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Chapter 1

Introduction

1.1 Introduction

In survival analysis the response of interest is the time from a well-defined time

origin to the occurrence of a specific event. Some examples are the time from

onset of a disease to death, the time from recovery to the time of recurrence of

a disease, the time from purchase to breakdown of a machine. This response is

called the survival time, the failure time or the event time. A special difficulty

that often occurs in the analysis of survival data is the possibility that some

responses are not observed for the full event time. Such incomplete observa-

tion of the event time is called (right) censoring. A classical model that is

frequently used to model univariate survival data subject to right censoring,

is the proportional hazards model (Cox, 1972).

In many studies there is a natural clustering in the data; event times within

the same cluster may be correlated. Such data are known as clustered sur-

vival data. Clustered survival data are a particular example of multivariate

survival data (see, e.g., Klein and Moeschberger, 2003, p.425). In recent years,

extensive research on clustered survival data has been carried out. A lot of

attention has been paid to frailty models and copula models. In frailty models

the cluster effect is a random effect; therefore frailty models are conditional

models. A frailty model is a multiplicative hazard model with three compo-

1



2 Chapter 1. Introduction

nents: a frailty factor that models the random cluster effect, a baseline hazard

function (that can be modelled in a parametric way or that can be left unspec-

ified) and a component that models (in a parametric way) the dependence of

the hazard on the covariates.

Copula models are used to model multivariate survival data with small and

equal cluster size. In this thesis we study copula models for four-dimensional

survival data. In copula models the joint survival function of the four event

times in a cluster is modelled as a function, called the copula, of the marginal

survival functions of the four event times. The copula determines the type of

dependence. The marginal survival functions can be modelled in a parametric,

a semi-parametric or a nonparametric way, possibly taking into account the

effect of covariates (Shih and Louis, 1995b; Glidden, 2000; Andersen, 2005).

In Section 1.2 we define the basic quantities that are used in survival analysis

and we review classical models that can be used to analyse univariate survival

data. In Section 1.3 we discuss multivariate survival data, which is the type of

data considered in this thesis, in somewhat more detail. The examples, that

will be used in future chapters to illustrate the developed methodology, are

collected in Section 1.4. Section 1.5 concludes this chapter with a discussion

of the thesis objectives.

1.2 Modelling univariate survival data

1.2.1 Survival data: notation and basic quantities

As explained in the introductory section, we consider event times that might

be subject to right censoring. For a censored observation, the only information

available is that the event time exceeds the censoring time. For instance, a

patient is still disease-free at the end of the study so that the time to recurrence

of the disease is unknown for this patient or a patient might decide to leave

the study before the event of interest has occurred. For these subjects we only

know that the unobserved event time is larger than the observed censoring

time. We now give a formal description of what we mean by right censored

survival data.
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Let N denote the total number of subjects. For the jth subject we observe

Xj = min(Tj , Cj), where Tj is the event time for this subject and Cj is the

censoring time independent of Tj . Let δj = I (Tj ≤ Cj) be the censoring

indicator, which is equal to one if the event has been observed and is equal to

zero otherwise.

Let f be the probability density function and F the corresponding cumulative

distribution function of the (continuous) event time T . The basic quantities

used to describe failure time data are the survival function

S(t) = 1− F (t) = P (T > t),

which is the probability of surviving beyond time t, and the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)
∆t

. (1.1)

The hazard function can be interpreted as the instantaneous failure rate, con-

ditional on having survived up to time t. A related quantity is the cumulative

hazard function, defined by

Λ(t) =
∫ t

0
λ(u)du.

For continuous event times, these important quantities are linked together by

a series of relationships. First, it follows from (1.1) that

λ(t) =
f(t)
S(t)

and hence,

λ(t) = − d

dt
log S(t).

After integrating and exponentiating the previous expression, we obtain that

the survival function can be rewritten in terms of the cumulative hazard func-

tion

S(t) = exp
{
−

∫ t

0
λ(u)du

}
= exp {−Λ(t)} .

The survival function can be estimated in a nonparametric way using the

product-limit estimator, proposed by Kaplan and Meier (1958). This estimator
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is defined as follows for all values of t in the range of the observed times:

Ŝ(t) =





1 if t < X1,
∏

Xj≤t

{
r(Xj)−d(Xj)

r(Xj)

}
if X1 ≤ t,

(1.2)

where r(v) is the number still at risk at time v and d(v) is the number of events

at time v. For values of t beyond the largest observed time, this estimator

is not well defined (see, e.g., Klein and Moeschberger, 2003, Chapter 4, for

suggestions of solutions of this problem). The Kaplan-Meier estimator (1.2) is

a step function with jumps at the observed event times. The size of the jump

at a certain event time Xj = Tj depends on the number of events observed at

Tj , as well as on the pattern of the censored event times before Tj .

1.2.2 Proportional hazards model

Assume that zj = (zj1, . . . , zjp)′ is a p-variate vector of covariates observed

for the jth subject. To model the effect of the covariates on survival, we can

model the hazard function as a function of the covariates. Two general classes

of models that can be used to relate covariate effects to the hazard function,

are the family of multiplicative hazards models and the family of additive

risks models. The latter family will be discussed in the next section. For the

family of the multiplicative hazards models, the hazard function of a subject

with covariate vector zj is the product of a baseline hazard function λ0(t),

corresponding to the hazard function of a subject with covariate information

zj equal to 0, and a non-negative function of the covariates c
(
β′zj

)
, i.e.,

λj(t) = λ0(t)c
(
β′zj

)
.

The vector β contains the unknown regression coefficients associated with zj .

For the classical choice c
(
β′zj

)
= exp

(
β′zj

)
, we have

λj(t) = λ0(t) exp
(
β′zj

)
. (1.3)

This implies that the difference between the logarithm of the hazard func-

tion and the logarithm of the baseline hazard function is linear in the risk
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(regression) coefficients, i.e.,

log {λj(t)} − log {λ0(t)} =
p∑

m=1

βmzjm.

Model (1.3) is known as the proportional hazards model. Its name comes from

the fact that the ratio of the hazard functions of two subjects (say subject j

and l), which is given by

λj(t)
λl(t)

= exp

{
p∑

m=1

βm(zjm − zlm)

}
,

is constant over time.

A popular choice, when assuming a parametric baseline hazard function, is

λ0(t) = λρtρ−1, with λ > 0 and ρ > 0. This choice corresponds to a Weibull

distribution for the event times. Alternatively, we can leave the baseline hazard

function unspecified. Since the model then contains one parametric factor,

exp
(
β′zj

)
, and one factor that is not specified in a parametric way, λ0(t), we

call this a semi-parametric model. Assuming that there are no ties among the

event times, the parameters in β can be estimated by maximising the partial

likelihood, introduced by Cox (1972),

PL(β) =
N∏

j=1

{
exp

(
β′zj

)
∑

l∈R(Xj)
exp

(
β′zl

)
}δj

,

where R(Xj) is the set of subjects that are still at risk to experience the event

at time Xj (risk set). Andersen and Gill (1982) and Fleming and Harring-

ton (1991) show the consistency and the asymptotic normality of the partial

likelihood estimator β̂.

1.2.3 Additive risks model

In the proportional hazards model, the covariates act multiplicatively on the

baseline hazard function. In this section, we briefly describe an alternative

to the proportional hazards model, namely the additive risks model. Under
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the additive risks model, we assume that the hazard function at time t, for a

subject with a p-dimensional vector of covariates zj , is a linear combination

of the covariates, that is

λj(t) = λ0(t) + β′zj .

This model is a special case of the additive risks model proposed by Aalen

(1980), which allows the regression coefficients to be functions whose values

may change over time. More details on the additive risks model are given

in Klein and Moeschberger (2003, Chapter 10) and Martinussen and Scheike

(2006, Chapter 5).

1.2.4 Proportional odds model

The Cox proportional hazards model specifies that the covariate effect is a

multiplicative factor on the baseline hazard function. When the covariates

do not depend on time, this implies that the ratio of the hazard functions of

subjects with different risk factors is constant. To deal with situations where

the covariate effect diminishes over time, the proportional odds model may be

useful (see Yang and Prentice, 1999, for more explanation about this). In the

proportional odds model, the covariates act multiplicatively on the baseline

odds function. Let Fj be the conditional distribution function of Tj given zj ,

for j = 1, . . . , N , and let Fj(t) {1− Fj(t)}−1 be the odds of the event {Tj ≤ t}.
The proportional odds model specifies that the logodds of the event {Tj ≤ t}
is

log
{

Fj(t)
1− Fj(t)

}
= h0(t) + β′zj ,

where h0(t) is the baseline logodds function at time t corresponding to the

logodds function at time t of a subject with covariate information zj equal

to 0. Bennett (1983) studies the estimation of the parameters β and of the

baseline odds function using a maximum likelihood approach. Murphy et al.

(1997) show that the maximum profile likelihood estimator for β, proposed

by Bennett (1983), is consistent, asymptotically normal and efficient. Yang

and Prentice (1999) propose new inference techniques for the proportional
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odds model that avoid the complex calculations of the profile likelihood while

retaining good efficiency properties. They propose several classes of regres-

sion estimators, such as the pseudo maximum likelihood estimator, martingale

residual-based estimators and minimum distance estimators.

1.3 Multivariate survival data

In the previous section we discussed some models that can be used for analysing

univariate survival data. A typical feature of univariate survival data is the

independence of the survival times. In this thesis we focus on clustered (or

multivariate) survival data. Observational units within the same cluster are

typically correlated.

In Section 1.4 we give examples of clustered survival data. These examples

will be used in the future chapters to demonstrate the developed methodology.

A first example is a data set on the time to infection in the four quarters of

the udder of dairy cows. In such a study, where the clusters are the cows, we

can expect association between the infection times within cows. This is an

example where the cluster size is small and balanced; each cluster has four

udder quarters, which are the observational units. In the following examples

the cluster size differs from cluster to cluster and is larger than four. The

second example is a data set on the time to culling for heifers, i.e., for cows

which have experienced only one calving. Since the culling policy might differ

between the herds, heifers are clustered within the herds. The third example

is a multicenter clinical trial, which is a typical example of clustered survival

data. The study is an early breast cancer clinical trial, where the event time

is the time to death or recurrence. Since this trial is run in different cancer

centers over the world, the center is considered as the cluster and the patient

is the observational unit within the cluster. In this study, there are a few

large centers and a few small centers. The fourth example consists of data

from 27 randomised trials in advanced colorectal cancer data. This example

is a meta-analysis, with the trial being the cluster and the patients being the

observational units within the cluster. The event time is the survival time. In
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the following section we give a more detailed description of the data sets.

1.4 Data sets used for illustration

1.4.1 Udder infection data

We consider a data set on mastitis, an infection of the udder of a dairy cow.

Mastitis can be caused by many organisms, most of them bacteria, such as

Escherichia coli, Streptococcus uberis, and Staphylococcus aureus. Since each

udder quarter is separated from the three other udder quarters, one quarter

might be infected while the other quarters are infection-free. In this study,

100 cows are followed up for infections. From each quarter, a milk sample is

taken monthly and is screened for the presence of different bacteria. Due to

the periodic follow up, the infection time is defined as the average of the time

of the last milk sample that indicates that there is no infection and the time

of the first milk sample that indicates an infection. Observations can be right

censored if no infection occurs before the end of the lactation period, which

is roughly 300 days but different for every cow, or if the cow is lost to follow

up during the study, for example due to culling. Note that this implies that

there is a common censoring time for the four udder quarters of a cow (i.e.,

for all units in the cluster). We model the time to infection with any bacteria,

with cow being the cluster and udder quarter the observational unit within

the cluster. The correlation between the infection times of the four udder

quarters of a cow is an important parameter to take preventive measures.

With high correlation, a lot of attention should be given to the uninfected

udder quarters of a cow that has an infected quarter. Further, the difference

between front and rear udder quarters has been put forward to explain the

difference in infection status (Adkinson et al., 1993). Therefore, we study the

effect of a binary covariate indicating the location of the udder quarter (front

or rear). This is a covariate at the udder quarter level since it takes different

values within the cow. We further include parity as a covariate in the analysis.

The parity of a cow is the number of calvings (and therefore the number of

lacation periods) that the cow has already experienced. Several studies have
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shown that prevalence as well as incidence of intramammary infections increase

with parity (Weller et al., 1992). We convert parity into a binary covariate,

grouping all the cows with more than one calving in the group of multiparous

cows (heifer=0) and grouping all the cows with only one calving in the group

of primiparous cows or heifers (heifer=1). The covariate heifer is called a cow

level covariate since every udder quarter of the cow takes the same value for

this covariate. A subset of the data is presented in Table 1.1.

This data set has provided the motivation to develop the asymptotic properties

of the semi-parametric and the nonparametric two-stage estimation approach

for four-dimensional copulas, developed in Chapter 5. In Sections 6.3 and

6.5 of Chapter 6, we model the association between the infection times of

the four udder quarters using a four-dimensional copula. In the marginal

survival functions we model the effect of the location of the udder quarter

(front or rear) and the parity. We use a pseudo likelihood ratio test to select

an appropriate copula in the power variance copula family that describes the

association between the infection times of the four udder quarters.

1.4.2 Time to culling data

The time to culling data are described in De Vliegher et al. (2005) and in

Duchateau and Janssen (2008, p.10-12). The time to culling during the first

lactation of dairy heifer cows is studied as a function of the somatic cell count

(SCC) in early lactation. The somatic cell count is measured in the period 5

to 15 days after calving. We use the logarithm of the somatic cell count as

a covariate. High somatic cell count in early lactation in heifers is associated

with an increased probability of clinical mastitis during the first lactation

(De Vliegher et al., 2005). Heifers with infected udder quarters are quite

expensive to keep due to the high costs for medical care and the loss in milk

production. As a result, elevated somatic cell count in early lactation in heifers

might be associated with an increased culling hazard during the first lacta-

tion. Dairy heifer cows are followed during the first lactation period (roughly

300-350 days). Cows that are still alive at the end of the lactation period are

censored at that time. As already mentioned in Section 1.3, cows are clustered
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Table 1.1: Udder infection data. The first column contains the cow identifi-

cation number. The second column contains the time (in days) to infection.

The third column gives the censoring indicator, taking value one (status = 1)

if infection is observed and zero (status = 0) otherwise. The fourth column

gives the position of the udder quarter (LR = left rear, LF = left front, RR =

right rear, RF = right front). The last column gives the parity: multiparous

cow (heifer = 0) or primiparous cow (heifer = 1).

Cowid Time to infection Status Quarter Heifer

1 278.5 0 LR 1

1 278.5 1 LF 1

1 62.5 1 RR 1

1 152.5 1 RF 1

2 317.5 0 LR 0

2 317.5 0 LF 0

2 317.5 0 RR 0

2 317.5 0 RF 0

. . .

100 76.5 1 LR 1

100 76.5 1 LF 1

100 76.5 1 RR 1

100 76.5 1 RF 1

within herds since culling policy might differ substantially between the herds.

The study includes 13835 heifer cows in total and consists of 3192 herds. The

number of heifer cows per herd varies from 1 to 56 (the mean (median) number

of heifers per herd is 4.33 (4)). The data for a few heifer cows from the first

and the last herd are presented in Table 1.2.

In Chapter 3 we use this example to demonstrate a model-based bootstrap

algorithm, proposed in Section 3.2, that can be used to estimate the standard
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errors of the parameter estimates in a shared frailty model. In Section 3.4.1

we study the heterogeneity between herds and the effect of the logarithm of

the somatic cell count on the culling hazard using a shared frailty model.

We estimate the standard errors of the parameter estimates in the shared

frailty model using model-based bootstrap. We compare the results of the

model-based bootstrap algorithm with the results obtained by using the non-

parametric resampling scheme proposed by Therneau and Grambsch (2000).

Table 1.2: Time to culling data. The first column contains the cow identifi-

cation number. The second column gives the herd to which the cow belongs.

The third column contains the time (in days) to culling. The fourth column

gives the censoring indicator, taking value one (status = 1) if the cow is culled

and zero (status = 0) otherwise. The last column gives the logarithm of the

observed somatic cell count.

Cowid Herd Time to culling Status log(SCC)

1 1 331 0 4.09

2 1 312 0 4.83

3 1 96 1 3.93

. . .

13833 3192 317 0 3.93

13834 3192 327 0 6.98

13835 3192 315 0 7.94

1.4.3 Early breast cancer data

This study is an early breast cancer phase III clinical trial from the European

Organisation for Research and Treatment of Cancer (EORTC). One of the ob-

jectives of this trial is to study if perioperative chemotherapy, when compared

with no further treatment, results in an increase in survival for women follow-

ing potentially curative treatment of carcinoma of the breast. Details of this
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trial are described in Clahsen et al. (1996). In practice, a multicenter clinical

trial typically contains a few large centers and many rather small centers. This

trial includes 2793 patients entered by 15 centers. The number of patients per

center, sorted according to size, is 6, 19, 25, 40, 48, 53, 54, 60, 78, 184, 185,

206, 311, 622, 902. The endpoint that we consider is disease-free survival, de-

fined as the time from randomisation to time to death or recurrence, whatever

comes first. Patients that are still at risk at the end of the study are censored

at that time. A subset of the data is presented in Table 1.3.

Table 1.3: Early breast cancer data. The first column contains the patient

identification number. The second column gives the number of the center

where the patient was treated. The third column contains the disease-free

survival time (in days). The fourth column gives the censoring indicator,

taking value one (status = 1) if death or recurrence is observed and zero

(status = 0) otherwise. The last column indicates the treatment received

(perioperative (periop=1) or not (periop=0)).

Patid Center Disease-free Status Periop

survival time

1 1 6195 0 0

2 1 6215 0 0

3 1 6207 0 0

. . .

2791 15 3257 0 1

2792 15 2569 0 0

2793 15 2900 0 1

In Chapter 3 we use this example to illustrate the use of bootstrap to esti-

mate the standard errors of the parameter estimates in a shared frailty model.

In Section 3.4.2 we use a shared frailty model to study the heterogeneity in

the outcomes and to study the effect of perioperative chemotherapy compared
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to no further treatment. We estimate the standard errors of the parameter

estimates in the shared frailty model using a model-based resampling plan,

proposed in Section 3.2, and using a nonparametric bootstrap algorithm pro-

posed by Therneau and Grambsch (2000).

1.4.4 Advanced colorectal cancer data

This study is described in Burzykowski et al. (2004). The data come from 27

advanced colorectal cancer trials (Advanced Colorectal Cancer Meta-Analysis

Project, 1992, 1994; Meta-Analysis Group in Cancer, 1996, 1998). In the four

meta-analyses, the comparison was between an experimental treatment and

a control treatment. In total there are 4007 patients, 1871 (46.7 %) in the

control group and 2136 (53.3 %) in the experimental group. The number of

patients per trial varies from 15 to 382 patients (the mean (median) number

of patients per trial is 149 (148)). Our analysis is based on the survival time,

defined as the time from randomisation to death from any cause. Most pa-

tients have died (3591 out of 4007 patients, i.e., 89.6%). The data for a few

patients are given in Table 1.4.

In Chapter 4 we use this example to demonstrate a new approach to fit frailty

models. In Section 4.5 we investigate the between-trial variation (heterogene-

ity) in both the baseline risk and the effectiveness of the experimental treat-

ment. For this purpose, we use a frailty model including a fixed treatment

effect, a random trial effect and a random treatment effect. We illustrate that

this frailty model can be fitted by transforming the model to a linear mixed-

effects model, as proposed in Section 4.2.2.

Note that the covariate “Treatment” is coded with values −1 and 1 (see Ta-

ble 1.4). In this way we avoid convergence problems due to an ill-conditioned

variance-covariance matrix in the SAS procedure PROC MIXED.

1.5 Thesis objectives

The main objective of this thesis is to develop estimation methods and resam-

pling procedures for frailty models and copula models. The proposed methods
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Table 1.4: Advanced colorectal cancer data. The first column contains the

patient identification number. The second column gives the number of the

trial in which the patient is involved. The third column contains the survival

time (in days). The fourth column gives the censoring indicator, taking value

one (status = 1) if death is observed and zero (status = 0) otherwise. The

last column indicates the treatment received (experimental (treatment=1) or

control treatment (treatment=-1)).

Patid Trial Survival time Status Treatment

1 1 341 1 -1

2 1 365 1 1

3 1 690 1 1

. . .

32 1 388 0 -1

33 1 197 0 1

. . .

4005 27 176 1 -1

4006 27 392 1 -1

4007 27 141 1 -1

are illustrated using examples from clinical trials and veterinary studies on

dairy cows, as described in Section 1.4.

In Chapter 2 we give an overview of the models that will be studied in the fu-

ture chapters and we briefly review the estimation methods that are proposed

in the literature to fit these models.

Chapters 3 and 4 focus on frailty models. In Chapter 3 we consider the shared

frailty model. This model extends the classical proportional hazards model by

adding a multiplicative frailty term that accounts for the cluster effect. We

propose two model-based bootstrap algorithms that can be used to estimate

the standard errors of the parameter estimates in the shared frailty model
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(Section 3.2). We compare the two model-based resampling schemes to a non-

parametric resampling plan discussed in Therneau and Grambsch (2000). This

comparison is based on a simulation study (Section 3.3). The results presented

in Chapter 3 have been published in Massonnet et al. (2006).

In Chapter 4 we study a frailty model that extends the shared frailty model

and that can be used in the clinical trials context: a frailty model with a

random cluster effect and a random treatment effect. Classical estimation

methods to fit such a model are likelihood-based. We propose an alternative

estimation approach which is based on a model transformation (Section 4.2).

Through the transformation, the parameters of interest in the frailty model

become the parameters in a related mixed-effects model. We demonstrate

that the idea of model transformation can also be used to fit other conditional

survival models, such as the multivariate proportional odds model and the

multivariate additive risks model (Section 4.3). Based on a simulation study,

we evaluate the performance of the proposed estimation method for frailty

models (Section 4.4). Massonnet et al. (2008a) contain the material discussed

in Chapter 4.

In Chapters 5 and 6, we study copula models for four-dimensional survival

data. The udder infection data set, described in Section 1.4.1, is the motivat-

ing example. In this example, we have correlated infection times in the four

udder quarters of dairy cows and we use copulas to model the dependence

between the four outcomes. In Chapter 5 we propose a semi-parametric and

a nonparametric two-stage estimation procedure for four-dimensional copu-

las. In the first step of the estimation procedure, we estimate the marginal

survival functions. We allow these survival functions to depend on a binary

covariate at the cluster level and a binary covariate at the observational unit

level. In a second step, we obtain likelihood estimates of the dependence pa-

rameter(s) after replacing the survival expressions in the likelihood by their

estimated counterparts. We develop the asymptotic properties of the esti-

mators obtained in the first and the second step of the estimation procedure

(Sections 5.3 and 5.4). Chapter 5 contains the detailed proofs of the theorems

that are given in Massonnet et al. (2008b).
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In Chapter 6 we consider three copula models that are nested in the power

variance copula family: Clayton, positive stable and inverse Gaussian copulas.

Each of these three copulas model a different type of dependence. We use a

pseudo likelihood ratio test to select a copula in the power variance copula

family that provides a good description of the type of dependence between

the outcomes in a cluster (Glidden, 2000; Andersen, 2005). We develop a

bootstrap algorithm that can be used to obtain the p-value of this test (Sec-

tion 6.2). This bootstrap algorithm also provides estimates for the standard

errors of the estimated copula parameters. We perform simulations to study

the type I error rate and the power of the pseudo likelihood ratio test. The

simulation setting we use, mimics the parameter characteristics of the udder

infection data. The material discussed in Chapter 6 is also in Massonnet et al.

(2008b).

In Chapter 7 we collect the main conclusions from this thesis and discuss

interesting topics for further research.



Chapter 2

Modelling multivariate

survival data

2.1 Introduction

Frailty models and copula models are widely used to fit multivariate survival

data. Both models provide a way to describe the within cluster dependence

of the outcomes. Copula models are typically used to model the joint sur-

vival function of clustered data with small and equal cluster size (e.g., bi-

variate survival data). Frailty models can be used to fit clustered survival

data having any balanced or unbalanced cluster size. In Section 2.2 we in-

troduce the shared frailty model and briefly discuss the estimation methods

for the shared frailty model. In Section 2.3 we consider a frailty model with

a random cluster and a random treatment effect. This model extends the

shared frailty model by adding a random treatment effect. We give a short re-

view of classical likelihood-based estimation methods to fit this model. Frailty

models are conditional hazards models. Other conditional survival models

for clustered survival data are the multivariate additive risks model and the

multivariate proportional odds model. In Section 2.4 we describe both mod-

els. In Section 2.5 we focus on copula models for quadruples. We summarize

some general ideas on copulas (Section 2.5.1) and give the precise definitions

17
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of some specific copulas that are nested in the power variance copula family

(Section 2.5.2). In Section 2.5.3 we briefly introduce the two-stage estimation

approach for copulas, which will be studied in more detail in Chapter 5.

2.2 The shared frailty model

2.2.1 Model formulation

Assume we have a total of N subjects that come from K different clusters,

cluster i having ni subjects (N =
∑K

i=1 ni). Each subject is observed from time

zero to a failure time Tij or to a potential right censoring time Cij independent

of Tij . Let Xij = min(Tij , Cij) be the observed time and δij be the censoring

indicator which is equal to 1 if Xij = Tij and 0 otherwise. For each subject,

we also have a p-variate vector of covariates zij = (zij1, . . . , zijp). The shared

frailty model is given by

λij(t) = λ0(t) exp(β′zij + wi), (2.1)

where λij(t) is the conditional hazard function at time t for the jth subject

from the ith cluster (conditional on wi), λ0(t) is the baseline hazard at time

t, β is the fixed effects vector of dimension p and wi is the random effect for

cluster i. As in the Cox proportional hazards model for univariate survival

data, λ0(t) can be left unspecified or it may be assumed to have some specific

parametric form. The wi’s, i = 1, . . . ,K, are a sample (independent and

identically distributed) from a density fW .

Model (2.1) can be rewritten as:

λij(t) = λ0(t)ui exp(β′zij). (2.2)

The factor ui = exp(wi) is termed the frailty corresponding to the ith cluster.

Model (2.2) is called the shared frailty model because subjects in the same

cluster all share the same value of the frailty factor. The ui’s, i = 1, . . . , K,

are a sample from a density fU , which is called the frailty density. In this

thesis, we consider the following choices for the frailty density:
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(a) The one-parameter gamma density of the form

fU (u) =
u(1/θ)−1 exp(−u/θ)

θ1/θΓ(1/θ)
, θ > 0. (2.3)

The corresponding density for W is

fW (w) =
{exp(w)}1/θ exp {− exp(w)/θ}

θ1/θΓ(1/θ)
.

For the gamma density E (U) = 1. Typically Var(U) = θ is used to

describe the heterogeneity.

(b) The normal density for W with E (W ) = 0 and Var(W ) = σ2.

The corresponding density of U is the lognormal density:

fU (u) =
1

u
√

2πσ2
exp

{
−(log u)2

2σ2

}
. (2.4)

The mean and the variance of the frailty are then given by

E (U) = eσ2/2

Var(U) = eσ2
(
eσ2 − 1

)
.

Note that the mean of the frailty U is not one if we assume a zero-mean

normal distribution for the random effect W . In the further discussion,

σ2 is chosen so that Var(U) = θ, i.e., σ2 = log
(

1+
√

1+4θ
2

)
.

We use Var(U) = θ to describe the heterogeneity induced by the two frailty

distributions. The gamma and the lognormal distributions are often made

choices for the frailty distribution in practice. Most of the software limits the

choice of the frailty distributions to these cases. Other frailty distributions

which have been used in the literature include the positive stable (Hougaard,

1986b), the inverse Gaussian (Hougaard, 1986a), the power variance function

(Hougaard, 1986a; Aalen, 1988) and the compound Poisson (Aalen, 1992).

A detailed discussion of these frailty distributions is given in Duchateau and

Janssen (2008, Chapter 4).
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2.2.2 Methods of estimation for the shared frailty model

The gamma frailty model is often used due to its mathematical convenience

that results from the simple form of the Laplace transform that corresponds

to (2.3):

L(s) = E
(
e−sU

)
= (1 + θs)−1/θ .

For the gamma frailty model, an explicit expression for the observable (margi-

nal) likelihood can be obtained (Klein, 1992). For the lognormal frailty model,

it is not possible to obtain an explicit expression for the Laplace transform.

Therefore, estimation methods for this frailty distribution are often based on

numerical integration (McGilchrist and Aisbett, 1991; Ripatti and Palmgren,

2000; Vaida and Xu, 2000).

For the gamma frailty model, Klein (1992) shows that the observable (marginal)

loglikelihood is given by

lobs{β, θ, λ0(.)} =
K∑

i=1

[
Di log θ − log Γ(

1
θ
) + log Γ(

1
θ

+ Di)

−
(

1
θ

+ Di

)
log{1 + θ

ni∑

j=1

Λ0(xij) exp(β′zij)}

+
ni∑

j=1

δij{β′zij + log λ0(xij)}

 , (2.5)

where Di =
∑ni

j=1 δij is the number of observed events in cluster i.

As noted in the previous section, the baseline hazard λ0(t) in the frailty model

can be specified explicitly or left unspecified. Under the parametric assump-

tion, the parameters in the resulting model can be estimated using maximum

likelihood estimation procedures. For example, for λ0(t) ≡ λ0 constant, the

parameters β, θ and λ0 can be estimated by maximising the observable loglike-

lihood lobs(β, θ, λ0). If λ0(t) is left unspecified, the EM algorithm (Klein, 1992)

and the penalized partial likelihood approach (Therneau and Grambsch, 2000)

can be used to estimate the unknown parameters in (2.5). The latter can also

be used to estimate the parameters of the lognormal frailty model (McGilchrist

and Aisbett, 1991; McGilchrist, 1993). Ducrocq and Casella (1996) develop a
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Bayesian approach, using the Laplace approximation to derive the marginal

posterior distribution of the variance of the random effects. We briefly discuss

the EM algorithm for the gamma frailty model and the penalized partial like-

lihood approach for the gamma and the lognormal frailty model, since we will

use these estimation methods in Chapter 3.

The EM algorithm for the gamma frailty model

To estimate ξ = (θ, β), we would like to base the likelihood maximisation

on the observable loglikelihood (2.5). However, this likelihood is difficult to

maximise as it contains, apart from ξ, also the unspecified baseline hazard.

We therefore rely on the EM algorithm to estimate ξ (Klein, 1992); it has

been described in detail by Duchateau et al. (2002).

It is worth noting that Therneau and Grambsch (2000, p.254) have shown

that, for the gamma frailty case, the EM algorithm and the penalized partial

likelihood approach lead to the same estimates. Since S-Plus contains a fast

algorithm for the penalized partial likelihood approach, this property is very

important from a practical point of view.

The penalized partial likelihood for shared frailty models

We consider the shared frailty model (2.1), where the model expression is in

terms of the random effects wi, for i = 1, . . . ,K. Define w = (w1, . . . , wK)′.
For the estimation of ξ = (θ, β), we use the penalized partial likelihood

lppl(ξ,w) = lpart(ξ,w)− lpen(ξ,w),

where

lpart(ξ,w) =
r∑

l=1


 ∑

tij=t(l)

ηij − d(t(l)) log





∑

tqs≥t(l)

exp(ηqs)






 ,

with ηij = z′ijβ + wi, r denoting the number of different event times, t(1) <

. . . < t(r) being the ordered event times, d(t(l)) denoting the number of events



22 Chapter 2. Modelling multivariate survival data

at time t(l), l = 1, . . . , r, and

lpen(θ,w) = −
K∑

i=1

log fW (wi).

For random effects wi, i = 1, . . . ,K, with corresponding one-parameter gamma

density for the frailties, we have

lpen(θ,w) = −
K∑

i=1

{
wi − exp(wi)

θ

}
−K

{
log θ

θ
− log Γ

(
1
θ

)}
.

The maximisation of the penalized loglikelihood consists of an inner and an

outer loop. In the inner loop the Newton-Raphson procedure is used to max-

imise, for a provisional value of θ, lppl(ξ,w) for β and w. In the outer loop, a

likelihood similar to (2.5) is maximised for θ as in the case of the EM algorithm.

The process is iterated until convergence (for details see, e.g., Duchateau et al.,

2002).

For random effects wi, i = 1, . . . ,K, having a normal density, we have

lpen(σ2,w) =
1
2

K∑

i=1

{
w2

i

σ2
+ log(2πσ2)

}
.

By reducing the penalized partial likelihood, this term penalizes random effects

that are far away from the mean value. The maximisation of the penalized

loglikelihood consists of an inner and an outer loop. The inner loop is identical

to the one described for gamma frailty parameters. In the outer loop, the

restricted maximum likelihood estimator for σ2 is obtained using BLUP’s.

The process is iterated until convergence (for details see McGilchrist, 1993;

Duchateau et al., 2002).

2.3 Frailty model with random cluster and treat-

ment effects

2.3.1 Model formulation

In this section we consider a frailty model with two random effects within a

cluster. A typical example of such a model is a multicenter clinical trial with a
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random effect describing the heterogeneity between centers and a second ran-

dom effect describing the treatment heterogeneity between centers. We use

this model to investigate the between-trial variation (heterogeneity) in both

the baseline risk and the effectiveness of the experimental treatment in the

advanced colorectal cancer data.

