have m+1 and n+1
elements. S and g can be respectively shown as s=s[s,...s ] and g=g[g,...g,] with
m=0 and n=0. Both sequences are respectively called the source and the target
sequence. Similarity is then defined as the total amount of effort which is
required to equalize sequence s=s[s,...s, ], with sequence g=g[g,...g,]. To calculate
the total amount of effort, SAM uses insertion, deletion and substitution
operations. Each operation involves a certain amount of effort. In our
comparisons, we assumed that insertion and deletion operations incur the same
cost of one unit, while substitution of an element requires twice that cost.
Obviously, the lower amount of operations that are needed to equalize two
sequences, the more similar the sequences are. In the ideal case, observed
sequences are completely similar to the sequences that are predicted by the
Albatross model, and SAM will result in a total distance of 0. There is no such
upper-bound for the distance measure since this is determined by the length of
the sequences under comparison.

The first set of four measures that will be provided in Table 2.5 as goodness-of-fit
measures, indicate the uni-dimensional SAM for the different activity pattern
attributes separately (activity type, with whom, location, transport mode). The
UDSAM indicates a weighted sum of uni-dimensional SAM costs across the three
dimensions, whereby activity type was given a weight of two units and the other
attributes a weight of one unit. Unfortunately, the conventional SAM can only
handle uni-dimensional strings. The uni-dimensional SAM can capture the intra-
sequential relationships between elements of an attribute but not the inter-
relationships  between elements of different attributes. Therefore, a
multidimensional extension has been developed by Joh et al. (2001a) and is also
used as such in the Albatross model. The interpretation of MDSAM is similar as its
unidimensional counterpart: the lower the MDSAM measure, the higher the degree
of similarity between observed and predicted sequences. SAM and MDSAM are
preferably used as relative measures which means that they are particularly suited
for comparing the performance of multiple learning algorithms.

Some results of the comparison study by Moons (2005) have been summarized at
pattern level in Table 2.5. The values that have been reported are the result of
the full activity-travel patterns that are predicted by the Albatross model (see
Figure 2.2) by means of the respective predictive learning algorithms that are
shown in Table 2.5.
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It can be seen from this table that Zero R and One R perform surprisingly well
here; the results even seem to suggest that the use of a learning algorithm has
no or very little effect on the performance at activity pattern level.

Table 2.5: Benchmarking results at activity pattern level

SAM distance Zero R One R Naive Bayes CHAID
measure
SAM activity-type 3.130 3.027 3.022 2.777
SAM with whom 3.464 3.312 3.225 3.168
SAM location 3.251 3.184 3.107 3.127
SAM mode 5.018 4,592 4.781 4.626
UDSAM 17.993 17.142 17.156 16.475
MDSAM 8.951 8.474 8.671 8.333

2.4.3 TRIP MATRIX LEVEL

The last measure to evaluate the predictive performance is carried out at trip
level (see Table 2.6) in the study by (Moons, 2005). The origins and destinations
of each trip, derived from the activity patterns, are used to build OD-matrices.
The origin locations are represented in the rows of the matrix and the destination
locations in the columns. The number of trips that is undertaken from a certain
origin to a certain destination is used as a matrix entry. A third dimension was
added to the matrix on which the interactions were broken down. The third
dimensions considered are day of the week, transport mode and primary activity.
The bi-dimensional case (no third dimension) was considered as well. The
measure that will be used for determining the degree of correspondence between
the observed and predicted matrices is defined as the correlation coefficient. The
correlation coefficient is calculated between observed and predicted matrix
entries in general and for three trip matrices that are disaggregated, based on
some selected trip facets. As mentioned before, the facets considered include
transport mode, day of the week and activity. Also in this case, the reported

Table 2.6: Benchmarking results at trip matrix level

Dimension Zero R One R Naive Bayes CHAID
None 0.925 0.928 0.917 0.937
Mode 0.787 0.862 0.842 0.836
Day 0.925 0.937 0.919 0.944

Primary Activity 0.766 0.801 0.800 0.830
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correlation coefficients are calculated after application of the full Albatross
model (see Figure 2.2) and by means of the respective predictive learning
algorithms. In order to calculate the correlation coefficient, cells of the matrix
are rearranged into one array and the calculation of the correlation is based on
comparing the corresponding elements of the predicted and the observed array.
Thus, for the OD-matrices that are disaggregated on the day of the week, the
cells of the matrices on weekday, Saturday and Sunday are rearranged into three
separate vectors, and these three vectors are then combined into one single
vector. Obviously, the correlation coefficient is a relative measure that is
preferably used in a comparison with other existing learning algorithms. The
higher the correlation coefficient, the better the learning algorithm is capable of
predicting activity-travel patterns. An ideal prediction would thus obtain a
correlation of 100% but as can be seen from Table 2.6, a fairly high degree of
correspondence could already be achieved.



Chapter 3
Classification based on Associations

3.1 INTRODUCTION

As explained in Chapter 1, given a set of cases with class labels as a training set,
the aim of classification is to build a model (called classifier) to predict future
data objects for which the class label is unknown. A classifier is thus required to
learn (i.e. to approximate the behaviour of) a function which maps a vector of
independent variables [Xl,XZ,---,XN] into one of several classes [¥;,¥,--, Y] by
looking at several input-output examples of the function. In the case of
Albatross, this implied that for every single facet of the model, a classifier
needed to be established to use in the Decision Engine of the system. As
mentioned before, this type of learning is also commonly referred to as
supervised or predictive learning (see Chapter 2 for some results). However, the
effect of incorporating unsupervised learning mechanisms remains mostly
unexplored in the field of transportation modelling.

One of the best known unsupervised learning mechanisms are association rules.
Association rules in fact measure co-occurrence in data. This means they
measure, but do not explain, interdependency effects between variables. In other
words, association rules are able to quantify the amount of co-occurrence
between data but not the reason for its existence (Brijs, 2002). Other descriptive
learning mechanisms (than association rules) are probably better suited for this
type of reasoning. A good example of such an application is introduced in
Chapter 4.

Association rules have received significant attention for extracting knowledge
from (large) databases. Their study is focused on using exhaustive search to find
all rules in data that satisfy the user-specified minimum support and minimum
confidence criteria. For this reason, the extraction of association rules seems at
first glance less suited for classification tasks such as those needed within the
context of the Albatross model.

However, in recent years, extensive research has been carried out to integrate
both approaches. By focusing on a limited subset of association rules, i.e. those
rules where the consequent of the rule is restricted to the classification class
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attribute, it seemed possible to build fairly good classifiers. Associative
classification has been first proposed in a classification based on associations
algorithm (CBA) (Liu et al, 1998), in which the popular Apriori algorithm (see
infra) has been proposed to extract a limited number of association rules with
their consequents limited to class labels. These rules are then sorted by
descending confidence and are pruned in order to get a minimal number of rules
that are necessary to cover training data and achieve satisfying accuracy. CBA is
the best known associative classifier. Another associative classifier, ADT (Wang
and Zhou, 2000) organizes the rule sets in the tree structure according to its
defined relations. The decision tree pruning technique is then applied to remove
rules which are too specific. CPAR (Yin and Han, 2003), CMAR (Liu et al., 2001b)
and CAEP (Dong et al., 1999) are other examples of associative classification
algorithms. They respectively propose expected accuracy, weighted chi-square
and growth rate as rule interestingness measures, and all perform classification
based on multiple rules that the new sample fires.

This chapter is devoted to the improvement of the CBA algorithm in order to
generate a more accurate and compact decision list, which is convenient for
decision makers to understand and adopt. The CBA algorithm has been chosen
based on the good accuracy results (Liu et al., 2001a, 2001b) that could be
obtained on the UCI Machine Learning repository (Blake and Merz, 1998). This
repository is frequently used within the field of machine learning, especially
when the performance of a new classification system needs to be evaluated and
benchmarked. The remainder of this chapter is organised as follows. In section 2,
we will give a short introduction into the basic concepts and definitions of
association rules discovery. An efficient algorithm to discover all association
rules will be provided. In section 3, we will explain how association rules can be
tuned for classification purposes. In section 4, the original CBA-system (referred
to as “Original CBA”) is applied within the context of the Albatross model in
order to examine whether the good results on UCI data can also be maintained
for transportation modelling. In section 5, we will propose improvements to the
original CBA-system (referred to as “Adapted CBA”). Section 6 quantitatively
validates the improvements within the Albatross model. In Section 7, a more
explanatory and descriptive analysis of the quantitative results that were
obtained in section 6 is provided. The chapter ends with a summary of the most
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important insights and findings that have been obtained. The final sections also
reported some additional topics which are still open for future research.

3.2 ASSOCIATION RULES: DEFINITIONS AND ALGORITHMS

3.2.1 PREFACE

In 1996, it was claimed by (Fayyad et al., 1996) that “our capabilities of
collecting and storing data of all kinds have far outpaced our abilities to analyse,
summarize, and extract knowledge from data”. This tendency is not only
perceivable within a business context, but also in more applied areas such as
transportation. Trends as the increased use of GPS and PDA devices for collecting
location information for instance, will largely contribute to this. In 1993,
Agrawal et al. (1993) recognized a lack of functionality in database systems for
users to take advantage of the huge amounts of retail transactional data.
Therefore, they were the first to introduce the technique of association rules to
mine a large collection of transactions for hidden patterns of consumer purchase
behaviour. Their work was quickly absorbed by other researchers in the machine
learning/data mining field who understood the applicability and importance of
the technique. Examples of other application domains are cross-selling (Anand et
al., 1997), finding co-occuring medical tests from a health information system
(Viveros et al., 1996), reducing fall-out in telecommunications systems (Ali et al.,
1997) and many others. Within the transportation research community in general,
the use of association rules is limited (Keuleers et al., 2001, 2002) and within
activity-based scheduling models it has not yet been tested before.

Next, a number of definitions will be introduced that formally describe the
technique of association rules. The techniques (and definitions) originate from a
business context, but the examples below the definitions give an interpretation
in the field of transportation.

3.2.2 DEFINITIONS

Definition 3.1: An item
Let 7, be an item. An item is defined as a combination of an attribute and a
value. [

Example: 1 Child (may be represented as Child=1)
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Definition 3.2: A set of items (I)
letI={i, 1, ...,1} be asetof all the items that occur in the data. n

Example: Consider all possible values that variables in the data can take: 1 child,
2 children, 3 children, >3 children, 1 car, 2 cars, >2 cars, etc.

Definition 3.3: A transaction (7)
A transaction T is a subset of items such that 7/7 I. In our application, a
household represents a transaction. [

Example: A particular household (transaction) may be represented by 3 children,
1 car, a low socio-economic class, etc.

Definition 3.4: A transaction database (D)
Let D be a group of transactions, that form a database. ]

Example: Consider 1000 households in the transaction database (D), each
household defined by a transaction (7).

Definition 3.5: An itemset (X)
We say that a transaction T contains X, a selection of items in I, if X /7 T. An
itemset that contains k items is a k-itemset. u

Example: An itemset is a set of items such as {children=4,socio-economic
class=low}, which is a subset of T because the household (7) can also be
represented by the number of cars. This example represents a 2-itemset.

Definition 3.6: An association rule

An association rule is an implication of the form X => Y, where X/7I, Y/JI and
XnY = 0. The implication “=>", means that both itemsets X and Y frequently
occur together. The rule does not identify any causal relationships but measures

co-occurrences in the data. n

Example: An association rule expresses which items frequently occur together in
the data. For instance, the hypothetical rule Children=4 => Socio-economic
class=low indicates that people who have four children, also belong to a low
socio-economic class. Note that in this case all items of variables can occur in
the right-hand side of the rule, which means that the right-hand side is not
restricted to class (dependent) variables in traditional association rules.
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Definition 3.7: Confidence of an association rule
The rule X => Y holds in the transaction set D with confidence ¢ if ¢% of
transactions in D that contain X also contain Y. ]

Example: Assuming that the confidence of an association rule Car=1 => Driving
license=Yes is 95%, means that given that people have one car, they also have a
driving license in 95% of the cases.

Definition 3.8: Support of an association rule
The rule X => Y has support s in the transaction set D if s% of transactions in D
contain X/7Y. |

Example: The support of an association rule gives an idea about the importance
of the rule. Suppose that the support of the rule Car=1 => Driving license=Yes is
2%, this means that both items (Car=1;Driving license=Yes) occur together in 2%
of all the cases which are in the dataset.

Given a set of transactions D, the problem of mining association rules is to
generate all association rules that have support and confidence greater than a
user-specified minimum support (minsup) and minimum confidence (minconf)
(Agrawal et al., 1993).

As illustrated above, “transactions” can be interpreted as any set of variables
that frequently co-occur together. The next section describes the computational
details of the algorithms that are used to discover such associations.

3.2.3 ALGORITHMS

Several algorithms have been proposed in the literature to discover association
rules (Agrawal et al., 1993, Agrawal and Srikant, 1994, Brin et al., 1997, Mannila
et al., 1994). Almost every algorithm has the following general two-phase
methodology in common.

The first phase involves looking for so-called frequent itemsets, i.e. itemsets for
which the support in the dataset equals or exceeds the minimum support
threshold that is set by the user (see under section definitions). This is
computationally the most complex phase due to the number of possible
combinations of items that need to be tested for its support value.
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As soon as all frequent items are known, the discovery of all association rules
becomes straightforward. That is, if both ABCD and AB are frequent itemsets,
then it can be calculated whether the rule AB => CD holds with sufficient
confidence by computing the ratio s(ABCD)/s(AB), in which s(ABCD) is the
number of cases that contain ABCD and s(AB) is the number of cases that contain
AB. If the computed confidence of the rule equals or exceeds the minconf
threshold set by the user, then it is a valid rule.

However, testing all possible combinations for their support involves the
calculation of 2°-1 frequencies. To illustrate this, consider the following small
example. Suppose there are four items in the data {i,i,i,7,} being respectively
equal to {gender=male, car=1, children=2, transport mode=car}. Then, finding all
frequent itemsets involves checking the combinations listed in Table 3.1.

Table 3.1: Itemsets that need to be checked for support

1-itemsets 2-itemsets 3-itemsets 4-itemsets
{i} {i.i} {i.i,1} {i.i,1,1}
{i} {i.i} {i,i,i}
{i} {i.i} {i.i.i}
{1} {1,.1.} {1,1,1}

{11}

{11}

It can be seen from this small example that this approach becomes already
infeasible for a relatively small number of items. For this reason, the Apriori
algorithm, which is based on the downward closure principle which states that
“all subsets of a frequent itemset must also be frequent”, has been developed by
Agrawal and Srikant (1994). This principle simplifies the search for frequent
itemsets because for some itemsets, it can be determined in advance that they
can never be frequent and by consequence, their support does not have to be
checked against the data. For the sake, of clarity, the Apriori algorithm has been
portrayed in Figure 3.1.

The first pass of the algorithm simply counts item occurrence to determine the
frequent 1-itemsets, i.e. itemsets containing just one item. A subsequent pass,
say pass k, consists of two phases. First, the frequent itemsets L, found in the
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L, := {frequent 1-itemsets};

k :=2; // represents the pass number

while ( L,_, # 0 ) do begin
C, := New candidates of size k generated from L, ,;
for all transactions T O D do begin

Increment the count of all candidates in C, that are contained in T.

end
L, := All candidates in C, with minimum support.
k:==k+1;

end

Answer := U, L

k Tk’

Figure 3.1: The Apriori algorithm

(k-1)th pass are used to generate the candidate itemsets (.. To generate these
candidate itemsets, the Apriori candidate generation function is adopted, that
consists of two steps: a join and a prune step.

The function is probably best understood by means of an example. Suppose there
are five frequent three-itemsets (L,): {{1 2 3}, {1 2 4}, {1 3 4}, {1 3 5},
{2 3 4}}. The union of the first two itemsets results in {1 2 3 4} which is
defined as a candidate four-itemset (C,) because its other three-item subsets
{1 2 3} and {1 2 4} have greater than minimum support (join step). If the three-
itemsets are sorted into ascending order, as they are in this example, then we
only need to consider pairs whose first two elements are the same, because
otherwise the resulting itemset would contain more than four items. Apart from
{1 2 3} and {1 2 4}; it is also possible to join {1 3 4} and {1 3 5} and thus
result in {1 3 4 5}, which is also a potential candidate four-itemset. However, in
the prune step, all itemsets ¢ O C, are deleted for which some (k-1)-subset of ¢
is not in L. Therefore, the itemset {1 3 4 5} will be deleted because the itemset
{1 4 5} is not in L,. Consequently, C, will only contain the candidate itemset
{1234}

Next, the database D is scanned and the support of candidates in C, is verified
against the data as can be seen from Figure 3.1. These two operations
(candidate generation and support counting) continue until, according to the
downward closure principle, no candidate itemsets can be generated anymore.
The outcome of the algorithm is guaranteed to include all frequent itemsets
(Agrawal and Srikant, 1994).
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3.3 USING ASSOCIATION RULES FOR CLASSIFICATION

3.3.1 PREFACE

As already mentioned in the introduction, in the case of the Albatross system, a
classifier needs to be established for every facet of the model. To make
association rules suitable for the classification task, a classification based on
associations (CBA) algorithm (Liu et al., 1998) is presented in this section. The
CBA method focuses on a special subset of association rules, i.e. those rules with
a consequent limited to class label values (values of dependent variables) only;
so-called class association rules (CARs). Thus, only rules of the form A=>c, where
¢, is a possible class, need to be generated. Therefore, the Apriori algorithm
portrayed above was slightly modified to build these CARs. In addition to this,
another modification was needed because datasets that have been used for
classification may contain continuous attributes as well. Mining association rules
with continuous attributes has been a major research issue in the past (Srikant
and Agrawal, 1996a; Yoda et al., 1997; Wang et al., 1998). The adaptation
presented in this section to overcome this problem involves the discretization of
continuous attributes based on the classification predetermined class target.
There are many good discretization algorithms which can be used for this
purpose (Fayyad and Irani, 1993; Dougherty et al., 1995; Janssens et al.,
2005a).

3.3.2 DEFINITIONS

Definition 3.9: A class

A class can be defined as any dependent variable or output variable for which a
prediction will be made or which is considered relevant to be examined. In
theory, any item (see definition 3.1) can serve as a class attribute (dependent on
the purpose of the research). u

Example: The number of cars, transport mode, start time, travel party, location,
etc. are typical examples of class attributes.

Definition 3.10: Class Association Rule
A class association rule is an implication of the form X => ¢, where X //I, c € C
and Cis a set of class labels. [
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Example: A class association rule expresses which items and class labels
frequently occur together in the data. For instance, the rule Car=1 => Driving
license=Yes indicates that people who have one car, also have a driving license,
given that driving license is a class attribute in the data. Indeed, unlike
association rules only class attributes occur in the right-hand side of the rule.

Definition 3.11: Ruleitem
A ruleitem is an expression of the form <condset, c> where condset is a set of
items, ¢ € Cis a class label. ]

Example: <{(A, 1), (B, 1)}, (class, 1)>, where A and B are attributes that
represent condset.

Definition 3.12: Support of condition set of a ruleitem
The support count of the condset (called condsupCount) is the number of cases in
the data D that contain the condset of the ruleitem. ]

Example: Suppose that consupCount of the rule A=1"B=1 =>Class=1 is 3, this
means that the conditions of the rule (i.e. A=1, B=1), occur together 3 times in
the data.

Definition 3.13: Support of ruleitems
The support count of the ruleitem (called rulesupCount) is the number of cases in
D that contain the condset and are labeled with class y. ]

Example: Suppose that the rulesupcount of the rule A=17B=1 =>Class=1 is 3, this
means that the conditions (i.e. A=1, B=1) and the consequent of the rule (i.e.
Class=1) all occur together 3 times in the data. This is equal to the support of
the CAR.

Definition 3.14: Confidence of ruleitems
The confidence of a ruleitem can be calculated as (rulesupCount / condsupCount)
*100% u

Example: If the support count of the condset {(A, 1), (B, 1)} is 3, the support
count of the ruleitem is 2, then the confidence of the ruleitem is 66.7%.

Definition 3.15: Frequent ruleitems
Ruleitems that satisfy the minimum support are called frequent ruleitems, others
are called infrequent ruleitems.
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For all the ruleitems that have the same condset, the ruleitem with the highest
confidence is chosen as the possible rule (PR) representing this set of ruleitems.
If there are more than one ruleitem with the same highest confidence, one
ruleitem is selected randomly. [

Example: Suppose, we have two ruleitems that have the same condset:

1. <{(A, 1), (B, 1)}, (class: 1)>.

2. <{(A, 1), (B, 1)}, (class: 2)>.

Assume the support count of the condset is 3. The support count of the first
ruleitem is 2, and the second ruleitem is 1. Then, the confidence of ruleitem 1 is
66.7%, while the confidence of ruleitem 2 is 33.3% With these two ruleitems, we
only produce one PR (assume |D| = 10): (A, 1), (B, 1) = (class, 1) [support=
20%, confidence= 66.7%].

3.3.3 ALGORITHMS

In this section, the original CBA algorithm (Liu et al, 1998) is introduced. It
consists of two parts, a rule generator (called CBA-RG), and a classifier builder
(called CBA-CB).

CBA-RG

The CBA-RG algorithm generates all the frequent ruleitems by making multiple
passes over the data. In the first pass, it counts the support of each individual
ruleitem and determines whether it is frequent. In each subsequent pass, it starts
with the seed set of ruleitems found to be frequent in the previous pass. It uses
this seed set to generate new possibly frequent ruleitems, called candidate
ruleitems. The actual supports for these candidate ruleitems are calculated during
the pass over the data. At the end of the pass, it determines which of the
candidate ruleitems are actually frequent. From this set of frequent ruleitems, it
produces the rules (CARs). Let k-ruleitem denote a ruleitem whose condset has &
items. Let F, denote the set of frequent k-ruleitems. Each element of this set is of
the following form: <(condset, condsupCount), (c, rulesupCount)>.

Let C, be the set of candidate k-ruleitems. The CBA-RG algorithm is shown in
Figure 3.2.

Line 1-3 represents the first pass of the algorithm. It counts the item and class
occurrences to determine the frequent 1-ruleitems (line 1). A frequent ruleitem
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1 F ={large 1-ruleitems};

2 (AR, = genRules(F,);

3 prCAR, = pruneRules(CAR,);

4 for (k=2; F_#0 ; k++) do

5 C, = candidateGen(F,,);

6 for each data case d€ D do

7 C, = ruleSubset(C,, d);

8 for each candidate c € C, do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++
11 end

12 end

13 F,={c € (| c.rulesupCount = minsup};
14 (AR, = genRules(F);

15  prCAR, = pruneRules(CAR);

16 end
17 CARs=U, CAR;

18 prCARs =U, prCAR,;
Figure 3.2: The CBA-RG algorithm (Liu et al., 1998)

has been defined in definition 3.15. From this set of 1-ruleitems, a set of CARs
(called CAR)) is generated by the function genRules (line 2). The function
genRules checks whether there are ruleitems that have the same condset. If this
is the case, the procedure that has been explained in definition 3.15 and in the
example following that definition, was applied. (AR, is subject to a pruning
operation (line 3) (which can be optional). The function pruneRules uses the
pessimistic error rate based pruning method in C4.5 (Quinlan, 1993). It prunes a
rule as follows: If rule r's pessimistic error rate is higher than the pessimistic
error rate of rule r (obtained by deleting one condition from the conditions of
r), then rule r is pruned. For a more detailed discussion of the calculation of the
pessimistic error rate, we refer to Quinlan (1993). For each subsequent pass (line
4), say pass k, the algorithm performs 4 major operations. First, the frequent
ruleitems F_, found in the (k-1)-th pass are used to generate the candidate
ruleitems C, using the candidateGen function (line 5). This function is completely
analogous as the Apriori candidate generation function that has been explained
in section 3.2.3 (see also Figure 3.1). Hereafter, the algorithm scans the
database (line 6-7) and updates various support counts of the candidates in C,
(line 8-10). The algorithm uses the ruleSubset function, which basically takes a
set of candidate ruleitems (, and a data case d to find all the ruleitems in C,
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whose condsets are supported by d. This and the operations in line 8-10 are also
similar to those in algorithm Apriori. The difference is that we need to increment
the support counts of the condset and the ruleitem separately, whereas in Apriori
only one count is updated. This allows us to compute the confidence of the
ruleitem. The updating of both support counts is also useful in rule pruning. After
the new frequent ruleitems have been identified to form F,_ (line 13), the
algorithm then produces the rules CAR, using the genRules function (line 14).
Finally, rule pruning is performed (line 15) on these rules. The final set of class
association rules is in CARs (line 17). The remaining rules after pruning are in
prCARs (line 18).

CBA-CB

This section presents the CBA-CB algorithm for building a classifier using CARs (or
prCARs) identified by CBA-RG. The original algorithm which is used in CBA is
shown in Figure 3.3.

The algorithm will first rank all the CARs. As we will show in the remainder of the
chapter, this rank will be subject to the modifications which were implemented.
The original ranking is as follows: given two rules r, and r, r, > r. (or r, is said
having higher rank than r), if (1) conf (r) > conf (r); or (2) conf (r) = conf (r),

R=sort (R);
for each rule r O R in sequence do
temp = g;
for each case d 0 D do
if d satisfies the conditions of r then store d.id in temp and mark
rif it correctly classifies d;
end
if r is marked then
insert r at the end of ;
delete all the cases with the ids in temp from D;
selecting a default class for the current C;
compute the total number of errors of (;
end
end

Find the first rule p in C with the lowest total number of resubstitution
errors and drop all the rules after p in C;

Add the default class associated with p to end of € and return C (our
classifier)

Figure 3.3: Building a classifier in CBA
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but sup (r,) > sup (r); or (3) conf (r) = conf (r) and sup (r) = sup (r), but r, is
generated before r.

If at least one case among all the cases covered by the rule is classified correctly
by the rule, the rule is inserted into the classifier by following this sorted
descending sequence order. All the cases the rule covers (i.e. they satisfy the
conditions of r) are removed from the database. A chronological procedure is
followed for this removal, which means that cases of the first classification rule
are removed before the cases of the second classification rule. This deletion is
repeated for every rule that is inserted into the classifier, each time on a reduced
dataset, and therefore the process is largely determined by the sorting criteria
(based on confidence) that have been explained above. This procedure is also
known as database coverage pruning (Liu et al., 2001b). The rule insertion stops
when either all of the rules are used or no cases are left in the database. The
majority class among all cases left in the database is selected as the default
class. The default class is used in case when there are no covering rules. Then,
the algorithm computes the total number of errors, which is the sum of the
number of errors that have been made by the selected rules in the current
classifier and the number of errors made by the default class in the training data.
After this process, the first rule which has the smallest number of errors on the
training set is identified as the cut-off rule. All the rules after this rule are not
included in the final classifier since they will only produce more errors (Liu et al.,
1998) (see also Figure 3.4 and Figure 3.10). CBA has generated better results
than C4.5 in a comparative study by Liu et al. (1998), when the algorithm was
tested on the UCI Machine Learning repository data. In the next section, we will
evaluate whether these results can also be maintained for transportation
modelling, when evaluated within the context of the Albatross system.

3.4 ORIGINAL CBA: RESULTS

3.4.1 SETTING THRESHOLDS

Before the CBA model can be tested within Albatross, minimum support and
minimum confidence thresholds need to be set. Both parameters were kept low
(minimum support was set at 1%, minimum confidence at 10%), with the aim of
not excluding interesting rules in advance. However, since the original CBA
algorithm sorts the CARs based on confidence, the minimum confidence threshold
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is unlikely to have an impact on the final accuracy results since all the rules with
a high confidence parameter will first be added to the classifier. The rules with
lower confidence values are probably situated after the cutpoint p and are likely
to be discarded. This finding was confirmed in the empirical results for all the
facets of the Albatross model (see infra). Equally, the maximum number of
conditions that can appear in any CAR needs to be set in advance. This number
was restricted to 6 in order to ensure the comprehensibility of every single rule.

3.4.2 CHoICE FACET LEVEL

In order to evaluate the performance of CBA, the data was divided into a training
and a test set, as explained before in Chapter 2, section 2.4. In Table 3.2, the
number of association rules, class association rules and the number of rules in
the final classifier has been depicted for every decision that is taken in the
Albatross model. As it can be seen from this table, the low minimum confidence
and minimum support thresholds, obviously have an immediate impact on the
large number of association rules that were generated by the original Apriori
algorithm (first column of Table 3.2). We are able to significantly reduce this
number, by only focusing on the CARs, i.e. those rules where the right-hand side
of the rule is restricted to a class attribute (second column of Table 3.2).
Furthermore, the number of rules in the final classifier, i.e. those rules that are
situated before the cutpoint p, is also significantly lower than the number of
CARs (third column of Table 3.2).

This rule selection process is better illustrated in Figure 3.4, where the number of
correctly predicted cases is shown for every single rule that is added to the final

Table 3.2: Evolution of the number of AR, CARS and rules in the final classifier

Dataset Number of Number of CARS Number of rules in

association rules the final classifier
Duration 55522 16379 147
Location 1 54539 9659 234
Location 2 53808 8372 136
Mode for work 57708 6364 172
Mode other 50899 13636 245
Selection 53735 5721 504
Start time 56551 20786 120
Trip Chain 63567 10488 65
With Whom 55508 18921 222
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classifier for the “Trip chain” dataset (by example). The vertical line shows the
cutpoint p (determined on the training data), the rules before this point are
included in the final classifier; the others are discarded. Indeed, the slope after
the cutpoint decreases in Figure 3.4 because the total classifier simply classifies a
higher number of cases incorrectly than those that could be classified correctly,
after a particular point in the classifier (p).

The accuracy percentages that indicate the predictive performance on the
training and test sets within Albatross are presented in Table 3.3. Results in this
table are compared with the original CHAID algorithm that is used in Albatross.
When the average results are compared, it is clear that the CBA classifier
outperforms CHAID. Also with respect to the algorithms that were introduced in
Chapter 2, CBA achieves better results. Only with regard to the “start time”
dataset, CBA performs somewhat worse than CHAID. Despite the good results, it
can also be seen that the number of rules is higher, although the comparison
between number of rules and number of leaves is not completely perfect for
comparison. It was already mentioned in the introduction that the higher number
of rules is one of the main limitations of these integrated approaches. Section
3.5 further elaborates on this topic. The predictive findings confirm previous
results (Liu et al., 2001a, 2001b) that could be obtained on the UCI machine
learning repository and it supports our claim that using unsupervised techniques
for classification purposes, holds out considerable promise.

percentage of correctly
classified cases

0,847
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0,807

0,787

0,767 /

number of
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(number of

ules in the

0,747
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classifier)
Figure 3.4: Evolution of the number of correctly classified cases for every rule
that is added to the final classifier (Trip chain dataset) in original CBA
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Table 3.3: Benchmarking results at choice facet level

CBA CHAID
Dataset Train Test Number Train Test Number
(%) (%) of rules (%) (%) of leaves
Duration 44,7 39.2 147 41.3 38.8 61
Location1 66.3 62.7 234 57.5 58.9 62
Location?2 52.6 41.1 136 35.4 32.6 34
Mode for work 83.5 73.7 172 64.8 66.7 23
Mode other 66.5 60.9 245 52.8 49.5 65
Selection 79.6 78.7 594 72.4 71.6 106
Start time 34.5 33.7 120 39.8 35.4 86
Trip chain 83.9 80.4 65 83.3 80.9 30
With whom 61.1 56.2 222 50.9 48.4 57
:"erage 63.6 58.5 / 55.4 53.6 /
ccuracy
Av. Number of
rules / / 215 / / 58

3.4.3  ActiviTy PATTERN LEVEL

The SAM measure introduced in section 2.4.2 was used to compare the degree of
similarity between the predicted and the observed activity patterns. The SAM
distance measures, indicating the predictive performance at activity pattern level
on the training and on the test set, are presented in Table 3.4. The results show
that the performance of the original CBA algorithm is better on the training set
than CHAID. However, while results at the test set are still somewhat better than
CHAID, a higher degree of overfitting occurred. An analysis of the number of

Table 3.4: Benchmarking results at activity pattern level

SAM distance measure - CBA - CHAID

Train Test Train Test

SAM activity-type 1.610 2.712 2.861 2.801
SAM with whom 1.971 3.114 3.225 3.210
SAM location 1.321 3.035 3.181 3.148

SAM mode 2.019 4.414 4.599 4.587
UDSAM 12.871 16.318 16.725 16.629

MDSAM 5.108 8.298 8.457 8.427




Classification based on Associations 63

rules versus number of leaves (see Table 3.3) further confirmed this finding. With
respect to CHAID, no overfitting could be determined at pattern level.

3.4.4 TRIP MATRIX LEVEL

The last measure to evaluate the predictive performance, is carried out at trip
level. To this end, the origins and destinations of each trip, derived from the
activity patterns, are used to build OD-matrices. In order to determine the degree
of correspondence between predicted and observed OD-matrices, correlation
coefficients were calculated (see also section 2.4.3). The results at activity
pattern level were confirmed by the results at trip matrix level, that is, while the
results at the test set are somewhat better for CBA than for CHAID, the degree of
overfitting is higher as well (for CBA).

Table 3.5: Benchmarking results at trip matrix level

Dimension - CBA ; CHAID
Train Test Train Test
None 0.959 0.940 0.954 0.939
Mode 0.911 0.849 0.877 0.846
Day 0.975 0.948 0.960 0.948
Primary Activity 0.902 0.838 0.890 0.832

3.4.5 DiscussIion

The previous sections have illustrated and quantitatively evaluated the use of
CBA within the Albatross model. A more qualitative analysis, including a
discussion of the variables which appear most frequently in the decision rules,
will be provided in section 3.7. The CBA technique uses an adopted version of the
Apriori algorithm, which is popular in association rule discovery to generate
CARs. The confidence measure is used to determine the sorting of CARs and thus
indirectly determines the cutpoint p on the training dataset, which forms the
final classifier. The empirical results show that CBA was able to achieve better
predictive performance at choice facet, activity pattern and trip matrix level
when compared to CHAID. The improvement in predictive performance was most
dominant at choice facet level. While also at choice facet level, a higher degree
of overfitting occurred for CBA, the technique suffered the most from overfitting
at activity pattern and at trip matrix level. Obviously, the higher number of rules,
which is one of the well-known limitations of integrated approaches as these,
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may be responsible for this. While it can be seen from Table 3.3 that the amount
of the rules is still fairly acceptable in this case, the idea was conceived in the
remainder of this chapter to examine whether a more optimal cutpoint could be
determined, that simultaneously leads to a reduction in the number of rules and
in the degree of overfitting.

3.5 ADAPTING ORIGINAL CBA

3.5.1 PROBLEM STATEMENT

A profound examination of the algorithm presented in Figure 3.3 has revealed
that the way by which rules are sorted, can be a potential weakness of the
original CBA(-CB) algorithm. Since rules are inserted in the classifier following
the sorted confidence order, this will determine to a large extent the composition
and the size of the final classifier. Confidence is a good measure for the quality
of (class) association rules but it also suffers from certain weaknesses. The aim of
this section is to elaborate on these weaknesses and to propose different
alternatives. Parts of the subsequent sections are based upon work reported in
Janssens et al. (2003a; 2004a; 2005b) and in Lan et al. (2004; 2006). It can be
argued that confidence is not a good parameter to discover the most valuable or
interesting rules. An important weakness is that the conditional probability of a
rule X => Y is invariable when the size of s(Y) or D varies. The subset of the cases
which are covered by the consequent of the rule is given by s(¥), while D is the
total number of observations in the dataset. The confidence property is also
insensitive to cardinal dilatation (i.e. the size of the subsets increases in the
same proportion). Figure 3.5 (taken from Suzuki and Kodratoff, 1998) graphically
displays the problem. It can be seen from the figure that the three cases
(b, c and d) and the reference case (a) in the figure have the same confidence
(indicated by the intersections between the ovals). Let A=s(X), B=s(Y), n=|D|,
n=|A|, n=|B|, and n_=|AB|. The confidence of rule X=V is calculated as n_/n.,.
Keeping the numerator and denominator fixed, the confidence is stable when the
size of s(Y) or D changes. This is graphically illustrated in Figure 3.5 (b) and (c),
where the size of the right inner circle becomes larger in (b) to indicate an
increase in s(Y), and where the size of the outer circle decreases in (c) to
illustrate a change in the size of D, while the intersection remains the same in
both cases when compared to the reference case (Figure 3.5 (a)). Nevertheless,
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(a) Reference (b) s(Y) increases (c) D decreases (d) cardinal dilatation

Figure 3.5: Three cases with constant conditional probability

the rule X =>Y is intuitively more likely to happen when the size of s(¥) increases
or when the size of D decreases. It is shown that it is not surprising that, when
s(Y) is close to the size of D (this is both the case in Figure 3.5 (b) and (c)), the
observations which are covered by the antecedent X of the rule, are also included
in s(Y). Furthermore, the implication will be more meaningful when the size of all
the sets grows in the same proportion when compared to the reference case
(Figure 3.5 (a)), as it is shown in Figure 3.5(d). For this reason, two novel
interestingness measures, i.e. intensity of implication and an own developed
dilated chi-square heuristic, were tested to adjust the ranking mechanism in CBA
algorithm. The next section elaborates on this.

3.5.2 INTENSITY OF IMPLICATION

Intensity of implication, introduced by Gras and Lahrer (1993) and later adopted
and improved by Guillaume et al. (1998) and by Suzuki and Kodratoff (1998),
measures the distance to random choices of small, even non statistically
significant, subsets. In other words, it measures the probability of having as
many counter-examples as a randomly-generated rule. The smaller the value of
this probability, the higher the value of intensity of implication, and the better
the rule.

Consider a database D, where |D| is the total number of observations in the
database, and an association rule X=Y. Now, let U and V be two sets of
examples, randomly selected from D and being mined with the restriction that
both have the same cardinality as X and Y, i.e., |U| =n_ and |V| =n,.

let N, {UNnV |(with V the complement of V in D), represent the expected
number of random negative examples (counter-examples or false positives) under
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% ¢

compare

Figure 3.6: Intensity of implication

the assumption that U and V are independent and N the number of negative
samples observed on the rule. Now, if n_ is unusually small compared with N
(see Figure 3.6), the one we would expect at random, then we say that the rule
X=Y has a strong statistical implication. In other words, the intensity of
implication for a rule X=Y is stronger, if the quantity Pr[ N ;<n_] is smaller.
Intensity of implication is then defined as 1-Pr[ N, <n_-]. The random variable
N
examples selected at random, exactly k are not in V]. Let n,= |U|, n,= |V,
n,=|V | and n=|D|. It equals

G, x G

(e

n

follows the hypergeometric law, which means Pr[ N = k] = Pr[of |U]

u

Taking into account that n, = n, n, = n, and n=|D|, the intensity of implication

can be written as:

g O oxet

I=1- b
k=max(0,n,-ny) Cna

This formula for intensity of implication is suitable as long as the number of
samples in the database, i.e. |D|, is reasonably small. Otherwise, the combination
numbers in the above formula explode very quickly.

Therefore, Suzuki and Kodratoff (1998) developed an approximation of this
formula for big datasets. They argue that if n is small, an approximation can
be applied that uses the well-known Poisson formula (see for instance also (Chen,
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1975)). In that case, the above formula for intensity of implication reduces to a
much simpler version that is easier to compute:

g Ck xc";;‘k
I=1- Z _b 5
k= - Cp
=max(0,n, —ny) n
"ab Ak
I=1-) Z-e
k=0 "*
With
A = Ny % (n - nb)
n

Keeping the confidence of rule X=Y constant, the intensity of implication varies
with the size of s(¥), with the size of D, and by dilation of n when n_/n, n,/n and
n/n stay constant, as Figure 3.7 shows.

Because confidence and support are standard measures for determining the
quality of association rules, it would be nice if those could be incorporated in the
Poisson approximation formula that was proposed by the Suzuki and Kodratoff.
This procedure is quite straightforward and is explained below.

I 1.0+ I 1.0 I 1.0+

0.8 08 0.9
0.6 06 0.8
0.4 0.4 0.7
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0.0
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n, n Cardinal dilation
n,=20 n,=15 n=100 n =[35, 95] n=20 n =15 n,=85 n=[90, 220] n=3 n=5 n =2 n=10

Figure 3.7: Sensitivity analysis of intensity of implication
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* Rewriting n_; gives

Ngg = Ng ~ Nap

=support x |cases| x [— - lj
confidence

«  Rewriting 1gives

/1 — na >((|D| _nb)
0
Nap
D
= ol
na
support

= ——""———— x(|cases|-abssupcons)
confidence

with abssupcons the absolute support count of the consequent of the rule

Substituting both derivations in the former formula by Suzuki and Kodratoff

gives:

k
1 support
sux)portx\caseS\x( Conﬁdence—l) [(pp j x (cases-abssupcons)}
X

[=1- confidence

|
= k!
- M X(‘cases‘—abssupcons)
e confidence

By means of this latter formula, we are now ready to adapt the CBA algorithm.
This is done by using intensity of implication as the primary criteria when doing
the sorting in the first rule of Figure 3.3. Rule r, has a higher rank than rule r, if it
has a larger value of intensity of implication. When two rules have the same
values of intensity of implication, they are ranked according to the confidence
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sorting mechanism of the original CBA, explained in section 3.3.3. Guillaume et
al. (1998) claim that the relevance of the discovered association rules can be
significantly improved by using intensity of implication. The empirical results of
this adaptation are shown in section 3.6. Before doing so, we first briefly
elaborate on another own-developed measure for determining the interestingness
of a decision rule.

3.5.3 DiLATED CHI-SQUARE

Another measure for ranking class association rules that was tested within this
dissertation is the dilated chi-square measure. The measure was developed, based
on the traditional chi-square test statistic ( ¥°), which is a widely used method
for testing independence and/or correlation between two variables. Let f, be an
observed frequency of all the values for a variable, and f be an expected
frequency of these values. The X value can then be defined as

Xzzz(fo_ff)z

to test the significance of the deviation from the expected values. The statistic
can also be applied within the context of classification rules. For each rule X=Y
and the training dataset D, a 2*2 contingency table can be derived (Table 3.6):

Table 3.6: A 2*2 contingency table for rule X=Y and dataset D

Satisfies Y Does not satisfy Y Row Total
Satisfies X m,, m, Support count of X
Does not Satisfy X m,, m,, |D|-Support count
of X
Column Total: Support count  |D|-Support count |D|
of Y of Y

The x? value for rule X=Y can be calculated as

2 _ (my4m; ‘"712”721)2 ||
('7711 + le)(m21 + ’7722)('7711 + m21)(m12 + ’7722)

X

However, simply using the traditional x° value will only be favorable in the
situation where the distribution of the row total is close to that of the column
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total distribution (see infra). A dilated chi-square measure was therefore
proposed to conquer this shortcoming. In order to do so, the definitions of local
maximum Y and global maximum x* were introduced, along with their related
properties.

Definition 3.16: Local maximum x°
Given a dataset D, the local maximum x?, denoted as Lmax()(z) , is the maximum

,Y2 value for a fixed support count of X. [
Property: 2
lmax()(z) _ (mnz)” |D]

(myy +myg ) (may +myp ) (myy + gy ) (map +my,)

where
n = min(min(mll +m12,m21 +m22),min(m11 +m21,m12 +m22))

n, = min(max(mn + Mg, Myy + Myp ) ,max (myg +myy, myy +m22))

That is, the local max )°value is arrived at the largest deviation from the
expected frequency when the support count of X is given. The property was not
theoretically proven but has been heuristically derived and tested on several
examples. [

Definition 3.17: Global maximum
Given a dataset D, the global maximum )(2, denoted as gmax()(z), is the

. 2 .
maximum X value for any possible support count of X. |
Property:
gmax ()(2) = 0| n
Proof: If we for instance suppose that m +m, > m +m, and m,+m 2m,+m,, and
taking the property above into account:
2 _ . 2
ng = (mm(m21 + My, Myp + ’7722))2 < (myq +myp ) (myp +my,)
2 _ .
m = (mm(mll + My, My +m21)) < (g +myp ) (myq +mpy)
Therefore
lmax()(z) < |D| = gmax()(z)
The equation is arrived when m,+m,, = m _+m,, and m_+m,= m +m,, i.e. the

distribution of row total equals that of column total. |
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In order to better illustrate the above properties and definitions, the reader may
consider the following hypothetical example.

Example: Suppose three rules have been generated by the CAR algorithm.

r,: education = university = Transport mode=bike (support count of rule = 32,
confidence = 60%), and

r,: driving license = yes = Transport mode=car (support count of rule = 199,
confidence = 99.5%), and

r,;: number of children >4=> Transport mode=bike (support count of rule = 2,
confidence = 100%).

The contingency tables for these three rules are as follows:

R, Car Bike Total
Education= 438 32 470
university
Edu-catlc?n;t 12 18 30
university

Total 450 50 500

2*2 contingency table for rule r,

R, Car Bike Total
 Driving 199 1 200
license=yes
Driving 251 49 300
license=no

Total 450 50 500

2*2 contingency table for ruler,

R, Car Bike Total

Child<4 450 48 498
Child > 4 0 2 2

Total 450 50 500

2*2 contingency table for rule r,

Figure 3.8 Contingency tables for 3 hypothetical rules

The x? values of the three rules are respectively 88.7, 33.4 and 18.1, and the
local maximum x? values 287.2, 83.3 and 18.1. It is evident from this example
that the xy? values are favorable to the situation where the distribution of row
total is close to that of column total. For somebody having university education
and a driving license, the transport mode will be bike according to r, if the
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choice of the rules is based on simple x? values. However, r, is intuitively much
better than r, as also indicated by much higher support and confidence values.
In addition to this, although the support of r, is extremely low, r, has a 100%
confidence. The interestingness of r, may thus have been somewhat

underestimated by its current x value.
Since the x° value seems to have a bias towards total row and column

distributions, the measure needed to be adjusted to a more uniform situation.
The novel interestingness measure was called dilated x? value, denoted as

dia()(z). More specifically, we heuristically dilated the ,YZ value according to
the relationship between the local and global maximum ,Y2 values. The dilation

procedure is nonlinear and empirically achieved excellent results on several
datasets, as will be demonstrated in next section:

dia(,\/z)_ gmaX(Xz) 0’_ |D| ’ h 0<ac<l1
% - lmax(){z) B lmax()(z) ,where 0<a<
Therefore
a
) D
dla()(z): % )(2

The parameter @ is used to control the impact of global and local maximum ,\/2
values. It determines the degree that chi-square is dilated. The dilated/szalues

for the three rules are respectively 117.0, 136.1 and 95.1 if @ =0.5. These
dilated x? values are somewhat more reasonable to our intuition, because in the

case that somebody has a university education and a driving license, the
transport mode will be car in our example, according to r, (which has the largest
dilated chi-square value). Also, the interestingness of r, seems more reasonable
now, when compared to the original chi-squared value, given its 100%
confidence.

It can be seen from Figure 3.9 that the dilated x? value is sensitive when the
size of s(Y) or D varies. In this figure, the sensitivity analysis that was reported
previously for intensity of implication was also established for the dilated chi-
square measure, with @ arbitrarily set at 0.3 and 0.8, for the sake of clarity. In
the first case, i.e. n, increases while n, n, and n remain stable, the dilated x°
first gradually declines to zero; this is at the point when n, equals 75. This is the
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situation when the confidence of the rule is equal to the proportion of class Y in
the whole dataset D, i.e. 0.75. Dilated )(2 then climbs up sharply if n, continues
to increase, which indicates the negative relationship between X and Y.
Therefore, rules whose confidences are less than their corresponding class
proportions are not expected to exist in the final classifier. The similar
mechanism occurs in the second case, where dilated Y* becomes close to zero
when the size of D equals 113. The third case shows that dilated x? increases
linearly if all subsets are cardinally dilated. In addition to these properties, dilate
X° values can estimate interestingness in a more careful manner, such as for
instance rules with high confidence and very low support (see example before).
Changing the @ -parameter does not significantly change the predictive
performance, as it will be shown in Appendix E.
dia dia dia
o] o] | = ]

304 |

204 |

104

030 40 50 60‘\ 70 80 90 100 O80 100 120 140 160 180 200 0 O’ 10 20 30 40 50
m, n Cardinal dilation
n,=20 n =15 n=100 n =[35, 95] n,=20 n =15 n=85 n=[90, 220] n=3 n=5n,=2 n=10

Figure 3.9. Sensitivity of dilated chi-square

Similarly to intensity of implication, we can now equally adapt the CBA algorithm
by means of the developed dilated chi-square formula. This is done by using
dilated chi-square as the primary criteria when doing the sorting in the first rule
of Figure 3.3. Rule r, has a higher rank than rule r, if it has a larger dilated chi-
square value. When two rules have the same dilated chi-square values, they are
ranked according to the sorting mechanism of the original CBA, explained in
section 3.3.3.

