
transnationale Universiteit Limburg
School voor Informatietechnologie

Dynamic User Interface Generation for Mobile and
Embedded Systems with Model-Based User Interface

Development

Proefschrift voorgelegd tot het behalen van de graad van

Doctor in de Wetenschappen, richting Informatica

aan de transnationale Universiteit Limburg

te verdedigen door

Kris Luyten

Promotor: Prof. dr. Karin Coninx

2000 – 2004

Acknowledgments

Research is never done alone. On the one hand a researcher is inspired by
the work and findings of others, and on the other hand he is influenced by
his colleagues. I have been in the fortunate position to work in a team of
researchers sharing the same scientific interests as I have. The “Gebruikers-
gerichte Systeemontwikkeling” team in which I had the opportunity to work,
was lead by prof. dr. Karin Coninx who also was my adviser for this work.
I am grateful and honored to be the first PhD student under her guidance.
None of this work would exist without her support and open minded approach.
If this was an advertisement, I would advise every PhD student to solicit for
her guidance.

The other members were Chris Vandervelpen, Bert Creemers, Jan Van
den Bergh, Jo Segers and Tim Clerckx. The original team grew out of the
SEESCOA1 project. Most of them also contribute to the CoDAMoS2 project
now, some of them pursue other goals. A big thanks to all of them, because
they are an important reason why this work got completed and provided with
me with feedback on early drafts of this text.

Prof. dr. Eddy Flerackers, managing director of the EDM, prof. dr. Wim
Lamotte, prof. dr. Philippe Bekaert and prof. dr. Frank Van Reeth, professors
at the EDM, were also from invaluable support. Prof dr. Frank Neven from the
research group on theoretical computer science provided us with very useful
feedback and pointers for some of the more formal notations we use in this
dissertation.

Other people not in the team were also very helpful, sometimes directly
related to our research work, sometimes not so directly. I want to thank

1Software Engineering for Embedded Systems using a Component-Oriented Approach,
FWO/IWT project 980374, http://www.cs.kuleuven.ac.be/cwis/research/distrinet/

projects/SEESCOA/
2Context-driven Adaptation of Mobile Services, SBO/IWT project 030320 http://www.

cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/SEESCOA/
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/SEESCOA/
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/

ii

especially Tom Van Laerhoven, Peter Quax and Jori Liesenborgs who provided
me with lots of technical support. I am also grateful to my other colleagues
Koen Beets, Erwin Cuppens, Joan De Boeck, Tom De Weyer, Fabian Di Fiore,
Jan Fransens, Erik Hubo, Tom Jehaes, Pieter Jorissen, Tom Mertens, Patrick
Monsieurs, Chris Raymaekers, Daniel Teunkens, William Van Haevre and
Peter Vandoren. Some parts of this work have been influenced greatly by
them, other parts were developed together with them. I will do my very best
to give the appropriate credits to the people that helped me throughout the
actual text.

I am also grateful to the EDM secretariat, Ingrid Konings, Heidi De Winter
and Roger Claes for all the things they arranged for me during the past four
years.

On a personal note, I am in great debt to my parents, Jos and Anita, and
my sister Sofie: they supported my studies and gave me sufficient freedom
to make my own decisions. Also thanks to all my friends for the necessary
diversions I needed during my studies and research work. And finally, I could
not manage to live life so easily without Kristel Clijsters, who has been on
my side for seven years now. She supported me tremendously and sacrificed
as much as I did due to my fixation on all things related to work. Thank you
Kristel, for making my life easier than it should be!

Abstract

A user’s physical and virtual environments are becoming increasingly inter-
woven. Mobile and embedded devices have become more the rule than the
exception: many present-day users are inexperienced when it comes to tradi-
tional computers, but are in daily contact with computerized systems. The
increasing diversity of all kinds of devices, together with the possibilities of
running arbitrary software autonomously, result in a thousand-and-one po-
tential areas of use, whether mobile or not. The possibility of communicating
with the (in)direct environment using other devices and observing that same
environment allow us to develop ambient intelligent software which has knowl-
edge of the environment and of the usage pattern of this software. Despite the
support for software development for this kind of applications, some gaps still
exist, making the creation of consistent, usable user interfaces more difficult.

The design methodologies for interactive systems need to support this new
situation: an interactive software system is no longer designed for one particu-
lar piece of hardware or a single context-of-use. We turn to Model-Based User
Interface Development and investigate what needs to be done to support the
design and creation of interactive systems that can be used in multiple con-
texts. Model-Based User Interface Development uses a selected set of models
to describe different aspects of a user interface such as user, domain, task,
dialog and presentation. We select three models that are widely accepted; the
task model, the dialog modal and the presentation model, and introduce the
necessary enhancements to serve our purpose.

We noticed the lack of flexibility and scalability of the current methodolo-
gies using one or more of our selected models. In our approach, Dygimes, we
show a framework and methodology to have a concrete and clear user inter-
face design and creation cycle which covers all aspects from task modeling to
the concrete user interface. The different models are annotated, transformed,
linked and mapped, so they can smoothly integrate with each other, resulting

iv

in a user interface that is scalable for a wide range of devices.
We demonstrate a tool chain built upon the Dygimes framework support-

ing the annotation, transformation, linking and mapping of models. Unlike
other approaches this tool chain maximizes the automatic consistency checks
between the different models and the models and the user interfaces with-
out introducing a new formal (declarative) language to do so. The aim is to
provide simple building blocks that are easy to understand but are still pow-
erful enough to produce a flexible and scalable user interface that is suitable
for multiple contexts-of-use. For this reason we extended a language for task
modeling, designed a simple XML-based language for the presentation model
and implemented algorithms that assist the designer in creating consistent di-
alogs and navigation of the user interface according to the abstract models
she/he specified.

The evolution towards ubiquitous systems is at present governed by a shift
from desktop computers towards mobile and embedded devices. With the
framework we present in this dissertation we believe we have opened the road
towards an enhanced way of Model-Based User Interface Development that
supports the new requirements to build interactive systems that are suitable
for this kind of devices. The framework does not only take into account new
characteristics of modern computing platforms, it is also suitable to make the
transition towards desiginging the interactive part of ubiquitous systems by
supporting context-awareness.

Contents

Acknowledgments iii

Abstract v

Contents ix

List of Figures xiii

List of Listings xv

List of Tables xvii

I User Interface Creation for Mobile and Embedded Sys-
tems 1

1 Introduction 3
1.1 Problem Statement . 3
1.2 Motivation and Aims . 4
1.3 Overview . 6

2 Model-Based User Interface Development 9
2.1 Introduction . 9
2.2 Model-Based User Interface Development 10

2.2.1 A Definition and some History 10
2.2.2 A More Precise Definition of Models 16
2.2.3 Our Selected Models . 18

2.3 The Task Model . 19
2.4 The Dialog Model . 23

vi CONTENTS

2.5 The Presentation Model . 25
2.6 Model Relations and Mappings 27
2.7 Plasticity and Context in Models 28
2.8 Discussion . 29

3 High-Level User Interface Description Languages 31
3.1 Introduction . 31
3.2 History of XML-based User Interface Description Languages . . 33
3.3 An overview of XML-based High-Level User Interface Descrip-

tion Languages . 35
3.3.1 Abstract User Interface Markup Language (AUIML) . . 35
3.3.2 Renderer Independent Markup Language (RIML) 36
3.3.3 Useware Markup Language (useML) 37
3.3.4 Teresa XML . 38
3.3.5 Interface Specification Meta-Language (ISML) 39
3.3.6 The User Interface Markup Language (UIML) 40
3.3.7 XIML . 41
3.3.8 UsiXML . 42

3.4 Discussion . 43

II HCI Engineering, Models and Transformations 49

4 Dygimes: Dynamically Generating Interfaces for Mobile and
Embedded Systems 51
4.1 Introduction . 51
4.2 Dygimes process . 53
4.3 XML-based User Interface Descriptions 54
4.4 Task Model . 56
4.5 The System Glue: an Interaction and Application Model 60
4.6 Automatic Layout Management 63
4.7 Customization and Templating 63
4.8 Towards a Tool Chain to support Model-Based User Interface

Development . 65
4.9 Discussion . 68

5 Models for Multi-Device User Interfaces 69
5.1 Introduction . 69
5.2 Related Work . 70
5.3 The Task Model within the Dygimes Framework 72

CONTENTS vii

5.4 ConcurTaskTrees formalism . 73
5.5 An algorithm to calculate enabled task sets 77

5.5.1 Introduction . 77
5.5.2 Generating a priority tree 78
5.5.3 Calculating the enabled task sets 80

5.6 Activity Chain Extraction . 84
5.7 Dynamic Behavior of the User Interface 85

5.7.1 Mapping Sets on States 87
5.7.2 Finding the Initial State 87
5.7.3 Detecting Transitions 87
5.7.4 Mapping the Finishing States 90
5.7.5 The resulting State Transition Network 91

5.8 Actual transitions between dialogs 93
5.9 Discussion . 94

6 Presentation of the User Interface 95
6.1 Introduction . 95
6.2 Towards an XML-based HLUID Language 97
6.3 A Declarative Language for User Interface Design 98
6.4 SEESCOA XML . 100
6.5 UiBuilder: A SEESCOA XML Renderer 105
6.6 Event handling in SEESCOA XML 110
6.7 Discussion . 113

7 Multi-device Layout Management 115
7.1 Introduction . 115
7.2 Related Work . 116
7.3 Constraint Satisfaction and Layout Management 118
7.4 Calculating Presentation Structures 120

7.4.1 Describing spatial constraints 120
7.4.2 Building the layout description graph 121
7.4.3 Calculating widget positions 121
7.4.4 Conflict handling . 122
7.4.5 Further screen space reduction strategies 123

7.5 Discussion . 123

8 Components and Multi-Device User Interfaces 127
8.1 Introduction . 127
8.2 Component-Based Software Development 129

viii CONTENTS

8.3 User Interface Descriptions and Components 130
8.3.1 The SEESCOA Component Framework 130
8.3.2 The Rendering Component 134
8.3.3 A Case Study: a Camera Surveillance system 135
8.3.4 Decomposing tasks: relating components to tasks 137

8.4 Discussion . 140

9 Uiml.net: an Open Uiml Renderer for the .Net Framework 143
9.1 Introduction . 143
9.2 UIML Overview . 145
9.3 Related Work . 148
9.4 The Renderer . 149

9.4.1 Overall Design . 149
9.4.2 Dynamic Core . 151

9.5 Inter-vocabulary distances . 153
9.6 The Layout Problem . 157
9.7 UIML and Dygimes . 159

9.7.1 Integration with the task specification 161
9.7.2 Generation of the dialog model 161

9.8 Discussion . 164

III Towards Context-Sensitive Model-Based User Interface
Development 167

10 Extending Dygimes for Context-Sensitive User Interface De-
velopment 169
10.1 Introduction . 169
10.2 Related Work . 170
10.3 Dygimes Once Again . 171
10.4 Design Process . 172

10.4.1 The Context-Sensitive Task Model 173
10.4.2 The Presentation Model 175

10.5 A Case Study: Manage Stock 177
10.6 Discussion . 183

11 Future Work 185
11.1 Dynamic Model-Based User Interface Development 186
11.2 Distributed User Interfaces . 187
11.3 Next-Generation Widget Toolkits 187