In this section we assume that we observe a binary covariate zij , representing

the treatment to which the jth patient in the ith cluster has been randomised,

with zij = −1 if the patient is in the control group and zij = 1 if the patient

is in the experimental group. We consider a Cox proportional hazards model

including a fixed treatment effect, a random cluster effect and a random treat-

ment effect. The conditional hazard for the jth patient in the ith cluster is

then given by

λij(t) = λ0(t) exp {b0i + (β + b1i)zij} , (2.6)

where λ0(t) represents the unspecified baseline hazard at time t, β is the

fixed overall treatment effect, b0i is the random cluster effect (contributing

the factor exp(b0i) to the hazard) and b1i is the random treatment effect

providing information on how the treatment effect within cluster i deviates

from the overall treatment effect captured by the regression coefficient β.

The random effects b0i and b1i are assumed to follow zero-mean normal dis-

tributions. The variance-covariance matrix of the vector of random effects

bT = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K) takes the form

G = IK ⊗

 σ2

0 σ01

σ01 σ2
1


 , (2.7)

where ⊗ is the Kronecker product. The variance components σ2
0 and σ2

1 are

a measure of the heterogeneity of the hazard due to the random cluster, resp.

random treatment effect; σ01 is the covariance between the two random effects

within a cluster.

Note that, in absence of a random treatment effect, model (2.6) reduces to the

lognormal shared frailty model

λij(t) = λ0(t) exp(b0i + βzij) = λ0(t)ui exp(βzij), (2.8)
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where ui = exp(b0i) is the frailty for cluster i. The density of the frailty U is

then given by (2.4). In absence of covariates this model further simplifies to

λi(t) = λ0(t) exp(b0i) = λ0(t)ui. (2.9)

In (2.8) and (2.9) b0i, i = 1, . . . , K, is a sample from a zero-mean normal

density with variance σ2
0, describing the heterogeneity between clusters.

2.3.2 Methods of estimation

The likelihood-based estimation methods for shared frailty models, described

in Section 2.2.2, have been adapted to cover the extra complexity of the ran-

dom treatment effect in model (2.6). Vaida and Xu (2000) propose the use of

Markov Chain Monte Carlo methods to obtain the expected values of the frail-

ties in the E-step of the EM-algorithm. Cortiñas Abrahantes and Burzykowski

(2005) compute the expected values in the E-step using the Laplace approx-

imation. Ripatti and Palmgren (2000) propose estimation using a penalized

partial likelihood approach that is based on Laplace approximation of the

marginal likelihood function. Legrand et al. (2005) extend the Bayesian ap-

proach of Ducrocq and Casella (1996) to a frailty model with a random cluster

and a random treatment effect assuming that there is no correlation between

the two random effects. For parametric frailty models with non-normal ran-

dom effects, Liu and Yu (2008) propose a likelihood reformulation method.

They reformulate the likelihood conditional on non-normal random effects to

that conditional on normal random effects. Their method can be implemented

using the SAS procedure PROC NLMIXED.

In Chapter 4 we propose an alternative way to fit frailty models. Using a

model transformation, we reformulate the original problem of “fitting a frailty

model” into a standard problem of “fitting a linear mixed-effects model”. Note

that Liu and Yu (2008) assume that the baseline hazard in model (2.6) has a

specific parametric form, whereas the estimation methods proposed in Vaida

and Xu (2000), Cortiñas Abrahantes and Burzykowski (2005), Ripatti and

Palmgren (2000), Legrand et al. (2005) and in Chapter 4 leave the baseline

hazard unspecified.
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2.4 Other conditional survival models

In this section we briefly discuss the multivariate additive risks model and

the multivariate proportional odds model. In Chapter 4 we show that the

idea of a model transformation to obtain a linear mixed-effects model also

works for these conditional survival models. This approach provides a new

and alternative way to fit multivariate additive risks models and multivariate

proportional odds models.

2.4.1 The multivariate additive risks model

The multivariate additive risks model extends the additive risks model, de-

scribed in Section 1.2.3, by adding a random cluster effect b0i and a random

treatment effect b1i:

λij(t) = λ0(t) + b0i + (β + b1i)zij , (2.10)

where λij(t) is the hazard function at time t for the jth subject in the ith

cluster, λ0(t) is the baseline hazard function at time t, zij is a binary co-

variate as defined in Section 2.3.1 and β is the overall fixed treatment effect.

As in Section 2.3.1, we assume that b0i and b1i follow zero-mean normal dis-

tributions. The variance-covariance matrix of the vector of random effects

bT = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K) is given by (2.7).

Yin and Cai (2004) and Martinussen and Scheike (2006) consider marginal

additive risks models for multivariate survival data. The study of conditional

additive risks models for multivariate survival data, as given in (2.10), seems

open.

2.4.2 The multivariate proportional odds model

Lam et al. (2002) and Lam and Lee (2004) extend the proportional odds model,

described in Section 1.2.4, to multivariate survival data by incorporating ran-

dom effects in the model. The multivariate proportional odds model is given
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by

log
{

Fij(t)
1− Fij(t)

}
= h0(t) + b0i + (β + b1i)zij ,

where Fij(t) is the conditional distribution function at time t for the jth

subject in the ith cluster, h0(t) is the baseline logodds function at time t, b0i,

b1i, β and zij are as defined in Section 2.3.1. Lam et al. (2002) and Lam

and Lee (2004) study multivariate proportional odds models using a marginal

likelihood approach.

2.5 Copula models

2.5.1 Definitions and properties

Copula models are typically used to model the joint survival function of clus-

tered data with small and equal cluster size. The copula approach is often

used for bivariate data (see, e.g., Shih and Louis, 1995b; Andersen, 2005;

Duchateau and Janssen, 2008). We study copula models for four-dimensional

failure time data. Our motivation for this is a data set on the correlated infec-

tion times in the four udder quarters of dairy cows, presented in Section 1.4.1.

Let (Ti1, Ti2, Ti3, Ti4) be a quadruple of failure times of the observational units

in cluster i and let Sij , j = 1, . . . , 4, be the marginal survival function of Tij ,

where the index ij is used to indicate that the marginal survival function may

depend on a covariate vector zij . The survival copula is the function that links

the marginal survival functions Sij to generate the joint survival function, i.e.,

Si(t1, t2, t3, t4; ζ) = Cζ {Si1(t1), Si2(t2), Si3(t3), Si4(t4)} (2.11)

for a four-dimensional distribution function Cζ defined on (v1, . . . , v4) ∈ [0, 1]4,

taking values in [0, 1] and having uniform marginals. Cζ is called a survival

copula with parameter vector ζ. The existence (and uniqueness if the marginal

survival functions are all continuous) follows from Sklar’s theorem (Sklar,

1959). See Nelsen (2006) for an in-depth discussion on copulas. For clus-

tered survival data the family of Archimedean copulas (Genest and MacKay,
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1986) received considerable attention. Archimedean copulas are defined as

Cζ(v1, v2, v3, v4) = ϕ−1{ϕ(v1) + ϕ(v2) + ϕ(v3) + ϕ(v4)}, (2.12)

where vj ∈ [0, 1], j = 1, . . . , 4, ϕ : [0, 1] → [0,∞] is a continuous strictly

decreasing function such that ϕ(0) = ∞, ϕ(1) = 0; and ϕ−1 is completely

monotonic on [0,∞), i.e. ϕ−1 is continuous on [0,∞) and (−1)k dk

dsk ϕ−1(s) ≥ 0

for all s ∈ (0,∞) and k = 0, 1, 2, . . . (Nelsen, 2006, p.151-152). The function

ϕ is called a generator of the copula.

There is a natural link between Archimedean copulas and shared frailty mod-

els, introduced in Section 2.2. To see this, take again a cluster of size four.

Starting from the shared frailty model (2.2), the joint survival function can

be obtained by integrating out the frailty in the conditional four-dimensional

survival function. Given a frailty density fU , having Laplace transform L(s) =

E {exp(−sU)}, the joint survival function that corresponds to the shared

frailty model takes the form

Si(t1, t2, t3, t4) = L




4∑

j=1

L−1 {Sij,f (tj)}

 ,

with Sij,f , j = 1, . . . , 4, the marginal survival functions obtained by integrat-

ing out the frailty in the conditional survival distribution (obtained from the

conditional hazard) corresponding to the jth observational unit. Note that

the joint survival function takes the form of an Archimedean copula, where

the generator ϕ is the inverse of the Laplace transform of the frailty density

fU . However, the marginal survival functions are modelled in a different way.

Indeed, the marginal survival functions Sij,f depend on the parameter(s) of

the frailty density. This implies that the modelling of the marginal survival

functions and the modelling of the within cluster dependence cannot be sepa-

rated when using frailty models. This is different for copulas. A nice feature of

copulas is that the modelling of the marginal survival functions and the mod-

elling of the within cluster dependence is separated. For a detailed discussion,

see Goethals et al. (2008). What we do learn, however, from this short discus-

sion, is that the inverse of Laplace transforms can be used to define generators

for Archimedean copulas.
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2.5.2 Power variance copula family

In this section we consider the large family of the power variance survival

copulas. This family is generated by the inverse of the Laplace transform of

the power variance function distributions. The latter family of distributions

is a three parameter family (µ, θ, ν) that includes the gamma distribution, the

inverse Gaussian distribution and the positive stable distribution (Hougaard,

1986b). These three families of distributions are obtained for specific choices

of the parameters.

The Laplace transform of the power variance function family is given by

(Aalen, 1992)

L(s) = exp

[
ν

θ(1− ν)

{
1−

(
1 +

θµs

ν

)1−ν
}]

, (2.13)

with µ > 0, θ ≥ 0 and 0 ≤ ν ≤ 1. The parameter µ corresponds to the mean

and µ2θ is the variance. The generator of the power variance survival copula

is ϕ(vj) = L−1(vj), j = 1, . . . , 4 in (2.12). The power variance survival copula

is then given by (see also Andersen, 2005)

Cν,θ(v1, v2, v3, v4)

= exp


 ν

θ(1− ν)


1−





4∑

j=1

(
1 + θ(1− 1

ν
) log(vj)

) 1
1−ν

− 3





1−ν



 .(2.14)

Note that the parameter µ disappears in the functional form of the copula.

This means that µ does not influence the dependence structure.

For ν = 0.5 and 0 ≤ θ < ∞, the Laplace transform (2.13) reduces to the

Laplace transform of the inverse Gaussian distribution with mean µ and vari-

ance µ2θ, i.e., L(s) = exp
[

1
θ

{
1− (1 + 2θµs)1/2

}]
. If ν tends to one and

0 ≤ θ < ∞, we obtain the Laplace transform of the gamma distribution with

mean µ and variance µ2θ, i.e., L(s) = (1 + θµs)−1/θ. The corresponding cop-

ulas are the inverse Gaussian copula and the Clayton copula.

The inverse Gaussian survival copula has the following form:

Cθ(v1, v2, v3, v4) = exp


1

θ
−


 1

θ2
+

4∑

j=1

log(vj)
{

log(vj)− 2
θ

}


1/2

 . (2.15)
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The Clayton survival copula is given by

Cθ(v1, v2, v3, v4) =
(
v−θ
1 + v−θ

2 + v−θ
3 + v−θ

4 − 3
)−1/θ

.

To obtain the positive stable distribution from the family of power variance

function distributions, we need that the mean µ and the variance µ2θ tend to

infinity (Hougaard, 1986b). We set

µ =
(

θ

ν

)ν/(1−ν)

(1− ν)1/(1−ν) . (2.16)

For 0 ≤ ν < 1, (2.16) implies that if θ →∞, then also µ →∞. Using asymp-

totic arguments it follows that, for θ tending to infinity, the Laplace transform

of the power variance family (depending on parameters ν and θ) reduces to

the Laplace transform of a positive stable distribution with parameter 1− ν,

i.e., L(s) = exp
(−s1−ν

)
. The copula that is generated by the inverse of this

Laplace transform is the positive stable copula:

Cν(v1, v2, v3, v4) = exp


−




4∑

j=1

{− log(vj)}1/(1−ν)




1−ν
 .

The Clayton, positive stable and inverse Gaussian copulas model different

types of dependence. The Clayton copula models late dependence in time, the

positive stable copula models early dependence in time, whereas the inverse

Gaussian copula takes a position in between. A more detailed discussion that

illustrates this based on contour lines can be found in Hougaard (2000) and

in Duchateau and Janssen (2008, p. 188).

2.5.3 Estimation method

Since the marginal survival functions in the copula model (2.11) do not de-

pend on the parameters of the copula, the marginal survival functions and the

dependence parameter(s) ζ can be estimated separately. This is the idea of

the two-stage estimation approach (see, e.g., Genest et al., 1995; Shih and

Louis, 1995b; Glidden, 2000; Andersen, 2005). In the first stage, the marginal
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survival functions are estimated. In the second stage, we estimate the copula

parameter ζ by maximising a loglikelihood function in which the marginal

survival functions are replaced by their estimates obtained in the first stage.

In Chapter 5, we give a detailed discussion on a semi-parametric and a non-

parametric two-stage estimation approach to fit copula models for quadruples

in the presence of fixed binary covariates.



Chapter 3

Resampling plans for shared

frailty models

3.1 Introduction

As mentioned in Section 2.2.2, one of the estimation methods that can be

used to fit shared frailty models is the EM algorithm (Klein, 1992). It has

been described in detail by Duchateau and Janssen (2008, Chapter 5). The

EM algorithm provides estimates for the fixed effects and for the variance of

the frailty density, but does not automatically provide estimates for the vari-

ances of these estimates. Klein and Moeschberger (2003, p.433) show how the

standard errors of the estimates for the shared gamma frailty model can be

obtained from the inverse of the observed information matrix. This informa-

tion matrix is a square matrix which has rank equal to the number of distinct

event times plus the number of covariates plus one (for the heterogeneity pa-

rameter). For large data sets, this procedure is not appropriate because of the

high dimensionality.

As mentioned in Section 2.2.2, Therneau and Grambsch (2000, p.254) prove

that, for the shared gamma frailty model, the estimates obtained from the pe-

nalized partial likelihood maximisation coincide with the estimates obtained

from the EM algorithm. Hence we can use the fast algorithm for the penalized

31
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partial likelihood procedure available in S-Plus. However, the standard error

estimates of β̂ reported by S-Plus are computed under the assumption of θ

known (Therneau and Grambsch, 2000, p.249). Since θ needs to be estimated,

the given standard errors are too small. Further, S-Plus does not provide

an estimate for the standard error of the heterogeneity parameter estimate.

Thus, the issue of estimating the standard errors of the parameter estimates

in the shared frailty model requires further investigation. An alternative ap-

proach for finding variance estimates might be provided by the bootstrap.

The results developed for resampling in linear mixed models show that re-

sampling schemes need to be chosen in a careful way (Davison and Hinkley,

1997, p. 100-102; Morris, 2002). Therneau and Grambsch (2000, p.249) pro-

pose a nonparametric bootstrap algorithm to obtain standard error estimates.

For parametric frailty models, model-based resampling schemes might be pre-

ferred above nonparametric resampling plans. In Section 3.2 we propose two

model-based resampling plans that can be used to find standard errors of the

estimated parameters. In Section 3.3 we compare the two model-based boot-

strap algorithms to the nonparametric resampling algorithm of Therneau and

Grambsch (2000) based on a simulation study. We illustrate the nonparamet-

ric and model-based resampling schemes using the time to culling data and

the early breast cancer data in Section 3.4. In Section 3.5 we collect main

conclusions and topics for further research.

3.2 Bootstrap: resampling schemes

In this section we use resampling techniques to obtain estimates for the stan-

dard errors of the parameter estimates in the shared frailty model. Therneau

and Grambsch (2000, p.249) propose the following nonparametric bootstrap

technique to obtain standard error estimates:

1. A bootstrap sample is obtained by choosing K clusters by sampling with

replacement from the K clusters in the study.

2. Fit a gamma (or lognormal) frailty model with covariates to this boot-
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strap sample.

This procedure is repeated a number of times. The estimates of the coefficients

β̂
∗

and the estimates of the heterogeneity parameter θ̂∗ are stored for each

bootstrap sample. The standard errors of the estimated parameters β̂ and θ̂

are calculated based on the variability of the different values of β̂
∗

and θ̂∗.
If a parametric model is appropriate, we might prefer model-based resampling

techniques above the nonparametric resampling plan. We therefore propose

two model-based resampling schemes.

We rely on a resampling plan for a simple random effects model with a balanced

design, proposed by Davison and Hinkley (1997, p.102). A random effects

model can be written as

yij = µi + εij , j = 1, . . . , ni = n, i = 1, . . . ,K,

where K is the number of groups, ni = n is the number of subjects per group,

the µi’s are randomly sampled from Fµ and independent of the εij ’s, which are

randomly sampled from Fε with E(ε) = 0 to force uniqueness of the model.

In the “naive” version of their algorithm, Davison and Hinkley (1997, p.102)

define

µ̂i = ȳi. and ε̂ij = yij − ȳi.,

where ȳi. = n−1
∑n

j=1 yij .

The resampled data set is then obtained in the following way

1. Choose µ∗1, . . . , µ
∗
K by randomly sampling with replacement from µ̂1, . . . ,

µ̂K ;

2. Choose ε∗i1, . . . , ε
∗
in randomly with replacement from one group of resid-

uals ε̂k1, . . . , ε̂kn, either from a randomly selected group or the group

corresponding to µ∗i ;

3. Set y∗ij = µ∗i + ε∗ij , j = 1, . . . , n, i = 1, . . . , K.

To construct a resampling plan for frailty models, we can argue that sampling

from the means of the groups in the case of the random effects model is like
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sampling from the frailty estimates in the case of the frailty model. However,

in the situation of frailty models, we do not have any residuals to resample

from. Hjort (1985) (see also Davison and Hinkley, 1997, p.351) proposes a

bootstrap algorithm for the Cox proportional hazards model in the case of

univariate survival data. We extend the resampling algorithm of Hjort (1985)

to a resampling scheme for shared frailty models in the context of multivariate

survival data.

3.2.1 Model-based bootstrap, algorithm 1

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimate β̂ and the estimates of the frailties

û1, . . . , ûK .

2. Choose u∗1, . . . , u
∗
K by sampling with replacement from û1, . . . , ûK .

3. Generate the true failure time T ∗ij from the estimated failure time survival

function Ŝij(t) = {Ŝ0(t)}u∗i exp(
ˆβ
′
z∗ij), where z∗ij is the vector of covariates

recorded for the j th individual from the cluster that corresponds to u∗i .

4. Let C̃∗
ij , δ̃∗ij and X̃∗

ij be the censoring time, the censoring indicator and

the observed time for the j th individual from the cluster that corresponds

to u∗i . If δ̃∗ij = 0, set C∗
ij = X̃∗

ij , and if δ̃∗ij = 1, generate C∗
ij from the

conditional censoring distribution given that C̃∗
ij > X̃∗

ij , namely

Ĝ(t)− Ĝ(X̃∗
ij)

1− Ĝ(X̃∗
ij)

,

where Ĝ is an estimate (e.g., Kaplan-Meier) of the common censoring

distribution G. Assume that G is independent of the covariates.

5. Set X∗
ij = min(T ∗ij , C

∗
ij), with δ∗ij = 1 if X∗

ij = T ∗ij and zero otherwise.

Steps 3, 4 and 5 are the adaption of the algorithm proposed by Hjort (1985)

(see also Davison and Hinkley, 1997, p.351).



3.2. Bootstrap: resampling schemes 35

For a semi-parametric model, the true failure times in step 3 are generated

from the estimated failure time survival function

Ŝij(t) = {Ŝ0(t)}u∗i exp(
ˆβ
′
z∗ij),

where Ŝ0(t) = exp(−Λ̂0(t)) is the estimated baseline survival function, with

Λ̂0(t) =
∑

t(l)≤t

λ̂l0,

where Λ̂0(t) is the estimated baseline cumulative hazard at time t and

λ̂l0 =
d(t(l))∑

tsq≥t(l)
u∗s exp(β̂

′
z∗sq)

.

For a parametric model, the true failure times are generated under the para-

metric assumption.

For mixed models it has been demonstrated (Morris, 2002) that the variances

of the BLUP’s are biased downwards as estimators of the variance compo-

nents. Due to this bias, bootstrapping BLUP’s results in underestimation

of the variation in the data, causing standard error estimates biased down-

wards. The above-mentioned model-based resampling algorithm suffers from

this problem. This will be illustrated in Section 3.3.4. Therefore, we propose

a second resampling scheme, where resampled frailty parameters are obtained

by sampling from the appropriate frailty distribution with variance θ̂. We

again assume that censoring is independent of the covariates.

3.2.2 Model-based bootstrap, algorithm 2

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimates β̂, θ̂.

2. Sample u∗1, . . . , u
∗
K from a gamma or lognormal distribution with vari-

ance θ̂.

3. Generate the true failure time T ∗ij from the estimated failure time survival

function Ŝij(t) = {Ŝ0(t)}u∗i exp(
ˆβ
′
zij).
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4. If δij = 0, set C∗
ij = Xij , and if δij = 1, generate C∗

ij from the conditional

censoring distribution given that Cij > Xij , namely

Ĝ(t)− Ĝ(Xij)
1− Ĝ(Xij)

.

5. Set X∗
ij = min(T ∗ij , C

∗
ij), with δ∗ij = 1 if X∗

ij = T ∗ij and zero otherwise.

3.3 Simulations

3.3.1 Motivation

Based on simulations we compare the two model-based resampling plans and

the nonparametric resampling plan. As simulation model we consider the

setting of a multicenter clinical trial. The following issues will be discussed:

(i) The comparison of the nonparametric and the model-based resampling

schemes assuming that the model is correct.

(ii) The effect of the size of the multicenter clinical trial on the precision of

the variance estimation. Note that the size of a trial is determined by K,

the number of centers, and by the number of patients per center (which

we assume to be equal over the centers for simplicity).

(iii) The effect of the size of θ, the heterogeneity parameter, and λ0(t), the

event rate (assumed to be constant in time for simplicity) on the precision

of the variance estimation.

(iv) The robustness of the resampling plans to misspecification of the model.

3.3.2 The simulation setting

For each specific setting (K, n, λ0, θ, β), with β the treatment effect parame-

ter, 100 data sets are generated assuming a constant baseline hazard. Given

a particular setting, the observations for each data set are generated in the

following way. First, K frailties u1, . . . , uK are generated from a gamma (or



3.3. Simulations 37

lognormal) frailty distribution with variance θ; both frailty distributions are

introduced in Section 2.2.1. The time to event for the j th patient from cen-

ter i is randomly generated from an exponential distribution with parameter

λij = λ0ui exp(βzij), where zij is generated from a Bernoulli distribution with

success parameter 0.5. The censoring time for each patient is randomly gen-

erated from a uniform distribution so that approximately 30% censoring is

obtained.

For each simulated data set, two model assumptions are considered to in-

vestigate the performance of the bootstrap algorithms under the correct and

misspecified models.

First, we assume that the frailties are gamma distributed. For each simulated

data set, R = 100 bootstrap samples are taken by using the nonparametric

bootstrap and the two model-based resampling plans under the assumption of

gamma distributed frailties. In the nonparametric resampling plan, we con-

sider a semi-parametric gamma frailty model to estimate the treatment effect

β and the heterogeneity parameter θ, as proposed by Therneau and Grambsch

(2000). The penalized partial likelihood approach, discussed in Section 2.2.2,

is used to obtain the parameter estimates (Therneau and Grambsch, 2000).

In the two model-based resampling plans, we consider both a semi-parametric

gamma frailty model and a parametric gamma frailty model with a constant

baseline hazard. For the parametric gamma frailty model, the model-based

resampling schemes assume that the time to event follows an exponential dis-

tribution with parameter λij . Under this assumption, the parameters β, θ and

λ0 can be estimated by maximising the observable loglikelihood lobs(β, θ, λ0),

given in (2.5), using the Newton-Raphson method.

Second, we assume that the frailties are lognormal distributed. For each sim-

ulated data set, R = 100 bootstrap samples are taken by using the nonpara-

metric and the two model-based resampling plans under the assumption of

lognormal distributed frailties. A semi-parametric lognormal frailty model is

considered to estimate the treatment effect and the heterogeneity parameter

in the nonparametric and in the two model-based resampling schemes. We

again use the penalized partial likelihood approach to estimate the parame-
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ters. Note that we do not consider a parametric lognormal frailty model in

the model-based resampling plans since it is not possible to obtain an explicit

expression of the observable likelihood, as mentioned in Section 2.2.2.

3.3.3 Choice of the parameters

For the concrete simulation, the number of centers is taken equal to 15 or

30 centers, with 20 or 40 patients per center. For “true” frailties that are

gamma distributed, we additionally consider 15 or 30 centers, with 5 patients

per center. The parameter values λ0, β and θ are chosen in such a way that a

different magnitude of spread in the median time to event from center to center

is induced. The median time to event TM0 (for zij = 0) and TM1 (for zij = 1) is

the solution of exp (−λ0UTM0) = 0.5 and exp (−λ0U exp (β) TM1) = 0.5, with

U one-parameter gamma distributed, i.e. TM0 = log 2
λ0U and TM1 = log 2

λ0U exp(β) .

The magnitude of spread in the median time to event from center to center was

determined by computing the density functions of TM0 and TM1 (Figure 3.1).

It can be shown that, for zij = 1 and for a gamma frailty density, the density

function fTM1
(t) is given by

fTM1
(t) =

{
log 2

θλ0 exp (β)

} 1
θ 1

Γ(1/θ)

(
1
t

)1+1/θ

exp
{
− log 2

θtλ0 exp (β)

}
.

For the treatment effect, we use β = 0.25. As true values for the event rate,

we take λ0 = 0.1 and λ0 = 0.5. The heterogeneity parameter is set at θ = 0.1

and θ = 0.6.

For the settings (θ, λ0) = (0.6, 0.5) and (0.1, 0.5), there is little spread in

the median time to event over the centers, with a bigger spread for θ = 0.6.

For the settings (θ, λ0) = (0.6, 0.1) and (0.1, 0.1), there is much spread in

the median time to event over the centers. Furthermore, Figure 3.2 clearly

explains our motivation for choosing θ = 0.1 and θ = 0.6. For θ = 0.1 we have

a situation where the gamma and the lognormal density functions are close,

whereas for θ = 0.6 these densities are more apart.
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Figure 3.1: Density function of the median time to event over centers (β =

0.25).

3.3.4 Results

By performing the bootstrap, we obtain for each simulated data set a bootstrap

estimate of the standard error of the treatment effect and the heterogeneity

parameter. The mean of these 100 estimated standard errors is denoted by

mean(SEB). The values of mean(SEB) for each resampling scheme are com-

pared to the empirical standard error of β̂ and θ̂, denoted by SEE .

In the following discussion we focus on the standard error estimates of the

heterogeneity. For completeness, the results for the treatment effect are given
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Figure 3.2: Density function for the lognormal and the gamma distribution.

in Tables 3.4 and 3.6 (end of this chapter). In almost all settings studied, the

estimated standard error of the heterogeneity parameter obtained by the first

model-based resampling plan underestimates the standard error, as compared

to SEE (see, e.g., Tables 3.3 and 3.5 at the end of this chapter). Since the

estimates obtained by the second model-based resampling plan give in most

cases a more precise assessment of the empirical variability of the parameter

estimates than those obtained by the first model-based bootstrap algorithm,

we only consider the results of the second model-based and the nonparametric

resampling plan in the following discussion.

Nonparametric versus model-based resampling

Figures 3.3 and 3.4 are used to compare the nonparametric and the second

model-based resampling plan assuming that the model is correct. In Fig-

ure 3.3 we consider “true” frailties that are gamma distributed. In the re-
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sampling schemes we assume a semi-parametric gamma frailty model and use

the penalized partial likelihood approach to estimate the parameters (gamma

semi-par. in Table 3.3). Recall from Section 3.3.2 that we do not consider

a parametric gamma frailty model in the nonparametric resampling scheme.

Therefore, it is not possible to compare model-based and nonparametric re-

sampling for a parametric gamma frailty model.

The resampling schemes are compared in terms of the absolute relative bias.

Take, e.g., Figure 3.3 for the setting (θ, λ0) = (0.6, 0.5). In that picture we plot

for the settings (K, n) = (15, 5), (15, 20), (15, 40), (30, 5), (30, 20) and (30, 40)

the points (RBN , RBMB) where RBN , resp. RBMB, is the absolute relative

bias

|mean(SEB)− SEE |/SEE

for the nonparametric, resp. the second model-based, resampling scheme. The

actual value for, e.g., (K, n) = (15, 40) and (30, 40) can be obtained from Table

3.3. In the picture we add the bisector. Points (RBN , RBMB) that are below

the bisector correspond to settings for which the absolute relative bias for the

model-based resampling scheme is smaller than the absolute relative bias for

the nonparametric resampling scheme. Points (RBN , RBMB) that are above

the bisector indicate that nonparametric resampling performs better for the

corresponding setting. Figure 3.4 is the equivalent of Figure 3.3 for “true”

frailties that are lognormal (logn. semi-par. in Table 3.5).

There is no single consistent pattern for all settings in the results. We first

compare the results of the nonparametric and the model-based bootstrap al-

gorithms for “true” frailties that are gamma distributed (Figure 3.3). When

(θ, λ0) = (0.1, 0.1), model-based resampling has a smaller relative bias com-

pared to the nonparametric resampling plan (i.e., most of the points (RBN ,

RBMB) are below the bisector), even if the cluster size is small (n = 5).

For (θ, λ0) = (0.6, 0.5), (0.1, 0.5) and (0.6, 0.1), the general conclusion from

Figure 3.3 is that, unless the cluster size is small (n = 5), the performance of

model-based resampling is often better than that of nonparametric resampling.

In situations where the nonparametric resampling is better (points above the

bisector) the performance of the model-based plan is almost as good as that of
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the nonparametric resampling plan. Next, we consider “true” frailties that are

lognormal (Figure 3.4). For (θ, λ0) = (0.6, 0.5) and (0.6, 0.1), the nonparamet-

ric resampling scheme has for most settings (K, n) a smaller absolute relative

bias compared to the model-based resampling scheme. For (θ, λ0) = (0.1, 0.5)

and (0.1, 0.1) model-based resampling often performs clearly better than non-

parametric resampling.
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Figure 3.3: Absolute relative bias for the estimated standard error of the
heterogeneity parameter (gamma frailties); ◦= (15, 5), ◦ = (15, 20), © = (15, 40),
X = (30, 5), X = (30, 20), X = (30, 40).

Effect of the number of clusters and patients on the precision of the

variance estimation

To study the effect of the number of clusters and the number of patients

per cluster on the standard error we look at Figure 3.5 where, for the semi-
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Figure 3.4: Absolute relative bias for the estimated standard error of the
heterogeneity parameter (lognormal frailties); ◦ = (15, 20), © = (15, 40), X =
(30, 20), X = (30, 40).

parametric gamma model, we plot for (K, n) = (15, 5), (15, 20), (15, 40), (30, 5),

(30, 20) and (30, 40), SEE , mean(SEB) for nonparametric resampling and

mean(SEB) for the second model-based resampling scheme. The empirical

standard error SEE is considered as the reference point. The general con-

clusion, also based on pictures similar to Figure 3.5 for the semi-parametric

lognormal model and for the parametric gamma model (pictures not shown),

is that for both resampling plans the number of clusters is important to obtain

accurate standard errors. We also see that, if the number of clusters is large

enough (e.g., K = 30) we can only improve the accuracy of the standard errors

in a moderate way by increasing the number of patients.
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Figure 3.5: Effect of the number of clusters and patients on the mean estimated

standard error of the heterogeneity parameter, semi-parametric gamma model;

◦ = empirical, 4 = nonparametric, ¤ = model-based(2).

Effect of heterogeneity and event rate on the precision of the vari-

ance estimation

To study the effect of the heterogeneity and the event rate on the estimated

standard error we look at Figure 3.6 where, for the semi-parametric gamma

model, we plot for (θ, λ0) = (0.6, 0.5), (0.6, 0.1), (0.1, 0.5) and (0.1, 0.1), SEE ,

mean(SEB) for nonparametric resampling and mean(SEB) for the second

model-based resampling scheme. The empirical standard error SEE is con-

sidered as the reference point. The general conclusion, also based on pictures

similar to Figure 3.6 for the semi-parametric lognormal model and for the
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parametric gamma model (pictures not shown), is that the bootstrap stan-

dard error obtained by both resampling plans are more accurate for small

θ, i.e., θ = 0.1. When λ0 increases, the accuracy of the standard errors is

improved in a moderate way, keeping θ constant.

Robustness

In all settings studied, the point estimates of the fixed effect in the correct

and the misspecified model are close to each other (Tables 3.4 and 3.6). Also

the estimated standard errors of the estimator of the fixed effect obtained by

the nonparametric and the second model-based resampling scheme are similar,

even if the model is misspecified. This means that there is robustness in terms

of estimation of the fixed effects. This is in agreement with results in, e.g.,

Pickles and Crouchley (1995).

When θ = 0.6, the point estimates of the heterogeneity parameter in the mis-

specified model are biased (Tables 3.3 and 3.5). The empirical variability is

also quite different for the correct and the misspecified model. For θ = 0.1,

the bias of the point estimates is smaller and the difference in variability is less

pronounced. This can be explained since there is only little difference in shape

between the gamma distribution and the lognormal distribution when θ = 0.1,

whereas there is more difference when θ = 0.6 (Figure 3.2). The relative bias,

compared to the empirical standard error, indicates that in general the esti-

mated standard error of the heterogeneity obtained by the nonparametric and

the model-based resampling schemes are close to the corresponding empirical

standard error, both for the correct and the misspecified model. So, bootstrap

is useful to estimate the standard error of the heterogeneity parameter. How-

ever, since the empirical variability of the heterogeneity parameter is rather

different for the correct and misspecified model, lack of robustness is an issue

when fitting frailty models.
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Figure 3.6: Effect of heterogeneity and event rate on the mean estimated

standard error of the heterogeneity parameter, semi-parametric gamma model;

◦ = empirical, 4 = nonparametric, ¤ = model-based(2).
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3.4 Examples

We illustrate the nonparametric and the second model-based resampling scheme

using the time to culling data and the early breast cancer data, introduced in

Sections 1.4.2 and 1.4.3.