3.6 ADAPTED CBA: RESULTS

Before moving on to the results of adapted CBA within the Albatross model, the
reader may first briefly consider the results of the adapted CBA algorithms on the
UCI Machine Learning repository in Appendix C. It can be seen in Appendix C that
adapted CBA-1 and CBA-2, which correspond to the new algorithms that
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incorporate intensity of implication and dilated »? respectively, perform better
than any of the other classifiers in terms of average accuracy. Perhaps even more
important, is the number of rules that were generated. The average size of the
ruleset was almost one third of the rules that have been generated by original
CBA. CBA-2 seemed to be even more compact than CBA-1. The reader may recall
from section 3.4 that one of the limitations of integrated (supervised and
unsupervised) approaches is the number of rules that is generated. Therefore, our
final aim for carrying out these adaptations -to reduce the size of the decision
choice sets and the amount of overfitting (see section 3.4.5)- has been achieved;
at least for these UCI data. The next section examines whether these good results
can also be maintained on the 9 choice facets of the Albatross model.

3.6.1 CHoICE FACET LEVEL

The accuracy percentages that indicate the predictive performance of Adapted
CBA-1,2 within Albatross, are presented in Table 3.7. The results of the original
CBA algorithm (see Table 3.3) were also added to the table, for the sake of
clarity. With respect to Adapted CBA-1, only the results of the Poisson
approximation formula were shown in Table 3.7. As mentioned before, the
computational effort was much larger for the hypergeometrical law formula. The
detailed results of the hypergeometrical law formula are shown in Appendix D.
With respect to Adapted CBA-2, only the best parameter selection (a) has been
reported in Table 3.7. The sensitivity analysis for using a different value for a has
been shown in Appendix E. It can be seen from Appendix E that the improvement
which can be achieved through a proper selection of ¢ is only minor. While there
are some small variations, these findings seem to support the stability of the
proposed heuristic.

It can be seen from Table 3.7 that Adapted CBA performed slightly worse than
original CBA. However, the degree of overfitting and the size of the decision sets
are significantly lower. Also, the fact that model performance is not significantly
worse for all datasets, has lead us to believe that the rules which are selected in
the adapted CBA are more interesting (i.e. contribute more to the classifier) than
the rules which are present in the original CBA. In order to examine this in
detail, the added value of every rule in the classifier was examined.
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Table 3.7: Benchmarking results at choice facet level

Dataset Adapted CBA-1 Adapted CBA-2 Original CBA
Num. Num. Num.
Train | Test of | Train | Test of | Train | Test of
(%) (%) (%) (%) (%) (%)
rules rules rules

Duration 40.7 | 40.9 17 43.0 | 41.2 8 44.7 | 39.2 147
Location1 64.5 | 68.1 25 59.6 | 60.8 3 66.3 | 62.7 234

Location2 26.8 | 26.3 1 48.3 | 38.0 55 52.6 | 41.1 136

Mode for
work

Mode other | 54.9 | 54.8 5 68.0 | 60.5 259 66.5 | 60.9 245
Selection 79.1 | 79.2 1 57.5 | 57.4 1 79.6 | 78.7 594
Start time 33.3 | 33.0 69 37.6 | 36.2 102 34.5 | 33.7 120
Trip chain 82.7 | 82.0 21 84.2 | 83.4 3 83.9 | 80.4 65
With whom | 54.7 | 48.1 24 55.9 | 51.1 51 61.1 | 56.2 222

74.7 | 76.8 38 75.6 | 74.4 12 83.5 | 73.7 172

Average

Accuracy 56.8 | 56.6 / 58.9 | 55.9 / 63.6 | 58.5 /
Av. number

of rules / / 22.3 / / 54.9 / / 215

POST-ANALYSIS

As mentioned before, by depicting the number of correctly predicted cases versus
the rules that are added to the final classifier, it is possible to get quite a good
idea about the quality of every rule that is added to the classifier. The slope of
the graph then becomes a quantitative measure for the added value. Figure 3.10
portrays this evolution for all nine facets of the Albatross model. It is shown in
the figure that the slope of the graph stops some time after the cutpoint p,
which means that the rule insertion is stopped because either all of the rules are
used or no cases are left in the database. It can be seen that for every decision
facet, Adapted CBA-1,2 was able to faster obtain a higher number of correctly
predicted cases, indicated by the steeper slope. In some cases, the increase is
quite spectacular, e.g. for the datasets “Duration”, “Location1”, “Mode for Work”
and “Trip Chain”. We therefore conclude that the quality of the decision rules
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which are added to the classifier was higher for these datasets. The fact that the
cutpoint could be achieved earlier is a decent property of Adapted CBA-1,2.

By consequence, the increase in predictive performance is significant for these 4
datasets and the degree of overfitting is lower (see Table 3.7).

However, there are also a couple of datasets (“Mode Other”, “Start Time” and
“With whom”) for which the slope coincides better with original CBA, and by
consequence, it is flatter. Despite this, the difference with original CBA still
remains that Adapted CBA achieved its cutpoint faster. However, given the lesser
quality of the rules that were added, the predictive performance suffers from this
(see Table 3.7). An exception to this rule is the performance of the Adapted
CBA-2 algorithm on the Start Time dataset.

Finally, there are also a couple of datasets for which Adapted CBA only selected
one single rule. This occurred at the Selection dataset (for Adapted CBA-1,2) and
at the Location2 data (for Adapted CBA-2). Apart from Adapted CBA-1 at the
selection dataset, this was a bad decision of the algorithm, which negatively
affected the predictive performance (see Table 3.7).

percentage of correctly
classified cases

0,45

number of CARs

1 16 a1 46 61 76 a1 106 121 136 151 166 181 196 (number of rules in
the potential

DU r at' on classifier)

—Original CBA — Adapted CBA-1 Adapted CBA-2

Figure 3.10 (first part): Evolution of the number of correctly classified cases for every
rule that is added to the final classifier for CBA, Adapted CBA-1,2
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However, not only the predictive performance, but also the computation time of
CBA; and especially that of CBA-1,2; is affected by the (number of) rules that are
included in the classifier. This can be clearly seen in Figure 3.11, where the
computation of the three algorithms has been shown for the different datasets.
The three numbers in parentheses that have been listed on the X-axis under the
name of the dataset, are equal to the number of rules that are respectively
incorporated in the CBA, CBA-1 and CBA-2 classifier. These numbers were already
mentioned in Table 3.7 but were repeated in the figure for the sake of clarity. It
can be seen that there is clearly a relationship between the size of the classifier
and the number of rules. To give one example with respect to the original CBA
algorithm: the duration dataset, which has a computation time of 7.09 seconds,
contained 147 rules; while the selection dataset has a computation time of 8.350
seconds and contained 594 rules. Similar patterns can be seen for other
algorithms (and datasets). It should also be noted that CBA-2 is less efficient
when compared to CBA, which is for instance very clear for the “Mode other”
dataset, which significantly slowed down the CBA-2 learning algorithm (21.210
seconds), but has only a minor effect on the original CBA algorithm (7.760
seconds), even while nearly the same amount of rules were included in both

Computation time (seconds)

22,5
21,0
19,5
18,0
16,5
15,0
13,5 A
12,0
10,5

9,0

7,54

v—
6,0 4
4,5
3,0 1
A
1,5 1
Dataset
0,0 T T T T T T T
Duration Locationl Location2 Mode for work  Mode other Selection Start time Trip chain With whom
(147,17,8) (234,25,3) (136,1,55) (172,38,12) (245,5,259) (594,1,1) (120,69,102) (65,21,3) (222,24,51)
|—e—cBa cBA1 —A—CBA2 |

Figure 3.11: Computation time (in seconds) of CBA, CBA-1, and CBA-2
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algorithms (259 versus 245 rules). Obviously, this negative side effect is probably
the result of the more complex sorting algorithms that have been used in CBA-1,2
and therefore also have required more computation time. However, overall CBA-1
is most efficient for most datasets, which is probably due to the lower number of
rules that are incorporated in CBA-1. The algorithms were executed on a Pentium
1.6 Ghz computer with 512 RAM.

3.6.2  AcTIvITY PATTERN LEVEL

The SAM distance measures, comparing the predictive performance at activity
pattern level on the training and on the test set for Adapted CBA, are presented
in Table 3.8. The results of the original CBA algorithm (see Table 3.4) were again
added, for the sake of clarity. The results are in the same line as the results at
choice facet level, i.e. original CBA performs slightly better. However, for specific
SAM distance measures such as SAM mode, Adapted CBA-1,2 may be preferred.
This result is correlated with the good predictive performance for the mode
choice dataset. Another important finding is that the degree of overfitting of
Adapted CBA was significantly lower when compared to original CBA. Also this
finding is in line with previous results at choice facet level.

Table 3.8: Benchmarking results at activity pattern level

SAM distance Adapted CBA-1 Adapted CBA-2 Original CBA

measure Train Test Train Test Train Test

SAM activity-type 2.710 2.712 2.879 2.918 1.610 2.712
SAM with whom 3.210 3.215 3.109 3.210 1.971 3.114

SAM location 3.138 3.142 3.106 3.214 1.321 3.035
SAM mode 4.208 4.218 4.185 4.215 2.019 4.414
UDSAM 16.385 | 16.412 16.217 16.419 12.871 16.318
MDSAM 8.310 8.356 8.101 8.361 5.108 8.298

3.6.3 TRIP MATRIX LEVEL

Once more, the last measure to evaluate the predictive performance, is carried
out at trip matrix level (see Table 3.9). Also in this case, original CBA was added
for the sake of clarity. While the results that could be achieved are in favour of
Original CBA, the differences are minor. Also at this level, the differences
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between training and test set are somewhat lower. All results are consistent with
previous results at the other levels.

Table 3.9: Benchmarking results at trip matrix level

Dimension Adapted CBA-1 Adapted CBA-2 Original CBA
Train Test Train Test Train Test
None 0.956 0.939 0.955 0.940 0.959 0.940
Mode 0.892 0.851 0.887 0.848 0.911 0.849
Day 0.967 0.946 0.964 0.945 0.975 0.948
Primary Activity 0.892 0.836 0.890 0.837 0.902 0.838

3.7 CHAID, CBA, CBA-1 AND CBA-2: QUALITATIVE ANALYSIS

The previous sections have described detailed quantitative analyses about the
performances of CBA, adapted CBA-1 and the adapted CBA-2 algorithm.
Comparisons were made with the CHAID decision tree algorithm that is used in
Albatross. The aim of this section is to proceed with this comparison at choice
facet level but now on a more explanatory and descriptive manner. To this end,
the most important variables that have been used in the above-mentioned
techniques, are discussed. A description of the variables is often mentioned along
with the variable, but is provided as well in more detailed lists in Appendix B.
The chronology of this section is similar as described in the previous quantitative
analyses. A number of rules that were ranked highest by respectively CBA, CBA-1
and CBA-2 were added (for illustrative purpose) per decision facet.

Before doing so, it has to be noted that the identification of most important
variables is somewhat different in CBA than in a traditional decision tree
approach. With respect to CBA, a weighted variable frequency count was
calculated in order to assess the importance of the variables per decision rule. It
was mentioned before that the sequence order of the CARs that are entered into
the final classifier is important. Therefore, variables in the first rule of the final
classifier are considered to be more important than variables in the last rule. A
simple weighting factor has been used to assess this difference. Variables with
highest weighted frequency counts were thus selected as most important
variables. In CHAID, the variables on which the algorithm makes its first splits
are considered to be more relevant than variables which occur further down the
partitioning process.
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3.7.1 DURATION

With respect to the duration facet, the total time of Workl including travel
(Twincl), the total time available for social activities (Tsoc), and the travel party
(Awith) are identified as important variables in the original CBA algorithm.
Equally important are the maximum available time (Tmax ), and the availability of
the 'long' duration class (Yavail3).

CBA-1 also selected Tmax, and Awith but added the Number of instances of the
current activity type in the schedule (Iact) and the availability of a grocery
activity (Ygroc) to its list of most important variables. In the CBA-2 algorithm,
Tmax, and Awith were also selected, but Day and Two are important as well in
this case.

When compared to the CHAID based approach, there is only one variable which is
similar with the variables that have been found important by CBA and CBA-1. This
is the Travel party (Awith) variable. Since Awith was also found important by
Moons (2005) for all the algorithms under consideration in the study, the
variable can be regarded as being very reliable and robust for this decision agent.
When compared with CBA-2, CHAID has three equally most important variables,
i.e. day, Awith and Two. Despite this, the difference in most important selected
variables between CBA and CHAID is quite high. Despite the fact that there is a
small improvement in accuracy on the test set for CBA (+0.4%), CBA-1 (+2.1%)
and CBA-2 (+2.4%) when compared to CHAID (see Tables 3.3 and 3.7), it is
probably not really safe to proclaim that CBA-1 and CBA-2 selected better
variables and combined them more efficiently than CHAID did.

In Table 3.10, the four most important decision rules have been shown for the
algorithms under evaluation in this chapter. All rules are mentioned along with
their corresponding support and confidence values. It is logical that the CBA
algorithm contains only rules with a very high confidence value because of its
sorting criterion. CBA-1,2 may or may not contain rules with high confidence and
support values, because of the other criterion of interestingness that has been
used. In most cases, the confidence value will be somewhat lower and the
support higher in CBA-1,2, but this is not always the case.
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Table 3.10: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the duration choice facet

Rule |CBA (BA-1 CBA-2
1 Twincl=3 * Tsoc=0 # Ysoc=0 * Awith=0 > Awith=0 - Short
Awith=0 - Short Short (Conf.: 0.45; (Conf.: 0.45; Supp.: 0.19)
(Conf.: 0.83; Supp.: 0.015) | Supp.: 0.17)
2 Twincl=3 * yServ=0 * Awith=0 - Short Day=6 * Tmax6=3 *
Awith=0 - Short (Conf.: 0.45; Supp:0.19) | Awith=1 > Long
(Conf.: 0.79; Supp.: 0.014) (Conf.: 0.50, Supp.: 0.05)
3 Tmax3=0 * yCar6=1 * Tmax2=3 " Tact=0 * Day=6 » Two=0 " Awith=1
yAvail3=0 > Short yGroc=0 - Average - Long
(Conf.: 0.78; Supp.: 0.010) | (Conf.: 0.40;Supp: 0.16) | (Conf.: 0.48, Supp.: 0.05)
4 Tmax3=0 * yCar3=1* Tmax2=3 » Tmax4=3 * | Two=3->Short
yAvail3=0 - Short yGroc=0->Average (Conf.: 0.58, Supp.: 0.03)
(Conf.: 0.77; Supp.: 0.011) | (Conf.: 0.39;Supp: 0.17)

3.7.2 Location1

Almost all attributes that the CBA algorithm has found important for the
prediction of the locationl decision facet are descriptive variables. The most
important variables are day of the week (day), Household type (Ccomp), Number
of mandatory out-of-home activities other than work in the schedule (Nsec), and
transport mode (Mode). Other variables that are important are the maximum
available time in the schedule position of the activity (Tmax) and a variable
which indicates whether a trip ends at home (toH) or not.

The CBA-1 algorithm has different variables in its most important rules. On the
one hand, the location facet is determined by the previous facets of the Albatross
model, which is the activity type (Atype), the transport mode (Mode), and the
travel party (Awith). Furthermore, the availability of choice locations given the
schedule (yAvail), the number of out-of-home activities (Nout) and the maximum
available time in the schedule position of the activity (Tmax) are important
variables for CBA-1. CBA-2 did not select any new variables in its most important
rules. In this case, only the yAvail and the Mode variables were selected.

When compared to the CHAID based approach, there are only two equal variables.
Obviously, the most important variable is the Mode choice variable, also because
it appeared in all the algorithms in the study by Moons (2005). Also in this case,
the variable can therefore be regarded as being reliable and robust for this
decision agent.
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Having said this and given the fact that the predictive quantitative results of
CBA-1 outperformed CHAID by more than 9% (see Table 3.7), it is safe to assume
that the algorithm not only selected the best variables but also combined them
more efficiently. The better predictive quantitative results are probably the result
of the sorting mechanism (interestingness selection criterion) and the fact that
the rules stem from a higher “richness” of the rules (i.e. derived from association
rules).

The rules that are first added to the classifiers CBA, CBA-1 and CBA-2 are shown
in Table 3.11. The reader should especially notice that CBA-2 only contained

three rules and achieved an excellent performance of 60.8% on the test set.

Table 3.11: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the location1 choice facet

Rule | CBA

CBA-1

CBA-2

1 Day=7 * Ccomp=4 *
Nsec=0 * toH=1 >
highest-order loc.
(Conf.: 0.94; Supp.:
0.023)

Atype=4 * Mode=1 * Nout=1
-> highest-order loc.(Conf.:
0.92; Supp.: 0.083)

yAvaill=1 * yAvail2=0
- nearest loc. from
home in the context of
the tour (Conf.: 0.30;
Supp.: 0.040)

2 Day=7 » Ccomp=4 *
Mode=1 * toH=1 >
highest-order loc.
(Conf.: 0.94; Supp.:
0.023)

Mode=2 » Tmax=1 *
yavaill=0"yAvail5=0->
nearest loc. from home
(Conf.: 0.90; Supp: 0.05)

yAvaill=1

-> nearest loc. from
home in context of tour
(Conf.: 0.27; Supp: 0.04)

3 Day=7 * Ccomp=4 *
Tmax=3 * Nsec=0 >
highest-order loc.
(Conf.: 0.93; Supp.:
0.027)

Mode=2 " Tmax=1 * yavail4=0
AyAvail5=0->

nearest loc. from home
(Conf.:0.89; Supp.: 0.05)

Mode=2 " yAvail4=0
AyAvail5=0 >

nearest loc. from home
(Conf.:0.75; Supp.: 0.19)

4 Twork=4 " Mode=1 *
Nsec=0 * yAvail2=0 >
highest-order loc.
(Conf.:0.92; Supp:
0.023)

Atype=4 * Mode=1 * Awith=2
—> highest-order loc.(Conf.:
0.87; Supp.: 0.082)

/

3.7.3 LocATION2

For the location2 facet, there are some variables that were already found
important by CBA at the location1 dataset (Mode, Ccomp, tOH, yAvail, and Nout).
Also the age of the oldest person in the household (Cage), the gender (Gend),
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the total time of Workl (Twoincl) and the type of the previous activity (Aprev)
belong to the list of most leading attributes for CBA. This list of variables is
highly similar when compared to CBA-2. On the contrary, CBA-1 selected only one
rule and one attribute (Availl). This decision is clearly a very bad choice, given
the poor predictive performance of 26.3% that it achieved on the test set.

When compared with CHAID, there are only two equally most important variables
(Mode, Nout). Also in this case, the Mode choice variable was found highly
significant and was supported by all the algorithms under evaluation for other
types of classifiers (Moons, 2005) at the location2 facet.

Table 3.12: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the location2 choice facet

Rule | CBA (BA-1 CBA-2

1 Mode=1 * Nout=2 * YAvaill=1-> nearest loc. | YAvail3=0 * YAvail4=0 *
yAvail3=0 from home (tour context) | Yavail5=1->highest-order
- nearest loc. from home | (Conf.: 0.27; Supp.: 0.27) | location within 20 minutes
(Conf.: 1; Supp.: 0.019) (Conf.: 0.90, Supp.:

0.019)

2 Ccomp=4 * Nout=2 " / Mode=1 * Nout=2 *
Aprev=1 * yAvail5=0 > yAvail3=0 > nearest loc.
nearest loc. from home from home (Conf.: 1,
(Conf.: 1; Supp.: 0.013) Supp.: 0.019)

3 Cage=2 » Mode=1 * / Ccomp=4 * Nout=2 *
Nout=2 * Aprev=1 > Aprev=1 * yAvail5=0 ->
nearest loc. from home nearest loc. from home
(Conf.: 0.93; Supp.: 0.014) (Conf.: 1, Supp.: 0.013)

4 Cage=2"Gend=2"TOH=17T |/ Gend=2"Tnltot=0"yAvail3=
woincl=1 0”yAvail5=1-> highest-
YAvail2=1-> nearest loc. order location within 20
from home (tour context) minutes
(Conf.: 0.93; Supp.: 0.013) (Conf.: 0.78, Supp.: 0.20)

As illustrated before and despite the bad performance of CBA-1, both CBA and
CBA-2 achieved better predictive performances than CHAID (respectively +8.5%
and +5.4%). Given the small overlap in variables between CHAID and CBA, CBA-2,
also in this case it can be concluded that variables were better selected and were
combined more efficiently per decision rule. It can be seen from Table 3.12 that
there is some overlap in the most important rules for CBA and CBA-2. An example
of this finding are the two rules where a confidence-value of 100% was achieved.
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3.7.4 MobE For Work

In case of the “Mode for work” choice facet, the ratios between the car travel
time and bike travel time (Rcabi) and between public transport and bike travel
time (Rpubi) appear in all CBA algorithms. In the general dataset, the average
ratio between car and bike is equal to 3.04, while the average ratio between
public transport and bike is equal to 2.38. Both indicators (but particularly Rcabi)
seem to be more inclined towards the use of bike as transport mode for work,
which is probably also supported by the good biking facilities which are available
in the Netherlands. In addition to this, the ratio between public transport travel
time and car travel time (Rpuca) is also identified by CBA as an important
variable and has an average of 2.37. Also important for CBA are general
descriptive variables (such as the socio-economic class of the household (Csec),
the household type (Ccomp) and the ratio between the number of cars and the
number of adults (Ncar)) and transport related variables such as whether the end
time of the work episode is situated in the evening peak (Peakn) and the
objective travel time to the work location by bike (Tbike). This latter variable has
an average value of 27.6 minutes in the dataset.

CBA-1 also contained some partner related variables such as the presence of a
bring/get activity (PyBget) and the number of fixed out-of-home activities other
than work in the schedule of the partner (Pnsec). In addition to the above-
mentioned variables; some other distinctive partner variables were found
important in CBA-2 such as the partner status (group) and the total time of work
in the schedule of the partner (Pttot). Also important are the total time of work
in the own schedule (Two and Ttot).

Unlike in previous choice facets, it cannot be said that there is a low level of
correspondence between CBA’s and CHAID's most important variables. In CHAID,
Rpuca, Ccomp, Ncar and Thike are important; i.e. all variables which also appear
in CBA algorithms. However, when considering Table 3.3 and 3.7, the predictive
performances are again significantly in favour of CBA and CBA-1,2 (respectively
+7%, +10.1% and +7,7%). For instance, the highest difference (CBA-1) can be
better understood when considering Table 3.13. It can be seen in this table that
CBA-1 rules have very high confidence values, while its support is also very high
when compared to other rules. Therefore, in this case, the significance in
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predictive performance has to be attributed to a better combination of attributes
per decision rule. Also the number of attributes per decision rule was four at
maximum, which reduces the chance of overfitting and consequently improves
accuracy (on the test set).

Table 3.13: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the mode for work choice facet

Rule CBA CBA-1 CBA-2

1 Csec=4 " Peakn=0 * Pnsec=0 * Rpubi=2 Ncar=1 * Two=4 *
Rpubi=2->car —>car(Conf.: 0.93, Supp.: | Rcabi=4->slow mode
(Conf.: 1; Supp.: 0.06) 0.28) (Conf.: 0.89, Supp.:0.02)

2 Ccomp=2"Thike=4"Rcabi |PyBget=0 * Rcabi=1 Ncar=1 * Rcabi=4 *
=1->car (Conf.: 1; Supp.: | Rpubi=2->car (Conf.: Rpubi=1 ->slow mode
0.05) 0.93, Supp.: 0.29) (Conf.: 0.80, Supp.:0.03)

3 Ncar=2"Peakn=1"Tbike=4 | Rcabi=1 * Rpubi=2 * Group=3 * Ncar=1 *
—>car (Conf.: 1; Supp.: Pybget=0->car (Conf.: Tbike=1->slow mode
0.05) 0.92, Supp.:0.30) (Conf.: 0.78, Supp: 0.03)

4 Ccomp=2”" Rcahi=1" Ncar=2 * PyBget=0 Ncar=1 * Ttot=4 *
Rpuca=3->car Rcabi=1->car Tbike=1->slow mode
(Conf.: 1; Supp.: 0.047) | (Conf.: 0.92, Supp.:0.26) | (Conf.: 0.76, Supp: 0.04)

3.7.5 MobDE OTHER

The “mode other” decision facet is the first decision facet where the most
important variables for CBA and CBA-2 are similar. It is therefore not surprising
that also the predictive accuracy of CBA and CBA-2 is quite equal. The most
important variables can be summarized as general descriptive variables such as
Cage, Cchild, Gend and Ncar on the one hand and travel time related variables
with respect to bike (Rcabi, Textra, Tthike) on the other hand.

CBA-1 selected quite some different attributes as its most important variables.
The question whether a Grocery (Cgroc) or a social activity (Csoc) is part of the
tour, the Partner's maximum bike travel time across activities(Ptmax) or the
travel time ratio between public transport and bike (Rpubi), are important
variables which are identified by CBA-1 but not by CBA and CBA-2. Also when
compared to CHAID, the variables are quite different.

Having said this and given the fact that the predictive quantitative results of CBA
and CBA-2 outperformed CHAID by respectively +11.4% and +11% on the test set,
it is safe to assume that both algorithms selected the better variables for this
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decision facet. The fact that CBA-1 achieved a better performance of + 5.3%
when compared to CHAID further confirmed this finding.

Table 3.14: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the mode other choice facet

Rule | CBA CBA-1 CBA-2

1 Ttbike=2 # Rcabi=3 * Twork1=1 * Awith1=0 » Ttbike=2 # Rcabi=3 *
Textra3=0 - slow mode Ttbike=0 = slow mode Textra3=0 - slow mode
(Conf.: 1; Supp.: 0.01) (Conf.: 0.69; Supp.: 0.12) | (Conf.: 1; Supp.: 0.01)

2 Cage=3 * Aty2=0 * Twork1=1 * Awith1=0 Cage=3 * Aty2=0 *
Tthike=6 = car Rpubi=1 - slow mode Tthike=6 = car (Conf.:
(Conf.: 0.97; Supp.: 0.01) | (Conf.: 0.68; Supp.: 0.13) |0.97; Supp.: 0.01)

3 Ncar=2 * Aty2=0 * Twork1=1 * Awith1=0 Ncar=2 * Aty2=0 *
Ttbike=6 - car Cnlout=0 - slow mode Ttbike=6 - car (Conf.:
(Conf.: 0.97; Supp.: 0.01) | (Conf.: 0.63; Supp.: 0.16) |0.97; Supp.: 0.01)

4 Cchild=1 » Awith1=0 * Cgroc=0 *» Ptmax=0 > car |Cchild=1 * Awith1=0 *
Ttbike=6->car(Conf.: 0.97; | (Conf.: 0.50; Supp.: 0.33) | Ttbike=6 —>car (Conf.:
Supp.: 0.01) 0.97; Supp.: 0.01)

3.7.6  SELECTION

It is difficult to determine learning patterns for the selection choice facet
because of the skewness of the dataset. 79% of the cases can be explained by
simply using a default class.

That is also the reason why Adapted CBA-1and Adapted CBA-2 only selected one
single rule in addition to its default class. CBA-1,2 were thus able to determine
that adding other potential rules would further compromise the result on the test
data. While the decision of stopping after the first rule was probably the right
one, the results of CBA-2 are very unfortunate because of the rather low
confidence value of that first rule (see Table 3.15). Obviously, CBA-1 did not
suffer from this disadvantage because its first rule achieved a confidence of
100%. CBA and especially CHAID fell into the trap of selecting more rules and
achieved worse results than simply using the default class.
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Table 3.15: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the selection choice facet

Rule | CBA CBA-1 CBA-2
1 YAvail=0 - no YAvail=0->no Tmax2=3 * yAvail=1->yes
(Conf.: 1; Supp.: 0.1) (Conf.: 1; Supp.: 0.1) (Conf:0.28; Supp:0.14)
2 Atype=3 * Two=4 =>no / /
(Conf.: 0.96; Supp.: 0.04)
3 Atype=2 » Tmax5=0 >no |/ /
(Conf.: 0.96; Supp.: 0.02)
4 Tmax2=0 * Aldur=3 2>no |/ /
(Conf.: 0.95; Supp.: 0.02)
3.7.7  START TIME

For the start time decision facet, a quite surprising finding is that all of the most

important variables for CBA, CBA-1 and CBA-2 are equal. This is also reflected in

Table 3.16, where the four most important rules are completely identical for every
CBA algorithm. Variables which CBA and CBA-1,2 determined to be important for
decision making at the start time level are variables related to the amount of

saved bike travel if an activity is linked with an out-of-home activity (DBT, DET),

the end time of an out-of-home activity (Etx(t)), the maximum available time in
t-th time interval (Tmax(t)), travel party (with), the total time of work (Two) and

Table 3.16: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the start time choice facet

Rule |CBA (BA-1 CBA-2

1 Tmax5=0 * Nsec=0 * Tmax5=0 * Nsec=0 * Tmax5=0 * Nsec=0 * DBT1=3
DBT1=3-> After 6 P.M. | DBT1=3-> After 6 P.M. | > After 6 P.M.(Conf.: 1;
(Conf.: 1; Supp.: 0.03) | (Conf.: 1; Supp.: 0.03) |Supp.: 0.03)

2 Tmax5=0 * With=2 * Tmax5=0 * With=2 * Tmax5=0 * With=2 * Two=4
Two=4-> After 6 P.M. Two=4-> After 6 P.M. | > After 6 P.M.
(Conf.: 1; Supp.: 0.02) | (Conf.: 1; Supp.: 0.02) | (Conf.: 1; Supp.: 0.02)

3 Tmax5=0 * Nsec=0 * Tmax5=0 * Nsec=0 * Tmax5=0 * Nsec=0 * DET5=3
DET5=3—> After 6 P.M. | DET5=3-> After 6 P.M. | > After 6 P.M.
(Conf.: 1; Supp.: 0.02) | (Conf.: 1; Supp.: 0.02) | (Conf.: 1; Supp.: 0.02)

4 Tmax5=0 * Two=4 * Tmax5=0 * Two=4 * Tmax5=0 * Two=4 " ETx6=0

ETx6=0-> After 6 P.M.
(Conf:0.97; Supp: 0.03)

ETx6=0-> After 6 P.M.
(Conf:0.97; Supp: 0.03)

- After 6 P.M.
(Conf.: 0.97; Supp.: 0.03)
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the number of mandatory out-of-home activities other than work (Nsec). The
CHAID based approach used other important variables such as Iact and Atype.
CHAID performed slightly better than CBA (+1.7%) and CBA-1 (+0.7%), while
CBA-2 achieved slightly better results than CHAID (+0.8%). However, this level of
improvement is insufficient to proclaim that one algorithm consistently selected
better variables than the other algorithms under consideration.

3.7.8

For the trip chaining decision facet, a dummy variable which specifies whether

TRIP CHAINING

there is an activity with an end time within a 1-hour interval before the first
work episode (yCanvo) or after the last work episode (yCantu) is found important
in all CBA algorithms (see Table 3.17). Equally important in CBA and CBA-1is the
household type (Ccomp). Also important for CBA is the duration (Xndu) and type
of the activity (Xntype), and the time needed to perform a shopping (Tshop) or
leisure activity (Tleiso). Important for CBA-1 is the shortest bike travel time
available across possible locations (Ad1), the start time of the activity (Tiday),
and the presence of a shop activity (yAshop). None of these variables were
equally found as most important variables in CHAID.

Also in this case, given the rather small improvement in accuracy for CBA-1
(+1.1%) and for CBA-2 (+2.5%) when compared to CHAID, it is not safe to
proclaim that CBA-1 and CBA-2 selected better variables and combined them
more efficiently than CHAID did.

Table 3.17: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the trip chaining choice facet

Rule | CBA CBA-1 CBA-2

Ycantu=1-> In-Between
stop (Conf.: 0.92; Supp.:

Ycanvo=0 * Ycanna=0—~>
single stop

1 Ycanvo=0 * Ycanna=0->
Single stop

(Conf.: 1; Supp.: 0.57)

(Conf.: 1; Supp.: 0.57)

0.036)

2 Ycanna=0 * Xndu=4 *
Ccomp=1-> Single stop
(Conf.: 1; Supp.: 0.04)

Ycantu=1 * Ad1=0 *
Ccomp=4->In-Between
stop (Conf:1; Supp: 0.017)

Ycanvo=0 *
Ycanna=0->Single stop
(Conf.: 1; Supp.: 0.57)

3 Ycanna=0 * Xndu=4 *
Tshop=2-> Single stop
(Conf.: 1; Supp.: 0.04)

Ycantu=1 * Ccomp=4 *
YAshop=0-> In-Between
stop (Conf:1; Supp: 0.015)

Ycanna=1 "
Ycantu=0->After stop
(Conf.: 0.60; Supp.: 0.19)

4 Ycanna=0 * Xntype=3 #
Tleiso=1-> Single stop
(Conf.: 1; Supp.: 0.03)

Ycanna=0 *
Tiday=6->Single stop
(Conf.: 0.98; Supp.: 0.15)

/
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3.7.9

The last decision facet which is discussed in this section is the with whom facet.

WitH WHom

The activity type (Atype),the presence of children in the household (Cchild), and
Ncar appear in all CBA algorithms (see Table 3.18). In addition to this, the age of
the oldest person in the household (Cage), the household type (ccomp), the
availability of out-of-home leisure activities and the obviously very logical
dummy variable which indicates the presence of others in the household (yAvail),
are both present in CBA and CBA-2. A variable which is only selected by CBA-1 is
a variable which denotes the availability of car in the t-th time interval (yCar(t)).
When compared with the CHAID based approach, there are only two equal
variables (Cchild and Atype).

Despite the fairly equal performance of CBA-1 (-0.3%), original CBA performed
significantly better than CHAID (+7.8%). Considering the small number of
correspondence of important variables in CHAID and CBA, it is safe to assume
that the algorithm selected the best variables and combined them most
efficiently.

Table 3.18: Some important rules in CBA, CBA-1 and CBA-2
(according to sorting criteria) for the with whom choice facet

Rule | CBA CBA-1 CBA-2

Atype=1 *
Ccomp=2->Alone
(Conf.:0.92; Supp:0.02)

Atype=1 * Cchild=1 *
Ncar=2->Alone
(Conf.:0.88;Supp.:0.04)

Cage=2 " Cchild=1 *
YLeiso=1->0thers out HH
(Conf.:0.88; Supp.:0.013)

2 Atype=1 * YGroc=0 * Atype=1 * yCar2=1 * Atype=1 * Ccomp=2->Alone
YAvail=0->Alone yCar4=1->Alone (Conf.:0.92; Supp.:0.02)
(Conf:0.91; Supp.:0.03) (Conf.:0.68;Supp.:0.11)

3 Atype=1 * YAvail=0 > Atype=1 * yCar2=1 * Atype=1 * YAvail=0->Alone
Alone yCar5=1->Alone (Conf.: | (Conf.:0.90; Supp.:0.03)
(Conf.:0.90; Supp.:0.03) |0.68; Supp.:0.11)

4 Cage=2 " Cchild=1 * Atype=1 " Atype=1 * Cchild=1 *

YLeiso=1->0thers out HH
(Conf.:0.88; Supp.:0.01)

yCar4=1->Alone
(Conf.:0.68; Supp:0.11)

Ncar=2->Alone (Conf.:0.88;
Supp.:0.04)
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3.8 CONCLUSION

The idea for undertaking the research effort that has been described in this
chapter originated from the fact that machine learning techniques which are used
in most computational process models are often quite standard supervised
classification systems. To this end, it was examined in this chapter whether an
unsupervised/descriptive learning technique (association rules) can be used as
the basis for coming to efficient supervised learning for the different facets of
the Albatross model.

A good example about how unsupervised and supervised learning is the CBA
algorithm. CBA focuses on a limited subset of association rules. The algorithm
has already been successfully applied and tested within the field of Machine
Learning. It was found that the original CBA algorithm generated better
predictive accuracy results at choice facet level than the CHAID decision tree
approach for most of the datasets under evaluation. This finding proved that the
idea of using unsupervised machine learning techniques for supervised learning
tasks holds out considerable promise. Unfortunately, the same good results of
CBA could not be achieved at pattern and trip matrix level. At both levels, a
higher amount of overfitting occurred. To this end, the idea was conceived to
examine whether two novel contributions to the original CBA algorithm, referred
to as CBA-1 and CBA-2 could reduce the size of the decision rule set and as a
result lead to a better predictive performance.

In adapted CBA-1 and CBA-2, the intensity of implication and an own-developed
heuristic -dilated chi-square- were used as sorting criteria. The fact that both
contributions significantly changed the behaviour of the original CBA algorithm
was found at one hand on a quantitative level, where CBA-1 and CBA-2
respectively lead to a better predictive performance for 5 out of 9, and 4 out of 9
datasets when compared to CBA. More importantly, the aim for undertaking the
adaptations -which was a reduction of the size of the decision rule set- was
achieved for all datasets, both for CBA-1 and CBA-2. At an average scale, the
predictive performance was somewhat worse for both CBA-1 and CBA-2 when
compared to original CBA, but this is quite normal given the highly significant
size reduction in the number of rules. CBA-1 achieved somewhat better average
results than CBA-2, both in terms of predictive performance and in terms of



(lassification based on Associations 93

number of rules. CBA-1 also requires no parameter selection, which is obviously
favoured. The good results of CBA-1 and CBA-2 also paid off at the pattern and
choice facet level where a lower degree of overfitting occurred when compared to
original CBA. The fact that both contributions changed the composition of the
original CBA rule set was also confirmed at a more qualitative and descriptive
level by a discussion of the four (most important) rules that were first added to
every classification system. This analysis showed that there were not only less
rules but also that the rules that have been used per classification system, were
different in most cases.

Initial results which are currently being tested on multiclass UCI machine
learning data, seem to indicate that our proposed adaptations seems to perform
better on binary class than on multiclass datasets. An evaluation of the
algorithms on binary class UCI data was already incorporated in Appendix C. If
these initial findings are confirmed on more data, an important topic for future
research could be to propose another sorting measure which takes specific care
for multiclass datasets. It would also be particularly interesting to evaluate the
effect of such a measure within the context of transportation, since most of our
datasets indeed are multi-class data. Taking our experiments into account, the
real challenge for such a new measure should be to simultaneously reduce the
size of the decision rule set and improve the original CBA algorithm, and this at
an average level.






Chapter 4
Classification based on Bayesian networks

4.1 INTRODUCTION

It was already briefly mentioned in the previous chapter that the major difference
between association rules and Bayesian networks is their difference in
respectively measuring and modelling co-occurrence in data. Bayesian networks
are often used for querying and for making advanced what-if-analyses, which
makes that they are probably also better suited for reasoning and explanatory
purposes. It is assumed in this chapter that Bayesian networks are well suited for
identifying and capturing complex relationships between a set of factors that
cause a particular transport behaviour. In addition to the analysing capabilities,
Bayesian networks can also be used for classification and prediction. However,
the technique is also unsupervised and descriptive in nature and can thus
contribute to a more comprehensive overview about how supervised and
unsupervised learning can be integrated, in addition to the CBA technique that
was described in Chapter 3.

The remainder of this chapter is mainly divided into four major parts. The first
part gives an introduction into the basic concepts, definitions and algorithms for
Bayesian network discovery and analysis. More specifically, we will detail on the
structural learning algorithm that has been used in this dissertation and on
parameter learning calculus.

The second part demonstrates that Bayesian networks are potentially very
powerful descriptive representation and reasoning tools under conditions of
uncertainty. It will be illustrated that they are particularly valuable to capture
and visualize the multidimensional nature of complex decisions. It is also shown
that they enable one to take into account the many (inter)dependencies that
typically exist in complex decision-making processes. Furthermore, the technique
is not restricted to the identification of the significant variables but it also
enables one to quantitatively evaluate the strengths of the relationships and to
reason about and predict choice probabilities. By means of an empirical
application, it will be shown how the technique can be used to evaluate and
reason about the choice processes that form transport mode decisions.
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In a third part, it is examined how Bayesian networks can be used for
classification. In particular, we will elaborate on how classification rules can be
extracted from a Bayesian network, and how these rules can be used within the
context of Albatross.

In a fourth part, the methodological state-of-the-art is advanced by integrating
Bayesian networks with decision trees. The idea here is to use Bayesian networks
as the information source for deriving a complete decision tree, instead of relying
on the original data for doing this. Similar to the advancements that were
proposed with respect to CBA, the aim of this contribution is to generate more
accurate and compact decision lists/trees.

4.2 BAYESIAN NETWORKS: DEFINITIONS AND ALGORITHMS

4,2.1 PREFACE

The origins of Bayesian networks have to be situated long before the 1980s.
Initially, they were only applied on a small scale in mathematics and statistics.
The work of Pearl (1988) is widely accepted as the time by which Bayesian
networks were introduced to the artificial intelligence/machine learning
community. The first real-world applications of Bayesian networks were MUNIN
(Andreassen et al., 1989) and Pathfinder (Heckerman et al., 1992). However, the
bloomy days of Bayesian networks are situated in the 1990s thanks to the
development of effective algorithms for probabilistic inference and learning from
data. Indeed, Bayesian networks were originally only intended to be constructed
from domain knowledge, while advancements with respect to learning from data
probably denoted the full breakthrough of the technique.

It was already mentioned in Chapter 3 that measures such as confidence can be
used to say something about the level of truth, or the certainty of a particular
rule. However, especially in tasks of combination and chaining, major problems
may be involved with respect to the calculus of those certainty measures (Jensen,
2001). Suppose that we have two rules “if A then B with certainty X" and if “B
then C with certainty Y. If we know both A and B, it is unclear what the
certainty of the fact C should be. After all, the answer requires a function for
combining certainties coming from those two rules. Another problem is chaining.
Considering again the above rules, and suppose we only know A, then it is also
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unclear what the certainty of C is. Heckerman (1986) showed that any function
for combination and chaining would lead to wrong conclusions.

In the search for mathematically and theoretically sound foundations for doing
inference, the Bayes' theorem became one of the most important cornerstones,
because it enables combining new data with historical knowledge. Because of
this property, Bayesian networks can be considered as being probabilistic expert
systems, that can be used for reasoning under uncertainty.

The use of Bayesian networks in transportation has been advocated before (Plach,
1997), but only recently it is gaining increased popularity (Torres and Huber,
2003, Davis and Pei, 2004, Ozbay and Noyan, 2005, Verhoeven et al., 2005).
However, within the field of activity-based modelling of transportation demand,
its application is still very limited, and to the best of our knowledge, it has never
been used before in the context of a fully operational activity scheduling model.

4.2.2 DEFINITIONS

GENERAL CONCEPTS

A Bayesian network consists of two components (Pearl, 1988): first, a directed
acyclic graph (DAG) in which nodes represent stochastic domain variables and
directed arcs (links, edges) represent conditional dependencies between the
variables (see definitions 4.10-4.11) and second, a probability distribution for
each node as represented by conditional dependencies captured with the directed
acyclic graph (see definitions 4.1-4.8). To formalize, the following
conceptualization and definitions are relevant:

Suppose we have a set of possibly related objects X={X,, X,, ..., X}. The set can
be pictorially represented by a set of nodes, or vertices, each for one element in
X. The nodes can be connected by lines, ars or arrows, which are referred to as
links or edges. If there is an edge between two nodes X, and X, we use L, to
denote such a link. We will denote L as the set of all links.

Definition 4.1: A graph
A graph G=(X, L) is defined by two sets X and L where X is a finite set of nodes
X={X,, X,,..., X} and L is a set of links (edges). "

17 Noree
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Definition 4.2: Directed link
Let G=(X, L) be a graph. When L, [J L and L,0L, the link L, is called directed. m

Definition 4.3: Directed graph
A graph in which all the links are directed, is called a directed graph. "

Definition 4.4: An adjacency set
Given a graph G=(X, L) and a node X,, the adjacency set of X, is the set of nodes
directly attainable from X, that is, Adj(X,)={X. O X|L,.O0 L}. "

Definition 4.5: A path
A path from node X; to node X; is an ordered set of nodes (X, ..., X)), starting in
X=X, and ending in X=X, such that there is a link from X, to X, , k=1,..., r-1,

thatis, X,,, O Adj(X,), k =1,...,r-1. n

Definition 4.6: A closed path
A path (X, ..., X)) is said to be closed if it has the same starting and ending
nodes, that is, if X =X.. n

Definition 4.7: A cycle
A cycle is a closed directed path in a directed graph. "

Definition 4.8: Directed (a)cyclic graph.
A directed graph is said to be cyclic if it contains at least one cycle. Otherwise, it
is called a directed acyclic graph (DAG). "

Definition 4.9: Parent, child
Given a directed graph G=(X, L) and nodes X, and X, in X, X, is called a parent of X,
and X; is called a child of X, if there is a directed link from X, to X. "

Definition 4.10: Edges, dependencies, independencies

Edges in a Bayesian network represent direct conditional dependencies between
the variables. The absence of edges between variables denotes statements of
independence. We say that variables Y and Z are independent given a set of
variables X if P(z|x,y)=P(z|x) for all values x, y and z of variables X, ¥ and Z.
Variables Y and Z are also said to be independent conditional on X. "

Definition 4.11: CPT
A Bayesian network also represents distributions, in addition to representing
statements of independence. A distribution is represented by a set of conditional
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probability tables (CPT). Each node X has an associated CPT that describes the
conditional distribution of X given different assignments of values for its
parents. .
The definitions discussed above were illustrated in Figure 4.1 by means of a very
simple hypothetical example. First, the network introduced here clearly is acyclic
and directed. Second, the variables “gender”, “driving license” and “number of
cars” are parents of the “mode choice” variable. Finally, dependent and
independent relationships, as well as examples of CPTs are shown in this figure.
In the upper CPT for instance, the probability for mode choice being equal to
bike, is 0.2, given that gender=male, driving license=yes and number of cars=1.
However, for complex problems, a large Bayesian network will be required, often
resulting in a tangle of nodes, which at first glance might look confusing (see
also infra, Figure 4.5). Still, it is exactly this property that makes the technique a
very powerful representation and visualization tool that enables the user to
conceptualize the association between variables. Furthermore, much of the
apparent disorder that might exist in a Bayesian network can be reduced by
pruning the network. This means that the network can be reduced in size without
much loss of relevant information (see infra).

Learning Bayesian networks has traditionally been divided into two categories
(Cheng et al., 2002): i.e. structural and parameter learning. Parameter learning
determines the conditional probability relationship at each node of the network,

Gender | Driving | Number of || P (mode | P (mode
License cars choice= hoice =
bike) car)
Male Yes 1 0.2 0.8
Male Yes >1 0.6 04
Male No 1 0.7 0.3
Male No >1 0.4 0.6 Mode Choice
Female Yes 1 0.4 0.6
Femae Yes >1 0.8 0.2
Femae No 1 0.1 0.9
Female No >1 0.3 0.7
CPT Mode Choice
Driving License Number of cars
P(Gender = P (Gender = P (Driving P (Driving P (Number | P (Number
male) female) License=Yes) | License=No) of cars=1) of cars>1)
0.75 ES 06 | o4 02 | o8
CPT Gender CPT Driving License CPT Number of Cars

Figure 4.1: A simple Bayesian network with its CPT
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given the link structures and the data. It can therefore be used to quantitatively
examine the strength of the identified effect. Structural learning determines the
dependence and independence of variables and suggests a direction of causation
(or association), in other words, the existence or non-existence of the links in
the network. As mentioned before, experts can provide the structure of the
network using domain knowledge. However, the estimated structure can also be
extracted from empirical data. Especially the last option offers important and
interesting opportunities for transportation travel demand modelling because it
enables one to visually identify which variable or combination of variables
influences the target variable of interest. The next section elaborates on both
types of learning.

4.,2.3  ALGORITHMS

STRUCTURAL LEARNING

The major advantage of learning the structure of the network from the data,
compared to building the network using prior domain knowledge, is that this
enables the extraction of unknown, useful and understandable knowledge from
data. This property is useful both when one wishes to test an assumed structure
against empirical data or when one wishes to explore the dependencies in the
data. It has to be noted, however, that algorithms that learn the structure of the
network, can sometimes have difficulties in capturing the correct (causal)
relationships. Causality is extremely difficult to be modeled and captured
efficiently by a machine learning algorithm, because it often also involves human
reasoning. Therefore, the intuitive interpretation of some directions of arrows in
a Bayesian network may look strange. Therefore, it is better to consider the
directed arc as an association rather than as a causality relationship per se.
Structural learning can be divided into two categories: search & scoring methods
and dependency analysis methods. Algorithms, belonging to the first category
interpret the learning problem as a search for the structure that best fits the
data. Different scoring criteria have been suggested to evaluate the structure of
the network, such as the Bayesian scoring method (Cooper and Herskovits, 1992;
Heckerman et al.,, 1995) and minimum description length (Lam and Bacchus,
1994).
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Algorithms, belonging to the second category, view the learning problem
differently. Indeed, since a structure encodes many dependencies of the
underlying model, the algorithms belonging to the latter category try to discover
the dependencies from the data and then use these dependencies to infer the
structure. The dependency relationships are measured according to statistical
tests, such as Entropy (Herskovits, 1991), Chi-square and the mutual information
measure. In order to conduct our experiments, the algorithm developed by Cheng
et al. (2002) (belonging to the category of dependency analyses methods) has
been used. Before detailing this algorithm, two other general definitions have to
be introduced.

Definition 4.12: Node ordering

Node ordering specifies a causal or temporal order of the variables of the domain,
so that any node cannot be a cause or happen earlier than the nodes appearing
earlier in the order. The ordering of the nodes is often specified through domain
knowledge information. =

Definition 4.13: d-separation

For a DAG G=(V,E); two sets of nodes A, B OV and A#B, are d-separated by node
set COV \{A,B}, if Opaths between a node in A and a node in B, CVin the path
such that either:

1) The connection is either 1) serial at V (i.e. either -V - or <V ) or2)
diverging at V (i.e. —~V -, non-collider), and along with one of those
two conditions, it is such that V OC.