CONTENTS ix

11.4 Software Engineering . 188

12 Conclusions 189
12.1 Model-Based User Interface Development 189
12.2 Achievements and Main Contributions 190
12.3 Scientific Contributions and Publications 191
12.4 Concluding Remarks. 193

A Scenarios 195
A.1 Scenario 1: Teaching with Technology 195
A.2 Scenario 2: Mobile Communication 196
A.3 Scenario 3: A Mobile Tourist Guide in a Museum 198
A.4 Technological Challenges . 201

B Nederlandstalige Samenvatting 203
B.1 Inleiding . 203
B.2 Model-gebaseerde Gebruikersinterface Ontwikkeling 204
B.3 Dygimes: Dynamische Generatie van Interfaces voor Mobiele

en Ingebedde Systemen . 205
B.4 Modellen voor Interface Ontwerp voor meerdere Apparaten . . 207
B.5 Presentatie van de Gebruikersinterface 207
B.6 Layoutbeheer voor Meerdere Apparaten 209
B.7 Componenten en Gebruikersinterfaces voor Meerdere Apparaten 210
B.8 Uiml.net: een Open Uiml Renderer voor het .Net Raamwerk . 211
B.9 Context in de Ontwikkeling van Gebruikersinterfaces 212
B.10 Besluit . 213

Bibliography 229

x CONTENTS

List of Figures

1.1 Hardware setup with Dygimes UiBuilder 6

2.1 Architecture of Model-Based User Interface Development envi-
ronments . 14

2.2 An example task specification for getting a soft drink. 20
2.3 An example dialog specification from [DFAB04] 24

3.1 Interactor coverage versus number of interactor specific tags . . 44

4.1 The Dygimes process . 54
4.2 The login dialog, rendered for several devices 57
4.3 Managing a simple publication database 58
4.4 The ConcurTaskTrees annotation tool 59
4.5 The location-transparent action handling glue 62
4.6 Three possible mappings for the query result on the AWT plat-

form . 65
4.7 Managing spatial constraints 67

5.1 The Dygimes User Interface design and generation process . . . 74
5.2 Mobile phone interaction design 76
5.3 A ConcurTaskTrees tree and its priority representation 79
5.4 A simple email client task specification. 83
5.5 A simple email client task specification annotated with user

interface building blocks. 83
5.6 ConcurTaskTrees concurrency in a STN 89
5.7 TaskStart ID Form is a leaf and TaskPerform Query is no leaf. . . 90
5.8 TaskSubmit is a leaf and TaskSelect F ile is no leaf. 90
5.9 Neither TaskPersonal Info or TaskJob Info are leaves. 91
5.10 Extracting the STN when a disabling relation is involved . . . 92

xii LIST OF FIGURES

5.11 The state transition network for the email application 92
5.12 The state transition network for the email application 93

6.1 AIO versus CIO . 101
6.2 Camera-based surveillance system using UiBuilder 106
6.3 UiBuilder Core Class Hierarchy 109
6.4 Communicating range interactors rendered from a SEESCOA

XML description . 112
6.5 User Interface with Python support rendered in AWT from list-

ing 6.6 . 113

7.1 A visual representation of the constraint definition 119
7.2 The calculation of the presentation structure 122
7.3 A multi-device hotel registration form 124

8.1 SEESCOA component design example 131
8.2 Surface, internal and rendering components 132
8.3 Component composition for a camera surveillance system . . . 135
8.4 The mosaic component . 136
8.5 The Mosaic component on a desktop 137
8.6 The Mosaic component on a PDA 138
8.7 A CTT diagram: checking for burglars (context-sensitive) . . . 139
8.8 A CTT diagram: checking for burglars 140

9.1 The UIML Meta-Interface Model 146
9.2 The dictionary example in UIML 148
9.3 A rough sketch of the Uiml.net architecture 151
9.4 Processing an UIML file with Uiml.net 152
9.5 Differences between Gtk# and SWF interface shown by the

Meld tool . 156
9.6 Copy Text example with UIML 157
9.7 A calculator on multiple platforms and with multiple widget sets158
9.8 The Multi(ple)-device Picture Browser with UIML 160
9.9 Layout constraints for the controls of figure 9.8 161

10.1 Context-Sensitive user interface Design Process 173
10.2 Context-Sensitive Task Model of the Manage Stock example . . 177
10.3 Overview PDA subtree . 178
10.4 Update PC subtree . 179
10.5 Context-Specific Task Model 180

LIST OF FIGURES xiii

10.6 Dialog Model for the stock example 181
10.7 Dialog Model with the concrete dialogs 182

xiv LIST OF FIGURES

List of Listings

4.1 The login dialog user interface description 55
4.2 The binding between an abstract user interface and the appli-

cation logic . 61
4.3 Two of the specified mapping rules 64
6.1 The SEESCOA High-Level User Interface Description Language

Schema. 101
6.2 An example SEESCOA XML listing for a camera. Developed

for the SEESCOA researcht project (IWT 980374) in coopera-
tion with other partners. 103

6.3 A date group . 105
6.4 SEESCOA XML description for a motion detection software

component. Developed for the SEESCOA researcht project
(IWT 980374) in cooperation with other partners. 106

6.5 Communicating range interactors in SEESCOA XML 111
6.6 Python support in SEESCOA XML 111
7.1 A SEESCOA XML constraint description for a group of AIOs. 120
8.1 user interface description of a single camera component 133
8.2 user interface description of a Mosaic component 133
9.1 The UIML code for the Dictionary example depicted in 9.2. . . 146
10.1 Decision DTD . 174
10.2 Decision XML example . 174
10.3 Decision rules for the Overview PDA task 177
10.4 Decision XML for the Use Properties task 178

xvi LIST OF LISTINGS

List of Tables

3.1 Overview of selected properties of XML-based High-Level User
Interface Description Languages 46

3.2 A model-based comparison of XML-based High-Level User In-
terface Description Languages. 47

5.1 The priority order of ConcurTaskTrees temporal operators. . . 78

9.1 User Interface building blocks for each leaf task from figure 5.9(a)162
9.2 Two examples of merging UIML building blocks from an en-

abled task set with a predefined container. 166

xviii LIST OF TABLES

Part I

User Interface Creation for
Mobile and Embedded

Systems

Chapter 1

Introduction

Contents

1.1 Problem Statement 3
1.2 Motivation and Aims 4
1.3 Overview . 6

1.1 Problem Statement

With the increasing heterogeneity of computing environments, developing in-
teractive systems for these environments requires more work. A precondition
of a good problem analysis is to have a clear but compact problem statement.
If we capture the problem we try to solve in one sentence this could be as
follows:

The lack of support for the design, development and deployment of
multi-device user interfaces with an emphasis on design and development

techniques that can be easily reused separately and independently.

The best way to identify the aims of this dissertation is to introduce some
concrete problem scenario’s that pose challenges for user interface design with
current techniques and methodologies. Inspired by the ISTAG scenarios1

1Information Society Technologies Advisory Group, http://www.cordis.lu/ist/istag.
htm#istag-ambientintelreport

http://www.cordis.lu/ist/istag.htm#istag-ambientintelreport
http://www.cordis.lu/ist/istag.htm#istag-ambientintelreport

4 Introduction

[DBS+01] we provide three scenarios in appendix A that show how the evolu-
tion in technology will challenge the design of interactive systems in the fol-
lowing years. The first scenario in section A.1, emphasizes how mobile devices
and embedded systems can cooperate and make use of migratable user inter-
faces. Migratable user interfaces are interfaces that can travel from one device
to another offering the same functionality while changing its own concrete
presentation. The second scenario in section A.2, is developed in cooperation
with Alcatel Research Belgium and emphasizes the networking aspect of the
next generation interfaces. The context of use and the ability of the user to
communicate with other users and devices in a transparent way are the central
parts of this scenario. The last scenario provided in section A.3 is concerned
with “ambient awareness” and social interactions. This scenario is based on a
museum visit and is developed in cooperation with the Gallo-Roman Museum
of Tongeren2.

1.2 Motivation and Aims

This dissertation explores and exploits the world of Model-Based User Inter-
face Development (MBUID) and High-Level User Interface Description Lan-
guages (HLUID) to find appropriate solutions for the problem statement in-
troduced in section 1.1. The required interactive software necessary for the
three scenarios presented in sections A.1, A.2 and A.3 in appendix A are very
hard to develop with current design methodologies. There are a set of new
requirements that can be discovered in these scenarios, that go beyond the re-
quirements that can be detected for software targeting the desktop computer
with traditional input/output hardware.

Szekely defined four challenges for Model-Based Interface Development in
the introduction of the CADUI’96 proceedings [Sze96]:

Challenge 1 Task-Centered Interfaces

Challenge 2 Multi-Platform Support

Challenge 3 Interface Tailoring

Challenge 4 Multi-Modal Interfaces

This dissertation is focused on Challenge 1 and Challenge 2: creating multi-
platform user interfaces starting from a task-centric design methodology. We

2http://www.limburg.be/galloromeinsmuseum/

1.2 Motivation and Aims 5

believe it provides a decent solution for these two challenges based on modern
tools and notations. Although Challenge 3, interface tailoring, is not explicitly
addressed here, it is implicitly supported by the notation we use to describe the
concrete user interfaces. Challenge 4, multi-modal Interfaces, is only examined
superficially to prove it can be integrated in the framework and design process
we propose in the next chapters.

Besides these four challenges, we would like to add a challenge that has
become more imminent with the raise of ambient intelligence:

Challenge 5 Support for Context-Sensitive Interfaces

The necessity of this challenge is emphasized by Scenario 2 (section A.2). This
challenge supersedes multi-platform support and multi-modal interfaces be-
cause they are both dependent on the context-of-use. The support for context-
sensitive interfaces actually implies the next generation models should be able
to anticipate dynamic changes in the user interface according to the context
of use. This is not only a challenge for the notation that should be used to
describe the different models, but as well as for the support that is necessary
for this kind of user interfaces. This raises research challenges far beyond, but
including, the Human-Computer Interaction perspective. The final chapters
of this text will take the first steps to tackle this fifth challenge.

The final goal of this dissertation is to create a framework that supports
the design and creation of multi-device interactive systems while sustaining
a clear separation between the (user interface) designer and the (applocation
logic) programmer. Multi-device interactive systems are software systems that
have an important interactive part and are suitable for embedded systems and
mobile computing devices. Embedded systems are computing systems that are
built with “custom” hardware (according to their target environment) and usu-
ally provide less memory, processing speed and interaction capabilities (e.g.
no keyboard, limited screenspace) than desktop computers. These typical con-
straints are addressed by our approach. An example of an embedded system
can be seen in figure 1.1. Our emphasis in this disseration is to support the
creation of user interfaces that can be used on multiple devices and eventually
support user interfaces that can be deployed in multiple contexts of use. For
this purpose we will take a task-oriented approach. Some of the challenges as
proposed by Szyperski were addressed during this dissertation to reach this
goal.

6 Introduction

Figure 1.1: Hardware setup with Dygimes UiBuilder

1.3 Overview

This dissertation exists out of three parts:

1. Part I gives an overview of the related work and background.

2. Part II discusses our own contributions to the HCI research, design and
development community.

3. Part III shows the possibilities that can be further explored based on
the concepts and the framework introduced in part II.