3.4.1 Analysis of the time to culling data

To study the heterogeneity between herds and the effect of the logarithm of

the somatic cell count on the culling hazard, we fit both a semi-parametric

gamma and a semi-parametric lognormal frailty model including the logarithm

of the somatic cell count as a covariate and including a random herd effect.

We estimate the fixed effect β and the heterogeneity parameter θ using the

penalized partial likelihood approach (Therneau and Grambsch, 2000), avail-

able in S-Plus. To estimate the standard errors of the parameter estimates

in the gamma, resp. lognormal, frailty model, we take R = 500 bootstrap

samples by using the nonparametric and the second model-based resampling

plan under the assumption of gamma, resp. lognormal, distributed frailties.

For each bootstrap sample, we obtain an estimate for the fixed effect and the

heterogeneity parameter by fitting a semi-parametric gamma, resp. lognor-

mal, frailty model using the penalized partial likelihood approach. Based on

the variability of these bootstrap parameter estimates, we obtain a bootstrap

estimate for the standard errors of the fixed effect and the heterogeneity pa-

rameter. Both for the gamma and the lognormal frailty model, the parameter

estimates, the estimate for the standard error of the estimated fixed effect

reported by S-Plus and the bootstrap estimates for the standard errors of the

parameter estimates are presented in Table 3.1. Recall that S-Plus does not

provide an estimate for the standard error of the estimated heterogeneity pa-

rameter.

The fixed effect is estimated by β̂ = 0.0683, both in the gamma and the

lognormal frailty model. As expected in Section 1.4.2, the culling hazard in-

creases with increasing values of the logarithm of the somatic cell count. The

bootstrap estimates for the standard error of β̂ obtained using the nonpara-
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metric and the second model-based resampling plan are comparable both for

the gamma and the lognormal frailty model. Recall from Section 3.3.4 that

there is robustness with respect to the estimation of the fixed effects. The es-

timate of the heterogeneity between herds is θ̂ = 0.1407 for the gamma frailty

model and θ̂ = 0.1555 for the lognormal frailty model. Note that these values

are rather small which implies that the gamma and lognormal frailty distribu-

tions are close (Figure 3.2). The bootstrap estimate for the standard error of

θ̂ obtained using the second model-based resampling scheme is slightly larger

than the estimate obtained using nonparametric bootstrap.

Table 3.1: Results for the time to culling data, parameter estimates for treat-

ment effect and heterogeneity, estimated standard errors using nonparametric

and model-based bootstrap.

Frailty Est. SE nonpar. model-based(2)

distribution Parameter S-Plus S-Plus SEB SEB

gamma β 0.0683 0.0153 0.0152 0.0156

θ 0.1407 0.0327 0.0355

lognormal β 0.0683 0.0153 0.0152 0.0152

θ 0.1555 0.0406 0.0421

3.4.2 Analysis of the early breast cancer data

We use a semi-parametric gamma and a semi-parametric lognormal frailty

model to study the heterogeneity between centers and the effect of the peri-

operative chemotherapy compared to no further treatment. For both frailty

models, the parameter estimates, the estimate for the standard error of the

estimated fixed effect provided by S-Plus and the bootstrap estimates for the

standard errors of the parameter estimates are presented in Table 3.2. These
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estimates are obtained in the same way as explained in Section 3.4.1.

For the gamma frailty model, the treatment effect is estimated as −0.1417

(SE = 0.0602), meaning that the hazard corresponding to the disease-free

survival is smaller for patients receiving perioperative chemotherapy compared

to patients who receive no further treatment. The estimated standard er-

ror for β̂ provided by S-Plus is comparable with the bootstrap estimate for

the standard error obtained using the second model-based resampling scheme

(0.0609), whereas the nonparametric bootstrap estimate for the standard error

is smaller (0.0426). The variance of the frailties is estimated as 0.0629. The

bootstrap estimate for the standard error of θ̂ obtained by using model-based

bootstrap is slightly larger than the estimate obtained by using nonparamet-

ric bootstrap. Assuming a lognormal distribution for the frailty terms, the

treatment effect is estimated as −0.1418 (SE = 0.0602), which is almost the

same as the estimate obtained using a gamma frailty model. The model-based

bootstrap estimate for the standard error of β̂ (0.0629) is slightly larger than

the estimate provided by the penalized partial likelihood approach, whereas

the nonparametric resampling scheme leads to a smaller estimate (0.0425).

The heterogeneity parameter is estimated as 0.0687. Note that the estimated

variance for the frailty terms is small, which implies that the gamma and the

lognormal frailty distribution are close (Figure 3.2). This can be seen from

Table 3.2 since the results obtained for the gamma and the lognormal frailty

model are comparable.

3.5 Conclusions

In this chapter, the use of bootstrap for the estimation of the standard errors

of the parameter estimates in a shared frailty model is proposed. To com-

plement the existing nonparametric resampling plan, we propose two model-

based bootstrap algorithms. The comparison between the nonparametric and

model-based resampling schemes and the robustness of the schemes to the

model assumptions is studied by simulation. The results indicate that the

first model-based resampling plan, based on resampling of the estimated frail-
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Table 3.2: Results for the early breast cancer data, parameter estimates for

treatment effect and heterogeneity, estimated standard errors using nonpara-

metric and model-based bootstrap.

Bootstrap Est. SE nonpar. model-based(2)

assumption Parameter S-Plus S-Plus SEB SEB

gamma β -0.1417 0.0602 0.0426 0.0609

θ 0.0629 0.0222 0.0318

lognormal β -0.1418 0.0602 0.0425 0.0626

θ 0.0687 0.0244 0.0403

ties, underestimates the empirical variability of the parameter estimates for

almost all settings studied. This corresponds to the conclusion drawn by

Morris (2002) for linear mixed models. On the other hand, the second model-

based algorithm, based on resampling from the estimated frailty distribution,

provides in general precise assessment of the empirical variability of the pa-

rameter estimates, even if the model is misspecified. However, the empirical

variability of the heterogeneity parameter can be rather different for the cor-

rect and misspecified models. This provides evidence that robustness in terms

of the heterogeneity parameter is not guaranteed for the bootstrap algorithms

(including the nonparametric bootstrap); but robustness holds for the fixed

effects. This finding clearly illustrates the need for diagnostic tests for the

choice of the frailty distribution. Oakes (1989) and Viswanathan and Man-

atunga (2001) propose a diagnostic test for bivariate survival data with a

gamma frailty distribution which is based on the cross ratio function. Shih

and Louis (1995a) propose a diagnostic test for the gamma frailty model for

multivariate survival data with clusters of arbitrary size. This test is based on

the evolution of the conditional posterior mean of the frailties over time. A

detailed description of these diagnostic measures can be found in Duchateau
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and Janssen (2008, Chapter 4). Further research on diagnostic techniques for

assessing the frailty distribution assumption is needed.

The values of the parameters in the two examples, presented in Section 3.4, do

not correspond to the simulation setting considered in Section 3.3. It would

be interesting to perform simulations for parameter settings that correspond

to the time to culling data and to the early breast cancer data to evaluate the

performance of the resampling plans.

In the model-based resampling schemes we have made the assumption that

censoring is independent of the covariates. In principle, it should be possi-

ble to extend the schemes to the more general situation where the censoring

distribution depends on the covariates. Indeed, Davison and Hinkley (1997,

p.351) give a resampling scheme for the Cox proportional hazards model in

the case of univariate survival data where the censoring distribution depends

on the covariates. This algorithm should be extended to the shared frailty

model using ideas which are similar to the ideas proposed in Section 3.2. Fur-

thermore, it also would be of interest to consider frailty densities other than

gamma and lognormal, e.g., the positive stable or the inverse Gaussian frailty

density. These are important topics for further research.
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Table 3.3: Estimated standard error for heterogeneity parameter estimate;

true gamma frailty distribution, for each setting: 40 patients per center, first

line for 15 centers, second line for 30 centers.

True Setting Bootstrap nonpar. model-based(1) model-based(2)

(θ, λ0) assumption mean (θ̂) SEE mean(SEB) mean(SEB) mean(SEB)

(0.6, 0.5) Gamma par. 0.4994 0.1722 0.1469 0.1760

0.5850 0.1441 0.1302 0.1436

Gamma Gamma semi-par. 0.4930 0.1732 0.1556 0.1494 0.1805

0.5846 0.1472 0.1453 0.1356 0.1500

Logn. semi-par. 2.0760 2.2220 4.4679 2.1952 8.8867

2.8328 2.2885 6.0186 2.2860 2.6916

(0.6, 0.1) Gamma par. 0.5678 0.1939 0.1736 0.1963

0.5712 0.1687 0.1294 0.1411

Gamma Gamma semi-par. 0.5688 0.1959 0.1849 0.1764 0.2048

0.5703 0.1726 0.1393 0.1313 0.1469

Logn. semi-par. 3.0123 2.7641 11.6203 6.1434 7.5224

2.8285 2.7590 5.4391 1.3970 2.6621

(0.1, 0.5) Gamma par. 0.0934 0.0375 0.0290 0.0392

0.0983 0.0276 0.0217 0.0277

Gamma Gamma semi-par. 0.0903 0.0458 0.0400 0.0338 0.0441

0.0968 0.0346 0.0315 0.0263 0.0339

Logn. semi-par. 0.1154 0.0673 0.0623 0.0487 0.0705

0.1190 0.0518 0.0476 0.0367 0.0501

(0.1, 0.1) Gamma par. 0.0969 0.0487 0.0310 0.0410

0.0940 0.0245 0.0209 0.0275

Gam. Gamma semi-par. 0.0924 0.0565 0.0399 0.0349 0.0447

0.0910 0.0316 0.0299 0.0251 0.0321

Logn. semi-par. 0.1229 0.0919 0.0710 0.0534 0.0761

0.1119 0.0450 0.0438 0.0336 0.0474
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Table 3.4: Estimated standard error for estimate of treatment effect; true

gamma frailties; for each setting: 40 patients per center, first line for 15 centers,

second line for 30 centers.

True Setting Bootstrap nonpar. model-based(1) model-based(2)

(θ, λ0) assumption mean (β̂) SEE mean(SEB) mean(SEB) mean(SEB)

(0.6, 0.5) Gamma par. 0.2538 0.0922 0.0982 0.0985

0.2464 0.0633 0.0698 0.0703

Gamma Gamma semi-par. 0.2530 0.0915 0.0931 0.1002 0.1062

0.2469 0.0640 0.0681 0.0716 0.0754

Logn. semi-par. 0.2529 0.0915 0.0936 0.1001 0.1062

0.2469 0.0639 0.0695 0.0707 0.0776

(0.6, 0.1) Gamma par. 0.2456 0.1095 0.0992 0.1007

0.2508 0.0707 0.0698 0.0708

Gamma Gamma semi-par. 0.2451 0.1115 0.0988 0.1007 0.1078

0.2507 0.0713 0.0675 0.0702 0.0760

Logn. semi-par. 0.2454 0.1117 0.0986 0.1010 0.1098

0.2508 0.0713 0.0674 0.0709 0.0773

(0.1, 0.5) Gamma par. 0.2370 0.1008 0.0986 0.0983

0.2469 0.0701 0.0688 0.0700

Gamma Gamma semi-par. 0.2372 0.1015 0.0947 0.1010 0.1014

0.2469 0.0710 0.0703 0.0694 0.0714

Logn. semi-par. 0.2373 0.1013 0.0936 0.0980 0.0993

0.2470 0.0710 0.0703 0.0710 0.0707

(0.1, 0.1) Gamma par. 0.2541 0.1038 0.0982 0.0991

0.2512 0.0710 0.0689 0.0699

Gamma Gamma semi-par. 0.2533 0.1056 0.0921 0.0986 0.1002

0.2513 0.0709 0.0680 0.0697 0.0701

Logn. semi-par. 0.2531 0.1056 0.0929 0.0988 0.0922

0.2513 0.0709 0.0690 0.0697 0.0724
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Table 3.5: Estimated standard error for heterogeneity parameter estimate;

true lognormal frailties; for each setting: 40 patients per center, first line for

15 centers, second line for 30 centers.

True Setting Bootstrap nonpar. model-based(1) model-based(2)

(θ, λ0) assumption mean (θ̂) SEE mean(SEB) mean(SEB) mean(SEB)

(0.6, 0.5) Gamma par. 0.2976 0.1007 0.0871 0.1086

0.3142 0.0805 0.0688 0.0821

Logn. Gamma semi-par. 0.2915 0.1029 0.0972 0.0891 0.1110

0.3085 0.0825 0.0779 0.0709 0.0838

Logn. semi-par. 0.5605 0.3134 0.3568 0.2883 0.4258

0.5836 0.2810 0.2597 0.2166 0.2858

(0.6, 0.1) Gamma par. 0.3020 0.1066 0.0873 0.1099

0.3300 0.0780 0.0729 0.0860

Logn. Gamma semi-par. 0.2964 0.1072 0.0971 0.0898 0.1125

0.3279 0.0801 0.0830 0.0749 0.0895

Logn. semi-par. 0.5926 0.4060 0.3739 0.3083 0.5026

0.6371 0.2704 0.2978 0.2450 0.3212

(0.1, 0.5) Gamma par. 0.0818 0.0318 0.0255 0.0352

0.0906 0.0265 0.0202 0.0263

Logn. Gamma semi-par. 0.0756 0.0390 0.0347 0.0288 0.0394

0.0851 0.0319 0.0289 0.0238 0.0308

Logn. semi-par. 0.0942 0.0584 0.0504 0.0407 0.0596

0.1030 0.0453 0.0409 0.0317 0.0453

(0.1, 0.1) Gamma par. 0.0832 0.0377 0.0259 0.0352

0.0821 0.0292 0.0184 0.0244

Logn. Gamma semi-par. 0.0766 0.0451 0.0338 0.0288 0.0393

0.0755 0.0296 0.0267 0.0215 0.0284

Logn. semi-par. 0.0966 0.0661 0.0497 0.0403 0.0601

0.0898 0.0407 0.0368 0.0278 0.0387
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Table 3.6: Estimated standard error for estimate of treatment effect; true

lognormal frailties; for each setting: 40 patients per center, first line for 15

centers, second line for 30 centers.

True Setting Bootstrap nonpar. model-based(1) model-based(2)

(θ, λ0) assumption mean (β̂) SEE mean(SEB) mean(SEB) mean(SEB)

(0.6, 0.5) Gamma par. 0.2590 0.0937 0.0948 0.0955

0.2512 0.0606 0.0672 0.0675

Logn. Gamma semi-par. 0.2583 0.0935 0.0921 0.0954 0.1001

0.2501 0.0619 0.0661 0.0674 0.0708

Logn. semi-par. 0.2583 0.0935 0.0919 0.0946 0.1002

0.2503 0.0617 0.0661 0.0676 0.0705

(0.6, 0.1) Gamma par. 0.2567 0.1206 0.0968 0.0950

0.2499 0.0754 0.0677 0.0680

Logn. Gamma semi-par. 0.2562 0.1217 0.0941 0.0959 0.1007

0.2503 0.0758 0.0654 0.0677 0.0703

Logn. semi-par. 0.2564 0.1217 0.0941 0.0966 0.0995

0.2501 0.0759 0.0653 0.0678 0.0701

(0.1, 0.5) Gamma par. 0.2511 0.1032 0.0977 0.0990

0.2553 0.0664 0.0693 0.0691

Logn. Gamma semi-par. 0.2520 0.1045 0.0962 0.0984 0.0997

0.2541 0.0662 0.0693 0.0691 0.0698

Logn. semi-par. 0.2523 0.1044 0.0962 0.0983 0.1007

0.2541 0.0662 0.0693 0.0700 0.0781

(0.1, 0.1) Gamma par. 0.2462 0.0973 0.0985 0.0968

0.2441 0.0720 0.0693 0.0698

Logn. Gamma semi-par. 0.2455 0.0978 0.0968 0.0977 0.0984

0.2435 0.0713 0.0682 0.0694 0.0701

Logn. semi-par. 0.2456 0.0977 0.0967 0.0977 0.0990

0.2437 0.0711 0.0682 0.0688 0.0698





Chapter 4

Fitting conditional survival

models to meta-analytic data

by using a transformation

toward mixed-effects models

4.1 Introduction

Data from multicenter clinical trials are a typical example of multivariate

survival data; data within the same center all share the same random clus-

ter effect. The shared frailty model, introduced in Section 2.2.1, provides an

appropriate way to describe the within cluster dependence of outcomes. In

Section 2.2.2 we mentioned some likelihood-based estimation methods for the

shared frailty model: the expectation-maximisation (EM) algorithm (Klein,

1992), the penalized partial likelihood approach (McGilchrist, 1993; Therneau

and Grambsch, 2000), the Bayesian approach (Ducrocq and Casella, 1996). A

more complex frailty model that can be used in the clinical trials context is

introduced in Section 2.3.1: a frailty model with a random cluster effect and a

random treatment effect. As discussed in Section 2.3.2, the likelihood-based es-

timation methods mentioned above have been adapted to fit this more complex

57
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frailty model: the EM algorithm (Vaida and Xu, 2000; Cortiñas Abrahantes

and Burzykowski, 2005), the penalized partial likelihood approach (Ripatti

and Palmgren, 2000), the Bayesian approach (Legrand et al., 2005).

In this chapter we propose an alternative way to fit frailty models. We start

from the following observation: the integral of the weighted (over time) con-

ditional cumulative loghazard depends in a linear way on the random effects

describing the cluster and the treatment effect over clusters. Using the data

within a cluster, we can estimate the integral using nonparametric estimation

techniques. Considering the estimated integral as a response we can reformu-

late the original problem of “fitting a frailty model” into a problem of “fitting

a linear mixed-effects model”. We can summarize the idea as follows: based on

the original data we obtain pseudo data (the estimated integrals) on which we

can apply mixed models methodology. Model transformation also works for

multivariate proportional odds models and multivariate additive risks models.

Related references dealing with model transformation in the classical con-

text of proportional hazards, additive risks and proportional odds models are

Grigoletto and Akritas (1999) and Cao and Gonzalez-Manteiga (2008).

In Sections 4.2 and 4.3 we give, for right censored clustered survival data,

the details on how multivariate proportional hazards models (frailty models),

multivariate proportional odds models and multivariate additive risks models

can be transformed into mixed-effects models. The finding that parameters

of interest of a multivariate survival model become parameters of interest of

a related mixed-effects model, provides an interesting link between two seem-

ingly segregated fields. In Sections 4.4 and 4.5, we focus on frailty models to

study the performance of the proposed method. The simulation study in Sec-

tion 4.4 illustrates that, compared to the classical likelihood-based approaches,

the transformation method provides a good and simple alternative for fitting

frailty models for data sets with a sufficiently large number of clusters and

moderate to large sample sizes within covariate level subgroups in the clus-

ters. In Section 4.5 we discuss the performance of the method for the advanced

colorectal cancer data, introduced in Section 1.4.4. We finally present some

remarks and discuss possible further extensions in Section 4.6.



4.2. From frailty model to linear mixed-effects model 59

4.2 From frailty model to linear mixed-effects model

4.2.1 Model formulation

In this chapter we assume that zij is a binary covariate representing the treat-

ment to which the jth patient in the ith cluster has been randomised, with

zij = −1 if the patient is in the control group and zij = 1 if the patient is in

the experimental group, for j = 1, . . . , ni and i = 1, . . . , K.

We consider a frailty model including a fixed overall treatment effect, a random

cluster effect and a random treatment effect. Recall from (2.6) in Section 2.3.1

that the conditional hazard for the jth patient in the ith cluster is defined as

λij(t) = λ0(t) exp {b0i + (β + b1i)zij} , (4.1)

where the random effects b0i and b1i are assumed to follow zero-mean normal

distributions. As discussed in Section 2.3.1, the variance-covariance matrix of

the vector of random effects

b′ = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K)

is given by

G = IK ⊗

 σ2

0 σ01

σ01 σ2
1


 , (4.2)

where σ2
0 and σ2

1 provide information on the heterogeneity of the hazard due

to the random cluster, resp. random treatment effect; σ01 is the covariance

between the two random effects within a cluster.

Also recall that, in absence of a random treatment effect, model (4.1) reduces

to the shared frailty model:

λij(t) = λ0(t) exp(b0i + βzij) = λ0(t)ui exp(βzij), (4.3)

where ui = exp(b0i) is the frailty for cluster i. In absence of covariates this

model further simplifies to

λi(t) = λ0(t) exp(b0i) = λ0(t)ui. (4.4)
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In (4.3) and (4.4) b0i, i = 1, . . . , K, is a sample from a zero-mean normal

density with variance σ2
0, describing the heterogeneity between clusters.

4.2.2 The transformation

With Λij(t) =
∫ t
0 λij(s)ds the cumulative hazard for the jth patient in cluster

i, j = 1, . . . , ni and i = 1, . . . ,K, and Λ0(t) =
∫ t
0 λ0(s)ds, we easily obtain

from (4.1) that

log Λij(t) = log Λ0(t) + b0i + (β + b1i)zij . (4.5)

Let w(.) be a weight function
(
W (t) =

∫ t
0 w(s)ds

)
satisfying w(s) ≥ 0, s ∈

[0,∞),
∫∞
0 w(s)ds = 1, and assigning zero weight to regions where the loga-

rithm of the cumulative hazard function cannot be estimated due to censoring.

The choice of the weight function is discussed in Section 4.2.3. Integrating both

sides in (4.5) with respect to the weight function we obtain
∫ ∞

0
log Λij(t)dW (t) = αF + b0i + (β + b1i)zij ,

with αF =
∫∞
0 log Λ0(t)dW (t). The patients in cluster i are divided, by the

binary covariate zij , in a control and a treatment group. Let Λ(0)
i , resp. Λ(1)

i ,

be the cumulative hazard function shared by all control, resp. treated, patients

in cluster i. Define, for k = 0, 1,

Ωik =
∫ ∞

0
log Λ(k)

i (t)dW (t).

Then Ωi0 = αF + b0i − (β + b1i) (control) and Ωi1 = αF + b0i + (β + b1i)

(treated). Following the ideas of Grigoletto and Akritas (1999), pseudo obser-

vations for the Ωik’s can be obtained as

Ω̂ik =
∫ ∞

0
log Λ̂(k)

i (t)dW (t),

where Λ̂(k)
i is the estimated cumulative hazard based on the observations

(Xij , δij) for all patients in cluster i with, for k = 0, zij = −1 and, for k = 1,

zij = 1. As concrete estimator we use Λ̂(k)
i (t) = − log Ŝ

(k)
i (t) with Ŝ

(0)
i (t) the
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Kaplan-Meier estimator, introduced in (1.2) of Section 1.2.1, for the control

group (zij = −1):

Ŝ
(0)
i (t) =

∏

j:Xij≤t,zij=−1

{
r(Xij)− d(Xij)

r(Xij)

}
,

with r(v) the number still at risk at time v and d(v) the number of events

at time v and with Ŝ
(1)
i (t) the Kaplan-Meier estimator for the experimental

group (zij = 1).

In terms of the pseudo observations we now can propose the model

Ω̂ik = αF + b0i + (β + b1i)zik + (Ω̂ik − Ωik)

= αF + b0i + (β + b1i)zik + eik (4.6)

with zi0 = −1 and zi1 = 1. This is a linear mixed model with a random

intercept and a random slope (treatment effect). Note that the error terms

eik = Ω̂ik − Ωik correct for the fact that the mixed model is applied to the

pseudo data because the transformed cumulative hazard function cannot di-

rectly be observed. As eik = Ω̂ik−Ωik, it is clear that the random error terms

do not satisfy the homogeneity assumption (because different subclusters have

different sample sizes). In Section 4.2.3 we explain how to account for this het-

erogeneity when mixed models software is used to fit the model. A further

remark is that for the special case (4.4) we obtain the following model after

transformation:

Ω̂i = αF + b0i +
(
Ω̂i − Ωi

)
= αF + b0i + ei. (4.7)

For this one-way random effects model we only have one observation per clus-

ter. At first glance this leads to identifiability problems. We, however, do have

estimators of the variances of the error terms so that estimation of the vari-

ance components associated with the random cluster effect is possible. More

details on this are given in Section 4.2.3.

4.2.3 The error variance

To apply the methods proposed in Section 4.2.2, we need estimates for the

error variances σ2
e,ik = Var(eik), resp. σ2

e,i = Var(ei), of the random error
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terms in model (4.6), resp. (4.7). We consider the general model (4.6). The

patients of cluster i are divided in two groups: the control group (k = 0) and

the treatment group (k = 1). Let nik be the number of patients in group k

of cluster i. Define F
(k)
i (t) = 1− S

(k)
i (t). By using the relationship Λ(k)

i (t) =

− log
{

1− F
(k)
i (t)

}
and a first order Taylor approximation, we obtain

eik = Ω̂ik − Ωik =
∫ ∞

0

{
log Λ̂(k)

i (t)− log Λ(k)
i (t)

}
dW (t)

∼=
∫ ∞

0

1

Λ(k)
i (t)

1

S
(k)
i (t)

{
F̂

(k)
i (t)− F

(k)
i (t)

}
dW (t). (4.8)

Using the i.i.d. representation for F̂
(k)
i (t)−F

(k)
i (t) proposed by Lo and Singh

(1986), we easily obtain an i.i.d. representation of eik. Based on this repre-

sentation and given an appropriate weight function, an approximation for the

(estimated) variance of eik is obtained through (4.8). In the sequel we have

chosen a uniform weight function W on the interval (A,B), where A and B

are chosen such that the logarithm of the cumulative hazard can be estimated

for t ∈ (A,B) for the control and the treatment group in each cluster. The

variance of the error term Ω̂ik − Ωik (i = 1, . . . , K, k = 0, 1) can then be

estimated by

σ̂2
e,ik =

1
n2

ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ s

A

1

Λ̂(k)
i (t)

×
∑

j: zij=k

I (0 ≤ xij ≤ t, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ B

s

1

Λ̂(k)
i (t)

×
∑

j: zij=k

I (0 ≤ xij ≤ s, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds. (4.9)

The technical details of the derivation of (4.9) are presented in Appendix 4.7.1.

For model (4.7), we obtain in a similar way the estimated variance of the error
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term Ω̂i − Ωi (i = 1, . . . , K):

σ̂2
e,i =

1
n2

i

1
(B −A)2

∫ B

A

1
Λ̂i(s)

∫ s

A

1
Λ̂i(t)

×
ni∑

j=1

I (0 ≤ xij ≤ t, δij = 1){
1− 1

ni

∑ni
j=1 I (Xij < xij)

}2 dt ds

+
1
n2

i

1
(B −A)2

∫ B

A

1
Λ̂i(s)

∫ B

s

1
Λ̂i(t)

×
ni∑

j=1

I (0 ≤ xij ≤ s, δij = 1){
1− 1

ni

∑ni
j=1 I (Xij < xij)

}2 dt ds.

4.3 Other conditional survival models

As mentioned in Section 4.1, model transformation also works for conditional

survival models that are different from frailty models. We give two examples.

First we consider the multivariate proportional odds model, introduced in

Section 2.4.2:

log
{

Fij(t)
1− Fij(t)

}
= h0(t) + b0i + (β + b1i)zij ,

where Fij is the conditional distribution function for the jth patient in the ith

cluster and h0 is the baseline logodds function. Integrating out with respect

to the weight function w, we obtain
∫ ∞

0
log

{
Fij(t)

1− Fij(t)

}
dW (t) = αPO + b0i + (β + b1i)zij , (4.10)

with αPO =
∫∞
0 h0(t)dW (t).

A second example is the multivariate additive risks model, introduced in Sec-

tion 2.4.1:

λij(t) = λ0(t) + b0i + (β + b1i)zij .

Integrating out the corresponding cumulative hazard function with respect to

the weight function W̃ (t) = W (t)/
∫∞
0 sdW (s), we obtain

∫ ∞

0
Λij(t)dW̃ (t) = αAR + b0i + (β + b1i)zij , (4.11)
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with αAR =
∫∞
0 Λ0(t)dW̃ (t).

Starting from (4.10) and (4.11), transformations to mixed-effects models are

obtained along the lines of the discussion given for the frailty models. The tech-

nical details on the estimation of the error variance are given in Appendix 4.7.1.

In the rest of this chapter we focus on frailty models, as described in Sec-

tion 4.2.1 to 4.2.3, to compare the results obtained by the proposed method

with the results obtained by a classical likelihood-based approach.

4.4 Simulations

We study the performance of the proposed method in the context of frailty

models by using a simulation study. As simulation model we consider the

setting of a multicenter clinical trial. First, we consider the special case of

the shared frailty model (4.4) including only a random center (cluster) effect.

We compare the results obtained from the proposed method with those ob-

tained from the penalized partial likelihood approach (Therneau and Gramb-

sch, 2000). We use “coxph” in S-Plus 7.0.6 for the penalized partial likelihood

inference. The precision of the parameter estimates is investigated for a vary-

ing number of clusters and a varying number of observations per cluster. We

further look at different percentages of censoring, we consider different sizes

for σ2
0 and different values for the baseline event rate λ0(t) (which we assume

constant in time for simplicity). We also discuss the robustness of the proposed

method against misspecification of the frailty density. Next, we consider the

general frailty model (4.1), including a fixed overall treatment effect, a ran-

dom center effect and a random treatment effect. For this model, we allow

for correlation between b0i and b1i. Also here we compare the results obtained

by the proposed method with those based on the penalized partial likelihood

approach (Ripatti and Palmgren, 2000) using “coxme” in S-Plus 7.0.6 for the

likelihood inference. We further study the effect of the size of σ2
0 and σ2

1 on

the precision of the parameter estimates.
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4.4.1 Description of the simulations

For simplicity, we assume a constant sample size per cluster: ni = n, for

i = 1, . . . , K. For each specific setting (K,n, λ0, σ
2
0, σ01, σ

2
1), 500 data sets are

generated from model (4.1), assuming a constant baseline hazard. Given a

particular setting, observations for a particular data set are generated in the

following way. First, we generate K observations (b0i, b1i), i = 1, . . . ,K, from

a bivariate normal distribution with zero mean vector and variance-covariance

matrix 
 σ2

0 σ01

σ01 σ2
1


 .

Recall from Section 4.2.1 that b01, . . . , b0K are the random center effects and

b11, . . . , b1K are the random treatment effects. The time to event for each

patient is randomly generated from an exponential distribution with param-

eter λij = λ0 exp (b0i + (β + b1i)zij), where zij is generated from a Bernoulli

distribution with success probability 0.5. The censoring time for each patient

is randomly generated from a uniform distribution, so that approximately

30% censoring is obtained. For each data set, pseudo data Ω̂ik are generated

through the model transformation described in Section 4.2 by using a uniform

weight function w on the interval (A,B), chosen so that 0 < Ŝ
(k)
i (t) < 1 for

t ∈ (A,B). For each cluster i, the estimated variance of Ω̂ik−Ωik is computed

as explained in Section 4.2.3. To fit model (4.6), we use the SAS procedure

PROC MIXED (see Appendix 4.7.2 for details on PROC MIXED). For each

data set we obtain estimates for β, σ2
0, σ2

1 and σ01.

For the special case of model (4.4), the data are generated as explained above

with β = 0, σ2
1 = 0 and σ01 = 0. Here, we consider moderate censoring

(around 30%) and heavy censoring (around 60%). To study the robustness of

the proposed method against frailty misspecification, the data are generated

assuming that the frailties u1 = exp(b01), . . ., uK = exp(b0K) are gamma dis-

tributed with mean E(Ui) = eσ2
0/2 and variance V ar(Ui) = θ = eσ2

0

(
eσ2

0 − 1
)
.

This corresponds to random effects b0i with mean 0 and variance σ2
0. For each

data set, pseudo data Ω̂i are generated as explained above. We fit model (4.4)
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assuming, incorrectly, that the random effects b0i are normally distributed

with mean 0 and variance σ2
0.

4.4.2 Choice of the parameters

Frailty model with a random center effect

For the concrete simulation, we take 20, 50, and 100 centers with 50 or 100

patients per center. The parameter values λ0 and σ2
0 in both settings are

chosen in such a way that a different magnitude of spread in the median

time to event from center to center is induced. Recall from Section 3.3.3

that the median time to event TM is the solution of exp {−λ0 exp(b0)TM} =

0.5, i.e., TM = log 2
λ0 exp(b0) , where we assume in this case that b0 is zero-mean

normally distributed. The magnitude of spread in the median time to event

from center to center was determined by computing the density function of

TM (Figure 4.1). It is easy to show that the density function fTM
(t) is given

by

fTM
(t) =

1
t
√

2πσ2
0

exp


−

{
log

(
log 2
λ0t

)}2

2σ2
0


 .

As true values for the event rate, we take λ0 = 0.1 and 0.5. The heterogeneity

parameter is set at σ2
0 = 0.08765 and 0.1577. To understand the choice of

these values, note that the relation between σ2
0 and the frailty variance θ is

given by: V ar(Ui) = θ = eσ2
0

(
eσ2

0 − 1
)
. The values of σ2

0 correspond to a

frailty variance of θ = 0.1, resp. 0.2.