2) The connection is converging (i.e. -V —, collider) and neither V nor any
of V's descendants are in C.

It is proven in Geiger and Pearl (1988) that the concept of d-separation can
reveal all the conditional independence relationships that are encoded in a
Bayesian network. In other words, no other criterion can do better. .

Since the concept of d-separation is often used to infer structures for Bayesian
networks and because the definition above is quite complex, a more intuitive
explanation might improve the understanding. Consider a Bayesian network as a
tangle of roads, where each node is an intersection with a traffic light. Cars can
pass the road when the traffic light allows this. In this case, the road is active.
The flow of cars can pass an active road but not an inactive one. When all the



102 Chapter 4

traffic lights on one adjacency path between two roads are active, the path is
open. If any traffic light in the path is inactive, we say that the path is closed.
Since there are two kinds of nodes in a Bayesian network (converging or colliders
and diverging or non-colliders, see definition 4.13), the traffic lights accordingly
have two different initial states, inactive and active. Initially, any traffic light
that represents a collider-road is inactive for that road; any traffic light that
represents a non-collider-road is active for that road. Since a node can be a
collider of some paths and non-collider of some other paths, a traffic light can
also be active for some roads and inactive for some other roads. Putting a node
in the condition-set can be viewed as altering the status of the corresponding
traffic light and possibly the statuses of other traffic lights. When all the paths
between two nodes are closed by altering the statuses of some traffic lights, we
say that the nodes are d-separated by the condition-set corresponding to those
traffic lights whose statuses were altered.

Having explained the two concepts above, we are now ready to explain the
details of the algorithm that is used in this chapter. The main advantage of the
algorithm developed by Cheng et al. (2002) is that node ordering is not required
and that the algorithm has proven to be efficient (exponential complexity on
computational independence tests can be avoided). The algorithm is an extension
of the Chow-Liu tree construction algorithm (Chow and Liu, 1968) to a three-
phase (drafting, thickening and thinning) Bayesian learning algorithm. An
example will illustrate these phases. Suppose we have a dataset which has an
underlying Bayesian network structure as depicted in Figure 4.2 (a). The task of

©
<g>@ @

© ©
@ ON O @>®

Figure 4.2: An example showing the three phases of the structural learning
algorithm (Cheng et al., 2002)
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the algorithm is now to discover this underlying network structure from the data.
The algorithm will first calculate the mutual information of each pair of nodes as
a measure of closeness. The mutual information of two nodes X, X; is defined as:

Definition 4.14: Mutual information between two nodes
I(XX)= X P(xi,xj)logM,where P(x,x) is the posterior probability that a
Xi /X P(Xi)P(Xj)
particular state of X, (i.e. x) and a particular state of X, (i.e. x) occur together;
P(x,) is the prior probability that a state x, of X, will occur and P(x) is the prior
probability that a state x; of X will occur. The probabilities are summed across all
states of X and across all states of X. When I (X, X) is smaller than a certain
threshold &, we say that X.and X are marginally independent. "
Since we have 5 nodes, the mutual information of all 10 pair of nodes is
calculated. Suppose that I(B,D) = I(C,E) = I(B,E) = I(A,B) = I(B,() = I(C,D) =
I(D,E) = I(A,D) = I(A,E) = I(A,C) and that all the mutual information is greater
than &. The drafting phase of the algorithm uses this information to come up
with a first “draft”. Every time there is an open path between the two nodes, the
algorithm will connect both nodes by an arrow, following the sorted order shown
above. The completion of the drafting phase is shown in Figure 4.2(b). Note that
arrow (B,E) is wrongly added and that arrow (D,E) is missing. In the next phase
(thickening), conditional independence tests and d-separation analysis is used to
see if we should connect those pairs of nodes. In our example, Arc (D,E) was
therefore added because D and E are not independent (conditional on B). The
same type of reasoning explains why arc (A,() is not added. After this phase, the
graph looks like Figure 4.2(c). It is not sure whether a connection is really
necessary, but we can be sure that no real arcs are missing. Since both phase I
and phase II can add arcs wrongly, the task of the thinning phase is to identify
those wrongly added arcs and remove them. Again, a conditional independence
test is used to make a decision, but this time we can be sure that the decision is
correct. As a result of this, edge (B,E) is removed because B and £ appeared to be
independent given (C,D) (see Figure 4.2(d)). A proof of the presented algorithm
and a further discussion of an alternative algorithm which does not take node
ordering into account (i.e. the more general case of the algorithm described
here) can be found in Cheng et al. (2002).
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PARAMETER LEARNING

Parameter learning determines the prior CPT of each node of the network, given
the link structures and the data. It can therefore be used to examine
quantitatively the strength of the identified effect. As mentioned above, a
conditional probability table P (A|B,...B)) has to be attached to each variable A
with parents B, ..., B. Note that if A has no parents, the table reduces to
unconditional probabilities P(A). According to this logic, for the example
Bayesian network depicted in Figure 4.1, the prior unconditional and conditional
probabilities to specify are: P(Driving License); P(Gender); P(Number of cars);
P(Mode choice|Driving License, Gender, Number of cars). Since the variables
“Number of cars”, “Gender” and “Driving license” are not conditionally dependent
on other wvariables, calculating their prior frequency distribution s
straightforward. Calculating the initial probabilities for the “Mode choice”
variable is computationally more demanding.

In order to calculate the prior probabilities for the “Mode choice” variable, the
conditional probability table for P(Mode Choice| Driving License, Gender, Number
of cars) was set up in the first part of Table 4.1. Again, this is straightforward
mathematical calculus. In order to get the prior probabilities for the Mode Choice
variable, we now first have to calculate the joint probability P(Choice, Gender,
Number of cars, Driving License) and then marginalize “Number of cars”, “Driving
License” and “Gender” out. This can be done by applying Bayes’ rule, which states
that:

P(Choice,Gender, Number of cars, Driving License) = P(Choice|Gender, Number of

cars, Driving License)*P(Gender, Number of cars, Driving License).

Since “Gender”, “Number of cars” and “Driving License” are independent, the
equation can be simplified for this example as:

P(Choice, Gender, Number of cars, Driving License)= P(Choice|Gender, Number of
cars, Driving License)*P(Gender)*P(Number of cars)*P(Driving License).

Note that P(Gender=male; Gender=female)=(0.75; 0.25),
P(Driving License=yes; Driving license=no) = (0.6; 0.4),
and P(Number of cars=1; Number of cars>1)=(0.2; 0.8), which are the prior
frequency distributions for those 3 variables. By using this information, the joint
probabilities were calculated in the second part of Table 4.1. Marginalizing
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“Gender”, “Number of cars” and “Driving License” out of P(Choice, Gender,
Number of cars, Driving License) yields P(Mode Choice=bike; Mode Choice=car) =

(0.506; 0.494).

Table 4.1: Conditional and Joint Prior Probability Tables
for the Transport Mode Choice Variable

Conditional Prior Probability Table specifying P(Choice|Gender, Driving License, Ncar)

Gender

Male

Female

Driving
License

Yes

No

Yes

No

Number of
cars

1

>1

1

>1

1

>1

1

>1

Mode Choice
bike

Mode Choice
car

0.2

0.8

0.6

0.4

0.7

0.3

0.4

0.6

0.4

0.6

0.8

0.2

0.1

0.9

0.3

0.7

Joint Prior Probability Table for P(Choice,Gender,Ncar, Driving License)

Gender

Male

Female

Driving
License

Yes

No

Yes

No

Number of
cars

1

>1

1

>1

1

>1

1

>1

Mode Choice
bike

Mode Choice
car

0.018

0.072

0.216

0.144

0.042

0.018

0.096

0.144

0.012

0.018

0.096

0.024

0.002

0.018

0.024

0.056

These are the joint prior probabilities for the “Mode choice” variable.

Alternatively,

probabilities can be calculated automatically by means of

probabilistic inference algorithms that are implemented in Bayesian network
enabled software. A screenshot of a Bayesian network in the Netica software is
given in Figure 4.3 for our example. The different variables in the network are

—

Mode Choice

Bike
Car

50.6
49.4

&

Gender Driving License Number of cars
Male 75.0 j Yes GO0 p— One 200 pm: |
Female 250 Nao 40.0 MoreThanOne 80.0

Figure 4.3: Representation of a simple Bayesian network in Netica
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represented as boxes and each state in the network is shown with its belief level
(probability) expressed as a percentage and as a bar chart. It can be seen from
this figure that the joint probability distribution in this figure corresponds to the
values that were calculated earlier. The use of these software packages becomes
particularly useful in the case when for instance “Gender”, “Number of cars” and
“Driving License” are dependent.

ENTERING EVIDENCES

In fact, Figure 4.3 only depicts the prior distributions for each variable. This is
useful but not very innovative information. An important strength of Bayesian
networks, however, is to compute posterior probability distributions of the
variable under consideration, given the fact that values of some other variables
are known. In this case, the known states of variables can be entered as evidence
in the network. When evidence is entered, this is likely to change the states of
other variables as well, since they are conditionally dependent. This is
demonstrated by entering the evidence in the network that the “Mode choice”
variable is equal to “car”. In this case, evidence on “Mode choice” now arrives in
the form of P'(Mode Choice=bike; Mode choice=car)=(0; 1), where P" indicates
that we are calculating posterior probabilities (i.e. after entering evidences).
Then,

P’( Choice, Gender, Number of cars, Driving License)=

P(Number of cars, Gender, Driving License | Mode choice) * P'(Mode Choice)=
(P(Choice, Gender, Number of cars, Driving License)*P'(Mode Choice))/
P(Mode Choice).

This means that the joint probability table for “Choice”, “Number of cars”,
“Driving License” and “Gender” is updated by multiplying by the new
distributions and dividing by the old ones. The multiplication consists of
omitting all entries with “Choice”="bike”. The division by P(Mode Choice) only
has an effect on entries with Mode Choice="car”, so therefore the division is by
P(Mode Choice="car”). For this simple example, the calculations can be found in
Table 4.2. The distributions P’(Number of cars), P'(Gender) and P’(Driving
License) are calculated through marginalization of P'(Choice, Gender, Number of
cars, Driving License).
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Table 4.2: Posterior Probability Table for the Transport Mode Choice Variable

The Calculation of P'(Choice, Gender, Ncar,Driving License) =

P(Choice, Gender,Ncar, Driving Licence|Mode Choice=car)

Gender

Male

Female

Driving
License

Yes

No

Yes

No

Number of cars

>1 1

>1

>1 1

>1

Mode Choice
bike
Mode Choice
car

0.146 | 0.291 | 0.036 | 0.291 | 0.036 | 0.049 | 0.036 | 0.113

This means that

P’(Gender=male; Gender=female) = (0.765;0.235);

P’(Number of cars=1; Number of cars>1) = (0.255;0.745);

and P’(Driving License=yes; Driving License=no)= (0.522; 0.478), when evidence
was entered that the “Mode choice” variable equals car.

Obviously, the calculation of this example is simple. However, in real-life
situations it is likely that conditionally dependent relationships between the
“choice” variable and other variables exist as well, and as a result the evidence
will propagate through the whole network. In this case, the effect of entering
evidences is preferably examined by means of Bayesian network enabled software.
An illustration for our example is given in Figure 4.4. When an evidence is
entered in the network, this is shown in the figure as a shaded box and as a
100% belief. More information about efficient algorithms for propagation of
evidence in Bayesian networks can be found in Pearl (1988) and in Jensen et al.
(1990).

Mode Choice
Bike T{EEE
Car 100

P

Gender Driving License Number of cars
Male T6.5 — Yes 522 s One 255mm |
Female 235 No 478 MoreThanCOne 745

Figure 4.4: Entering evidences in a simple Bayesian network
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4.3 BAYESIAN NETWORKS FOR DESCRIPTIVE LEARNING:
ILLUSTRATION

The aim of this section is to explore the potential value of Bayesian networks to
identify and explain complex relationships between variables. By example, we
focus in this section on the identification and interpretation of a set of
interrelated factors which can have an influence on transport mode choice. The
dataset that is used for this empirical study has been described in section 2.3.7.
For this descriptive purpose, no distinction has been made between a training
and a test set. The logic as the one used in section 4.2 (structural and parameter
learning, entering evidences) is maintained here. Parts of this section are based
upon work reported in Janssens et al. (2003b).

4.3.1 STRUCTURAL LEARNING

Given the large number of variables in the dataset (41 independent) and
assuming that node ordering is not known, building a network (by means of the
algorithm described in section 4.2.3) is not an easy task at all. The final result is
depicted in Figure 4.5. It is clear that drawing conclusions from this network is
almost infeasible given its complexity. Therefore, a way should be found to
reduce the size of the network to make it more comprehensible. This can be
accomplished by means of a pruning strategy. As mentioned before, pruning aims
to reduce the size of the network without loosing significant information with
respect to the variable of interest, in this case “mode choice” (indicated by the
variable choice). To this end, the mutual information between pairs of nodes,
initially used to build the network structure (see definition 4.14) is needed.
However, since our primary interest is to identify which variables influence the
transport mode choice, only the mutual information between this main variable
and the others is needed. The next section elaborates on this.
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Figure 4.5: An unpruned Bayesian network

4.3.2 PRUNING THE NETWORK STRUCTURE

The mutual information between two nodes is reflected in the expected entropy
reduction of one node due to a finding (observation) that is related to the other
node. Entropy can be defined as a measure for impurity, disorder and randomness
of a particular system. It is for instance often used in the case of decision tree
induction, where the aim is to reduce the entropy by recursively splitting the
tree. Entropy is measured in bits and is later also used in definition 5.10 in the
context of decision tree induction. However, the measure can also be used as an
alternative method for pruning the network structure, as it is done in this
section. To this end, the dependent variable (transport mode choice) is called the
query variable (denoted by the symbol Q), the independent variables are called
findings variables (denoted by the symbol F). Therefore, the expected reduction
in entropy for network pruning of Q due to a finding related to F can be defined
here as being completely analogous to the notation in definition 4.14, where X.
equals Q and X, equals F.
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Figure 4.6: The expected reduction in entropy of the transport mode choice
variable for the different finding variables.

As depicted in Figure 4.6, by application of definition 4.14, the expected
reduction in entropy of the transport mode choice variable can be calculated for
the various findings variables. It is shown that there is a huge amount of mutual
information between the first five variables and the transport mode choice.
Rather soon, however, the reduction in entropy falls to zero, indicating
independence between Q and F. To select the nodes, an entropy reduction of less
than 0.001 bits was used as a threshold.

According to this logic, the network can be pruned by discarding those variables
that fail to meet this criterion. The pruned network is shown in Figure 4.7. In
this figure, joint probability distributions are shown as well. These values are
derived by means of the procedure that has been explained in section 4.2.3,
subsection Parameter Learning.

4.3.3 QUERYING THE NETWORK: SENSITIVITY ANALYSIS

The effect that each findings node has on transport mode choice can be
measured in a straightforward manner by means of a sensitivity analysis. The
sensitivity report is shown in Table 4.3. This table shows the maximum and the
minimum posterior probability of the transport mode node due to certain
evidences, which are entered in the network. For instance, when for the variable
“CET” the value 1 is entered as evidence (which implies that the latest possible
end time is before 12:30, see section 2.3.7), the likelihood that somebody uses a
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Figure 4.7: The pruned Bayesian network

slow mode of transport (walk or bike) will increase with 18.72% (see Table 4.3),
which results in a posterior probability of 52.73% (i.e. from Figure 4.7; 34.01% +
18.72%). Obviously, given the descriptive learning character of the technique,
any variable can be chosen for the analysis of sensitivity.

A close inspection of the network, enabled us to come up with five major
findings, as shown in Figure 4.7 by the capitals A-E. These findings might help us
to get a thorough understanding of the behavioral pattern of individuals with
respect to the choice of transport mode. In addition to this, these findings
enable one to get quite a good idea about the explanatory and reasoning
capabilities of Bayesian networks.

FINDING A

The variable “Ncar” reflects the ratio between the number of cars and the number
of driving licenses. A ratio larger than 1 (value 2) means that there is more than



112 Chapter 4

one car at someone’s disposal. It is quite obvious that those people have a higher
probability (10.96%) to use the car as mode of transport. This is shown by Table
4.3 and by arrow A, in Figure 4.7.

The network now enables us to characterize this group of people. This can be
done by entering an evidence for state 2 of the node “Ncar”. As a result, the
fourth state of the “Csec” variable (i.e. high socio-economic class of the
household) increases by 7.3%, from 26.6% to 33.9%. Arrow A, is therefore quite
interesting as it depicts that individuals belonging to a high socio-economic
household class, are more likely to have more cars than the total number of
driving licenses in the household.

Combining the evidences of the fourth state of the “Csec” node together with the
second state of the “Ncar” node, further amplifies this finding. Households with a
high level of prosperity, possessing more cars than driving licenses have a
likelihood of 78% to use the car as the mode of transport: a substantial increase
of 25.8%. Several micro-economic (Johansson-Stenman, 2002; De Jong, 1997;

Table 4.3: Sensitivity Analysis with respect to Transport Mode

CET | CBT |Awith | Gend [NCAR|Hwork1|Ccomp[PTMax| Csec |Cchild

Walk or Min(%) |-13.13|-12.91|-9.32 | -6.70 |-9.46| -4.31 |-8.76|-0.96 [-1.91|-0.82

Bike (34.01%) value min| 4 5 2 1 2 4 2 0 1 4
Max(%) |+18.72|+11.35|+7.36 | +6.83 [+6.16| +4.73 |+4.45|+3.46 |+1.85|+1.21
value max| 1 2 0 2 1 1 5 2 2 3

CET | Gend | NCAR [Ccomp| CBT [Hwork1|{Awith| Csec |Cchild|PTMax

Car (52.53%) Min(%) |-13.18|-11.91|-7.14|-5.10 |-7.85| -8.31 |-4.06 |-2.06 |-2.77 |-2.61
value min| 1 2 1 5 2 1 1 2 2 3
Max(%) [+13.21[+11.66[+10.96{+10.74/+8.04| +7.54 |+2.74|+2.29 [+1.39|+0.72
value max| 4 1 2 2 5 4 2 1 4 0

Awith | CET |Cchild| Gend | CBT [Hwork1| NCAR |Ccomp|PTMax| Csec

Public Min(%) |-8.87 |-5.55| -5.1 |-4.97 |-3.51| -3.24 |-1.50|-2.00|-1.06|-0.39
Transport or  value min| 0 1 4 1 2 4 2 2 2 1
Car Passenger Max(%) |+8.88|+6.07 | +5.4 |+5.07 [+4.86| +3.57 [+0.98|+0.64 |+0.23|+0.19
(13.77%) value max| 1 5 2 2 5 1 1 5 0 2
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Pearman and Button, 1976) and macro-economic studies (Johansson and
Schipper, 1997) confirm -by means of income elasticity- the general pattern that
car use is positively correlated with income. A practical implication could be to
let tax policies focus on this very specific niche group.

FINDING B

The second finding states that gender is an important variable in influencing the
choice of transport mode. Males are more likely to use the car than females.
Females are more likely to use slow modes, to use public transport or travel as a
car passenger. Both findings are depicted by arrow B, in Figure 4.7 and by Table
4.3.

Another interesting observation arises, due to arrow B,, when evidence for males
is entered. The third and fourth state of the “Hwork1” node reflect that someone
works respectively between 38 and 40 hours, and more than 40 hours per week.
Both states increase from 21.9% to 34.2% for the third state and from 20.0% to
35.7% for the fourth state due to the evidence entered for males at the “Gender”
node. For females, state zero increases from 35.3% to 47.9% and state one from
17.1% to 29.4%. This means that in this dataset, males tend to work longer than
females. There also exists a relation between the socio-economic class of the
household (“Csec”) and the number of working hours (“Hwork1”). This is shown
by arrow B,. From this relation, it can be derived that when someone works many
hours, it is more likely that he/she does not belong to a low socio-economic
household class (a decrease from 8.31% to 3.96%), rather than being part of a
high socio-economic household class (an increase from 26.6% to 27.8%).

By combining the conclusions, i.e. the fourth state of the “Hwork1” variable with
the first state of the “Gender” variable and the fourth state of the “Csec”
variable, this finding can be amplified. Males who work more than 40 hours per
week and who belong to a high socio-economic household class, have a
likelihood of 69.2% to use the car as mode of transport, which is a 17% increase.
This finding is consistent with earlier work (Grieco and Turner, 1997), which has
shown that the lower the income of a household, the more probable it is that
women will experience greater transport deprivation as compared to men.
Transport deprivation may then take the form of women's use of inferior modes of
transport as compared to men.
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FINDING C

The presence of children in the household seems another important explanatory
factor in the choice of transport mode. Households with very young children -i.e.
children younger than 6 years old- are more likely to use public transport than
families with older children. This can be explained by the fact that public
transport is often provided for free or at least at a discount for this group of
children. Entering evidence for the second state of the node Cchild results -due
to arrow C- in an increased likelihood of 11.3% to have no more cars than
driving licenses in the household. By means of arrow A, this evidence propagates
further through the network and gives a likelihood of 19.2% for public transport,
i.e. a 5.4% increase (see also Table 4.3).

Arrow C,is responsible for coupling the age of the children in the household with
the household type (this should be interpreted in terms of singe and double
households and as households where one partner, both or none of the partners
work). This seems to be a veritable relationship as it is common knowledge that
household composition changes as children grow older. For our dataset, it was
found that in the absence of children, the distribution across the different
household types is quite uniform, with a small drop for the single and
unemployed household type and a peak for the double, both employed household
type. The presence of children in the household results in a logical, although
quite spectacular, increase in car use (21%) for the double households, where
one partner works and for the double households where both partners work. By
means of arrow C, the evidence propagates through the network.

Again, by combining these conclusions assuming that both partners are employed
and have children younger than 6, the likelihood of public transport use increases
by 8.2%. This increase is not much higher than the 5.4% increase observed
above, but nevertheless, it can be stated that “Ccomp” and “Cchild” together
amplify the originally identified relationship, which was based upon “Cchild”
only.

This group of people can typically be characterized as young couples who are
more willing to use public transport. In order to obtain a higher effect than the
8.2% increase, promotional campaigns could be launched to focus on this specific
market segment.
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FINDING D

The latest possible end time of a tour (“CET”), has a large impact on all three
transport mode choices. It can be seen from Table 4.3 that when the tour is
expected to end late, it is more likely that the car or public transport are the
preferable modes of transport. This can partially be explained by the peak hours
due to the return from work. However, as the activity diary also contains many
other activities during this time period (i.e. only 43% work activities), additional
explanation is needed. When the anticipated end time of the tour is before noon,
a substantial increase (18%) in the use of slow transport modes (walk or bike) is
observed. The fact that slow modes are used less if the trip ends late may perhaps
be attributed to reasons of unsafety and discomfort associated with these
transport modes during the late hours.

It can be seen from Figure 4.7 that the latest possible end time of a tour (“CET”),
is correlated with the earliest possible begin time of a tour (“CBT”). However, in
this case, analyzing joint effects of both nodes will not influence transport mode
choice since nodes are d-separated when an evidence is entered for the node
“CET”. In this case, entering evidence for the node “CBT”, will not influence the
distribution of the transport mode choice variable (see definition 4.13).

FINDING E

The person with whom the tour is conducted (“Awith”) is especially an important
variable for public transport and for slow modes. If the tour is conducted alone,
it is more likely (7.36%) that slow modes of transport are chosen. Since one
might expect that there is still a significant number of people who do not engage
in carpooling, one would expect that a similar conclusion could be drawn for car
use. By narrowing down on tours where only a work activity is involved, a slightly
different picture arises. Therefore, when a work tour is conducted alone, cars
along with public transport become the preferred modes of transport. On the
other hand, if another person who is no part of the household participates in the
tour, the likelihood of being a car passenger increases significantly (8.88%).

In the previous sections, the potential value of Bayesian networks was examined
to cope with the complexity of the transport mode choice decision problem for
reasoning and explanatory purposes. It was found that Bayesian networks are



116 Chapter 4

particularly valuable to capture and visualize the multidimensional nature of
complex decisions. Especially the property which takes the many
(inter)dependencies among the variables into account (that make up the complex
decision-making process), makes Bayesian networks potentially valuable for
modelling complex decisions. In the next section, it will be investigated to what
extent this property can be generalized for predictive purposes to the full set of
decision agents (where, when, for how long, with whom and which transport
mode) that form the complete Albatross system. Parts of the next section are
based upon work reported in Janssens et al. (2004e; 2004f).

4.4 BAYESIAN NETWORKS FOR CLASSIFICATION

4.4.1 PREFACE

The concepts that were introduced in the previous sections with respect to
structural learning, parameter learning and pruning the network, all remain the
same when BN are adopted for classification. With respect to the duration facet
in Albatross, the three concepts were briefly recapitulated in Figure 4.8. In this
dissertation, discretized variables have been used in the Bayesian networks
because they are also used and defined as such in the model specification of the
Albatross model. However, the technique of Bayesian networks is not restricted
towards the use of discretized variables; continuous variables can also be
described with parameters of Gaussian or other distributions for continuous
random variables.

4.4.2 CHOICE FACET LEVEL

The procedure that is shown in Figure 4.8 is repeated for every dimension of the
Albatross model. The final pruned networks for every dimension are shown in
Figure 4.9 (a-i).

In order to evaluate the predictive performance on the training and test sets
within Albatross, every case was simply presented as a combination of evidences
(see section 4.2.3, subsection “Entering Evidences”) to the Bayesian network
models. Each evidence corresponds thus to a particular value of an attribute per
case. The accuracy percentages that indicate the predictive performance on the
training and test sets within Albatross are presented in Table 4.4. Results in this
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Figure 4.8: An unpruned and a pruned Bayesian network example (duration)

table are compared with the original CHAID algorithm that is used in Albatross.

It can be seen that the accuracy percentages of the Bayesian network approach
outperform the CHAID decision trees for all nine decision agents of the Albatross
model. Especially for the “Mode for work” and for both “Location” decision
agents, the increase in predictive performance is significant. In terms of validity,
we can conclude that the degree of overfitting is larger for Bayesian networks

Table 4.4: Benchmarking results at choice facet level

BN CHAID
Dataset Train Test Train Test
(%) (%) (%) (%)
Duration 40.9 40.5 41.3 38.8
Location1 69.6 67.9 57.5 58.9
Location2 47.3 42.0 35.4 32.6
Mode for work 76.9 77.9 64.8 66.7
Mode other 58.3 52.1 52.8 49.5
Selection 79.1 79.2 72.4 71.6
Start time 47.7 38.0 39.8 35.4
Trip chain 83.1 82.3 83.3 80.9
With whom 57.7 53.4 50.9 48.4
Average 62.3 59.3 55.4 53.6
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than for CHAID. However, given the better predictive performance of the
Bayesian network models, this test seems to suggest that Bayesian networks are
better suited to cope with the complexity of the decision making process for each
agent. The next section examines whether this conclusion can also be reached at
the level of activity patterns.

4.4.3 ACTIVITY PATTERN LEVEL

As mentioned in section 2.2.3, a learning algorithm needs to be converted to the
decision table formalism to evaluate results at activity pattern level, because this
facilitates the internal operation within Albatross. For rules this is
straightforward, but to derive a ruleset from a Bayesian network model, it
requires somewhat more explanation. Figure 4.10 starts from the pruned networks
of Figure 4.9 and summarizes the conversion procedure. In the middle part of the
figure, evidences are entered for every independent variable, resulting in a
probability distribution of the target variable. This process is repeated for every
possible combination of states (of independent variables). As already mentioned
before, the direction of the arcs is preferably interpreted as an association rather
than as a causality relationship. This means that not only child nodes but also
parent nodes can influence the probability distribution of the dependent variable.
For this reason, evidences need to be entered for every independent variable,
regardless of whether these variables are child or parent nodes. By doing this, we
get a “full model”, that is an enumeration of all possible combinations of states
in the Bayesian network model. This means that the number of rules that are
derived from the network is fixed and can be determined in advance for a
particular network (i.e. per dependent variable). This number is equal to every
possible combination of states (values of the condition variables). Therefore, the
total number of rules, which has to be derived from the network shown in Figure
4.10 is equal to 5*7*2*4=280, assuming that the with whom attribute is taken as
the class attribute. In these cases, the concept of d-separation was ignored in
the determination of the rulesets, which means that in the ideal theoretical case,
the total number of rules can still be reduced.
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Figure 4.10: Converting a Bayesian network to a decision table format

Converting Bayesian networks to a decision table formalism brings about the
undesirable property of combinatorial explosion of the decision rules. Indeed,
one may end up with more decision rules than data entries and this an enormous
amount of overkill, especially because most decision rules will be redundant and
will never be “fired”. Every case in the training and test set is thus covered by
one decision rule, and the option of appealing to the default class for making a
prediction is non-existent. This problem is not present as such at the choice facet
level, because data cases are there used as input for “querying” or predicting the
dependent variable; while at pattern level, every single possible decision rule is
derived from the network. Also, every rule contains the same number of condition
variables. For the example shown in Figure 4.10, this number is equal to 4.

The SAM distance measures, indicating the predictive performance at activity
pattern level on the training and on the test set, are presented in Table 4.5. It
can be seen from this table that while the test set results of BN are still better
than the other learning mechanisms that were evaluated before (CBA, Adapted
CBA-1,2, CHAID), the discrepancy between the training and test set (overfitting)
is large. This finding is especially problematic when the derived networks are
used for prediction in another study area. The large number of decision rules in
the decision unit is one possible explanation for this. In any case, it is clearly a
sub-optimal solution, not only because some of the rules will never be used, but
also because the large (fixed) number of conditions does not favour the
interpretation and complexity of the model. We will detail on this in section
4.5.3.
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Table 4.5: Benchmarking results at Activity pattern level

. BN CHAID
SAM distance measure Train Test Train Test
SAM activity-type 0.061 2.412 2.861 2.801
SAM with whom 0.062 2.814 3.225 3.210
SAM location 2.120 2.735 3.181 3.148
SAM mode 0.063 3.414 4,599 4.587
UDSAM 2.366 14.118 16.725 16.629
MDSAM 1.584 7.298 8.457 8.427

4.4.4 TRIP MATRIX LEVEL

The trip matrix level results (see Table 4.6), comparing BN with the CHAID
algorithm, show a similar discrepancy between the training and the test set
results than at activity pattern level. It can also be seen from this table that the
training set results are better than for CHAID decision trees while the test set
results are worse. The amount of overfitting is consistent with what was found at
activity pattern level.

Table 4.6: Benchmarking results at Trip matrix level

Dimension - BN - CHAID
Train Test Train Test
None 0.964 0.901 0.954 0.939
Mode 0.955 0.821 0.877 0.846
Day 0.971 0.928 0.960 0.948
Primary Activity 0.935 0.818 0.890 0.832

4.4.5 DiIscussIion

The previous sections have quantitatively illustrated the use of Bayesian networks
within the Albatross model. Consistent with was done for the CBA algorithm, a
more qualitative analysis, including a discussion of the variables which appear
most frequently in CHAID and Bayesian networks, will be provided in section 4.6.
For an evaluation at choice facet level, every case was presented as a
combination of evidences to the empirically derived Bayesian network model. The
results at choice facet level show that Bayesian networks generate better
predictive performance than CHAID. However, when analyzing the performance of
the technique at pattern and trip matrix level, the amount of overfitting was
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considerably larger for these data than other techniques that were evaluated
before. However, the overall finding is the same as in Chapter 3, i.e. using
descriptive learning for classification goes fairly well at choice facet level, but
the approach looses some of the good performance at pattern and trip matrix
level. To this end, and consistent with what was done in Chapter 3, the idea was
conceived in the remainder of this chapter to evaluate whether an adaptation to
the technique of Bayesian networks can solve these problems.

4.5 TOWARDS A NEW CLASSIFIER: INTEGRATING BAYESIAN
NETWORKS AND DECISION TREES

4.5.1 PROBLEM STATEMENT

In the previous sections, it was shown that each decision rule that is used for
predicting a particular dependent variable within a network contains the same
number of conditions, resulting in potential sub-optimal decision-making.
Second, the interpretation of the rules may be an issue. It should be realized that
Bayesian networks may link more variables in sometimes complex (see Figure
4.5), direct and indirect ways, making interpretation more problematic.

The idea is proposed in this section to examine the possibility of combining the
advantages of decision tree induction in terms of understanding and simplicity
with the advantages of Bayesian networks in terms of accuracy. Consequently, a
novel classification technique arises that integrates decision trees and Bayesian
networks. In the integrated classifier, the idea is proposed to derive a decision
tree from a Bayesian network (that is build upon the original data) instead of
immediately deriving the tree from the original data. The new heuristic is referred
to as a Bayesian Network Augmented Tree (BNT) in the remainder of this section.
In addition to reducing the number of rules and enhancing model
comprehensibility, the proposed integration has another advantage. Despite the
huge popularity of decision trees, it is a well-known deficiency that the model
structure of decision trees can sometimes be instable (see also Breiman, 1996;
Bloemer et al., 2003). The reason for this is known as “variable masking”, i.e. if
one variable is highly correlated with another, then a small change in the sample
data (given several tests) may shift the split in the tree from one variable to
another. Even if different decision trees that suffer from variable masking can
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perfectly arrive at the same final decision, the problem raises questions towards
the stability and interpretation of the tree, which can be particularly important
for policy makers. To this end, integrating Bayesian networks and decision trees
can contribute to a more stable decision tree structure, because the variable
correlations have already been taken into account in the Bayesian network, which
may reduce the variable masking problem. Parts of this section are based upon
work reported in Janssens et al. (2005f). To the best of our knowledge, the idea
to build decision trees in this way has not been explored before in previous
studies.

4.5.2 THE BNT CLASSIFIER

In order to derive a decision tree from a Bayesian network (that is build upon the
original data), the information that is contained in the network (that is both the
structure of the network and the distributions), is used for building a decision
tree. The integration itself is described below.

In order to select a particular decision node in the BNT classifier, the mutual
information value that is calculated between two nodes in the Bayesian network
is used once more (see definition 4.14). This mutual information value is to some
extent equivalent with the entropy measure that C4.5 decision trees use. It was
defined as the expected entropy reduction of one node due to a finding
(observation) related to the other node. As explained before, the expected
reduction in entropy of the dependent variable can be calculated for the various
findings variables. Next, the finding variable that obtains the highest reduction
in entropy is selected as the root node in the tree. To better illustrate the idea of
building a BNT classifier, the reader may consider again the network that was
shown in Figure 4.1 by means of example. The dependent variable in this network
was “Mode choice” and the different finding variables were “Driving license”,
“Gender” and “Number of cars”. In a first step, the expected reduction in entropy
between the “Mode choice” and the “Gender” variable can be calculated as
follows:

| = P(Mode P(Modep;ye.Gender,ie)

P(Modey;ye ) P(Gendery,ie)

Gender

male) * log

bike’
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P(Mode,,,,Gendery,ie) N

P(Mode _,Gender_ )*log
P(Mode,,)P(Gendery,ie)
P(MOdebike’Genderfemale)*I-Og P(Modeyiye . Gendertemale )
P(Modepjye ) P(Genderremale)
P(MOdecar’Genderfema[e)* 0 P(Modec,r,Gendertemale)
P(Modec,, )P(Gendersemate)

The calculation of the joint probabilities P(Mode, Gender) for i={bike, car} and
j={male,female} is the same as explained in section 4.2.3-subsection parameter
learning. The calculation of the individual prior probabilities P(Mode) and
P(Gender,) is straightforward as well. As a result, the expected result of the
formula above is: I (Mode choice,Gender) =

0.372*log—2>2__ 1+0.378*log—> > 40.134*log— >t
0.506*0.75 0.494*0.75 0.506%0.25
0.116*log — 0 ~0,00087.
0.494*0.25

In a similar manner, I (Mode choice, Driving License) = 0.01781 and I (Mode
choice, Number of cars)=0.01346 can be calculated.

Since I (Mode choice,Driving License) > I (Mode choice, Number of cars) > I
(Mode choice, Gender); the variable Driving License is selected as the root node
of the tree (see Figure 4.11). Once the root node has been determined, the tree
is split up into different branches according to the different states (values) of the
root node. To this end, evidences can be entered for each state of the root node
in the Bayesian network and the entropy value can be re-calculated for all other
combinations between the findings nodes (except for the root node) and the
query node. The node which achieves the highest entropy reduction is taken as
the node which is used for splitting up that particular branch of the root node. In
our example, the root node “Driving License” has two branches: Driving
License=yes and Driving License=no. For the split in the first branch (Driving
License=yes), only two variables have to be taken into account: “Number of cars”
and “Gender”. The way in which the expected reduction in entropy is calculated is
the same as shown above, except for the fact that an evidence needs to be
entered for the node “Driving License”, i.e. P(Driving License=Yes; Driving
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License=no)=(1;0) (since we are in the first branch). The procedure for doing this
was already repeatedly shown before. Again, I (Mode choice, Gender)=0.02282
and I (Mode choice, Number of cars)=0.07630. Since I(Mode choice, Number of
cars)>I((Mode choice, Gender); the variable “Number of cars” is selected as the
next split in this first branch. Finally, the whole process then becomes recursive
and needs to be repeated for all possible branches in the tree. A computer code
has been established to automate the whole process. The final decision tree for

this simple Bayesian network is shown in Figure 4.11.

Driving License

Car:0.85 || Car:0.75
Bike:0.15 || Bike:0.25

Car:0.45 || Car:0.40 || Car:0.35 | Car:0.80 | Car:0.65 || Car: 0.75
Bike:0.55 || Bike:0.60 | Bike:0.65 | Bike:0.15 | Bike:0.35 || Bike:0.25

Figure 4.11: The final integrated BNT decision tree classifier (example)

4.5.3 CHoOICE FACET LEVEL

The accuracy percentages that indicate the predictive performance for BNT on the
training and test sets within Albatross are presented in Table 4.7. It can be seen
from this table that the accuracy percentages of BN and BNT are similar.

Obviously, using Bayesian networks as the underlying structure for building the
decision trees did not significantly deteriorate the predictive performance. These
results illustrate that the idea of integrating Bayesian networks and decision
trees holds out considerable promise in terms of predictive accuracy. It was also
mentioned in section 4.5.1 that the BNT approach may result in a more stable
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Table 4.7: Benchmarkina results at choice facet level

Decision Decision making based on Decision making based on
Agent Bayesian networks integrated BNT classifier
Training Set | Validation Set | Training Set | Validation Set

(%) (%) (%) (%)
Duration 40.9 40.5 41.0 40.2
Location 1 69.6 67.9 69.4 68.5
Location 2 47.3 42.0 47.3 41.9
Mode for work 76.9 77.9 77.0 78.3
Mode other 58.3 52.1 58.3 52.1
Selection 79.1 79.2 79.1 79.2
Start time 47.7 38.0 42.3 39.3
Trip Chain 83.1 82.3 83.1 82.5
With Whom 57.7 53.4 57.7 53.5
Average 62.3 59.3 61.7 59.5

decision tree structure due to the fact that the variable correlations are already
taken into account in the Bayesian network. In order to quantitatively assess this
effect to some extent, a 10-fold cross-validation method has been used, where
the data set is typically split into 10 mutually exclusive folds of nearly equal size.
The developed model is then trained 10 times, each time using 9 folds for
training and the remaining fold for evaluation. The cross-validation performance
estimate is then obtained by averaging the 10 validation fold estimates found
during the 10 runs of the cross-validation procedure. As a result of this, multiple
training models were built and the variance (standard error) of the average
estimate can serve as a quantitative measure for the stability of the BN and BNT
models. Average results and standard errors (in parenthesis) on the test set have
been reported in Table 4.8. In this table all standard errors are below 0.6
percentage, which is a low deviation. This can for instance be seen when the
standard error is deducted from the average accuracy. In this case, the result is
still well above the accuracy that has been obtained by CHAID, see Table 4.4.
Therefore, it is reasonable to conclude that these results contribute and support
the argument of model stability.
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Table 4.8: 10-fold crossvalidation results (validation set)

Decision Decision making based on Decision making based on
Agent Bayesian networks (%) integrated BNT classifier (%)
Duration 40.3 (0.3) 40.6 (0.4)
Location 1 67.5 (0.4) 68.7 (0.5)
Location 2 41.7 (0.3) 41.7 (0.4)
Mode for work 77.6 (0.3) 78.2 (0.3)
Mode other 52.1(0.2) 52.2 (0.3)
Selection 79.2 (0.3) 79.2 (0.5)
Start time 38.4 (0.5) 39.3 (0.5)
Trip Chain 81.9 (0.6) 82.9 (0.4)
With Whom 53.1 (0.4) 53.4 (0.4)
Average 59.1 (0.367) 59.6 (0.411)

However, our experiments only lead to an unambiguous added value if the
interpretation of decision rules derived from BNT is superior to the interpretation
of decision rules that are derived from Bayesian networks. On the one hand,
model complexity can be approximated by the total number of decision rules that
is derived from a model. For Bayesian networks, this total is equal to the product
of the number of possible states per variable (see section 4.4.3). For decision
trees, the total number of rules equals the total number of leaves in the tree.
However, while this may give an idea about the complexity of the full model, it
does not give any indication about the ease of interpretation of a single decision
rule. This latter form of individual rule complexity can be measured quite easily
for Bayesian networks as it can be approximated by the number of independent
variables which are present in the network, because every independent variable is
used in every decision rule. For decision trees, the complexity of the derived
decision rules can be approximated by the “depth” of the decision tree. The
depth of a decision tree is equal to the number of levels that occur in a decision
tree. Indeed, if the structure of the decision tree is rather flat, the ease of
understanding of an individual decision rule is easy, since the number of
independent variables that is used for predicting the dependent variable is
limited. As a result of this, the understanding of the joined impact of these
variables on the dependent variable is facilitated.

In Table 4.9, an indication is given about the model complexity in terms of
number of rules and in terms of the complexity of every single rule. It can be
seen from this table that the BNT classifier significantly improves the individual
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rule complexity in terms of the number of independent variables that is used in
the decision rules. While it remains difficult to analyse the joined impact of
several independent variables, it is still possible for relatively low numbers (let's
say at most 5 or 6), and it will become almost totally incomprehensible for higher
numbers. A significant achievement is obtained in this respect for the facets

“start time”, “trip chain ocation2” and “mode for work”. The reader should

“
also note that the depth of the decision tree that is shown in the third column of
Table 4.9, indicates the maximum number of levels in the tree. This means that
for most branches in the tree, this maximum number will not be achieved and
less independent variables will be used in the decision rules, making
comprehension easier than in Bayesian networks. In addition to this, and as
mentioned before, this is not the case for Bayesian networks, since the number
of independent variables in every decision rule is constant for every decision
agent (see second column in Table 4.9). It would be possible however, to adopt
some kind of pruning mechanism on the rules, by which the number of
independent variables could be reduced. This was not done for two obvious
reasons. First, the Bayesian networks that were used for prediction, as well as the
BNT classifier which uses the networks as its underlying structure for calculating
the splits in the tree, were already pruned networks (see section 4.4.2). Adding
another post-pruning stage to the decision rules that are derived from these
networks can potentially result in overpruned results, and it wipes out the
original idea for using Bayesian networks, which is to analyse the joined impact
of a large number of variables. Second, the rules that were derived from the BNT
classifier were not pruned either, and this enables a fair comparison between
both algorithms.
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Table 4.9: Comparison of model complexity and individual rule complexity
with respect to Bayesian networks and integrated BNT classifier

Individual rule complexity Model complexity
Bayesian networks BNT Bavesian
. . (number of (“depth” of y BNT (number of
Decision . - . |networks (total
independent decision tree, in leaves/number of
Agent . . . number of

variables in maximum number rules) nodes)
network) of levels)

Duration 4 2 84 6/4
Location 1 9 7 5760 253/215
Location 2 10 6 9216 131/124

Mode for work 5 36864 187/64
Mode other 5 4 432 108/45

Start time 11 5 983040 210/58
Trip Chain 11 6 124416 384/175
With Whom 4 3 280 70/16

The right part of Table 4.9 describes the model complexity in terms of the total
number of rules that is used in each decision agent. Based on Table 4.9, we have
to conclude that the BNT classifier is a huge improvement in terms of model
complexity over the Bayesian network approach and this for all decision agents.
However, the opposite is obviously true in terms of computation time, as is
shown in Table 4.10. As mentioned before, BNT relies upon BN for building a
decision tree. As a result of this, the algorithm first needs to construct the BN in
a first stage, and then only in a second stage derive the final BNT. This two-stage
process obviously augments the computation time that is needed for BNT. The
computation time that is shown in Table 4.10, is mainly determined by the
number of variables in the dataset. A large number of variables, increases the
likelihood of dependencies between variables and hence requires additional
computation time for BN and BNT.

Table 4.10: Computation time (in seconds) of BN (structural learning) and BNT

Dataset | Duration Location | Location Mf%?e Mode | Start | Trip | With
1 2 other | Time | Chain | Whom
work
BN

67.3 27.1 14.2 6.2 73.3 | 114.5 | 54.8 | 64.7

(seconds)

BNT
82.5 72.2 55.4 41.8 92.4 | 167.3 | 110.4 | 76.8

(seconds)
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4.5.4  AcTIVITY PATTERN LEVEL

The SAM distance measures, comparing the predictive performance at activity
pattern level on the training and on the test set for BNT are presented in Table
4.11. The results of the BN approach were again added for the sake of clarity.
While BN still achieved better performance on the test set than BNT, we have to
conclude that the amount of overfitting is considerably smaller for BNT. On the
other hand, it can be seen that the results of the BNT algorithm on the test set
are in the same order as previous results that were obtained by CHAID, CBA and
other previously tested classification systems.

Table 4.11: Benchmarking results at activity pattern level

SAM distance measure - BNT - BN

Train Test Train Test

SAM activity-type 2.511 2.713 0.061 2.412
SAM with whom 2.915 3.010 0.062 2.814
SAM location 2.983 3.103 2.120 2.735

SAM mode 4.117 4.215 0.063 3.414
UDSAM 15.489 16.305 2.366 14.118

MDSAM 8.107 8.353 1.584 7.298

4.5.5 TRIP MATRIX LEVEL

Finally, the performance of BNT is evaluated at trip matrix level (see Table 4.12).
Also, in this case, BN was added for the sake of clarity. The results at trip matrix
level are consistent with previous results at other levels, i.e. a lower degree of
overfitting, and performances that are in the same order of magnitude when
compared to other previously tested classification systems.

Table 4.12: Benchmarking results at trip matrix level

Dimension - BNT ; BN
Train Test Train Test
None 0.946 0.938 0.964 0.901
Mode 0.877 0.853 0.955 0.821
Day 0.952 0.949 0.971 0.928
Primary Activity 0.865 0.839 0.935 0.818
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4.6 CHAID, CBA, BN/BNT: QUALITATIVE ANALYSIS

The previous sections described detailed quantitative analyses about the
performances of the BN and BNT classifiers. At choice facet level, comparisons
were also made with the CHAID decision tree algorithm that is used in Albatross.
Consistent with was previously done for CBA, the aim of this section is also to
conduct the same comparison at choice facet level but now in a more explanatory
and descriptive manner. We will discuss the most important variables that have
been used in BN and compare them with variables that are used in CHAID and
CBA. For BN (and BNT), all variables can be found in Figure 4.9 (a-i). Since BNT
uses the same variables as BN, a discussion of the variables that have been used
in BNT becomes superfluous.

Alternatively, the reduced variable set that was selected by BNT can also be used
as input in a standard unpruned decision tree (C.4.5) which is then built upon
the reduced dataset (i.e. which only consists of the selected set of variables). To
this end, the same variables occur in both trees (when no pruning is assumed)
and differences in performance are only the result of the different structure of
the tree (i.e. the positioning of the variables in the level of the tree), because
the unpruned C4.5 tree was built upon the reduced dataset, while BNT was built
upon the BN structure. Some initial experiments were conducted to evaluate such
an approach. Based on these first initial results, it seems that a decision tree
that is built upon the reduced dataset differs from a decision tree that is built
from a Bayesian network. This means that even if the same set of variables is
used, most variables were positioned at another level in the tree. It should be
noted here that comparisons between the decision tree structures are based on
our own observation and impression, no measure has been used here to
quantitatively support this impression. Apart from research which has been
conducted within the domain of natural language processing trees (where Kernell
methods are sometimes used to get a more reliable estimate about the degree of
correspondence between two or more trees), little is known about quantitative
measures for decision tree structure comparison.

It is clear that the observed difference needs to be ascribed to the underlying
network structure (in BNT), because it explicitly incorporates dependencies and
relationships in the DAG. BNT explicitly uses this information to build its decision
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tree (see section 4.5.2), while a normal tree that is built upon the data, does
not.

The chronology of the remainder of this section is similar as described in previous
quantitative analyses. A description of the variables is often provided with the
variable name, but for the more detailed Llist, we refer again to
Appendix B.