In part I we start with a discussion of Model-Based User Interface De-
velopment in chapter 2; the definitions, history and use of Model-Based User
Interface Development will be thoroughly explained. Next, chapter 3 discusses
the state-of-the art of High-Level User Interface Description Language will be
given, based on current approaches in XML-based user interface description
languages. Both techniques have contributed significantly to multi-device user
interface development.

In part II we explore our contributions that were done to the state-of-the-
art in Model-Based User Interface Development and High-Level User Inter-
face Description Language. Chapter 4 gives an overview of our framework

1.3 Overview 7

Dygimes. More detail about the core models that are used in Dygimes are
given in chapters 5 and 6 and 8. Chapter 5 shows how the task specification
is used as a central part of Dygimes. Chapter 6 introduces SEESCOA XML,
an XML-based High-Level User Interface Description Languages that was tar-
geted towards embedded systems and mobile devices. One of the application
models we used was the SEESCOA component model that is presented in
chapter 8. Chapter 7 provides an essential technique that is necessary to have
more flexible user interface specifications: a general layout management sys-
tem that can be used in an XML-based High-Level User Interface Description
Language. In the last chapter of part II, chapter 9, we take a look at Uiml.net.
Uiml.net is a .Net-based UIML renderer and will be compared with the Java-
based approach we implemented to render the SEESCOA XML-based user
interface descriptions.

In part III we look at the future of Model-Based User Interface Develop-
ment and High-Level User Interface Description Languages. Since (dynamic)
context starts to play an important role in user interfaces nowadays, this is
something we will look into.

8 Introduction

Chapter 2

Model-Based User Interface Development

Contents

2.1 Introduction . 9
2.2 Model-Based User Interface Development 10

2.2.1 A Definition and some History 10
2.2.2 A More Precise Definition of Models 16
2.2.3 Our Selected Models 18

2.3 The Task Model . 19
2.4 The Dialog Model . 23
2.5 The Presentation Model 25
2.6 Model Relations and Mappings 27
2.7 Plasticity and Context in Models 28
2.8 Discussion . 29

2.1 Introduction

This work builds further upon different approaches that are developed to
support Model-Based User Interface Development. In this chapter we pro-
vide an overview of the important influences and state-of-the-art approaches
that are of interest for the work presented in this dissertation. Both the tri-
ennial conference on “Computer-Aided Design of User Interfaces” (CADUI,
[LJV04, KV02, VP99, Van96, Van93]) and the annual “Workshop on the De-
sign, Specification and Verification of Interactive Systems” (DSV-IS, [JNF03,
FLUV02, Joh01, PP00]) are meeting places for people working on Model-Based

10 Model-Based User Interface Development

User Interface Development and formal approaches, which are both important
in our work. Both DSV-IS and CADUI are European conferences. At the
ACM conference on “Intelligent User Interfaces” (IUI, [SM01, VJR04]) which
is primarily held in America. At other conferences, like the “Conference on
Human Factors in Computing Systems” (CHI) and the conference on “User
Interface Software and Technology” (UIST) less attention is devoted to Model-
Based User Interface Development as a whole, and related work presented on
these conferences usually contributes to specific technologies that can be used
within a model.

As discussed in chapter 1 the emphasis of this work is the support of
multi-device user interfaces, more specificly on embedded systems and mobile
computing devices. The revival and increased interest of the academic and
industrial HCI community in Model-Based User Interface Development (and
High-Level User Interface Description Languages as we will see in chapter 3)
is due to the applicability of this technique for multi-device creation.

This chapter is composed as follows: section 2.2 introduces Model-Based
User Interface Development. Since there has been done a tremendous amount
of research on this topic since the early nineties, we limit ourselves to the
related work that influenced our own approaches1. Next, section 2.3 high-
lights the task model after which sections 2.4 and 2.5 focus on the dialog and
presentation model respectively. The task, dialog and presentation model are
all common models used in Model-Based User Interface Development. This
chapter concludes with a discussion in section 2.8.

2.2 Model-Based User Interface Development

2.2.1 A Definition and some History

Despite the great number of papers that are written about Model-Based User
Interface Development, there is no clear definition what this term actually
embraces. In this dissertation we speak of Model-Based User Interface Devel-
opment instead of Model-Based User Interface Design. This has a particular
reason: our goal is to support the whole “software engineering cycle” with the
emphasis on the user interface, from the design stage up to the deployment
stage. Most papers from academic literature will concentrate on the design
stage of Model-Based User Interface Development, there are some however
who go beyond the design. Some of them are presented in this chapter.

1A good starting point to get acquainted with Model-Based User Interface Development
environments are the CADUI 1996 proceedings [Van96].

2.2 Model-Based User Interface Development 11

At the basis of Model-Based User Interface Development a set of models
is used. A model can be informally defined as a non-empty set with elements,
with a set of relations specified between these elements. A model gathers and
relates information about a specific concept the final interface should reflect.
A model provides an abstraction of this concept: it hides the low-level details
while it preserves the important details. It typically focuses on the important
characteristics that make up the interface concept; the specification of low-level
details is postponed to a later stage in the design process. The elements of a
model have certain values at a particular point in time. This is a very generic
definition of a “model”, but it allows us to think of Model-Based User Interface
Development as a set of models where each model has its specific values and
relations and the different models can be related to each other. These relations
can be expressed in different ways: e.g. sometimes several models (partially)
describe the same information or one model can be transformed into another
model by adding extra information.

One of the first projects to generate a user interface by combining different
models is Mastermind [SSC+95]; it used the presentation, application and
dialog models to automatically generate the user interface [Sti97, SR98].

There are a wide range of different models that can be used in Model-Based
User Interface Development: data models, domain models, application models,
task models, dialog models, (abstract and concrete) presentation models and
user models are models that are well-known and used in several Model-Based
User Interface Development Environments. The data, domain and application
model can be situated at the end of the application logic of the system. They
define the type of objects and the operations on objects that can be used or
need to be supported by the interactive system. The task and user model are
closest to the user and specify the tasks the user executes and the user or user
group profile(s) respectively. The dialog model and presentation model are
closest to the final user interface, and will be explained in the next sections
together with the task model. An emerging new kind of model is the context
model : a model that can describe the context-of-use for an interactive system.
E.g. a context model could specify a set of external parameters that can
influence the appearance, usage,. . . of an interactive system. This model is
the least explored, but becomes increasingly important as modern interactive
systems are no longer bound to a single place and situation.

One of the first models to be used in user interface design was the data
model or domain model . Its goal is to make sure the information objects
used in the application will be reflected in its user interface. Information
objects can be data structures or a database table for example. To overcome

12 Model-Based User Interface Development

the complexity of the different models and their often specific notation, tools
are an important factor to make the usage of a model generally acceptable.
An early tool supporting the domain model is DON [WD90] by Kim and
Foley. What is interesting about DON in particular is its sophisticated layout
mechanism. It copes with the diversity of screen-sizes (“output models”) in a
period where this diversity was only limited. This also means DON integrates
the presentation model in its design methodology.

During the early nineties several groups started to create interaction mod-
els that supported multiple levels of abstraction. E.g. [PL94] introduced a
toolkit that could select interactors based on the task they should accom-
plish. This approach has been playing a key role in the further development
of model-based systems. Trident (Tools foR an Interactive Development En-
vironmeNT) is another model-based system to create an interactive system
from Bodart and Vanderdonckt [BHLV94, VB93]. It was one of the first de-
sign tools that recognized the importance of a clear separation between an
abstract representation of the presentation model and a concrete representa-
tion thus supporting a multitude of interaction style alternatives for the same
functional core. It also integrated task analysis as an important component
to create a usable interface. Together with DON, Trident can be considered
to be one of the first “complete” Model-Based User Interface Development
Environments that where available.

Tadeus (Task Analysis/Design/End User Systems) is a Model-Based User
Interface Development environment that focuses on practically the same mod-
els as we will do, except the domain model in Tadeus is explicitly limited to
business objects [Sch96]. The Tadeus methodology uses a user model, a task
model, a domain model, a dialog model and later an interaction model was
added [Sch96, FS98]. Tadeus is very similar to the Dygimes approach we will
present, because it also relies on automatic generation of (part of) the dialog
model from the other models. On the other hand: Dygimes is more focused
on multi-device user interface development, which was not the original goal of
Tadeus but it was extended in a later stage by adding an interaction model
[FS98] and supporting an XML-based User Interface Description Language
[MFC01].

Mobi-D is a model-based integrated development environment that com-
bines several declarative models and assists the user interface designers with
the creation of these models and with the decisions she/he will have to make
during the design of the user interface [Pue97]. Mobi-D offers a complete
design cycle with a set of tools, and supports iterative refinements in the de-
sign of the user interface. As many others, Mobi-D works task driven: first

2.2 Model-Based User Interface Development 13

a preliminary outline of the user tasks is created. Next, the user-task model
is created together with a domain model, and both models are closely in-
tegrated. Mobi-D emphasizes the relations between models and provides a
visualization of these relations. In the following stage, a presentation model
and dialog model are created in parallel. Different design tasks are supported
by intelligent assistants or decision-support systems. Notice Mobi-D supports
full presentation coverage, something we will define in definition 12.

Puerta makes a distinction between a Model-Based User Interface Devel-
opment system and environment in [Pue97]. A Model-Based User Interface
Development system may only use a limited number of selected models and
does not define how these models are organized in the interface design cycle.
A Model-Based User Interface Development environment can be grouped into
three parts:

Design-time tools : tools that allow to create and relate the different mo-
dels.

Runtime systems : a system that allows to execute and combine different
models, resulting in a concrete user interface.

Runtime tools : tools that allow to manipulate and transform the models
while executing. Notice this applies to the concrete user interface as
well, because it is the result of combining the different models.

To deploy a successful Model-Based User Interface Development environment
it is essential to have support for these three parts. Notice some existing
approaches support all three parts, others do not. E.g. Humanoid [SLN92]
interprets its models and generates a user interface from these models. On
the other hand, FUSE [LS96a] generates C++ code that can be compiled into
a user interface. In a Model-Based User Interface Development environment
we assume here the models are executable: the environment can generate a
concrete user interface from the models without code generation.

Figure 2.1 shows a common architecture for model-based systems and how
the different models can be positioned inside Model-Based User Interface De-
velopment. Although this does not seem an architecture that puts the user
central, it does actually supports user-centered design. First of all the mod-
els make sure all the user requirements are taken into account. Changing
requirements implies changing one of the models, and does not imply doing
a complete software engineering cycle over again. Another advantage is the
possibility to have early prototypes, since the user interfaces can be generated
from the different models that are included in the Model-Based User Interface

14 Model-Based User Interface Development

Figure 2.1: Architecture of Model-Based User Interface Development environ-
ments

Development Environment. Notice the clean separation between the software
or application developer and the user interface designer. The designer can
focus on what is important for the end-users, and have access to the required
functionality by using the application functionality interface, while the soft-
ware developer can independently develop the required application logic to
drive the interactive system.

Interestingly, Model-Based User Interface Development has been reviving
the last couple of years when the demand for multi-device user interface design
was growing. By abstracting the user interface by means of (declarative)
models, the creation of the concrete user interface can be postponed until the
details of the target deployment platform come into play. Limbourg et. al.
[LVM+04a] refer to this stage as the concrete user interface stage.