For the settings (σ2
0, λ0) = (0.08765, 0.1) and (0.1577, 0.1), there is much

spread in the median time to event over the centers. For the settings (σ2
0, λ0)

= (0.08765, 0.5) and (0.1577, 0.5), there is little spread in the median time

to event over the centers, with a bigger spread for σ2
0 = 0.1577. To study

the robustness of the proposed method, we take σ2
0 = 0.3520 (θ = 0.6) and

λ0 = 0.1. The motivation for choosing θ = 0.6 is that the gamma and the

lognormal density functions are close for θ = 0.1, whereas for θ = 0.6 these

densities are more apart, as we already illustrated in Figure 3.2.
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Figure 4.1: Density function of the median time to event over centers.

Frailty model with random center and treatment effects

We consider a situation with 50 centers that have 100 or 200 patients per

center. The baseline hazard is assumed constant and equal to λ0 = 0.3. For

the treatment effect, we use β = −0.2. These parameter values are chosen so

that the bladder cancer data considered in Legrand et al. (2005) can serve as

a reference. This study investigates heterogeneity in disease-free interval due

to center and treatment effect over centers in a large bladder cancer database

including data from seven randomised clinical trials. We simulate data us-

ing different combinations of values of σ2
0 and σ2

1, varying from 0 to 0.08

(σ2
0, σ

2
1 = 0, 0.04 or 0.08). The covariance parameter σ01 is chosen such that

the correlation between b0 and b1 is equal to 0.5 (e.g., for σ2
0 = 0.08, σ2

1 = 0.04,
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the covariance parameter σ01 = 0.0283 corresponds with a correlation of 0.5,

see Table 4.3). This value mimics the correlation between the random effects

observed in the bladder cancer data (Legrand et al., 2005).

4.4.3 Simulation results

Frailty model with a random center effect

Table 4.1 presents, for the setting (σ2
0, λ0) = (0.08765, 0.5), the relative bias,

the mean and the empirical standard deviation computed for the 500 esti-

mates of the variance of the random center effect. The results for the settings

(σ2
0, λ0) = (0.08765, 0.1), (0.1577, 0.5) and (0.1577, 0.1) are not substantially

different (see Tables 4.5, 4.6 and 4.7 at the end of this chapter).

The general conclusion for all parameter settings is that σ2
0 is estimated well

by the proposed method if the cluster size is large enough (i.e., n = ni = 100).

Both for the penalized partial likelihood approach (coxph in S-Plus 7.0.6) and

the proposed method, the absolute relative bias decreases with the increasing

cluster size, and is not substantially influenced by the number of clusters. In

general, the estimates obtained by the proposed approach are on average closer

to the true value σ2
0 if the cluster size is large enough (i.e., n = ni = 100).

For a smaller cluster size (n = ni = 50), the estimates obtained by the penal-

ized partial likelihood are more precise. In general, the absolute relative bias

increases if the amount of censoring increases. However, if the cluster size is

large enough, σ2
0 is estimated well by the proposed method.

Table 4.2 shows the results obtained by the penalized partial likelihood ap-

proach and the proposed method if the “true” frailties are gamma distributed

with variance 0.6. The results illustrate that, for both methods, the point

estimates of σ2
0 are biased if the model is misspecified. This lack of robustness

is also discussed in the bootstrap context in Section 3.3.4 (see also Masson-

net et al., 2006). It clearly shows the need for lack-of-fit measures for frailty

models.
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Table 4.1: Relative bias, mean and empirical standard deviation of the es-

timated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.08765 (θ = 0.1),

λ0 = 0.5; first line for coxph, second line for PROC MIXED.

30 % censoring 60 % censoring

(K, n) Rel. Mean Emp. Rel. Mean Emp.

bias std bias std

(100,100) -0.0314 0.0849 0.0152 -0.0143 0.0864 0.0169

-0.0257 0.0854 0.0148 -0.0177 0.0861 0.0162

(100,50) -0.0382 0.0843 0.0174 -0.0280 0.0852 0.0198

-0.0975 0.0791 0.0168 -0.1135 0.0777 0.0197

(50,100) -0.0097 0.0868 0.0227 -0.0234 0.0856 0.0223

0.0029 0.0879 0.0223 -0.0177 0.0861 0.0225

(50,50) -0.0188 0.0860 0.0240 -0.0462 0.0836 0.0277

-0.0667 0.0818 0.0248 -0.1204 0.0771 0.0274

(20,100) -0.0439 0.0838 0.0327 -0.0747 0.0811 0.0339

-0.0154 0.0863 0.0347 -0.0382 0.0843 0.0355

(20,50) -0.0690 0.0816 0.0343 -0.0451 0.0837 0.0434

-0.1010 0.0788 0.0365 -0.1067 0.0783 0.0436

Frailty model with random center and treatment effects

In Table 4.3 we report, for the parameter choice described in Section 4.4.2 and

for 50 centers with 200 patients per center, the mean, the empirical standard

deviation and the average of the model-based standard deviations computed

over the 500 estimates of the fixed treatment effect and the variance-covariance

components of the random effects. We compare the results obtained by the

proposed method with those obtained by coxme in S-Plus 7.0.6. There is no
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Table 4.2: Relative bias, mean and empirical standard deviation of the esti-

mated values σ̂2
0 over the 500 simulations; true gamma frailties, σ2

0 = 0.3520

(θ = 0.6), λ0 = 0.1; first line for coxph, second line for PROC MIXED; 30 %

censoring.

(K, n) Rel. Mean Emp.

bias std

(100,100) 0.4102 0.4964 0.0862

0.3226 0.4656 0.0740

(50,100) 0.3989 0.4925 0.1190

0.3142 0.4626 0.1047

(20,100) 0.3563 0.4774 0.1825

0.3422 0.4725 0.1714

reliable software available to compute the standard errors for the variance-

covariance parameters for the penalized partial likelihood approach. The pa-

rameter β is in general estimated well by both methods. The bias of the fixed

effect estimates obtained by coxme is in general a bit smaller than for the pro-

posed method. The empirical variability of estimates of β is similar for both

methods. The estimates of σ2
0, σ2

1 and σ01 for both methods are on average

comparable. The estimates produced by coxme have in general the smallest

empirical variability. The average of the model-based standard deviations for

the fixed effect and for the variance components, give an adequate estimate of

the empirical variability for the proposed method.

For situations with 50 centers that have 100 patients per center (50 in the

control group and 50 in the treatment group), the proposed method still gives

reasonable estimates for β, σ2
0, σ2

1 and σ01 (see Table 4.8 at the end of this

chapter). However, compared to the situation with 50 centers and 200 patients

per center, we obtain estimates of a somewhat lower quality. This illustrates
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that the proposed method needs large enough samples sizes within the control

group and the treatment group; this confirms our finding for the frailty model

with a random center effect.

Table 4.3: Mean, empirical standard deviation and average of the model-

based standard deviations of the estimated values over the 500 simulations; 50

centers, 200 patients per center (100 patients in control and treatment group);

λ0 = 0.3, β = −0.2.

PROC MIXED coxme

True Mean Emp. Model Mean Emp.

std. std. std.

β -0.20 -0.2010 0.0124 0.0133 -0.2001 0.0120

σ2
0 0 0.0005 0.0009 0.0008 0.0017 0.0011

σ2
1 0 0.0006 0.0009 0.0008 0.0075 0.0062

σ01 0 0.0002 0.0014 0.0014 0.0027 0.0024

β -0.20 -0.1998 0.0423 0.0420 -0.2005 0.0422

σ2
0 0 0.0006 0.0011 0.0009 0.0007 0.0010

σ2
1 0.08 0.0801 0.0177 0.0182 0.0790 0.0127

σ01 0 -0.0003 0.0047 0.0047 0.0011 0.0016

β -0.20 -0.1997 0.0407 0.0418 -0.2001 0.0404

σ2
0 0.04 0.0393 0.0102 0.0100 0.0394 0.0096

σ2
1 0.08 0.0788 0.0179 0.0180 0.0777 0.0168

σ01 0.0283 0.0277 0.0102 0.0104 0.0276 0.0097

β -0.20 -0.1993 0.0135 0.0139 -0.1995 0.0123

σ2
0 0.08 0.0794 0.0181 0.0181 0.0797 0.0124

σ2
1 0 0.0005 0.0010 0.0008 0.0006 0.0009

σ01 0 0.0000 0.0047 0.0046 0.0016 0.0014

β -0.20 -0.2009 0.0331 0.0313 -0.2006 0.0321

σ2
0 0.08 0.0805 0.0182 0.0184 0.0799 0.0179

σ2
1 0.04 0.0399 0.0096 0.0101 0.0397 0.0092

σ01 0.0283 0.0290 0.0105 0.0107 0.0287 0.0102

β -0.20 -0.1986 0.0430 0.0421 -0.1996 0.0433

σ2
0 0.08 0.0776 0.0173 0.0180 0.0776 0.0169

σ2
1 0.08 0.0794 0.0174 0.0183 0.0790 0.0168

σ01 0.04 0.0393 0.0142 0.0142 0.0394 0.0139
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4.5 Analysis of the colorectal cancer data

To investigate the between-trial variation (heterogeneity) in both the baseline

risk and the effectiveness of the therapy, we fit the frailty model (4.1) including

a fixed treatment effect, a random trial effect and a random treatment effect.

In this model, we also take into account a possible correlation between the two

random effects within a trial. The parameter estimates and the corresponding

standard errors, obtained by the proposed method and by the penalized partial

likelihood approach (coxme in S-Plus 7.0.6), are presented in Table 4.4.

The point estimates for σ2
1 and σ01 are very small (almost zero). For this

reason, we fit the shared frailty model (4.3) including a fixed treatment effect

and a random trial effect. The results are shown in Table 4.4.

Table 4.4: Results of the analysis of the survival time of the patients included

in the colorectal cancer trials (standard error in parentheses).

Method β σ2
0 σ2

1 σ01

PROC MIXED -0.0458 (0.0219) 0.0476 (0.0187) 0.0000 (-) -0.0084 (0.0056)

coxme -0.0534 (0.0169) 0.0355 3.34 ×10−10 1.78 ×10−11

PROC MIXED -0.0558 (0.0225) 0.0461 (0.0172)

coxph -0.0534 (0.0169) 0.0376

The estimates obtained by the penalized partial likelihood and the transfor-

mation method are a bit different. However, the difference has only low impact

on important medical quantities, e.g. on the density of the median time to

event in the control group over trials (Figure 4.2). So both methods provide

similar medical conclusions. A possible explanation for the difference between

the estimates obtained by both methods, is that only 16 out of 27 trials have

sample sizes of both the treatment and the control group larger than 50 pa-

tients. From the simulations, we know that the accuracy of the transformation

method is comparable to the penalized partial likelihood if the cluster sizes

are large enough.
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Figure 4.2: Density function of the median time to event over clusters for the

colorectal cancer data.

The use of frailty models or linear mixed-effects models (for the pseudo data)

raises questions on diagnostics. In the context of the method proposed here,

we focus on model diagnostics for the linear mixed-effects model for the pseudo

data (see, e.g., West et al., 2007). If the diagnostic plots show that the linear

mixed-effects model is not appropriate for the pseudo data, this indicates that

the corresponding frailty model is not valid for the individual data. However,

if the results of the mixed model diagnostics are good, there is no guarantee

that the frailty model is the correct model for the individual data. It is indeed

possible that other models lead to the same linear mixed-effects model using an

appropriate model transformation. To check the fit of the linear mixed-effects

model obtained from the shared frailty model using the model transformation,

we consider a plot of the studentized conditional residuals versus the predicted

values, a normal QQ plot of the studentized conditional residuals and a nor-
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mal QQ plot of the empirical best linear unbiased predictions (i.e., EBLUP’s)

of the random trial effect (see Figure 4.3 and Figure 4.4). These diagnostic

plots show that the pseudo values, obtained from the colorectal cancer data,

can be analysed using the linear mixed-effects model that corresponds to the

shared frailty model. However, there is still no guarantee that the shared

frailty model is the correct model for the original data.

Figure 4.3: Plots of the studentized conditional residuals for the linear mixed-

effects model that corresponds to the shared frailty model.

4.6 Conclusions

In this chapter, an alternative approach to fit frailty models is proposed. The

original problem of “fitting a frailty model” is reformulated into a standard

problem of “fitting a linear mixed-effects model”. We show that the integral

of the weighted (over time) conditional cumulative loghazard depends in a

linear way on the random effects describing the cluster and/or the treatment

effect over clusters. Using the data within a cluster, the integral can be esti-
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Figure 4.4: Normal QQ plot of the EBLUP’s of the random trial effect in the

linear mixed-effects model that corresponds to the shared frailty model.

mated using nonparametric estimation techniques. Considering the estimated

integrals as a response, linear mixed models methodology can be applied. We

illustrate that this transformation idea can also be used to fit multivariate

proportional odds models and multivariate additive risks models. Most stan-

dard statistical packages contain procedures to fit complex linear mixed-effects

models but offer only a limited number of procedures to fit conditional (ran-

dom effects) survival models. The proposed model transformation is therefore

a useful practical way to get insight in the heterogeneity in clustered data. The

performance of the proposed method was studied by simulation in the context

of frailty models. The results indicate a good performance of the proposed

method for data sets with a sufficiently large number of clusters (i.e., K = 20)

and moderate to large sample sizes within covariate level subgroups in the

clusters (i.e., at least nik = 50). Given this finding, the proposed method

is more suitable for a meta-analysis setting rather than for the setting of a

multicenter clinical trial.

We considered a frailty model with a binary covariate and we therefore could

use the Kaplan-Meier estimator for the survival function. It would be of in-
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terest to extend the transformation idea to frailty models with a continuous

covariate. We then need the Beran estimator to estimate the survival func-

tion (Beran, 1981). An asymptotic representation for the Beran estimator is

proposed by Van Keilegom and Veraverbeke (1997). Such a representation

is necessary to estimate the variance of the error terms in the mixed-effects

model. This problem is currently under investigation (see Cao et al., 2008).

From the above discussion it is also clear that the transformation method

is useful for censoring schemes that are different from the right censoring

scheme discussed so far. Indeed, the transformation idea readily extends to

any censoring scheme for which an i.i.d. representation for a nonparametric

estimator for the cumulative hazard or the survival function is available (e.g.,

for interval-censored data, Lindsey and Ryan (1998); or for left truncated and

right censored data, Gijbels and Wang (1993) and Zhou and Yip (1999)).

The performance of the transformation method for multivariate proportional

odds models and multivariate additive risks models is a subject for further

study.

4.7 Appendix

4.7.1 The error variance

Multivariate proportional hazards models

To apply the method proposed in Section 4.2.2 we need estimated values for

the error variance. To obtain estimates we can rely on an asymptotic repre-

sentation, proposed by Lo and Singh (1986), decomposing F̂
(k)
i (t) − F

(k)
i (t)

as an average of i.i.d. terms and a lower order remainder term rik(t), where

F
(k)
i is the continuous failure time distribution function for subjects in cluster

i with zij = k.

Let G be the censoring distribution, 1−Hik(s) = {1−F
(k)
i (s)}{1−G(s)} and

Hu
ik(s) = P (Xij ≤ s, δij = 1|zij = k) =

∫ s
0 1−G(y−)dF

(k)
i (y). It follows from
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Lo and Singh (1986) that

F̂
(k)
i (t)− F

(k)
i (t) =

1
nik

∑

j: zij=k

ξik(Xij , δij , t) + rik(t),

where

ξik(Xij , δij , t) =
I (Xij ≤ t, δij = 1)

1−Hik(Xij)
−

∫ t

0

I (Xij > s)
{1−Hik(s)}2 dHu

ik(s),

for a subject in cluster i with observed information (Xij , δij) and zij = k.

By using the relationship Λ(k)
i (t) = − log

{
1− F

(k)
i (t)

}
and first order Taylor

expansions, we obtain

log Λ̂(k)
i (t)− log Λ(k)

i (t) ∼= 1

Λ(k)
i (t)

1{
1− F

(k)
i (t)

}
{

F̂
(k)
i (t)− F

(k)
i (t)

}

∼= 1

Λ(k)
i (t)

1

S
(k)
i (t)

1
nik

∑

j: zij=k

ξik(Xij , δij , t).

Let w be a weight function, as defined in Section 4.2.2. Integrating both sides

with respect to w gives

Ω̂ik − Ωik =
∫ ∞

0
log Λ̂(k)

i (t)dW (t)−
∫ ∞

0
log Λ(k)

i (t)dW (t)

∼= 1
nik

∑

j: zij=k

∫ ∞

0

ξik(Xij , δij , t)

Λ(k)
i (t)S(k)

i (t)
dW (t)

=
1

nik

∑

j: zij=k

ηik(Xij , δij),

with ηik(Xij , δij) =
∫∞
0

ξik(Xij ,δij ,t)

Λ
(k)
i (t)S

(k)
i (t)

dW (t).

Noting that the function ξik(Xij , δij , t) is a conditional version (conditioned

on the cluster i and the subgroup with zij = k) of the function ξ in Lo and

Singh (1986), it follows that for a subject with observed information (Xij , δij)

in the subgroup with zij = k:

E {ξik(Xij , δij , t)} = 0,

Cov {ξik(Xij , δij , t), ξik(Xij , δij , s)} = {1− F
(k)
i (t)}{1− F

(k)
i (s)}

×
∫ t∧s

0

dHu
ik(y)

{1−Hik(y)}2
.
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Assume that subject l in cluster i is in the subgroup with zil = k. The

asymptotic variance of the error terms Ω̂ik − Ωik is given by

σ2
e,ik = Var(Ω̂ik − Ωik)

= Var





1
nik

∑

j: zij=k

ηik(Xij , δij)





=
1

nik
Var {η(Xil, δil)}

=
1

nik
E

{∫ ∞

0

ξik(Xil, δil, t)

Λ(k)
i (t)S(k)

i (t)
dW (t)

∫ ∞

0

ξik(Xil, δil, s)

Λ(k)
i (s)S(k)

i (s)
dW (s)

}

=
1

nik

∫ ∞

0

∫ ∞

0

1

Λ(k)
i (t)S(k)

i (t)Λ(k)
i (s)S(k)

i (s)
× Cov {ξik(Xil, δil, t), ξik(Xil, δil, s)} dW (t)dW (s)

=
1

nik

∫ ∞

0

∫ ∞

0

1

Λ(k)
i (t)Λ(k)

i (s)

∫ s∧t

0

dHu
ik(y)

{1−Hik(y)}2 dW (t)dW (s).

Let W be a uniform weight function on the interval (A,B), where A and B

are chosen so that 0 < Ŝ
(k)
i (t) < 1 for t ∈ (A,B). Then

σ2
e,ik =

1
nik

1
(B −A)2

∫ B

A

∫ s

A

1

Λ(k)
i (t)Λ(k)

i (s)

∫ t

0

dHu
ik(y)

{1−Hik(y−)}2 dtds

+
1

nik

1
(B −A)2

∫ B

A

∫ B

s

1

Λ(k)
i (t)Λ(k)

i (s)

∫ s

0

dHu
ik(y)

{1−Hik(y−)}2 dtds.

To obtain an estimate of the asymptotic error variance, we replace Hik(y−)

and Hu
ik(y) by the following empirical estimators:

Ĥu
ik(y) =

1
nik

∑

j: zij=k

I (Xij ≤ y, δij = 1)

Ĥik(y−) =
1

nik

∑

j: zij=k

I (Xij < y) .
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This gives the following estimated variances of the error terms:

σ̂2
e,ik =

1
n2

ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ s

A

1

Λ̂(k)
i (t)

×
∑

j: zij=k

I (0 ≤ xij ≤ t, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ B

s

1

Λ̂(k)
i (t)

×
∑

j: zij=k

I (0 ≤ xij ≤ s, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds.

Multivariate proportional odds models

It follows from the first order Taylor expansion and the i.i.d. representation

by Lo and Singh (1986) that

logit
{

F̂
(k)
i (t)

}
− logit

{
F

(k)
i (t)

}

∼= 1

F
(k)
i (t)

{
1− F

(k)
i (t)

}
{

F̂
(k)
i (t)− F

(k)
i (t)

}

∼= 1{
1− S

(k)
i (t)

}
S

(k)
i (t)

1
nik

∑

j:zij=k

ξik (Xij , δij , t) .

Integrating with respect to w gives

Ω̂(k)
PO;i − Ω(k)

PO;i =
∫ ∞

0
logit

{
F̂

(k)
i (t)

}
dW (t)−

∫ ∞

0
logit

{
F

(k)
i (t)

}
dW (t)

∼= 1
nik

∑

j:zij=k

∫ ∞

0

ξik (Xij , δij , t){
1− S

(k)
i (t)

}
S

(k)
i (t)

dW (t).

The estimated variance of the error terms Ω̂(k)
PO;i−Ω(k)

PO;i can be obtained using

the same arguments as explained for the multivariate proportional hazards



80 Chapter 4. Fitting conditional survival models

model (frailty model):

σ̂2
e PO,ik =

1
n2

ik

1
(B −A)2

∫ B

A

1{
1− Ŝ

(k)
i (s)

}
∫ s

A

1{
1− Ŝ

(k)
i (t)

}

×
∑

j: zij=k

I (0 ≤ xij ≤ t, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1{
1− Ŝ

(k)
i (s)

}
∫ B

s

1{
1− Ŝ

(k)
i (t)

}

×
∑

j: zij=k

I (0 ≤ xij ≤ s, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dt ds.

Multivariate additive risks models

Using Λ(k)
i (t) = − log

{
1− F

(k)
i (t)

}
and the first order Taylor expansion gives

Λ̂(k)
i (t)− Λ(k)

i (t) ∼= 1

1− F
(k)
i (t)

{
F̂

(k)
i (t)− F

(k)
i (t)

}

∼= 1

1− F
(k)
i (t)

1
nik

∑

j:zij=k

ξik (Xij , δij , t) .

The last equation follows by Lo and Singh (1986). By integrating both sides

with respect to the weight function W̃ (t) = W (t)/
∫∞
0 sdW (s), we obtain

Ω̂(k)
AR;i − Ω(k)

AR;i =
∫ ∞

0
Λ̂(k)

i (t)dW̃ (t)−
∫ ∞

0
Λ(k)

i (t)dW̃ (t)

∼= 1
nik

∑

j:zij=k

∫ ∞

0

ξik (Xij , δij , t)

S
(k)
i (t)

dW̃ (t).

As in the previous sections, we choose a uniform weight function W on the

interval (A,B). The estimated variance of the error terms Ω̂(k)
AR;i − Ω(k)

AR;i can
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be obtained in a similar way as the discussion given for the frailty model:

σ̂2
e AR,ik

=
1

n2
ik

4
(B2 −A2)2

∫ B

A

∫ s

A

∑

j: zij=k

I (0 ≤ xij ≤ t, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dtds

+
1

n2
ik

4
(B2 −A2)2

∫ B

A

∫ B

s

∑

j: zij=k

I (0 ≤ xij ≤ s, δij = 1){
1− 1

nik

∑
j: zij=k I (Xij < xij)

}2 dtds.

4.7.2 Fitting the linear mixed-effects model

To fit the transformed models (4.6) and (4.7) in Section 4.2.2, we use PROC

MIXED in SAS. The mixed-effects model is written as

y = Xβ + Zγ + e, (4.12)

where y denotes the vector of dependent variable values, β is an unknown

vector of fixed effects with known model matrix X, γ is an unknown vector of

random effects with known model matrix Z, and e is the random error vector.

A key assumption is that γ and e are normally distributed with

E


 γ

e


 =


 0

0


 and D


 γ

e


 =


 G 0

0 R


 .

The variance-covariance matrix of y is therefore V = ZGZ′ + R. To es-

timate the variance-covariance components in model (4.12), PROC MIXED

implements two likelihood-based methods: maximum likelihood (ML) and re-

stricted/residual likelihood (REML). We will consider the REML method.

The corresponding loglikelihood function is:

lR(G,R) = −1
2

log |V| − 1
2

log |X′V−1X| − 1
2
r′V −1r− n− p

2
log 2π, (4.13)

where r = y−X(X′V−1X)−1X′V−1y and p is the rank of X. PROC MIXED

minimizes −2 lR(G,R) over all unknown parameters using a ridge-stabilized

Newton-Raphson algorithm.

For model (4.7) in Section 4.2.2, y′ =
(
Ω̂1, Ω̂2, . . . , Ω̂K

)
, X = 1K , Z = IK ,
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γ ′ = (b01, b02, . . . , b0K), G = σ2
0IK and R = diag(σ2

e,1, . . . , σ
2
e,K). As already

mentioned, we only have one observation per level in model (4.7). To be able

to estimate σ2
0, we first estimate σ2

e,1, . . . , σ
2
e,K as explained in Section 4.2.3.

In the PARMS statement of PROC MIXED, initial values for the covariance

parameters can be specified. We choose an arbitrary initial value for σ2
0. The

initial values for the error variances are chosen to be σ̂2
e,1, . . . , σ̂

2
e,K . By using

the option EQCONS, the initial residual variances will be held constant during

the estimation procedure. Maximisation of (4.13) over σ2
0 gives an estimate

for the heterogeneity σ2
0. The following SAS code fits model (4.7) to the pseudo

data for 20 clusters:

proc mixed data=pseudodata;

class cluster;

model omegaihat= ;

random cluster;

repeated/group=cluster;

parms /parmsdata=parmsdataset eqcons= 2 to 21;

run;

where parmsdataset is a SAS data set that contains the initial values for σ2
0,

σ2
e,1, . . . , σ2

e,K .

For model (4.6), y′ =
(
Ω̂10, Ω̂11, Ω̂20, Ω̂21, . . . , Ω̂K0, Ω̂K1

)
,

X = IK ⊗

 1 −1

1 1


 , Z = IK ⊗


 1 −1

1 1


 ,

γ ′ = b′ and G is as defined in Section 4.2.1. Further, R = diag(σ2
e,10, σ

2
e,11, . . . ,

σ2
e,K0, σ

2
e,K1). The error covariance matrix R can be estimated as explained

in Section 4.2.3. By maximising (4.13) over G in PROC MIXED while fixing

the error variances as described above, we obtain estimates for σ2
0, σ2

1 and σ01.

To obtain estimates of β and γ, the mixed model equations are solved (Hen-

derson, 1984). The solutions can be written as β̂ = (X′V̂−1X)−1X′V̂−1y and

γ̂ = ĜZ′V̂−1(y −X β̂) .
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Table 4.5: Relative bias, mean and empirical standard deviation of the es-

timated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.08765 (θ = 0.1),

λ0 = 0.1; first line for coxph, second line for PROC MIXED.

30 % censoring 60 % censoring

(K, n) Rel. Mean Emp. Rel. Mean Emp.

bias std bias std

(100,100) -0.0222 0.0857 0.0146 -0.0200 0.0859 0.0170

-0.0177 0.0861 0.0146 -0.0234 0.0856 0.0167

(100,50) -0.0131 0.0865 0.0163 -0.0188 0.0860 0.0190

-0.0793 0.0807 0.0164 -0.1010 0.0788 0.0189

(50,100) -0.0051 0.0872 0.0204 -0.0280 0.0852 0.0232

0.0017 0.0878 0.0210 -0.0234 0.0856 0.0238

(50,50) -0.0200 0.0859 0.0245 -0.0211 0.0858 0.0281

-0.0793 0.0807 0.0238 -0.0975 0.0791 0.0286

(20,100) -0.0416 0.0840 0.0303 -0.0941 0.0794 0.0339

-0.0086 0.0869 0.0319 -0.0645 0.0820 0.0354

(20,50) -0.0690 0.0816 0.0355 -0.0747 0.0811 0.0397

-0.0998 0.0789 0.0373 -0.1409 0.0753 0.0405
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Table 4.6: Relative bias, mean and empirical standard deviation of the esti-

mated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.1577 (θ = 0.2), λ0 = 0.5;

first line for coxph, second line for PROC MIXED.

30 % censoring 60 % censoring

(K, n) Rel. Mean Emp. Rel. Mean Emp.

bias std bias std

(100,100) -0.0120 0.1558 0.0264 -0.0292 0.1531 0.0253

-0.0120 0.1558 0.0261 -0.0323 0.1526 0.0253

(100,50) -0.0355 0.1521 0.0272 -0.0406 0.1513 0.0282

-0.0938 0.1429 0.0263 -0.1046 0.1412 0.0281

(50,100) -0.0184 0.1548 0.0348 -0.0374 0.1518 0.0375

-0.0101 0.1561 0.0351 -0.0317 0.1527 0.0382

(50,50) -0.0146 0.1554 0.0388 -0.0609 0.1481 0.0400

-0.0590 0.1484 0.0392 -0.1141 0.1397 0.0396

(20,100) -0.0140 0.1555 0.0536 -0.0615 0.1480 0.0561

0.0184 0.1606 0.0578 -0.0247 0.1538 0.0593

(20,50) -0.0704 0.1466 0.0576 -0.0653 0.1474 0.0668

-0.0900 0.1435 0.0610 -0.0964 0.1425 0.0672
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Table 4.7: Relative bias, mean and empirical standard deviation of the esti-

mated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.1577 (θ = 0.2), λ0 = 0.1;

first line for coxph, second line for PROC MIXED.

30 % censoring 60 % censoring

(K, n) Rel. Mean Emp. Rel. Mean Emp.

bias std bias std

(100,100) -0.0127 0.1557 0.0265 -0.0120 0.1558 0.0276

-0.0127 0.1557 0.0260 -0.0127 0.1557 0.0272

(100,50) -0.0082 0.1564 0.0265 -0.0431 0.1509 0.0290

-0.0634 0.1477 0.0267 -0.1053 0.1411 0.0296

(50,100) -0.0152 0.1553 0.0345 -0.0520 0.1495 0.0357

-0.0108 0.1560 0.0354 -0.0476 0.1502 0.0370

(50,50) -0.0342 0.1523 0.0390 -0.0311 0.1528 0.0429

-0.0755 0.1458 0.0398 -0.0881 0.1438 0.0436

(20,100) -0.0317 0.1527 0.0538 -0.0653 0.1474 0.0571

0.0038 0.1583 0.0573 -0.0317 0.1527 0.0599

(20,50) -0.0330 0.1525 0.0568 -0.0977 0.1423 0.0635

-0.0476 0.1502 0.0595 -0.1344 0.1365 0.0654
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Table 4.8: Mean, empirical standard deviation and average of the model-

based standard deviations of the estimated values over the 500 simulations; 50

centers, 100 patients per center (50 patients in control and treatment group);

λ0 = 0.3, β = −0.2.

PROC MIXED coxme

True Mean Emp. Model Mean Emp.

std. std. std.

β -0.20 -0.2005 0.0184 0.0195 -0.2005 0.0167

σ2
0 0 0.0009 0.0017 0.0013 0.0010 0.0011

σ2
1 0 0.0009 0.0017 0.0014 0.0007 0.0014

σ01 0 0.0006 0.0030 0.0030 0.0002 0.0003

β -0.20 -0.2002 0.0429 0.0440 -0.2033 0.0425

σ2
0 0 0.0006 0.0015 0.0012 0.0010 0.0016

σ2
1 0.08 0.0773 0.0199 0.0200 0.0794 0.0127

σ01 0 0.0006 0.0075 0.0073 0.0013 0.0026

β -0.20 -0.1966 0.0438 0.0434 -0.1980 0.0440

σ2
0 0.04 0.0371 0.0117 0.0120 0.0405 0.0110

σ2
1 0.08 0.0738 0.0191 0.0195 0.0771 0.0185

σ01 0.0283 0.0266 0.0111 0.0118 0.0282 0.0105

β -0.20 -0.1981 0.0200 0.0204 -0.1999 0.0172

σ2
0 0.08 0.0778 0.0201 0.0203 0.0798 0.0119

σ2
1 0 0.0008 0.0016 0.0015 0.0011 0.0017

σ01 0 0.0005 0.0075 0.0071 0.0013 0.0026

β -0.20 -0.1945 0.0333 0.0336 -0.1973 0.0318

σ2
0 0.08 0.0737 0.0193 0.0196 0.0773 0.0186

σ2
1 0.04 0.0357 0.0114 0.0117 0.0384 0.0108

σ01 0.0283 0.0255 0.0115 0.0116 0.0271 0.0108

β -0.20 -0.1964 0.0442 0.0438 -0.1996 0.0436

σ2
0 0.08 0.0715 0.0193 0.0194 0.0763 0.0186

σ2
1 0.08 0.0743 0.0189 0.0199 0.0785 0.0174

σ01 0.04 0.0358 0.0142 0.0152 0.0384 0.0139



Chapter 5

Two-stage estimation in

copula models: methodology

5.1 Introduction

In Section 2.5 we introduced the copula model as a possible way to model the

joint survival function of clustered data with small and equal cluster size. We

described some copula models, nested in the power variance copula family,

which can be used to model four-dimensional survival data. In this chapter

we explain how copula models for quadruples can be fitted using the two-stage

estimation approach. We estimate the copula parameter vector by maximising

a likelihood function in which the marginal survival functions are replaced by

their estimates. We study both semi-parametric and nonparametric estima-

tion of the marginal survival functions. Our results extend results obtained

by Glidden (2000) and Andersen (2005) on the asymptotic behaviour of the

estimators of the marginal survival functions, the cumulative hazard functions

and the copula parameter vector.

87
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5.2 Estimation method

For observational unit j, j = 1, . . . , 4, from cluster i, i = 1, . . . , K, we observe

a vector of covariates zij . We introduce some additional notation to simplify

the expression of the likelihood:

∆i =
4∏

j=1

(1− δij)

∆i(j) = δij

4∏

k=1;k 6=j

(1− δik)

∆i(j, k) = δijδik

4∏

l=1;l 6=j,k

(1− δil) , j 6= k

∆i(j, k, l) = δijδikδil(1− δim) ,m 6= j, k, l; j 6= k 6= l

∆i(1, 2, 3, 4) =
4∏

j=1

δij .