4.6.1 DURATION

With respect to the duration facet, Figure 4.9a shows that travel party (Awith),
car availability (Ncar) and the day of the week (Day) and the availability of the
‘long” duration class (yAvail3) occur in the BN/BNT model. In the CHAID based
decision tree, the scheduled work time (Two), the travel party dimension (Awith),
day (Day), car availability (Ncar) and the type of activity (Atype) have an
important impact on the duration choice. It can therefore be concluded that
there is a fairly high degree of correspondence between the CHAID based decision
tree and the BN/BNT model. This is also reflected at a more quantitative level,
where only a small improvement of +1.4% was achieved in favour of BNT and
+1.7% in favour of BN.

4.6.2 LocaTIOoN1

It can be seen in Figure 4.9b that with respect to the location1 decision facet,
the BN/BNT model is on the one hand determined by the previous facets of the
Albatross model, which is the Activity type (Atype) and the transport mode
(Mode). Furthermore, the availability of choice locations given the schedule
(yAvail), the number of out-of-home activities (Nout) and the maximum available
time in the schedule position of the activity (Tmax) are important variables for
the BN/BNT model. In fact this set of variables is completely analogue to the
variables that were considered most important for CBA-1 and CBA-2. When
compared to the CHAID based approach, there are only two equally most
important variables. When the above observations are coupled with the good
performances of CBA-1,2, and with the finding that BN and BNT respectively
outperformed CHAID by 9% and by 9.6%, it is safe to assume that the CBA-1,2,
BN and BNT algorithms selected the best variables for achieving a high degree of
accuracy on the test set.
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4.6.3 LocATIioN2

For the location2 facet (see Figure 4.9c), there are some variables that were
already found important by BN and BNT at the location1 dataset (Mode, yAvail,
(t=2,..5) and Nout). Also the variable which indicates whether a trip ends at
home or not (toH) and the type of the previous activity (Aprev) were found
important by BN and BNT. In fact, all these 8 (out of 10) variables were also
considered most important for CBA and CBA-2. The two remaining variables are
the type of next activity (Anext) and the toH counterpart, fromH. When compared
with CHAID, there are only two equally most important variables (Mode, Nout).
Also in this case, when these findings are coupled with the good performances of
CBA and CBA-2 at the location2 level, and with the finding that BN and BNT
respectively outperformed CHAID by 9.4% and by 9.3%, it can be concluded that
CBA, CBA-2, BN and BNT algorithms selected the best variables for achieving a
high degree of accuracy on the test set.

4.6.4 MobE For Work

Also for the “mode for work” decision facet, a similar conclusion can be reached
as for the locationl and location2 decision facets. It can be seen from Figure
4.9d that the ratios car/bike travel time (Rcabi), the public transport/bike travel
time (Rpubi) and the public transport/car travel time ratio (Rpuca), were
identified as important variables by the BN/BNT model. Also important are
general descriptive variables (Csec and Ncar) and the objective travel time to the
work location (Tbike). All 6 (out of 8) variables were also considered most
important for CBA.

The two remaining variables are partner related variables such as the Number of
out-of-home activities (Pnfix) in the schedule of the partner and the maximum
bike travel time across activities in the schedule of the partner (PTTmax). When
compared with CHAID, only 3 of these variables (Rpuca, Thike, Ncar ) can also be
found at an important level in the tree. Once more, when these findings are
coupled with the good performances of CBA, CBA-1,2 at this facet, and with the
finding that BN and BNT respectively outperformed CHAID by 11.2% and by
11.6%, it can be concluded that CBA, CBA-1,2, BN and BNT algorithms all
selected better variables than CHAID did.



134 Chapter 4

4.6.5  MoDE OTHER

With respect to the “mode other” facet, Figure 4.9e shows that the duration
(Adurl) and the travel party (Awith1) of the first activity in the tour, the begin
time of trip chaining (Btchain), the gender (Gend) and the time for a workl
activity (Twork1) have an important impact on the “mode other” decision facet.
When compared with CHAID and CBA there is a very low level of correspondence
in the selected variables. For this reason, the good results that we were able to
obtain by the CBA algorithm could not be achieved by BN/BNT. The latter two
approaches both achieved a fairly small improvement of 2.6%. Therefore, we can
conclude that the variables that were selected by CBA probably better represented
the decision behaviour for the “mode other” decision facet.

4.6.6  START TIME

In Figure 4.9g it is shown that at least 11 variables were found to have a
significant impact on the start time decision. The first set of variables
(Tmax, t=1,..,5) represents for each time interval, the available time in the
current schedule. Important to notice is also that the travel party decision seems
to be important with respect to the start time decision. Furthermore, a variable
which indicates whether there is a work activity with start time in time interval 1
of the schedule (“Btwo1”), a variable which indicates whether there is an out-of-
home activity with end time in time interval 5 (“ETx5”) and the type of the
activity (“Atype”), are important for start time decision making. Finally, factors
dealing with saved travel time (“DBT1” and “DET5") were found to be significant
by the BN/BNT.

When compared with CBA/CHAID, the level of correspondence is rather low (4 of
the most important variables in BN/BNT also appear in CBA). In addition to this,
a high degree of overfitting can be observed for BN (Table 4.4). However, when
compared to BNT, the degree of overfitting is considerably lower. Despite the fact
that an improvement of 2.6% could be established for BN and 3.9% for BNT, and
given the rather small degree of correspondence when compared to CHAID and
CBA, the level of improvement is still insufficient to proclaim that BN and BNT
consistently selected better variables than CBA and CHAID.
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4.6.7 TRIP CHAINING

Also for the “Trip Chaining” decision facet, a similar conclusion can be reached.
It can be seen from Figure 4.9h that also in this case a large number of variables
were found significant. However, neither the CBA algorithm, nor BN/BNT
significantly outperformed CHAID. BN and BNT achieved an improvement of
+1.4% and +1.6%, but this level is too low to proclaim that one algorithm
consistently selected better variables than the other algorithms under
consideration.

4.6.8 WirH WHoM

The last decision facet is the With Whom facet. Unlike in most previous
comparisons, there is quite a large degree of correspondence between BN/BNT
and CHAID’s most important variables. In CHAID, Day, Cchild, Ycar4 and Atype are
important, while three out of four of these variables also appear in the BN model
in Figure 4.9i. The fairly good improvement of BN (+5.0%) can still be attributed
to the different nature of the technique. However, CHAID and BNT are both
decision trees and for a better understanding of the better performance of BNT
(+5.1%), a further analysis like the one described at the beginning of section 4.6
is desirable. Similar to what was mentioned before, it could also be seen in this
case that even if the same set of variables is used, most variables were
positioned at another level in the decision tree. It is clear that this observed
difference needs to be ascribed to the underlying network structure (in BNT),
because it explicitly incorporates dependencies and relationships in the DAG. BNT
explicitly uses this information to build its decision tree (see section 4.5.2),
while a normal tree that is built upon the data (such as CHAID), does not.

4.7 CONCLUSION

It was assumed in this chapter that Bayesian networks are well suited for
identifying and capturing complex relationships between a set of factors that
cause a particular transport behaviour. For this reason, the idea within this
chapter was to examine their performance within activity-based transportation
modelling. The technique is also unsupervised and descriptive in nature and can
thus contributed to a more comprehensive overview about how supervised and
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unsupervised learning can be integrated in the context of the Albatross model
and in addition to the CBA technique that was described in Chapter 3.

Bayesian networks are often used for querying and for making advanced what-if-
analyses, which makes that they are probably also better suited for reasoning and
for explanatory purposes than CBA. By means of an empirical application, it has
been shown how the technique can be used to evaluate and reason about the
choice processes that form transport mode decisions. In addition to the analysing
capabilities, Bayesian networks were obviously also used for classification and
prediction within the Albatross model. It was found that the BN model generated
better predictive accuracy results at choice facet level than the CHAID decision
tree approach. In some cases, the improvements were highly significant.
However, when looking at the results at pattern and trip matrix level, the overall
finding is the same as in Chapter 3: using descriptive learning for classification
goes fairly well at choice facet level, but the technique looses its very good
performance at pattern and trip matrix level because of high overfitting. To this
end, and consistent with what was done in Chapter 3, it was evaluated whether
an adaptation to the technique of Bayesian networks could reduce the size of the
decision rule set and improve predictive performance accordingly. Bayesian
networks were used as the information source for deriving a complete decision
tree (BNT), instead of relying on the original data for doing this. At choice facet
level, the predictive performance of both BN and BNT were comparable. However,
the improvement was especially important with respect to the understanding and
interpretation of the individual rule set. BNT was able to significantly improve
the individual rule complexity in terms of a reduction of the number of
independent variables per rule. The exercise especially paid off at pattern and trip
matrix level where a lower degree of overfitting was established when compared
to BN. The chapter was concluded with a more qualitative and descriptive
analysis by a discussion of the most important variables that appeared in
BN/BNT. Variables were also compared with CHAID and with CBA. It was discussed
in that section that the level of correspondence between BN/BNT and CBA was
rather high, while only for few datasets a high similarity was found between
BN/BNT and CHAID. The better performance has lead us to believe that BN/BNT
and CBA selected better variables for some of these datasets. However, initial
additional analyses also seemed to suggest that even if the same set of variables
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is used in a traditional decision tree algorithm and in BNT, most variables were
positioned at another level of the tree. This confirmed the variable masking
problem and the instability of decision tree structures, which were identified as
one of the most important reasons to integrate BN and decision trees. In order to
evaluate the degree of stability of BN and BNT, 10-fold cross validation
experiments have been conducted and promising results of these experiments
have been reported. Given the good performance of BNT, an important topic for
future research is an evaluation of the technique on more datasets and on
different application domains.






Chapter 5
The Identification, Segmentation and Prediction of
Sequential Dependencies in Activity-Diary Data

5.1 INTRODUCTION

It was already mentioned in Chapter 1 of the dissertation that the process of
building, testing and applying a particular model is fairly similar in both
simulation and activity scheduling models. That is, both approaches aim to
predict full activity-travel patterns, along with all the typical activity-based
facets (when, where, which activity, etc). The most obvious difference is the fact
that simulation approaches are mostly driven by the data itself and by the
structures and relationships which are incorporated in the data (and often also
rely upon probability distributions), while activity scheduling models often make
additional assumptions to find the best representation and reproduction of
activity-travel patterns. Let us take the Albatross system as an example, where
the prediction of every facet of the decision unit, has been steered by several
independent variables (see Appendix B). However, it is not sure what the
influence of other explanatory variables is on these different decision outcomes.
Another example are the Scheduling and the Inference Engine of the system
which are not fully data-dependent (Arentze and Timmermans, 2000). The system
takes thus domain knowledge or system-defined knowledge into account that
goes beyond the pure extraction of knowledge from the data. Other differences
and examples of existing micro-simulation models were already introduced in
section 1.1.4-subsection simulation models of Chapter 1.

In this second part of this dissertation, the development and the first empirical
results of a new data-driven simulation procedure will be reported. The presented
approach is almost completely data-driven, and assumes few additional
assumptions. The major a-priori made assumption is related to the prediction
order of the different decision facets. That is, the algorithm first predicts activity
and transport mode dimensions, and these dimensions are only at a later stage
complemented by time and location facets. There is no general consistency or
agreement within the literature which prediction order needs to be followed, or
in other words, which dimension uniquely determines the other dimensions. The
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main reason for this is that all dimensions are highly interconnected, and the
correct prediction order can probably only be approximated by sufficient
empirical benchmarking results.

There were several reasons for undertaking the simulation research effort that is
described in this second part of the dissertation. First, the idea was to examine
whether (data-driven) simulation is capable of adequately representing/
replicating activity travel behaviour. To this end, the outcome of
Chapters 5 and 6 of the dissertation are used as input in Chapter 7, where an
initial attempt has been made to empirically compare the Albatross activity
scheduling model with our developed simulation effort. Both research areas have
not yet been empirically examined before. Second, having advanced unsupervised
(descriptive) learning in an activity scheduling model in Chapters 3 and 4, the
same approach was adopted with respect to the area of (data-driven) simulation
in this part of the dissertation. To this end, unsupervised (descriptive) learning
algorithms will be used in Chapters 5 and 6. Third, the research problems that
needed to be addressed to replicate activity-travel patterns, enabled us to come
up with several methodological contributions to the current state-of-the-art.

The most important insight that differentiates our model from other existing
simulation (and activity-scheduling) models, is the fact that they do not account
for sequential information and sequential dependencies in the identification of
representative activity patterns. Apart from a study by Kitamura et al. (2000),
sequential information has not been taken explicitly into account in simulation
modelling. Kitamura (2000) has claimed that there are reasons to believe that
behaviour is path dependent on the past behavioural trajectories of the
respective individuals. There have been several studies that examine the role of
state dependence in activity and travel behaviour from temporal perspectives.
Applications include studies by Kitamura and Kermanshah (1983), Goulias and
Kitamura (1997) and Kasturirangan et al. (2002). These studies confirm that the
choice of activity is dependent on the preceding activity engagement. Also in a
more intuitive interpretation, there is little doubt that sequential information is
omnipresent in activity diary data. To give a simple example: during one
particular day, it is highly probable that the combination have breakfast, travel
and working occurs frequently together in a diary, since people obviously first
have breakfast during the morning and then need some kind of transportation to
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arrive at their work location. There are many other sequence pair combinations
that can be revealed in this way. In this chapter, we will show that activities and
travel are sequentially correlated in activity-diary data. The main objective for
identifying this sequential information is to come up with a pattern of activity-
travel combinations that are used as the basis for simulating other dimensions
such as location and time information (see Chapter 6). The reader may notice
that this approach differs from the more common “skeleton” approach in activity
scheduling models, where a skeleton is defined as the subsequence of fixed
activities. In our context, the simulation effort needs to be interpreted as the
sequence of activities and transport modes that have been identified as being
sequentially correlated during a time period (i.e. a full day), regardless of the
character (fixed or flexible) of the activity.

The remainder of this chapter is organized as follows. First, we will briefly
elaborate on the research that has been done in the past to identify sequential
dependencies in data. In that section, our choice for transition matrices will be
motivated, as well as their formalization and use within Markov Chain modelling.
Additional statistical significance tests will also be introduced to allow for
testing both (i) the preconditions to use a first-order and/or higher-order
transition matrices as they are used in Markov Chains and (ii) the stationarity
condition. In section 3, we will show in a problem statement that there are three
important drawbacks with respect to the use of (higher-order) Markov Chains in
our simulation framework. The section also describes the need for developing
modified techniques in the identification of more accurate transition
probabilities. Section 4 introduces these algorithms. Furthermore, in section 5, a
novel segmentation procedure has been proposed that is able to cluster
sequential activity-travel combinations in terms of socio-demographic (modified
decision-tree approach) and time information (bifurcation points). Sections 4 and
5 finalize the full “knowledge model”. The controlled simulation procedure which
is used for generating new activity-travel sequences, based on this “knowledge
model”, has been presented in section 6. In section 7, all the above sections
have been tested and empirically validated by means of pattern- , trip- and
activity-level performance indicators.

This chapter aims to propose advancements to the methodological state-of-the-
art on several points (see also Janssens et al.,, 2004c; 2004d; 2005c). One
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advancement is the introduction and modification of the computation of low-
and higher-order transition probabilities as they can be used in Markov Chains
and the development of a simulation framework in the area of transportation.
Also, a segmentation procedure will be introduced that enables one to cluster
transition matrices in terms of time information (relaxation of the stationarity
condition, see infra) by means of the technique of the identification of
bifurcation points. Finally, a similar segmentation scheme has been developed in
terms of socio-demographic information. This procedure uses a modified version
of a decision tree, in the sense that sequential probability information can be
used during induction and in the leaves of the tree as apposed to the traditional
way of only using one single classification attribute (represented by one
dependent variable).

5.2 SEQUENTIAL PATTERN RECOGNITION

5.2.1 PREFACE

Sequences have been the subject of research in many disciplines, among which
archaeology (McBrearty, 1988), biology (e.g., DNA sequence analysis —Raftery and
Tavaré, 1994; Lipman and Pearson, 1984), chemistry (Xu and Agrawal, 1996),
computer sciences (Sabherwal and Robey, 1995), economics (Hopp, 1987),
econometrics (Bollerslev et al., 1992), history (Abbott, 1995), linguistics (Jonz,
1989), meteorology (Raftery, 1985; MacDonald and Zucchini, 1997), psychology
(Cohen et al., 1990) and sociology (Abbott and Hrycak, 1990; Katz and Proctor,
1959; Logan, 1981).

A sequence can be defined as a succession of events. An event is a transition
from one discrete state to another, situated along a time continuum (Abbott,
1995). In this chapter, events represent activities that occur in a persons’ diary.
Traveling is considered as an activity as well, while transport mode is added as an
additional attribute in this case (see infra).

Similar to the technique of association rules, sequence pattern recognition is
mainly descriptive in nature. Most of the basic algorithms for sequential pattern
mining are based on the Apriori algorithm that was already proposed in
Chapter 3. A series of Apriori-like algorithms have been proposed for sequential
association rule mining: AprioriAll, AprioriSome, DynamicSome in (Agrawal and
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Srikant, 1995), GSP (Srikant and Agrawal, 1996b), SPADE (Zaki, 2001), FreeSpan
(Han et al., 2000) and Pre xSpan (Pei et al., 2001).

Apart from sequential association rules, a lot of work has been done within the
area of Markov Chains to represent information about sequential dependencies
among events. Markov Chains are probabilistic models which were introduced by
Andrej Andreevic Markov at the beginning of the 20th century. Their application
domains have been numerous, including geography, biology, meteorology, music,
and many others. For comprehensive treatments of Markov Chains and their
applications see e.g. (Bharucha-Reid, 1960; Dynkin, 1965; Kemeny and Snell,
1976; Kemeny et al., 1976; and Doob, 1990).

According to Abbott (1995), both sequence analysis types can be classified by
the length of the considered succession of events. Methods focusing on low-order
(e.g. first-order) combinations only consider one transition at a time. Markov
models are the most popular methods for doing this. Gradually, higher-order
dependencies can be taken into account. This gave rise to n-th order Markov
models and also to sequential association rules. Whereas Markov models treat
sequences step-by-step (i.e. transitions from one state to another discarding the
sequence as a whole), sequential association rules treat them as whole units
(Abbott, 1995; Prinzie and Van den Poel, 2005). The central issue is whether
there are patterns in the sequences, either over the whole sequences or within
parts of them (Srikant and Agrawal, 1996b). Consider for instance the frequent

itemset {7, 1,, 1,,

n"oou

1.} where i, 7, 1, and 7, are respectively “sleep”, “work”, “travel
by car” and “medical visit”. By means of sequential association rules, it is then
perfectly possible to have a sequential association rule as follows: IF 7, THEN 7;
regardless of what happens in between. Accordingly, sequential association rules
identify patterns where for instance 7, temporally comes always after 7, and thus
consider the full sequence and not subsequence information.

In addition to this, another important difference is that items in a frequent
itemset cannot re-occur. As a result, it is not possible to identify rules like IF 7,
and 7, THEN 7,. Therefore, re-occurring items within one sequence such as for
instance Sleep-Work-Sleep cannot be identified by means of traditional sequential
association rules. Since re-occurring items are highly frequent in activity-travel
patterns, sequential association rules, cannot be immediately adopted.
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When translated to a transportation framework, two additional reasons in favour
of using Markov Chains can be given. Based on the work that has been done by
Bhat (1999; Bhat and Singh, 2000), Damm (1980) and Hamed and Mannering
(1993), there is evidence that activity-travel behaviour can be subdivided into
different time-windows (and thus favour subsequences and not full sequences).
In addition to this, higher-order Markov Chains take into account what happened
between two temporally separated events, in case of misfit of lower-order Markov
Chains (Abbott, 1995). Finally, it has to be noted that, there is also a large
family of latent variable models which have not been dealt with in this
dissertation, that can be jointly used along with Markov Chains. In latent variable
and latent class models, the categorical variables of behaviour are assumed to be
an imperfect relection of another set of variables that are unobserved. These
unobserved variables are called latent and their categories are called classes. The
models can be integrated with Markov Chains and can for instance be used as
Mixed Markov Latent Class models (MMLC) (see examples in Langeheine and van
de Pol, 1990, Goulias, 1999) that have been used to describe stochastic processes
in discrete space and discrete time. Markov Chains are also particularly well
suited in the analysis of longitudinal (panel) data. It is claimed by Kitamura
(2000) that a more coherent and accurate forecasting is possible through the use
of longitudinal data, because they also capture dynamics of travel behaviour
(Goodwin et al., 1990), as opposed to the more commonly used cross-sectional
data. Likewise, models and techniques that are capable of analyzing and
predicting longitudinal data, such as for instance Markov Chains become more
favoured.

Taking all these arguments into consideration, Markov Chains are considered to
be a justified starting point that can assist in the identification of sequential
dependencies for our application area. In the next subsection, the basic
principles of Markov Chains will be introduced along with a brief discussion about
how the technique can be applied in our simulation framework.

5.2.2 MARKOV CHAINS: DEFINITIONS AND CONCEPTUALISATION

A transition matrix reveals information about the underlying structure of the data
sequence and is in fact the core knowledge representation of Markov Chains. In
this section, we first make a distinction between first- and higher-order
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transition matrices and then elaborate on their application in the context of our
simulation framework.

FIRST-ORDER TRANSITION MATRICES

In Markov Chains, the goal is to simulate (predict) a discrete random variable X,
taking values in the finite state space {1,...,m}, as a function of the values taken
by previous observations of this variable. In order to predict the value taken by
X, the Markov property is used as a necessary condition in Markov Chains.

Definition 5.1: Markov property

The Markov property says that the present time ¢, can be entirely explained by
the first lag (t-1), so that we can write:

POX: =To |Xo Zesea Xem =10) =P(Xe =g | Xeeq =11) = Gy, (£), where Gy, 7 O{ 1,...,m} . ®
Considering all combinations of 7, and 7, we can now construct a transition
probability matrix Q.

Definition 5.2: Transition probability matrix
A transition probability matrix typically looks like:

X
X, 1 - - m
1] gy - - Qim | Gitor
0= : RN :
ml g, - - Torr |Gt
Grot1 Geotm N(= Grottor)

The matrix of transition probabilities provides a compact and unique description
of the behaviour of a Markov Chain. Each element in the matrix represents the
probability of the transition from a particular state (represented by the row of
the matrix) to the next state (representing the column of the matrix). Assuming
a fixed number of possible states and the stationarity condition (see infra), the
transition to and from every state can be described by a single matrix. Each of
the rows sums to 1. Finding this transition matrix Q and the initial distribution
P(X=1,) determines the Markov Chain, which can be used to calculate in
generality for any time (t=1, 2, ..., T), the probabilities of being in one of the
finite number of states {1,...,m}. [
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Definition 5.3: Transition(al) frequency matrix @,

A transition frequency matrix (Q,

req

(definition 5.2), except for the fact that the entries in the matrix (n,) represent

) is similar to a transition probability matrix

frequencies instead of probabilities. Any probability matrix can be derived from a
transition frequency matrix. Row totals in a transition frequency matrix do no
longer sum to 1. [ ]

Definition 5.4: Stationarity condition

A Markov Chain satisfies the stationarity condition if transition probabilities do
not depend on the time t. It means that at whatever time point t the chain is
looked at, transition probabilities are the same. ]

Usually the Chi-square statistic is employed on structural contingency tables, in
order to determine if there is a dependence between 2 (or many) categorical
variables. However, the statistic can also be applied on transition frequency
matrices, which are in fact a special case of contingency tables (Bishop et al.,
1977; Gottman and Roy, 1990; Bakeman and Gottman, 1986), as it is done in the
following two definitions.

Definition 5.5: x2 for testing stationarity

Stationarity can be tested by means of an “omnibus” method (Gottman and Roy,
1990) that divides a sequence (in this case activity-travel patterns) into D time
periods, thereby yielding D subsequences. Then, transitional frequency matrices
are computed for each time period (d) and a statistical chi-square test will
compare the individual transition frequency matrices with the overall one. The
expected transitional frequencies and the x2-statistic can be respectively
computed as:
n..

Ej(@) = My (d) =i, j

itot
i (n;(d) = E;(d))°

X = D
d=1 i=1je1 E;(d)
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The tested hypothesis is that the transitional probabilities are constant across
time periods. It is expressed as:

Ho: q,-j(d)=q,-j, O d=1,2,..., D

H: g(d)#q, Od=1,2,...,D [

Obviously, the most important question in sequence pattern recognition is
whether the state of a system at a certain point in time t depends or is
completely independent from what happened previously. Also in this case, a
simple chi-square statistic has been developed (Bishop et al., 1977, Everitt,
1992). The Chi-square statistic tests whether transitions are a first-order Markov
process, that is, if the state of the system at time t depends on the state at time
t-1.

Definition 5.6: x2 for testing a first-order Markov process

For a sequence of m states, there are mxm=m2 first-order transition frequency
entries, as represented by the general transition frequency matrix (see definition
5.3). These observed transition frequencies are compared with what would be
expected if the state of the system at time t was independent from its previous

state t-1. The best estimates are given by the maximum likelihood
estimates (Bishop et al., 1977; Everitt, 1992):

Mo XM L
p —TDI,] O {1,...,m}

These expected frequencies are then replaced in the well known X2 formula:

(n; _Ef')2
X = Z ij - ij
i i

1

When using the X2 test, the following hypothesis can be made about the

transitional frequency matrix:
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Mot Phoes
1c i tot" "tot
H,: X, is independent from X, , e.g. n; = ——-
N
: Mitot Moty
H,: X, is dependent from X, e.g. n; # ——"

Alternatively, the likelihood ratio G2 may be used for testing whether first-order
sequential dependencies exist in data (Lemay, 1999).

Definition 5.7: G2 for testing a first-order Markov process

n..
Gz = 22 n; logEi

ij ij

X2 and G2 should have asymptotically the same behavior and should be close too
each other for reliable results. |

However, both tests should be interpreted with caution. A non-significant
statistic may for instance show that there is no dependence between t-1 and ¢
transitions, but it does not rule out the possibility that sequential dependencies
are present in the data. For instance, it is possible that the sequential
information is of second-order, that is for instance a relationship between t-2
and t.

Instead of testing the whole transition matrix, as it is done in definitions 5.6 and
5.7, it is certainly warranted in some research domains to test the statistical
significance of specific transitions in the matrix. Especially, when the transition
matrix is used for analysis and explanatory purposes, such significance tests are
essential. However, in our application, the final aim is simulation and as a result,
is less vulnerable to not significant sequence pair combinations since these may
occur in real activity diaries as well. Tests which can be used are the simple test
of proportions (Spiegel, 1980), Sackett’s or Gottman’s Z-score (Bakeman and
Gottman, 1986), or Chi-square and G2 statistics of individual transitions.
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HIGHER-ORDER TRANSITION MATRICES
Definition 5.8: Higher-order transition probabilities

In general, a /-th order Markov Chain can be specified with the transition

probabilities: P(X=i, | X=1, ..., X_=1,) = P(X=l, | X_,=T,, ..., X,=1) = q_; (})

0 't t
where i,...,1, O{1,...,m}. |

There are two different methods for calculating higher-order transition
probabilities: the simple higher-order transition (frequency and probability)
matrix and the n-grams method (Scholtes, 1991; Suen, 1979).

Simple higher-order transition matrices are built by considering the number of
transitions from state 7 to j, k states before, without taking into account the
states in-between. The method is easy to comprehend and is in fact similar to
definition 5.1, with this difference that transitions from t-k to t are considered
for every k-order transition matrix. The order of a transition matrix can be tested
fairly easy by means of classical statistics. For continuous and binary variables,
the (Pearson) autocorrelation coefficient can be used to quantify the degree of
linear relationship between state t-k and t (Kendall and Ord, 1990; Gottman,
1981). For nominal variables, we need to rely on the Chi-square statistic to assess
the order of the system (Lemay, 1999). Again, testing significance of the
transitions may be performed on transitional frequency matrices at lag k using
either the x2 or the likelihood ratio Chi-square G2, as described in the previous
section. The associated p-value will determine if the transitions depend on the
specified lag k.

The second approach that deals with higher-order transitions is the n-gram
approach (Scholtes, 1991; Suen, 1979). N-grams are formed by concatenating the
last n states of the same variable into a single entity. Contrary to the previous
method, the n-gram method takes into account intermediary states. For instance,
when n=2, all possible combinations of consecutive states are concatenated into
a single symbol; for a dual variable that is for instance 00, 10, 01, 11. When
considering higher order k, we take into account pairs, integrating intermediary
states. For instance, for a third-order gram (3-gram), possible states are 000,
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001, 010, 011, 100, 101, 110, 111. A fruitful method for determining the order in
this case is by means of information theoretical methods, and more specifically
by means of entropy and conditional entropy. The rationale behind this method is
that the information (as computed by the entropy) brought by past state symbols
should significantly increase if the sequence really depends on past states. Only a
few methods exist for analyzing the order of n-grams Markov Chain processes. The
method that is introduced in this section is one by Attneave (1959), Gottman
and Roy (1990). They suggest the following procedure for testing the significance
of a higher-order dependence (n-gram) of a sequence.

Definition 5.9: Testing a higher-order Markov process (n-grams)
1. First, compute the entropy H, for each i-gram.

2. Compute the entropy difference D, between the entropy of i-gram (H,) and
entropy of (i-1)-gram (H_,); that is D=H-H,

3. Compute the difference between entropy differences, i.e.: T=D-D,
4. Finally, compute x?=2Nlog 2T,

Computationally, the procedure can be simplified since T=D-D,
and D, =H, -H. Therefore T=2H-H. -H.,,

where D=H-H_,

17

The hypotheses that are tested are stated as following:
H,(k): the process is a k-th order Markov Chain
H,(k): the process is a (k+1)-th order Markov Chain

Hypotheses are tested at the preferred a-level with x2=2Nlog 2T (N is the length
of the sequence). u

CONCEPTUALISATION

Having explained a set of definitions and statistical tests that can be adopted
within the context of Markov Chains, we are now able to detail on how the
technique can be used for simulating activity-travel patterns.

To this end, we need to reconsider the discrete random variable X, taking values
in the finite state space {1,...,m}. Each value in this set is an activity that occurs
in a persons’ activity pattern. Travelling is considered as an activity as well,
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however transport mode is added as an additional attribute in this case (see also
Arentze et al., 2001). Alternatively, only activities may be used to identify
sequential dependencies in the data. However, the clear disadvantage of such an
approach is that the sequential dependencies with respect to the transport mode
facet, for example (different transport modes) during different times of day or
(different transport modes) after very specific activities, cannot be taken into
account. For this reason, the parameter m contains the total of non-travel
activities and transport modes that occur in an activity pattern.

Our goal is now to simulate (predict) (see section 5.6) the value taken by X, as a
function of the values taken by previous observations of this variable. Obviously,
the most important question here is to investigate which number of previous
observations can best explain the current observation in the activity pattern. In
the limit, the current value taken by X, can be entirely explained by the previous
observation (Activity t-1) (i.e. first lag). Analogously, in the limit, it might only
be possible to accurately explain the current value of X, by the last k-1
observations (Activity t-1, Activity t-2, ..., Activity k-1) (i.e. k-1 lag) in which k
represents the length of the activity pattern. However, when the current value
can only be explained by a relative large number of previous observations, it is
unlikely that the information that is identified is suitable for generalisation
(prediction) purposes. On the other hand, a low number of previous observations
might not be sufficient to explain the current observation either.

Higher-order Markov Chains can be better comprehended by means of the
following example. Suppose for instance the case where the variable X, originally
takes the values in the state space {1,2,3}, where “1” stands for instance for
“Sleeping”, “2” stands for “Eating” and “3" stands for “Working”. When one wants
to take into account that X, is not only explained by the first lag (¢-1) but also by
a second lag (t-2), the state space can be redefined as {(1,1)} (2-gram),
indicating that this person was Sleeping at time t-2 and at time t-1, and with
{(1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} defined similarly.

By means of example, the corresponding transition matrix Q for /=2 and m=3 is
then:
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X 1 1 1 2 2 2 3 3 3
Xig Xe1 X1 1 2 3 1 2 3 1 2 3
1 1 qun 0 0 gu2 O 0 guz O O
2 1 @1 0 0 g2 0 0 gus 0 O
3 1 g1 0 0 g2 O 0 gus 0 O
R= 1 2 0 qz1 0 0 q22 0 0 quog O
2 2 0 g@a 0 0 @2 0 0 go O
3 2 0 g1 0 0 g2 0 0 g3 O

1 3 0 0 qa1 O 0 qua2 O 0 aqus3

2 3 0 0 @a 0 0 gm2 O 0 qgoss

3 3 0 0 ga O 0 g3 0 0 gsss

However, as we can see from this simple example, there are several transitions in
Q that can never occur. For instance, it is impossible to go from the row defined
by X, =1, X_=1 to the column defined by X=1, X, =2, because of the different
value taken by X ,. The entries of these elements are called structural zeros. For
any combination of /and m, one can rewrite Q in a more compact form by
excluding the number of structural zeros. This collapsed or reduced form of Q for
0 =2 and m=3 can be denoted by (Pegram, 1980):
Xt

X Xy 1 2 3
G111 G112 Gus3
q211 q212 q213
G311 G312 G313
G121 G2 i3
Goo1 9222 G223
G321 G320 G323
G131 G132 Gi33
Gr31 G232 G233
G331 G332 G333

=}

1
W NN Rk WD R W R
W W WD NN R R R

The number of different states is equal to m? , and there are (m-1) independent
probabilities in each row of the matrix Q, the last one depending on the others
since each row is a probability distribution summing to one. The total number of
independent parameters to estimate from the data is thus equal to m* (m-1) (for
a more elaborated discussion see also Raftery, 1985; Berchtold and Raftery, 2002;
Raftery and Tavaré, 1994).

Only after the optimal number of lags has been determined, and after a
segmentation procedure has been applied (see section 5.5), sequences can be
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simulated based on the sequential information which is incorporated in the
model. It is assumed that an optimal skeleton (i.e. the activity-travel pattern
that has been predicted based on that lag that achieves the best match to the
observed patterns) is able to generate better additional facets (such as time and
location information) than a suboptimal skeleton. The assumption that was made
in this respect is that other factors guide the allocation of time and location
information to activities than sequential dependency information (see Chapter 6).
Unfortunately, there are at least three important drawbacks with respect to the
straightforward application of Markov Chains in our activity-diary simulation
framework.

5.3 PROBLEM STATEMENT

First of all, it is obvious that as the order /of the chain and the number of
possible values m increase, the number of independent parameters increases
exponentially and becomes too large to be estimated (Berchtold and Raftery,
2002). It even becomes infeasible to estimate the number of parameters for a
relatively small number of possible values and for low-order Markov Chains. The
problem was already identified in Raftery (1985) and a mixture transition
distribution (MTD) model has been proposed in Berchtold and Raftery (2002) to
come up with a solution. Table 5.1 relies upon their problem identification. The
table gives the number of independent parameters to be estimated for different
combinations of fand m. With values of m going till 23 and with order
lsometimes up to 10 and higher (see infra), the infeasibility of the
straightforward use of Markov Chains becomes clear for our application.

Secondly, Markov Chains were originally designed for modelling only one
particular stochastic process of a discrete random variable X,. It is still almost
always used in this respect. The technique is for instance often applied for
modelling one DNA string, for weather data during one year, etc. This obviously is
a problem for our application domain since activity diaries of different
respondents typically consist of multiple and (sometimes) independent
sequences. We are able to get around this difficulty by carrying out as many runs
of the Markov Chain as there are sequences in our data. However, this solution
inevitably leads to a third problem, which is related with the estimation of the
transition probabilities in Q.
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Table 5.1: Maximal Number Of Independent Parameters For Markov Chains

Number of different values Order Number of independent parameters to
(m) () be estimated

3 18

n

5 100
500
2500
12500
900
9000
90000

900000

10

15 3150
47250
708750

10631250

OO N W NDHDLUITAN WPDDLE XN WD

Transition probabilities are estimated through empirical frequencies which are
observed in the data. They are often interpreted as a simple case of maximum
likelihood estimates (MLE's) and are calculated by N;/N, in which N, stands for
the number of transitions from state i to state j in the whole dataset and N,
stands for the number of transitions starting from state 7 in the dataset. By
calculating the transition probabilities for all the sequences at once, the
independent character of each sequence in the data is in fact ignored, which may
result in estimates which are seriously biased by specific combinations that may
appear in one particular sequence. This problem is illustrated in Figure 5.1 by
means of random extracts from 6 activity diaries. It can be seen from this figure
that first-order transition probabilities in the pair FF are seriously flawed
(N./N,=19/33=0.58) by the occurrence of the number of family visits in the first
sequence. In this case the diary of the first respondent implicitly receives in fact
more weight in the calculation of the transition probabilities than diaries of the
others respondents, which is not desirable and incorrect. For this reason, we have
developed alternative methods for storing the sequential information (sequences
of activities) in ‘activity bundles’, a term which is introduced to reflect that the
information which is kept here represents low- and high-order combinations of



Identification, Segmentation and Prediction of Sequential Dependencies 155

activities that typically sequentially occur in one particular activity sequence (see
section 5.4).

Activity Pattern 1: T FFFFFFFFFFFFFFFFE

Activity Pattern 2: T EEFREREERFT FT FFT FET F

Activity Pattern 3: RREFEFEET TR

Activity Pattern 4: EEFFT FT FRRT TRT RR

Activity Pattern 5: FFT FFRE

Activity Pattern 6: EET FRRE

With T= Transportation, with car as transport mode, F=visit Family, E=Eat,
R=Read

| T E R F | T E R F

T. | 0.13 0.07 0.20 0.60 T| 0.12 0.03 0.15 0.70

E 0.21 0.36 0.14 0.29 E| 0.23 0.40 0.08 0.29

R | 0.17 0.42 0.33 0.08 Rl 0.10 0.53 0.30 0.07

F 0.18 0.12 0.12 0.58 Fl 0.21 0.20 0.28 0.31
Markov Chains (MLE) Alternative calculus of

transition probabilities
Figure 5.1: Comparison of first-order transition probabilities

(Markov Chain’s MLE versus our modified calculus)

It can be seen (for illustrative purposes) from Figure 5.1 that -when we compare
the sequence pair FF with our developed methodology- our approach potentially
does not suffer from this problem (only a weighted value of 0.31) as the
independent character of every sequence is maintained (see next section for more
details about this).

Having defined the drawbacks with respect to the use of Markov Chains in our
simulation framework, we are now ready to develop an alternative technique
which is able to approximate transition probabilities for higher-order Markov
Chains and which does not suffer from the disadvantages mentioned above. The
developed algorithms have the same aim as the previously mentioned MTD model,
which is a reduction in the estimation of the number of parameters (i.e. a
solution to the first problem statement in this section). Our approach differs from
the MTD model in its alternative calculation of transition probabilities (thereby
solving the 2™ and 3" problem statement). However, the MTD model adopts
weight parameters, expressing the effect of each lag on the present state X, and
for this reason, it seems more suitable for analyses and policy evaluation.
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Parts of the following sections are based upon research that was initially
presented in Janssens et al. (2004c; 2004d) and that was later elaborated in
Janssens et al. (2005c).

5.4 BUILDING TRANSITION PROBABILITIES BY MEANS OF
ACTIVITY BUNDLES

The way by which the transition probabilities are calculated, uniquely determines
the quality of the transition probability matrix. In order to avoid that transition
probabilities are calculated for all sequences at once, as it is often done in
Markov Chains, the idea of calculating probabilities for each respondent by means
of activity bundles was developed. Thus, the main advantages of using activity
bundles is that (i) transition probabilities are no longer immediately estimated by
ignoring the independence between sequences, but are first stored in activity
bundles per sequence and (ii) they represent a more intelligent framework to
calculate the plausible combinations of states and can deal more efficiently with
the combinatorial explosion of calculations. Activity bundles have to be seen as
an intermediate, but crucial step before building transition probability matrices
for the whole sample population. Indeed, since each activity bundle will
represent the correct (i.e. not flawed by one particular sequence which receives
more weight) low and high-order combinations per respondent, transition
probabilities for the sample population can safely be derived by summing up
equally occurring activity bundles over different respondents. We will elaborate
on two different approaches for storing this sequential information in activity
bundles.

5.4.1 APPROACH 1: ACTIVITY BUNDLES WITH MOST FREQUENTLY
OCCURRING COMBINATIONS

The first approach aims at selecting the most frequently occurring combination of
elements within one particular sequence. The algorithm which is used to
construct an ¢ -th-order activity bundle is introduced in Figure 5.2. Hereafter it
is illustrated by means of a simple example.
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Set k:=length of the sequence (diary)
Set 0 :=1 // Lis the order of the activity bundle
Do while an [ -th order activity bundle can still be constructed ( { <k)
Begin
If £ =1 then
begin
identify all unique elements u, with u 0{1,...,m}
for each unique element u do
begin
set i:=current unique element
identify all the elements ij which follow immediately after i, with j O{1,..., m}
for each ij do count the number of times that ij occurs (n,)
select the maximum value of n; (break tie if necessary) and store this ij in the
first-order activity bundle
end
end
else
begin
read the (/ -1)-th order activity bundle

for each combination A in the (£ -1)-th order activity bundle do
begin
set A:=current combination
identify all the elements Aj which follow immediately after A, with j 0{1,..., m}
for each Aj count the number of times that Aj occurs (n,)
select the maximum value of n,; (break tie if necessary) and store this Aj in the

0 -th order activity bundle
end
end

0=V +1

end

Figure 5.2: Algorithm for building activity bundles
with most frequently occurring combinations

It can be seen from this figure that the construction of higher-order activity
bundles is based upon the activity-bundle which immediately precedes the
current higher-order activity-bundle. By doing this, activity bundles are built in a
more efficient manner. The idea originates from the discovery of frequent
itemsets in the Apriori algorithm for association rule mining (Agrawal et al.,
1993), which also only uses the (/-1)-th order itemsets to generate candidate
{-th order itemsets. Therefore, unlike Markov Chains, not all the different
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combinations (m’) have to be evaluated and computation difficulties will be
reduced significantly.

Consider the following example to illustrate this algorithm:

T-W-R-T -W-TV-T -W-TV-T -F

where T=Transportation, with car as transport mode; W=Work; R=Read;
TV=Watch Tv and F=Visit Family.

The algorithm starts with first-order activity bundles. The unique elements (u) in
the diary are T, W, R, TV and F. The elements which follow immediately after T
are W and F, indicated as TW and TF. It this simple example, it is obvious that
n,=3 and n_=1. Therefore, the pair T-W will be stored as an element of a first-
order activity bundle. Doing the same for every unique element u, means that
also the couples W-TV, R-T_and TV-T_have to be added as elements to the first-
order activity bundle.

Next, we move on to the second-order activity bundle. There are four different
combinations A in the first-order activity bundle. In the first combination
A:=T -W, the elements Aj which follow immediately after A are R and TV, indicated
as AR and ATV, with frequencies n,=1 and n,, =2. Accordingly, the combination
A-TV (A:= T-W) will be added to the second-order activity bundle. Adding W-TV-T_
and R-T-W is  straightforward. =~ However, a tie occurs  when
A:=TV-T. Indeed, in this case n,= n, =1. The standard rule to break this tie is
that the element which occurs most frequently in the sequence has to be chosen.
The idea behind this rule is that this particular activity might be valued higher by
this respondent. When there is no element which occurs most frequently in the
diary, the combination is chosen at random. In this case, it is obvious to add the
combination TV-T-W. Building higher-order activity bundles is easy for this
simple example. An overview is given in Table 5.2.
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Table 5.2: A higher-order example of activity bundles (Approach 1)

Order Combinations

T-W; W-TV; R-T,; TV- T,

T-W-TV; W-TV- T; R-T-W;TV- T-W

T-W-TV- T; W-TV- T-W; R-T-W-TV; TV- T-W-TV

T-W-TV- T-W; W-TV- T-W-TV; R-T-W-TV-T; TV- T-W-TV- T.

T-W-TV= T-W-TV; W-TV- T-W-TV- T; R-T-W-TV-T.-W; TV- T-W-TV- T-F

T-W-TV- T-W-TV-T; W-TV- T-W-TV- T-F; R-T-W-TV-T-W-TV

T-W-TV- T-W-TV-T-F; R-T-W-TV-T-W-TV-T,

V|V |W N

R-T-W-TV-T-W-TV-T-F

Based on these activity bundles and in correspondence with Markov Chain
terminology, transition probability matrices can be constructed. Taking for
instance the elements in a second-order activity bundle, the corresponding
(trivial) second-order transition probability matrix will look like:

Xt
X, X, [T w R TV F
T 0o o0 o0 1 0
= w v |1 0o 0 o0 0
R T 0 1 0 0 0
v 0 1 0 0 0

Indeed, since there is only one most frequent combination of elements per
activity bundle, the transition probability matrix will only increase by one and for
instance not by two for the combination T-W-TV, as the data would suggest.

The same procedure will be followed for every sequence. This means that activity
bundles have to be built for every activity sequence which is in the sample data
and that the transition probability matrix has to be updated for every sequence
as well. Note that rows will be added in this process whenever this is necessary
(i.e. when the current elements in a particular activity bundle contain different
combinations than previous elements) and that the number of columns will
remain the same. After the whole procedure is completed, the numbers will be
normalized such that each row of the transition probability matrix sums to one. A
computer code has been established to automate the full process.

It can be seen from Table 5.2 that the number activity bundles per order still
stays very low, even when higher-order bundles are considered. The fifth-order
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bundle contains only 4 elements for instance. Multiplied by 5 columns means that
only 20 parameters need to be estimated. This number is of course extremely low
when we compare it with the estimation of the transition probabilities for a fifth
order Markov Chain for this small sequence, which would contain 12500
independent parameters to be estimated. Obviously, the major part of these
parameters will be zero, since these combinations won't occur in the data.
However, the comparison above is not completely fair since Markov Chains do not
only consider the most frequently occurring combination of elements, but they
take every possible combination into account by means of a simple case of
maximum likelihood estimation procedure. In order to enable us to make a better
comparison, a second approach has been developed, which is on the one hand
equal to the technique of Markov Chains (it also uses MLE) but which on the
other hand still constructs bundles per activity pattern and therefore maintains
the independent character of every sequence.

5.4.2 APPROACH 2: ACTIVITY BUNDLES WITH MAXIMUM LIKELIHOOD
ESTIMATES

Unlike only adopting a majority rule in approach 1, allowing minority
combinations is also possible if these minority combinations are given a lower
score. Maximum likelihood estimates are used to calculate the scores which are
given to each combination. As mentioned before, the simple case of MLE's are
calculated by dividing N, by N, where N, stands for the number of transitions from
state 7 to state j in the data and N, represents the number of transitions starting
from state 7 in the pattern. Obviously, this approach will result in more elements
per activity bundle since every possible combination, which is in the data, will
now be stored. The difference with Markov Chains is that frequencies are
estimated and stored per sequence. The algorithm, which is quite similar to the
algorithm given in approach 1, is shown in Figure 5.3.
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Set k:=length of the sequence (diary)

Set { :=1 // £ is the order of the activity bundle
Do while an [ -th activity bundle can still be constructed ( { <k)
Begin
If (=1 then
begin

identify all unique elements u, with u 0{1,..., m}
for each unique element u do
begin
set i:=current unique element
calculate the number of transitions that start from state i in the activity
pattern (n.)
identify all the elements ij which follow immediately after 1, with j O{1,..., m}
for each ij do count the number of times that ij occurs (n,)
store each ij and each weight (n,/n,) in the first-order activity bundle
end
end
else
begin
read the (¢ -1)-th order activity bundle

for each combination A in the (£ -1)-th order activity bundle do
begin
set A:=current combination
calculate the number of transitions that start from A in the activity pattern (n,)
identify all the elements Aj which follow immediately after A, with j 0{1,..., m}
for each Aj count the number of times that Aj occurs (n,)
store each Aj and each weight (n,./ n,) in the {0 -th-order activity bundle
end
end
l:=0+1
end
Figure 5.3: Algorithm for building activity bundles with MLE

In order to illustrate this algorithm, reconsider the random extracts from 6
activity diaries, which were shown in the problem statement:

Activity Pattern 1: T FFFFFFFFFFFFFFFFE
Activity Pattern 2: T EEFREREERFT FT FFT FET F
Activity Pattern 3: RREFEFEET TR

Activity Pattern 4: EEFFT FT FRRT T RT RR
Activity Pattern 5: FFT FFRE

Activity Pattern 6: EET FRRE
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The first-order activity bundles of these activity patterns are shown in Table 5.3.
The weights of each combination are shown in brackets.

Table 5.3: A First-order Example of Activity Bundles (Approach 2)

Seq. number First-order Combinations

Activity pattern 1 |T-F (1); F-F (0.94); F-E (0.06)

Activity pattern 2 | T-E (0.2); T-F (0.8); E-E (0.33); E-F (0.17); E-R (0.33); E-T,
(0.17); F-R (0.17); F-T_ (0.5); F-F (0.17); F-E (0.17) ; R-E
(0.67); R-F (0.33)

Activity pattern 3 |R-R (0.5); R-E (0.5); E-F (0.5); E-E (0.25);E-T_ (0.25); F-E
(1); T-T_(0.5); T-R (0.5)

Activity pattern 4 | E-E (0.5); E-F (0.5); F-F (0.25); F-T_(0.5); F-R (0.25);
T-F (0.4); T-T.(0.2); T-R (0.4); R-R (0.5); R-T. (0.5)

Activity pattern 5 | F-F (0.5); F-T_(0.25); F-R (0.25); T-F(1); R-E (1)

Activity pattern 6 | E-E (0.5) ; E-T_(0.5) ; T-F (1) ; F-R (1) ; R-R (0.5); R-E (0.5)

Based on these activity bundles, the final first-order transition matrix can be
constructed for this example by aggregating the same bundles of activities across
the different activity patterns. Unlike in approach 1, matrix entries increase by
the weight which is computed in each of the activity bundles.