Before Model-Based User Interface Development came into play to support
multi-device user interface design, it was a mean to create user interfaces that
meet the predefined requirements and that were consistent with respect to the
data and functionality they needed to visualize and provide. Nevertheless,

2.2 Model-Based User Interface Development 15

even these early approaches included models, tools and methodologies that
are suitable for multi-device user interface design and development. However,
none of them succeeded as a real tool or generally accepted methodology in
the industry in order to support multi-device user interface design and devel-
opment. Since we witness the conception of new tools that target multi-device
user interfaces, mobile interfaces and context-sensitive interfaces, there is a
good chance Model-Based User Interface Development will be accepted as a
new standard in user interface design. The most well-known tool is the Teresa
tool2 (a descendant of the ConcurTaskTrees Environment, CTTE) of Fabio
Paternò et. al. [Pat00, MPS03]. This tool is built around the ConcurTask-
Tree notation, which is a graphical notation for task specification. Because of
the importance of this notation in the work we present here, we will discuss
and use this notation in chapters 4 and 5. The Teresa and CTTE tools were
both very successful, partly because of their free availability on the Internet.

We provide our own environment, Dygimes, that will be first presented
in chapter 4, and the following chapters will highlight individual aspects of
the Dygimes approach. There are several reasons why we created our own
approach instead of relying on the existing approaches:

• We used a bottom-up approach in creating the Dygimes Model-Based
User Interface Development framework instead of a top-down approach.
We started with a concrete XML-based User Interface Description Lan-
guage targeted towards embedded systems. We added support for user
interface design for embedded systems by using task modeling, constraint-
based layout management, dialog modeling and context-sensitive models
(in that order).

• We wanted to investigate what was missing in the current approaches
(as discussed before) to be accepted by the industry. For this purpose
we created our own experimental setup, so we could add missing pieces
easily.

• At the time this research started, there was no Model-Based User Inter-
face Development environment available that supported a design cycle
where a task model was created to serve as a basis for the creation of
multi-device user interfaces using an XML-based High-Level User Inter-
face Description Language.

2http://giove.cnuce.cnr.it/teresa.html

http://giove.cnuce.cnr.it/teresa.html

16 Model-Based User Interface Development

2.2.2 A More Precise Definition of Models

This section takes a semi-formal approach in defining Model-Based User In-
terface Development, for a good understanding of the rest of this dissertation.
It aids in drawing up the borders of the different terms and notations that will
be used throughout this dissertation. Defining a formal structure on which
different models can be built has several advantages:

• assertions over the models can be checked;

• information contained in models has precise semantics;

• relations between models are unambiguous;

• and the expressive power of a model is well defined.

Nonetheless, early approaches to Model-Based User Interface Development
also tried to define a (semi-)formal basis; e.g. the FUSE system [LS96a] and its
related BOSS system [Bau96]. In the same conference as FUSE, Schlungbaum
and Elwert discussed the use of declarative models [SE96b, SE96a]. Similar
initiatives are still under active development in the research stage, but only
some results have been accepted in industrial and/or commercial settings.
Formal approaches for the development of interactive systems are not widely
used outside the academic world for well-known reasons [Som04], except for
specialized areas such as (hard) real-time systems and life-critical systems.
There is a trend, however, to use semi-formal methods to design interactive
systems to ensure the resulting product will fulfill the postulated requirements.
The challenge is to provide support for rapidly evolving requirements

The previous section (2.2.1) introduced the term “model” [HC84], this
section gives a more clear definition. To make assertions about models, we
will need a meta-model that can be used as a framework to describe different
model-based approaches and their respective properties. LetM be an infinite
set of models.

Definition 1 A model is a tuple < W,R1, ..., Rk, c1, ..., cl >, where W is a
non-empty set over the domain of the model, R1, ..., Rk are binary relations
defined over the members of W, and c1, ..., cl is a set of constants of the domain
W .

Definition 1 is a very general definition of a model and is therefore suitable
to describe a wide range of models. Even so, we can identify a set of models
that are difficult or impossible to describe in a formal way. For example, some

2.2 Model-Based User Interface Development 17

models are created through unstructured design knowledge, which is subjective
and neither “true” nor “false” given any particular situation. A model is just
a set of design information that is related with each other for one particular
aspect of the interactive system. The different elements of this tuple can be
explained as follows:

W contains all elements that can capture some type of design knowledge;

R1, ..., Rk relate different kinds of design knowledge to each other creating an
integrated pattern of design knowledge. A binary relation Ri involves two
elements of W : Ri ⊆W 2;

c1, ..., cl define the design knowledge that is available in the model. Since W
is the domain of the model, cj is an element of W : cj ∈W .

Notice this could be a partial algebraic specification of a user interface [Bau96].
Nevertheless, a pure formal notation as supported by the FUSE system [LS96a,
Bau96] for example has proved to be very useful (e.g. to ensure a complete
coverage of all the requirements or a correct execution of the system) but
not very usable for the designer. Instead of defining a new and expressive
language to describe the different models that occur in Model-Based User
Interface Development by giving a more formal definition of W , R1, ..., Rk and
c1, ..., cl, we will map these on existing models. The purpose of this notation
is to serve as a container which can be used to compare different models and
to describe the relations between the different models. We only introduce this
notation to have a uniform definition for the concept “model”. A more precise
and profound formalization does not fall in the scope of this dissertation.

The concept of an integrated pattern is important here: through time we
could capture reoccurring design decisions in all aspects of the design of an
interactive system and we learned how to relate these different decisions to
obtain a “usable” interface. Model-Based User Interface Development allows
us to store this knowledge by putting it in models so their effect can persist in
the final user interfaces that are generated from these models. One initiative
that has successfully created a general approach towards Model-Based User
Interface Development is presented in [LV04] by Limbourg and Vanderdonckt:
graph structures are used to have a general description of a model and its
contents while graph transformations can describe the relations between the
different models or model iterations.

In our approach we will only focus on a limited subset of models of M:
these selected models constitute a Model-Based User Interface Development

18 Model-Based User Interface Development

environment that will be denoted by E . For the remainder we fix an environ-
ment E that uses a set of models {M1,M2, ...,Mn}. Notice we work with an
environment instead of a system as defined in [Pue97]. This notation gives
rise to definitions 2 and 3.

Definition 2 By M we denote an infinite set of models.

A model-based system is a piece of software that uses a set of models to
support the design of user interfaces. Examples of model-based systems that
encompass several different models are Trident, Tadeus, Mobi-D, Teresa and
Dygimes.

Definition 3 By E we denote the mapping that assigns to every system S a
set of models E(S). We call E(S) the environment for S, and E : S → 2M.

2.2.3 Our Selected Models

The work we present here focuses on three specific models that can support
the design of a whole user interface. These models have proved to be sufficient
w.r.t the design of different kinds of user interfaces e.g. speech interfaces,
form-based or web-based interfaces, 3D interfaces,. . . The three models that
will serve as a basis for this dissertation are:

Task Model (MT)

Dialog Model (MD)

Presentation Model (MP)

We will consider these three models as the core models in our Model-Based
User Interface Development approach. There are also the application and
domain model that are available in our system, but its sole purpose is to bind
the user interface and application logic together, so we don’t consider this to be
a core model in Dygimes. Instead, one of the goals is to have a clear separation
between the user interface and the remainder of the interactive system, so
we aim at supporting multiple application/domain models. The core models
can be supplemented with other models that are necessary given a particular
context. For example, when designing the interactive system with a particular
focus group in mind a user model needs to be added to the models to capture
all these requirements. The environment Dygimes that will be introduced
in chapter 4 can now be defined as a triple in the notation introduced in

2.3 The Task Model 19

section 2.2.2: {MT ,MD,MP}. According to definition 3 E(Dygimes) =
{MT ,MD,MP}.

In general, the different models can be divided into two separate classes:
abstract models and concrete models. The former expresses information that
has no direct concrete counterpart in the final user interface, while the latter
can be easily mapped on elements of the final user interface. Examples of
abstract models are the task model and domain model, while examples of
concrete models are the dialog model and presentation model.

One of the aspects that makes this work different from other approaches
is the multi-device run-time aspect. Instead of using these models merely in
the design phase, they will also be used at run-time. We say this collection of
models become executable in multiple environments. Given an interpreter or
specialized environment for execution the models do not need to be converted
into program code before they can be used in applications, but are considered
part of the runable application. Executable models are not new, but making
models executable on multiple target devices is a new research topic. An
introduction to the different selected models is given in sections 2.3, 2.4 and
2.5.

2.3 The Task Model

Within task analysis a designer creates task specifications to describe the ac-
tivities necessary to reach a goal. There is no agreement for an exact definition
of task, activity or goal. Intuitively: a goal is the result the user wants to ob-
tain after a (set of) task(s) is/are performed. Each task can be accomplished
by executing a set of subtasks or actions. Subtasks are just tasks that have
more detail for a part of their parent task. Executing all subtasks of a task,
results in the execution of the task itself. An action can not be divided in
sub-parts: it is an atomic operation that is executed upon an artifact, by an
entity that is involved in the completion of the task (user, computer,. . .). To
illustrate a task model, consider figure 2.2 where a simple task specification is
depicted for getting a drink from a vending-machine. The goal for this task
specification is to satisfy your thirst. The top level task is to “get a soft drink”
from a vending machine. This task is further divided into subtasks. Notice
these subtask could also be subdivided further, according to the granularity
the designer wants to use to specify the task.

Task specifications are based on a notation provided by a task model. We
define a task model in definition 4. A task model will be redefined more
formally by definition 13 in chapter 5.

20 Model-Based User Interface Development

Figure 2.2: An example task specification for getting a soft drink.

Definition 4 A task model MT is a notation to describe the activities, tasks
and subtasks that are performed to reach an arbitrary goal and the relations
between them. A task model offers a way to structure and represent infor-
mation about activities, tasks and subtasks and serves as a template for the
result of task analysis: task specifications. A task specification Ti ∈ MT is
the definition of a presentation using the structure and notation defined in
MT .

Let T be an infinite set of tasks {t1, ...}. By R we denote the set of possible re-
lations between tasks. If we are dealing with an hierarchical task specification,
there is always the decomposition relation that exist in R. The decomposi-
tion relation d relates a single task t to a set of subtasks {t1, ..., tn}n≥2: this

relation could be expressed graphically as: t
d→ {t1, ..., tn}n≥2. If t is a leaf

task and can not be decomposed any further than t
d→ ∅. We will see there

are other relations between tasks, depending on the task specification nota-
tion that is being used. The next paragraph will show which relations the
ConcurTaskTree notations adds to R.

As a notation for task modeling we choose the ConcurTaskTree notation,
since in our opinion it is the most usable and modern (“context”-ready) spe-
cification notation. The ConcurTaskTrees task model is a notation proposed
by Fabio Paternò [Pat00] for designing a task specification. This notation
offers a graphical syntax, an hierarchical structure and a notation to specify
the temporal relation between tasks. Four types of tasks are supported in

the ConcurTaskTrees notation: abstract tasks , interaction tasks , user

tasks and application tasks . These tasks can be specified to be executed

2.3 The Task Model 21

in several iterations. Sibling tasks, appearing in the same level in the hier-
archy of decomposition, can be connected by temporal operators like choice
([]), independent concurrency (|||), concurrency with information exchange
(|[]|), disabling ([>) , enabling (>>), enabling with information exchange
([]>>), suspend/resume (|>) and order independence (|=|). [PS02] specifies
the following priority order among the temporal operators: choice > parallel
composition > disabling > enabling. Notice we have defined the set of tem-
poral operators R for the ConcurTaskTrees notation now: R = {[], |[]|,
|=|, [>, >>, []>>, |>, |||} ∪{d} where d is the decomposition relation.