Let ζ be the copula parameter vector, also called the dependence or association

parameter vector. Let Si (.; ζ) be the joint survival function for (Ti1, . . . , Ti4).

Denote the marginal survival functions by Sij , where the index ij is used to

indicate the dependence on a covariate vector zij . The joint survival function

is characterized by the copula Cζ , that describes the dependence structure,

and the marginal survival functions Sij :

Si (t1, t2, t3, t4; ζ) = Cζ {Si1 (t1) , Si2 (t2) , Si3 (t3) , Si4 (t4)} . (5.1)

A two-stage estimation approach is often used to fit copula models. In the

first stage, the marginal survival functions are estimated. This can be done in

different ways. Shih and Louis (1995b) discuss parametric and nonparametric

(Kaplan-Meier) estimation of the marginal survival functions. Their work is

on bivariate survival data without covariates. Shih and Louis (1995b) use a

different survival function for each member of the pair. For multivariate fail-

ure time data, Glidden (2000) considers semi-parametric two-stage estimation

for the Clayton copula. The marginal survival functions are modelled through

a marginal Cox model that can depend on covariates and all the data are used
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to fit this Cox model. For bivariate failure times, Andersen (2005) extends the

semi-parametric approach of Glidden (2000) to any copula family, including

copula families with more than one parameter. She also studies paramet-

ric estimation of the marginal survival functions, where the two components

have the same marginal survival function or where the two marginal survival

functions depend on covariates. In this chapter, we focus on survival copu-

las for quadruples. We consider both a semi-parametric and a nonparametric

approach to model the marginal survival functions. We show that the semi-

parametric or nonparametric estimates of the marginal survival functions are

consistent, and therefore can be used in the second step of a two-stage estima-

tion approach. In that second step, we estimate the association parameter ζ

by maximising the loglikelihood, with the marginal survival functions replaced

by their estimates obtained in the first step.

Using as notation vij = Sij (Xij), the loglikelihood is given by

log L (ζ) =
K∑

i=1

[
∆i log

{
Cζ (vi1, vi2, vi3, vi4)

}

+
4∑

j=1

[
∆i(j) log

{
∂Cζ (vi1, vi2, vi3, vi4)

∂vij

}]

+
∑

j 6=k

[
∆i(j, k) log

{
∂2Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik

}]

+
∑

j 6=k 6=l

[
∆i(j, k, l) log

{
∂3Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik ∂vil

}]

+∆i(1, 2, 3, 4) log

{
∂4Cζ (vi1, vi2, vi3, vi4)

∂vi1 ∂vi2 ∂vi3 ∂vi4

}]
. (5.2)

In the second stage of the estimation, we replace in this loglikelihood ex-

pression Sij(Xij) by the estimated marginals Ŝij(Xij) from the first step;

the obtained expression is called the pseudo loglikelihood and is denoted by

log LP (ζ). To estimate ζ, the pseudo loglikelihood is maximised with respect

to ζ, i.e., ζ̂ is found by solving the following vector equation:

Uζ (ζ) =
∂

∂ζ
log LP (ζ) = 0. (5.3)



90 Chapter 5. Two-stage estimation in copula models: methodology

In Sections 5.3 and 5.4 we give consistency and asymptotic normality results

for the estimators in the marginals and for the estimator of the dependence pa-

rameter vector ζ. These results provide support for the two-stage estimation

method where the marginals are modelled in a semi-parametric or nonpara-

metric way.

5.3 Semi-parametric approach

In the semi-parametric estimation approach, we model the marginal survival

functions in the first step using a marginal Cox model with covariate vector

zij . In the second step, we replace the marginal survival functions in the

loglikelihood by their estimates obtained in the first step. We then estimate

the copula parameter ζ by solving the score equation (5.3). Glidden (2000)

studies this method for the Clayton copula in the case of multivariate failure

time data. Andersen (2005) extends the results of Glidden (2000) to any cop-

ula family. However, she only considers bivariate survival data. We consider

the use of copulas to model four-dimensional survival data and we study the

semi-parametric approach for any copula family.

The asymptotic theory for the estimator of the copula parameter discussed in

Glidden (2000) and Andersen (2005), builds on asymptotic theory, developed

by Spiekerman and Lin (1998), for the estimators of the parameters in the

marginal Cox model. For observational unit j in cluster i, Spiekerman and

Lin (1998) consider a stochastic covariate vector Zij . Let Ti = (Ti1, . . . , Ti4)
′

be the vector of failure times in cluster i and define Ci and Zi similarly.

Spiekerman and Lin (1998) then assume that (Ti,Ci,Zi), for i = 1, . . . , K,

are independent and identically distributed. They use this assumption in their

proof of the asymptotic normality of the parameter estimators in the marginal

Cox model. We are interested in modelling the dependence of the infection

times within a cluster in the udder infection data by using copula models. In

the estimation of the marginal survival functions, we take into account the

effect of the location of the udder quarter (front or rear) and the effect of the

parity using covariates. Both covariates are fixed. Therefore, the situation we
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consider is different from the situation in Spiekerman and Lin (1998).

In Section 5.3.1 we introduce definitions and assumptions that we need in the

proofs of the theorems in Sections 5.3.2 and 5.3.3. In Section 5.3.2 we describe

the marginal Cox model for a general cluster size n and explain how we can

obtain the estimators for the fixed effects parameter and for the cumulative

baseline hazard. We extend the asymptotic results of Spiekerman and Lin

(1998) to specific cases of deterministic covariates. In Section 5.3.3 we give

consistency and asymptotic normality results for the estimated copula param-

eter ζ̂. We show how the results of Glidden (2000) and Andersen (2005) can

be generalized to a general copula family for four-dimensional survival data.

5.3.1 Definitions and assumptions

Since the asymptotic results in Section 5.3.2 hold for a general cluster size n,

we assume that we have K clusters with n observations per cluster. We observe

a covariate vector zij = (zij1, . . . , zijp)
′. To derive the asymptotic properties of

the parameter estimators in the marginal Cox model, we use counting process

notation. Define the counting process Nij(t) = δijI(Xij ≤ t) and the at risk

process Yij(t) = I(Xij ≥ t), for the jth observation in the ith cluster, where

j = 1, . . . , n and i = 1, . . . ,K. Note that {Nij(t), Yij(t), zij : t ≥ 0} carries the

same information about the jth observation in cluster i as does (Xij , δij , zij).

We assume that {Nij(t), Yij(t)}, for j = 1, . . . , n and i = 1, . . . , K, are observed

in some time interval [0, τ ], τ < ∞. Define

Mij(t) = Nij(t)− eβ
′
zij

∫ t

0
Yij(u)λ0(u)du. (5.4)

It is important to note that Mij(t) is a martingale with respect to the marginal

filtration

Ft,ij = σ
{
Nij(u), Yij(u+) : 0 ≤ u ≤ t

}
.

This is natural because Ft,ij collects the history of the processes Nij , Yij over

the period [0, t]. However, due to the intra-cluster dependence, Mij(t) is not a

martingale with respect to the joint filtration Ft =
∨K

i=1

∨n
j=1Ft,ij , where for

σ-fields Al,
∨L

l=1Ai denotes the smallest σ-field containing {Al : l = 1, . . . , L}
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(see, e.g., Spiekerman and Lin, 1998; Martinussen and Scheike, 2006, p.315).

This limits the use of martingale theory in the proofs of the theorems in this

section. However, using non-standard methods, it is still possible to perform

statistical inference for the parameters in the marginal Cox model.

We use the following notation:

S(r)(β, u) = K−1
K∑

i=1

n∑

j=1

Yij(u) exp(β′zij)z⊗r
ij , for r = 0, 1, 2,

E(β, u) = S(1)(β, u)/S(0)(β, u),

V(β, u) = S(2)(β, u)/S(0)(β, u)−E(β, u)⊗2,

and

s(r)(β, u) = E
{
S(r)(β, u)

}
, for r = 0, 1, 2,

e(β, u) = s(1)(β, u)/s(0)(β, u),

v(β, u) = s(2)(β, u)/s(0)(β, u)− e(β, u)⊗2,

where for a column vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aa′. For a function

f with domain [0, τ ], we define the norm

||f ||[0,τ ] = sup
t∈[0,τ ]

|f(t)|,

where, if f is vector-valued, |f(t)| denotes the Euclidean norm.

We assume the following conditions:

(A1) P {Yij(t) = 1, for all t ∈ [0, τ ]} > 0, for all i, j.

(A2) |zijm| < B for all i, j, for m = 1, . . . , p and for some constant B < ∞.

(A3) Iβ =
∫ τ
0 v(β0, t)s(0)(β0, t)λ0(t)dt is positive definite.

Conditions (A1) and (A2) entail some conditions that are useful in the proofs

of Section 5.3.2:

Corollary 5.3.1. Conditions (A1) and (A2) imply the following conditions:

(C1)
∫ τ
0 λ0(u)du ≡ BL < ∞.
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(C2) There exists a neighbourhood B of β0 such that for r = 0, 1, 2:
∣∣∣
∣∣∣S(r)(β, t)− s(r)(β, t)

∣∣∣
∣∣∣
B×[0,τ ]

P−→ 0.

(C3) s(r)(β, t), for r = 0, 1, 2, are continuous functions of β ∈ B uniformly in

t ∈ [0, τ ] and are bounded on B × [0, τ ], s(0)(β, t) is bounded away from

zero on B × [0, τ ], i.e., there exist constants L0, U0, U1 such that

0 < L0 ≤
∥∥∥s(0)(β, t)

∥∥∥
B×[0,τ ]

≤ U0,
∥∥∥s(1)(β, t)

∥∥∥
B×[0,τ ]

≤ U1.

Further,

s(1)(β, t) =
∂

∂β
s(0)(β, t) (5.5)

and

s(2)(β, t) =
∂2

∂β∂β′
s(0)(β, t), (5.6)

for β ∈ B and t ∈ [0, τ ].

Proof. Under the marginal Cox model we have

P (Tij > τ) = Sij(τ) = exp
{
− exp

(
β′0zij

) ∫ τ

0
λ0(u)du

}
.

Condition (A1) implies that P (Tij > τ) > 0. By condition (A2), we have that∣∣exp
(
β′0zij

)∣∣ is bounded. Hence, condition (C1) follows from (A1) and (A2).

Using similar arguments as discussed in Fleming and Harrington (1991, p.305-

306), we obtain that condition (C2) follows from (A1) and (A2). We explain

this for S(0)(β, t). The proof for S(1)(β, t) and S(2)(β, t) is similar. Note that

S(0)(β, t) is a sum of independent random variables that are not identically dis-

tributed due to the presence of deterministic covariates. Therefore, we cannot

use the strong law of large numbers which is used in the proof of Fleming and

Harrington (1991). However, application of Theorem 5.6.1 in Appendix 5.6.1,

with Xi =
∑n

j=1 [Yij(u)− E {Yij(u)}] exp
(
β′zij

)
, provides the necessary re-

sult in our situation. We now check the conditions of Theorem 5.6.1. It is
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easy to see that E (Xi) = 0. Further, we have that

σ2
i = Var (Xi)

=
n∑

j=1

Var [Yij(u)− E {Yij(u)}] {exp
(
β′zij

)}2

+ 2
∑∑

1≤j<k≤n

[
Cov [Yij(u)− E {Yij(u)} , Yik(u)− E {Yik(u)}]

×{
exp

(
β′zij

)} {
exp

(
β′zik

)} ]

=
n∑

j=1

Var {Yij(u)}{
exp

(
β′zij

)}2

+ 2
∑∑

1≤j<k≤n
Cov {Yij(u), Yik(u)}{

exp
(
β′zij

)} {
exp

(
β′zik

)}
.

Easy calculations show that an upper bound of the latter equation is given by

n(2n − 1) {exp (|β|pB)}2, where B is as defined in condition (A2). It easily

follows that
∞∑

i=1

i−2σ2
i ≤ n(2n− 1) {exp (|β|pB)}2

∞∑

i=1

i−2 < ∞.

By Theorem 5.6.1 we then have that

S(0) (β, u)− s(0) (β, u) a.s.−→ 0 as K →∞.

The proof that condition (C2) follows from (A1) and (A2) continues along the

lines of Fleming and Harrington (1991, p.305-306).

We now show that (C3) follows from (A1) and (A2). Let “∨” be the binary

operator “maximum”. For t ∈ [0, τ ], and β, δ ∈ Rp, we have that
∣∣∣s(0) (β + δ, t)− s(0) (β, t)

∣∣∣

=

∣∣∣∣∣∣
E


K−1

K∑

i=1

n∑

j=1

Yij(u)
[
exp

{
(β + δ)′zij

}− exp
(
β′zij

)]



∣∣∣∣∣∣

≤ K−1
K∑

i=1

n∑

j=1

∣∣exp
{
(β + δ)′zij

}− exp
(
β′zij

)∣∣ . (5.7)

It follows from condition (A2) and some easy calculations that an upperbound

for (5.7) is given by

n exp {pB(|β + δ| ∨ |β|)} pB|δ|.
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This shows that s(0)(β, t) is continuous in β, uniformly for t ∈ [0, τ ]. Similar

inequalities can be obtained to prove the continuity of s(1)(β, t) and s(2)(β, t) in

β, uniformly in t ∈ [0, τ ]. Condition (A2) implies that s(0)(β, t) and s(r)(β, t),

for r = 1, 2, are bounded on B × [0, τ ]. Note that, for t ∈ [0, τ ], s(0)(β, t) ≥
s(0)(β, τ) and

s(0)(β, τ) ≥ exp (−pB|β|) K−1
K∑

i=1

n∑

j=1

P {Yij(τ) = 1} ,

which is bounded away from zero for β ∈ B by condition (A1). Condition

(A2) and the dominated convergence theorem allow us to interchange the

differentiation and the expectation to obtain equations (5.5) and (5.6). This

completes the proof for (C3).

To prove the asymptotic normality of the estimators for the fixed effects pa-

rameter and for the cumulative baseline hazard in Section 5.3.2, we need to

restrict to specific cases of deterministic covariates. In condition (A4) we give

one specific choice of deterministic covariates. This choice corresponds to the

situation of the udder infection data, as we explain further in this section. In

Theorem 5.3.2, Lemma 5.3.2 and Theorem 5.3.4 we replace condition (A2) by

condition (A4). In Section 5.3.2 we explain how this condition can be relaxed.

(A4) We assume that zij = (zij1, zi2)
′, where zij1 is a binary covariate at the

observational unit level and where zi2 is a binary covariate at the cluster

level. Assume that there are K0 clusters with zi2 = 0. Further, we

assume that each cluster i has n0 observations with zij1 = 0. Reorder

the clusters so that the K0 < K clusters with zi2 = 0 have indices

i = 1, . . . , K0 and the K − K0 clusters with zi2 = 1 have indices i =

K0 + 1, . . . , K.

Condition (A4) corresponds to the covariates in the udder infection data. The

covariate zij1 indicates the location (front or rear) of the jth udder quarter

of cow i, for j = 1, . . . , 4 and i = 1, . . . , K. This is a binary covariate at the

udder quarter level, such that zij1 = 0 for the two front udder quarters (i.e.,
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n0 = 2) and zij1 = 1 for the two rear udder quarters. The parity of cow i is a

binary covariate zi2 at the cow level, such that zi2 = 0 if cow i is a multiparous

cow and zi2 = 1 if cow i is a primiparous cow. The number of multiparous

cows is K0 and the number of primiparous cows or heifers is K −K0.

5.3.2 First stage: estimation of the marginal survival functions

In the first stage of the semi-parametric estimation method, we estimate the

marginal survival functions using the marginal Cox model. The marginal Cox

model is given by

λij(t) = λ0(t) exp(β′0zij), (5.8)

where λ0(t) is the baseline hazard at time t and β0 is the true p-dimensional

fixed effect parameter. To estimate the fixed effect parameter β0 in (5.8), we

ignore the cluster structure and we act as if the event times of the subjects are

independent of each other. This is called the independence working assump-

tion. Under the independence working assumption, we obtain the estimator β̂

for the true parameter β0 by solving the marginal score equation Uβ (β) = 0,

where

Uβ(β) =
K∑

i=1

n∑

j=1

∫ τ

0
{zij −E (β, u)} dNij(u). (5.9)

It follows from (5.4) and some easy calculations that, in the true value β0, we

can write the score function (5.9) as (see also Spiekerman and Lin, 1998)

Uβ(β0) =
K∑

i=1

n∑

j=1

∫ τ

0
{zij −E (β0, u)} dMij(u). (5.10)

The Aalen-Breslow type estimator for the cumulative baseline hazard Λ0 is

Λ̂0(t; β̂) =
∫ t

0

dN..(u)

KS(0)(β̂, u)
.

The marginal survival functions are then estimated as follows:

Ŝij(t) = exp
{
−Λ̂0(t; β̂) exp

(
β̂
′
zij

)}
. (5.11)
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In this section we give results on the consistency and the asymptotic dis-

tributional behaviour of the estimates β̂ and Λ̂0(.; β̂). We adapt results of

Spiekerman and Lin (1998) to specific cases of deterministic covariates. As

mentioned in Section 5.3.1, Mij(t), for i = 1, . . . , K and j = 1, . . . , n, are not

martingales with respect to the joint filtration Ft. Therefore, the martingale

convergence theorems cannot be applied to (5.10). However, the following

lemma, presented in Spiekerman and Lin (1998), is a useful tool to prove the

consistency and the asymptotic normality of β̂ and Λ̂0(t, β̂):

Lemma 5.3.1. If fK , for K = 1, 2, . . ., is a sequence of random functions on

[0, τ ] that satisfies ∫ τ

0
|dfK(u)| = Op(1)

and

sup
t∈[0,τ ]

|fK(t)| = op(1),

then, for j = 1, . . . , n, supt∈[0,τ ]

∣∣∣K−1/2
∫ t
0 fK(u)dM.j(u)

∣∣∣ P−→ 0.

The following theorems establish the consistency and the asymptotic normality

of β̂.

Theorem 5.3.1. If conditions (A1), (A2) and (A3) hold, then the estimator

β̂ converges in probability to β0.

Theorem 5.3.2. If conditions (A1), (A3) and (A4) hold and if K−1K0 con-

verges to p0 for K tending to infinity, where 0 < p0 < 1, then K1/2
(
β̂ − β0

)

converges weakly to a normal distribution with mean vector zero and variance-

covariance matrix I−1

β
BI−1

β
, where Iβ is as defined in (A3),

B = p0E
(
w⊗2

1.

)
+ (1− p0)E

(
w⊗2

K0+1,.

)
, (5.12)

and wij =
∫ τ
0 {zij − e(β0, u)} dMij(u).

The proofs are adapted versions of the proofs in Spiekerman (1995) and in

Spiekerman and Lin (1998). To demonstrate the methodology used in the

proofs, we give as an example the proof of the following lemma, which is the
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key lemma from which the asymptotic normality of β̂ follows. In the proof of

Lemma 5.3.2 we show how the score function in (5.10) can be decomposed in

two terms where each term is a sum of independent and identically distributed

random variables. To obtain this, we assume the specific choice of determin-

istic covariates that is given in condition (A4). At this point the proof is

different from the proof given in Spiekerman and Lin (1998) for the case of

stochastic covariates, as described in the introduction of Section 5.3.

Lemma 5.3.2. If conditions (A1) and (A4) hold and if K−1K0 converges to

p0 for K tending to infinity, where 0 < p0 < 1, then K−1/2Uβ(β0) converges

weakly to a normal distribution with mean vector zero and variance-covariance

matrix B, with B as defined in (5.12).

Proof. Rewriting (5.10) gives

Uβ(β0) =
K∑

i=1

n∑

j=1

∫ τ

0
{zij − e(β0, u)} dMij(u)

−
∫ τ

0
{E(β0, u)− e(β0, u)} dM..(u). (5.13)

We apply Lemma 5.3.1, with fK(u) = E(β0, u)− e(β0, u), to obtain

K−1/2

∫ τ

0
{E(β0, u)− e(β0, u)} dM..(u) P−→ 0. (5.14)

First, we check the required conditions of Lemma 5.3.1. By Corollary 2.1.6 in

Spiekerman (1995), we have that
∫ τ

0
|d {E(β0, u)− e(β0, u)}| < ∞.

This implies that
∫ τ
0 |d {E(β0, u)− e(β0, u)}| = Op(1), which is the first con-

dition in Lemma 5.3.1. Further, for all ε > 0, we have

P

(
sup

u∈[0,τ ]
|E(β0, u)− e(β0, u)| > ε

)

= P

(
sup

u∈[0,τ ]

∣∣∣∣∣
S(1)(β0, u)
S(0)(β0, u)

− s(1)(β0, u)
s(0)(β0, u)

∣∣∣∣∣ > ε

)
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= P

(
sup

u∈[0,τ ]

∣∣∣∣∣
S(1)(β0, u)s(0)(β0, u)− s(1)(β0, u)S(0)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ > ε

)

By adding and subtracting s(0)(β0, u)s(1)(β0, u) in the numerator, we obtain

that the above expression equals

= P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(1)(β0, u)− s(1)(β0, u)

}
s(0)(β0, u)

S(0)(β0, u)s(0)(β0, u)

−
{
S(0)(β0, u)− s(0)(β0, u)

}
s(1)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ > ε

)
,

which is smaller than

P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(1)(β0, u)− s(1)(β0, u)

}
s(0)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ >
ε

2

)

+P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(0)(β0, u)− s(0)(β0, u)

}
s(1)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ >
ε

2

)
. (5.15)

Let δ be a constant such that 0 < δ < L0, where L0 is as described in condition

(C3).

It follows that (5.15) is smaller than

P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(1)(β0, u)− s(1)(β0, u)

}
s(0)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ >
ε

2
,

sup
u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ ≤ δ

)

+P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(0)(β0, u)− s(0)(β0, u)

}
s(1)(β0, u)

S(0)(β0, u)s(0)(β0, u)

∣∣∣∣∣ >
ε

2
,

sup
u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ ≤ δ

)

+2P

(
sup

u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ > δ

)
,
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which implies that (5.15) is smaller than

P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(1)(β0, u)− s(1)(β0, u)

}
s(0)(β0, u){

s(0)(β0, u)− δ
}

s(0)(β0, u)

∣∣∣∣∣ >
ε

2

)

+P

(
sup

u∈[0,τ ]

∣∣∣∣∣

{
S(0)(β0, u)− s(0)(β0, u)

}
s(1)(β0, u){

s(0)(β0, u)− δ
}

s(0)(β0, u)

∣∣∣∣∣ >
ε

2

)

+2P

(
sup

u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ > δ

)
.

By condition (C3), we have that 0 < L0 ≤ s(0)(β, u) ≤ U0, for all β ∈ B and

for all u ∈ [0, τ ], and s(1)(β, u) ≤ U1, for all β ∈ B and for all u ∈ [0, τ ]. This

implies that

P

(
sup

u∈[0,τ ]
|E(β0, u)− e(β0, u)| > ε

)

≤ P

(
sup

u∈[0,τ ]

∣∣∣S(1)(β0, u)− s(1)(β0, u)
∣∣∣ >

ε

2
(L0 − δ)L0

U0

)

+P

(
sup

u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ >

ε

2
(L0 − δ)L0

U1

)

+2P

(
sup

u∈[0,τ ]

∣∣∣S(0)(β0, u)− s(0)(β0, u)
∣∣∣ > δ

)
.

It follows from condition (C2) that the three terms converge to zero, for K

tending to infinity. We can conclude that the required conditions of Lemma

5.3.1 are satisfied. It then follows from (5.13) and (5.14) that

Uβ(β0) =
K∑

i=1

n∑

j=1

∫ τ

0
{zij − e(β0, u)} dMij(u) + op(K1/2)

=
K∑

i=1

wi. + op(K1/2).
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By the choice of the covariates we have
K∑

i=1

wi.

=
K0∑

i=1

wi. +
K∑

i=K0+1

wi.

=
K0∑

i=1


 ∑

j:zij1=0

wij +
∑

j:zij1=1

wij


 +

K∑

i=K0+1


 ∑

j:zij1=0

wij +
∑

j:zij1=1

wij


 .

Note that observations that belong to different clusters are independent. Fur-

ther, we assume in (A4) that the number of observational units in cluster i

for which zij1 = 0, resp. zij1 = 1, is a fixed number n0, resp. n − n0, for

i = 1, . . . , K. Hence, it follows that
∑K0

i=1 wi., resp.
∑K

i=K0+1 wi., is a sum of

independent and identically distributed random vectors.

Note that eβ
′
0zij

∫ τ
0 Yij(t)λ0(t)dt is bounded by conditions (A2) and (C1). Ap-

plication of Theorem 5.6.2 in Appendix 5.6 then gives that Mij is a local square

integrable martingale with respect to the marginal filtration Ft,ij . Further, by

(5.4), Mij is of finite variation since it is the difference of two increasing pro-

cesses on [0, τ ]. We also have, by conditions (A2) and (C3), that zij−e(β0, u)

is a locally bounded function. It then follows from Theorem 5.6.3 in Ap-

pendix 5.6 that wij =
∫ τ
0 {zij − e(β0, u)} dMij(u) is a local square integrable

martingale with respect to the marginal filtration Ft,ij . This implies that wij

has mean vector zero for i = 1, . . . , K, j = 1, . . . , n and hence, wi. has mean

vector zero.

Using the multivariate central limit theorem, we obtain that K
−1/2
0

∑K0
i=1 wi.

converges to a normal distribution with mean vector zero and variance-co-

variance matrix E
(
w⊗2

1.

)
and that (K −K0)

−1/2 ∑K
i=K0+1 wi. converges to

a normal distribution with mean vector zero and variance-covariance matrix

E
(
w⊗2

K0+1,.

)
. Assume that K−1K0 converges to p0 for K tending to infinity,

where p0 is a constant such that 0 < p0 < 1. Since observations that belong

to different clusters are independent, we have that K−1/2U(β0) converges to

a normal distribution with mean vector zero and variance-covariance matrix

B = p0E
(
w⊗2

1.

)
+ (1− p0)E

(
w⊗2

K0+1,.

)
.
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Straightforward calculations show that the components of B are finite since

wij is a local square integrable martingale.

We can easily generalize the proof of the previous lemma to a categorical co-

variate at the cluster level and a categorical covariate at the observational unit

level, both with a finite number of categories. For covariates at the observa-

tional unit level, we then have to assume that the number of observational

units within covariate level subgroups is the same for all clusters.

Theorems 5.3.3 and 5.3.4 establish the uniform consistency and the weak con-

vergence of the cumulative baseline hazard estimator Λ̂0(.; β̂). The proofs are

adaptations of the proofs in Spiekerman and Lin (1998) and are not included.

Theorem 5.3.3. If conditions (A1), (A2) and (A3) hold, the estimator

Λ̂0(t; β̂) converges in probability to Λ0(t) uniformly in t ∈ [0, τ ].

Define WK(t) = K1/2
{

Λ̂0(t; β̂)− Λ0(t)
}

. Let W (t) be a zero-mean Gaussian

process with the covariance function between W (t) and W (s) being

p0E {Ψ1(s)Ψ1(t)}+ (1− p0)E {ΨK0+1(s)ΨK0+1(t)} ,

where

Ψi(t) =
∫ t

0

dMi.(u)
s(0)(β0, u)

+ h(t)′I−1

β
wi., (5.16)

for i = 1, resp. i = K0 + 1, h(t) = − ∫ t
0 e(β0, u)λ0(u)du and where p0 is a

constant such that 0 < p0 < 1.

Let D[0, τ ] be the space consisting of functions f : [0, τ ] → R, so that f

is right continuous with left hand limits (cadlag). We make D[0, τ ] a metric

space by equipping it with the supremum metric, i.e., the distance between two

real-valued functions f, g in D[0, τ ] is the supremum distance ‖f − g‖[0,τ ] =

supt∈[0,τ ] |f(t)− g(t)|.

Theorem 5.3.4. If conditions (A1), (A3) and (A4) hold and if K−1K0 con-

verges to p0 for K tending to infinity, the random process WK converges weakly

to W in D[0, τ ].
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Since β̂ and Λ̂0(.; β̂) are consistent estimators, we can use the estimated

marginal survival functions (5.11) in the second stage of the estimation pro-

cedure. The asymptotic normality of β̂ and Λ̂0(.; β̂) is necessary to prove

the asymptotic normality of the estimator for the copula parameter ζ̂ in Sec-

tion 5.3.3.

5.3.3 Second stage: estimation of the association parameter

Using the estimates β̂ and Λ̂0(.; β̂) we have that the pseudo loglikelihood is

given by

log LP (ζ) =
K∑

i=1

l
{

ζ, β̂, Λ̂0(Xi1; β̂), Λ̂0(Xi2; β̂), Λ̂0(Xi3; β̂), Λ̂0(Xi4; β̂)
}

,

(5.17)

where l
{

ζ, β̂, Λ̂0(Xi1; β̂), Λ̂0(Xi2; β̂), Λ̂0(Xi3; β̂), Λ̂0(Xi4; β̂)
}

is the contribu-

tion to the pseudo loglikelihood for cluster i. It can be seen from (5.2) that

l
{

ζ, β̂, Λ̂0(Xi1; β̂), Λ̂0(Xi2; β̂), Λ̂0(Xi3; β̂), Λ̂0(Xi4; β̂)
}

=

[
∆i log

{
Cζ (vi1, vi2, vi3, vi4)

}

+
4∑

j=1

[
∆i(j) log

{
∂Cζ (vi1, vi2, vi3, vi4)

∂vij

}]

+
∑

j 6=k

[
∆i(j, k) log

{
∂2Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik

}]

+
∑

j 6=k 6=l

[
∆i(j, k, l) log

{
∂3Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik ∂vil

}]

+∆i(1, 2, 3, 4) log

{
∂4Cζ (vi1, vi2, vi3, vi4)

∂vi1 ∂vi2 ∂vi3 ∂vi4

}]

vij=Ŝij(Xij) for j=1,...,4

,

where Ŝij(Xij) = exp
{
−Λ̂0(Xij ; β̂) exp

(
β̂
′
zij

)}
, for j = 1, . . . , 4. We now

estimate, in the second step of our estimation procedure, the association pa-

rameter ζ by maximising log LP (ζ) in the previous expression with respect to
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ζ.

Let ζ be a q-dimensional vector. Define

Wζ {ζ,b, c1, c2, c3, c4} =
∂

∂ζ
l(ζ,b, c1, c2, c3, c4)

Vζ,j(ζ,b, c1, c2, c3, c4) =
∂2

∂ζ∂cj
l(ζ,b, c1, c2, c3, c4), j = 1, . . . , 4

Vζ {ζ,b, c1, c2, c3, c4} =
∂2

∂ζ∂ζ′
l(ζ,b, c1, c2, c3, c4).

Note that Wζ {ζ,b, c1, c2, c3, c4} and Vζ,j(ζ,b, c1, c2, c3, c4) are q-dimensional

column vectors, whereas Vζ {ζ,b, c1, c2, c3, c4} is a q × q-matrix. We further

define

I1,ζ = p0 E
[
−Vζ {ζ0,β0, Λ0(X11), Λ0(X12),Λ0(X13), Λ0(X14)}

]

+(1− p0) E
[−Vζ {ζ0,β0, Λ0(XK0+1,1), Λ0(XK0+1,2),

Λ0(XK0+1,3),Λ0(XK0+1,4)}
]

and

Iζβ =
∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

∂

∂β′
Wζ {ζ0, β0,Λ0(t1), Λ0(t2), Λ0(t3),Λ0(t4)}
×Hζ0

(t1, t2, t3, t4),

where Hζ0
is the joint distribution function of (Xi1, Xi2, Xi3, Xi4), for i =

1, . . . , K.

Note that I1,ζ is a q× q-matrix and Iζβ is a q× p-matrix. We also have that

Iβ, as defined in condition (A3), is a p× p-matrix.

To prove the consistency and the asymptotic normality of ζ̂, we need the

following assumption:

(A5) Wζ {ζ, β, Λ0(t1), Λ0(t2), Λ0(t3),Λ0(t4)},
Vζ {ζ,β, Λ0(t1), Λ0(t2),Λ0(t3), Λ0(t4)},
Vζ,j {ζ, β,Λ0(t1), Λ0(t2), Λ0(t3),Λ0(t4)}, for j = 1, . . . , 4,

are continuous on Bζ ×Bβ × [0, BL + δ0]× [0, BL + δ0]× [0, BL + δ0]×
[0, BL +δ0], where Bζ is a compact neighbourhood of ζ0 that contains ζ̂,

Bβ is a compact neighbourhood of β0 that contains β̂, where BL is the
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upper bound of Λ0(τ), as defined in (C1), and where δ0 > 0 is a fixed

constant that is used in the proof of Theorem 5.3.6.

The following theorems establish the consistency and the asymptotic normality

of ζ̂.

Theorem 5.3.5. If the assumptions (A1), (A3), (A4) and (A5) hold, then

the estimator ζ̂ converges in probability to ζ0.