The final first-order transition matrix will look like:

Xt
X, T E R F
T 0.70 0.20  0.90  4.20
R= E 0.92 158 033 1.17
R 0.50 2,67 150  0.33
F 1.25 123  1.67  1.85

Normalizing this table such that each row sums to one, gives exactly the same
transition probability matrix as the one shown in the problem statement. It
should be clear that this algorithm is comparable with the Markov Chain
approach. However, since each element in an activity bundle represents the
correct low and high-order combinations per respondent, each respondent
(activity pattern) receives the same weight and estimates of transition
probabilities promise to be less biased than in the Markov Chain approach.
Although this algorithm is clearly computationally more demanding than the first
approach, the number of different parameters which has to be estimated, is still
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significantly lower than the number which needs to be estimated in Markov
Chains (see also section 5.7.3).

5.5 THE NEED FOR A NEW SEGMENTATION APPROACH

5.5.1 PREFACE

Until now, we assumed that there is only one transition probability matrix (per
lag/order) which is both representative for every respondent and for every time
frame during the day. However, there is accumulated empirical evidence which
suggests that activity-travel patterns are (highly) correlated with the socio-
demographic information (Greaves and Stopher, 2000; Veldhuisen et al., 2000a)
of the respondent and that different transport behaviour (and thus different
activity-travel patterns) exist for different time windows during the day (Bhat
and Singh, 2000; Hamed and Mannering, 1993). The reader may recall that the
presence of different transition probability matrices for different time windows in
the day is in fact a relaxation of the stationarity condition as introduced in
definition 5.4. When dealing with time segmentation, only one explanatory
variable (i.e. time of day) needs to be taken into account. Therefore, the
statistical test of stationarity of a system that has been introduced in definition
5.5, and that mainly examines the change of dynamics before and after a certain
moment in time, can be extended by considering different splitting points that
lead to a significant statistical difference (see section 5.5.2). Things get more
complicated when segmentation is done in terms of socio-demographic
information because of different explanatory variables. In this case, a modified
version of a decision tree was developed, such that the dependent variable in the
tree explicitly takes sequential information per socio-demographic variable into
account. Both approaches have been described in the next two sections.

5.5.2 SEGMENTATION BY MEANS OF BIFURCATION POINTS
(TEMPORAL SEGMENTATION)

Definition 5.5 has introduced a statistical test for examining whether there is a
change of dynamics before and after a particular cutpoint. For instance, the test
can be used to examine whether transition matrices are significantly different in
the time periods ranging from 24PM-8AM; from 8AM-16PM and from 16PM-24PM.
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(see section 5.7.4 for an empirical validation). Obviously, the test can equally be
used for a segmentation in more segments. The choice of these cutpoints can be
done arbitrarily, relying for instance on domain knowledge. While this is a good
procedure to get an initial idea about whether our transition matrices satisfy the
stationarity assumption or not, splitting a sequence at different single points in
time is unlikely to result in the most optimal segmentation because it is not at
all driven by the information which is incorporated in the data. Therefore, by the
iterative application of definition 5.5 (omnibus test), for all possible splitting
points of a sequence, we are able to point out moments in time where the system
bifurcated into significantly different type of dynamics. Such a procedure is also
valid to evaluate whether the identified pivotal moments in the data match with
the moments defined by a priori domain knowledge. The points that radically
transform the dynamics of a system are called bifurcation points. The
methodology is frequently used in complex dynamical system theory (see for
instance Haken, 1983; Barton, 1994, Lemay, 1999). The procedure to identify
these bifurcation points is straightforward:

1. Determine the level of significance (a).

2. Set a time window by which transition matrices need to be

compared. In the limit, this time window can be set equal to 1 minute

but this will lead to a computational explosion of the calculations. In the

artificial example given above (24PM-8AM; 8AM-16PM and 16PM-24PM),

the three time windows are set equal to 8 hours, and the potential

bifurcation points are set at 8AM, 16PM and 24PM. Accordingly, every

time window defines potential bifurcation points (n,n,n,). The first

potential bifurcation point is defined as n_,, the last as n__.

3. Construct a transition matrix for every time window, i.e. three

transition matrices in this example.

4, Calculate the x2 value to evaluate whether the dynamics of the

system is subject to a segmentation into d (i.e. 3 by example) time

periods (see definition 5.5) by application of the omnibus test.

5. Store the p-value for this omnibus test.

6. Redefine the time window ranging from n_ to n__by adding one

time window to n_, thereby setting n_ :=n_+1. Recalculate the
transition matrices for the new time windows. In our example a new
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transition matrix needs to be computed ranging from 24PM-16PM. The
transition matrix that was computed before, for 16PM-24PM, remains the
same.

7. Re-calculate the omnibus test for n , to n_ . Equally, substract

one time period from d; i.e. d:=d-1. In our example, it is thus evaluated
whether the dynamics of the system is subject to a segmentation in two
time periods.

8. Store the p-value for this omnibus test.

9. Repeat steps 6 till 8 until n_ :=n__or until d:=1.

10. Plot the p-values for every omnibus test

The procedure will be empirically illustrated in section 5.7.5.

5.5.3  SEGMENTATION BY MEANS OF FuLL DECISION TREES (Soclo-
DEMOGRAPHIC SEGMENTATION)

Things get more complicated when transition probability matrices need to be
segmented in terms of socio-demographic information. Indeed, unlike in the
previous case, there is now a combination of different explanatory variables that
have a potential influence on the transition probability matrix. To this end, a
novel segmentation scheme has been developed that is a modified version of a
decision tree approach. Especially CART decision trees were used in a number of
previous studies (Greaves and Stopher, 2000; Vaughn et al., 1999) in the context
of transportation modelling for segmentation. The best known application of this
technique is probably the TRANSIMS project, where the CART algorithm is used in
the “Activity Generator Module” to produce an accurate classification of
household characteristics based on household travel behaviours.

However, in traditional (classification) decision trees, the dependent variable at
the leaf simply contains a finite number of possible values and is often discrete
in nature. The novel algorithm that is proposed in this chapter differs in two
ways from this common way of thinking. First, the dependent variable can no
longer be immediately observed from the data but is the result of a learning
methodology (see section 5.4) and second, the dependent variable explicitly
takes sequential information into account. As such, transition probability
matrices are used as dependent variables in the construction of the trees.
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Obviously, the most important decision that needs to be made when developing a
decision tree is the splitting criterion. One possible approach would be to
compute the difference between two matrices, for instance by the calculation of
the sum of squared errors (SSE) between two matrices. However, such an
approach would only look at differences at a particular level in the tree, while
traditional decision trees take criteria into account that calculate the benefit of
moving from one level in the tree down to the next level (for instance by means
of gain ratio). In addition to this, it would only be computationally feasible to
construct binary decision trees by means of these procedures, which is a major
limitation when compared to traditional decision trees.

Fortunately, one of the most widely measures that is adopted in decision trees,
i.e. gain ratio, can be applied in a quite straightforward manner in our approach
as well. The use of gain ratio as a split criterion favours splits into increasingly
homogeneous partitions in terms of the dependent variable (class attribute),
because the best split is the one with the most homogeneous daughters. In the
limit, leaf nodes (i.e. nodes that have no offspring nodes) will therefore only
contain cases from a single response class. Gain ratio is a measure which is
derived from information theory. Information theory defines the quantity of
information conveyed by a particular message as being inversely proportional to
the predictability of that message. When a message is entirely certain (that is,
its probability is 1), then the quantity of information conveyed is zero. When a
message is nearly improbable (that is, its probability is almost 0), a maximum
quantity of information is needed to receive such a message. The degree of
uncertainty of a message can be represented by the probability of that message,
or in terms of traditional decision trees, by the probability of that class. As
mentioned before, when all this can be translated to transition probability
matrices, a new decision tree approach will emerge that discerns itself from
traditional decision trees in the sense that the dependent variable can no longer
be immediately observed from the data but is the result of a learning
methodology and second, the dependent variable explicitly takes sequential
information into account.

The entries in transition probability matrices are used for achieving this.
Adopting gain ratio in the context of transition probability matrices will then
result in homogeneous transition probability matrices. For a better understanding,
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the reader may reconsider the following definitions that are used in traditional
decision tree induction (Quinlan 1993). Each definition will later be re-introduced
such that it becomes feasible in the context of transition probability matrices.

INFORMATION THEORY
Definition 5.10: Entropy of a set T
The entropy of particular (sub)set T is equal to:

Info (T)=- Jrea(C;,T) xlog Jrea(C,,T) bits, with 7 a set of cases,
=AU A U

C. a class 7, |T| the number of cases in T, k the number of classes and freq (C,T)
the number of cases in T that belongs to class C. u
Example: Assume that we face a 2 class-problem, 2 cases with class “yes” and 3

cases with class “no” in the leaf node of a decision tree. The entropy of this set
. 2 2, 3 3 .
of cases T is then represented as: Info (2,3)=—§logz(g) _ElOQZ(E) =0.971 bits.

Definition 5.11: Entropy after a (sub)set has been partitioned on a test X:
Info,( z ><mfo , where |T| represents the number of cases that belongs

to the partition i and |T| represents the number of cases in T. [

Example: In fact the above formula simply calculates the average information
value, taking into account the number of instances that go down each branch in
the tree. In addition to the information value of the first branch (2 cases with
class “yes”; 3 with “no”), we assume that there are two additional branches for
this particular split (X), resulting in 4 cases with class “yes” (zero “no”) in the
second branch and 3 cases with class “yes” and 2 with class “no” in the third
branch. Thus, the information value of this split consists of three branches, and
can be computed as follows:

Info ([2,3],[4,0],[3,2])=(5/14)x0.971+(4/14)x0+(5/14)x0.971=0.693 bits.
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Definition 5.12: Gain criterion

The gain criterion measures the information that is gained by partitioning a
training set using a particular test X. Gain criterion is defined as: Gain (X)=

info (T)-info (7). ]

Example: The information that is gained by partitioning a particular split as
defined above is equal to: Gain (X)=Info ([9,5])-0.693= 0.247 bits

In C4.5 (and ID3) the test is chosen that maximizes the information gain because
one may expect that the remaining subsets in the branches will be the most easy
to partition. However, this is by no means certain because we have looked ahead
only one level deep in the tree. Despite this, the gain criteria proved to perform
well in practice. However, there is another serious deficiency with the gain
criterion. When attributes have a large number of possible values, giving rise to a
multiway branch with many child nodes, a problem arises with the information
gain calculation. The problem can be best understood when an attribute has a
different attribute for every instance in the dataset, in the most extreme case
(e.g. an ID-code). Suppose for instance that we have 14 ID-codes, where each ID-
code contains one case. The computation then becomes Info ([0,1])+ Info
([0,1])+ Info ([1,0])+ ... + Info ([0,1]), which is equal to zero.

Consequently, the information gain of this attribute is equal to the information
value at the root of the tree. This value is larger than any other attribute and ID
code will inevitably be chosen as the splitting attribute. To compensate for this
trend to favour multi-way branching attributes, gain ratio is often used.

Definition 5.13: Gain ratio

gain(X)

Gain ratio (\)=————"—
) split info (X)

, where split info (X) indicates the information that

is generated by partitioning T into n subsets. It is calculated by:

— . mxlogz[mJ ]

=g Il

Example: The gain ratio of the ID-attribute that was illustrated above is equal to:
0.940/3.807=0.246, which largely reduces the original gain criterion for this
attribute.
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RE-INTRODUCING INFORMATION THEORY

Definition 5.14: Consistent with definition 5.10, the entropy of one row i in a
frequency matrix Q,,, can be defined as:

fre

Info ereq(f)=—i [wjxtogz [(Qﬁeq—(’nj bits, 0 row i, with Q. () the i
=1 Mitot itot

row of the frequency matrix Q,_; Q,.(7, j) the matrix entries defined by the i row

and the j" column, that is the frequency that the element(s) in row 7 is (are)

followed by the element in column j; n,, the row total in Q

e @Nd M the number

of columns. n

Example: Assume that we have the following (first-order) transition frequency

matrix:
X,
X, T E F R n,,
T 5 18 2 5 30
E 1.7 3.68 4.09 0.53 10
Ore™ F 6.25 10 8.75 5 30
R 0 1.7 5.8 2.5 10

The entropy of row two is then: InfoQ, (2)=

L7 (1,7)_3,6Slo (3,68)_4,09l0 (4,09)_0,53
10 %407 T g 0% 10 % 10

0,53
lo ‘=")=1,72 bits
gy ( 10 )

The entropy of other rows in the matrix can be calculated in a similar way.

Definition 5.15: Entropy of a full transition (probability or frequency) matrix.

The entropy of a full transition matrix is equal to Info(0)=zn"tT°tXInfo(Qﬂeq(i))

i=1
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It can be seen from this formula that every row in the transition matrix is
weighted in proportion to the number of times a particular sequence starts with
the element(s) which is represented in that particular row of the matrix.

Example: The entropy of the full transition probability matrix, shown in the
example above is equal to: (30/80)x1,56+(10/80)x1,72+(30/80)x1,95
+(10/80)x1,38 =1,70 bits.

Definition 5.16: Consistent with definition 5.11, the entropy of a full transition
probability matrix after a (sub)set has been partitioned on a test X, can be

calculated as:

" T
Infox(Q)=Z%Xinf0(Q) , where |T| represents the number of cases that belongs
i=1

to the partition i and |T| represents the number of cases in T. [

Example: Assume that the first branch is specified by the transition probability
matrix introduced in the example given in definition 5.14, and that a second
branch contains a transition probability matrix that has an entropy equal to 1,50
bits. Both branches respectively represent 4 and 3 cases for this particular split
(X). The calculation is as follows: (4/7)x1,70+(3/7)x1,50=1,61 bits.

The gain and the gain ratio criterion for transition probability matrices only
depend upon a particular split. Accordingly definitions 5.12 and 5.13 can be re-
introduced for transition probabilities without modification.

In order to use these modified principles of information theory in a new decision
tree segmentation scheme, the following mathematical conceptualisation has
been introduced.
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CONCEPTUALISATION

S the total sample of activity diaries, consisting of n sequences, indexed
i=1,...,n

X, explanatory socio-demographic attributes, with k =1,... K.

Y dependent variable, represents the transition probability matrix Q (Y=Q);
for all sequences (I 1)

T Final decision tree based on sequential information, comprised of nodes
(Ns and L) and branches. Leaf nodes are specified by Q.

N the current node in 7, splitting the current subset of S into subsets N,

N, represents the subsets of a split by N; splits at a value t based on an
independent variable X, such that X=t; Ut,

t set of possible values of t such that there exist observations in N having
X=t; Ok=1,...,K; and with N=X..

Ns set of active decision nodes in T that split S into different subsets.

L set of inactive decision nodes that cannot split S into additional subsets
because n_ or G are not satisfied. In this case they become
leaf nodes L.

n.. Parameter that determines whether a particular branch in the tree is split
into additional nodes or not. Splitting is stopped when the number of
individuals that belong to either of the child nodes N, is less than
the number defined by n_

G(N,) Gain ratio (as defined by definitions 5.12 to 5.16) of a transition matrix
that is built on the subset of N ..

Max  represents the global maximum of all the gain ratios per level in the tree,

G(N,) [ON,.. Max G(N,) is used to select the optimal decision node N.

G Minimum Gain ratio that determines whether a particular branch in the

min

tree is split into additional decision nodes or not. Splitting is stopped
when Max G(N,,) is smaller than G_ .
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Having defined this mathematical conceptualisation, a decision tree procedure
can now be introduced in Figure 5.4. A computer code has been established to
automate the full process. The next paragraph elaborates on an example to
illustrate this procedure.

Example:

We can for instance assume that we take the first 3 of the 6 activity-travel
patterns that were introduced in section 5.3. Now let us assume that socio-
demographic information is also provided with this example. For the sake of
simplicity, it is assumed that only 3 socio-demographic attributes are known; i.e.
gender; age and education. The specific values for each activity pattern are:

Diary 1: male, older than 45 years and high educated

Diary 2: female, between 18 and 24 and low educated

Diary 3: male, between 25 and 44 and low educated

The initialisation procedure in Figure 5.4 is quite simple for this example. The

value n_and G_ are respectively set equal to 1 and 0, X, is defined as gender,

age and education, respectively for k=1,...,3; with K=3. The set of active decision
nodes Ns is also fixed as {gender, age, education}. Note that this set is not
always equal to the variables X, for k=1,...,K, since one might decide not to use
certain variables as decision nodes, for example in case of ID-number, which
might be perfectly relevant as an attribute but not as a decision node. Finally,
the set of leaf nodes is initialised as empty.

Since the set of decision nodes Ns is not empty and the set of leaf nodes is
empty, the two first checks in Figure 5.4 can be omitted. After this, the
procedure will select the most optimal decision node for the root node of the

tree.
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Initialisation: 1) Set a value for n_,_and for G,
2) Determine X, for k=1,...,K
3) Set Ns={X}
4) Set L={(0}
Store T as L and compute the
final Q for each marked branch
If all
branches

Yes

<
<

1.Set Ns={X.}
2.Determine most
that is not marked
3.Proceed up the marked branch,
and remove every N that exists in
that hranch from Ns

left branch

are Tarked

Determine most optimal N
>

A 4

If split has not been created for
t,, create split N,

1.Create temporary splits N, for
each t,.
2. Construct QNk for each t,
t

3. Calculate G(N,,) for each t,
4. Calculate MaxG(N,) and
determine most optimal N

1. Remove N * IsNJ>n,,
?
<« from Ns IDtk' OR
¢ Is Max
2.AddNtolL G(N,) > G,

3. Mark branch

Yes

1. Remove N from Ns
2. Proceed down the tree for the
most left unmarked branch

Figure 5.4: Description of the procedure for building a decision tree
based on sequential information.
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First, each decision node N that belongs to Ns, is divided into temporary splits N,
such that X=t ON, for k=1,...,3. Then, a, is constructed for each t,. Next, the
gain ratio is calculated as explained by definitions 5.12-5.16, and the attribute
that achieves the highest gain ratio in the tree is selected to carry out the split
at the current level (=root level) of the tree. The attribute “Gender”, with a gain
ratio of 0.469, achieves the highest value (MaxG(N,)) and is thus chosen as the
best split for this tree at root level. After actually creating this split, the next
step first verifies whether the number of observations in the child nodes, is
greater than the minimal value n_, and greater than G .. While this is the case for
the first branch (gender=male), it is not for the second branch (gender=female).
For this reason the decision node “Gender” is removed from the set of active
decision nodes Ns and added to the set of leaf nodes. The branch for which the
decision node did not satisfy the n_ -check (i.e. N,) is marked to indicate that it
has been fully exploited. The procedure now restarts from the beginning. While
the first check still is not yet satisfied, the set of leaf nodes is no longer empty.
First, the set of active decision nodes in temporarily set equal to the set decision
nodes X.. This is necessary to let a particular variable occur multiple times in
different branches in the tree. Second, the most left unmarked branch in this tree
is now identified. In this example this unmarked branch is specified by
Gender=male. Again, the most optimal N needs to be determined for this branch.
This means that temporary splits need to be created for the branch gender=male
and the maximum gain ratio need to be computed. In this case, the variable
education achieves the largest gain ratio. Now, both remaining branches (i.e.
education=low; education=high) do not satisfy the n_ -check. Indeed, for the
branch gender=male; there is only one case that belongs to education=low and
one case that belongs to education=high. This means that both branches need to
be marked. While Ns is still not empty, all branches are now marked and the final
decision tree along with its final Q are stored and shown in Figure 5.5.
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Male Female

T F E R

@ Tc 0,00 0,80 0,20 0,00

F 0,50 0,17 0,17 0,17

Low High E (0,127 0,17 0,33 0,33

R 0,00 0,33 0,67 0,00

T F E R T F E R

T |05 0 0 05 T 0 1 0 0
F 0 0 1 0 F 0 0,94 0,06 0
E 0,25 0,5 0,25 0 E 0 0 0 0
R 0 0 05 0,5 R 0 0 0 0

Figure 5.5: The final sequential information decision tree (example)

Once the segmentation for all the transition probability matrices has been done,
every sequence can use the appropriate transition matrix by proceeding its socio-
demographic information down the tree.

5.6 SIMULATING ACTIVITY-TRAVEL PATTERNS

5.6.1 BASIC SIMULATION

The previous sections have defined the “knowledge model” that will be used to
steer the basic simulation procedure that is introduced in this section. To
summarize the above, the knowledge incorporated in the model is sequential
dependency information of low and high-order, differentiated by time of day and
by socio-demographic information. While the method indirectly takes time
information into account to develop a more accurate skeleton of activities and
transport modes, specific time information was not yet allocated to activities.
The same can be said with respect to location information. As mentioned before,
we have made the assumption that other factors than sequential dependency
information guide the allocation of time and location information to activities
(see Chapter 6). For this reason, both facets were not yet incorporated in the
current simulation procedure.

The aim of the simulation procedure is to predict the value taken by X, as a
function of the values taken by previous observations of this variable (as they are
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incorporated in the transition probability matrices). Before doing so, socio-
demographic information is simulated, based on a simple sampling procedure,
where the distribution per socio-demographic variable is used to guide the
simulation procedure. Once the socio-demographic information is generated per
respondent, the specific socio-demographic information is routed down the
segmentation tree and the corresponding transition probability matrix is used in
the procedure for simulating the activity patterns, described in Figure 5.6.

The left part of this figure shows the different steps of the procedure; the right
part shows the real outcome of these steps by means of an example. The
procedure starts by initialising the values of the indexes t and “diarypointer”. The
index t is preferably interpreted as the position of the activity in the activity
pattern, whereas the “diarypointer” is a kind of technical index that keeps track
of the lag, which is used in the simulations. The diarypointer is always initialised
at position zero; the index t is variable and is set equal to the order of the
transition probability matrix. The second order transition probability matrix is
taken as an example (see right part). Reading the transition probability matrix is
the first logical step. Next, the length of the activity pattern is generated. This
implies for this step that a random number is generated, based on a given sample
distribution of the length of the activity pattern. The decision was made to
incorporate this dimension into the generated activity patterns since some
people fill out their diaries carefully (or simply perform more activities), while
others are more imprecise. In our example, it is assumed that 15 activities will be
generated. In order to take advantage of the segmentation with respect to time
information (by means of the bifurcation point procedure, see section 5.5.2), the
simulation approach also uses the length of the simulated activity travel pattern
to come up with a rough segmentation per pattern. That is, if the bifurcation
point procedure determined that 3 time intervals contained statistically
significant transition matrices, the generated activity-travel pattern is split up in
three equal parts; where the first 5 activities will be generated by means of the
first transition matrix, activities 6-10 are generated by means of the second
transition matrix and activities 11-15 are generated by means of the third
transition matrix. This is an arbitrarily defined procedure, but the alternative -
using only one transition matrix- is even worse if the process does not satisfy the
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stationarity condition (see section 5.7.4 for an empirical illustration). These
steps were not shown in Figure 5.6 for the sake of clarity.

Once the length of the (to be predicted) pattern has been simulated, the first ¢
elements of this pattern are generated. The initial sequential probability
distributions in the sample data are used for this. This means that the first /¢
elements of the sequence are generated from the prior probability distributions,
which are in the data and not from the empirically constructed transition
matrices. Assume that a sleep and an eat-activity are the first two simulated
elements. The diarypointer can now be augmented from zero to one in order to
keep track of the two lags that are used in the example. Note that these and the
subsequent steps of the simulation procedure will only occur when the order of
the activity bundles (/) does not exceed the simulated length.

While llf t#1 then

Set t:=order of the transition prob. matrix (/) i 2
|
|
Set diarypointer:=0 i [Empty diary
KX
Read /-th order transition prob. i
matrix !
L a
Simulate length 1 15
|
: a
Simulate first /¢ elements X i Sleep |Eat
l diarypointer:=diarypointer+1 i fl
|
i |
Search for the combination of i
elgment§ in thg interval frpm i Transportation by car
[diarypointer..t] in the transition :
probability matrix & simulate the !
next element i
|
|
t<length diarypointer:=diarypointer+1 i
|
Store the element at position t (X)) i Sleep | Eat Transp.
in diary ; by car
| t,

Figure 5.6: Description of the simulation procedure
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The next step is to search for the combinations of elements in the transition
probability matrix in the interval [diarypointer..t]. This means for our example
that the Sleep-Eat-combination is looked up in the transition matrix and that the
distribution which is in this row of the table is used as a constraint for
simulating the next activity (also referred to as intra-sequential simulation, see
infra). If no combination of elements is found, the procedure stops simulating
elements for this particular activity pattern (not shown in Figure 5.6).

After the “diarypointer” and the index t are augmented, the chosen element
(“transportation by car” in our example) is stored at position t (i.e. 3) in the
activity pattern. The simulation procedure is repetitive, i.e. when the prediction
of the value X, is based on two lags, then the next value to be predicted becomes
X.,» which is based on X, (predicted in previous step) and on X, (also referred to
as inter-sequential simulation, see infra). This repetition continues until the
generated activity pattern equals the simulated length of the pattern. This
procedure is repeated for every activity pattern in the data set.

5.6.2 CONTROLLED SIMULATION

In the previous section, the term “intra-sequential” simulation has been briefly
mentioned. The term means that only the intelligence information that is
captured in the order of the transition probability matrix, is taken into account
for the simulation of the next elements in the activity-travel pattern. The
example that was given previously, where a breakfast and a working activity are
often separated by travel, since people often need (and report) transportation
before starting the work activity, is intra-sequential when this activity-travel
pattern is simulated from a third-order transition probability matrix. In contrast
to this, inter-sequential dependencies arise from a new simulation loop as it was
described in the basic simulation procedure above. While simulation loops are
clearly interconnected (the elements that are simulated by means of loop A serve
as input for a new loop B), some logical constraints might be lost in inter-
sequential loops. This is a relatively small problem for interconnections in terms
of activities because transition matrices are constructed for different time
intervals, preserving the simulation of activities that are not randomly distributed
over different time intervals (sleep activity for instance).
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However, additional problems arise when transport modes are simulated inter-
sequentially. Common sense let us believe that transport modes that are used in
the beginning of the activity-travel sequence may re-occur in trips that are
conducted at a later moment throughout the day and will most often be used for
returning home as well. Conceptually, our method is able to deal with this
problem by preventing that an odd number of entries of a particular transport
mode occur in a sequence. This may indicate that different transport modes are
used for the return and the departure of a particular trip. However, there are
possible exceptions like driving around by car, (without a stop or activity
reported) or moving the car to a different parking space closer to home, where an
odd number of transport modes is feasible. In case of an odd number of transport
modes, the activity-travel pattern can be re-simulated consecutively, until a
particular parameter r, is attained that accounts for those exceptions as explained
above.

Also, the number of trips/tours that are conducted in one activity-travel pattern
may be limited. Since location information is not incorporated at this stage in
the simulation framework, a tour refers to any appearance/subsequence of (out-
of-home) activity(ies) between two transport modes. Also in this case, if the
simulation approach exceeds a particular value b (maximum number of tours),
activity-travel pattern can be re-simulated consecutively. Again, a parameter r, is
used to account for exceptions.

5.7 EMPIRICAL RESULTS

5.7.1 DATA PREPARATION

Obviously, all the separate data sets (concerning the different decision facets),
that were used in the Albatross model, are no longer needed in this simulation
framework. However, the full activity diary data and information which is in the
Albatross model, is used in these experiments. Obviously, a couple of data
transformations -which are mainly of technical nature- need to be carried out,
such as for instance the transformation of the data into separate sequences of
activity-travel combinations. A computer code has been established to automate
this transformation process. Also in this case, our data were separated into a
training and test set, consistent with the procedure that has been applied in
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Chapters 2 till 4. In the remainder of this chapter, all the definitions and sections
that have been explained previously, will now be empirically applied and
validated.

5.7.2 FIRST-ORDER TRANSITION PROBABILITIES

INTUITIVE INTERPRETATION

The collapsed form of the first-order transition probability matrices are 23 by 23
matrices for both developed algorithms (see sections 5.4.1 and 5.4.2), as 23
different activity and travel categories were distinguished in the activity diary. At
first glance, the sequential information that both approaches have revealed
seems intuitively logical and useful for low-order combinations. For the sake of
clarity, we illustrate this by means of the following 5x5 matrix, which is taken
from the non-normalized 23x23 matrix that was developed in approach
(algorithm) 2 (see Table 5.4).

Table 5.4: A 5x5 first-order transition frequency matrix (empirical data)

Xt
Sleep  Eat/drink Transport Work (out- In-home
X (car) of-home) Leisure
Sleep 3.7 640.7 149.9 0 319.5
Q= Eat/drink 71.29 7.0 228.9 34.2 481.5
Transport(car) 28.1 113.4 0.1 251.2 178.5
Work 1.1 42.3 585.9 5.1 0.01
In-home Leisure | 293.9 145.4 118.1 0 551.6

It is for instance easy to understand that a ‘Sleep’-activity is most often
(weighted value of 640.7) followed by an ‘Eat/drink’-activity. On the other hand,
the ‘Sleep’-activity is never immediately followed by a ‘Work (out-of-home)-
activity since people first need transportation to arrive there. The numbers on the
diagonal represent people who in succession (erroneously or not) report the same



Identification, Segmentation and Prediction of Sequential Dependencies 181

activity. The transition matrix that is calculated by means of approach 1, shows
similar logical relationships. Obviously, only integer numbers occur in this matrix.

EVIDENCE OF FIRST-ORDER SEQUENTIAL DEPENDENCIES

Obviously, building first-order sequential dependency matrices, is only useful in
the case that first-order sequential dependencies are really present in the data. It
was explained before that the Chi-square and the G2 statistic (see definitions 5.6
and 5.7), are able to test whether first-order sequential dependencies are present
in the data, that is, if the state of the system at time t depends on the state at
time t-1. Unfortunately however, when empirically testing the 23x23 matrix,
some expected values are below 5, thereby violating the basic assumptions for
the use of this test. In addition to this, there are quite some cells in the matrix
that contain zero’s, representing sequence-pair combinations that never occur in
the data. As a result of this, a significant Chi-Square or G2-value is easy to
achieve. Both problems can be solved by creating a more compact transition
matrix that generalizes entries in the matrix into broader activity categories. To
this end, an aggregated 9x9 transition matrix was constructed, containing in-
home, bring/get, shopping/service, leisure/social, work and other activities and
car, slow modes and public transport as transport modes in the matrix. By
consequence, the basic Chi-square assumption was not violated. Also for this
matrix, both chi-square and G2 were highly significant (p<0.0001) for all
transition matrices (approach 1, approach 2 and MLE), thereby not accepting the
H,-hypothesis. This should not be surprising of course, since it is both clear from
common sense but also from the analysis of the partial transition matrix shown in
Table 5.4 that the transitions in the cells are significantly different than would
be expected if the combinations are randomly sequenced. To this end, it is safe
to assume that the state of the system at time ¢ depends on the state at time t-1,
and that first-order sequential dependencies are present in the data.

APPROACH 2 VERSUS MLE

As mentioned before, instead of using approach 2 for the computation of
transition probabilities, simple MLE can be used. While approach 1 seemed less
fair in comparison with MLE, it was claimed in section 5.4 that approach 2
preserved the independent character of every sequence and by consequence,
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estimates seemed to be less biased by specific combinations that appear in one
particular sequence.

In order to evaluate this empirically, transition probability matrices (23x23) were
respectively constructed by means of simple MLE estimates and by means of the
algorithm that was introduced in Approach 2. Differences between both transition
matrices (Approach2-MLE) were then calculated in order to empirically evaluate
the magnitude of the problem as introduced in section 5.3. When the difference
has a negative sign, this indicates that MLE estimates are biased due to an
overestimation of the probability because of the repetitive inclusion of these
specific activity combinations in some activity-travel patterns, while they are
almost non-existing in other patterns (see example in the problem statement in
section 5.3). A positive sign on the other hand is the result of an
underestimation of the probability by means of MLE, because specific
combinations occur more uniformly over all respondents and thus result in a
higher probability per respondent by means of Approach 2. The experiment has
been graphically displayed in Figure 5.7. It can be seen from this figure that
differences in probability between both approaches range from -10% to +8%,
which is quite substantial. The negative signs (indicating an overestimation of
the transition probabilities) are most remarkable for sequence pair combinations
that start and end with In-home leisure, In-home non-leisure and out-of-home
non-leisure activities. Positive signs (indicating an underestimation of transition
probabilities) occur more frequently. Probably the most important sequence pair
combinations that differ are combinations that start with “car driver”, “walk” and
“public transport” and that are immediately followed by work (out-of-home).
Those sequence pair combinations are respectively underestimated 6.8%, 5.5%
and 7.8% by MLE. Given the important character of these sequence pair
combinations for trip generation, the more accurate estimation of transition
probabilities is an important strength in comparison with the standard probability
estimation (MLE) in Markov Chains. Amongst others, underestimates also occur
for the combinations Work (in-home) --- In-home Leisure (5,2%); In-home-
leisure --- Sleep (5,7%) and In-home-non-leisure---In-home-leisure (6,2%).

Based on these results, the development of Algorithms 1 and 2 has proven to be
justified and useful.
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Figure 5.7: Difference in probability between first-order transition matrices,
comparing MLE with Approach 2 (Approach 2 - MLE)

5.7.3 HIGHER-ORDER TRANSITION PROBABILITIES

INTUITIVE INTERPRETATION

In this section we consider a second-order transition matrix that has been
constructed by means of the n-grams method that was introduced in section
5.2.2. Once more, only a 5x5 matrix (from approach 2) is reported for the sake of
clarity in Table 5.5.

Second-order transition probability matrices are not different when compared to a
first-order matrix, except for the additional dimension which need to be added to
these tables. Obviously, also the size of the matrix will become variable. In our
first approach (majority rule), the size of Q is 283x23; while in the second
approach it is 325x23. It can be seen from Table 5.5 that the same previously
given intuitive explanations seem to be valid. Making an intuitive interpretation
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Table 5.5: A 5x5 second-order transition frequency matrix (empirical data)

Xt
Work
X X Sleep Eat/ Transp. (out-of- In-home
2 ¢ drink  (car) Leisure
home)
Sleep Eat/drink | 45 3 2115 05 2145
Eat/drink Transp.(car) 1.5 3 0 236.8 6.1
Q= Transp.(car) Work 0 475  539.4 3 0
Work Transp.(car) 16.3  163.4 0 31.7 202.6
Eat/drink In-Home Leis. | 33.4 37.1 142.9 0 371.4

for higher-order (>2) combinations is almost infeasible because long
combinations of sequence elements are unable to be fully captured by the human
brain. In these cases, quantitative evaluation measures seem to be better suited
(see infra).

EVIDENCE OF HIGHER-ORDER SEQUENTIAL DEPENDENCIES

While first-order sequential dependencies have proven to be highly present in
activity-travel patterns, it is also useful to examine the presence of higher-order
dependencies. As mentioned before, the required statistical tests depend upon
the method that is used for calculating higher-order transition probabilities. Two
methods were distinguished: the simple higher-order transition (frequency and
probability) matrix (ignoring the information in between two states) and the n-
grams method.

The first method can be tested by means of a simple x2-test and by constructing
transitional frequency matrices between state t-k and state t. The x2-values for
each order were calculated and only the second lag (order) proved to be
significant. When a full activity diary is considered, there is no intuitive reason
why there needs to be a sequential dependency between an activity which is
reported at position t in the diary and an activity that is reported at position t+5
for instance, given the heterogeneity by which people fill out their diaries.
However, when transition matrices are built for specific time intervals, a different
pattern emerges. For instance, given the fixed format that is used for every diary
(starts and ends at 3 AM), the second, third and fourth lag have proven to be
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significant during a morning time interval (6AM-9AM). This is also logical
because the overall heterogeneity in diaries is reduced by concentrating on one
specific time interval. This finding is a first indication that the stationarity
condition does not hold for our data (see also section 5.7.4).

The second method that is used for constructing higher-order sequential
dependencies, takes in-between information into account between state t and
state t-k (n-grams-method). Definition 5.9 has introduced a method which can be
used to test higher-order dependencies by means of n-grams. Results are shown
in Table 5.6 for some higher-order (grouped into broader activity categories)
transition probability matrices. It can be seen from this table that the second-
till the fifth-order transition matrices are significant, which means that the
present state of the system is significantly influenced by the sequential
dependencies which are taken into account 2, 3, 4 and 5 lags before. As
mentioned before, since this matrix is not used for analyses and explanatory
purposes, this test has no further implications for our simulation as such. The
test only indicates that higher-order dependencies are present in the data and
that a simulation procedure that takes these higher-order transition matrices into
account, may result in more accurately simulated activity-travel patterns.
However, the ultimate validation is the comparison between the observed and the
simulated activity-travel patterns on the test set, even if a non-significant order
is used in the transition matrix. Obviously, it is likely that there is a strong
correlation between the significance of the matrix and the accuracy of the
simulated activity-travel pattern (see infra). Given these findings, the term
“higher-order transition probability matrix” is referred to as the matrix that takes
sequential information in between two states into account (n-grams) in the
remainder of this chapter.

Table 5.6: Evidence of higher-order sequential dependencies (n-grams method)

Order (k) | 2 3 4 5 6 7 8 9 10

P 0.001 | 0.01 | 0.03 | 0.04 | 0.08 | 0.11 | 0.15 | 0.19 | 0.24

OWN APPROACHES VERSUS MLE

It was already shown in Figure 5.7 that approach 2 resulted in transition
probabilities that range from -10% to +8% compared with MLE in Markov Chains
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(first-order dependencies). As explained, the under- or overestimation in MLE was
the result of treating all different independent activity patterns (of different
respondents) as one activity-travel pattern, thereby ignoring the independence
over different respondents. This argument still holds for higher-order
dependencies. However, in addition to this, another important reason is the
computational explosion that was already introduced in the problem statement in
section 5.3.

For a better understanding, the reader may consider the size of some final
transition probability matrices for approaches 1 and 2 in Table 5.7. Each value in
the table has been experimentally derived from our data for these approaches.
They represent the total number of rows in the transition frequency matrix. The
total number of columns is always a constant. A theoretical comparison is also
made with Markov Chains to illustrate the computational efficiency of Approaches
1 and 2. High-order Markov-chain transition matrices were not empirically built
because it is simply impossible given the computational explosion of the
calculations.

This significant decrease in computation complexity is mainly due to the facts
that only the activity bundle which immediately precedes the current higher-
order activity bundle is used for the construction and that only combinations
which actually occur in the data are considered. In Markov Chains all activity
combinations are considered, and even when the major part of these
combinations will have a zero probability (because most combinations never
occur in the data) extra passes are needed through the data and accordingly
extra computer memory is consumed.

Table 5.7: Maximal number of independent parameters For Markov Chains

Order Approach 1 Approach 2 Markov Chain
1 23 23 23
2 283 325 529
3 1233 1596 12167
4 2451 3761 279841
5 3880 6535 6436343
6 4803 8974 1.48E+08
7 5190 10362 3.4E +09
8 5193 10714 7.83E +10
9 4904 10342 1.8E+12
10 4443 9593 4.14E+13
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5.7.4 TESTING FOR STATIONARITY

It was explained in definition 5.5 how it could be examined whether data
violated the stationarity condition or not. When no stationarity is found in the
data, different transition probability matrices need to be developed for different
time periods, thereby empirically determining the different (time) cutpoints
(bifurcation points) that result in separate time windows during the day.
However, before this can be done, the existence or non-existence of stationarity
in the data is examined in this section. This is done by assuming that
heterogeneous activity-travel patterns exist for different time periods. Different
time periods have been considered in Table 5.8 based on some a-priori made
assumptions. Chi-square values are computed by application of definition 5.5.
The result of this statistical test is more meaningful if the data is pre-processed
first by equalizing the length of the different activity sequences. This takes away
the effect of detail by which people fill out activity diaries, and it treats all time
periods uniformly. To this end, the training data was preprocessed in equal time
periods of 30 minutes. The activity or travel mode that the respondent initially
reported was thus assigned to the corresponding time interval. As a result of this,
all diaries contain 48 entries over a 24-hour period.

Table 5.8: The result of the stationarity test on a-priori defined cutpoints

Number of time Cutpoints for time periods p-value
periods
2 24PM-12AM; 0.27
12AM-24PM
3 24PM-8AM; 0.019
8AM-16PM;16PM-24PM
4 24PM-6AM;6AM-12AM;12AM-18PM;18PM-24PM 0.015
6 24PM-4AM;4AM-8AM;8AM-12AM;12AM- 0.062
16PM;16PM-20PM; 20PM-24PM

It can be seen from this table that there are only two time periods which are
significantly different. For a further explanation, we refer to the following
section.

Nevertheless, it should already by pointed out here that these results show that
we were unable to conclude that stationarity was present in our data. In other
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words, based on these initially chosen cutpoints, different transition probability
matrices should be developed for these time periods. However, as mentioned
before, it is unclear until now whether these cutpoints are optimal bifurcation
points, because no data-information as such, is used in the determination of
these points. In order to achieve this, we need to iteratively apply the omnibus
test for all possible splitting points of a sequence, as described in the procedure
in section 5.5.2. The results of this procedure are described in the following
section.

5.7.5 SEGMENTING TRANSITION PROBABILITY MATRICES

BIFURCATION POINTS (TEMPORAL SEGMENTATION)

The iterative application of the omnibus test is a computationally demanding
procedure. In order to reduce the computational burden, we have defined time
periods of 60 minutes. Consequently, there are 24 potential bifurcation points in
the beginning of the procedure. As explained before in section 5.5.2, time
windows will gradually be combined together, ending up with two time windows
in the end, and every time defining new potential bifurcation points. The level of
significance in our experiments was set at 5%. An evolution of the p-values is
shown in Figure 5.8. The first p-value in the figure is the result of a comparison
between 24 time windows (i.e. one transition matrix for every hour in the day).
While there are obviously large (significant) differences between transition
matrices that are built during morning periods (e.g. 3AM-4AM) and noon periods
(e.g. 12AM-13PM), the differences are non-significant when the full day is
considered. The reason for this is that during the majority of the day (except for
some specific time periods), activity-travel combinations are more or less
randomly distributed and majority patterns flatten out the significant differences.
In other words, the dynamics of the system do not change (alter) significantly
every hour. In order to determine a more significant change in dynamics, more
aggregated time periods need to be considered. For this reason, it may be
somewhat surprising that time periods dividing the diary in for instance 8 time
periods (i.e. every three hours) were found not significantly different during one
day. Also in this case, while there are significant differences between the time
periods 3AM-6AM and 12AM-3PM; the majority of the three-hour during time
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periods appeared to be non-significant. The significant effect starts to appear
from 5 time periods (i.e. every 4 hours and 48 minutes) and ranges till 3 time
periods (every 6 hours). As was already shown in Table 5.8, two time periods
(lasting 12 hours each) were found not significantly different. One possible
explanation is that the (frequently occurring) work-, sleep- and travel-
combinations appear fairly equal in both time windows.

p-value
09
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number of time
windows (d)

Figure 5.8: Evolution of p-values for the procedure described in section 5.5.2

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

Obviously, these are important results for the simulation framework that is
described in section 5.7.6. Indeed, it has now been experimentally determined
that we should rely upon different transition probability matrices when predicting
activity-travel combinations for these different time windows during the day. As
mentioned before, despite the fact that our simulation method does not yet
explicitly simulate time information as such (see Chapter 6), we need to take this
information into account in order to simulate the most accurate activity-travel
combinations. In our simulation, we will rely upon the first finding that was
found significant, i.e. 5 time periods, defined as 3AM - 7:48AM; 7:48AM-
12:36PM; 12:36PM-17:24PM; 17:24PM-22:12PM and 22:12PM-3AM.
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FuLL DECISION TREES ( S0CI0-DEMOGRAPHIC SEGMENTATION)

Segmenting transition matrices in terms of socio-demographic variables, assumes
the execution of the procedure that was explained in section 5.5.3. The n
parameter and the minimum gain ratio (G, ) were respectively arbitrarily set at 75
cases and at 0.05 to prevent overfitting of the tree on the training data. An
example decision tree that was built for our data is shown in Figure 5.9. In
addition to the structure of the decision tree, every decision node shows the
number of cases that go down that branch, the maximum gain ratio and the
information value that was achieved. Every leaf node, containing different
transition probability matrices was indicated by (L). It can be seen from this tree
that the variable “number of cars” (“Ncar”) was the most important variable in
the tree, followed by Household type (“Hhtype”), gender (“Gender”) and socio-
economic class (“Sec”). Having applied temporal and socio-demographic
segmentation and all the required statistical tests that were introduced before,
the full “knowledge model” is finalized and we are now ready to move on to the
simulation of new activity-travel patterns.

5.7.6 SIMULATING ACTIVITY-TRAVEL PATTERNS

PREFACE

The previous sections have described a number of improvements and refinements
to the transition probability matrix as it is used in traditional Markov Chain
modelling. Improvements were proposed with respect to (i) a more efficient and
more accurate calculation of the transition probabilities (approaches 1 and 2);
(i1) the use of a different number of lags (lower-order versus higher-order
transition matrices) and (iii) the use of a segmentation scheme (temporal and
socio-demographic) in the development of these transition matrices.
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Figure 5.9: A final sequential information decision tree (empirical data)

The aim for doing all this is to end up with the most “optimal” predicted

subsequence of activities and transport modes, i.e. that particular predicted

activity travel pattern that coincides best with the observed activity travel

pattern. It is assumed that a more accurately predicted activity-travel pattern,

finally also results in more accurate predictions of the time and location facets of
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the simulation. The aim of this section is to report upon the contribution for
each of these three improvements when this ultimate validation measure (i.e. the
predicted activity-travel pattern) is adopted.
Data were divided into a training and a validation set, thereby using the training
set for building the model (transition matrices, segmentation tree, etc.), while
the unseen test data were used for validation. Activity-travel patterns were
simulated both for the training and the test data. The goodness-of-fit for the
simulated diaries was measured by comparing the generated activity patterns
with the observed patterns in the training and the test dataset. The comparison
was measured using the following two indicators:

Pattern level attributes (number of tours)
« Trip level attributes (trip rates)
In addition to this, the computational complexity will be evaluated in the final
paragraph of this section.
More advanced and comprehensive evaluation measures such as SAM (see also
previous Chapters 3 and 4) will be re-introduced in Chapter 7, when the
prediction of the full activity-travel pattern (including location and time
information) has been established.

PATTERN LEVEL ATTRIBUTES: NUMBER OF TOURS

Pattern level attributes give an indication about the performance of the
simulation framework at the highest level. Although there are other indicators at
pattern level (for instance number of activity episodes per activity category), the
evaluation was made at this level by comparing the mean number of tours in the
observed and the generated patterns. A tour is defined as a subsequence of
activities that start and end at the same base location. Since location
information is not yet incorporated in this simulation framework, a tour refers to
any appearance/subsequence of (out-of-home) activity(ies) between two
transportation activities.

Without Segmentation

The first table in this section (Table 5.9) compares the mean number of tours
between the observed and the predicted patterns for the training and test
dataset. The comparison is made by differentiating between the order of the
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transition matrices which are used (/) to build the transition probability
matrices and between both approaches. No segmentation has been used, which
means that only one transition matrix per order has been used for the prediction
of the training and test data.

Table 5.9: Comparing the observed and predicted mean number of tours by
differentiating between the order of the activity bundles (without segmentation)

Training dataset Test dataset
Observed | Order | Predicted Tours Predicted Observed | Order Predicted Predicted
Tours of Q (mean) Tours (mean) Tours of Q | Tours (mean) | Tours (mean)
(mean) (Approach 1) | (Approach 2) (mean) (Approach 1) | (Approach 2)
=1 1.223 1.722° =1 1.321 1.621
=2 1.874 1.975° 0=2 1.745 1.954
(=3 1.941° 1.949° (=3 2.148 2.128
=4 2.481 2.563 =4 2.312 2.316
(=5 2.692 2.732 (=5 2.414 2.424
2.801 2.435
(=6 2.690 2.779 (=6 2.721 2.621
(=7 2.781 2.821 (=7 2.732° 2.730°
(=8 2.212° 2.262° (=8 2.012° 2.003
=9 1.931° 1.951 =9 1.521° 1.621
£ =10 1.201° 1.312° £ =10 0.927 1.222°

* Statistically significant difference in means (observed vs predicted) at the 95 percent level of confidence

There are a number of conclusions which can be derived from this table. First, the
results of the training set, at the left part of the table, give an indication about
how well the framework is capable of capturing and simulating the information
which is incorporated in the training data. It can be seen that high-order
combinations are not well suited to generate reliable patterns of activities. This
seems counter-intuitive at first sight. Indeed, one might expect that the more
sequential information that is incorporated in the transition probability matrices,
the more reliable the simulations tend to be. This turned out to be only true to
some extent (only till /=7). Indeed, recall Figure 5.6, where it was explained
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that one of the first steps is to draw the first / elements from the prior sample
distributions. This means for high numbers of ¢ that the simulated activity-travel
patterns are much larger than the diaries in the sample data, which damages the
accuracy of the results.