Parts of the ConcurTaskTrees notation are based on the LOTOS nota-
tion [LFHH91], one of the products the Open Systems Interconnection (OSI)
standardization products. LOTOS is a standard that is maintained by the
International Organization for Standardization (ISO). Four properties of the
LOTOS language come in handy to use them in a notation for task modeling:

Temporal operators : Temporal relations between different processes can
be specified in a convenient way.

Support for concurrency : Processes can execute concurrently (a situation
that is often the case in distributed systems).

A well-defined process algebra : Statements over a LOTOS specification
can be proved true or false.

Executability : A LOTOS specification is executable; it can be executed by
an interpreter for example.

[Pat97] shows how LOTOS specifications can be reasoned upon by transform-
ing them in Action-Based Temporal Logic formulas. Unfortunately some for-
malism that is offered by the LOTOS notation is no longer available in the
ConcurTaskTrees notation. The main reason is the purpose of the Concur-
TaskTrees notation: to enable a human user to design a task specification for
common tasks. In its current state, the ConcurTaskTrees notation could be
classified as a semi-formal notation. There are only a few attempts to recover
the formal basis of the notation and use it to validate, emulate and process the
task specifications. In chapter 5 we will create a semi-formal basis to reason
with ConcurTaskTrees task specifications. One of the main objectives is to
find an algorithm to detect a correct set of enabled task sets and to create a
dialog model from the ConcurTaskTrees task model.

One notation that proceeded ConcurTaskTrees was the eXtended User
Agent Notation (XUAN) notation [GEM94], an extension of the UAN no-
tation [HSH90]. XUAN provides a notation that can be considered equally

22 Model-Based User Interface Development

expressive as the ConcurTaskTrees notation, but does not provide a graph-
ical syntax. This makes the language less suitable for designers. UAN was
probably one of the first task modeling languages that introduced temporal
relations in the task model. These temporal relations are based on Allen’s
temporal logic[All84]. Before UAN the focus was on (a) measuring or predict-
ing execution time of tasks (e.g. GOMS) and (b) applying guidelines w.r.t.
execution time of tasks. UAN, and later on XUAN, were the first that allowed
to express temporal properties of interaction in the task specification. There
are many resemblances between the XUAN notation and the ConcurTask-
Trees notation, except the ConcurTaskTrees notation has a graphical syntax.
For example, UAN defines five possible temporal constraints between tasks:
“sequence”, “order independence”, “interruptible by”, “interleavable with”
and “can be concurrent with”. XUAN extends this notation with parameter
passing between tasks, post- and pre-conditions. A next generation of UAN
exists: “Pattern User Action Notation” (PUAN)[ED04]: it integrates patterns
and the UAN notation to support multi-platform task modeling.

Since the ConcurTaskTrees notation allows concurrent tasks, this implies
several tasks can be valid in the same period of time. We can identify sets
of tasks (tasks being leafs in a ConcurTaskTrees specification) that are valid
during the same period of time by inspecting the temporal operators between
the different tasks. This is called an Enabled Task Set and is defined in
[Pat00] and repeated here in definition 5.

Definition 5 An Enabled Task Set (ETS) is a set of tasks that are logically
enabled to start their performance during the same period of time. The en-
abled task set of a given task specification T ∈MT is denoted by E(T) where
E : T → 2T .

Notice a task can belong to several enabled task sets according to this defini-
tion, which is normal since the specification allows concurrent tasks. Finally,
definition 6 introduces an Enabled Task Collection based on the definition of
an enabled task set.

Definition 6 An Enabled Task Collection (ETC) E is a set of sets of tasks
E ⊆ 2T .

Notice a task model can be described using definition 1, the ConcurTask-
Trees notation fits nicely in this definition. In < W,R1, ..., Rk, c1, ..., cl >, W
is exactly the set of possible tasks that can be used in a task specification (the
“domain”). R1, ..., Rk are all the relations that can connect two elements of

2.4 The Dialog Model 23

W : In ConcurTaskTrees {[], |[]|, |=|, [>, >>, []>>, |>, ||| , d} (where d
is the decomposition relation) are the types of relations that can be used.

2.4 The Dialog Model

There are different possible interpretations for what a dialog model can repre-
sent. One of the reasons is that the dialog model is probably the model that is
the least explored and the hardest to edit [Ols92]. Four important milestones
can be identified in the quest for the meaning of “dialog” in user interface
development:

1. In the first stage, one tried to understand a dialog, its properties, and
concepts. A dialog should describe the interaction between a user and a
user interface.

2. The second stage involved modeling a dialog which remains an open
question. Gilbert Cockton gives the advantages and disadvantages of
five dialog models in [Coc87] (Backus-Naur-Form grammars, state tran-
sition networks, production rules, Hoare’s Communicating Sequential
Processes (CSP), and Petri nets). These five dialog models are com-
pared leading to a conclusion that none of them holds all the desired
properties. Green [Gre86] reported that event/responses languages are
more expressive than grammars and state transition networks.

3. The third stage involved acquiring design knowledge for producing a
quality dialog from existing sources of information: for instance, expres-
siveness, parametrized modularization, and executability are properties
of interest that should be captured in design knowledge.

4. The last stage involved generating dialog by incorporating part of this
design knowledge and by relying on modeling concepts: dialog is defi-
nitely governed by task configuration, although dialog and presentation
usually work hand in hand.

Since there are different possible notations for a dialog model, we illustrate it
with the notation we will use in later chapters. Figure 2.3 (from [DFAB04])
shows an example state transition network that describes the behavior of part
of an editor. The transitions between states are labeled by the keyboard keys
that trigger the transitions.

In the last and fourth stage we have enough knowledge to automatically
generate a dialog (model), partially based on information present in the task

24 Model-Based User Interface Development

Figure 2.3: An example dialog specification from [DFAB04]: a state transition
network that describes the user actions to change the text style

model (section 2.3). Nevertheless, the exact definition of dialog depends on
the notation that is used to represent the dialog model (what information can
be represented). In this dissertation, we define a dialog model in definition 7
based on the definitions we provide for task model in section 2.3.

Definition 7 A dialog model MD is a notation to describe the relations that
exists between the set of tasks that are valid at one point in time and the
presentation units that represent this set of tasks. A dialog specification D ∈
MD is the definition of a presentation using the structure and notation defined
inMD.

We consider the dialog model as an intermediate model between the task
model and presentation model. Unlike the task model we use, it is closer to
flowchart modeling for example, but besides information flow it also reflects
how navigation between the set of tasks is executed. Unlike the presentation
model it includes relations between tasks and presentation units (or between
dialog screens, see section 2.5) but does not specify the internal structure of
the dialog. The representation of a dialog is the set of presentation units that
is related to the dialog.

It can be argued the dialog model is another view on the task model with
this definition. This is partially true: in our approach we will generate a dialog

2.5 The Presentation Model 25

model that is based on the task model by grouping the tasks and using the
temporal relations from the task model. On the other hand, in contrast with
the task model, the dialog model specifies the progress throughout the user
interface, a starting and ending point and the events that drive the progress.
The temporal and decomposition relations will no longer be visible in the dia-
log model, while transitions between task sets covering navigation will become
available.

We say a dialog specification offers full dialog coverage if all the tasks of
a task specification are reachable in the dialog specification. Thus there is
always a set of navigation events by which a leaf task in the task specifica-
tion can be executed. A navigation event that changes the state of the dialog
specification is usually triggered by the execution of a task. Definition 8 intro-
duces full dialog coverage. Since we will present the dialog specification as a
state transition diagram, in which each state is a set of tasks that are “active”
during the same time period, we can use the underlying structure of a directed
graph to define full dialog coverage.

Definition 8 A dialog specification D offers full dialog coverage for a task
specification T if and only if ∀ leaf task tf ∈ T , ∃ a state sn with tf ∈ sn and
a directed path {st, st+1, ...st+i, ..., sn}, 0 ≤ i ≤ n where st is a state with no
incoming edge.

Referring back to definition 1, a dialog model can also be expressed as
the tuple < W,R1, ..., Rk, c1, ..., cl >, W are all the possible states in a dialog
model. R1, ..., Rk are the relations between two states: a relation is a transition
from one state to another.

2.5 The Presentation Model

The presentation is the most concrete realization of the user interface: on
a desktop system the presentation could be a window and its widgets that
are shown, on a mobile phone the presentation could be presented as a voice
interface. The presentation of a user interface is the physical manifestation
of the available means to communicate with a (software) system. For a clear
understanding definition 9 gives an informal definition of presentation unit.

Definition 9 A presentation unit u groups the concrete realization of the
interface(s) (or building blocks) that can be manipulated by the user(s) in a
certain well-defined period of time.

26 Model-Based User Interface Development

A presentation unit is typically a set of Abstract Interaction Objects (AIOs)
[VB93] that will be mapped on a set of corresponding Concrete Interaction
Objects (CIOs) to create the final user interface that will be presented to the
user. AIOs are abstract representation of interface objects that can interact
with the human user, and CIOs are the concrete representation; e.g. a “range
indicator” is an AIO and can be mapped to a slider widget (CIO). A CIO is the
“physical” realization of an AIO depending on the modality that is chosen:
e.g. it can be the graphical representation of widget or a part of a spoken
dialog. In [VB93] a set of selection rules (structured as a selection tree) is
defined to map AIOs on the appropriate CIOs in Trident.

Others have defined presentation unit in a slightly different way. Eisenstein
et. al. define a presentation unit in [EVP01] as a composition of one or more
logical windows in which a logical window groups AIOs, based on the definition
of a presentation unit given in [BHL+95]. A presentation unit is related to
a sub-task of the user task in this definition. Our definition expresses the
same concept, but emphasizes a presentation unit is related to the concept of
a dialog instead of a task. A presentation unit is related to the user task by
introducing user interface building blocks (see definition 10).

Definition 10 A building block is a set of Abstract Interaction Objects that
represent a leaf task from a hierarchic task specification.

We define a presentation model in definition 11.

Definition 11 A presentation modelMP is a notation to describe the set of
presentation units (def. 9) that occur during the lifetime of a application. A
presentation specification P ∈ MP is the definition of a presentation using
the structure and notation defined inMP .

Notice definition 9 can also be applied to distributed user interfaces, and
interfaces that use different modalities. A presentation unit is not limited to
one interaction technique; e.g. it can make use of different interaction devices
simultaneously [VC04]. The definition of a presentation unit can be related
easily with the enabled task set definition in section 2.3: there is a one-to-one
relation between a presentation unit and an enabled task set. For each enabled
task set a presentation unit should be provided: if this condition is fulfilled
the designer is certain the user interface will cover every aspect specified in
the task specification. This is called a full presentation coverage of the task
specification by the presentation model as defined in definition 12.

2.6 Model Relations and Mappings 27

Definition 12 A presentation specification P offers full presentation cover-
age for a task specification T if and only if for each leaf task tf ∈ T ; ∃ a
presentation unit u where t is presented by a part of u.