Theorem 5.3.6. If the assumptions (A1), (A3), (A4) and (A5) hold and if

K−1K0 converges to p0 for K tending to infinity, then K1/2(ζ̂−ζ0) converges

to a normal distribution with mean vector zero and variance-covariance

Σ1 = I−1

1,ζ
+ I−1

1,ζ
V (Φ1) I−1

1,ζ
,

where

V(Φ1) = p0E(Φ1,1Φ′
1,1) + (1− p0)E(Φ1,K0+1Φ′

1,K0+1)

Φ1,i = IζβI−1

β
wi. +

∫ τ

0
IC1(t1)dΨi(t1) +

∫ τ

0
IC2(t2)dΨi(t2)

+
∫ τ

0
IC3(t3)dΨi(t3) +

∫ τ

0
IC4(t4)dΨi(t4),

for i = 1, resp. i = K0 + 1, with Ψi as defined in (5.16) of Section 5.3.2, and

IC1(t1) =
∫ τ

t1

∫ τ

0

∫ τ

0

∫ τ

0
Vζ,1{ζ0, β0, Λ0(u), Λ0(t2), Λ0(t3), Λ0(t4)}
×dHζ0

(u, t2, t3, t4).

Similar expressions hold for IC2(t2), IC3(t3), IC4(t4).

The proof of Theorem 5.3.5 is an adapted version of the proof of Theorem 1

in Glidden (2000), who proves a similar result for the estimator of the depen-

dence parameter in a Clayton copula for the case where (Ti,Ci,Zi) are i.i.d.

The proof builds on the consistency of β̂ and on the uniform consistency of

Λ̂0(.; β̂) on [0, τ ]. For our specific case of deterministic covariates, described

in condition (C4), the proof of Glidden (2000) can be adapted using similar

ideas as demonstrated in the proof of Lemma 5.3.2. Indeed, the loglikelihood
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function, given in (5.2), can be decomposed in two terms where each term is a

sum of independent and identically distributed random variables. The proof

then follows along the lines of the proof presented in Glidden (2000).

The proof of Theorem 5.3.6 builds on the asymptotic results in Section 5.3.2

and can be given along the lines of the proof of Proposition 3.2 in Ander-

sen (2005), who proves a similar result for bivariate failure time data for the

situation where (Ti,Ci,Zi) are i.i.d. In Section 5.4.3 we give a version of The-

orem 5.3.6 following a nonparametric estimation approach. There we prove

the asymptotic normality of ζ̂ in a more rigorous way. Since the rigorous

proof of Theorem 5.3.6 can be given by using similar ideas, the proof is not

presented here.

5.4 Nonparametric approach

In the nonparametric approach, we assume that we observe a deterministic bi-

nary covariate zij at the observational unit level. In the first step, we estimate

the marginal survival functions using

Ŝij(t) =





exp{−Λ̂1(t)} if zij = 0

exp{−Λ̂2(t)} if zij = 1,
(5.18)

where Λ̂1, resp. Λ̂2, is the Nelson-Aalen estimator for the cumulative hazard

function for the group with zij = 0, resp. the group with zij = 1. In the

analysis of the udder infection data this corresponds to accounting for the

effect of the location (front or rear) of the udder quarters in the estimation of

the marginal survival functions without assuming a specific marginal model.

In the second step, we replace the marginal survival functions in the loglikeli-

hood expression (5.2) by their estimates (5.18) obtained in the first step and

we estimate the copula parameter ζ by solving the score equation (5.3). In

Section 5.4.1 we give the definitions and assumptions that we need to develop

the asymptotical results in Sections 5.4.2 and 5.4.3. In Section 5.4.2 we dis-

cuss the estimation of the marginal survival functions in the first stage. Note
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that the observational units within the two covariate level subgroups (e.g.,

front and rear udder quarters) are correlated. We however prove that the

estimators for the cumulative hazard functions Λ̂1 and Λ̂2 are consistent and

asymptotically normal. Based on these results, we show in Section 5.4.3 that

ζ̂, the estimator for the copula parameter obtained in the second stage of the

estimation, is consistent and asymptotically normal.

5.4.1 Definitions and assumptions

We first introduce the notation that will be used in this section. Recall from

Section 5.3.1 that Yij(t) = I (Xij ≥ t) denotes the at risk process and Nij(t) =

δijI (Xij ≤ t) is the counting process for the jth observation in cluster i, for

j = 1, . . . , n and i = 1, . . . , K. Define

Y1,i.(t) =
∑

j:zij=0

Yij(t)

Y2,i.(t) =
∑

j:zij=1

Yij(t),

and

N1,i.(t) =
∑

j:zij=0

Nij(t)

N2,i.(t) =
∑

j:zij=1

Nij(t).

Reorder the observations so that the n0 < n observations with zij = 0 have

indices j = 1, . . . , n0 and the n − n0 observations with zij = 1 have indices

j = n0 + 1, . . . , n. Then

Y1,i.(t) =
n0∑

j=1

Yij(t)

Y2,i.(t) =
n∑

j=n0+1

Yij(t),
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and

N1,i.(t) =
n0∑

j=1

Nij(t)

N2,i.(t) =
n∑

j=n0+1

Nij(t).

We further define

Y1,..(t) =
K∑

i=1

n0∑

j=1

Yij(t)

Y2,..(t) =
K∑

i=1

n∑

j=n0+1

Yij(t),

and

N1,..(t) =
K∑

i=1

n0∑

j=1

Nij(t)

N2,..(t) =
K∑

i=1

n∑

j=n0+1

Nij(t).

We assume that {Nij(t), Yij(t)}, for i = 1, . . . , K and j = 1, . . . , n0, are ob-

served in some time interval [0, τ1], where τ1 < ∞. For i = 1, . . . ,K and

j = n0 + 1, . . . , n, we assume that {Nij(t), Yij(t)} are observed in some time

interval [0, τ2], where τ2 < ∞. Further, define

M1,ij(t) = Nij(t)−
∫ t

0
Yij(u)dΛ1(u) for j = 1, . . . , n0 (5.19)

M2,ij(t) = Nij(t)−
∫ t

0
Yij(u)dΛ2(u) for j = n0 + 1, . . . , n, (5.20)

with Λ1 and Λ2 the cumulative hazard for the group with zij = 0, resp. zij = 1.

Define

Λ1(t) =
∫ t

0
λ1(u)du

Λ2(t) =
∫ t

0
λ2(u)du,
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where λ1, resp. λ2, is the hazard function for the group with zij = 0, resp.

zij = 1. We further denote, for r = 1, 2,

Mr,.j(t) =
K∑

i=1

Mr,ij(t),

and

M1,..(t) =
K∑

i=1

n0∑

j=1

M1,ij(t)

M2,..(t) =
K∑

i=1

n∑

j=n0+1

M2,ij(t).

To prove the consistency and the asymptotic normality of Λ̂1 and Λ̂2 in Sec-

tion 5.4.2, we assume the following condition:

(A6) P {Yij(t) = 1, for all t ∈ [0, τ1]} > 0, for i = 1, . . . , K, j = 1, . . . , n0,

P {Yij(t) = 1, for all t ∈ [0, τ2]} > 0, for i = 1, . . . , K, j = n0 + 1, . . . , n.

Along the lines of the proof of Corollary 5.3.1, it follows that condition (A6)

entails the following conditions, which are useful in the proofs of this section:

(C4)
∫ τr

0 λr(u)du ≡ BLr < ∞, for r = 1, 2.

(C5)

sup
t∈[0,τr]

∣∣∣∣∣
1
K

K∑

i=1

Yr,i.(t)−E {Yr,1.(t)}
∣∣∣∣∣

P−→ 0.

(C6) There exist constants Lr and Ur such that

0 < Lr ≤ E {Yr,1.(t)} ≤ Ur, for all t ∈ [0, τr].

5.4.2 First stage: estimation of the marginal survival functions

In the first step of the nonparametric approach, we estimate the marginal

survival functions by using a Nelson-Aalen estimator for the cumulative hazard

functions Λ1 and Λ2. The Nelson-Aalen estimator is given by

Λ̂r(t) =
∫ t

0

I{Yr,..(s) > 0}
Yr,..(s)

dNr,..(s) for r = 1, 2,
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with the convention that 0/0 = 0. We then estimate the marginal survival

functions as follows:

Ŝij(t) = exp
{
−Λ̂1(t)

}
, for j = 1, . . . , n0,

Ŝij(t) = exp
{
−Λ̂2(t)

}
, for j = n0 + 1, . . . , n. (5.21)

In this section we study the asymptotic properties of Λ̂1 and Λ̂2. Note that

the observations in the group with zij = 0, resp. zij = 1, are not independent.

This implies that M1,ij is not a martingale with respect to the joint filtra-

tion F1,t =
∨K

i=1

∨n0
j=1Ft,ij , and that M2,ij is not a martingale with respect

to the joint filtration F2,t =
∨K

i=1

∨n
j=n0+1Ft,ij . Therefore, we cannot use

martingale convergence theorems to prove the consistency and the asymptotic

normality of Λ̂1 and Λ̂2. However, the following lemma, which is the version

of Lemma 5.3.1 needed in the present nonparametric setting, is a useful tool

to prove the asymptotic results for Λ̂1 and Λ̂2:

Lemma 5.4.1. a) If fK , for K = 1, 2, . . ., is a sequence of random functions

on [0, τ1] that satisfies ∫ τ1

0
|dfK(u)| = Op(1)

and

sup
t∈[0,τ1]

|fK(t)| = op(1),

then, for j = 1, . . . , n0, supt∈[0,τ1]

∣∣∣K−1/2
∫ t
0 fK(u)dM1,.j(u)

∣∣∣ P−→ 0.

b) If fK , for K = 1, 2, . . ., is a sequence of random functions on [0, τ2] that

satisfies ∫ τ2

0
|dfK(u)| = Op(1)

and

sup
t∈[0,τ2]

|fK(t)| = op(1),

then, for j = n0 + 1, . . . , n, supt∈[0,τ2]

∣∣∣K−1/2
∫ t
0 fK(u)dM2,.j(u)

∣∣∣ P−→ 0.

Proof. The proof can be given using similar arguments as used in the proof of

Lemma 5.3.1 and is therefore not presented here.
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The proofs of the uniform consistency and the asymptotic normality of Λ̂1

and Λ̂2 rely on the following lemmas. Lemma 5.4.2, resp. Lemma 5.4.3, states

that the first condition, resp. the second condition, of Lemma 5.4.1 holds, for

fK(u) = K1/2 {Y1,..(u)}−1 I {Y1,..(u) > 0}.

Lemma 5.4.2. If conditions (C5) and (C6) hold, then
∫ τ1

0

∣∣∣∣d
[
K1/2 I {Y1,..(u) > 0}

Y1,..(u)

]∣∣∣∣ = Op(1), (5.22)

and ∫ τ2

0

∣∣∣∣d
[
K1/2 I {Y2,..(u) > 0}

Y2,..(u)

]∣∣∣∣ = Op(1). (5.23)

Proof. We give the proof for (5.22). The proof for (5.23) is similar.

Let D be the set of all partitions of [0, τ1]: 0 = t0 < t1 < . . . < tL = τ1. Note

that
∫ τ1

0

∣∣∣∣d
[
K1/2 I {Y1,..(u) > 0}

Y1,..(u)

]∣∣∣∣

= sup
D

[
K−1/2

L∑

l=1

∣∣∣∣
I {Y1,..(tl) > 0}

K−1Y1,..(tl)
− I {Y1,..(tl−1) > 0}

K−1Y1,..(tl−1)

∣∣∣∣
]

.

For any constant M we have

P

(
sup
D

[
K−1/2

L∑

l=1

∣∣∣∣
I {Y1,..(tl) > 0}

K−1Y1,..(tl)
− I {Y1,..(tl−1) > 0}

K−1Y1,..(tl−1)

∣∣∣∣
]

> M

)

= P

(
sup
D

[
K−1/2

L∑

l=1

∣∣∣∣
K−1Y1,..(tl−1) [I {Y1,..(tl) > 0} − I {Y1,..(tl−1) > 0}]

K−1Y1,..(tl)K−1Y1,..(tl−1)

+
K−1I {Y1,..(tl−1) > 0} {Y1,..(tl−1)− Y1,..(tl)}

K−1Y1,..(tl)K−1Y1,..(tl−1)

∣∣∣∣
]

> M

)
. (5.24)

Let δ be a constant such that 0 < δ < L1, with L1 as in condition (C6). An

upper bound for the probability (5.24) is given by

P

(
sup
D

[
K−1/2

L∑

l=1

∣∣∣∣
K−1Y1,..(tl−1) [I {Y1,..(tl) > 0}−I {Y1,..(tl−1) > 0}]

K−1Y1,..(tl)K−1Y1,..(tl−1)

∣∣∣∣
]
>

M

2
,

sup
t∈[0,τ1]

∣∣K−1Y1,..(t)−E {Y1,1.(t)}
∣∣ ≤ δ

)
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+P

(
sup
D

[
K−1/2

L∑

l=1

∣∣∣∣
K−1I {Y1,..(tl−1) > 0} {Y1,..(tl−1)− Y1,..(tl)}

K−1Y1,..(tl)K−1Y1,..(tl−1)

∣∣∣∣
]

>
M

2
,

sup
t∈[0,τ1]

∣∣K−1Y1,..(t)−E {Y1,1.(t)}
∣∣ ≤ δ

)

+2P

(
sup

t∈[0,τ1]

∣∣K−1Y1,..(t)−E {Y1,1.(t)}
∣∣ > δ

)
. (5.25)

If supt∈[0,τ1]

∣∣K−1Y1,..(t)−E {Y1,1.(t)}
∣∣ ≤ δ, it follows from condition (C6) that

supt∈[0,τ1]

{
K−1Y1,..(t)

} ≤ U1 +δ and supt∈[0,τ1]

{
K−1Y1,..(t)

}−1 ≤ (L1 − δ)−1.

This implies that (5.25) is smaller than

P

(
sup
D

[
K−1/2

L∑

l=1

|I {Y1,..(tl) > 0} − I {Y1,..(tl−1)}|
]

>
M(L1 − δ)2

2 (U1 + δ)

)

+ P

(
sup
D

{
K−3/2

L∑

l=1

|Y1,..(tl)− Y1,..(tl−1)|
}

>
M (L1 − δ)2

2

)

+ 2P

(
sup

t∈[0,τ1]

∣∣K−1Y1,..(t)− E {Y1,1.(t)}
∣∣ > δ

)
. (5.26)

Note that
L∑

l=1

|I {Y1,..(tl) > 0} − I {Y1,..(tl−1) > 0}| ≤ 1, (5.27)

and

K−1
L∑

l=1

|Y1,..(tl)− Y1,..(tl−1)| ≤ K−1
K∑

i=1

n0∑

j=1

L∑

l=1

|Yij(tl)− Yij(tl−1)| = n0,

(5.28)

for any partition of [0, τ1] in D. Since the upper bounds in (5.27) and (5.28)

do not depend on the specific partition, it follows that the first and the second

term of (5.26) become zero, if K tends to infinity. By condition (C5), the

third term converges to zero, for K tending to infinity. This completes the

proof.

Lemma 5.4.3. If conditions (C5) and (C6) hold, then

sup
t∈[0,τ1]

∣∣∣∣K1/2 I {Y1,..(t) > 0}
Y1,..(t)

∣∣∣∣ = op(1), (5.29)
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and

sup
t∈[0,τ2]

∣∣∣∣K1/2 I {Y2,..(t) > 0}
Y2,..(t)

∣∣∣∣ = op(1). (5.30)

Proof. For any ε > 0 and δ > 0, we have

P

(
sup

t∈[0,τ1]

∣∣∣∣K1/2 I {Y1,..(t) > 0}
Y1,..(t)

∣∣∣∣ > ε

)

≤ P

(
sup

t∈[0,τ1]

∣∣∣K1/2 {Y1,..(t)}−1
∣∣∣ > ε

)

≤ P

(
sup

t∈[0,τ1]

∣∣∣K−1/2
{
K−1Y1,..(t)

}−1
∣∣∣ > ε,

sup
t∈[0,τ1]

∣∣K−1Y1,..(t)− E {Y1,1.(t)}
∣∣ ≤ δ

)

+ P

(
sup

t∈[0,τ1]

∣∣K−1Y1,..(t)− E {Y1,1.(t)}
∣∣ > δ

)
.

It follows from conditions (C5) and (C6) that the above expression converges

to zero, for K tending to infinity. This concludes the proof of (5.29). The

proof of (5.30) is similar.

Lemma 5.4.4. If condition (A6) holds, then

sup
t∈[0,τ1]

I {Y1,..(t) = 0} = op(1), (5.31)

and

sup
t∈[0,τ2]

I {Y2,..(t) = 0} = op(1). (5.32)

Proof. We give the proof for (5.31). The proof for (5.32) is similar. For any

ε > 0, we have

P

(
sup

t∈[0,τ1]
I {Y1,..(t) = 0} > ε

)

= P

(
sup

t∈[0,τ1]
I {Y1,..(t) = 0} = 1

)
. (5.33)
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Since I {Y1,..(t) = 0} is a non-decreasing function in t, taking values zero or

one, it follows that (5.33) equals

P (∃t∗ ∈ [0, τ1], ∀t ∈ [t∗, τ1] : I {Y1,..(t) = 0} = 1)

= P

(
∃t∗ ∈ [0, τ1],∀t ∈ [t∗, τ1] :

K∑

i=1

Y1,i.(t) = 0

)

= P (∃t∗ ∈ [0, τ1], ∀t ∈ [t∗, τ1] : Y1,i.(t) = 0, ∀i = 1, . . . , K) . (5.34)

Since Y1,1.(t), Y1,2.(t), . . . , Y1,K.(t) are independent, we have that (5.34) is equal

to
K∏

i=1

P (∃t∗ ∈ [0, τ1],∀t ∈ [t∗, τ1] : Y1,i.(t) = 0)

=
K∏

i=1

P (∃t∗ ∈ [0, τ1],∀t ∈ [t∗, τ1] : Y1,ij(t) = 0, ∀j = 1, . . . , n0) . (5.35)

Hence, an upper bound for (5.35) is given by

K∏

i=1

P (∃t∗ ∈ [0, τ1] : Y1,i1(t∗) = 0) . (5.36)

Using condition (A6), we obtain that there exists a constant 0 < δ ≤ 1, such

that an upper bound for (5.36) is given by (1− δ)K . The latter upper bound

converges to zero, for K tending to infinity.

In the following theorem we establish the uniform consistency of the cumula-

tive hazard estimators Λ̂1 and Λ̂2:

Theorem 5.4.1. If condition (A6) holds, then the estimator Λ̂1(t) converges

in probability to Λ1(t), uniformly in [0, τ1]. Similary, Λ̂2(t) converges in prob-

ability to Λ2(t), uniformly in [0, τ2].

Proof. We prove the theorem for Λ̂1(t). The proof for Λ̂2(t) is similar.

Note that

Λ̂1(t)− Λ1(t) =
∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dN1,..(u)−
∫ t

0
I {Y1,..(u) > 0}λ1(u)du

+
∫ t

0
I {Y1,..(u) > 0}λ1(u)du−

∫ t

0
λ1(u)du. (5.37)
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It follows from (5.19) that

dM1,..(u) = dN1,..(u)− I {Y1,..(u) > 0}Y1,..(u)λ1(u)du. (5.38)

Substituting (5.38) in (5.37) leads to

Λ̂1(t)− Λ1(t) =
∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dM1,..(u)−
∫ t

0
I {Y1,..(u) = 0}λ1(u)du.

(5.39)

It easily follows from Lemma 5.4.4 and condition (C4) that the second term

of the right hand side of the above equation converges in probability to zero.

Hence,

Λ̂1(t)− Λ1(t) =
∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dM1,..(u) + op(1). (5.40)

Note that M1,ij(t) are not martingales with respect to the joint filtration

Ft =
∨K

i=1

∨n0
j=1Ft,ij . Therefore, the martingale convergence theorems can-

not be applied to (5.40). But we can apply Lemma 5.4.1 with fK(u) =

K1/2 {Y1,..(u)}−1 I {Y1,..(u) > 0}. For this choice the conditions required for

Lemma 5.4.1 to hold are satisfied (Lemma 5.4.2 and Lemma 5.4.3). We there-

fore have

sup
t∈[0,τ1]

∣∣∣∣
∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dM1,.j(u)
∣∣∣∣

P−→ 0,

for j = 1, . . . , n0. Since n0 is fixed, it follows that

sup
t∈[0,τ1]

∣∣∣∣
∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dM1,..(u)
∣∣∣∣

P−→ 0.

We use the following two lemmas in the proof of the asymptotic normality of

Λ̂1 and Λ̂2.

Lemma 5.4.5. If condition (C6) holds, then
∫ τ1

0

∣∣∣d [E {Y1,1.(u)}]−1
∣∣∣ = Op(1), (5.41)

and ∫ τ2

0

∣∣∣d [E {Y2,1.(u)}]−1
∣∣∣ = Op(1). (5.42)
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Proof. Let D be the set of all partitions of [0, τ1]: 0 = t0 < t1 < . . . < tL = τ1.

We have that

sup
D

L∑

l=1

∣∣∣∣
1

E {Y1,1.(tl)} −
1

E {Y1,1.(tl−1)}

∣∣∣∣

= sup
D

L∑

l=1

∣∣∣∣
E {Y1,1.(tl−1)} − E {Y1,1.(tl)}
E {Y1,1.(tl)}E {Y1,1.(tl−1)}

∣∣∣∣ . (5.43)

Condition (C6) implies that supt∈[0,τ1] [E {Y1,1.(t)}]−1 ≤ L−1
1 . Hence, an upper

bound of (5.43) is given by

1
L2

1

sup
D

L∑

l=1

∣∣∣∣∣∣
E





n0∑

j=1

Y1,1j(tl−1)



− E





n0∑

j=1

Y1,1j(tl)





∣∣∣∣∣∣
. (5.44)

Since
∑L

l=1 |Y1,1j(tl−1)− Y1,1j(tl)| equals zero or one, straightforward calcula-

tions lead to the following upper bound for (5.44):

1
L2

1

n0∑

j=1

[
sup
D

P

{
L∑

l=1

|Y1,1j(tl−1)− Y1,1j(tl)| = 1

}]
.

An upper bound of the latter equation is given by n0/L−2
1 . This concludes the

proof of (5.41). Using similar arguments, we can obtain (5.42).

Lemma 5.4.6. If condition (A6) holds, then

sup
t∈[0,τ1]

∣∣∣∣
I {Y1,..(t) > 0}

K−1Y1,..(t)
− 1

E {Y1,1.(t)}

∣∣∣∣ = op(1), (5.45)

and

sup
t∈[0,τ2]

∣∣∣∣
I {Y2,..(t) > 0}

K−1Y2,..(t)
− 1

E {Y2,1.(t)}

∣∣∣∣ = op(1). (5.46)

Proof. For ε > 0, we have that

P

(
sup

t∈[0,τ1]

∣∣∣∣
I {Y1,..(t) > 0}

K−1Y1,..(t)
− 1

E {Y1,1.(t)}

∣∣∣∣ > ε

)

≤ P

(
sup

t∈[0,τ1]

∣∣∣∣
I {Y1,..(t) > 0}

K−1Y1,..(t)
− 1

K−1Y1,..(t)

∣∣∣∣ >
ε

2

)

+P

(
sup

t∈[0,τ1]

∣∣∣∣
1

K−1Y1,..(t)
− 1

E {Y1,1.(t)}

∣∣∣∣ >
ε

2

)
. (5.47)
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Using the trivial equality I {Y1,..(t) > 0}+I {Y1,..(t) = 0} = 1, we easily obtain

the following upper bound for (5.47):

P

(
sup

t∈[0,τ1]

∣∣∣∣
I {Y1,..(t) = 0}

K−1Y1,..(t)

∣∣∣∣ >
ε

2
, sup
t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ ≤ δ

)

+P

(
sup

t∈[0,τ1]

∣∣∣∣
E {Y1,1.(t)} −K−1Y1,..(t)
K−1Y1,..(t)E {Y1,1.(t)}

∣∣∣∣ >
ε

2
,

sup
t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ ≤ δ

)

+2P

(
sup

t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ > δ

)
, (5.48)

with δ a fixed constant, such that 0 < δ < L1. An upper bound for (5.48) is

given by:

P

(
sup

t∈[0,τ1]

∣∣∣∣
I {Y1,..(t) = 0}
E {Y1,1.(t)} − δ

∣∣∣∣ >
ε

2

)

+P

(
sup

t∈[0,τ1]

∣∣∣∣
E {Y1,1.(t)} −K−1Y1,..(t)

[E {Y1,1.(t)} − δ] E {Y1,1.(t)}

∣∣∣∣ >
ε

2

)

+2P

(
sup

t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ > δ

)
.

By condition (C6), the above expression is smaller than

P

(
sup

t∈[0,τ1]
|I {Y1,..(t) = 0}| > ε

2
(L1 − δ)

)

+P

(
sup

t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ >

ε

2
L1 (L1 − δ)

)

+2P

(
sup

t∈[0,τ1]

∣∣E {Y1,1.(t)} −K−1Y1,..(t)
∣∣ > δ

)
.

It follows from condition (C5) that the second and the third term converge to

zero, for K tending to infinity. The first term converges to zero, for K tending

to infinity, by Lemma 5.4.4.
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Define W1,K(t) = K1/2
{

Λ̂1(t)− Λ1(t)
}

. Let W1(t) be a zero-mean Gaussian

random process with the covariance function between W1(t) and W1(s), for

0 ≤ t, s,≤ τ1, being E {Ψ1,1(t)Ψ1,1(s)}, where

Ψ1,i(t) =
∫ t

0

1
E {Y1,1.(u)}dM1,i.(u). (5.49)

Similar definitions can be given for Λ̂2(.).

Recall from Section 5.3.2 that D[0, τ1], resp. D[0, τ2], is the metric space of

all right continuous functions on [0, τ1], resp. [0, τ2], with left hand limits,

equipped with the supremum metric.

Theorem 5.4.2. If condition (A6) holds, the random process W1,K converges

weakly to W1 in D[0, τ1]. Similarly, the random process W2,K converges weakly

to W2 in D[0, τ2].

Proof. We prove the theorem for W1,K . The proof for W2,K is similar.

The proof has two parts:

(a) the weak convergence of the finite dimensional distributions;

(b) the asymptotic tightness of W1,K .

From (a) and (b) it follows, using Theorem 5.6.6 in Appendix 5.6.3, that the

process W1,K converges weakly to W1 in D[0, τ1]. Some key results of the weak

convergence theory for stochastic processes in D[a, b], where [a, b] ⊂ R is an

arbitrary interval, are collected in Appendix 5.6.3.

In part (a) of the proof we write W1,K as a sum over the cluster index i

so that we obtain a sum of independent and identically distributed random

variables. The weak convergence of the finite dimensional distributions then

easily follows. In part (b) we write W1,K as a sum over the observational unit

index j. In this way we obtain that each term in this sum is a martingale with

respect to the filtration
∨K

i=1Ft,ij . The proof of the asymptotic tightness of

W1,K then builds on martingale theory.

(a) Weak convergence of the finite dimensional distributions:
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To prove the weak convergence of the finite dimensional distributions, we start

from (5.39). We then have

W1,K(t) = K1/2

[∫ t

0

I {Y1,..(u) > 0}
Y1,..(u)

dM1,..(u)−
∫ t

0
I {Y1,..(u) = 0}λ1(u)du

]
.

Easy calculations using Lemma 5.4.4 and condition (C4) show that the second

term of the right hand side of the above equation converges in probability to

zero. It follows that

W1,K(t) = K−1/2

∫ t

0

[
I {Y1,..(u) > 0}

K−1Y1,..(u)
− 1

E {Y1,1.(u)}
]

dM1,..(u)

+K−1/2

∫ t

0

1
E {Y1,1.(u)}dM1,..(u) + op(1). (5.50)

By Lemma 5.4.1, with

fK(u) =
{
K−1Y1,..(u)

}−1
I {Y1,..(u) > 0} − [E {Y1,1.(u)}]−1 ,

we have that

sup
t∈[0,τ1]

∣∣∣∣K−1/2

∫ t

0

[
I {Y1,..(u) > 0}

K−1Y1,..(u)
− 1

E {Y1,1.(u)}
]

dM1,.j(u)
∣∣∣∣ = op(1),

for j = 1, . . . , n0. Since n0 is fixed, it follows that

sup
t∈[0,τ1]

∣∣∣∣K−1/2

∫ t

0

[
I {Y1,..(u) > 0}

K−1Y1,..(u)
− 1

E {Y1,1.(u)}
]

dM1,..(u)
∣∣∣∣ = op(1). (5.51)

For the present choice of fK , Lemma 5.4.2, Lemma 5.4.5 and Lemma 5.4.6

imply that the assumptions of Lemma 5.4.1 hold. Substituting (5.51) in (5.50)

then leads to

W1,K(t) = K−1/2

∫ t

0

1
E {Y1,1.(u)}dM1,..(u) + op(1)

= K−1/2
K∑

i=1

[∫ t

0

1
E {Y1,1.(u)}dM1,i.(u)

]
+ op(1) (5.52)

= K−1/2
K∑

i=1

Ψ1,i(t) + op(1), (5.53)



120 Chapter 5. Two-stage estimation in copula models: methodology

which is a sum of independent and identically distributed random variables.

From (5.53) the weak convergence of the finite dimensional distributions of

W1,K to a zero-mean Gaussian process W1 with covariance function

E {Ψ1,1(t)Ψ1,1(s)}

easily follows.

(b) Asymptotic tightness:

To prove the asymptotic tightness of W1,K , we rewrite (5.52) in the following

way:

W1,K(t) = K−1/2
n0∑

j=1

[∫ t

0

1
E {Y1,1.(u)}dM1,.j(u)

]
+ op(1)

=
n0∑

j=1

Qj(t) + op(1),

where

Qj(t) =
∫ t

0

1
E {Y1,1.(u)}d

{
K−1/2M1,.j(u)

}
,

for j = 1, . . . , n0. Note that Qj(t) is a martingale with respect to the filtration∨K
i=1Ft,ij . Hence, we can use martingale theory to obtain that Qj converges

weakly. The asymptotic tightness of Qj then follows by Theorem 5.6.6 in

Appendix 5.6.3, since asymptotic tightness is necessary for weak convergence.

Using Theorem 5.6.7 in Appendix 5.6.3, with XK = W1,K , it is easy to show

that the asymptotic tightness of W1,K follows from the asymptotic tightness

of Qj , for j = 1, . . . , n0, because D[0, τ1] has been defined using the supremum

metric.

To prove that Qj converges weakly, we use Theorem 5.6.4 in Appendix 5.6.2

which gives sufficient conditions for the weak convergence of continuous time

martingales in D[0,∞). We now check the conditions of Theorem 5.6.4. Con-

dition (a) is trivially satisfied since Qj(0) = 0.

By condition (C6), E {Y1,1.(t)}−1 is a bounded function. By applying Theo-

rem 5.6.3 in Appendix 5.6.2, we obtain that the predictable variation process
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for Qj at t is given by

VK(t) = < Qj , Qj > (t)

= K−1
K∑

i=1

[∫ t

0
E {Y1,1.(u)}−2 d < M1,ij ,M1,ij > (u)

]

Since < M1,ij ,M1,ij > (u) =
∫ u
0 Yij(s)λ1(s)ds, we have that

VK(t) =
∫ t

0

{
K−1

K∑

i=1

Yij(u)

}
E {Y1,1.(u)}−2 λ1(u)du.

For i = 1, . . . , K and for j fixed, Yij(u) are independent and identically dis-

tributed random variables with finite mean. Application of the Kolmogorov

strong law of large numbers gives

K−1
K∑

i=1

Yij(u) a.s.−→ E {Y1j(u)} .

It then follows from the dominated convergence theorem that VK(t) converges

almost surely to V (t), for each fixed t, where

V (t) =
∫ t

0
E {Y1j(u)}E {Y1,1.(u)}−2 λ1(u)du.

Hence, condition (b) is also satisfied. For a function f : R → R, define the

map JT (f) = supt∈[0,T ] |f(t)− f(t−)|. To establish condition (c), note that

Jτ1(Qj) = sup
t∈[0,τ1]

∣∣Qj(t)−Qj(t−)
∣∣

= sup
t∈[0,τ1]

∣∣∣∣∣K
−1/2

K∑

i=1

∫ t

t−
E {Y1,1.(u)}−1 dM1,ij(u)

∣∣∣∣∣ .

It follows from (5.19) that

Jτ1(Qj) = sup
t∈[0,τ1]

∣∣∣∣∣K
−1/2

K∑

i=1

∫ t

t−
E {Y1,1.(u)}−1 dNij(u)

−K−1/2
K∑

i=1

∫ t

t−
E {Y1,1.(u)}−1 Yij(u)λ1(u)du

∣∣∣∣∣ .
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The second term on the right hand side of the above equation is equal to

zero since λ1 is a continuous function and since Yij is left continuous. It then

follows that

Jτ1(Qj) = sup
t∈[0,τ1]

∣∣∣∣∣K
−1/2

K∑

i=1

E {Y1,1.(t)}−1 {
Nij(t)−Nij(t−)

}
∣∣∣∣∣

= sup
t∈[0,τ1]

∣∣∣∣∣K
−1/2

K∑

i=1

E {Y1,1.(t)}−1 δijI (Xij = t)

∣∣∣∣∣ .

Hence, we have that

Jτ1(Qj)2 = sup
t∈[0,τ1]

∣∣∣∣∣K
−1

K∑

i=1

K∑

i′=1

E {Y1,1.(t)}−2 δijδi′jI (Xij = t) I
(
Xi′j = t

)
∣∣∣∣∣ .

Since Jτ1(Qj)2 is a non-negative random variable, we have that

E
{
Jτ1(Qj)2

}
=

∫ +∞

0
P

(
Jτ1(Qj)2 > x

)
dx.