It can also be seen that although there is little difference between approach 1
and approach 2, the latter generates slightly better results for low-order
combinations. For both approaches, transition matrices with orders ranging from
5 till 7, turned out to generate no significant difference with respect to the
training dataset. When we compare these results with the data which is
generated for the test set, it appears that 6" and 7" order transition matrices
slightly overfit the training data, i.e. the good performance on the training data
could not be kept on the unseen test data. In this case, the 4" and 5" order
transition matrices seem to generate the best fit. Again, while approach 2 gives a
slightly higher accuracy, there are no important significant differences between
approaches 1 and 2.

With Segmentation

A completely different picture arises when time and socio-demographic
segmentation is taken into account. This means, that transition matrices are
made dependent on time windows and on socio-demographic information when
simulating new activity-travel patterns. It can be seen from Table 5.10 that low-
order combinations are preferred in this case. An explanation of this result may
be that, since one is looking at subpatterns of a full activity-travel pattern (for
instance dividing the activity travel pattern in five subsequences), higher-order
transition matrices further deteriorate results. A similar pattern was already
noticed with respect to the simulation results where no segmentation was used.
However, a shift could thus be observed from a fifth-order transition matrix as
being the optimal lag, towards first and second-order lags.
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Table 5.10: Comparing the observed and predicted mean number of tours by
differentiating between the order of the activity bundles (with segmentation)

Training dataset Test dataset
Observed | Order | Predicted Tours Predicted Observed | Order Predicted Predicted
Tours of R (mean) Tours (mean) Tours of R | Tours (mean) | Tours (mean)
(mean) (Approach 1) | (Approach 2) | (mean) (Approach 1) | (Approach 2)
r=1 2.695 2.732 =11 5515 2.232
t=2 2.698 2.737 t=2 2.314 2.319
2.801 2.435
=3 2.501 2.512° =3 2112 2.141
=4 1.921° 1.856 t=4 1.543 1.510°
=5 1.872° 1.821 =5 1.541 1.432°

*Statistically significant difference in means (observed vs predicted) at the 95 percent level of confidence

TRIP LEVEL ATTRIBUTES: TRIP RATE

Trip level attributes are lower in hierarchy, which means that not the whole
pattern but the individual trip is taken as the relevant unit of analysis in the
evaluation. Typically, trips are differentiated here by means of the main purpose
for which the trip is undertaken. The mean trip rate is used as an evaluation
measure. The mean trip rate is defined as the mean number of trips that a person
has done during one particular day.

Without Segmentation

Table 5.11 shows the predicted patterns for the test set. It is obvious that the
performance indicator “Trip Rates” compares sequences at a more detailed level
(it does not compare large patterns but individual trips). This can also be seen
from the results which are shown in Table 5.11. Indeed, low-order transition
matrices seem to result in more accurate results than higher-order transition
matrices (larger than 5" order transition matrices were not shown for this
reason). More specifically, transition matrices ranging from orders 1 till 3 seem to
give the best predictions for the first approach. The same could be said for the
second approach, but in this case transition matrices of order 3 clearly
outperform the others.
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The training set results were not shown because the overfitting was rather low,
which means that also for the training set, the low-order transition matrices
achieved the highest accuracy.

Table 5.11: Comparing observed and predicted mean trip rates by differentiating
between the order of Activity Bundles (Test Set) (without segmentation)

Observed | Predicted Trip Rate (mean)

Purpose | Trip  Rate
(mean) Approach 1 Approach 2

(=1 |l=2 | (=3 | /(=4 |f=5 | /(=1 |(=2 |/f=3 | /=4 | /(=5
Work 0.735 0.749 | 0.741 |0.631" | 0.598 | 0.551" | 0.744 |0.742 |0.634 |0.603" |0.557
SL 0.569 0.601 |0.592 |0.518" |0.493" | 0.359" | 0.597 |0.595 |0.496 |0.513" |0.375
Service | 0.496 0.509 |0.513 |0.434" | 0.411" | 0.379" | 0.502 |0.511 |0.413 |0.410" |0.373
B/G 0.274 0.280 |0.282 |0.315" |0.312" | 0.217" | 0.284 |0.281 |0.311 | 0.209" | 0.210°
Other | 0.134 0.141 |0.140 |0.160" | 0.152" | 0.101" | 0.147 |0.144 |0.165 |0.153 | 0.108

Work: Work out-of-home activity; SL: Social or Leisure out-of-home activity; Service: Shopping or other service
related activity; B/G: Bringing/Getting persons or goods; Other: Other out-of-home activity. *Statistically
significant difference in means (observed vs predicted) at the 95 percent level of confidence

With Segmentation

The same conclusion was reached when time and socio-demographic
segmentation was taken into account. However, in this case the first- and
second-order transition matrices are preferred and this for both approaches (see
Table 5.12).

Table 5.12: Comparing the observed and predicted mean trip rates by

differentiating between the order of Activity Bundles (Test Set)
(with segmentation)

Observed Predicted Trip Rate (mean)
Purpose | Trip  Rate

(mean) Approach 1 Approach 2
l=1 | l=2 | (=3 | (=4 |f=5 | /=1 |f=2 |/(=3 |{=4 | /(=5
Work 0.735 0.811° |0.742 |0.721 |0.612" | 0.521" | 0.823 | 0.693 |0.739 |0.632" |0.614
SL 0.569 0.641" | 0.576 |0.559 |0.491" |0.359" | 0.471 |0.510 | 0.560 |0.461 |0.421
Service | 0.496 0.571" |0.521 |0.511 |0.421° |0.368 |0.431 | 0.435 | 0.488 |0.441 |0.401
B/G 0.274 0.285 |0.280 |0.311° | 0.235" | 0.221" | 0.236 | 0.235 | 0.267 |0.306 |0.221
Other | 0.134 0.314" |0.121 |0.142 |0.161 |0.163" |0.153 | 0.157 |0.126 |0.101 |0.09

*Statistically significant difference in means (observed vs predicted) at the 95 percent level of confidence
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COMPUTATIONAL COMPLEXITY

The computational complexity of the two approaches that have been advanced in
this section, is mainly determined by the order of the activity bundles (¢), the
adopted approach and by the number of states (m). The results on the
computation time of different orders, can be seen from Table 5.13. Approach 2 is
clearly more computationally demanding than Approach 1, which is logical, given
the fact that more detailed activity bundles (using maximum likelihood
estimates) need to be calculated. In our experiments, the number of states did
not vary, so we experienced no additional computational burden from that
parameter. It should also be noted that the reported times only involve the
“knowledge acquisition” phase of the proposed method, i.e. the extraction of
sequential information that is incorporated in the data.

Table 5.13: Computation time of multiple orders (approach 1 versus approach?)

0=1 0 =2 0 =3 0 =4 £ =5
Approach 1 45 272 456 912 2124
(seconds)
Approach 2 73 389 498 1102 2376
(seconds)

5.8 CONCLUSION

In this chapter, a data-driven heuristic simulation procedure of activity and
travel information has been proposed. Both dimensions are only at a later stage
complemented by means of time and location information. However, it was
assumed that a more accurately predicted activity-travel pattern, finally also
results in more accurate predictions of the time and location facets of the
simulation. The simulation procedure uses knowledge information that is
embedded in the form of transition matrices. Each element in a transition matrix
represents the probability of the transition from a particular state (represented
by the row of the matrix) to the next state (represented by the column of the
matrix). The simulation procedure that has been proposed in this section, differs
from most other existing activity-based models, because it explicitly accounts for
sequential information and sequential dependencies that are present in activity
diaries. Tests showed that these dependencies were highly present in our
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activity-diary data. This is an important finding because the model was almost
completely data-driven. As a result of this, its predictive performance and
accuracy largely depends upon the information in the data. In order to improve
prediction capabilities, the model accounted both for lower and higher-order
sequential dependency information that might be present in the data. For reasons
of efficiency and accuracy, modified heuristic computation algorithms that use
the concept of activity bundles, were developed and tested in the chapter.

In the second part of the chapter, it was shown that the use of only one
transition probability matrix which is both representative for every respondent
and for every time frame during the day, is insufficient. To this end, a
segmentation procedure has been introduced that enables one to cluster
transition matrices in terms of time and socio-demographic information. The first
segmentation used the technique of the identification of bifurcation points; the
latter used a modified version of a decision tree, in the sense that sequential
probability information was used during induction and in the leaves of the tree as
opposed to the traditional way of only using one single classification attribute.
The empirical results, which compared the predicted mean number of tours and
the mean trip rates with the observed values in the data, seem to indicate a
difference in the situation without segmentation (where 1 matrix is used) and
with segmentation (where multiple matrices were used). In the case of no
segmentation, the fourth and fifth order transition matrices seem to generate the
best fit. When multiple transition matrices were used per segment, first and
second order matrices performed better. The observation was consistent at
pattern level (number of tours) and at trip level (trip rate). The fact that
sequences per segment are much shorter when compared to full length diaries,
may be an intuitive explanation for this finding, but more profound research
should substantiate this. Further research should also be conducted in order to
get a better idea about the relative performance of the techniques that have
been advanced in this chapter against other clustering techniques that can be
used to complement Markov Chains such as the MMLC application in Goulias
(1999) and the Latent Class clustering application in Kim and Goulias (2004).



Chapter 6
Allocating Time and Location Information through
Reinforcement Learning

6.1 INTRODUCTION

It was explained in the previous chapter how a sequence of activities and travel
(transport modes) can be generated by means of low- and high-order sequential
dependencies that are incorporated into transition probability matrices. However,
now that the activity-travel sequence is known, time and location information
still need to be allocated to end up with a more complete activity pattern.
However, it seems less likely that time and location information can also be
efficiently modeled by means of sequential dependency information that is in the
data. To this end, it is assumed in this chapter that location and time
information are determined by means of interaction within a particular space-time
prism (and thus not independently). A technique has been postulated where a
machine learning algorithm can learn its optimal starting and end times and
location information through interaction with this environment. In our
application, the environment is first of all pre-determined and bounded by the
fixed sequence in which activities are performed, but other important factors are
taken into account as well (see infra). The idea that people learn by interacting
with the environment is inherent to the nature of learning as such. Whether
somebody is learning to drive a car or holding a conversation, one is aware about
how the environment responds to his/her actions, and about how he/she can
have an influence on that environment through his/her behaviour. A modelling
technique which aims to embody and simulate this behaviour in a (machine)
learning environment, is called Reinforcement Learning, which is in fact a
synonym for learning by interaction (Kaelbling et al., 1996).

Reinforcement learning goes back to the very first stages of artificial intelligence
and machine learning. As a result of this, the applications of reinforcement
learning are situated in the basic roots of artificial intelligence, such as for
instance game playing (Littman, 1994; Tesauro, 1992; Tesauro, 1994; Thrun,
1995) and robotics (Schaal and Atkeson, 1994; Mahadevan and Connell, 1992).
However, there are also numerous other application domains such as for instance
in elevator dispatching (Crites and Barto, 1996), natural systems (behaviour of
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ants for instance, Barto and Sutton, 1981); production scheduling (Schneider et
al., 1998); but also in a transportation-related context such as in intelligent lane
selection (Moriarty and Langley, 1998) for achieving a higher traffic throughput.
Within an activity-based framework, the reinforcement learning technique has
been first applied by Arentze and Timmermans (2003) in the context of learning
and adaptation and only very recently by Charypar et al. (2004), and by Charypar
and Nagel (2005) in a time allocation problem.

During learning, the adaptive system (also called agent) tries some actions (i.e.,
output values) on its environment, then, it is reinforced by receiving a scalar
evaluation (the reward) of its actions. Reinforcement learning tasks are generally
treated in discrete time steps. Stated otherwise, at each time step t, the learning
system receives some representation of the environment's state X, it takes an
action a, and one step later it receives a scalar reward r, and finds itself in a new
state X,,. The reinforcement learning algorithms selectively retain the outputs
that maximize the received reward over time. The two basic concepts behind
reinforcement learning are trial and error search (to improve the agents
behaviour in an unknown environment) and delayed reward.

The difficulty in reinforcement learning is that we cannot reward the right action,
because we do not know yet what that correct long-term action is, that’s in fact
why we are learning. In other words, it is relatively easy to say what the best
action is for the next state (because we get feedback on the actions taken), but
it is less clear what combination of actions gives us the highest reward for that
person during a particular day. Related to this is the trade-off between
exploration and exploitation. To obtain a lot of reward, a reinforcement learning
agent must prefer actions that it has tried in the past and found to be effective
in producing reward. But to discover such actions, it has to try actions that it has
not selected before. The agent has to exploit what it already knows in order to
obtain reward, but it also has to explore in order to make better actions
selections in the future.

In the remainder of this chapter we will elaborate on one particular algorithm (Q-
learning, which is an abbreviation for “Quality-learning”) that has been
introduced by Watkins (1989; Watkins and Dayan, 1992) and that can be used for
solving the reinforcement learning problem. Q-learning is one of the most applied
algorithms in reinforcement learning (Sutton and Barto, 1998). It was mentioned
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before that Charypar and Nagel (see Charypar et al., 2004; Charypar and Nagel,
2005) used the Q-learning technique for time allocation within the area of
activity-based transportation. However, their application was somewhat limited
because they focused only on one artificial example (i.e. 1 respondent), and used
a fixed sequence of only four activities to solve the allocation problem. Compared
to their approach, there are some important contributions that have been added
in this chapter. The first contribution is the evaluation towards real empirical
data, including a more complex order of activity-travel combinations (see
Chapter 5), the non-restriction to 4 activities and the incorporation of real-world
and non-fixed travel times. Related with these contributions, is the evaluation on
a larger empirical dataset, which means that time allocation is not restricted to
only one activity-travel pattern. The most important contribution however, is the
allocation of location information in the simulation of activity-travel patterns.
Furthermore, the time and location allocation problem were treated and
integrated simultaneously, which means that the respondents’ reward is not only
maximized in terms of minimum travel duration, but also simultaneously in terms
of optimal time allocation.

With respect to the allocation of start and end times for a given fixed sequence
of activities, it may not be sufficient to model the time allocation problem as a
pair of the activity type and starting time. After all, being at work at 4 PM but
having arrived at 9 AM, is a different state than being at work at 4 PM but having
arrived at 1 PM. Therefore, the time that was already spent at that activity
(duration) also needs to be taken into account. Obviously, the activity type is
equally important because time allocation for shopping is different than time
allocation for work activities. Time allocation is thus assumed to depend on the
triple: type of the activity, starting time of the activity and the time already
spent at that activity. This triple may be augmented in the future with other
factors that are believed to have an impact on the time allocation problem. The
only requirement for these dimensions is that it should be possible to specify
scalar rewards. The scalar rewards r (which were already briefly mentioned before)
are defined as reward tables, which -for each activity and each arrival time
(starting time of activity)-, give the reward for staying one more time slice as a
function of the duration of the activity. Rewards are thus given as a “utility per
time slice”, which corresponds to a marginal utility.
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With respect to the allocation of location information, the travel time between
two locations (origin and destination locations) is used and is made dependent
on the transport mode that has been chosen for travelling from one location to
another. Indeed, travel durations between two locations are obviously not equal
over different transport modes, so it is warranted to take this dimension into
account.

The remainder of this chapter has been organized as follows. In section 2, a short
introduction into the basic concepts and definitions of Q-learning is given. In
section 3, we will detail by means of artificial examples how Q-learning can be
applied to the time and location allocation problem. Section 4 describes the
empirical section, where a more detailed explanation is given about how the
reward tables were derived from the empirical data, which parameter selection
criteria have been used and which validation measures were adopted. The chapter
ends with initial empirical conclusions.

6.2 DEFINITIONS AND ALGORITHMS IN REINFORCEMENT
LEARNING

Definition 6.1: States

A reinforcement learning problem consists of discrete states x ([J X, a finite set).
A particular state is defined by a number of dimensions which are assumed to
characterize the current state. The number of states is finite and it is defined in
advance (i.e. before learning starts). |
Example: In a time allocation problem, a current state x can be characterized by
the triple: activity, starting time of activity, time already spent at activity
(duration). Working, 15 PM, 7 hours already spent at work is thus an example of a
state.

Definition 6.2: Actions

At every discrete state x, a set of discrete actions a (L1 A, a finite set) can be
taken. Actions may be probabilistic or discrete. The number of actions is finite
and is defined in advance. |
Example: For a discrete state x, an action may be to stay at the current activity
(state x,) or to move on to the next state (x,,,).
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Definition 6.3: Rewards

At each discrete time step, the agent observes state x,, takes action a, observes

new state x_, and receives an immediate reward r(x,y). r is a function of the

transition from state x to the new state y. u
Example: If somebody is already working for 15 hours and has started working at
6 AM; working for another hour (new state y), may result in a low immediate
reward. On the contrary, if somebody started working at 6 AM but is only working
for 1 hour at the moment; working for another additional hour may result in a
high immediate reward.

Definition 6.4: Probabilistic versus deterministic worlds

Transitions may be probabilistic, that is to say, y (and y being any new state, e.g.
x,,) and r are drawn from probability distributions P,(y) and P(r), where

P.a(v) is the probability that taking action a in state x will lead to state y and

P4(r) is the probability that taking action a in state x will generate reward r. We

have Y P,(y)=1and D Pq(r)=1. The deterministic world is a special case
1% r

with all transition probabilities equal to 1 or 0. For any pair (x,a), there will be a

unique state y,,and a unique reward r,, such that:

1 ify=yxq
P =
xa(Y) {O otherwise

1 ifr=r
Pg(r) = xa
xa() {0 otherwise

Example (deterministic world): If somebody is already working for 15 hours, and
that person started working at 6 AM (state x) and the algorithm decides to stay
at the current activity (action=stay), then there is only one unigue state y_,
which is defined by the triple: working, starting at 6 AM, duration 16 hours
(assuming a discrete time window t of 1 hour). Equally, in the other case, if the
action is to move to another activity (which is defined in advance by the
which is defined by:
sleeping (assuming that sleep is the next activity in the sequence order), starting

sequence order); there is also only one unique state y

xa’
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at 22 PM (15hours + 6 AM), duration 0 hours (assuming a discrete time window ¢
of 1 hour and that no travel is needed).

Definition 6.5: Expected Rewards

When we take a particular action a in state x, the reward that we expect to

receive is:
E(r) =>.r(x, ¥)Pya(y), where Py(y) is the probability that taking action a in
y

state x will lead to state y, and r is a function of the transition x to y, as
mentioned before in definition 6.3.

In some models, rewards are associated with states, rather than with transitions,
that is r = r(y). The agent is not just rewarded for arriving at state y - it is also

rewarded continually for remaining in state y. This is just a special case of
r=r(x,y) with r(x,y) =r(y) Ux

and thus:
E(r)= Zr(J/)an(J/)
y

Kaelbling (1993) defines a globally consistent world as one in which, for a given
x,a; E(r) is constant. Rewards r are bounded by r

min” rmax’

where r_<r (r .=r
would be a system where the reward was the same no matter what action was
taken. The agent would always behave randomly). Hence for a given x,a;
Imin < E(r) < Fpax - u

Example (deterministic world): If somebody started working at 6 AM, and is only
working for 1 hour at the moment; working for another additional hour, may
result in a reward of 0.25. If the action is to stay at the current activity, the next
state (started working at 6 AM, working for 2 hours) may result in a reward of
0.35. The expected total reward in the deterministic case is equal to 0.6. This
means that all possible actions for all possible states can be evaluated in this

manner, by selecting state-action combinations that maximize the total reward.

Definition 6.6: Discounting factor

The agent should not only be interested in immediate rewards, but in the total
discounted reward. In this measure, rewards received n steps into the future may
be worth less than rewards received now, for instance by a factor of y" where
0<)<1: R=rtyr, +y°r,

+2+...

. The discounting factor ydefines how much the expected
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future rewards, affect decisions now. Genuine immediate reinforcement learning
is the special case y=0, where we only try to maximize immediate reward. Low y
means that the agent should pay little attention to the future. High y means
that potential future rewards have a major influence on decisions now - and that
one is willing to trade short-term loss for long-term gain. [

Example: Working from 6 AM to 16 PM may give somebody a higher total expected
reward than working from 10 AM to 20 PM, because in the first case there may be
some time left to carry out leisure activities during the evening. Rewards in the
future (or for instance during evening) may thus receive a higher reward by
means of a high discounting factor.

Definition 6.7: Policy and value function

The agent acts according to a policy 77which tells it what action to take in each
state x. A policy that specifies a unique action to be performed a=77(x) is called a
deterministic policy - as opposed to a stochastic policy, where an action a is
chosen from a distribution Pxﬂwith probability Pxﬂ(a). The task for the agent is
to find an optimal policy - one that maximizes the total discounted expected
reward.

The total discounted expected reward can be summarized by means of a value
function, which is called the value of state x under policy 77 and which is
represented by V"(x)

V(x)=E(R)=
E(r)+ VE(rs1) + VPE(fa2) * ...
E(r )+ ME(f+1) + VE(R42) + VPE(r43) +...]
Er)+ W (Xe41)
2 Py () V2V (V)Prp (V)
y

r

For any state x, there is a unique value V/'(x) which is the best that an agent can
do from state x. Optimal policies 77 may be non-unique, but the value V' is
unique. All optimal policies 77 will have: V' (x)=V" (x). ]
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Definition 6.8: Q-learning

Q-learning is a popular learning algorithm that can be used for solving the
reinforcement learning problem. The strategy that the Q-learning agent adopts is
to build up Quality-values (Q-values) Q(x,a) for each pair (x,a). If the transition
probabilities P, (y)and P, (r) are explicitly known, Dynamic Programming finds an
optimal policy by starting with random V(x) and random Q(x,a) and repeating
forever (or at least until the policy is considered good enough):

For all x

For all a
Q(x,a):= erxa(r) +VZV(J/)PXG(J/)
r y
V(x):= Max Q(x,a)
alJA

For the deterministic world, Q-values can thus be defined as:

Q(x,a):= r(x,a) + y > maxQ(y,b)
bOA

This equation is thus equal to the reward given for the action pair (x,a) plus y
times the maximal expected cumulative reward that can be obtained in the
resulting action pair (y, b). |

Definition 6.9: The Q-learning algorithm

Definition 6.8 has described the final solution after learning (steady state).
However, this state is initially not known. The actual learning process can be
described as follows:

1. Initialize the Q-values.

2. Select a random starting state x which has at least one possible action to
select from.

3. Select one of the possible actions. This action will get you to the next state y
(orx,,).

4. Update the Q-value of the state action pair (x, a) according to the update rule
below.

5. Let x = y and continue with step 3 if the new state has a least one possible
action. If it has none go to step 2.
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The update rule is given by
Qr+1(x, a)=(1-a)Q(x,a)+alR(x,a) + ymngt(y,b)] , where

Q(x, a) is the Q-value at the current time-step, maxQ(y,b)is the maximal
b

expected cumulative reward that can be obtained in the resulting action pair (y,
b) and Q
the algorithm. The learning rate a controls how much weight we give to the

...(x, a) is the updated value. ¢ is the learning rate and is a parameter of
reward just experienced, as opposed to the old Q-estimate. One typically starts
with a =1; i.e. giving full weight to the new experience. As a decreases, the Q-
value is building up an average of all experiences, and the odd new unusual
experience won't disturb the established Q-value much. As time goes to infinity,
a will go to 0, which would mean no learning at all, with the Q-value fixed. =

Definition 6.10: Exploration versus exploitation

In each state the agent basically can choose from two kinds of behaviour: either
it can explore the state space or it can exploit the information already present in
the Q-values. By choosing to exploit, the agent usually gets to states that are
close to the best solution so far. By this option, it can refine its knowledge about
that solution and collect relatively high rewards. On the other hand, by choosing
to explore the agent visits states that are further apart from the currently best
solution. By doing so, it is possible that it finds a new, better solution than the
one already known.

A parameter -the exploration rate p, .- can be used to to set the behavior of

explore

the Q-learning algorithm. In every step, with a probability of 1-p, . the agent
exploits the information stored in the Q-values, with probability p, . the agent
chooses a random action in order to explore the state space. ]

Examples for definitions 6.7-6.10 will be given in the following section.



208 Chapter 6

6.3 ALLOCATING TIME AND LOCATION INFORMATION (EXAMPLE)

In this section, a hypothetical example has been presented to improve the
understanding of Q-learning. The behaviour of the Q-learning algorithm is first
explained with respect to the time allocation problem (section 6.3.1); location
allocation is dealt with in section 6.3.2 and the integration of time and location
allocation is treated in section 6.3.3.

6.3.1 TIME ALLOCATION BY MEANS OF Q-LEARNING

For this first application and for the sake of clarity, the presence of travel modes
has been ignored in the fixed sequence of activities (see Chapter 5). Transport
modes will be re-introduced later in section 6.3.2. There are a number of other
simplifying assumptions which are made to better understand the behaviour of
the decision agent that can be summarized as follows (all assumptions will be
relaxed later on in the chapter in the empirical section):

« Learning rate a =1 (see definition 6.9)
Discounting factor )=0.8 (see definition 6.6)
Exploration maximal, i.e. P, =1 (see definition 6.10)
- Time already spent at activity (duration): Only 3 discrete time slots: 0 hours,
6 hours or 12 hours
Fixed order of only 4 activities (1 sequence), i.e.: Home - Work - Shop -
Leisure
« A state x is characterized by the activity, starting time of activity and time
already spent at activity (duration) (see definition 6.1)
For a state x, an action may be to Stay (‘'S’) at the current activity (state x,)
or to Move on (‘M) to the next state (x,,) (see definition 6.2)
No travel time between two activities (ignorance of travel modes)

It has to be emphasized that the parameter setting of the algorithm (discounting
factor, learning and exploration rate) do not influence the learning solution as
such, although they may have an impact on the time that is needed for the
algorithm to converge to an optimal solution (see also Charypar and Nagel,
2005). Obviously, the number of discrete time slots and activities do have an
impact on the solution outcome, as it will be shown in the empirical section.

In addition to the assumptions above, reward tables are also artificial and
extremely simple in this example, as shown in Table 6.1.
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Table 6.1: An example of a simple reward table

Home Work Shopping Leisure

Start time/

. Oh|6h|12h|{0h | 6h |12h|O0Oh | 6h |12h|O0h | 6h |1
Duration

h

0:00 A.M.
6:00 A.M.
12:00 A.M.

2
0
1
4
6:00 P.M. 0

oo oo
= N N O
cocooo| M
oo oo
oo wo
ocoouvol ™~
oo oo
ou oo
or oo ™
oo oo
w w w w

It can be seen from Table 6.1, that the reward of working 0 hours is 0 and is
independent of the starting-time of the work-activity. Arriving at work at 6 A.M
gives somebody a reward of 3 (units) at the moment he/she is working for 6
hours (i.e. from 6 AM-12:00 AM) or a reward of 5 (units) at the moment the
person is working for 12 hours (i.e. from 6AM-6 PM). Arriving at work later than 6
AM gives no reward at all. The reward tables for home, shop and leisure are
similar.

Let us now reconsider the Q-learning algorithm that has been introduced in
definition 6.9. Since a = 1 and y = 0.8, the update rule for our simple example is
equal to Qr41(X, a)=R(x,a)+0.8 mngt(y,b), where Q, (x, a) is the updated Q-

t+1

value and Q,(x, a) is the Q-value at the current time-step.

In the first step of definition 6.9 (initialisation), all the g-values of every state-
action pair are set equal to zero.

Next, a random starting state x will be chosen, which has at least one possible
action to select from. In our example, the starting state may be equal to: Work
activity, start time 0:00 AM, duration 6 hours.

The third step selects one of the possible actions, which will bring us to the next
1,
the decision agent will always choose a random action in order to explore the

state y (x,,). Because the exploration probabilitiy was set maximal, i.e. P, =
state space in an attempt to find a new, better solution than the one already
known. On the contrary, when P

explore

=0, the decision agent will choose the action
that has the largest Q-value (thus not randomly). When both actions have the
same Q-value, the action that has first achieved this Q-value will be chosen.

In our example, the decision has been taken to Move on to the next activity,
which is a random choice because P, =1. Since the sequence order is fixed in

this example, the next activity (Shopping) is known in advance. Also the full
state is known in advance, it is equal to 0:00 AM + 6 hours = 6 AM,
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Now, the Q-value for the state Q(x,a)=Q(Work;Start 0:00 AM;Duration = 6 hours,

Move) is equal to 0. This value is simply equal to the reward which has been
defined in Table 6.1. The second part of the update rule (0.8maxQ(y,b)) is only
b

computed if this state has been visited at least one time before. Otherwise, no
state can be selected that maximizes the expected cumulative reward. In this
example, the state has only been visited once before by the initialisation
procedure, which has set all Q-values equal to 0. Table 6.2 shows the states that
have been visited by the agent in every loop, while Table 6.3 illustrates the
progress of the Q-values for every state-action pair during the execution of the
algorithm. Q-values in this table are intermediary results and the solution has not
yet converged (see infra).

In the final step, the state x will be set equal to the state y (=Shopping, Start
6:00 AM, duration 0 hours). In this artificial example, no travel time has been
taken into account. However, it should be noted that in a realistic scenario
(where travel time is considered), the start time of state y should be augmented
with the travel time which is needed to get from state x to state y (see section
6.3.2). For now, the algorithm continues with loop 2, which starts again at step 3
of the algorithm procedure. The Q-values stay equal to zero until the 5" loop. In
this loop, the action is Stay, which will bring us to the state of Leisure, 6:00 PM,
duration 6 hours, which reward is 3. The state has not yet been visited before, so

Table 6.2: Visited states per loop (Numbers denote the loop number)

Home Work Shopping Leisure
Start Oh|6h| 12 |0Oh|6h| 12 |Oh |6h]| 12 |0Oh|6h ]| 12
time/Duration h h h h
0:00 A.M. 7 8 1
9 10
6:00 A.M. 25 | 26 2 3 4
11 12
. 13 14 15 16 | 21
12:00 A-M. 17 18 19 20 | 29
27 28
22
31 32 5
6:00 P.M. 22 23 | 24 35 (36) 33 6
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the total Q-value is also equal to 3. It should be noted that the state-action pair,
represented as (Leisure, 6:00 PM, 6 hours; Move) remains intact and is still equal
to 0. Another noteworthy moment is from the 22™ till the 24" loop. In the 22"
loop, the Q-value is equal to 1, which is similar to the calculation in the 5" loop.
However, when we move on to the 23" loop, the Q-value becomes equal to -1.
Indeed, since we are using the time that somebody has already spent at the
current activity as a dimension, the reward that can be derived is equal to -1
since we moved from reward 1 (22" loop) to reward 0 (23" loop) (marginal utility
function). The 24" loop is the first where an update value has to be calculated.
The immediate reward is equal to 0, but the second part of the update rule looks
at the latest updated Q-value for every action, takes the largest Q-value over all
the actions and multiplies this by the discounting factor. In this case the latest
updated Q-value for the action pair (y,b): (Work, 6 A.M., 0 hours; Stay) is 3 (see
loop number 9) and for (Work, 6 AM, 0 hours; Move) it is 0 (initialisation). For
this reason, the updated Q-value of the 24" loop is equal to 0 + 0.8*Max[(Work, 6
A.M., 0 hours; Stay); (Work, 6 AM, 0 hours; Move)]= 0+0.8*Max[3;0]=2.4. The
computation for the other loops is similar (see Table 6.3).

Once all the Q-values have been computed, a policy (chart) can be constructed
according to which the learning agent will behave (see definition 6.7). The final
action will be determined when the Q-values that are calculated in Table 6.3 have
become stable. For example, the state Shopping, start time 12:00 AM and
duration 0 hours will be determined by the latest value that has been achieved at
loops 11, 15, 19 and 27, in the assumption that the 4" visit to that state leads to
a stable Q-value. The value is 2.4 and the corresponding action is Move. As
mentioned before, if there are two states with an equal Q-value and a different
action, the action that has first achieved the Q-value will be chosen. This is often
the case in our artificial example where the Q-value is 0 and where the action is
Move. In these cases the action Stay will be preferred (Stay was initialised before
Move). The full policy chart for this example has been show in Table 6.4.
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Table 6.3: Q-values and state-action pairs

Loop |Action |Q- Loop | Action | Q-value Loop |Action |Q-value
value
1 Move 0 13 Move 0 25 Stay 3+0.8
max(10)=3
2 Stay 0 14 Move 0 26 Move 0
3 Stay 0 15 Move 0 27 Move 0+0.8*
Max(3;0)=2.4
4 Move 0 16 Move 0 28 Stay 3
5 Stay 3 17 Move 0 29 Move 0+0.8*Max
(1;0)=0.8
6 Move 0 18 | Move 0 30 Move 0
7 Stay 6 19 | Move 0 31 Move 0
8 Move 0 20 Stay 3 32 Move 0+0.8*Max
(3;0)=2.4
9 Stay 3 21 Move 0 33 Move 0+0.8*Max
(1;0)=0.8
10 Move 0 22 Stay 1 34 Move 0+0.8*max
(0;0)=0
11 Move 0 23 Stay -1 35 Move 0+0.8*max
(0;2.4) =1.92
12 Move 0 24 Move 0+0.8*
Max(3;0)
=2.4

It should be noted that this is a suboptimal solution which has not converged. A
suboptimal solution to a reinforcement learning problem is a solution that was
not completely solved by the agent, i.e. some of the Q values do not correspond
to the steady state values. In this case the agent will nevertheless find a cycle,
albeit possibly not the optimal (i.e. maximized reward per 24 hours) one. There
are two important reasons for not reaching this solution for this example.

The first reason is that the agent needs to visit every possible state-action pair
infinitely often (Mitchell, 1997). Stated otherwise, the loops in the experiment

Table 6.4: Policy chart for 35 loops

Home Work Shopping Leisure
starttime/ | o | 6h l12h| oh | 6h [12h| 0oh|6h [12h|0h | 6h |12h
Duration
0:00 A.M, S S M S S M S S M S S M
6:00 A.M. S S M S S M S S M S S M
12:00 A.M. S S M S S M M S M S M M
6:00 P.M. S M M M S M M S M S S M
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need to be large enough. Obviously, the 35 loops that were considered in the
example (for the sake of clarity) are clearly insufficient. The number of possible
state-action pairs determines the size of the learning problem and the number of
times that an agent needs to visit a particular state-action pair before an optimal
solution can be reached. This research topic is a subdomain within the field of re-
inforcement learning that goes beyond the scope of this dissertation.

The second reason (closely related with reason 1), is the number of trials that has
been conceived. In the development of Policy chart 6.4 for this example, Work
activity, start time 0:00 AM, duration 6 hours have been used as the starting
state. This obviously represents only one trial. In the empirical section, 10
different trials have been used (where each trial is defined by a different random
starting state).

Setting the iteration number (number of loops) equal to 100000 or 1000000, and
with number of trials set to 10, will lead to an optimal policy chart that is shown
in Table 6.5. A computer code has been established to automate this process.

Table 6.5: Policy Chart for iterations going to infinity (Steady-state situation)

Home Work Shopping Leisure
starttime/ | o\ 6 h l12h|oh [ 6h [12h|0oh | 6h [12h|0h | 6h [12h
Duration
0:00 A.M. S M M M N M M S M M M M
6:00 A.M. S M M S M M N M M M M M
12:00 A.M. M M M M M M S M M S S M
6:00 P.M. M S M M M M M M M S M M

Based on this policy chart, start and end times can be allocated to a fixed
sequence of activities. The procedure for doing this is quite simple and is
illustrated in Table 6.6.

Table 6.6: Determining start and end times based on a Policy chart

Home Work Shopping Leisure
Starttime/ | ol 6 l12h| oh | 6h [12h|0h | 6h |12h|0h |6h |12k
Duration )
0:00 AM. [ SEAMIM|[M]S|M[M]| S, »\ M| M| M
6:00 AM. | S [ M [ MRS —sMd M | S| M[M\M|M]|M
12:00AM. | M | M | M | M| M| mshbMmlIm[Tsds oM
6:00 PM. | M | S | M| M| m|m|m|[m[wmrslm|m
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The algorithm will first choose a random start state. Let’s say Shopping, 0:00
A.M., duration 6 hours is chosen. The corresponding action in the policy chart is
Stay. As a result, the next state is equal to Shopping, 0:00 A.M., duration 12 hour
(action=Move). Then, the next states are equal to Leisure, 12:00 A.M., duration 0
hours (action=Stay), Leisure, 12:00 A.M, duration 6 hours (action=Stay) and
Leisure, 12:00 A.M, duration 12 hours (action=Move). Home, 0:00 A.M., duration
0 hours (action=Stay) and Home 0:00 A.M., duration=6 hours (action=Move) are
the following states. Next, Work, 6:00 A.M., duration=0 hours (action=Stay) and
Work, 6:00 A.M., duration=6 hours (action=Move) have been reached. Finally;
Shopping 12:00 A.M., duration=0 hours (Action=Stay), Shopping 12:00 A.M.,
duration=6 hours (Action=Move) and Leisure 6:00 P.M., duration=0 hours
(Action=Stay); Leisure 6:00 P.M., duration=6 hours (Action=Move) have been
visited by the agent. Now, the loop has been completed for one day. Obviously,
the algorithm continues to move on and checks whether the solution converges.
The check is satisfactory and the start and end times for every activity in the
fixed sequence order are thus determined as follows:

Home : 00:00 A.M.-- 6:00 A.M.

Work : 6:00 ALM. -- 12:00 A.M.
Shopping : 12:00 A.M. -- 6:00 P.M.
Leisure  : 6:00 P.M. -- 00:00 A.M.

It can be seen from the policy chart that any other start state in the policy chart
such as for instance Leisure, 0:00 A.M. duration= 6 hours; Home, 6:00 P.M.,
duration = 6 hours or Home, 0:00 A.M., duration= 12 hours, etc. will lead to the
same solution.

Finally, some additional remarks need to be made with respect to the use of the
Q-learning algorithm to solve the time allocation problem. First, cycles can also
be multiples of 24 hours. For example, an agent can have one full day where it
gets up early and goes to bed late, alternated with a less full day where it gets
up later and goes to bed earlier. Second, an interesting side-effect of the
structure of Q-learning is that the result of the computation is not only the
optimal “cycle” through state space, but also the optimal “paths” if the agent is
pushed away from the optimal cycle. For example, if an activity takes
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considerably longer than expected, the Q values at the arrival state will still point
the way to the best continuation of the plan (Charypar et al., 2004). To this end,
the technique may be used within the context of within-day rescheduling, which
is becoming an active topic of research in activity-based transportation research.
However, it has been claimed (Nagel and Marchal, 2003; Charypar et al., 2004)
that if the technique is to be used for large scale multi-agent transportation
simulations, the all-day activity plan (i.e. sequence order of activities) needs to
be pre-planned in advance before the simulation starts in order to deal efficiently
with re-scheduling. The procedure that has been described in Chapter 5 may offer
a solution to come up with this fixed pre-planned order.

6.3.2 LOCATION ALLOCATION BY MEANS OF Q-LEARNING

Consistent with the time allocation problem, location allocation can also be
solved by means of Q-learning. For this purpose, it is assumed that people try to
minimize the travel between two locations in order to have more time available
to carry out activities and realize goals.

Travel distance may not be an optimal measure for determining the burden of
travel because it is plausible in a realistic situation that the distance between
location A and location B is shorter than the distance between location A and C,
while the travel time may be longer (for instance because of a better road
network). Furthermore, it is possible that there is a difference in the transport
mode that is used. For instance, there may be an efficient highway between two
locations (for car use), but a poor road network for slow modes. For this reason,
it is assumed that the travel time between two locations is representative for the
burden that arises because of this travel, and that a differentiation needs to be
made with respect to the transport mode that has been used. As a result, the
presence of transport modes (ignored in the previous section) has to be re-
introduced in the activity patterns (sequences) when dealing with the location
allocation problem.

Translated to a context of Q-learning, this implies that reward tables also depend
upon the travel time between two locations (this is not similar as the travel time
between activities, see Charypar and Nagel, 2005) and on the transport modes
that have been used to reach these locations. The solution procedure is similar as
in the time allocation problem, but is somewhat more complicated.
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Again, consider a simple example with the following assumptions to better
understand the behaviour of the decision agent (assumptions will be relaxed later
on in the empirical section):

Learning rate a = 1 (see definition 6.9)
Discounting factor y=0.8 (see definition 6.6)
5 locations (locations A-E in Figure )

Two travel modes: Car and Walk

- A similar activity sequence as in previous section (fixed order), but travel
modes are included in the sequence, e.g.:
Home - Car - Work - Car -Shop - Walk - Leisure

A state x is characterized by an activity and an origin location.

- For a state x, an action is to choose a destination location which is available
for the next activity. When the destination location and the travel mode
(available because of the fixed sequence order) have been determined,
the reward for that particular action can be determined.

« Activities can only be carried out at a limited number of locations.

Assume that the following activity locations are possible for each activity:

Home : Location A
Work : Location B
Shop : Location C or D
Leisure : Location Cor E

Assume that the 5 locations (A-E) are spatially distributed in areas as graphically
illustrated in Figure 6.1. As mentioned before, the spatial distribution can be
equally (and perhaps more efficiently) represented by the travel time between
two locations, as shown in Table 6.7 by means of example.
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Figure 6.1: Spatial distribution of 5 possible locations in study area (example)

A simple linear transformation (by means of interpolation) can be used to

determine the reward/cost (see Table 6.8) based on this travel time table. To this

end, the overall maximum travel time per transport mode is taken as a minimum

reward value in the interpolation procedure. It is obvious that this transformation

can still be further refined, for instance through the use of an alternative

transformation function or by the segmentation of the utility perception over a

Table 6.7: Travel times between pair of locations (in minutes)

Car Walk
Origin/ A B C D E A B C D E
Destination

A 0 5.5 | 15.1 | 18.2 | 21.5 0 23.2 | 65.2 | 43.2 | 62.1
B 5.5 0 323 | 3.1 | 25.1 | 23.2 0 78.6 | 33.2 | 71.6
C 15.1 | 32.3 0 15.5 | 12.1 | 65.2 | 78.6 0 84.1 6.2
D 18.2 | 3.1 | 155 0 5.2 | 43.2 | 33.2 | 84.1 0 69.1
E 215 | 25.1 | 12.1 | 5.2 0 62.1 | 71.6 6.2 69.1 0
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group of (clustered) individuals with similar utility. Also, the maximum utility
(cost) has now been determined arbitrarily per transport mode and can become
the subject of additional refinements. More detailed work in this respect, applied
to an activity-based rescheduling framework, has been done by Joh et al. (2003;
2004).

Since the aim of the decision agent is to minimize travel duration, it may be
argued that the reward of travel should be negative (and thus represents a cost
for the agent); a decision which becomes even more important in the integrated
approach (see section 6.3.3). For this isolated location allocation problem, using
positive values would obviously lead to the same results.

Table 6.8: Reward table based on travel time table (interpolation)

Car Walk
Origin/ A B C D E A B C D E
Destination
A 0 -2 -5 -6 -7 0 -5 -12 -8 -11
B -2 0 -10 -1 -8 -5 0 -14 -6 -13
C -5 -10 0 -5 -4 -12 -14 0 -15 -2
D -6 -1 -5 0 -2 -8 -6 -15 0 -13
E -7 -8 -4 -2 0 -11 -13 -2 -13 0

The solution procedure that is used to arrive at a steady state (and to come up
with a stable policy chart) differs somewhat with respect to the time allocation
problem, especially because the action space is different. Taking our example into
account: Home - Car - Work - Car -Shop - Walk - Leisure and recalling that
Home and Work can only be carried out at location A and B; it is obvious that the
agent only has to decide about the location of the Shopping and the Leisure
activity. For Shopping, the agent can only choose between locations C and D; for
Leisure, the choice is between locations C and E. The remainder of this section
illustrates the use of definition 6.9 for this problem.

After the initialisation, a random starting state x will be chosen, which has at
least one possible action (i.e. destination) to select from. It should be recalled
that a state is defined by an origin location and an activity. For instance the
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states (C, Shop) and (D, Shop) have two possible actions (destination locations),
i.e. Location C or E. As a result, the Leisure state has no possible actions to
select from. Therefore, it can not be chosen initially and will never be visited by
the agent. Assume that the agent first visits state (C, Shop). In the third step of
the algorithm in definition 6.9, the decision agent will choose a random action in
order to explore the state-space in an attempt to find a new, better solution than
the one already known (P

explore

=1). There are only two possible actions at the state
(C, Shop), i.e. C or E. Let us assume that action (destination) C has been chosen.
Since the sequence order is fixed in this example, the next activity is known in

advance (Leisure). Now, we can compute the Q-value for the state Q(x,a)=Q(C,
Shop; C) = 0. The second part of the update rule (0.8maxQ(y,b)) can be
b

omitted in this case because there is no action at the next state (Leisure) for
which a Q-value can be calculated. For this reason, the value is simply equal to
the reward table which has been defined in Table 6.8. It should be noted that we
need to rely upon the reward table for Walk, because Walk is used to get from
Shopping to Leisure. The next destination location to decide about is for the

state (B, Work). Assume that action (destination) C has been chosen. When
formula @ 4+1(x, a)=R(x,a)+0.8maxQ;(y,b) is applied, it is clear that the
b

immediate cost (R(x,a)) is equal to -10 (reward table Car). The second part of the
update rule looks at the latest updated Q-value for every action, takes the largest
Q-value over all the actions and multiplies this by the discounting factor. In this
case the latest updated Q-value for the action pair (y,b), is both zero for Q(C,
Shop; C) (because of loop 1) and for Q(C, Shop; E) (because of initialisation). The
total reward (cost) in this case is thus equal to -10. The computation for the
other loops is similar and has been illustrated in Table 6.10. Table 6.9 shows the
states that have been visited per loop.

Table 6.9: Visited states per loop (Numbers denote the loop number)

Origin/activity Home Work Shop Leisure
A / / / /
B / 2,4,6,8,10,12,14... |/ /
C / / 1,3,7,11, ... /
D / / 5,9,13,15... /
E / / / /
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Table 6.10: Q-values and state-action pairs

Loop | Action Q-value
1 C Q(C, Shop;C) =0
2 C Q(B, Work;C)= -10+0.8*max(Q(Shop,C;C),Q(Shop,C;E)) = -10
3 E Q(C, Shop;E) = -2
4 D Q(B, Work;D) = -1 +0.8*max(Q(Shop,D;C),Q(Shop,D;E))= -1
5 C Q(D, Shop;C) = -15
6 C Q(B, Work;C) = -10+0.8*max(Q(Shop,C;C),Q(Shop,C;E) =-10
7 E Q(C, Shop;E) =-2
8 D Q(B, Work;D) = -1 +0.8*max(Q(Shop,D;C),Q(Shop,D;E))= -1
9 E Q(D, Shop;E) = -13
10 C Q(B, Work;C)=-10+0.8*max(Q(Shop,C;C),Q(Shop,C;E)) = -10
11 C Q(C, Shop;C) =0
12 D Q(B, Work;D) = -1 +0.8*max(Q(Shop,D;C),Q(Shop,D;E))= -11.4
13 E Q(D, Shop;E) =-13
14 D Q(B, Work;D) = -1 +0.8*max(Q(Shop,D;C),Q(Shop,D;E))= -11.4
15 C |Q(D, Shop;C) =-15

Once all the Q-values have been computed, a policy (chart) can be constructed
according to which the learning agent will behave. The final action will be
determined when the Q-values that are calculated in Table 6.10 have become
stable. It can be seen that Q(B,work; C)=-10 and Q(B,work; D) = -11.4 for these
15 loops. For this reason, the policy will be to choose action C at the state (B,
Work). The final policy chart looks thus like Table 6.11. This policy chart appears
to be stable when the number of loops approximate to infinity (100000 and
10000000). A computer code has been established to automate this process.
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Table 6.11: Policy chart for iterations going to infinity

Origin/activity Home Work Shop Leisure
A / / / /
B / C / /
C / / C /
D / / E /
E / / / /

The optimal location allocation for this sample sequence is thus equal to:
Home - Car - Work - Car -Shop - Walk - Leisure

| | | |
A B C C

Two final remarks need to be made with respect to this optimal solution. In the
empirical section (see section 6.4), work and home locations were randomly
simulated for every respondent. Work and home locations are thus assumed to
remain fixed per respondent during the complete location allocation phase and
are not determined by the Q-learning agent. This random simulation has been
drawn from the set of home locations that appear in the data. Despite the fact
that work and home locations are not determined by the Q-learning agent, they
are considered to be critical in the interaction process with the agent because
they anchor the set of spatial information that is developped by an individual
and condition the search for other locations through segments of space. In fact,
this assumption closely resembles the anchorpoint theory as suggested by
Golledge (1975, 1978). Other anchorpoints such as shopping locations, or other
commonly recognized, known and often-used places in the environment can be
incorporated within the same framework. Second, since the location of the Work
activity is always B in our example, one might think that the agent would have
decided to carry out the Shopping activity at location D, since the cost is only
equal to -1, compared to -10 for the other alternative (location C) (see reward
Table 6.8). However, as illustrated before, the agent had the intelligence of
looking into the future and not being trapped into a local optimum. Therefore,
the solution which is proposed in this section with respect to location allocation,
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has a lot of similarities with the well-known shortest path algorithm (Dijkstra,
1959). The advantages for using Q-learning for this purpose are that time
allocation can be easily integrated and that the agent returns the best action at
every possible state. The integration procedure is discussed in the section below.