Full coverage for a task specification indicates the final user interface covers
all functional requirements: all functionality that should be exposed or should
be accessible by the user according to the requirements is available through
the user interface.

Again, referring back to definition 1, a presentation model can be fit in
this definition. The domain W of the model is the set of AIOs and CIOs, and
the relations R1, ..., Rk are al the possible relations between AIOs mutually,
CIOs mutually and between AIOs and CIOs like mapping, decomposition,
positioning w.r.t. each other,. . . .

2.6 Model Relations and Mappings

So we have a set of models that make up our enviroment, where we still have to
define inter-model relationships, where one model is related to another model
in a particular way. These inter-model relationships can be classified as the
different variations of the mapping problem [PE99]. A mapping can be inter-
preted as a function that takes a model as input and gives a model as output:
Map :< W, R1, ..., Rk, c1, ..., cl >→< W, R1, ..., Rk, c1, ..., cl >. The Map func-
tion can only rely on the input model to generate the output model, or require
parametrization. The former would support automatic transformations that
do not need extra information to execute the transformation, the latter could
be part of an interactive design environment where the designer needs to input
extra information to execute the transformation.

In [CLC04d] we identified two mechanisms to solve the mapping problem.
In addition to the three mechanisms that were already introduced by Limbourg
et. al. in [LVS00] we get the following five possible inter-model relations:

1. model derivation: constructing an unspecified model using the infor-
mation of an already specified model. For example: deriving a dialog
model from a task model [LVS00, VLF03, MPS03, LCCV03].

2. partial model derivation: elements of a model or relationships be-
tween elements are added to a model. For example: adding transi-
tions between states of a dialog model while examining a task model
[LCCV03].

28 Model-Based User Interface Development

3. model linking: connecting distinct models to each other. For example:
linking presentation units to unit tasks of a task model [CLV+03].

4. model manipulation: the human designer applies changes to a model.
For example: manually completing a skeleton of a model [Pue97].

5. model update: updating a model as a result of changing or adding
properties in another model by the human designer or an algorithm. For
example: updating the task model when parts of the presentation model
are changed [Sti99].

These different mechanisms are exactly the relations between the different
tuples in E(S) where each tuple represents a different model.

2.7 Plasticity and Context in Models

Each presentation unit can have a certain degree of plasticity [The01]: a scale
of the adaptability of the user interface within a single presentation unit.
Thevenin, Calvary and Coutaz defined a framework for using plasticity in the
development of interactive systems [TC99, CCT00, CCT01]. Plasticity as it is
defined here is clearly focused on the presentation model, and has only little
relations with other models. If we consider the research work that has been
done to create context-sensitive user interfaces, the notion of plasticity should
be introduced in several other models used in Model-Based User Interface De-
velopment. The models which can change during the lifetime of the application
because of influences of the context are called dynamic models. We identified
the dialog and presentation model are all dynamic models when the target is
a single-user context-sensitive interactive system. The task model is a semi-
dynamic model, because even in context-sensitive interactive systems the goal
will remain the same irrespective of any context change, but the sub-tasks and
structure of the task model could change according to the change in context.
Although other dynamic models could be identified we limit the discussion to
these three models; the user model and domain model are considered static
models.

In addition to the definition of plasticity we introduce the concept of dialog
plasticity in a user interface. This plasticity applies to the navigation between
dialogs and dialog structure in the user interface. Consider the different mod-
els that can be influenced by a context change: all dynamic and semi-dynamic
models can change at run-time because of a context change. Since these
models are probably related to each other, the change in one model will be

2.8 Discussion 29

propagated to the other related models. In particular, a change in the task
model will influence the dialog model thus changing the navigation and struc-
ture of the user interface. If this happens, the dialog model will be changed
at run-time according to the new context, but this change should be limited
to ensure the usability of the user interface. Exactly this limited change of
the dialog model is called dialog plasticity. Chapter 10 discusses our attempts
to create a context-sensitive task model and shows how this influences the
dialog model. Some preliminary work we published on this topic of context-
aware Model-Based User Interface Development can be found in [CLC04b] and
[CLC04a]

2.8 Discussion

There is a clear shift from traditional user interfaces (e.g. the ones used for
desktop computers) towards “pervasive”, “ubiquitous” or “context-sensitive”
user interfaces. Model-Based User Interface Development provides a frame-
work that is flexible enough to cope with these new kinds of interfaces. The
interface can be abstracted into a set of models for describing the properties
of an interactive system. The conception of the final, concrete presentation of
the interactive system is postponed as much as possible to gain flexibility and
reusability of user interface design.

In this chapter, we provided an overview of the foundations of Model-
Based User Interface Development, and discussed three models from Model-
Based User Interface Development in particular. The semi-formal notation was
solely introduced to have a clear understanding of the concepts that are being
used throughout this dissertation. The task model allows to integrate the task
analysis in Model-Based User Interface Development. The dialog model can
be considered as a transformed task model or, depending on the granularity
of the task model, as a flow of “interaction sessions” reflected in separate
presentation units. There are two important properties a Model-Based User
Interface Development environment should satisfy: it should provide full dialog
coverage and full presentation coverage for a task specification.

30 Model-Based User Interface Development

Chapter 3

High-Level User Interface Description Languages

Contents

3.1 Introduction . 31
3.2 History of XML-based User Interface Description

Languages . 33
3.3 An overview of XML-based High-Level User In-

terface Description Languages 35
3.3.1 Abstract User Interface Markup Language (AUIML) 35
3.3.2 Renderer Independent Markup Language (RIML) . . 36
3.3.3 Useware Markup Language (useML) 37
3.3.4 Teresa XML . 38
3.3.5 Interface Specification Meta-Language (ISML) . . . 39
3.3.6 The User Interface Markup Language (UIML) . . . 40
3.3.7 XIML . 41
3.3.8 UsiXML . 42

3.4 Discussion . 43

3.1 Introduction

In this chapter we will provide an overview of High-Level User Interface De-
scription Languages, more specific XML-based High-Level User Interface De-
scription Languages. A separate chapter is devoted to this topic because of the
importance of XML-based High-Level User Interface Description Languages
for multi-device user interface development. The most important benefit this

32 High-Level User Interface Description Languages

technique provides is the possibility to create a device-independent and ab-
stract description of a user interface with a language that is easy to use in
heterogeneous environments. Although there are also many User Interface
Description Languages that do not use XML, we feel XML is the most appro-
priate language to describe High-Level User Interface Description Languages.
Chapter 6 will give a more complete motiviation in section 6.3.

Other overviews of the state-of-the-art in High-Level User Interface De-
scription Languages can be found in [LALV04], [The01] and [SV03]. [SV03]
compares different XML-based High-Level User Interface Description Lan-
guages on different aspects: models, methodology, tools, supported languages,
supported platforms, target, level, tags, expressibility, openness and concepts.
In [The01] the focus is on plasticity of user interfaces and the fact that different
XML-based User Interface Description Languages are discussed here among
other approaches provides evidence for the applicability of XML-based User
Interface Description Languages for multi-device interface development.

The richness of the user interfaces is proportional with the expressive power
of the presentation model. There are two extremes w.r.t. the expressive power:
the common denominator and the meta-widget set approach. On the one hand
the common denominator approach identifies a general set of widgets that can
be used on most platforms or devices. On the other hand, the meta-widget
set approach avoids to include all widget set specific information from the
presentation model. To progress from the XML-description to the concrete
widgets in the user interface a mapping phase is necessary. In this chapter we
will focus on the models where the different languages can be situated, how
they provide linking with different models and the complexity and expressive
power they provide. Chapter 6 will introduce SEESCOA XML, a custom
XML-based User Interface Description Language we created in early 2001 for
embedded systems and mobile computing devices.

During the workshop on Developing User Interfaces with XML: Advances
on User Interface Description Languages1 in Gallipoli [LALV04] an overview
of the state of the art of XML-based High-Level User Interface Description
Language in 2004 was provided. Most of this chapter is based on the various
papers that were presented on this workshop. After tracking down how and
when the first conception of XML-based High-Level User Interface Description
Languages happened in section 3.2, we will provide an overview of the different
XML-based High-Level User Interface Description Languages in section 3.3:

• AUIML (section 3.3.1)

1http://www.edm.luc.ac.be/uixml2004

3.2 History of XML-based User Interface Description Languages33

• RIML (section 3.3.2)

• Teresa (section 3.3.4)

• useML (section 3.3.3)

• ISML (section 3.3.5)

• UIML (section 3.3.6)

• XIML (section 3.3.7)

• Usixml (section 3.3.8)

This list is not exhaustive, and there are many more existing languages. The
purpose of this chapter is not to have a complete comparison of the different
languages, it provides an overview to illustrate how XML is becoming the lin-
gua franca for user interface descriptions. The reason why a comparison can
not be the main goal of this chapter is the different levels of abstraction on
which the discussed XML-based High-Level User Interface Description Lan-
guages operate. Instead we try to identify in which models from traditional
Model-Based User Interface Development the notations can be used and an
overview of our findings is provided in tables 3.1 and 3.2.

3.2 History of XML-based User Interface Descrip-
tion Languages

For about a decade there exist declarative User Interface Description Lan-
guages, e.g. [SSC+95],[Sti97] and [Pin00]. Declarative meaning the designer
can specify what she/he wants instead of how to create the envisioned result.
Besides providing researchers with a solid foundation to develop other con-
cepts these declarative user interface specifications could not be set free from
academic research. Although there have been real-life uses of these approaches
and everyone agrees they result in better user interfaces, they did not influence
the current technologies for building user interfaces. One of the reasons being
the specialized languages the designers or developers need to master to use
these declarative models.

During the nineties the popularity of the world wide web was responsible
for the education and training of many interface designer that were necessary
to create webpages, but had virtually no experience with “traditional user
interfaces”. This proved a markup language is much more comprehensible

34 High-Level User Interface Description Languages

for these designers to create interfaces then a programming language is. Most
website designers have no programming background but are still able to create
an interactive system. Since the omnipresent nature of the world wide web as
an information resource lead the first successful adoption of real device inde-
pendent interface creation. From the W3C Device Independence Workgroup
website (http://www.w3.org/2001/di/):

the number of different kinds of device that can access the Web has
grown from a small number with essentially the same core capabil-
ities to many hundreds with a wide variety of different capabilities.
At the time of writing, mobile phones, smart phones, personal dig-
ital assistants, interactive television systems, voice response sys-
tems, kiosks and even certain domestic appliances can all access
the Web.

Long before it became popular in traditional user interfaces, a webdesigner
could separate content [con01c] and style [con01a] and make the content pre-
sentable on every kind of device that has a graphical output capability. As a
consequence the most usable specifications to store and communicate device
profiles can be found in the web development world: e.g. UAprofile2, and
more general CC/PP [con03].

An indication of the importance of the web-development approach where
markup is used to create (multi-device) user interfaces, was the introduction
of Xaml3 by Microsoft; a user interface oriented markup language that is
suitable to create “fat” (desktop) clients with the background knowledge of
a webdesigner. Just like HTML can be tight to the Document Object Model
(DOM, [con01b]), Xaml integrates smoothly with the Microsoft Windows desk-
top API.