By using (C6) and the fact that the probability of having a tie between two

observed event times is zero, we obtain that

E
{
Jτ1(Qj)2

}
=

∫ 1/(L2
1K)

0
P

(
Jτ1(Qj)2 > x

)
dx ≤ 1

L2
1K

,

which converges to zero for K tending to infinity. Because, for each fixed

k, 0 ≤ Jk(Qj)2 ≤ Jτ1(Qj)2, we obtain that condition c) of Theorem 5.6.4 is

satisfied. This completes the proof.

Since Λ̂1, resp. Λ̂2, is a uniform consistent estimator of the cumulative hazard

function Λ1, resp. Λ2, we can use the estimated marginal survival functions

(5.21) in the second stage of the estimation. In Section 5.4.3, we use the weak

convergence of Λ̂1 and Λ̂2 to prove the asymptotic normality of the estimator

for the copula parameter ζ̂.

5.4.3 Second stage: estimation of the association parameter

Assume that zij is a deterministic binary covariate at the observational unit

level, such that zij = 0, for j = 1, 2, and zij = 1, for j = 3, 4, where
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i = 1, . . . ,K. This choice corresponds to the binary covariate indicating the

location (front or rear) of the udder quarters in the udder infection data, in-

troduced in Section 1.4.1. Using the Nelson Aalen estimators Λ̂1, resp. Λ̂2,

for the cumulative hazard function for the group with zij = 0, resp. zij = 1,

we have that the pseudo loglikelihood is given by

log LP (ζ) =
K∑

i=1

l
{

Λ̂1(Xi1), Λ̂1(Xi2), Λ̂2(Xi3), Λ̂2(Xi4)
}

, (5.54)

where l
{

Λ̂1(Xi1), Λ̂1(Xi2), Λ̂2(Xi3), Λ̂2(Xi4)
}

is the contribution to the pseudo

loglikelihood for cluster i. It can be seen from (5.2) that

l
{

Λ̂1(Xi1), Λ̂1(Xi2), Λ̂2(Xi3), Λ̂2(Xi4)
}

=

[
∆i log

{
Cζ (vi1, vi2, vi3, vi4)

}

+
4∑

j=1

[
∆i(j) log

{
∂Cζ (vi1, vi2, vi3, vi4)

∂vij

}]

+
∑

j 6=k

[
∆i(j, k) log

{
∂2Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik

}]

+
∑

j 6=k 6=l

[
∆i(j, k, l) log

{
∂3Cζ (vi1, vi2, vi3, vi4)

∂vij ∂vik ∂vil

}]

+∆i(1, 2, 3, 4) log

{
∂4Cζ (vi1, vi2, vi3, vi4)

∂vi1 ∂vi2 ∂vi3 ∂vi4

}]

vij=Ŝij(Xij) for j=1,...,4

,

where

Ŝij(t) =





exp{−Λ̂1(t)} for j = 1, 2

exp{−Λ̂2(t)} for j = 3, 4,

which corresponds to (5.18). In the second step of the estimation procedure

we estimate the association parameter ζ by maximising log LP (ζ) in the pre-

vious expression with respect to ζ.

Let ζ be a q-variate association parameter vector. Define the following quan-
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tities:

Wζ (ζ, w1, w2, w3, w4) =
∂

∂ζ
l (ζ, w1, w2, w3, w4) ,

Vζ,j (ζ, w1, w2, w3, w4) =
∂2

∂ζ∂wj
l (ζ, w1, w2, w3, w4) , for j = 1, . . . , 4,

Vζ (ζ, w1, w2, w3, w4) =
∂2

∂ζ∂ζ′
l (ζ, w1, w2, w3, w4) ,

and

I2,ζ = E
[
−Vζ {ζ0, Λ1(X11), Λ1(X12), Λ2(X13),Λ2(X14)}

]
.

Note that Wζ (ζ, w1, w2, w3, w4) and Vζ,j (ζ, w1, w2, w3, w4) are q-dimensional

column vectors; Vζ (ζ, w1, w2, w3, w4) and I2,ζ are q × q-matrices.

We use the following assumption to prove the consistency and the asymptotic

normality of ζ̂:

(A7) Wζ {ζ, Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)},
Vζ {ζ,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)},
Vζ,j {ζ, Λ1(t1),Λ1(t2), Λ2(t3), Λ2(t4)}, for j = 1, . . . , 4,

are continuous on Bζ × [0, BL1 + δ1] × [0, BL1 + δ1] × [0, BL2 + δ2] ×
[0, BL2 + δ2], where Bζ is a compact neighbourhood of ζ0 that contains

ζ̂, where BL1 , resp. BL2 , is the upper bound of Λ1(τ1), resp. Λ2(τ2), as

defined in (C4), and where δ1, δ2 > 0 are fixed constants that are used

in the proof of (5.55).

The consistency of ζ̂ follows from the following theorem:

Theorem 5.4.3. If the assumptions (A6) and (A7) hold, then the estimator

ζ̂ converges in probability to ζ0.

The proof of Theorem 5.4.3 can be given along the lines of the proof of Theo-

rem 1 in Glidden (2000). Recall from Section 5.3.3 that Glidden (2000) studies

a semi-parametric two-stage estimation procedure for a Clayton copula in the

case where (Ti,Ci,Zi) are i.i.d. For this situation, he proves the consistency

of the estimator of the association parameter. Since we use a nonparametric

approach in the first step of the estimation, we adapt his proof by using the
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uniform consistency of Λ̂1, resp. Λ̂2, on [0, τ1], resp. [0, τ2]. Note that it fol-

lows from the choice of the covariate zij that the loglikelihood function, given

in (5.2), is a sum of i.i.d. random variables. Hence, the proof can be given

using similar arguments as presented in Glidden (2000).

The following theorem establishes the asymptotic normality of ζ̂:

Theorem 5.4.4. If the assumptions (A6) and (A7) hold, then K1/2(ζ̂ −
ζ0) converges to a normal distribution with mean vector zero and variance-

covariance Σ2 = I−1

2,ζ
+ I−1

2,ζ
V (Φ2,1) I−1

2,ζ
, where

V (Φ2,1) = E
(
Φ2,1Φ

′
2,1

)

Φ2,1 =
∫ τ1

0
IC1(t1)dΨ1,1(t1) +

∫ τ1

0
IC2(t2)dΨ1,1(t2)

+
∫ τ2

0
IC3(t3)dΨ2,1(t3) +

∫ τ2

0
IC4(t4)dΨ2,1(t4),

with Ψ1,1 and Ψ2,1 as defined in (5.49) in Section 5.4.2,

IC1(t1) =
∫ τ1

t1

∫ τ1

0

∫ τ2

0

∫ τ2

0
Vζ,1 {ζ0, Λ1(u), Λ1(t2), Λ2(t3),Λ2(t4)}
×dHζ0

(u, t2, t3, t4),

and similar expressions for IC2(t2), IC3(t3) and IC4(t4).

Note that the expressions for IC1(t1), IC2(t2), IC3(t3) and IC4(t4) differ from

the expressions given in Theorem 5.3.6 since we use here a nonparametric

approach in the first step of the estimation procedure.

Proof. The first order Taylor series expansion for Uζ

(
ζ, Λ̂1, Λ̂2

)
around ζ0,

evaluated at ζ̂, is given by

Uζ

(
ζ̂, Λ̂1, Λ̂2

)

= Uζ

(
ζ0, Λ̂1, Λ̂2

)

+
K∑

i=1

Vζ

{
ζ∗, Λ̂1 (Xi1) , Λ̂1 (Xi2) , Λ̂2 (Xi3) , Λ̂2 (Xi4)

}(
ζ̂ − ζ0

)
,
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where ζ∗ is on the line segment between ζ̂ and ζ0.

Since Uζ

(
ζ̂, Λ̂1, Λ̂2

)
= 0, we obtain

K1/2
(
ζ̂ − ζ0

)

=

[
−K−1

K∑

i=1

Vζ

{
ζ∗, Λ̂1 (Xi1) , Λ̂1 (Xi2) , Λ̂2 (Xi3) , Λ̂2 (Xi4)

}]−1

× K−1/2Uζ

(
ζ0, Λ̂1, Λ̂2

)
.

Straightforward calculations, using the consistency of ζ̂, the uniform consis-

tency of Λ̂1 and Λ̂2, condition (A7) and the weak law of large numbers, show

that

−K−1
K∑

i=1

Vζ

{
ζ∗, Λ̂1 (Xi1) , Λ̂1 (Xi2) , Λ̂2 (Xi3) , Λ̂2 (Xi4)

}
P−→ I2,ζ . (5.55)

Let Hζ0
be the joint distribution function of (Xi1, Xi2, Xi3, Xi4), for i =

1, . . . , K and let hζ0
be the corresponding joint density function. Define HK

as the empirical distribution function of (Xi1, Xi2, Xi3, Xi4), i.e.

HK(t1, t2, t3, t4) =
1
K

K∑

i=1

I (Xi1 ≤ t1, Xi2 ≤ t2, Xi3 ≤ t3, Xi4 ≤ t4) .

We then obtain that

K−1/2Uζ

(
ζ0, Λ̂1, Λ̂2

)

= K−1/2
K∑

i=1

Wζ

{
ζ0, Λ̂1(Xi1), Λ̂1(Xi2), Λ̂2(Xi3), Λ̂2(Xi4)

}

= K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0
Wζ

{
ζ0, Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}

× dHK (t1, t2, t3, t4) .
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Rewriting the above expression gives

K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0
Wζ

{
ζ0, Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}

× dHζ0
(t1, t2, t3, t4)

+K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0
Wζ

{
ζ0, Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}

× d
(
HK −Hζ0

)
(t1, t2, t3, t4)

= TK

(
ζ0, Λ̂1, Λ̂2

)
+ ZK

(
ζ0, Λ̂1, Λ̂2

)
. (5.56)

The last term, ZK

(
ζ0, Λ̂1, Λ̂2

)
, can be written as

K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0
Wζ {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}

× d
(
HK −Hζ0

)
(t1, t2, t3, t4)

+ K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0

[
Wζ

{
ζ0, Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}

−Wζ {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}
]

d
(
HK −Hζ0

)
(t1, t2, t3, t4) .

By condition (A7) and the uniform consistency of Λ̂1, resp. Λ̂2, on [0, τ1], resp.

[0, τ2], we obtain that

sup
(t1,t2,t3,t4)∈[0,τ1]×[0,τ1]×[0,τ2]×[0,τ2]

∣∣∣Wζ

{
ζ0, Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}

−Wζ {ζ0, Λ1(t1),Λ1(t2), Λ2(t3), Λ2(t4)}
∣∣∣ = op(1).

Further, we have that K1/2
(
HK −Hζ0

)
= Op(1). Hence, it follows that the

second term of ZK converges to zero in probability. The first term of ZK is

a sum of independent and identically distributed random vectors with mean

vector zero and variance-covariance matrix I2,ζ .

We rewrite TK

(
ζ0, Λ̂1, Λ̂2

)
by using a Taylor expansion of Wζ {ζ0, Λ1(t1),

Λ1(t2), Λ2(t3), Λ2(t4)} around {Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}, evaluated at
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{
Λ̂1(t1), Λ̂1(t2), Λ̂2(t3), Λ̂2(t4)

}
. This leads to

TK

(
ζ0, Λ̂1, Λ̂2

)

= K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0

[
Wζ {ζ0,Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}

+Vζ,1 {ζ0, γ
∗
1 ,Λ1(t2), Λ2(t3), Λ2(t4)}

{
Λ̂1(t1)− Λ1(t1)

}

+Vζ,2 {ζ0,Λ1(t1), γ∗2 , Λ2(t3), Λ2(t4)}
{

Λ̂1(t2)− Λ1(t2)
}

+Vζ,3 {ζ0,Λ1(t1), Λ1(t2), γ∗3 , Λ2(t4)}
{

Λ̂2(t3)− Λ2(t3)
}

+Vζ,4 {ζ0, Λ1(t1),Λ1(t2), Λ2(t3), γ∗4}
{

Λ̂2(t4)− Λ2(t4)
}]

× dHζ0
(t1, t2, t3, t4),

where γ∗1 is on the line segment between Λ1(t1) and Λ̂1(t1), γ∗2 is on the line

segment between Λ1(t2) and Λ̂1(t2), γ∗3 is on the line segment between Λ2(t3)

and Λ̂2(t3), and γ∗4 is on the line segment between Λ2(t4) and Λ̂2(t4).

Rewriting the above expression gives

TK

(
ζ0, Λ̂1, Λ̂2

)

= TK (ζ0, Λ1, Λ2)

+K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0

[

Vζ,1 {ζ0,Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}
{

Λ̂1(t1)− Λ1(t1)
}

+Vζ,2 {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}
{

Λ̂1(t2)− Λ1(t2)
}

+Vζ,3 {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}
{

Λ̂2(t3)− Λ2(t3)
}

+Vζ,4 {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), Λ2(t4)}
{

Λ̂2(t4)− Λ2(t4)
}]

× dHζ0
(t1, t2, t3, t4)

+RK (ζ0,Λ1, Λ2) ,
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where

RK (ζ0,Λ1,Λ2)

= K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0

[[
Vζ,1 {ζ0, γ

∗
1 , Λ1(t2), Λ2(t3),Λ2(t4)}

−Vζ,1 {ζ0, Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}
]{

Λ̂1(t1)− Λ1(t1)
}

+
[
Vζ,2 {ζ0,Λ1(t1), γ∗2 , Λ2(t3), Λ2(t4)}

−Vζ,2 {ζ0, Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}
]{

Λ̂1(t2)− Λ1(t2)
}

+
[
Vζ,3 {ζ0,Λ1(t1), Λ1(t2), γ∗3 , Λ2(t4)}

−Vζ,3 {ζ0, Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}
]{

Λ̂2(t3)− Λ2(t3)
}

+
[
Vζ,4 {ζ0,Λ1(t1), Λ1(t2), Λ2(t3), γ∗4}

−Vζ,4 {ζ0, Λ1(t1), Λ1(t2),Λ2(t3), Λ2(t4)}
]{

Λ̂2(t4)− Λ2(t4)
}]

× dHζ0
(t1, t2, t3, t4).

Straightforward arguments using condition (A7), Theorems 5.4.1 and 5.4.2,

show that RK (ζ0, Λ1,Λ2) converges to zero in probability.

Further,

TK (ζ0, Λ1,Λ2)

= K1/2

∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

0
Wζ {ζ0, Λ1(t1), Λ1(t2),Λ2(t3), Λ2(t4)}
× dHζ0

(t1, t2, t3, t4) . (5.57)

Since

Wζ {ζ0, Λ1(t1),Λ1(t2), Λ2(t3), Λ2(t4)} =
∂ log hζ0

(t1, t2, t3, t4)

∂ζ
,

it follows that

Wζ {ζ0, Λ1(t1), Λ1(t2), Λ2(t3),Λ2(t4)}hζ0
(t1, t2, t3, t4)

=
∂hζ0

(t1, t2, t3, t4)

∂ζ
. (5.58)
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Substituting (5.58) in (5.57) and changing the order of the integral and the

derivative, leads to

TK (ζ0, Λ1, Λ2)

= K1/2

∫ τ1

0

∂

∂ζ

[∫ τ1

0

∫ τ2

0

∫ τ2

0
hζ0

(t1, t2, t3, t4)dt4dt3dt2

]
dt1.

Since the marginal survival functions do not depend on the association pa-

rameter ζ, we obtain that

TK (ζ0, Λ1, Λ2) = 0.

Using that Λ̂1(tj) − Λ1(tj) =
∫ tj
0 d(Λ̂1 − Λ1)(u), for j = 1, 2, and Λ̂2(tj) −

Λ2(tj) =
∫ tj
0 d(Λ̂2 − Λ2)(u), for j = 3, 4, we obtain, after changing the order

of the integrals, that

TK

(
ζ0, Λ̂1, Λ̂2

)

= K1/2

∫ τ1

0
IC1(t1)d

(
Λ̂1 − Λ1

)
(t1) + K1/2

∫ τ1

0
IC2(t2)d

(
Λ̂1 − Λ1

)
(t2)

+K1/2

∫ τ2

0
IC3(t3)d

(
Λ̂2 − Λ2

)
(t3) + K1/2

∫ τ2

0
IC4(t4)d

(
Λ̂2 − Λ2

)
(t4),

where

IC1(t1) =
∫ τ1

t1

∫ τ1

0

∫ τ2

0

∫ τ2

0
Vζ,1 {ζ0, Λ1(u), Λ1(t2), Λ2(t3),Λ2(t4)}
×dHζ0

(u, t2, t3, t4)

IC2(t2) =
∫ τ1

0

∫ τ1

t2

∫ τ2

0

∫ τ2

0
Vζ,2 {ζ0, Λ1(t1),Λ1(u), Λ2(t3),Λ2(t4)}
×dHζ0

(t1, u, t3, t4)

IC3(t3) =
∫ τ1

0

∫ τ1

0

∫ τ2

t3

∫ τ2

0
Vζ,3 {ζ0, Λ1(t1),Λ1(t2), Λ2(u),Λ2(t4)}
×dHζ0

(t1, t2, u, t4)

IC4(t4) =
∫ τ1

0

∫ τ1

0

∫ τ2

0

∫ τ2

t4

Vζ,4 {ζ0, Λ1(t1),Λ1(t2), Λ2(t3), Λ2(u)}
×dHζ0

(t1, t2, t3, u).
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It follows from (5.53) in the proof of Theorem 5.4.2 that TK

(
ζ0, Λ̂1, Λ̂2

)
is

asymptotically equivalent with

K−1/2
K∑

i=1

Φ2,i ≡ K−1/2
K∑

i=1

[∫ τ1

0
IC1(t1)dΨ1,i(t1) +

∫ τ1

0
IC2(t2)dΨ1,i(t2)

+
∫ τ2

0
IC3(t3)dΨ2,i(t3) +

∫ τ2

0
IC4(t4)dΨ2,i(t4)

]
.

The above expression is a sum of independent and identically distributed ran-

dom vectors with mean vector zero. By the central limit theorem, TK

(
ζ0, Λ̂1,

Λ̂2

)
converges to a normal distribution with mean vector zero and variance-

covariance matrix V (Φ2,1) = E
(
Φ2,1Φ

′
2,1

)
. Since TK and ZK are asymptoti-

cally independent, it follows by (5.56) that K−1/2Uζ

(
ζ0, Λ̂1, Λ̂2

)
converges to

a normal distribution with mean vector zero and variance-covariance matrix

I2,ζ + V (Φ2,1). Hence, K−1/2
(
ζ̂ − ζ0

)
converges to a normal distribution

with mean vector zero and variance-covariance matrix I−1

2,ζ
+I−1

2,ζ
V (Φ2,1) I−1

2,ζ
.

5.5 Conclusions

In this chapter, we propose a semi-parametric and a nonparametric two-stage

estimation approach for four-dimensional copulas. Our motivation for this is

the udder infection data set, introduced in Section 1.4.1.

In the first stage of the estimation procedure, the marginal survival functions

are estimated. In the semi-parametric approach, we estimate the marginal

survival functions using a marginal Cox model with a deterministic binary

covariate at the cluster level and a deterministic binary covariate at the ob-

servational unit level. This type of covariates corresponds to the situation

we have in the udder infection data. Spiekerman and Lin (1998) prove the

consistency and the asymptotic normality of the parameter estimators in the

marginal Cox model in the case of stochastic covariates. Since we deal with

deterministic covariates, the situation we consider is different from the sit-

uation in Spiekerman and Lin (1998). We extend the asymptotic results in
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their paper to specific cases of deterministic covariates. In the nonparametric

approach, we account for a binary covariate at the observational unit level.

Observational units having the same covariate value are pooled. We then es-

timate the marginal survival functions by using a Nelson-Aalen estimator for

the pooled data. It is important to note that the pooled observational units

are correlated. The consistency and the asymptotic normality results that

we obtain for the pooled data are new and extend results in Shih and Louis

(1995b) and in Spiekerman and Lin (1998).

In the second step of the estimation, the association parameter is estimated by

maximising the loglikelihood, with the marginal survival functions replaced by

their estimates obtained in the first step. Since the proofs of the consistency

and the asymptotic normality of the estimator of the association parameter

build on the asymptotic properties of the estimators obtained in the first step

and since we study four-dimensional copula models, our results extend results

obtained by Shih and Louis (1995b), Glidden (2000) and Andersen (2005).

In the semi-parametric approach, we consider a binary covariate at the cluster

level and a binary covariate at the observational unit level. The proofs of the

theorems presented in Sections 5.3.2 and 5.3.3 can easily be generalized to a

categorical covariate at the cluster level and a categorical covariate at the ob-

servational unit level, both with a finite number of categories. For covariates

at the observational unit level, we then need that the number of observational

units having the same covariate value is the same for all clusters.

We study both a semi-parametric and a nonparametric approach to estimate

the marginal survival functions. It is also possible to consider a parametric

approach in the estimation of the marginal survival functions, e.g., using a

Weibull regression model. This is an extension of Andersen (2005) that is not

discussed in this thesis.

5.6 Appendix

In this section, we collect a number of theorems and properties which were

needed in the proofs of this chapter.
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5.6.1 The Kolmogorov sufficient condition

Theorem 5.6.1. Let Xi, for i = 1, 2, . . ., be a sequence of independent random

variables with mean zero and finite variances σ2
i , and set SK =

∑K
i=1 Xi, for

K = 1, 2, . . .. Then

∑∞
i=1 i−2σ2

i < ∞ ⇒ K−1SK
a.s.−→ 0 as K →∞.

Proof. The proof is presented in Gut (2005, p.288).

5.6.2 Properties of martingales

Theorem 5.6.2. Let N be an arbitrary counting process.

1. Then there exists a unique right-continuous predictable increasing process

A such that A(0) = 0 a.s., A(t) < ∞ a.s. for any t, and the process

M = N −A is a local martingale.

2. If A in (1) is locally bounded, M is a local square integrable martingale.

Proof. The proof is presented in Fleming and Harrington (1991, p.61).

The process A in the previous decomposition of an arbitrary counting process

is called the compensator.

The following theorem is presented in Martinussen and Scheike (2006, p.22):

Theorem 5.6.3. Let M and M̃ be finite variation local square integrable

martingales, and let H and H̃ be locally bounded predictable processes. Then∫
HdM and

∫
H̃dM̃ are local square integrable martingales, and the pre-

dictable covariation processes are

<

∫
HdM,

∫
H̃dM̃ >=

∫
HH̃d < M, M̃ > .

The following proposition gives sufficient conditions for the weak convergence

of continuous time martingales in D[0,∞):
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Theorem 5.6.4. Let MK , for K = 1, 2, . . ., be a sequence of zero-mean

square-integrable martingales with predictable variation process VK . Let V be a

continuous, increasing function on [0,∞) with V (0) = 0. Sufficient conditions

for weak convergence of MK in D[0,∞) are:

a) MK(0) P−→ 0;

b) VK(t) P−→ V (t) for each fixed t;

c) E
{

Jk (MK)2
}
−→ 0 for each fixed k, as K →∞.

Proof. The proof is presented in Pollard (1984, p. 179-182).

5.6.3 Weak convergence in D[a, b]

Let D be an arbitrary metric space with metric d.

Let (Ω,A, P ) be an arbitrary probability space. We first define the inner

probability and the outer probability of an arbitrary subset B of Ω (van der

Vaart and Wellner, 1996, Chapter 1). The concept “inner probability” is used

to define asymptotic tightness, whereas the “outer probability” will be used

in Theorem 5.6.7.

Definition 5.6.1. The inner probability of an arbitrary subset B of Ω is

P∗(B) = sup {P (A) : A ⊂ B, A ∈ A} .

Definition 5.6.2. The outer probability of an arbitrary subset B of Ω is

P ∗(B) = inf {P (A) : A ⊃ B, A ∈ A} .

Definition 5.6.3. Let (ΩK ,AK , PK) be a sequence of probability spaces. A

sequence XK : ΩK → D is asymptotically tight if for every ε > 0 there exists a

compact set S such that

lim inf
K→∞

P∗
(
XK ∈ Sδ

)
≥ 1− ε,

for every δ > 0, where Sδ = {y ∈ D : d(y, S) < δ}.



5.6. Appendix 135

Denote by l∞[a, b] the metric space of uniformly bounded, real functions on

[a, b], equipped with the supremum metric. A function f : [a, b] → R is

uniformly bounded if

‖f‖[a,b] ≡ sup
t∈[a,b]

|f(t)| < ∞.

Further, D[a, b] is the metric space of all right continuous functions on [a, b]

with left hand limits, equipped with the supremum metric.

Note that D[a, b] ⊂ l∞[a, b] (van der Vaart, 1998, p.261).

The following theorem establishes that we can consider the weak convergence

of a sequence of maps with values in D[a, b] relative to D[a, b], but also relative

to l∞[a, b]; this does not make a difference as long as we use the supremum

metric for the two spaces (van der Vaart, 1998).

Theorem 5.6.5. Let D0 ⊂ D be arbitrary metric spaces equipped with the

same metric. If X and every XK take their values in D0, then the sequence

of maps XK converges weakly to X as maps in D0 if and only if the sequence

of maps XK converges weakly to X as maps in D.

Proof. The proof is presented in van der Vaart (1998, p.261).

Hence, we may focus on weak convergence in the space l∞[a, b], and automati-

cally obtain the weak convergence in D[a, b]. One of the sufficient conditions of

weak convergence in l∞[a, b] is the weak convergence of the finite dimensional

distributions:

Definition 5.6.4. A sequence of elements XK ∈ l∞[a, b] converges finite di-

mensionally to X if for all finite subsets {t1, . . . , tl} ⊂ [a, b] the sequence of

random vectors {XK(t1), . . . , XK(tl)} converges in distribution to {X(t1), . . . ,

X(tl)}. The random vectors {XK(t1), . . . , XK(tl)} are also called the margi-

nals.

Weak convergence in l∞[a, b] may be characterised as asymptotic tightness

plus convergence of the finite dimensional distributions (i.e., the marginals):
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Theorem 5.6.6. Let XK : ΩK → l∞[a, b] be arbitrary.

a) XK converges weakly to a tight limit if and only if XK is asymptotically

tight and the marginals {XK(t1), . . . , XK(tl)} converge weakly to a limit

for every subset t1, . . . , tl of [a, b].

b) If XK is asymptotically tight and its marginals converge weakly to the

marginals {X(t1), . . . , X(tl)} of a stochastic process X, then there is a

version of X with uniformly bounded sample paths and XK converges

weakly to X.

Proof. The proof is presented in van der Vaart and Wellner (1996, p. 35).

The following theorem can be used to prove asymptotic tightness:

Theorem 5.6.7. A sequence XK : ΩK → l∞[a, b] is asymptotically tight if

and only if XK(t) is asymptotically tight in R for every t and, for all ε, η > 0,

there exists a finite partition [a, b] =
⋃L

l=1 Tl, such that

lim sup
K→∞

P ∗
{

sup
1≤l≤L

sup
s,t∈Tl

|XK(s)−XK(t)| > ε

}
< η.

Proof. The proof is presented in van der Vaart and Wellner (1996, p.36).



Chapter 6

Two-stage estimation and

goodness-of-fit for copulas:

Udder infection example

6.1 Introduction

In Sections 5.3 and 5.4 we explained how four-dimensional copula models can

be fitted using a semi-parametric and a nonparametric two-stage estimation

approach. We developed the asymptotic properties of both estimation proce-

dures. In this chapter, we consider Clayton, positive stable and inverse Gaus-

sian copulas and we consider the power variance family of copulas to model the

association between the outcomes in a cluster. As described in Section 2.5.2,

the Clayton copula, the positive stable copula and the inverse Gaussian copula

are nested in the power variance copula family. Recall that each of these three

copulas models a different type of dependence. The Clayton copula models

late dependence in time, the positive stable copula models early dependence

in time and the inverse Gaussian copula takes a position in between. In Sec-

tion 6.2, we explain how a pseudo likelihood ratio test can be used to select a

copula, nested in the power variance copula family, that describes the appro-

priate type of dependence between the outcomes in a cluster. The concept of
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such a pseudo likelihood ratio test was also proposed by Glidden (2000) and

Andersen (2005). Power variance copulas become Clayton copulas for ν → 1

and positive stable copulas for θ →∞. This means that the choice of ν, resp.

θ, that corresponds with Clayton copulas, resp. positive stable copulas, is

at the boundary of the parameter space of the power variance copula family.

Therefore, as discussed in Andersen (2005), the classical likelihood ratio test

asymptotics are not valid. Andersen (2005) gives the asymptotic distribution

for the pseudo likelihood ratio test without a rigorous proof. We therefore

propose in Section 6.2 a new bootstrap algorithm to obtain the p-value for

this test. Using this bootstrap algorithm, we also obtain estimates for the

standard errors of the estimated parameters in the copula.

In Sections 6.3 and 6.5 we illustrate the semi-parametric and the nonpara-

metric two-stage estimation approach by analysing the udder infection data,

introduced in Section 1.4.1. We apply the method proposed in Section 6.2 to

test the null hypotheses: Clayton copula (late dependence in time), positive

stable copula (early dependence in time) and inverse Gaussian copula for the

infection times of the four udder quarters of a cow. This allows us to select

a copula within the power variance copula family that describes well the de-

pendence between the infection times of the four udder quarters of a cow. In

Section 6.4 we study the type I error rate and the power of the pseudo likeli-

hood ratio test based on a simulation study in a setting similar to the analysis

of the udder infection data in Section 6.3. The results of the simulations give

evidence that the pseudo likelihood ratio test provides a valid approach to

select an appropriate copula within the power variance copula family.

6.2 Goodness-of-fit

To choose a copula model that describes the right type of dependence between

the outcomes in a cluster, we start with the power variance copula family. We

then use a pseudo likelihood ratio test to assess whether the observations show

early dependence (positive stable copula), late dependence (Clayton copula)

or whether the dependence is not explicitly early or late in time (inverse Gaus-
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sian copula).

It is also important to check whether the semi-parametric and the nonpara-

metric marginal survival functions, given by (5.11) and (5.18), can be used

in the first step of the estimation. If the marginal survival functions are mis-

specified in the first step, the obtained estimators are not reliable to be used

in the second step of the estimation (see Kim et al., 2007, for a discussion in

the case of complete data). In Section 6.3, we illustrate how model checking

for the marginal survival functions can be done using a descriptive approach.

A formal approach to check the adequacy of the marginal Cox model in the

semi-parametric approach is based on the asymptotic distribution of the score

process. This approach is described in Spiekerman and Lin (1996) and in

Martinussen and Scheike (2006, p.318-319).

6.2.1 Pseudo likelihood ratio test

A pseudo likelihood ratio test is used to select a copula in the power variance

copula family that models the type of dependence between the outcomes in

a cluster. Recall from Section 2.5.2 that the parameter space of the power

variance copula is given by

CPV F = {(ν, θ) : 0 ≤ ν ≤ 1, 0 ≤ θ < ∞ or 0 ≤ ν < 1, θ →∞} ,

where the notation θ →∞ means that θ tends to infinity. For specific choices

of the parameters ν and θ, we obtain the Clayton copula, the positive stable

copula and the inverse Gaussian copula. These parameter choices are given

by

CC = {(ν, θ) : ν → 1, 0 ≤ θ < ∞} ,

CIG = {(ν, θ) : ν = 0.5, 0 ≤ θ < ∞} ,

CPS = {(ν, θ) : 0 ≤ ν < 1, θ →∞} .

To test if the Clayton copula can be used to analyse the data, the following

hypotheses testing problem is considered:



140 Chapter 6. Two-stage estimation and goodness-of-fit for copulas

H0 : (ν, θ) ∈ CC (Clayton copula) (6.1)

H1 : (ν, θ) ∈ CPV F \ CC .

To test if the inverse Gaussian copula describes the association between the

outcomes in a cluster, we consider

H0 : (ν, θ) ∈ CIG (inverse Gaussian copula) (6.2)

H1 : (ν, θ) ∈ CPV F \ CIG.

Let log LP,H0(θ) be the pseudo loglikelihood, as defined in Section 5.2, under

the null hypothesis where the estimates from the first stage are plugged in

and let θ̂0 be the maximiser of log LP,H0(θ). Let (ν̂, θ̂) denote the maximiser

of log LP (ν, θ). The test statistic is then given by Wobs = −2{log LP,H0(θ̂0)−
log LP (ν̂, θ̂)}.
The following hypotheses testing problem is used to test if the positive stable

copula is appropriate for the data:

H0 : (ν, θ) ∈ CPS (positive stable copula) (6.3)

H1 : (ν, θ) ∈ CPV F \ CPS .

Denote the pseudo loglikelihood under the null hypothesis by log LP,H0(ν)

and let ν̂0 be the maximiser of log LP,H0(ν). The test statistic is given by

Wobs = −2{log LP,H0(ν̂0)− log LP (ν̂, θ̂)}.
This pseudo likelihood ratio test is proposed by Glidden (2000) and Andersen

(2005). Proposition 3.4 in Andersen (2005) states that the asymptotic distri-

bution of the test statistic Wobs that corresponds to (6.2), is a constant times a

chi-square distribution with one degree of freedom. Since the Clayton copula

and the positive stable copula are on the boundary of the parameter space,

this asymptotic result does not hold for the test statistic corresponding to hy-

potheses (6.1), resp. (6.3). Andersen (2005) claims that, when the parameters

are on the boundary of the parameter space, the asymptotic distribution of

the test statistic Wobs is a constant times a 50 : 50 mixture of a chi-square

distribution with zero degrees of freedom and a chi-square distribution with
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one degree of freedom. A rigid proof of this result is not yet available. There-

fore, we propose a new bootstrap algorithm to obtain the p-value for this test.