6.3.3 INTEGRATING TIME AND LOCATION ALLOCATION IN Q-LEARNING

The previous two sections have independently considered time and location
allocation. Obviously, dealing with both allocations simultaneously, leads to
some important advantages. The first advantage is that the reward is not only
maximized in either the time or the location facet, but the total reward in a day
(i.e. reward that arizes from determining optimal start and end times and the
cost that arizes from travelling between locations) will be maximized by means of
an integrated approach, which is obviously more realistic. The second advantage
is that flexible travel times between two locations can be considered. In the time
allocation section (see section 6.3.2), the presence of travel times has been
ignored. Obviously, this assumption is superficial and needs to be relaxed. For
instance, Charypar et al. (2004) deal with the problem by assuming a constant
travel time between two different activities (they only considered activities and
not locations). They also experimented with a variable travel time per activity
pair, but they only did this for one particular test case. Therefore, no
differentiation has been made over different respondents, thereby implicitly
assuming that every activity pair always has a similar travel time, independent
from the activity location and from the transport mode that has been used to
reach these locations. Based on the location allocation section, it now becomes
possible to consider variable travel times between two locations and take this
information into account in time allocation. Locations that are far/close to each
other will require a longer/smaller travel time and will benefit from a more
realistic time allocation. To this end, travel times between two locations are
looked up in travel time tables (such as for instance Table 6.7).

STATES AND ACTIONS

In order to make this integration, states and actions have to be redefined when
compared to individual time and location allocation.
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A state is determined by an activity a, an origin location [, a start time b, and a
duration d.
Also in this case, there are two possible actions:

Stay: Keep performing activity a at location [ for another time slot.

Move: Move to location [’ for a next activity a’ (by means of a travel mode
tm). Take the travel time into account between location [ and location (. If there
is no travel mode between activity a and activity a’, a’is performed at the same
location as a, i.e. [ = . Otherwise ['0L(a’), where L(a’) denotes the set of all
possible locations for activity a’.

TRANSITIONS BETWEEN STATES

It logically follows from the previous section that in case transportation is
needed to move to another state (thus in case of the action Move), the start time
of state y should be augmented with the travel time that is needed to get from
state x to state y. This becomes possible because the destination activity has
been determined at this point and because travel times are known per origin-
destination pair. However, due to the use of discrete time intervals (see time
allocation section), the start time of state y, is set equal to the start time of the
interval which is closest to the sum of the start time of state x and the travel
time that is needed to get from state x to state y.

TIME AND LOCATION ALLOCATION IN PSEUDOCODE

The integrated time and location allocation program consists of 5 general steps
and can be shown as follows in pseudo-code:

1. Read sequences

2. Read reward tables for activities (start time and duration) and travel mode
(between each pair of locations)

3. Assign locations to each activity in the sequence, which the agent can visit.
One random location will be assigned to in-home and work activities. The other
out-of-home locations are selected from all the other possible locations that
appear in the data.

4. For each sequence

Apply definition 6.9
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5. Output the optimal time and location allocation policies per sequence when
Q-values become stable in the 4" step.

6.4 EMPIRICAL SECTION

This section describes the empirical results after application of the integrated
time and allocation procedure that has been described above. Before doing so,
more detailed explanation is given about the parameter values and reward tables
that have been used in the experiments.

6.4.1 PARAMETER VALUES

In the previous sections, it was mentioned that there are basically 3 parameters
that play an important rule in Q-learning: the discounting factor ), the learning
rate @ and the exploration rate P

explore®

Other important factors are the time
interval that has been used and the maximum duration that an activity can last.

DISCOUNTING FACTOR

The discounting factor should be close to 1 since we are interested in finding the
daily time and location plan that maximizes the cumulative reward. For the utility
of a plan it does not matter when a certain reward is earned (incrementally
increasing the discounting parameter from 0 to almost 1 may give us an idea
when the reward is earned) only important is that it is earned. Also, the agent
should look as much as possible into the future because someone’s decision
behaviour is not restricted to the next activity/state either. In the example given
in definition 6.6, it was mentioned that a high reward may be accorded to leisure
activities that are carried out during the evening and this may have an influence
on the decision process during the day (for instance one may quit working
earlier). However, it can be theoretically proven that setting the parameter equal
to 1 can lead to diverging Q-values.

On the other hand, for reasons of efficiency, low discount parameters are best as
they reduce interdependency of the Q-values and therefore lead to higher
learning speeds. However, low discount parameters inherently prefer short
activities. This can result in undesirable results such as for example long
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activities (e.g. “Work”) may be left out completely while short activities (e.g.
“Shopping”) are repeated over and over again (Charypar and Nagel, 2005).

In our new integrated setting, one should deal carefully with the discounting
factor. In particular, the discount per time slot should take the travel time -
needed to reach the next state- into account. For example when ) is set equal to
0.99 and the time slot is 15 minutes and if it takes 45 minutes to reach activity
a’ at location [, the value of ) equals y45/15 = y3 =0.97. As a result of this,
the discount per time interval ¢, is able to take care of the travel time that was
needed. In another example; assume that the action is Move between the states
(Eat, location 301, 6:00 PM, 30 minutes) and (Sleep, location 301, 6:30 PM,
0 minutes). There is no time delay between these two states and therefore no
discount is needed. Indeed, recall from definition 6.6 that the discounting factor
only defined how much expected future rewards, affect decisions now. Since we
are not talking about future values in this latter case, no discount is needed. By
consequence, every time the updating rule has been applied, the discounting
factor needs to be recalculated. In our experiments, we determined that a
discounting factor of 0.95 looked far enough into the future and was also able to
reach a solution that converged.

LEARNING RATE

The next parameter to decide about is the learning rate a. It has been proven by
Watkins and Dayan (1992) that Q-learning only converged to a steady state if
some preconditions were met (for more information see Watkins and Dayan
(1992)). However, for purely deterministic worlds, as the one discussed in this
chapter, a can be set equal to 1. The reason is that since the system is discrete
and finite, the trajectory eventually needs to come back to a state where it was
before. Once this point has been reached, the system will do exactly the same as
in the previous “round” (see previous policy charts). A learning rate of 1 will then
lead to the most optimal and fastest learning.

EXPLORATION RATE

Another important parameter is the exploration rate P It was mentioned

explore®

before that by choosing to explore the agent visits states that are further away
from the current best solution. By doing so, it is possible that it finds a new,
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he
agent will choose a random action in order to explore the state space. The safest
option here is to set P____equal to 1, in order to be sure that the best solution

explore

better solution than the one already known before. With probability of p

explore” t

has been found in the end. Obviously, this decision negatively affects the
learning speed.

TIME INTERVAL

The second but last parameter to decide about is the time interval. It will be
shown in the following sections that the time interval is the parameter which has
the largest impact on the size of the learning problem (and on the time to reach
a solution that converges). Obviously, since we explicitly use travel times in our
integrated framework, those travel times determine to a large extent the detail of
the time interval that needs to be chosen. Indeed, when the travel time between
two locations is for instance 20 minutes, it is too imprecise to set the time
interval equal to 1 hour. In this context the reader may recall from section 6.3.3
that the start time of state y is set equal to the start time of the interval which is
closest to the sum of the start time of state x and the travel time that is needed
to get from state x to state y. If the time interval would be set equal to 1 hour
and travel time is 20 minutes, we run the risk of dealing with a lot of unspecified
time in which no activity can be carried out. The average travel times between all
the locations in the study area is equal to 212 minutes for walk as transport
mode, 60 minutes for bike, 13 minutes for car and 61 minutes for public
transport. Therefore, we determined that a 15 minute interval will enable us to
end up with sufficiently detailed time allocation. Setting the time interval below
15 minutes will lead to much slower learning speeds for the algoritm to converge
and it will probably not lead to a significant improvement in accuracy either (see
also section 6.4.3).

MAXIMUM DURATION PER ACTIVITY

Finally, a decision needs to be made about the maximum duration that an
activity can last. For our application, the maximum duration was set equal to 10
hours. When compared to real diary data, this decision corresponded to 99,4% for
all the activities that have been reported. Setting the maximum duration equal to
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12 hours would further increase this percentage to 99,9% but this would lead to
slower learning times while the gain is only minor.

6.4.2  REWARD TABLES

Once the parameters have been set, the most important input for Q-learning are
the reward tables that need to be specified correctly. The section below described
which reward tables have been used in the experiments.

TIME REWARD TABLES

It was already mentioned before that the size of the time reward table depends
to a large extent on the time interval that has been used. In the example reward
table in Table 6.1, the size of the table is equal to 48 cells. This is equal to the
number of discrete time steps that fits into the maximum duration (columns of
the reward table), multiplied by the number of discrete time steps that fits into a
24-hour day-period (rows of the reward table), multiplied by the number of
activities (i.e. 3*4*4=48). In our experiments, the size of the reward table is
equal to 41*96*17=66912 cells. The main problem is where to get these values
from. As one alternative, an elaborated stated preference experiment can be
developed that is able to quantitatively assess the reward that people experience
per start time and per time unit that was spent per activity. However, even in
such an experiment, it seems more desirable to use larger time intervals than a
15-minute interval.

As a second-best alternative, it was examined how frequency information that is
available in the activity diaries can be used to come up with these values. While
frequency is certainly not a synonym for reward, the idea might work fairly well if
we have a look at the purpose of our experiment. In our application, the aim is to
come up with a time allocation (per activity), that corresponds best with the
information that is present in the data. Obviously, some direct relationship is
needed between the unsupervised learning model and the data to achieve this.
So, even though people may not like it to get to work at 7 A.M. (and may report
a low reward in a realistic situation), the learning model will assign a lot of
activities starting at that point in time if this happens frequently often in the
data.
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However, the frequency information cannot be used entirely without any
modification. A simple example can illustrate this. Suppose that somebody has
reported to have end sleeping at 3.15 A.M. and that the time that he/she was
already sleeping was 15 minutes. The reward table that is defined by a 3.00 A.M.
starting time and a 15 minute duration, needs be incremented by 1 unit.
However, assume now that a second person reported to have ended sleeping at
4.00 A.M. and that the time that he/she was already sleeping was 60 minutes.
Now, in this case, not only the reward table that is defined by a 3.00 A.M.
starting time and a 60 minute duration needs to be updated, but the 15-, 30-
and 45-minute interval needs to be updated as well. A simple program has been
established to automate these kind of conversion procedures.

An example of such a possible reward table has been shown in Figure 6.2 for the
work or study (out-of-home) activity. The axes report the start time, duration and
frequency of the activity. It can be seen from this figure that most people start
to work in the period between 7.30 A.M. and 8.30 A.M. and the number of people
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Figure 6.2: Deriving a data-driven time reward table
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that will continue to work decreases when duration increases. An important
increase was also found between 1.00 P.M. and 1.30 P.M., where the work
activity was often resumed (and thus reported) after lunch. Based on the 15
minute time interval that was used in the figure, it was possible to approximate
the 3936 cells (=41*96) that are needed for this reward table. As stated before,
using less detailed reward tables (which means broader time intervals), is not an
option given the average travel time that is needed for the car transport mode
between all the locations in the study area (13 minutes). Reward tables have
been developped for the following 17 activity categories: work or study in-home,
bring or get persons or goods, daily shopping, non-daily shopping, service
activities, medical visits, eating or drinking, sleeping, out-of-home leisure, in-
home leisure, in-home non-leisure (household tasks), out-of-home non-leisure,
receive social visit, bring social visit, work or study out-of-home, return home
(e.g. drop bags) and “other” activities.

LOCATION REWARD TABLES

Once all the time reward tables have been constructed, one should also pay
attention about how to build location reward tables. It was mentioned before
that location rewards depend on the travel time between two locations and on
the transport modes that have been used to reach these locations (see section
6.3.2). Fortunately, travel time information between pairs of locations is
available in our data (see Appendix A, Table A.4). All travel times in these tables
are measured in minutes travel on the shortest route under free-floating
conditions. For our experiments, matrices 1 till 4 in Table A.4 were used for the
transport modes: walk, bike, car and public transport. Unfortunately, the simple
linear interpolation procedure that was used to convert travel time information to
reward tables in section 6.3.2, can no longer be applied in the integrated
framework.

The aim of the integrated framework is to find an optimal time allocation (i.e.
maximize reward) and in the meantime reduce the burden for travel (i.e.
minimize travel duration). This is most conveniently modelled when a (small)
negative reward (i.e. cost) is assigned to travel, while rewards for time allocation
are positive values. However, the magnitude of the location cost versus time
reward relationship is not known (see infra: interaction weight). Furthermore,
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one should take into account that a travel time of 45 minutes by foot may not
have the same cost than the same travel duration by car. In order to solve both
problems, a transition function is needed. In the context of our experiments, the
following simple conversion function has been evaluated:

Location Reward=-w; x travel_time"mode

In this formula, w, (interaction weight) does not vary with the transport mode
that is used. The parameter is only used to assess the relationship between
location rewards (costs) and time rewards. When w>1, the cost of travel will be
weighted relatively more in the integrated final solution than rewards that would
be obtained by means of an optimal time allocation. So, most probably, the
agent will try to optimize its travel by all means and will care less about the time
that the activity has been carried out. When w<1, the agent will pay less
attention to the travel cost. The agent will use travel to achieve its most optimal
start time in order to get a better reward due to a more optimal time allocation.
W. is the only parameter that regulates the relationship between both reward
tables; the time reward table is considered to be fixed (see previous section).

The other parameter w,_, needs to be set per transport mode. The parameter is
used to evaluate the cost that the user has experienced per transport mode for a
given travel time. A simple example of the behaviour of the function has been

shown in Figure 6.3, where w, has been kept constant and w__ varied.

mode
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Figure 6.3: Plot of the function that is used to convert travel times to costs
(rewards). w_ is varied along with travel time; w, is kept constant



Allocating Time and Location Information through Reinforcement Learning 231

It can be seen from the figure that for higher travel times, the cost that the user
experiences is higher when travel time increases. This property is a precondition
of the model. Obviously, the cost depends upon the transport mode that has been

used and can be controlled by means of the parameter w__. In this example, a

mode*

larger value has been assigned to w__ for slow travel modes, because it was

mode
assumed that people are more reluctant towards using slow transport modes if
they face a longer travel time. Obviously, these assumptions need to be compared
with empirical results. Several empirical scenario’s were tested; 8 of those were
illustrated in Table 6.12 and empirically evaluated in the following section.

The scenario’s can be subdivided into three different subcategories. Scenario A is
an outlier. The scenario empirically evaluates whether the intuitive decision to
assign larger values to w, , for slow travel modes is correct (see Figure 6.3). To
this end, a counter-scenario has been defined which evaluates the behaviour of
the algorithm if the agent would have used weights that result in a larger cost for
fast modes than for slower modes when travel time increases. Scenario’s B till and
E are developed to evaluate the effect of the interaction weight only. The mode
specific costs were respectively kept constant at 0.2; 0.5; 1.2 and 1.5. On the
contrary; scenario’s F, G and H were used to vary mode-specific weights while the
interaction weight remained constant.

Table 6.12: An overview of some of the parameters that have been
varied in experiments

Scenario number W,

Car PT Bike Walk "
A 1.5 1.2 0.5 0.2 1
B 0.2 0.5 1.2 1.5 0.4
C 0.2 0.5 1.2 1.5 1
D 0.2 0.5 1.2 1.5 2
E 0.2 0.5 1.2 1.5 5
F 0.3 0.6 1.1 1.2 1
G 0.4 0.7 1.4 1.6 1
H 0.6 0.8 1.5 1.7 1
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6.4.3 EMPIRICAL RESULTS

In order to evaluate time and location allocation, sequences of activities and
travel are initially taken from the original data and not from the simulation
procedure that was described in Chapter 5. As a result of this, the bias that might
arise due to a possible prediction error of activity-travel patterns (Chapter 5), is
kept separated from time and location allocation.

TIME ALLOCATION

The application of the procedure described in section 6.3.3 and further specified
in sections 6.4.1 and 6.4.2, resulted in a time allocation that has been evaluated
for the 8 different scenario’s (see Table 6.13).

Table 6.13: Frequency distribution results of time allocation for scenario’s A-H

Obs. in Q-learning (Time allocation)
original| A B C D E F G H
data

3A.M.-
6AM 0.075 | 0.094 | 0.082 | 0.087 | 0.085 | 0.083 |0.083| 0.082 | 0.089
6A.M.-
9AM 0.117 | 0.189 | 0.101 | 0.091 | 0.173 | 0.202 |0.102| 0.103 | 0.097
fg\AMM- 0.113 | 0.178 | 0.097 | 0.093 | 0.170 | 0.201 |0.099| 0.101 | 0.098
12A.M.-
3p.M 0.130 | 0.113 | 0.152 | 0.162 | 0.112 | 0.100 |0.164 | 0.154 | 0.166
ZF;’TII- 0.148 | 0.102 | 0.121 | 0.109 | 0.121 | 0.092 |0.125| 0.129 | 0.121
692%[_ 0.228 | 0.201 | 0.246 | 0.251 | 0.207 | 0.211 |0.233| 0.232 | 0.234
fngM_ 0.166 | 0.110 | 0.182 | 0.192 | 0.121 | 0.102 |0.180| 0.181 | 0.180
132::44'- 0.023 | 0.014 | 0.019 | 0.015 | 0.011 | 0.009 |0.014| 0.018 | 0.015

The second column in this table shows the frequency distribution per time
interval of activities and transport modes as represented in the original data. The
most important conclusion that can be derived from this table, is the finding that
both the interaction weight and the W_ parameter, determine to a large extent
the accuracy of the Q-learning solution. It should be emphasized that the correct
w, and W, parameters are respectively a reflexion of the respondents’ attitude

mode
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(or at least the attitude that was reported by them) towards the location cost
versus time reward relationship and towards the use of transport modes when
travel time increases.

To better understand this, let us take a look at Scenario B. This scenario proved
to have generated reliable results that are close to the frequency distribution
that was observed in the original data. The reason for this is the interaction
weight of 0.4. It was mentioned before that when w<1, the agent will pay less
attention to the travel cost and will use travel to achieve its most optimal start
time in order to get a better reward. Keeping the w_, parameter the same and
further increasing the interaction weight w, (scenario’s C, D and E) leads to less
accurate predictive results. Especially in scenario’s D and E, the second and third
time interval (6 A.M.-9 A.M. and 9 A.M.-12 A.M.) were overestimated. In this
case, the cost of travel will be weighted relatively more in the integrated final
solution than rewards that would be obtained by means of an optimal time
allocation. So, the agent tried to optimize its travel by all means and cared less
about time allocation.

Another important conclusion that can be derived from Table 6.13, is the finding
that w, and W

mode

seem to be interchangeable to some extent. In other words,
non-optimal W

mode

parameters can be compensated by a more optimal choice of
the w, parameter and vice versa. For instance, scenario’s F, G and H have used the
less optimal interaction weight of 1 (compare with scenario C) but this could be
compensated by a modification of the W

mode

parameters. This is an important
finding (see also evaluation at location allocation), especially because the best of
these 3 scenario’s (G) performed better than the scenario with w=0.4 (scenario
B). The same trend can also be seen in scenario A, where a non-optimal choice of
the w

mode

-parameters has lead to poor predictive results.

LOCATION ALLOCATION

For the validation of location allocation, origin-destination matrices were derived
from the original dataset. The distinct locations in the dataset are defined by
means of different zip codes and are labelled as Rotterdam-Noord (1-3);
Rotterdam-Zuid  (4-6); Hendrik-Ido-Ambacht (7-9); Zwijndrecht (10-15),
Paependrecht, Sliedrecht (16-19) and Elsewhere (20), as it was also shown in
Table A.5. Subsequently, locations were allocated for each of the 8 scenario’s that
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have been defined before. Correlation coefficients between the original dataset
and the allocated locations were shown in Table 6.14. As opposed to time
allocation, scenario’s D and E produced the best results for location allocation.
However, the finding is consistent with our previous conclusion, where it was
found that in case w,>1, the cost of travel was weighted relatively more in the
integrated final solution (scenario’s D and E) and as a result the agent optimized
its locations choice and cared less about time allocation. It can be concluded
that the performance of scenario G (which produced the best result for time
allocation) is also satisfactory for location allocation. The experiments enabled us
to get an idea about the parameter choice for this dataset that resulted in an
acceptable trade-off between time and location allocation.

Table 6.14: Correlation coefficients between OD-matrices for scenario’s A-H

Scenario A B C D E F G H
Correlation
coefficient

0.821 | 0.831 | 0.871 | 0.892 | 0.895 | 0.864 | 0.872 | 0.869

6.5 CONCLUSION

This chapter further completed the simulation of activity patterns by the
development of a methodology that was able to allocate time and location
information to sequences that consist of activities and transport modes. It seems
less likely that time and location information can be efficiently modeled by
means of sequential dependencies. To this end, a technique of reinforcement
learning (Q-learning) has been chosen where somebody can learn its optimal
starting and end times and location information in interaction with the given
fixed sequence of activities and transport modes.

During learning, the Q-learning agent tries some actions (i.e., output values) on
its environment. Then, it is reinforced by receiving a scalar evaluation (the
reward) of its actions. In a first implementation, we assumed that time allocation
is dependent on the type of activity, the starting time of the activity and the
time already spent at that activity. Also, the sequence of different activities
determined the time allocation. Indeed, two sequences that contain a similar
activity which has the same starting time and the same time spent at that



Allocating Time and Location Information through Reinforcement Learning 235

activity, do not have to (and often will not) receive the same time allocation for
that particular activity, as a result of the different sequence order in which other
activities occur in both diaries. Technically, the agent will come up with another
optimal path, a different policy chart and as a result also a different time
allocation for both sequences. The location allocation problem was initially also
solved in the assumption that the allocation is dependent on the travel time
between two locations and on the transport mode that has been chosen to reach
these locations. Also in this case, it is obvious that the sequence information of
activities and transport modes largely determines the allocation.

Then, in our final implementation, the idea to integrate time and location
allocation simultaneously, has been conceived. Dealing with both allocations
simultaneously, leads to some important advantages. The first advantage is that
the reward is not only maximized in either the time or the location facet, but the
total reward in a day (i.e. the reward that arizes from determining optimal start
and end times and the cost that arizes from travelling between locations) will be
maximized by means of an integrated approach, which is obviously more realistic.
The second major advantage is that flexible travel times between two locations
can be incorporated. In our first time allocation implementation, it was
impossible to achieve this, due to the lack of location information.

The most important drawback of this integrated implementation, is that the
magnitude of the importance between the time and location relationship cannot
be immediately observed from the data. To this end, a simple conversion function
and different scenario’s were evaluated in the empirical section. Further research
could for instance use other alternative techniques (for instance stated
preference) to better specify and understand this relationship. In our
experiments, time allocation was evaluated by comparing the allocated frequency
distribution of activities and transport modes with the observed frequency
distribution that is present in the original data. Location allocation was
evaluated by the calculation of a correlation coefficient between origin-
destination information that is available from the original data with origin and
destinations that are allocated. The first empirical results seem to indicate that
time information is allocated quite well, but correlation coefficients of OD-
matrices seem to be somewhat lower than what we are used to in the Albatross
model.
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Finally, it should be noted that sequences of activities and travel are taken from
the original data and not from the simulation procedure that was described in
Chapter 5. The main aim for doing this was to result in an optimal parameter
choice for our dataset, without having to care about the bias that will arise due
to a prediction error of activity-travel patterns. This optimal parameter choice
can then be used in the integrated framework that has been presented in the
following chapter.



Chapter 7
Final Conclusions and Comparisons

7.1 INTRODUCTION

The performance of the individual components of the simulation model was
evaluated separately in Chapters 5 and 6. For example, predicted activity-travel
patterns (Chapter 5) were not yet integrated in the validation of time and
location allocation in Chapter 6. Furthermore, the validation measures that have
been used in these chapters are less challenging, since they mainly test how well
the model is able to replicate average values (see Tables 5.9-5.12 and Table
6.13). While these measures give us a good idea about the predictive
performance of the individual facets of a model, a more thorough validation is
required in an integrated (i.e. Chapters 5 and 6) model. To this end and
consistent with the validation measures that have been used within the Albatross
model, the Sequence Alignment Method and the correlation coefficients based on
origin-destination matrices were calculated in the integrated data-simulation
approach that was proposed in the Chapters 5 and 6.

Unfortunately, even these more advanced validation measures do not enable us
to determine whether the lack-of-fit of a model is the result of the remaining
noise in the data or whether it is due to the model specification as such. To this
end, and to get a better idea about the validation of the model, initial results
have been presented that compare the predicted activity patterns of the
Simulation model with the predicted activity patterns of the Albatross model (for
the facets activity, transport mode, location and time). Despite the fact that
both models are based on an entirely different approach, it might be interesting
to see how both models perform on the same dataset. Comparisons based on
empirical data between other activity scheduling models and (micro-) simulation
models are, to the best of our knowledge, non-existing. One of the few studies
comparing relative predictive performances between the Albatross model and a
linked logit-Poisson model is reported in Arentze and Timmermans (2000) and in
Arentze et al. (2000). It was shown that Albatross achieved a better predictive
performance of approximately 10%.

The purpose of this final chapter is thus to unite the most important
contributions of the dissertation that were presented in Chapters 3 and 4 with
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the research presented in Chapters 5 and 6. Therefore, we will elaborate in the
second section of this chapter on the algorithms that have been chosen for
comparison within Albatross (Chapters 3 and 4) and on the parameter values that
have been used in our simulation framework (Chapters 5 and 6). The third section
brings to mind the theoretical differences between both approaches. It is
important to take these theoretical differences into account when assessing
predictive results. Those results are presented in section 4 at the level of the
Sequence Alignment Method and in section 5 at the level of origin-destination
matrices. Final conclusions are reported in section 6.

7.2 DEFINING THE VALIDATION CONTEXT

Due to the different character of the Simulation model and the Albatross model,
important decisions need to be made at the level of both models before one will
be able to produce validation estimates. Let us first proceed with decisions at the
level of the algorithms used in the Albatross model.

7.2.1 ALBATROSS MODEL

With respect to the Albatross model, the original CBA algorithm was chosen from
Chapter 3 and the BNT technique from Chapter 4 as initial competitors for our
Simulation model. The choice for both algorithms is a logical decision, which is
based on the solid predictive performance of both algorithms. Parameter setting
with respect to CBA and BNT was the same as reported in their respective
chapters. This means that for CBA, minimum support value was set at 1% and
minimum confidence at 10%, while the maximum number of conditions that can
appear in any CAR was restricted to 6 to ensure the comprehensibility of every
single rule. For BNT, an entropy reduction of 0.001 bits was used as a threshold
to select the most important variables (pruning). In addition to this, C4.5
(Quinlan, 1993), a well-known decision tree induction algorithm is taken as an
additional competitor of a supervised learning method in the Albatross model. In
order to compare these models on (approximately) the same basis, the second
person in the household and the “with whom” facet were removed from the
predictive analyses since the proposed Simulation model was not yet able to deal
efficiently with household interactions. When compared to the Albatross model,
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this is a clear disadvantage. A study by Timmermans that dates from (2001) has
shown that Albatross is the only model that was able to account for the “with
whom” facet. Recently, other models have been developed such as for example
the work by Pribyl and Goulias (2004) where interactions among members of the
household are explicitly incorporated.

7.2.2  SIMULATION MoDEL

Generating activity-travel patterns (Chapter 5) requires decisions about the
computation of transition probabilities (i.e. storing activity bundles in
approaches 1 or 2, see section 5.4), the inclusion of socio-demographic
segmentation (see section 5.5) and the order of the dependency information that
is considered (see section 5.4). Given the fact that Approach 2 (see section
5.4.2) took more information into account (i.e. not only the most frequently
occurring combinations of elements were stored in activity bundles) and given its
higher degree of correspondence with the calculation of original Markov Chain
transition probabilities; it is preferred in the integrated Simulation model. The
segmentation is also certainly recommended because some of the most powerful
explanatory rules that were generated by CBA and BN in the Albatross model,
included a significant number of socio-demographic (or other more general)
variables (see Table 2.2 and sections 3.7 and 4.6). Based on these decisions
(Algorithm 2 and segmentation), we need to rely upon Tables 5.10 and 5.11 to
set the appropriate order (lag) that needs to be used for predicting activity-travel
patterns. Based on these results, a transition matrix that incorporates relatively
low-order dependencies is favoured. For the sake of simplicity, a first-order
transition matrix has been used in the integrated Simulation model.

Other parameters need to be set at the level of time and location allocation. First
of all, one has to decide about the discounting factor ), the learning rate a, the

exploration rate P the time interval that has been used and the maximum

explore’
duration that an ac’zivity can last. For the reasons that were already mentioned in
section 6.4.1, the discounting factor is set equal to 0.95, and the learning rate
and the exploration rate are set equal to 1. Also in the integrated model, the
time interval and the maximum duration were respectively set at 15 minutes and
10 hours. Other parameters are the maximum number of loops and the maximum

number of trials (see section 6.3.1). Both were respectively set at 1000000 and
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100 to make sure that a solution has been reached that converged to an optimal
policy. It was already mentioned in section 6.3.1 that the parameter setting of
the algorithm do not influence the optimal learning solution, but there is
however an impact on the time that is needed for the algorithm to converge to
this optimal solution. Indirectly, the parameter setting thus determines the
maximum number of trials and loops that needs to be set. An interesting topic
for future research may be to conduct experiments that determine the most
optimal parameter setting in an effort to reduce this computation time.

Also in this integrated model, reward tables are important for the final
validation. With respect to time allocation, we relied upon section 6.4.2 in order
to provide an estimate for time reward. For location allocation, the procedure in
the same section (6.4.2) has been used. Parameters were set fixed to W _=0.4;
w,=0.7; W, =1.4; W, ,=1.6; and w=1 based on the results that were reported in
section 6.4.3.

7.3 DIFFERENCES BETWEEN BOTH APPROACHES

The general theoretical differences between activity-scheduling and simulation
models were already briefly mentioned in previous parts of the dissertation. It is
important to reformulate both frameworks in terms of possible advantages and
disadvantages that can be kept in mind when assessing comparative
(quantitative) results.

Most activity-scheduling models rely upon the use of a skeleton of fixed
activities. This distinction may not only have an impact on the predictive
capabilities and on the complexity of the modelling task, but it also enables
and/or facilitates the evaluation of some travel demand management measures.
Especially schedule-specific scenarios, such as for instance a shift in terms of
starting time in the fixed schedule for work activities, are easier to model in
Albatross for instance than in a simulation model. It was repeatedly stated in the
dissertation that a distinctive feature of the Albatross model is the ability to
disentangle the complex decision making process in separate individual small
decision processes (for a more elaborated framework, we refer to Albatross
version 2 (Arentze and Timmermans, 2002), which uses 27 decision trees in its
model conceptualisation). Also in this case, we believe that this feature
facilitates the evaluation of TDM. The reverse side of this is obviously the cost for
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calibrating the model in another spatial context, which at least will require the
conversion of the diaries that are reported by the respondent towards explanatory
and dummy variables (see Appendix B) and datasets that link together the
individual decision facets. When this is established, a learning algorithm has to
be calibrated that determines the outcome of every single decision facet. The
burden of this process depends on the number of decision facets that has been
used and on the complexity of the learning algorithm.

It is exactly this feature that is probably one of the most important arguments
that can be given in favour of our proposed Simulation model. Its ease of
application, also in other spatial contexts, is facilitated by the fact that the
integrated model is almost completely data-driven and mainly uses full activity
diaries and travel times between a pair of destinations as input. The degree of
application of the model is therefore mainly determined by the availability and
level of detail of both travel time information and activity diary data. The model
will rely upon transition matrices that are subdivided in terms of socio-
demographic information that is available from the sample. If the sample is
assumed to be representative for the population, well-known techniques such as
Iterative Proportional Fitting (Beckman et al., 1996) can be used to generate new
synthetic populations, and the information that is contained in the correct (in
terms of socio-demographic information) transition probability matrix can be
used to simulate full activity patterns. Specific (but more limited) TDM scenarios
such as for instance a change in socio-demographic or explanatory variables such
as household income, car possession, etc. can be evaluated by re-calibrating the
full model. Another promising use is the integration with traffic simulation. Other
possible applications for simulation modelling have been mentioned before in
section 1.1.4-subsection Simulation models.

7.4 COMPARISONS OF FIT BASED ON SAM MEASURES

The predicted activity patterns of the Albatross model and the predicted patterns
of the Simulation model were compared by means of the Sequence Alignment
Method with the observed patterns that are available from the data. Results were
shown in Table 7.1.

For reasons of comparability, the patterns that were generated by both type of
models, need to be transformed. The predicted patterns were aggregated into
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discrete time intervals, to ensure a more equal comparison. It can be seen from
Table 7.1 that the Simulation model performed worse when compared to the
Albatross model. However, it should be kept in mind that the validation measure
itself is not completely bias-free due to the use of (non-predicted) fixed
activities and location and mode elements that are related to these fixed
activities in Albatross and the lack of distinction between fixed and flexible
activities in the Simulation model.

Table 7.1: SAM distance measures (full patterns)

Albatross Simulation Model
SAM distance measure
CBA BNT C4.5
SAM activity-type 2.710 | 2.712 | 2.719 3.113
SAM location 3.111 | 3.101 | 3.109 5.135
SAM mode 4,515 | 4.419 | 4.439 4.975
UDSAM 16.319 | 16.313 | 16.328 17.551

In Table 7.2, the fixed activities were both removed from the predicted patterns
of the Albatross model and from the predicted patterns of the Simulation model
to try to achieve a more equal comparison. Albatross does predict the mode
dimension of the fixed activities, so, theoretically spoken, these elements need
not be removed from the mode strings. However, maintaining the mode strings
while removing activity and location elements is undesirable. To this end, related
mode and location elements were removed, along with the fixed activities. A
similar procedure has been proposed in the previous comparison between
Albatross and a linked Logit-Poisson model. More information about this
procedure can be found in Arentze and Timmermans (2000).

Table 7.2: SAM distance measures (fixed elements removed)

SAM distance Albatross Simulation Model
measure CBA BNT C4.5
SAM activity-type 2.513 2.515 2.519 2.719
SAM location 2.682 2.685 2.690 4.832
SAM mode 2.625 2.622 2.629 2.929
UDSAM 11.356 11.352 11.362 11.921
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The Simulation model achieved better results than in Table 7.1 (probably due to
the more equal basis for comparison), but still performed somewhat worse when
compared to Albatross. Within Albatross, the BNT approach performs slightly
better than CBA and C4.5. It should be emphasized however, that the comparison
is not yet completely equal because the Simulation model predicted the “fixed”
elements in the diary, while they needed to be removed from the sequences that
were used for comparison.

7.5 COMPARISONS OF FIT BASED ON OD-MATRICES

The second measure to evaluate the predictive performance of both models is
carried out at trip level. The origins and destinations of each trip, derived from
the activity patterns, are used to build OD-matrices. The origin locations are
represented in the rows of the matrix and the destination locations in the
columns. The number of trips that is undertaken from a certain origin to a certain
location is used as a matrix entry. In order to determine the degree of
correspondence between predicted and observed matrices, a correlation
coefficient was calculated. To this end, cells of the matrix are rearranged into
one array and the calculation of the correlation is based on comparing the
corresponding elements of the predicted and the observed array. It can be seen
from Table 7.3 that the correlation coefficient is lower in the Simulation model
than in the CBA, BNT (unsupervised) and C4.5 (supervised) learning algorithms
(Albatross model).

Table 7.3: Correlation coefficients based on 0D matrices

Albatross . .
CBA BNT G Simulation model
Correlation
Coefficient (OD) 0.945 0.942 0.940 0.879

7.6 CONCLUSION, DISCUSSION AND FUTURE RESEARCH

This final chapter joined together the most important contributions of the
dissertation that were presented in Chapters 3 and 4 with the research illustrated
in Chapters 5 and 6. In order to get a better idea about the predictive
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performance of both models, an initial comparative study has been conducted.
The performance of CBA and BNT (Chapters 3 and 4) and the C4.5 algorithm were
used in the Albatross model and were compared with the full Simulation model
(Chapters 5 and 6). CBA and BNT were chosen as competitors, based on their
solid predictive performance that has been obtained in the dissertation. C4.5 was
chosen as an example of a supervised learning algorithm, for the sake of
completeness. After a data transformation phase, predicted patterns of both
models were compared with the observed patterns that are available from the
data.

At the level of SAM distance measures, the simulation model performed somewhat
worse when compared to CBA, BNT and C4.5 but differences were minor. Larger
differences were observed at the level of SAM location and from the origin-
destination correlation coefficients. Based on these results, it can be concluded
that the Q-learning time allocation and the simulated activity-travel sequences
derived in Chapter 5, performed fairly well, while location allocation achieved
worse results. Also important to notice is that the correlation coefficient that was
obtained by means of the integrated simulation approach (see Table 7.3),
remains very stable in comparison with the correlation coefficients that were
calculated before, when sequences where taken from the original data (see Table
6.14). This merely supports the previous remark that Q-learning time allocation
and the simulated activity-travel sequences of Chapter 5 performed well.

With respect to location allocation, a couple of additional remarks are needed.
Probably, the main reason for the high SAM distance and the somewhat worse
correlation coefficient, is the fact that location allocation is only made
dependent on the travel time between two locations and on the transport mode
that has been chosen to reach these locations. Other dimensions might have
determined this location choice in reality, such as for instance the concept of
“location orders” as it was defined in Albatross. Location orders can be made
dependent on the facilities available at the location (e.g. floor space, number of
outlets, etc.). The Q-learning location allocation solution did not account for
these available facilities or other explanatory factors and this might have
prevented the algorithm for generating better results. A topic for future research
is to investigate how these can be incorporated into a possible Q-learning
location allocation solution. More research is also needed about the magnitude of
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the importance between the time and location relationship that was proposed in
Chapter 6. It might be desirable to develop an algorithm that is able to
automatically determine the most optimal parameters, given the dataset under
consideration. It can be expected that such an adaptation and the use of more
advanced location reward conversion functions than the one that was proposed in
Chapter 6, can result in a more accurate location allocation result. Finally, it
might also be particularly interesting to evaluate the performance of the
simulation approach against other models, especially because the previously
mentioned benchmarking study (which used different empirical assumptions than
the one reported in this section, and is therefore not fully representative)
indicated that the linked logit-poisson model only achieved a correlation
coefficient of 0.687 between observed and predicted origin-destination matrices.
In addition to these comparative studies, the developed simulation model also
need to be complemented with a population generation module in future
research.
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APPENDIX A

This appendix gives a general overview of the structure of the most important
data files that have been used throughout the dissertation (Chapters 3-6). All
data have been collected in the municipalities of Hendrik-Ido-Ambacht and
Zwijndrecht in the Netherlands. We are grateful to the Urban Planning Group in
The Netherlands for providing these data.

A.1 Activity Classes and Detailed Activities

Table A.1 gives an overview of the activity classes and detailed activities which
are used in the diaries. A pre-coded scheme was used for activity reporting.
Eighteen different activities classes were distinguished. The activity categories
are work or study in-home, bring or get persons or goods, daily shopping, non-
daily shopping, service activities, medical visits, eating or drinking, sleeping,
out-of-home leisure, in-home leisure, in-home non-leisure (household tasks),
out-of-home non-leisure, receive social visit, bring social visit, work or study out-
of-home, return home (e.g. drop bags), “other” activities and a missing category
(added in post-processing). The transport modes which respondents could report
were car (as driver or as car-passenger), walk, bike and public transport.

Table A.1: Activity classification and detailed activities that occur in diaries

Activity Class Activity
Work/study in home |/

ctivity Class Activity

In home leisure Social activity with

household members
Telephone

Sports
Union/Friends

Bring/Get persons
or goods

Get/bring child day care
Or school
Get/bring child other

Get/bring other persons
Get/bring goods

Watching sports

Watch tv
Reading
Other in home leisure

Daily shopping

/

In home non leisure

Nondaily/
Window shopping

Non-daily shopping

Window shopping

Voluntary work
Tele shopping

Tele banking




248 Appendix A

Service activities Food takeaway Preparefood ___________

Rent movie House keeping

Personal business Child care
Medical visits Medical visit Pet care
Eating/Drinking Eat/drink Administration

Breakfast Other in home non-

leisure
Lunch Out of home non Voluntary work
leisure

Dinner Prepare food
Sleeping / House keeping
Out of home leisure [Social activity with household Child care

members

Telephone Pet care

Sports Administration

Cafe/bar Other out of home non-

leisure

Restaurant Social visits receive

Concert Social visits bring

Library Work/school out of

home

Union Other Other

Swimming Do nothing

Watching sports Return home

Church Missing

Touring:walk

Touring:bike

Touring:car

Watch tv

Reading

Other out of home leisure

A.2 Household Attribute Data

Household attribute data are stored in a separate data file, where each line
corresponds with a household and includes the information as shown in Table
A.2.
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Table A.2: Structure of household attribute data file

Definition

Categories

Household ID

Questionnaire version
Home Location
Socio-economic Class
Age of oldest member
Household type

Children

Number of cars

Number of bikes

Work time, person 1

Car availability, person 1
Bike availability, person 1
Gender, person 1

Work time, person 2

Car availability, person 2
Bike availability, person 2
Gender, person 2

Corresponds with schedule file (See
section A.3)

Integer number (not used)

Four digit zip code

1: minimum, 2: low, 3:medium, 4:high
1 < 25; 2: 25-44; 3: 45-64;4:> 64

: single, no work; 2: single, work

: double, one work; 4: double, two work;
: double, no work

: none; 2: younger than 6

3: 6-12; 4: older than 12

Integer number

Integer number

Number of official hours work per week
0:no, 1:yes

0:no, 1:yes

1:male, 2:female

Number of official hours work per week
0:no, 1:yes

0:no, 1:yes

1:male, 2:female

Ul Wk e

A.3 Activity Diary Data

Obviously, the main source of information is stored in activity diary data. The
structure of the activity diary is shown in Table A.3. In reality, data contain more
detailed information such as earliest and latest possible end times, minimum and
maximum duration, etc. (not shown here).

Table A.3: Structure of Activity diary data

Header for each case:

Categories

Household ID

Day of the week
Number of activities

Corresponds with Household attribute data
file (See section A.2)

1: Monday, 2: Tuesday, ..., 7: Sunday
Integer number, equals number of lines of
a block of activities

Fields for each activity:

Categories

Activity class
Activity
Person ID

See section A.1

See section A.1

1: first person in household file, 2: second
person in household file
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With whom/travel party

Activity start time
Activity end time
Location

Travel Mode
Travel Time

Waiting time component of travel time
(for instance for public transport)

1:alone, 2: with others in household, 3:
with others outside household, 4: with
other in and out

24 hour notation: 300: 3AM - 2700: 3 AM
next day

24 hour notation: 300: 3AM - 2700: 3 AM
next day

Out-of-home: four digit zip code, in-
home:0

1: car driver, 2: Walk; 3: bike, 4: Public
Transport, 6: Car Passenger. Missing if no
travel

Minutes (missing if no travel)

Minutes (missing if no travel)

A.4 Travel Time and Travel Distance Data

The travel time and travel distance data are contained in 13 mode-specific
104x104 matrices. The matrices report 104 different four-digit codes that can be

aggregated into broader location zones (see section A.5). All travel times are

measured in minutes travel on the shortest route under free-floating conditions.

Table A.4 gives a description of the information that is stored per matrix.

Table A.4: Travel time and travel distance information per matrix

Matrix | Contents

number

1 Travel times: walk

2 Travel times: bike

3 Travel times: car

4 Travel times: public transport, fastest connection

5 Travel times: public transport, average across all connections

6 Travel times: walking-time component of public transport travel time
7 Travel times: in-vehicle time component of public transport travel time
8 Travel times: waiting component of public transport travel time

9 Number of transfers in public transport connection

10 Travel distance: walk

11 Travel distance: bike

12 Travel distance: car

13 Travel distance: public transport
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A.5 Location Data

Location data that are reported in activity diaries can be grouped into the
following 20 zones (see Table A.5).

Table A.5: Postal codes and corresponding zones

Zone description Zone number | Postal codes (4 digit zip code). (Wildcard *
denotes that any number can follow)
Rotterdam-Noord 1 302*,303*%,304*,6305*
2 306*
3 301*
Rotterdam-Zuid 4 308*
5 307*
6 298*
Hendrik-Ido-Ambacht 7 3341
8 3342
9 3343
Zwijndrecht 10 3331
11 3332
12 3333
13 3334
14 3335
15 3336
Paependrecht, Sliedrecht, 16 335*,336*
Dordrecht 17 3311,3312
18 3314,3316,3317
19 3313,3315,3318,3319,3328,3329
Elsewhere 20 Other
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APPENDIX B

This appendix gives an overview of the independent variables that are used for
predicting the nine different choice facets within the Albatross system (Chapters
3-4). The appendix is largely based upon the description of the variables as it has
been illustrated by Arentze and Timmermans (2000) and more recently by Moons
(2005).

B.1 Mode for Work

The first decision choice facet that is considered in the Albatross system is the
“Mode for Work” dimension. The independent variables for the “Mode for work”
dimension are shown in Table B.1. The first variable, group is included to allow
the system to distinguish between cases where there is no partner or in case
there is, whether the partner's schedule for that day is either unknown or known.
The next group of variables describe the activity program at the level of the
schedule skeleton (S). These include the total time engaged in Workl and in
Work1l and Work2 together. Workl includes work/school activities and Work2
voluntary work activities. The number of mandatory, out-of-home activities other
than work and the presence of a bring/get activity are also incorporated at the
level of the schedule skeleton. Other variables are related to the partner, where
the variables are equal to zero if there is no partner, or if the partner's schedule
is unknown. The succeeding variables describe the chain of work episodes for
which a mode choice is to be made (Work-chain, W). These include work time and
travel time information. Bike travel time is taken as an indicator for travel
distances. Furthermore, travel time ratios between modes are included as
indicators for the relative speed of each mode on the (shortest) route between
locations. Also included at the level of the work chain, are a number of
descriptors such as the start time of the first work episode and end time of the
last work episode of the chain. The number of different work locations involved,
serve as a measure of the amount of travel involved apart from the first and last
commute. Activities that are included in the skeleton and that are closely related
in time to the start of the first work episode or the end of the last work episode,
are recorded as possible conditions for trip-chaining during the first and the last
commute. Finally, the last set of variables cover travel demands of the partner
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during the work-chain. These include the number of out-of-home activities in the
schedule skeleton, maximum travel time across locations and the presence of a

bring/get activity.

Table B.1:Explanatory variables in the “Mode for work” choice facet (Albatross)

Variable Name

Description

Categories

Group

Two

Ttot
Nsec

yBget
Pwo

PTtot

PNsec

PyBget

Thike

Rcabi
Rpubi
Rpuca
Peakl
Peakn

Two2

Nloc
Avo

Partner status

Total time of Work1 in minutes in S

Total time of Work1 and Work2 in S

Number of mandatory, out-of-home
activities other than work in S
There is a bring/get activity in S
Total time of Work1 in minutes in S
of partner

Total time of Work1 and Work2 in S
of partner

Number of fixed out-of-home
activities other than work in S of
partner

There is a bring/get activity in S of
partner

Objective travel time by bike to
location of W in minutes

Ratio car/bike travel time in%

Ratio public transport/bike travel
time in %

Ratio public transport/car travel
time in %

Start time of W falls in 7:30-9:00 AM
End time of W falls in 17:00-18:00
Total time of W in minutes

Number of different locations in W
Activity in S with end time within 1-
hour interval before first work
episode in W

1: no partner; 2: partner
schedule unknown; 3:
partner schedule known
0: 0; 1: £240; 2: 241-360;
3: 361-480;

4: > 480

1: <240; 2: 241-360; 3:
361-480; 4: > 480

0:0; 1: 1; 2: 2; 3: 3-4; 4:
4-5;5:>5

0: yes; 1: no

0: 0; 1: £240; 2: 241-360;
3: 361-480; 4: > 480

1: <240; 2: 241-360; 3:
361-480; 4: > 480

0:0; 1: 1; 2: 2; 3: 3-4; 4:
4-5;5:>5

0: yes; 1: no

1: £10; 2: 11-20; 3: 21-30;
4: 31-50; 5: 51-100; 6: >
100

1: <25, 2: 26-50; 3: 51-75;
4:>75

1: <100; 2: 101-150; 3:
151-200; 4: > 200

1: <300; 2: 301-500; 3:
501-700; 4: > 700

0: yes; 1: no

0: yes; 1: no

1: <300; 2: 301-500; 3:
501-700; 4: >700

1: one; 2: more than one
1: none, 2:bring/get;

3: other
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Ana Activity in S with start time within 1: none; 2:bring/get; 3:
1-hour after last work episode in W | other

Pywork Partner has work activity during 0: no; 1: yes
work time

Pybget2 There is a bring/get activity in S of | 0: no; 1: yes
partner during W

PNfix Number of out-of-home activities in | 0: none; 1: one;
S of partner during W 2: more than one

PTTmax Maximum bike travel time across 0: none; 1: 1-15;
activities in S of partner during W 2:16-30; 3: > 30
(minutes)

B.2 Activity Selection, Travel Party and Duration

Activity selection, travel party and duration decision facets are considered after
the mode for work decision facet, as illustrated in Figure 2.2.