XForms [con01f] is another example where the same kind of evolution can
be observed: primarily targeted towards web-based forms, it is also used to
implement user interfaces on multiple devices. XForms also offers a degree of
abstraction comparable to the other approaches presented in the next sections
and has support for a web-based domain model [VLC04]. The XML User
interface Language (XUL) [HGHW01] is another XML-based User Interface
Description Language we should not forget: initially it was a language that al-
lowed to create user interfaces inside the Mozilla4 browser. It takes advantage
of other languages that are supported in the browser like HTML, Cascading

2http://w3development.de/rdf/uaprof_repository/
3http://longhorn.msdn.microsoft.com/lhsdk/core/overviews/about%20xaml.aspx
4http://www.mozilla.org

http://www.w3.org/2001/di/
http://w3development.de/rdf/uaprof_repository/
http://longhorn.msdn.microsoft.com/lhsdk/core/overviews/about%20xaml.aspx
http://www.mozilla.org

3.3 An overview of XML-based High-Level User Interface
Description Languages 35

StyleSheets (CSS), Resource Description Framework (RDF) and JavaScript.
There are several XUL renderers that can be used outside the browser and
support part of the XUL specification.

Observing this evolution from a model-based point of view, changes to the
type of application model that is supported can be detected. Traditional ap-
plication models where based on an entity-relationship model and, afterward,
on the object-oriented design models. The latter is still the case for several
XML-based User Interface Description Languages discussed in this chapter.
With the current merge between fat clients and thin clients by means of uni-
versal XML-based User Interface Description Languages, the boundaries to
use web services as application model are disappearing. In our own approach
we support an open ended specification so different kinds of application mod-
els can be used if the protocol to communicate with the application objects is
supported. This will be further explained in sections 4.5 and 6.4.

3.3 An overview of XML-based High-Level User In-
terface Description Languages

3.3.1 Abstract User Interface Markup Language (AUIML)

The Abstract User Interface Markup Language [MWK04] was conceived at
IBM and is available at the IBM alphaworks website (http://www.alphaworks.
ibm.com/tech/auiml). It is based on the Panel Definition Markup Language
(PDML); an XML-language that was originally created to build portable Java
Swing applications. AUIML targets form-based user interfaces and uses an
intent-based approach. An example of an intention is a choice that has to be
made by the user: AUIML allows to specify this intention rather than using
GUI specific identifiers. It is only very recently IBM has released AUIML and
a related tool as a plugin for the Eclipse software development environment.
Tool support is essential for AUIML, since it is not a human readable syntax
that is being used.

AUIML tries to avoid the common denominator problem by offering a prop-
erty mechanism the designer can use to leverage the device-specific presenta-
tion capabilities. This is not reflected in a schema for the language however
and requires rather complex mapping mechanisms. This property mechanism
uses a description similar to Cascading Stylesheets [con01a] and uses a separate
properties file. This does not make the XML code much more readable: what
is presented by the AUIML document is only comprehensible in conjunction
with the application code that is related with the user interface description.

http://www.alphaworks.ibm.com/tech/auiml
http://www.alphaworks.ibm.com/tech/auiml

36 High-Level User Interface Description Languages

AUIML is clearly focused on the presentation model, and does not have a
strong commitment towards involving other models than the data model. The
XML language is data-driven: it defines the type of information that has to
be presented as a tag, and provides a mapping for each type that is used in
the AUIML document. Each type also has a binding with the data model, in
this case a (set of) Java object(s).

To summarize, AUIML provides a separation between the user interface
structure and style (the properties file). It allows to map abstract interac-
tors on concrete widgets in Java Swing or HTML. It has a grid-based layout
mechanism: each abstract interactor allocates a cell in a predefined grid. An
AUIML user interface description also has a one-on-one mapping with a set of
application objects. AUIML supports the different aspects that are typical for
a presentation model: the structure of the user interface, a layout description,
rendering hints that describe CSS-like style properties and widget mappings
that map AIOs on CIOs. These four properties are defined more thoroughly
in section 6.1.

3.3.2 Renderer Independent Markup Language (RIML)

The Renderer Independent Markup Language [KWWZ04] is conceived as part
of the Consensus project (http://www.consensus-online.org/) and based
on XHTML 2.0 and XForms 1.0. According to the Consensus website:

RIML allows an author to write content only once in a standard-
ized format based on the Extensible Hypertext Markup Language
(XHTML) and XForms. The content is then automatically adapted
for different end-user terminals including voice.

RIML is clearly focused on form-based user interfaces and adds speech-support
to these interfaces. It relies heavily on a web architecture: transformation is
done server-side in an environment with sufficient computing power.

RIML focuses on layout, pagination, navigation, voice support and content
selection. The layout mechanism of RIML is rather simple but effective: it
allows to lay out the interface using rows, columns and grids similar to but a
little more powerful as AUIML. The innermost container in a RIML document
is called a “frame” and is the only element that can have actual content.
Pagination is the core layout mechanism to have a scalable interface that
“fits” for different devices.

To summarize, RIML is heavily based on XForms for the data model and
event handling that are being used. XHTML defines the structure of the pre-
sentation and it provides a RIML-specific layout description which is separated

http://www.consensus-online.org/

3.3 An overview of XML-based High-Level User Interface
Description Languages 37

from the content and structure. RIML builds further upon the early work that
has been done to make websites available on different browser-platforms. By
doing this it inherits the abstractions for user interface design that were al-
ready available in the existing markup languages (XForms, XHTML). Merging
(part of) the different markup languages also results in a fairly big specifica-
tion. However, RIML adds some new concepts like intelligent pagination and
allows to specify alternative content for the different output channels within
the interface description. RIML supports three of the different aspects that
are typical for a presentation model: structure, layout, and rendering hints.
Widget mappings are not included since RIML uses standard markup lan-
guages.

3.3.3 Useware Markup Language (useML)

The Useware Markup Language [ZMBR04] is a fairly new XML-based User
Interface Description Language based on “Useware” (http://www.uni-kl.
de/pak/useML/). The Useware development process considers different users,
their tasks and their experiences. This language is included because it offers
another viewpoint: instead of traditional AIO - CIO mappings, useML pro-
vides an abstraction of a user interface by “Use Objects” (UOs) and “Elemen-
tary Use Objects” (EUOs). These types of objects also provide the structure
of the task: UOs define the tasks and can be hierarchically structured, and
EUOs define the actions of this task. UseML is a user-centered interface devel-
opment language with a very specific domain and coverage. The domain is the
operation of machines, although this could be generalized to other domains.
UseML covers “structuring” of the user interface and helps in the analysis and
design of the user interface. For the presentation (or realization) of the user
interface other languages and tool should be used.

It is clear useML is closer to the task model than it is to the presentation
model. Use Objects can contain five elementary task types: execute a function,
select a value, give data input, change existing data and inform the user (give
data output). Each type has a precise description in its schema but it is not
defined how the task types are made concrete in the final user interface since
this is done with other means (e.g. UIML).

To summarize, useML is a high-level User Interface Description Language
that focuses only on structuring the user interface from a task analysis point
of view. For the creation of the final user interfaces the designer should use
other means such as XHTML, UIML or similar User Interface Description
Languages that do cover a presentation model. There is no clear binding

http://www.uni-kl.de/pak/useML/
http://www.uni-kl.de/pak/useML/

38 High-Level User Interface Description Languages

with an application domain so we assume this is generated and controlled
by the transformation process. UseML supports one of the different aspects
that are typical for a presentation model: it does recognize the importance
of structuring the user interface. The other three aspects (layout, widget
mappings and rendering hints) are not supported in the specification.

3.3.4 Teresa XML

Teresa XML [BCPS04] is the XML-based High-Level User Interface Descrip-
tion Language that is used together with the ConcurTaskTrees notation in
the Teresa environment (http://giove.cnuce.cnr.it/teresa.html). Since
Teresa XML combines an XML-based High-Level User Interface Description
Language with the XML-based notation to describe the task model, this nota-
tion supports the task model as well as the presentation model. Similar to the
approach we will present in the next chapters, the dialog model is derived from
the task model. The dialog model is made “explicit” by connecting the Teresa
XML abstract user interface description with the description of the Concur-
TaskTrees task description. Teresa XML is composed of various languages: it
embraces an abstract user interface description language that is refined with
platform-dependent aspects by a concrete user interface description.

A limiting factor in Teresa XML are its hard-coded elements for par-
ticular presentations: the DTD defines concrete desktop interface and
concrete mobile interface for example. Although this limits the expressive
power of the language, it does support a more sensible approach in designing
the user interface for other platforms. A typical example is the concrete vocal
interface that specifies a speech-driven interface for the task specification. The
Teresa tool allows to specify for each task the platforms that can support the
task.

Teresa XML is focused on the presentation model, but integrates smoothly
with the ConcurTaskTrees XML-based task model language. The Concur-
TaskTrees XML is also considered a part of Teresa XML. Teresa XML also
provides two levels of abstraction of the presentation model: abstract and con-
crete user interfaces. The dialog model is specified by a set of transition rules
that are also expressed in XML. In ConcurTaskTrees XML there is support
for the domain model, but it is unclear how this integrates with Teresa XML
or how the user interface description can connect to application objects.

To summarize: Teresa XML integrates several models. The task and pre-
sentation models are explicitly supported, the dialog model is closely related
to the task model. It is possible to specify the domain objects: the Teresa

http://giove.cnuce.cnr.it/teresa.html

3.3 An overview of XML-based High-Level User Interface
Description Languages 39

tool allows to relate a set of objects with a task. These objects should be
described in terms of class (data type), interaction type, access mode and car-
dinality. Teresa XML implements two of the four presentation model aspects:
the structure of the user interface is described (an “interactor composition”
container is used for this purpose), widget mappings are done based on the
output platform (desktop, Personal Digital Assistant (PDA), mobile phone
and voice). There is no support for rendering hints in the current release of
the tool, but some preliminary work to support rendering hints is published
in [CMP04].

3.3.5 Interface Specification Meta-Language (ISML)

The Interface Specification Meta-Language is created by Crowle and Hole
[CH03, Cro04] as an XML-based, metaphor oriented, User Interface Descrip-
tion Language for the design of graphical interfaces (http://decweb.bournemouth.
ac.uk/staff/scrowle/ISML). The framework is built around five concepts:
devices, components, interactors, tasks and meta-objects. A certain degree of
device-independence is obtained by the abstraction the designer can provide
for an input/output device. Metaphors are the basis of a ISML design artifact;
the ISML website states:

ISML has been designed on the basis that the metaphor is an inde-
pendent and partial mapping between a model of tasks understood
by the user and the computational operations on the application
domain by the underlying system. Arguably, the metaphor mecha-
nism that acts as a bridge between the system and the user’s world
of work has only partial correspondences with each domain.

In its current form, ISML is a fairly complex language that requires some
background in HCI design since it relies on specific notions found in the classic
HCI literature. E.g. the language is metaphor based, so the designer should
have a good understanding of the level of abstraction a metaphor can offer in
HCI design. One of the main benefits of the ISML framework is the particular
abstractions it provides: it is one of the only specification languages that
integrates abstractions for both input and output devices. This could be
useful for designing an ubiquitous interactive system for example.