Using this bootstrap algorithm, we can also obtain estimates for the standard

errors of the estimated parameters in the copula. In the bootstrap algorithm

we assume that all observations in the same cluster have a common censoring

time, i.e. Cij = Ci for i = 1, . . . , K and j = 1, . . . , 4. This is the type of

censoring in the udder infection data.

6.2.2 Bootstrap algorithm

1. Estimate ζ (under H0) using two-stage estimation.

2. Generate quadruples (V ∗
i1, V

∗
i2, V

∗
i3, V

∗
i4), i = 1, . . . ,K, from the null model

Cˆζ
. The true failure times (T ∗i1, T

∗
i2, T

∗
i3, T

∗
i4) can be obtained from (V ∗

i1,

V ∗
i2, V

∗
i3, V

∗
i4) by using the expression for the survival function that cor-

responds to the marginal model that is used in the first stage.

3. Estimate the censoring distribution G with the Kaplan-Meier estimator

based on the K observations of (X̃i = Ci ∧ T̃i, I(Ci < T̃i)), where T̃i =

max(Ti1, Ti2, Ti3, Ti4) now plays the role of the censoring variable for Ci.

Generate C∗
i , i = 1, . . . ,K, from Ĝ.

4. Set X∗
ij = min(T ∗ij , C

∗
i ) and δ∗ij = I(X∗

ij = T ∗ij).

5. Estimate ζ∗ using the two-stage estimation procedure (under H0 and

H1) and obtain the value of the test statistic W ∗
r for the data (X∗

ij , δ
∗
ij).

6. Step 2-5 is repeated R times to obtain an estimate of the null distribution

of the test statistic and the p-value is

p =
R∑

r=1

I(W ∗
r > Wobs)/R,

where Wobs is the value of the test statistic for the original data (Xij , δij).
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6.3 Analysis of the udder infection data

To investigate the dependence between the infection times of the four udder

quarters of a cow, we fit a Clayton copula, a positive stable, an inverse Gaus-

sian and a power variance copula using two-stage estimation. In the first stage,

the marginal survival functions are estimated using the semi-parametric and

the nonparametric approach discussed in Section 5.3.2 and Section 5.4.2. In

the marginal survival functions we model the effect of the location of the udder

quarters (front or rear). We assume that the marginal survival functions that

correspond to the two front udder quarters, resp. the two rear udder quarters,

are identical. The observations of the four udder quarters of each cow can

be ordered in the following way: front left, front right, rear left, rear right.

The values of the udder quarter specific covariate indicating the front or rear

position of an udder quarter of cow i are then given by zi1 = zi2 = 0 (front)

and zi3 = zi4 = 1 (rear).

6.3.1 Semi-parametric two-stage estimation approach

In the semi-parametric approach, the marginal survival functions are estimated

as follows

Ŝi1(t) = Ŝi2(t) = exp
{
−Λ̂0(t; β̂)

}
,

Ŝi3(t) = Ŝi4(t) = exp
{
−Λ̂0(t; β̂) exp(β̂)

}
.

(6.4)

It follows from Theorem 5.3.1 and Theorem 5.3.3 that β̂ and Λ̂0(.; β̂) are

consistent estimators, which therefore can be used in the second step of the

estimation procedure. In the second step we estimate, for each copula model,

the association parameter ζ by maximising the pseudo loglikelihood in (5.17)

with respect to ζ. Theorem 5.3.5 and Theorem 5.3.6 establish that ζ̂, the

estimator of the association parameter (vector), is consistent and that its limit

distribution is normal.

Figure 6.1 shows the estimated marginal survival functions obtained by (6.4)

and by using a Nelson-Aalen estimator for the cumulative hazard function of

the pooled infection times of the front udder quarters, resp. the rear udder
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quarters, as proposed in (5.18). This figure suggests that the marginal Cox

model fits the udder infection data well.
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Figure 6.1: Udder infection data. Estimated marginal survival functions using

a marginal Cox model with binary covariate “location” (front or rear) and

using a Nelson-Aalen estimator for the pooled data with zij = 0, resp. zij = 1.

6.3.2 Nonparametric two-stage estimation approach

Recall from (5.18) that, in the nonparametric approach, the marginal survival

functions are estimated by using a Nelson-Aalen estimator for the group with

zij = 0 and zij = 1 separately:

Ŝij(t) =





exp{−Λ̂1(t)} if zij = 0

exp{−Λ̂2(t)} if zij = 1.
(6.5)
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By estimating the marginal survival functions in this way, we take into account

that the teat end condition might be different for the front and the rear udder

quarters, but we do not assume any functional form in the estimation of the

marginal survival functions. Note that the udder quarters within the group

of the front, resp. rear, udder quarters are not independent. However, we

proved in Theorem 5.4.1 that Λ̂1, resp. Λ̂2, are uniformly consistent in [0, τ1],

resp. [0, τ2]. Therefore, the marginal survival functions given by (6.5) can

be plugged into the pseudo loglikelihood (5.54). By maximising (5.54) with

respect to ζ for each copula model, we obtain an estimate for the association

parameter (vector) in the copula model. Theorem 5.4.3 and Theorem 5.4.4

state that ζ̂ is consistent and that its limit distribution is normal.
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Figure 6.2: Udder infection data. Estimated marginal survival functions using

a Nelson-Aalen estimator for the pooled front udder quarters data with zi1 = 0

and zi2 = 0 and using a Nelson-Aalen estimator for the data with zi1 = 0,

resp. zi2 = 0.
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Figure 6.3: Udder infection data. Estimated marginal survival functions using

a Nelson-Aalen estimator for the pooled rear udder quarters data with zi3 = 1

and zi4 = 1 and using a Nelson-Aalen estimator for the data with zi3 = 1,

resp. zi4 = 1.

Figure 6.2 compares the estimated marginal survival function for the pooled

infection times of the front udder quarters obtained by (6.5), with the two esti-

mated marginal survival functions obtained by using a Nelson-Aalen estimator

for the cumulative hazard functions of the infection times of the front left and

the front right udder quarters separately. Since we assume in the nonparamet-

ric approach that the marginal survival functions for the front udder quarters

are identical, we expect that the three survival curves are close. Figure 6.3

provides similar information for the rear udder quarters. The three estimated

survival curves in Figure 6.2 almost coincide; the estimated survival curves in

Figure 6.3 are a bit more apart for infection times between between 0.3 and

0.6 years. Overall, these figures suggest that the nonparametric approach can
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be used to estimate the marginal survival functions in the first step.

6.3.3 Pseudo likelihood ratio test

To select which copula model, nested in the power variance family, is appropri-

ate to model the dependence in the udder infection data, we perform pseudo

likelihood ratio tests for the hypotheses (6.1), (6.2) and (6.3). The p-value

for each test and the estimated standard errors of the estimated association

parameters are obtained by taking R = 1000 bootstrap samples using the

bootstrap algorithm in Section 6.2. To generate quadruples (V ∗
i1, V

∗
i2, V

∗
i3, V

∗
i4)

in the second step of the bootstrap algorithm, the algorithm provided by Em-

brechts et al. (2003) is used to generate from a Clayton or an inverse Gaussian

copula, whereas the algorithm provided by Shih and Louis (1995a) is used to

generate from a positive stable copula.

In the semi-parametric approach, the marginals are estimated through a Cox

proportional hazards model with binary covariate “location”, as explained in

Section 6.3.1. The estimated parameters, the corresponding standard error

estimates and the p-values for the pseudo likelihood ratio tests are presented

in Table 6.1.

Table 6.1: Results for the udder infection data, marginal Cox model with

udder location (front or rear) as binary covariate; 1000 bootstrap samples.

Copula Parameter Estimate Std. error P-value

β 0.1207 0.0615

Clayton θ 1.4429 0.2503 0.048

Positive stable ν 0.4049 0.0444 0.007

Inverse Gaussian θ 8.4867 4.5790 0.346

In the nonparametric approach, the marginal survival functions are estimated

as discussed in Section 6.3.2. Table 6.2 shows the estimated association pa-

rameters for the different copula models, the corresponding estimated standard



6.4. Simulations 147

errors and the p-values for the pseudo likelihood ratio tests.

For both the semi-parametric and for the nonparametric approach, we con-

clude that, within the power variance copula family, the inverse Gaussian

copula model is an appropriate model to describe the association between the

infection times of the four udder quarters. This indicates that the dependence

is not early or late but intermediate in time.

Table 6.2: Results for the udder infection data, marginal survival functions es-

timated by Nelson-Aalen estimator for pooled front, resp. rear, udder quarters

data; 1000 bootstrap samples.

Copula Parameter Estimate Std. error P-value

Clayton θ 1.4079 0.2520 0.012

Positive stable ν 0.3976 0.0447 0.002

Inverse Gaussian θ 7.9644 4.3509 0.402

6.4 Simulations

We perform simulations to evaluate the type I error rate and the power of the

pseudo likelihood ratio test in a setting similar to the analysis of the udder

infection data, discussed in Section 6.3. We generate 500 data sets with 100

clusters that contain four observations each. The observations for each data

set are generated in the following way. First, 100 quadruples (Vi1, Vi2, Vi3, Vi4)

are generated from an inverse Gaussian copula using the algorithm provided

by Embrechts et al. (2003). The inverse Gaussian copula in (2.15) is often

written in terms of a parameter α = 1/θ. For the udder infection data, we

obtain α̂ = 0.1178 (θ̂ = 8.4867) using the semi-parametric approach and

α̂ = 0.1256 (θ̂ = 7.9644) using the nonparametric approach, see Table 6.1 and

Table 6.2. In the simulations, we generate 100 quadruples (Vi1, Vi2, Vi3, Vi4)

from an inverse Gaussian copula with α = 0.12; this corresponds to θ = 8.33.

To obtain the failure times Tij we assume that the marginal survival functions
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come from a Weibull regression model with a binary covariate (zi1 = zi2 = 0,

zi3 = zi4 = 1), i.e.,

Vij = Sij(Tij) = exp {−Λ0(Tij) exp(zijβ)} ,

with Λ0(Tij) = λT ρ
ij . The jth failure time in the ith cluster is then obtained

as follows:

Tij =
{ − log(Vij)

λ exp(zijβ)

}1/ρ

,

for j = 1, . . . , 4. The parameters λ, ρ and β are chosen to resemble the udder

infection data (estimated values based on infection time in years): λ = 2.3048,

ρ = 1.1904, β = 0.1141. A common censoring time Ci for the observations of

each cluster is generated from a uniform distribution on [0.1, 0.5] with prob-

ability 17% or from a normal distribution with mean 0.78 and variance 0.01

with probability 83%. We obtain approximately 20% censoring. We choose

this censoring distribution since it mimics the distribution of the censoring

times in the udder infection data. To illustrate this, Figure 6.4 shows an

histogram of the censoring times based on 1000 values generated from the

Kaplan-Meier estimator of the censoring distribution (obtained as explained

in step 3 of the bootstrap algorithm proposed in Section 6.2.2), resp. from

the specific mixture of a uniform and a normal distribution described in this

section.

For each data set, a Clayton copula, a positive stable copula, an inverse Gaus-

sian copula and a power variance copula is fitted using the semi-parametric

and the nonparametric approach proposed in Sections 5.3 and 5.4. We per-

form a pseudo likelihood ratio test to test which copula model, nested in the

power variance copula family, is appropriate for the simulated data. To obtain

the p-value for this test, we take 500 bootstrap samples.

In the discussion that follows, we use a 5% significance level. To compute

the type I error rate for the pseudo likelihood ratio test, we consider the hy-

potheses in (6.2). Based on 500 data sets, the probability of a type I error is

0.082, with a standard error of 0.012, if the marginal survival functions are

estimated through a Cox model. The probability of a type I error is 0.056,

with a standard error of 0.010, if the nonparametric approach is used in the
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first stage of the estimation.

Since the generated data come from an inverse Gaussian copula, the hypothe-

ses in (6.1) and (6.3) are considered for computing the power of the test.

Based on 500 data sets, the power of the pseudo likelihood ratio test used to

test (6.1), is 0.988, with a standard error of 0.005, using the semi-parametric

approach in the first stage. Using the nonparametric approach, the power for

this test is 0.992, with a standard eror of 0.004. For the test of (6.3), the power

is 0.844, with a standard error of 0.016, using the semi-parametric approach.

Using the nonparametric approach, the power is 0.802, with a standard er-

ror of 0.018. In terms of the type I error rate of the pseudo likelihood ratio

test, the nonparametric approach is preferred in this setting, whereas both are

comparable in terms of the power of the test.
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Figure 6.4: Histogram of censoring times based on 1000 values generated from

(a) Kaplan-Meier estimator of censoring distribution for udder infection data

(b) mixture of uniform and normal distribution.
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6.5 Analysis of the udder infection data: continued

In Section 6.3 we accounted for the effect of the location of the udder quar-

ters (front or rear) in the estimation of the marginal survival functions. In

this section we denote this covariate by zij1 ≡ zij , where zij is as defined in

Section 6.3, i.e., zi11 = zi21 = 0 (front) and zi31 = zi41 = 1 (rear). Recall from

Section 1.4.1 that also the parity of a cow might have an effect on the inci-

dence of intramammary infections (Weller et al., 1992). As already mentioned

there, we convert parity into a binary covariate “heifer”. Note that “heifer”

is a covariate at the cluster level; therefore we use the notation zij2 = zi2,

for j = 1, . . . , 4 and i = 1, . . . , 100. We define zi2 such that zi2 = 0 if cow i

has experienced more than one calving (i.e., cow i is a multiparous cow) and

zi2 = 1 if cow i has experienced only one calving (i.e., cow i is a primiparous

cow or a heifer).

We fit a Clayton copula, a positive stable copula and an inverse Gaussian

copula to study the dependence between the infection times of the four udder

quarters of a cow. To fit these copula models, we use the semi-parametric

two-stage estimation procedure, proposed in Section 5.3.

6.5.1 Semi-parametric two-stage estimation approach

To model the effect of the location of the udder quarter (front or rear) and the

parity in the first step of the estimation procedure, we estimate the marginal

survival functions as follows

Ŝij(t) = exp
{
−Λ̂0(t) exp(β̂1zij1 + β̂2zi2)

}
, (6.6)

for j = 1, . . . , 4 and i = 1, . . . , 100. It follows from Theorem 5.3.1 and The-

orem 5.3.3 that β̂ = (β̂1, β̂2)′ and Λ0(.; β̂) are consistent estimators which

therefore can be used in the second step of the estimation. In the second step,

we estimate the association parameter (vector) ζ by maximising the pseudo

loglikelihood (5.17), where Ŝij(t) is given by (6.6). The consistency and the

asymptotic normality of the obtained estimator ζ̂ follow from Theorem 5.3.5

and Theorem 5.3.6.
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Figure 6.5 shows the estimated marginal survival function, obtained by (6.6),

for the infection times of the front udder quarters of multiparous cows, resp.

heifers. These two curves are compared with the two estimated marginal

survival functions obtained using Nelson-Aalen estimators for the cumulative

hazard functions of the front udder quarters data of multiparous cows and

heifers. Note that we assume that the marginal survival functions of the in-

fection times of the front udder quarters of cows with the same parity are

identical. Figure 6.6 gives similar information for the rear udder quarters.

Figures 6.5 and 6.6 suggest that the proportional hazards assumption of the

Cox model used in (6.6) holds.
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Figure 6.5: Udder infection data. Estimated marginal survival functions using

a Cox model with binary covariates “location” (front or rear) and “heifer” and

using a Nelson-Aalen estimator for the pooled data with zij1 = 0 and zi2 = 0,

resp. zij1 = 0 and zi2 = 1.
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Figure 6.6: Udder infection data. Estimated marginal survival functions using

a Cox model with binary covariates “location” (front or rear) and “heifer” and

using a Nelson-Aalen estimator for the pooled data with zij1 = 1 and zi2 = 0,

resp. zij1 = 1 and zi2 = 1.

6.5.2 Pseudo likelihood ratio test

In a similar way as explained in Section 6.3.3, we perform a pseudo likelihood

ratio test to determine which copula, nested in the power variance family,

describes the type of dependence between the infection times of the four ud-

der quarters of a cow: the Clayton copula, the positive stable copula or the

inverse Gaussian copula. Table 6.3 shows the estimate for the fixed effect

β, the estimated association parameters for the different copula models, the

corresponding estimated standard errors and the p-values for the pseudo likeli-

hood ratio tests. The results indicate that the inverse Gaussian copula model

is an appropriate model within the power variance copula family to model

the dependence between the infection times of the four udder quarters. This
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indicates that the dependence is intermediate in time.

Table 6.3: Results for the udder infection data, marginal Cox model with

udder location (front or rear) and heifer as binary covariates; 1000 bootstrap

samples.

Copula Parameter Estimate Std. error P-value

β1 0.1199 0.0601

β2 0.2476 0.1958

Clayton θ 1.4478 0.2424 0.0500

Positive stable ν 0.4020 0.0441 0.0000

Inverse Gaussian θ 8.0402 4.5269 0.2760

6.6 Conclusions

In this chapter, we illustrate the use of copulas to model the dependence be-

tween the infection times of the four udder quarters of cows. The copula

model determines the type of association between the udder quarters. In the

marginal survival functions we model the effect of the location of the udder

quarter (front or rear) and/or the parity of the cow. Both a semi-parametric

and a nonparametric approach are considered to estimate the marginal sur-

vival functions.

To select an appropriate copula from the power variance copula family, a

pseudo likelihood ratio test is used. We propose a bootstrap algorithm that

can be used to obtain a p-value for this test. In this bootstrap algorithm,

we assume that all observations in the same cluster have a common censoring

time. This is the type of censoring in the udder infection data. We can extend

this algorithm to the more general situation where observations in the same

cluster have different censoring times. For instance, if the censoring distribu-

tion is independent of the covariates, we can use step four of the second-model
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based resampling plan, proposed in Section 3.2, to generate censoring times.

Andersen et al. (2005) propose a class of goodness-of-fit tests for copula mod-

els based on bivariate right censored data. In these tests, a nonparametric

estimate of the copula is compared to an estimate obtained by assuming a

parametric family of copula models. To generalise these results to higher-

dimensional failure time data, we need a nonparametric estimator for the

copula that accounts for the presence of censoring in the data. This is not

straightforward in general. If all observations in a cluster have a common

censoring time, the nonparametric estimator proposed by van der Laan et al.

(2002) can be used. These problems are subjects for further research.



Chapter 7

Conclusions and further

research

Frailty models and copula models are often used to model clustered (or mul-

tivariate) survival data. In this thesis, we propose estimation methods and

resampling procedures for frailty models and copula models. The developed

methods are illustrated using examples from clinical trials and veterinary stud-

ies on dairy cows.

In Chapters 3 and 4 we consider frailty models for correlated survival data

with a varying cluster size. In Chapters 5 and 6 we study copula models for

four-dimensional survival data.

In Chapter 3 we propose two model-based resampling schemes that can be

used to estimate the standard errors of the parameter estimates in a shared

frailty model. Based on a simulation study, the performance of the proposed

algorithms is compared with the performance of an existing nonparametric re-

sampling plan (Therneau and Grambsch, 2000). The results indicate that the

first model-based resampling plan, based on resampling of the estimated frail-

ties, underestimates the empirical variability of the parameter estimates for

almost all settings studied. The second model-based resampling plan, based on

resampling from the estimated frailty distribution, provides in general precise

assessment of the empirical variability of the parameter estimates, even if the
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model is misspecified. However, the empirical variability of the heterogeneity

parameter estimate can be rather different for the correct and the misspecified

models. So, the results indicate that robustness in terms of the heterogene-

ity parameter is an issue of concern for the bootstrap algorithms (including

the nonparametric bootstrap). In terms of the fixed effects, the bootstrap

algorithms are robust against misspecification of the frailty distribution. The

results clearly illustrate that further research on diagnostic tests for the choice

of the frailty distribution is needed. More details on topics for further research

are provided in Section 3.5.

In Chapter 4 we study a frailty model that extends the shared frailty model

by accounting for a random treatment effect. Classical estimation methods

to fit (shared) frailty models are likelihood-based. We propose an alternative

estimation method which is based on a model transformation. We show that

the integral of the weighted (over time) conditional cumulative loghazard de-

pends in a linear way on the random effects describing the cluster and the

treatment effect over clusters. Using the data within a cluster, we can esti-

mate the integral using a nonparametric estimator for the cumulative hazard

function. Considering this estimated integral as a response, we obtain a linear

mixed-effects model. Through this model transformation, the parameters of

interest in a frailty model become parameters in a linear mixed-effects model.

Hence, linear mixed models methodology can be applied to estimate these pa-

rameters. We further demonstrate that model transformation also works for

other conditional survival models, such as the multivariate proportional odds

model and the multivariate additive risks model. Most software packages con-

tain procedures to fit linear mixed-effects models but provide only a limited

number of procedures to fit conditional (random effects) survival models. The

proposed estimation method therefore is a useful approach to get insight in

the heterogeneity in clustered data. To study the performance of the pro-

posed method, we focus on frailty models. The results of a simulation study

illustrate that the idea of model transformation provides a good and simple al-

ternative for fitting frailty models for data sets with a sufficiently large number

of clusters (i.e., K = 20) and moderate to large sample sizes within covariate
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level subgroups in the clusters (i.e., at least nij = 50). We consider a frailty

model with a binary covariate. Extending the proposed transformation idea

to frailty models with a continuous covariate is an interesting topic that is cur-

rently under investigation by Cao et al. (2008). Further, it is also of interest to

extend the proposed method to other censoring schemes than right censoring.

More references related to these topics for further research are provided in

Section 4.6.

In Chapters 5 and 6 we study copula models for four-dimensional survival

data. The motivating example for this is the udder infection data; a data

set on the correlated infection times in the four udder quarters of dairy cows,

which is introduced in Section 1.4.1. In the copula model the joint survival

function of the four outcomes is modelled as a function, called the copula, of

the marginal survival functions of the four outcomes. The copula determines

the type of dependence between the four outcomes.

In Chapter 5 we propose a semi-parametric and a nonparametric two-stage es-

timation approach for four-dimensional copulas. In the first step of the estima-

tion procedure, we estimate the marginal survival functions. In the marginal

survival functions we model the effect of a deterministic binary covariate at

the cluster level and a deterministic binary covariate at the observational unit

level. In the second step of the estimation procedure, we estimate the copula

parameter by maximising a loglikelihood function in which the marginal sur-

vival functions are replaced by their estimates obtained in the first step. We

prove the consistency and the asymptotic normality of the estimators obtained

in the first and the second step of the estimation method. In Section 5.5 we

explain how our results contribute to what is already available in the statisti-

cal literature.

In Chapter 6 we apply the methodology, developed in Chapter 5, to the udder

infection data. To choose a copula model that describes the dependence of

the outcomes within a cluster, we start with a large parametric copula fam-

ily, i.e., the power variance copula family. We consider three copula models

that are nested in the power variance copula family: the Clayton copula, the

positive stable copula and the inverse Gaussian copula. Each of these three
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copulas model a different type of dependence. To assess which copula model,

nested in the power variance copula family, gives a good description of the

dependence between the outcomes in a cluster, we use a pseudo likelihood

ratio test. We propose a bootstrap algorithm that can be used to obtain the

p-value for this test. We study the type I error rate and the power of the

pseudo likelihood ratio test based on a simulation study in a setting similar

to the udder infection data. The results indicate that the pseudo likelihood

ratio test is a valid approach to select an appropriate copula model nested in

the power variance copula family. For bivariate right censored data, Andersen

et al. (2005) propose a goodness-of-fit test which compares a nonparametric

estimate of the copula to an estimate obtained by assuming a parametric fam-

ily of copula models. An interesting topic for further research is to extend this

test to copulas for four-dimensional survival data. A more detailed discussion

of topics for further research related to Chapter 6 is given in Section 6.6.
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Samenvatting

In de overlevingsanalyse is men gëınteresseerd in positieve stochastische veran-

derlijken die het verloop van de tijd aangeven tussen een beginmoment en het

moment waarop een bepaalde gebeurtenis zich voordoet. Enkele voorbeelden

zijn de tijd tussen de aanvang van een ziekte en het overlijden van de patiënt,

de tijd tussen de genezing van een patiënt en de terugkeer van de ziekte, de tijd

tussen de opstart van een machine en het falen van de machine. Deze positieve

stochastische veranderlijke wordt de overlevingstijd of de faaltijd genoemd.

Een specifiek kenmerk, dat vaak voorkomt in de analyse van overlevings-

gegevens, is dat de gegevens onderworpen zijn aan rechtse censurering. Voor

rechts gecensureerde observaties is de enige beschikbare informatie dat de niet-

geobserveerde overlevingstijd groter is dan de geobserveerde censureringstijd.

In vele studies zijn de observaties gegroepeerd (geclusterde gegevens); overle-

vingstijden in dezelfde cluster zijn vaak gecorreleerd. Zulke gegevens worden

gecorreleerde of multivariate overlevingsgegevens genoemd. In de literatuur

zijn er gepaste modellen beschreven om multivariate overlevingsgegevens te

modelleren en te analyseren: frailty modellen en copula modellen zijn typis-

che voorbeelden (zie onder meer Therneau and Grambsch, 2000; Hougaard,

2000; Klein and Moeschberger, 2003; Duchateau and Janssen, 2008).

Frailty modellen zijn uitvalsmodellen waarin het effect van elke cluster wordt

beschreven door een stochastische factor; daarom zijn frailty modellen condi-

tionele modellen. Een shared frailty model is een multiplicatief uitvalsmodel

dat bestaat uit drie componenten: een frailty factor die het toevallig effect

van elke cluster modelleert, de gemeenschappelijke referentie uitvalsfunctie en

een factor die parametrisch modelleert hoe de uitvalsfunctie afhangt van de
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covariaten.

Copula modellen worden gebruikt om geclusterde overlevingsgegevens te mo-

delleren waarbij de grootte van de cluster klein is en hetzelfde voor alle clus-

ters. In dit proefschrift bestuderen we copula modellen voor vier-dimensionale

overlevingsgegevens. In copula modellen wordt de gezamenlijke overlevings-

functie van de vier overlevingstijden in een cluster gemodelleerd als een func-

tie van de marginale overlevingsfuncties. Deze functie wordt de copula ge-

noemd. De copula bepaalt het type van de afhankelijkheid. De marginale over-

levingsfuncties kunnen parametrisch, semi-parametrisch of niet-parametrisch

gemodelleerd worden (Shih and Louis, 1995b; Glidden, 2000; Andersen, 2005).

Via de marginale overlevingsfuncties kan ook het effect van covariaten gemo-

delleerd worden.

In dit proefschrift ontwikkelen we nieuwe schattingsmethoden en bootstrap

procedures voor frailty modellen en copula modellen. De ontwikkelde metho-

den worden gëıllustreerd met voorbeelden uit klinische en veterinaire studies.

In hoofdstuk 1 definiëren we basisbegrippen uit de overlevingsanalyse en intro-

duceren we de voorbeelden die gebruikt worden om de ontwikkelde methoden

te illustreren. In hoofdstuk 2 geven we een overzicht van de modellen die

zullen gebruikt worden in de volgende hoofdstukken voor het analyseren van

multivariate overlevingsgegevens. We beschrijven ook de schattingsmethoden

die in de literatuur reeds beschreven zijn voor deze modellen.

In hoofdstuk 3 en hoofdstuk 4 bestuderen we frailty modellen voor multivari-

ate overlevingsgegevens waarbij de clusters een verschillende grootte mogen

hebben. In hoofstuk 3 bestuderen we het shared frailty model. Dit model is

een uitbreiding van het proportionele uitvalsmodel van Cox (Cox, 1972): in het

Cox model wordt een multiplicatieve stochastische frailty factor toegevoegd

die het effect van de verschillende clusters beschrijft. We ontwikkelen twee

parametrische bootstrap algoritmen die gebruikt kunnen worden om de stan-

daardafwijkingen van de schatters van de parameters in het shared frailty

model te schatten. Gebaseerd op een simulatiestudie vergelijken we de twee

parametrische bootstrap algoritmen met een bestaand niet-parametrisch boot-

strap algoritme dat beschreven wordt in Therneau and Grambsch (2000).
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De resultaten tonen aan dat het eerste parametrisch bootstrap algoritme,

gebaseerd op het trekken uit de verzameling van geschatte frailties, de em-

pirische variabiliteit van de geschatte parameters onderschat. Het tweede

parametrisch bootstrap algoritme, gebaseerd op het genereren van frailty fac-

toren uit de geschatte frailty verdeling, geeft een relatief nauwkeurige benade-

ring voor de empirische standaardafwijkingen van de geschatte parameters,

ook indien het model fout gespecifieerd is. De empirische variabiliteit van de

heterogeniteitsparameter kan echter sterk verschillend zijn voor het correcte

model en een fout gespecifieerd model. Uit de resultaten volgt dus dat de robu-

ustheid wat betreft de heterogeniteitsparameter niet gegarandeerd kan worden

voor de bootstrap algoritmen (ook niet voor het niet-parametrisch bootstrap

algoritme). De robuustheid geldt wel voor de regressiecoëfficiënten.

In hoofdstuk 4 bestuderen we een frailty model dat een uitbreiding is van het

shared frailty model en dat vaak nuttig is binnen de context van klinische stu-

dies: een frailty model met een stochastisch cluster effect en een stochastisch

behandelingseffect. Bestaande schattingsmethoden voor (shared) frailty mo-

dellen zijn gebaseerd op de aannemelijkheidsfunctie (zie onder meer Vaida and

Xu, 2000; Cortiñas Abrahantes and Burzykowski, 2005; Ripatti and Palmgren,

2000; Legrand et al., 2005). Wij ontwikkelen een alternatieve schattingsme-

thode die gebaseerd is op een transformatie van het model. De parameters

in het frailty model worden, door het toepassen van de modeltransformatie,

parameters in een gemengd lineair model. We kunnen dan methodologie voor

gemengde lineaire modellen toepassen om deze parameters te schatten. We

tonen aan dat het idee van modeltransformatie ook gebruikt kan worden voor

andere conditionele modellen in de overlevingsanalyse, zoals het multivariaat

proportioneel odds model en het multivariaat additief risico model. De meeste

statistische computerprogramma’s bevatten procedures om de parameters in

gemengde lineaire modellen te schatten maar bevatten slechts een beperkt

aantal procedures voor conditionele overlevingsmodellen met stochastische ef-

fecten. Daarom is de ontwikkelde schattingsmethode nuttig om inzicht te

verwerven in de heterogeniteit die aanwezig is in gecorreleerde overlevings-

gegevens. We evalueren de voorgestelde methode voor het schatten van frailty
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modellen gebaseerd op een simulatiestudie. Uit de resultaten blijkt dat de

ontwikkelde methode een goed en eenvoudig alternatief is voor het schatten

van de parameters in een frailty model indien er voldoende clusters zijn in de

gegevens (K = 20) en indien er in elke cluster voldoende observaties zijn met

dezelfde waarde voor de binaire covariaat (minstens nij = 50).

In hoofdstuk 5 en hoofdstuk 6 bestuderen we copula modellen voor vier-

dimensionale overlevingsgegevens. De motivatie komt van een studie omtrent

gecorreleerde infectietijden in de vier uierkwartieren van melkkoeien. We ge-

bruiken copula modellen om de afhankelijkheid tussen de vier overlevingstijden

te modelleren.

In hoofdstuk 5 ontwikkelen we een semi-parametrische en een niet-parame-

trische twee-stappen schattingsmethode voor vier-dimensionele copula mod-

ellen. In de eerste stap van de methode schatten we de marginale overlevings-

functies. In de marginale survival functies modelleren we het effect van een

deterministische binaire covariaat op het niveau van de cluster en een deter-

ministische binaire covariaat op het niveau van de observationele eenheid in

de cluster. Dit type van covariaten stemt overeen met de covariaten in het

motiverend voorbeeld. In de tweede stap van de schattingsmethode, schatten

we de copula parameter door het maximaliseren van de logaritme van de aan-

nemelijkheidsfunctie waarin de marginale overlevingsfuncties vervangen zijn

door hun schattingen die we in de eerste stap verkregen hebben. We tonen de

consistentie en de asymptotische normaliteit aan van de schatters uit de eerste

en de tweede stap van de schattingsprocedure.

In hoofdstuk 6 passen we de methodologie, die we ontwikkeld hebben in hoofd-

stuk 5, toe op het voorbeeld van de uierinfectie gegevens. We beschouwen drie

copula modellen die genest zijn in de familie van de power variance copula

modellen: Clayton, positief stabiele en invers Gaussische copula modellen.

Elk van deze copula modellen beschrijft een ander type afhankelijkheid tussen

de gegevens binnen een cluster. Als toets gebruiken we een pseudo aanneme-

lijkheidsquotiënt (pseudo likelihood ratio test) om een geschikt copula model

te selecteren in de power variance copula familie dat de afhankelijkheid tussen

de overlevingstijden in een cluster goed beschrijft (Glidden, 2000; Andersen,
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2005). We stellen een bootstrap algoritme voor dat kan gebruikt worden om

de p-waarde van deze toetsingsgrootheid te bepalen. We bestuderen de kans

op een type I fout en het onderscheidingsvermogen van de pseudo aanneme-

lijkheidsquotiënt toets gebaseerd op een simulatiestudie die de situatie in de

uierinfectie gegevens imiteert. De resultaten tonen aan dat de pseudo aan-

nemelijkheidsquotiënt toets een waardevolle methode is om een geschikt cop-

ula model te selecteren in de power variance copula familie.