In Table B.2, a distinction can be made between explanatory variables for fixed
and flexible activities. The fixed activities belong to the skeleton of the schedule,
are considered as given and remain constant during the process. The variables
Two and Ttot belong to the fixed activities and are respectively defined as the
total time scheduled for Workl and for Workl and Work2 together. Twincl is
added to take observed travel time as well as activity time related to Workl
activities into account. In the present step, the travel time information is
considered known, given our assumption that transport mode choice for primary
work activity is made in the previous step.

The other variables (except for yBget) belong to the flexible activities and they
define for each flexible activity the total time scheduled (T-variables) or, simply,
the presence of the activity (y-variables) in the current schedule. The variable
values are initially equal to zero and they are updated each time an activity is
added. The Nsec variable is a summary variable which represents the number of
flexible or fixed out-of-home activities other than work in the current schedule.
The Aldur variable represents an alternative way of encoding activity time. The
variable defines a short, average and long time relative to the activity type under
concern, such that for example the long category of one type may still be shorter
than the average of another type. The definition of the duration categories
corresponds with the alternatives considered for the duration choice (see Table
B.3).
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The next set of variables describe cases at the schedule level. First, the Tmax(t)
variables represent the maximum time available across available time slots in the
schedule skeleton. The index t defines a particular time period among six
distinguished time periods: before 10 AM; 10-12 AM; 12-2 PM; 2-4 PM; 4-6 PM
and after 6 PM. The time for each time slot and each time period is determined
by the overlap between time ranges given by opening hours of available facilities
for the activity type, the time between fixed activities and the time period t.
Second, the yCar(t) variables represent the availability of the car in each time
period t, as a function of the number of available cars in the household, the
number of adult members of the household and the mode used by the partner for
work. For example, the car is considered not available if the car is in use for work
by the partner and there is less than one car per adult available in the household.
The equal-frequency method was used to discretise continuous variables.

Besides activity type (Atype), the activity-level variables are specific for each of
the three considered choice facets. The variables at this level represent feasibility
conditions for choice alternatives. Selecting an activity is considered infeasible if
the maximum available time across the time slots that are available within
opening hours of available facilities for the activity is shorter than the minimum

duration for the activity type (Yavail For travel party decisions, the options

).
Select.

‘alone' and others outside the household' are considered to be always available.
The 'other(s) inside the household' option, however, is considered available only

in multi-person households (Yavail ). Given the positive selection decision, the

part
shortest duration class is available by definition. The average and long duration
alternatives, however, are available only if the minimum duration defined for the
concerned class fits in the schedule.
Table B.2: Explanatory variables in the “Activity selection”, “Travel party” and
“Duration” choice facets (Albatross)

Variable Name Description Categories
Tact Number of instances of the current 0:0;1: 1;2:>1
activity type in S
Two Total time of Work1 in S (in 0: 0; 1: <240; 2: 241-360;
minutes) 3: 361-480; 4: > 480
Twincl Total time of Work1 incl. travelin S | 0: 0; 1: <260; 2: 261-380;
3: 381-500; 4: > 500
Ttot Total time of Workl and Work2 in' S | 0: 0; 1: <240; 2: 241-360;
3: 361-480; 4: > 480
Nsec Number of out-of-home activities 0:0; 1:1; 2: 2; 3: 3; 4: 4;
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yBget
yDshop

yServ
yNDshop

ySoc
yLeis
Tsoc
Tleis
Td-shop
Tserv
Tnd-shop
Aldur
Tmax(t)
yCar(t)

Atype

YAvail

ection

YAvail

party

yAvail2

duration

yAvail3

duration

Awith

duration

other than work in S

There is a bring/get activity in S
There is a daily shopping activity in
S

There is a service activity in S
There is a non-daily shopping
activity in S

There is an out-of-home social
activity in S

There is an out-of-home leisure
activity in S

Total time of social activities (in-
home and out-of-home) in S

Total time of out-of-home leisure
activities in S

Total time of daily shopping
activities in S

Total time of service activities in S

Total time of non-daily shopping
activities in S

Total relative time of current
activity in S

Maximum available time in t-th time
interval in S™ (in minutes)
Availability of car in t-th time
interval in S™

Activity type

Selection of activity is feasible
given S and minimum duration for
the activity type

'Others in the household' option is
available given the household
composition

The 'average' duration class is
feasible given S and the minimum
duration for that class

The 'long' duration class is feasible
given S and the minimum duration
for that class

Travel party

(Sa]

>4
: no; 1: yes
0: no; 1: yes

o

0: no; 1: yes
0: no; 1: yes

0: no; 1: yes
0: no; 1: yes

0: 0; 1: <30; 2: 31-60; 3:
61-120; 4: > 120

0: 0; 1: <30; 2: 31-60; 3:
61-120; 4: > 120

0: 0; 1: <20; 2: 21-40; 3:
41-60; 4: > 60

0: 0; 1: <20; 2: 21-40; 3:
41-60; 4: > 60

0: 0; 1: <30; 2: 31-60; 3:
61-120; 4: > 120

0: none; 1: short; 2:
average; 3: long

0: 0; 1: 1-30; 2: 31-60; 3:

> 60

0: no; 1: yes; 2: schedule
partner is unknown

1: daily shopping; 2:
service; 3: non-daily;
shopping; 4: social; 5:
leisure

0: no; 1: yes

0: no; 1: yes

0: no; 1: yes

0: no; 1: yes

0: none; 1: only others
inside hh; 2: others
outside hh involved
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Short, average and long durations depend upon on the type of flexible activity.
The classification that is used within the Albatross model has been shown in

Table B.3.
Table B.3:Activity duration classification

Short Average Long
type range mean | range mean | range mean
daily shopping [10-20] 15 [21-45] 35 [46-90] 50
service [5-10] 5 [11-20] 15 [21-40] 30
non-daily shopping | [10-30] 20 [31-80] 60 [81-160] 90
social [10-75] 60 [76-150] 120 | [151-300] 180
leisure [10-60] 40 [61-120] 90 [121-240] 150

B.3 Activity Start Time

Table B.4 shows the independent variables for the “start time” choice facet. The
characters A and S in Table B.4 respectively denote the concerned activity and
the complete observed schedule. There are quite some variables which are similar
to the independent variables that were used for the “Activity selection”, “Travel
party” and “Duration” facets.

However, one of the variables which is different is Tmax (t), which represents for
each distinguished time interval t (before 10 AM, 10-12 AM, 12-2 PM, 2-4 PM, 4-
6 PM and after 6 PM).) the available time in the current schedule given start and
end time times of the fixed activities, the opening hours of available facilities for
the concerned activity and estimated travel times for the free as well as for the
fixed activities in the current schedule. Tmax represents the maximum time
across feasible positions in the current schedule. Because the location, mode and
trip chains are not yet known in this stage, the travel time estimates are based
on activity-type specific ratios between activity type derived from the entire data
set. These ratios are shown in Table B.5.

The Tmax variables are updated after each start time decision. Initially, only the
schedule skeleton is given and the fixed start and end times determine the
available time in each position. The levels for Tmax are defined dependent on the
duration class of the activity under concern. The zero level means that there is no
feasible schedule position for the t-th start-time range even if the minimum
duration of the activity is taken. The levels 1 and 2 denote respectively, that
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there is a feasible position for implementing an average and long duration type
of activity. Hence, the Tmax variable has two functions. First, it defines the
feasibility condition for each start-time option and second, it indicates the
extent to which each time period allows flexible choice of activity duration.

The next set of variables allows the system to anticipate on possibilities to
establish connections with other out-of-home activities. A number of various
indicators has been included. First, Btwo(t) indicates whether the current
schedule includes a work activity with a start time falling in the t-th time period.
Second, the ETx(t) denotes the same for the end time of any out-of-home
activity. For existing flexible activities possible end times given duration and
start-time constraints are taken. Note that for other than work activities only the
end times are taken into account. This is done to reduce redundancy in the set of
variables. Other-than-work activities tend to be short so that start and end times

Table B.4: Explanatory variables in the “Start time” choice facet (Albatross)

Variable Name | Description Categories

Nsec Number of mandatory out-of-home | 0: 0; 1: 1; 2: 2; 3: 3-4; 4: > 4
activities other than work in §*

Two Total time of Work1 in $™ (in 0: 0; 1: <240; 2: 241-360;
minutes) 3: 361-480; 4: > 480

Twincl Total time of Work1 incl. travel in 0: 0; 1: <260; 2: 261-380;
s 3: 381-500; 4: > 500

Ttot Total time of Work1 and Work2 in 0: 0; 1: <60; 2: 61-120;
s 3: 121-240; 4: > 240

yBget There is a bring/get activity in S | 0: no; 1: yes

yDshop Therﬁz is a daily shopping activity 0: no; 1: yes
in§°

yServ There is a service activity in $* 0: no; 1: yes

yNDshop There is a non-daily shopping 0: no; 1: yes
activity in S*

ySoc There is an out-of-home social 0: no; 1: yes
activity in S*

ylLeis There is an out-of-home leisure 0: no; 1: yes
activity in S*

Tsoc Total time of social activities (in- | 0: 0; 1: <30; 2: 31-60; 3: 61-
home and Out-of-home) in S™ 120; 4: 121-240; 5: > 240

Tleis Total time of out-of-home leisure | 0: 0; 1: <30; 2: 31-60; 3: 61-
activities in S™ 120; 4: 121-240; 5: > 240

Td-shop Total time of daily shopping 0: 0; 1: 20; 2: 21-40; 3: 41-
activities in S™ 60; 4: > 60
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Tserv Total time of service activities in 0: 0; 1: <20; 2: 21-40; 3: 41-
st 60; 4: > 60
Tnd-shop Total time of non-daily shopping 0: 0; 1: <30; 2: 31-60; 3: 61-
activities in S™ 120; 4: > 120
Tmax(t) Maximum available time in t-th 0: < minimum; 1: minimum-
time interval in S (possible average; 2: average-
duration for A) maximum; 3: > maximum
Btwo(t) There is a Work1 activity with start | 0: no; 1: yes
timeint=1, ..., 3inS
Etx(t) There is an out-of-home activity 0: no; 1: yes
with end time in t=1, ..., 6 in S
DBT(t) Saved bike travel time if A is 0: 0 or no such activity; 1:
linked with out-of-home activity <10; 2: 11-30; 3: > 30
with start time in t=1, ..., 3
DET(t) Saved bike travel time if A is 0: 0 or no such activity; 1:
linked with out-of-home activity <10; 2: 11-30; 3: > 30
with end time in t=1, ..., 6
yCar(t) Availability of car in t-th time 0: no; 1: yes; 2: schedule
interval in S partner is unknown
Atype Activity type of A 1: daily shopping; 2: service;
3: non-daily shopping;
4: social; 5: leisure
Awith Travel party of A 0: none; 1: only others inside
household; 2: others outside
household involved
Tact Number of the current activity 1:1;2:>1
type of A
Adur Duration of A 1: short; 2: average; 3: long
Ad1 Shortest bike travel time across 0: 0; 1: £10; 2: 11-30; 3: >

possible locations for A (minutes)

30

often fall within

indicator for both.

the same time period and only one value can serve as an

Second, the DBT(t) and DET(t) variables more specifically indicate the travelled
distance that could be saved by establishing a travel connection. Hereby, DBT

refers to the work activity with start time falling into time period ¢, if any, DET,

relates to the out-of-home activity of any type with the end time falling in the ¢-

th interval, if any. As in previous models, bike travel time is taken as indicator of

distance. Let 0 denote the existing out-of-home activity, A the activity for which

the start time choice is made and H the home location, then the saved time is

determined by comparing the sum of travel time across H-O-H and H-A-H tours
with the travel time of H-0-A-H or H-A-O-H trip. In all trip types, the location
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Table B.5: Travel time/duration ratios uses to estimate travel times based on
activity duration

Activity Ratio
Daily shopping 0.33
Service 0.65
Non-daily shopping 0.28
Social 0.14
Leisure 0.14
Unknown 0.30

that minimises travel time across location alternatives for A is taken as the
location for A.

The final set of schedule-level variables is given by yCar(t). As explained before,
this variable represents the availability of the car in the t-th time period, given
the number of cars present per adult member of the household and the mode
used for the work activity in the partner's schedule (if any). Finally, the
remaining variables all relate to dimensions of the activity for which the start-
time decision is currently made. These are restricted to the dimensions
considered known at this stage, i.e. the activity type, travel party, duration and
shortest home-based distance.

B.4 Trip Chaining

Table B.6 shows the independent variables for the “Trip Chaining” choice facet.
The notation of symbols and the description of some variables is similar to
previous decision facets. In this section, we only consider variables that are
specific for trip-chaining step.

First, the yAstop, yBstop and yIBstop variables denote the feasibility of trip-
chaining options. The feasibility of trip-chaining is determined by spatial,
temporal and institutional constraints. The next set of variables (y-variables),
describes the concerned flexible activity regarding the dimensions that are
considered known in this step. The Awith, Adur and Astart variables describe the
travel-party, duration and start-time dimensions in terms of the choice
alternatives of the choice facets in previous steps. Finally, Ad1 measures the
shortest distance from the home location across the possible locations for the
activity. Note that in the case of social activities every zone in the area is by
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definition zero. For the other activities, the shortest distance depends on
locations of available facilities.

The final set of variables describe the (uniquely) identified feasible activities, if
any, for making a before or an after connection respectively. Note that if A can
be positioned before as well as after an certain activity, the variables refer to the
same activity. First, the Otime variables represent the available time for
completing A in that position. In fact, the maximum available time is calculated
if there is flexibility in determining the start time and duration for existing
activities in the current schedule. The Otype, Owith and Odu describe the activity
type, the travel party and duration of the activity, again, in terms of the same
categories that are used throughout the model. Finally, the next variables
describe the spatial context in terms of the (shortest) distances to O from home,
the distance between A and 0 and the saved travel distance when the connection
would be made (H-A-O-H or H-0-A-H) compared to the single stop option
(H-A-H).

Table B.6: Explanatory variables in the “Trip Chaining” choice facet (Albatross)

Variable Name Description Categories
Nsec Number of mandatory out-of-home 0:0; 1: 1; 2: 2; 3: 3-4; 4:
activities other than work in S >4
Two Total time of Work1 in S (in 0: 0; 1: <240; 2: 241-360;
minutes) 3: 361-480; 4: > 480
Twincl Total time of Work1 incl. travel in S | 0: 0; 1: <260; 2: 261-380;
3: 381-500; 4: > 500
Ttot Total time of Work1 and Work2 in S™ | 0: 0; 1: <60; 2: 61-120; 3:
121-240; 4: > 240
yBget There is a bring/get activity in $* 0: no; 1: yes
yDshop There is a daily shopping activity in | 0: no; 1: yes
Sall
yServ There is a service activity in $* 0: no; 1: yes
yNDshop There is a non-daily shopping 0: no; 1: yes
activity in S*
ySoc There is an out-of-home social 0: no; 1: yes
activity in §*
yleis There is an out-of-home leisure 0: no; 1: yes
activity in S*
Tsoc Total time of social activities (in- 0: 0; 1: <30; 2: 31-60;
home and out-of-home) in §* 3: 61-120; 4: 121-240; 5:
> 240
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Tleis

Td-shop
Tserv
Tnd-shop

yCar

yBstop
yAstop
yIBstop

Atype

yAd-shop
yAserv
yAnd-shop
yAsoc
yAleis
Awith

Adur

Astart

Ad1

Ontime
Optime
On-/Optype

Onwith

Total time of out-of-home leisure
activities in ™

Total time of daily shopping
activities in S

Total time of service activities in $*
Total time of non-daily shopping
activities in S

There is a car available in the
selected time-of-day, given work
activity of partner

Feasibility of a Before Stop, given
space-time constraints

Feasibility of an After Stop, given
space-time constraints

Feasibility of a Between Stop, given
space-time constraints

Activity type of A

A is a grocery activity

A is a service activity

A is a non-grocery activity
A is a social activity

Ais a leisure activity
Travel party of A

Duration of A

Start time of A

Shortest bike travel time across
possible locations for A (minutes)
Available time for A before (On) or
after

0 (Op), given the timing of fixed
activities

Activity type of O

Travel party of O

0: 0; 1: <30; 2: 31-60;

3: 61-120; 4: 121-240; 5:
> 240

0: 0; 1: <20; 2: 21-40;

3: 41-60; 4: > 60

0: 0; 1: <20; 2: 21-40;

3: 41-60; 4: > 60

0: 0; 1: <30; 2: 31-60; 3:
61-120; 4: > 120

0: no; 1: yes; 2: schedule
partner is unknown

0: no; 1: yes
0: no; 1: yes
0: no; 1: yes

1: daily shopping; 2:
service; 3: non-daily
shopping; 4: social; 5:
leisure

0: no; 1: yes

: no; 1: yes

: no; 1: yes

: no; 1: yes

: no; 1: yes

: none; 1: only others
inside household; 2:
others outside household
involved

1: short; 2: average; 3:
long

1: <10 AM; 2: 10-0 AM;
3: 0-2 PM; 4: 2-4 PM; 5: 4-
6 PM; 6: >6 PM

0: 0; 1: <10; 2: 11-30;
3:>30

0: <minimum; 1: minimum
- average;

2: average - maximum; 3:
> maximum

1: bring/get; 2: work1; 3:
other

0: none; 1: only others

o OO oo
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inside the household;
Opwith 2: others outside the
household involved
On-/0Opdu Duration of O 1: <10; 2: 11-40; 3: 41-
120; 3: > 120
Ondu1 Bike travel time to (nearest) 0: 0; 1: £10; 2: 11-20; 3:>
location 20
Opd1 of 0 from home
Ond3 Shortest bike travel time between 0: 0; 1: <15; 2: 16-30; 3:>
location 30
Opd3 of 0 and possible locations for A
On-/0pd13 Saved bike travel time of A is linked | 0: 0; 1: <10; 2: 11-30; 3:>
with 0 30

B.5 Activity Transport Mode

Table B.7 shows the independent variables for the “Transport mode for other than
work activities” (Mode Other) choice facet. The notation of symbols and the
description of some variables is similar to previous decision facets. The symbol C
represents the concerned tour.

The tour-level variables cover various dimensions. First, the time-of-day when the
tour is undertaken is potentially relevant as it may determine the degree of
congestion on the road network during travelling. However, at this stage the
start time of the tour is not exactly known. The exact departure time will
dependent upon the mode used for the tour. For example, a fast mode allows one
to delay the departure time, while keeping the time engaged in the activities
itself constant. Moreover, the start time and duration of flexible activities are
flexible. To account for the freedom of choice on all these dimensions, a variable
that determines the earliest possible start time of the tour was included.

A second potentially important aspect is the tour's purpose. The dimensions of
the first activity in the tour, such as the activity type, travel party and duration,
are included as descriptors for the tour's purpose.

Third, the required travel distance on the tour is a potential moderator of mode
choice. We use the shortest-route bike time as an indicator of distance. Because
locations of flexible activities are still unknown in this stage, the shortest-travel
time across possible locations for the activity is taken as an index here. If the
tour involves more than one flexible activity, the shortest travel time is
calculated based on home-based distances. This was done to avoid the
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computational complexity of optimising the choice of multiple locations
simultaneously. Additionally, the tour-specific relative speed of each mode is
measured in terms of travel-time ratios between car/bike, public transport/bike
and public transport/car.

Mode choice may further depend on the required travel distance to reach
locations of higher order. Fast modes probably reduce the disutility of travel and
therefore may be preferred in cases where the individual wishes to visit a higher-
location at a relative long marginal distance. The fourth set of tour-level
variables, therefore, defines the extra bike-travel time required to reach locations
for each higher-order location. The bike times calculated relate to the first
activity only and assume a home-based trip. In case of fixed activities (no
location choice) and social activities (no higher-order locations), the marginal
distances are set equal to zero. Note that these variables describe location choice
options and, consequently, allow the system to anticipate on location choices in
choosing a mode.

Furthermore, the activity schedule of the partner, if any, may compete with the
use of car in households where there is only one car available. The fifth set of
tour-level variables describe the presence of a bring/get activity, the presence of
a shopping or service activity and the maximum bike-travel time across the
partner's tour that necessarily overlap in time with the tour concerned.
Overlapping tours are identified by comparing latest possible start times and
earliest possible end times. If there is no partner, the partner's schedule is
unknown or there are no overlapping tours, the variables are set to zero.

The final independent variable defines the availability of the car-driver mode.
Three categories can be distinguished: there is no car available (Avcar = 0), there
is a car available (Avcar = 1) and there is no partner or the schedule of the
partner is unknown (Avcar =2). The other mode alternatives - car passenger,
public transport and slow mode - are considered always available.
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Table B.7: Explanatory variables in the “Transport Mode for other than work
activities” choice facet (Albatross)

Variable Name Description Categories
Nsec Number of mandatory out-of-home 0:0; 1: 1; 2: 2; 3: 3-4;
activities other than work in S 4:> 4
Two Total time of Work1 in S (in 0: 0; 1: <240; 2: 241-360;
minutes) 3: 361-480; 4: > 480
Ttot Total time of Work1 and Work2 in S 1: €120; 2: 121-240;
3: 241-360; 4: 361-480;
5: > 480
CBT Earliest possible begin time of C 1: < 10 AM; 2: 10-0 AM;
3: 0-2 PM; 4: 2-4 PM;
5: 4-6 PM; 6: > 6 PM
Atyl Type of the first activity in C 1: work; 2: bring/get;
3: grocery; 4: service; 5:
non-grocery; 6: leisure;
7: social; 8: other
Aty2 Type of the second activity in C 0: home; 1: work;
2: bring/get; 3: (non-)
grocery or service;
4: leisure or social;5:other
Adurl Duration of the first activity in C 1: short; 2: average;
3: long
Awith1 Travel party of the first activity in C | 0: none; 1: only others
inside the household;
2: others outside the
household involved
Chrget Bring or get activity is part of C 0: no; 1: yes
Cgroc Grocery activity is part of C 0: no; 1: yes
Cserv Service activity is part of C 0: no; 1: yes
Cshop Non-daily shopping activity is part 0: no; 1: yes
of C
Csoco Social activity is part of C 0: no; 1: yes
Cleiso Leisure activity is part of C 0: no; 1: yes
Cnlout Non-leisure activity is part of C 0: no; 1: yes
TThike Shortest travel time by bike for tour | 0: 0; 1: <5; 2: 6-15; 3: 16-
C(in minutes) 25; 4: 26-35; 5: 36-60; 6:
> 60
Rcabi Travel time ratio between car and 1: €25, 2: 26-33; 3: 34-85;
bike (%) 4: > 85
Rpubi Travel time ratio between public 1: £100; 2: 101-200;
transport and bike (%) 3: 201-260; 4: > 260
Rpuca Travel time ratio between public 1: <100; 2: 101-700;
transport and car (%) 3: 701-900; 4: > 900
Textra2 Extra bike travel time to reach 0: 0; 1: <10; 2: 11-15;
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location of order 2 (minutes) 3:16-30; 4: > 30
Textra3 Same for order 3 0: 0; 1: 1-15; 2: 16-20;
3: 21-35; 4:> 35
Textra4 Same for order 4 0: 0; 1: 1-20; 2: 21-30;
3: 31-40; 4: > 40
Pbrget Partner has a bring/get activity 0: no; 1: yes
during tour C
Pserv Partner has a shopping or service 0: no; 1: yes
during tour C
PTmax Partner's maximum bike travel time 0: 0; 1: 1-10; 2: 11-20;
across activities during tour C 3: 21-40; 4: > 40
(minutes)
Avcar Car is available given the work 0: no; 1: yes; 2: there is
activity of the partner no partner or schedule
partner is unknown

B.6 Locations

The independent variables for the “Location” choice facets have been shown in
Table B.8. Most of the variables in Table B.8 are analogous to variables that have
been discussed in previous choice facets.

The only difference is a set of variables, AvCmin - AvCmax, which has a special
status. They determine, e.g., that Cmin is not available in cases where the
nearest home location (Hmin) is identical with the nearest tour-based location
(Cmin).

For the location2 choice facet, we consider only the “other” locations from the
previous choice facet (i.e. location1). This facet now selects a travel-time band
comprising the location where the activity is to be performed. Travel times are
evaluated exclusively in the context of the concerned tour (as opposed to home-
based).

Table B.8: Explanatory variables in the “Location1” and
“Location2” choice facets (Albatross)

Variable Name Description Categories
Twincl Total time of Work1 inclusive travel | 0: 0; 1: <260; 2: 261-380;
in' S (in minutes) 3: 381-500; 4: > 500
Ttot Total time of Workl and Work2 in S | 1: <240; 2: 241-360;
3: 361-480; 4: > 480
Nsec Number of mandatory out-of-home 0:0; 1: 1; 2: 2; 3: 3-4;
activities other than work in S 4: 4-5;5:>5
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Atype Activity type 1: daily shopping; 2:
service; 3: non-daily
shopping; 4: social; 5:
leisure
Mode Transport mode 1: car (driver or
passenger); 2: slow;
3: public
Adur Activity duration 1: short; 2: average;
3: long
Awith Travel party of A 0: none; 1: only others
inside the household;
2: others outside the
household involved
Tiday Start time of A 1: < 10 AM; 2: 10-0 AM;
3: 0-2 PM; 4: 2-4 PM; 5: 4-
6 PM; 6: > 6 PM
Tmax Maximum available time in the 0: 0; 1: 1-30; 2: 31-60;
schedule position of the activity 3:> 60
(inclusive travel times)
Nout Number of out-of-home activitiesin | 1:1; 2: 2; 3: > 2
C
fromH Trip to A starts from home 0: no; 1: yes
toH Trip from A ends at home 0: no; 1: yes
Aprev Type of previous activity 0: home; 1: work; 2: other
mandatory; 3: social or
leisure
Anext Type of next activity 0: home; 1: work; 2: other
mandatory; 3: social or
leisure
AvCmin Cmin location is available in choice | 0: no; 1: yes
set
AvCext5 Cext5 location is available in choice | 0: no; 1: yes
set
AvCext10 Cext10 location is available in 0: no; 1: yes
choice set
AvCext20 Cext20 location is available in 0: no; 1: yes
choice set
AvCmax Cmax location is available in choice | 0: no; 1: yes

set
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APPENDIX C

In this appendix, the adapted CBA algorithm is evaluated on 16 popular UCI
datasets. In order to get a more comprehensive evaluation, these datasets are
also classified by original CBA, the classical decision tree technique C4.5 (both on
original and discretized datasets) and Naive Bayes. The continuous attributes are
discretized by means of an entropy-based discretization method if needed. Ten-
fold cross validation is used to test the performance of these classifiers. The
benchmarking results are described in Table C.1.

Adapted CBA-1 and CBA-2, which respectively correspond to the new algorithms
that incorporate intensity of implication and dilated X2, perform better than any
of the other classifiers in comparison to the average error rate. The average error
rate of adapted CBA-1 on these 16 datasets is 13.21%, and that of adapted CBA-2
is only 12.81% if the best parameter is selected for each dataset. Furthermore,
adapted CBA-1 generates 17.925 rules in average, which is almost one third of
those rules generated by original CBA. The classifiers built by adapted CBA-2 are
more compact and averagely contain 11.82 rules. The original CBA also has a
better performance than C4.5 and Naive Bayes. Although Naive Bayes performs
excellent on several datasets such as breast, heart and labor, its behaviour is
unstable since it assumes attributes are independent, which is a very fragile
assumption in real life datasets. The performance of C4.5 on discretized datasets
is better than on original datasets, so only the former result is presented.
Although it is difficult to compare two classifiers based on datasets from
different domains, Wilcoxon signed-rank test is applied because the number of
datasets under evaluation is sufficiently large to give a rough statistical
comparison.
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Table C.1: Benchmark experiments on 16 UCI Datasets

Original CBA Adapted CBA-1 | Adapted CBA-2 | (45 NB
Dataset error | no.of | error | num. of | error | no.of | error | error
rate(%)| rules |rate(%)| rules |rate(%)| rules |rate(%) rate(%)
1 | austra | 14.35 | 130.5 13.48 26.4 13.04 12.4 13.48 | 18.70
2 | breast | 3.86 42.2 4.72 28.4 3.58 28.3 4.43 2.58
3| cleve | 17.16 63.8 15.47 16.9 16.13 9.6 20.79 | 16.17
4 crx 14.93 | 138.2 12.90 34.2 13.04 12.4 12.75 | 18.99
5 |diabetes| 22.26 38.5 24.21 10.4 21.74 10.7 22.92 | 24.22
6 | german | 26.70 134 25.60 56.5 26.80 19.7 27.60 | 25.30
7 | heart | 17.78 37.6 16.30 13.6 16.67 7.4 18.89 | 14.81
8 | hepati | 16.21 25.2 18.67 18.4 16.83 11.3 16.77 | 15.48
9 | horse | 19.03 87.9 14.12 1 14.12 1 15.22 | 20.92
10| hypo 1.64 30 1.23 24.4 0.85 10.9 0.85 1.90
11| iono 8.25 44.8 9.10 21.7 6.55 18.5 9.69 8.26
12| labor | 10.00 12.5 11.67 4.2 8.33 4.4 15.79 | 8.77
13| pima | 23.43 38.3 23.17 11 22.00 10.7 22.66 25
14| sick 2.64 47.4 2.43 10.7 3.25 1 2.07 4.32
15| sonar | 22.60 41 18.31 27.4 18.74 21.8 18.75 | 25.48
16| ti-tac | 0.00 8 0.00 8 3.34 9 14.20 | 29.65
average | 13.80 | 49.34 13.21 17.925 12.81 11.82 14.80 | 16.28

As shown in Table C.2, significant improvement is achieved by adapted CBA-2 at
a 5% confidence interval. Although the performance of adapted CBA-1 could not
generate the same good result as CBA-2, it performs best in several cases and
requires no parameter selection. Based on these experiments, it is safe to
conclude that intensity of implication and dilated )(2 are both appropriate
measures for associative classification.

Table C.2: Performance comparison

p-values for one tail test Original CBA C4.5 Naive Bayes

Adapted CBA-1 0.1652 0.0844 0.1057

Adapted CBA-2 0.0107 0.0035 0.0125
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APPENDIX D

It was mentioned in Chapter 3, section 3.5.2 and 3.6.1 that Intensity of
implication followed the hypergeometric law. In the remainder of that section, a
Poisson approximation was used that has been advanced by Suzuki and Kodratoff
(1998), which significantly reduced the computational effort. The results of the
original hypergeometric law formula have been added in this appendix in Table
D.1 for the sake of completeness. They were not reported in Chapter 3 because of
the high computational burden and because we did not want to overload the
chapter. The results are similar and even somewhat better at an average scale
than CBA-1 with respect to the performance on the test set, but the size of the
ruleset is also somewhat higher.

Table D.1: The performance of the Adapted CBA-1 algorithm, using the
hypergeometrical law formula

Adapted CBA-1, hypergeometical law formula
Dataset Train Test Num. of rules
(%) (%)
Duration 41.2 40.4 13
Location1 63.4 65.9 67
Location2 42.4 40.3 19
Mode for work 74.8 75.4 28
Mode other 60.4 55.9 94
Selection 79.1 79.2 1
Start time 34.3 33.8 109
Trip chain 82.8 81.8 27
With whom 59.0 54.0 92
Average 59.7 58.5 50
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APPENDIX E

The dilated chi-square measure that has been used in the CBA-2 algorithm has

been heuristically derived in section 3.5.3 as:
a

D

— 57 x%. The formula uses the parameter & and depending on
lmax()( )

dia?) =
the value that is used for @, a different accuracy could be obtained. It was
mentioned in section 3.6.1 that only the best accuracy result has been reported
in Table 3.7. For the sake of completeness, Figure E.1 reports the results of a
sensitivity analysis that has been carried out for different values of the
a-parameter. It can be seen from this figure that while there is some variation in
predictive accuracy, it remains relatively low for all the datasets under
consideration.
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Figure E.1: Sensitivity analysis in terms of predictive accuracy for different
values of a (CBA-2).
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De nood aan wetenschappelijk onderzoek op het vlak van transport komt wellicht
het meest tot zijn recht door het belang dat aan de sector wordt gehecht door
verschillende supranationale instellingen zoals de Verenigde Naties en het
Internationale Energie Agentschap. De sector is dan ook niet enkel een grote
energieverbruiker maar is tevens verantwoordelijk voor een aantal neveneffecten
op het economische en sociale vlak, alsook op het vlak van milieu. De
toenemende ongerustheid over hoe deze steeds groter wordende neveneffecten
kunnen worden aangepakt in een context van mondialisering en globalisering,
maakt dat beleidsmaatregelen die door transportplanners worden uitgestippeld,
onder een groter wordende druk komen te staan om aan een aantal van deze
problemen het hoofd te kunnen bieden.

Vooral in de Verenigde Staten, maar recent ook in Europa, is er een duidelijke
trend merkbaar waarbij beleidsmaatregelen, al dan niet in een juridisch kader,
worden onderbouwd met behulp van ondersteunende transportmodellen. Deze
transportmodellen zijn in staat om het effect van een nog te implementeren
beleidsmaatregel door te rekenen en kunnen op deze manier ondersteuning
bieden bij het beslissings- en uitvoeringsproces dat door beleidsinstanties wordt
uitgestippeld. Uiteraard is de modelspecificatie en —calibratie in deze essentieel
om te komen tot een betrouwbare voorspelling en ondersteuning.

Het wetenschappelijk onderzoeksdomein dat zich bezig houdt met
transportmodellering heeft de laatste decennia reeds een belangrijke
metamorfose doorgemaakt. Waarschijnlijk de meest ingrijpende verandering is de
introductie en de doorbraak geweest van activiteitengebaseerde
transportmodellen in het domein. Deze modellen beschouwen de vraag naar
transport als afgeleide vraag, i.e. een vraag die bepaald wordt door de
activiteiten die gezinnen en personen wensen uit te voeren of waar zij behoefte
aan hebben. Het modelleren van transport wordt dus bekeken in een ruimer
globaal kader, waarbij verplaatsingen en transport worden beschouwd om
activiteiten en bijgevolg dus doelstellingen en noden te kunnen realiseren. Het
ruimere kader komt het best tot uiting in de verschillende facetten (welke
activiteiten, waar, wanneer, op welke locatie, met wie, voor hoe lang en met welk
vervoermiddel) die door activiteitengebaseerde transportmodellen worden
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gemodelleerd. Het hoeft geen betoog dat tengevolge van deze ruimere context,
de modelspecificatie en -calibratie ook een toenemende mate van complexiteit
hebben gekend.

Transportmodellen zijn ruwweg in te delen in “scheduling modellen” enerzijds en
in simulatiemodellen anderzijds. Beide type modellen hebben hetzelfde doel, i.e.
de best mogelijke predictie van activiteiten- en reispatronen (dikwijls
gekwantificeerd in de vorm van herkomst- en bestemmingsmatrices of door
andere afgeleide transportgerelateerde variabelen), maar gebruiken hiervoor een
verschillende insteek. Scheduling modellen gebruiken concepten die van
oorsprong afstammen uit de geografie, micro-economie en psychologie en
gebruiken een aantal voorgedefinieerde regels en beperkingen om het
plannings(schedulings)proces van personen en huishoudens zo goed mogelijk te
capteren. Ze omvatten echter ook een aantal leeralgoritmes die het mogelijk
maken om kennis die bevat is in de data (dikwijls onder de vorm van dagboekjes)
te extraheren en te gebruiken voor hun voorspelling. Met deze laatste eigenschap
is de overstap naar simulatiemodellen vlug gemaakt. Globaal gesproken hebben
simulatiemodellen immers niet tot doel om het planningsproces volledig te
capteren, maar ze zullen de Vverschillende facetten (zie supra) van
activiteitengebaseerde modellen simuleren, dikwijls louter op basis van patronen
en structuren die vervat zitten in de data. Echter, ondanks deze verschillende
insteek komen beide modellen wel tot dezelfde finale doelstelling.

Scheduling- en simulatiemodellen vormen het uitgangspunt en achtergrond van
dit proefschrift. Zoals hierboven reeds vermeld, ligt de mate van overlap tussen
beide modellen vooral in de extractie van kennis dewelke vervat zit in de data,
alsook in de outputindicatoren van beide type van modellen. Het doel van dit
proefschrift is dan ook duaal. Enerzijds wordt in het proefschrift het gebruik van
alternatieve leeralgoritmes onderzocht die kunnen worden aangewend om kennis
uit data te extraheren in beide types van modellen. Anderzijds worden de finale
outputindicatoren van beide types van modellen met elkaar vergeleken wanneer
de volledige modelcalibratie is voltooid.

Om aan beide doelstellingen tegemoet te kunnen komen is het onderzoeksdomein
van “Unsupervised Machine Learning” als vertrekpunt genomen. Er zijn een aantal
goede redenen aan te halen voor deze keuze. Machine Learning is een
multidisciplinair onderzoeksveld dat een veelvoud aan inductie-algoritmes
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aanreikt om kennis uit data te extraheren. Het domein is reeds door verscheidene
onderzoekers in verschillende onderzoeksdisciplines aangewend, maar is tot op
heden slechts vrij beperkt in het domein van activiteitengebaseerde modellen
gebruikt. De zogenoemde vorm van “Supervised” leren begint langzamerhand
opgang te kennen, maar toepassingen van “Unsupervised” leren zijn tot op heden
eerder uitzonderingen. In tegenstelling tot “Supervised” leren, heeft
“Unsupervised” leren niet tot doel om één specifieke doelfunctie af te schatten
om tot een voorspelling te komen van één bepaalde te verklaren variabele, maar
is het in staat om een set van associaties en verbanden die in de data vervat
zitten te identificeren, zonder één bepaald vooraf vooropgesteld doel
(verklarende variabele). Omwille van het feit dat unsupervised leren nog in haar
kinderschoenen staat voor toepassingen binnen activiteitengebaseerde
transportmodellen, is een aanpassing van methodes zoals ze tot op heden
bestaan en worden toegepast in andere domeinen, een absolute noodzaak. De
aanpassingen en fundamentele bijdragen van het proefschrift starten vanaf
hoofdstuk 3, en zullen in het vervolg van deze samenvatting verder worden
toegelicht.

Vooreerst start het proefschrift in hoofdstuk 1 met een overzicht van het
hierboven geschetste conceptuele kader. Dit kader wordt o.a. uitvoerig aangevuld
door middel van een gedetailleerd literatuuroverzicht en met een situering van de
belangrijkste wetenschappelijke bijdragen van het proefschrift. Hierbij wordt
enerzijds de nadruk gelegd op de aanpassingen aan bestaande algoritmes binnen
een context van Unsupervised Machine Learning en anderzijds wordt het belang
van een vergelijking van de hogervernoemde types van modellen verder
aangetoond.

Vervolgens wordt in een tweede hoofdstuk, het Albatross (“A Learning-Based
Transportation Oriented Simulation System”) model geintroduceerd. Albatross is
een typisch voorbeeld van een “scheduling model”. Albatross is het eerste
operationele model en is uitgegroeid tot één van de meest belangrijke modellen
in de literatuur. Om het transportgedrag van personen te modelleren, gebruikt
Albatross een set van beslissingsregels dewelke idealiter uit data worden
geéxtraheerd. In het oorspronkelijk model, dat ontwikkeld werd door Arentze en
Timmermans (2000) wordt hiervoor een standaard algoritme gebruikt (CHAID),
wat gebaseerd is op beslissingsbomen. Het algoritme heeft vooral grote
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bekendheid verworven vanuit een statistische hoek. Wanneer dit echter in een
ruimer kader wordt bekeken, zijn er sinds de ontwikkeling van CHAID vele andere
alternatieven beschikbaar die voornamelijk uit het domein van Machine Learning
zijn ontstaan. De volgende 2 hoofdstukken doen in een eerste fase een
gedetailleerd voorstel over hoe deze technieken kunnen worden aangewend
binnen Albatross en stellen in een tweede fase meerdere aanpassingen voor aan
deze bestaande algoritmes. Net als de oorspronkelijke algoritmes werden de
voorgestelde aanpassingen allen uitvoerig geévalueerd door middel van
verschillende kwantitatieve outputindicatoren. Omwille van het feit dat de
algoritmes die binnen Albatross worden gebruikt eigenlijk vooral ten behoeve van
Supervised Learning zijn, diende in deze opzet naar een integratie te worden
gestreefd met de voorgestelde Unsupervised Learning methodieken.

Het algoritme dat in een derde hoofdstuk wordt voorgesteld, is het standaard
CBA-algoritme (Classification Based on Associations), en is een goed voorbeeld
over hoe Unsupervised Learning en Supervised Learning kunnen worden
geintegreerd. Het algoritme geniet uiteraard minder bekendheid dan CHAID of
andere meer traditionele inductie-algoritmes, maar heeft in het verleden tot een
aantal goede resultaten kunnen leiden in andere domeinen en vormde hierdoor
een uitdagend vertrekpunt voor onderzoek hinnen een activiteitengebaseerd
model. De resultaten van het onderzoek werden op 3 niveaus geévalueerd. Vooral
op het eerste niveau (choice facet level) waren de resultaten erg bevredigend,
doch op de 2 andere niveaus (pattern level en trip level) kon een zekere mate van
“overfitting” van het model worden vastgesteld. Omwille van deze reden werden 2
additionele ~ aanpassingen  aan  het  oorspronkelijke =~ CBA-algoritme
geimplementeerd en verder geévalueerd. De aanpassingen situeerden zich vooral
op het vlak van het gebruik van een complexere sorteermaatstaf, waarbij
enerzijds gebruik werd gemaakt van Intensity of Implication, een bestaande
sorteermaatstaf en anderzijds op basis van Dilated Chi-square, een eigen
geimplementeerde heuristiek. De resultaten van beide algoritmes waren matig
bevredigend, vooral de mate van overfitting op pattern en trip level kon hierdoor
significant worden teruggedrongen en een erg compacte “classifier” (i.e. een
belangrijke reductie in het aantal beslissingsregels) kon worden bekomen. De
belangrijkste doelstelling kon hierdoor worden bereikt, doch was het algoritme
ook onderhevig aan een kleine terugval op choice facet level. Het hoofdstuk



Nederlandse samenvatting 279

bespreekt naast deze gedetailleerde kwantitatieve benchmark ook een uitvoerige
kwalitatieve vergelijking van de verschillende geteste algoritmes.

De onderzoeksopzet in hoofdstuk 4 is vrij analoog. Het uitgangspunt in dit
hoofdstuk is de analyse en het gebruik van Bayesiaanse netwerken. Bayesiaanse
netwerken zijn eveneens technieken die een duidelijke oorsprong vinden in
Machine Learning en zijn tevens eerder unsupervised en beschrijvend van nature.
Het beschrijvende karakter van de techniek is erg krachtig, vooral omwille van
het feit dat verschillende relaties en complexe conditionele afhankelijkheden
kunnen worden gekwantificeerd en tevens gevisualiseerd in een netwerkstructuur.
In dit hoofdstuk wordt een methodiek uitgewerkt over hoe de techniek kan
worden aangewend voor classificatie binnen het Albatross model. De resultaten
werden eveneens op de 3 hoger vermelde niveaus geévalueerd en zijn vrij
gelijkaardig aan de resultaten van hoofdstuk 3. Eveneens werd vervolgens een
aanpassing aan de bestaande methodiek voorgesteld door de ontwikkeling van
een nieuwe heuristiek dewelke de integratie van Bayesiaanse netwerken en
beslissingshomen nastreeft. De heuristiek gebruikt de informatie die vervat zit in
de netwerkstructuur om te komen tot de ontwikkeling van een beslissingshoom,
een benadering die niet eerder in andere onderzoeken op dezelfde manier werd
geévalueerd. Door deze toepassing worden conditionele afhankelijkheden en
verbanden niet meer onmiddellijk uit de data geéxtraheerd maar dient het
Bayesiaanse netwerk als het ware als een filter om een zekere mate van
redundantie op te vangen. De nieuwe heuristiek werd tevens geévalueerd binnen
Albatross op de 3 benchmarking-niveaus, met erg bevredigende resultaten tot
gevolg. Analoog aan hoofdstuk 3, sluit het hoofdstuk af met een kwalitatieve
analyse van de geteste algoritmes.

Terwijl de hoofdstukken 3 en 4 een evaluatie van Unsupervised Machine Learning
algoritmes beoogden binnen een “scheduling model”, wordt in hoofdstuk 5
gestart met de toepassing en ontwikkeling van een aantal technieken binnen een
simulatiecontext. In tegenstelling tot hoofdstukken 3 en 4 wordt geen bestaand
model als vertrekbasis genomen, maar is het doel eerder de eigen ontwikkeling
van een model op basis van een aantal inzichten die het domein van
Unsupervised Learning ons kunnen bieden. Zo worden in hoofdstuk 5 Markov
ketens gebruikt omdat zij het mogelijk maken om sequentiéle patronen dewelke
vervat zitten in data te capteren en aan te wenden voor predictie. De expliciete
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identificatie van sequentiéle informatie uit data is erg beperkt binnen het
onderzoeksdomein. Omwille van deze reden is er een belangrijke bijdrage en
vormt het onderzoek een goede startbasis voor de ontwikkeling van een
innovatief simulatiemodel. Binnen hoofdstuk 5 worden diverse aanpassingen
voorgesteld om de sequentiéle informatie beter te kunnen capteren. De
belangrijkste aanpassingen en bijdragen tot de literatuur kunnen in 3 grote delen
worden samengevat. Ten eerste worden 2 alternatieve methodes voorgesteld om
te komen tot een betere en efficiéntere berekening van transitie-probabiliteiten
zoals ze in traditionele Markov Chains worden gebruikt. De voorgestelde methodes
maken het mogelijk om de verschillende sequenties onafhankelijk van elkaar te
beschouwen en zijn daarom beter geschikt voor de identificatie van sequentiéle
patronen op persoonsniveau. Bovendien gebeurt de calculatie efficiénter door de
voorgestelde benaderingen waardoor de identificatie van sequentiéle informatie
niet enkel beperkt blijft tot eerste-orde effecten maar tevens kunnen hierdoor
hogere-orde effecten efficiént worden opgespoord. Ten tweede wordt een
methodiek voorgesteld die het mogelijk maakt om de geidentificeerde informatie
te clusteren op basis van socio-demografische of tijdsgerelateerde kenmerken
waardoor een accurate en meer gedetailleerde benadering van diverse clusters
mogelijk wordt. Om dit te bereiken werd o.a. een aanpassing voorgesteld en
geimplementeerd op basis van een beslissingsboom, met deze belangrijke
verschilpunten dat enerzijds sequentiéle informatie kan worden opgenomen in de
boomstructuur en anderzijds deze sequentiéle informatie het resultaat is van een
inductie-algoritme en dus niet rechtstreeks uit de data wordt geobserveerd zoals
het geval is bij traditionele beslissingsbomen. Ten derde wordt de
geidentificeerde sequentiéle informatie aangewend voor de predictie van
sequenties van activiteiten en transportmodes in een aparte heuristisch
opgebouwde module. De predictieresultaten werden op basis van gemiddeld
aantal tours en trip rates geévalueerd.

De voorspelde sequenties van activiteiten en transportmodes uit hoofdstuk 5
worden in hoofdstuk 6 aangewend om te komen tot een allocatie van tijds- en
locatie-informatie. Hiervoor wordt de techniek van Reinforcement Learning als
uitgangspunt genomen. Reinforcement Learning is een vrij innovatieve techniek
die in eerder technische toepassingsdomeinen zoals bvb. robotica, of lift
dispatching wordt gebruikt. De techniek leert in belangrijke mate door interactie
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met de omgeving en is gebaseerd op het “trial en error” leerprincipe. In
hoofdstuk 6 wordt een gedetailleerde aanzet gegeven tot de manier waarop deze
techniek kan worden gebruikt binnen een simulatiemodel om locatie- en
tijdsinformatie toe te wijzen aan een bestaande sequentie van activiteiten en
transportmodes. Ook in dit hoofdstuk wordt de reeds bestaande literatuur
uitgebreid door enerzijds een meer geavanceerde toepassing voor wat betreft de
allocatie van tijdsinformatie op basis van een bestaand algoritme (Q-learning), en
anderzijds door een nieuwe ontwikkeling en aanwending van de techniek voor
wat betreft de allocatie van locatie-informatie. Ook wordt een nieuw geintegreerd
framework voorgesteld waardoor tijds- en locatie-informatie voortaan simultaan
kunnen worden gealloceerd.

Op deze manier leidt de synergie van hoofdstukken 5 en 6 tot een modulair
simulatiemodel dat kan worden aangewend voor een evaluatie met de bestaande
schedulingsmodellen uit hoofdstukken 3 en 4. Hoofdstuk 7 brengt op deze manier
de verschillende wetenschappelijke bijdragen van het proefschrift samen en
rapporteert de resultaten in een vergelijkende studie van de beste algoritmes die
werden geselecteerd uit de hoofdstukken 3 en 4 voor wat betreft het
schedulingsmodel enerzijds en anderzijds van de hoofdstukken 5 en 6 voor wat
betreft het ontwikkelde simulatiemodel.
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