A binding with application logic is accomplished by the component con-
cept: it allows to describe external application logic that is available, what
kind of data is going in and out the application (provided by the input de-
vices) and a state machine to model the behavior of the interface. Metaphors

http://decweb.bournemouth.ac.uk/staff/scrowle/ISML
http://decweb.bournemouth.ac.uk/staff/scrowle/ISML

40 High-Level User Interface Description Languages

are described by meta-objects and mapped on a concrete representation by
the interactors. This mapping can be interpreted as a AIO to CIO mapping.
Finally tasks are specified by re-using the meta-objects, resulting in a hierar-
chy of linked nodes that represents the sequence of actions executed using the
metaphors defined in the meta-objects. As a side effect, the mapping between
metaphors and interactors results in an interface that supports the specified
tasks.

To summarize: ISML is a complex and sophisticated User Interface De-
scription Language that has a very steep learning curve. There are a lot of
different aspects being modeled in the language so ISML would certainly ben-
efit from a simplification or tool support. On the other hand: the framework
goes beyond widget sets and uses metaphors and device abstractions to create
a user interface. This makes it more suitable for less traditional user inter-
faces such as the one typically found in ubiquitous systems. ISML implements
three of four aspects of the traditional presentation model. The structure of
the interface is determined by composing interactors that actualize the meta-
objects. The widget mapping is just one of the mappings that exist between
meta-object, interactors and component devices. Also ISML components can
be mapped onto concrete visualizations. Layout is not supported separately,
but as part of the set of meta-object constraints that can be specified. Ren-
dering hints that can define a style for the final, concrete interactors are not
supported (although they could be specified as constraints). It seems the in-
teractors and meta-objects are the concepts from ISML that cover most of a
traditional presentation model.

3.3.6 The User Interface Markup Language (UIML)

The User Interface Markup Language (UIML) by Abrams et. al. [AH04b,
Pha00, FPQAS02, APQA04, AH04a] is perhaps the most well-known and
widely spread general XML-based User Interface Description Language. A
more extensive discussion of UIML can be found in chapter 9, where we present
our own implementation of UIML version 3.1 [AH04b]. We will limit ourselves
to some highlights of UIML that make it possible to compare it with the other
High-Level User Interface Description Languages presented in this chapter.

UIML can be used as a notation for the presentation model and partially
the domain or application model, but has no explicit support for a task or
dialog model. Bleul et. al, introduced the Dialog and Interface Specification
Language (DISL) that extends UIML with a dialog model [BMS04]. This
approach uses the Dialog Specification Notation to specify the different dialogs

3.3 An overview of XML-based High-Level User Interface
Description Languages 41

that can appear as part of the user interface. It is based on the concept of
a state machine: transitions between states (=dialogs) are made explicit as a
part of the behavior section of a UIML fragment. In section 9.7 we provide
our own solution how UIML could be extended with a task and dialog model
without changing the language itself.

An important advantage of UIML over the other High-Level User Inter-
face Description Languages is its expressive power: UIML is an XML-based
meta-language. It does not specify any particular widgets or widget sets, but
allows to define custom vocabularies with mappings from the desired abstrac-
tions and properties onto concrete widgets and widget properties. Using the
same vocabularies the application model can be specified by adding an XML
description of the interface it offers (“logic”).

To summarize: UIML implements all four aspects of the presentation
model: it defines the structure (parts) of the user interface and the rendering
hints (style and properties) in separate sub-parts of the same interface descrip-
tion. Widget mappings are specified separately in a vocabulary (“peers”). The
layout can be described using the properties and structure; there is no separate
concept for the layout description however.

3.3.7 XIML

XIML [PE02] is an XML-based specification language for interactive systems
[PE04]. It goes beyond most of the discussed languages by providing support
for most aspects of a software engineering cycle. XIML supports five different
models: task, domain, user, dialog and presentation. For each supported
model, a separate subtree in the XML document is created (each model has
its own tag-name). Extensive use is made of generic relations between elements
to integrate the different models with each other.

XIML targets multi-device user interface design. For this goal, it provides
a strict separation between the user interface definition and rendering of the
user interface. This is a common approach in most Model-Based User Interface
Development, although this separation was not always clearly defined.

Unfortunately the XIML specification is not free: it is only accessible if
one agrees with a research-license agreement. For this reason we never had the
chance to study the XIML schema’s in detail. XIML has been a widely rec-
ognized initiative, and many research papers that introduce some new XML-
based User Interface Description Language refer to XIML. It was also to first
one that supported a complete Model-Based User Interface Development en-
vironment.

42 High-Level User Interface Description Languages

To summarize, XIML is a complete XML-based User Interface Description
Language and could also be a universal language if it offers custom abstrac-
tion instead of abstractions of a set of predefined interactors. Since there are
too few examples available, we have no information about the aspects (struc-
ture, layout, rendering hints and widget mappings) XIML supports. Although
XIML is more than just a presentation model, the conclusions only apply to
this one model.

3.3.8 UsiXML

UsiXML by Limbourg and Vanderdonckt [LVM+04a, LVM+04b] is an XML-
compliant User Interface Description Language that describes the user in-
terface for multiple contexts of use (http://www.usixml.org). In contrast
with most other approaches mentioned in this chapter it encapsulates differ-
ent models and has explicit support for relating different models, transforming
models and selecting parts of a model. Graph transformations are the central
mechanism that can be used to manipulate the diversity of models that can be
expressed in UsiXML. Each model that is defined in the UsiXML language can
be used separately from the other models; this gives control to the designer
about what she/he will or will not include in the description of the interactive
system. Multi-path development of the user interface is emphasized: it tries
to cover all possible ways in which a user interface can be developed using
different models.

For now, UsiXML is the most well-developed and expressive XML-based
User Interface Description Language because it supports multiple models (which
can be used separately), forward and reverse engineering, and it is built on
a firm formal foundation. It is limited in the specification of its presentation
model however: in contrast with UIML there is no mean to introduce a cus-
tom abstraction (and mapping for this abstraction) for the abstract interaction
objects.

UsiXML defines the following models: a domain model, a task model,
an abstract user interface model, a concrete user interface model, a context
model, a mapping model and a transformation model. The transformation
model defines a system to transform one model into another one that has a
different type, or in the same type of model.

To summarize: UsiXML is a complete user interface design language that
has a visual representation and a formal foundation. If we compare UsiXML
to the other User Interface Description Languages discussed in this chapter,
the comparison is based on the presentation model. Although UsiXML is

http://www.usixml.org

3.4 Discussion 43

more than just a presentation model, the conclusions only apply to this one
model which can be mapped onto the abstract user interface model, concrete
user interface model and part of the mapping model in UsiXML. For the
presentation model UsiXML supports all four aspects: widget mappings are
clearly available (since there is a powerful transformation system in UsixML),
structure is supported by a recursive container that can be used to group
AIOs, rendering hints are limited to the attributes that are defined for each
interactor in the concrete user interface model and layout is supported by
alignment specifiers for graphical user interfaces.

3.4 Discussion

Now that we have introduced several different XML-based User Interface De-
scription Languages, we can analyze how they relate to each other on several
aspects. The aspects expressive power, number of widget set-related tags and
user interface coverage have a well-defined relation, like we will show in fig-
ure 3.1. As long as there is a need to pre-define a set of widget set-related
tags, the User Interface Description Language is no universal User Interface
Description Language. It is constrained by this predefined set. We expect
the expressiveness of the User Interface Description Language to grow with
the size of the predefined set of widget set-related tags. This is true but has
a negative influence on the complexity of the language. When a User Inter-
face Description Language has no widget set-related tags it has a maximum
coverage because it is not bound by any predefined interactor. Figure 3.1 sit-
uates the different User Interface Description Languages in a two-dimensional
space that compares their interactor coverage versus the number of predefined
interactor tags. UIML and ISML are examples of User Interface Description
Languages that have a maximal coverage. Tables 3.1 and 3.2 compare the
different languages w.r.t. their properties and integration of different models.

In spite of the time that has passed since the conception of XML-based
High-Level User Interface Description Languages (see section 3.2), there is no
convergence towards a standard notation (defining both syntax and seman-
tics), the many different initiatives suffered from scattering and no means for
exchanging experiences and information. Some open questions can be iden-
tified that should be tackled to advance towards more mature XML-based
High-Level User Interface Description Languages. These open questions could
be divided into three clusters:

44 High-Level User Interface Description Languages

Figure 3.1: Interactor coverage versus number of interactor specific tags

1. Abstraction and meta-language: Is there a formal (unified) model
possible for XML-based User Interface Description Languages? Can we
define a gradation in the abstraction the language offers? How does the
language support separation of concern? Given a software engineering
process, can the XML-based User Interface Description Language be
integrated in this process and even be a standard part of this process?

2. Evaluation and Coverage: What are the best ways to ensure a us-
able user interface that results from a user interface specification in an
XML-based User Interface Description Language? For which range of
applications is the XML-based User Interface Description Language us-
able/suitable? What kind of functionality is provided by the supporting
tools? What language syntax and semantics are “better” and why? How
complex (/readable/usable) is the XML-based User Interface Description
Language?

3. Standardization: is there one unified language? Which parts of a
generic XML-based User Interface Description Language are candidates
for standardization? What is common in the existing XML-based User
Interface Description Language and how to choose the best for standard-

3.4 Discussion 45

ization? Should there be a relation between the types of applications
that can be supported (“vertical” facilities) and the XML-based User
Interface Description Language (“horizontal” facility)

Notice these clusters can be used to evaluate an XML-based High-Level User
Interface Description Language. Most XML-based languages have a firm focus
on reusability and scalability: making one design for multiple devices is the
main goal. This is something that has been quite successful for form-based
interfaces, but more multi-modal or even graphically challenging interfaces
that are usable are not supported very well yet.

46 High-Level User Interface Description Languages
T
ab

le
3.

1:
O

ve
rv

ie
w

of
se

le
ct

ed
pr

op
er

ti
es

of
X

M
L
-b

as
ed

H
ig

h-
L
ev

el
U

se
r

In
te

rf
ac

e
D

es
cr

ip
ti

on
L
an

-
gu

ag
es L
an

gu
ag

e
A

bs
tr
ac

ti
on

C
ov

er
ag

e
St

an
da

rd
iz

at
io

n
A

va
ila

bi
lit

y
?
:

co
n
cr

et
e

w
id

g
et

s,
?
:

P
re

se
n
ta

ti
o
n

o
r

ta
sk

m
o
d
el

o
n
ly

,
?
:

N
o

st
a
n
d
a
rd

iz
a
-

ti
o
n
,

?
:

o
n
ly

in
p
u
b
li
ca

-
ti

o
n
s,

?
?
:

p
re

d
efi

n
ed

a
b
-

st
ra

ct
io

n
s,

?
?
:
≤

2
m

o
d
el

s,
?
?
:

P
re

li
m

in
a
ry

st
a
n
d
a
rd

iz
a
ti

o
n

eff
o
rt

s
(e

.g
.

O
a
si

s)
,

?
?
:

sc
h
em

a
fr

ee
av

a
il
-

a
b
le

,

?
?
?
:

u
se

r-
d
efi

n
ed

a
b
-

st
ra

ct
io

n
s

?
?

?
:
≥

3
m

o
d
el

s
?

?
?
:

O
ffi

ci
a
l

st
a
n
d
a
rd

(W
3
C

,
IE

E
E

,.
..

)

?
?

?
:

sc
h
em

a
a
n
d

to
o
ls

fr
ee

av
a
il
a
b
le

A
U

IM
L

??
?
?

?
?

?
?

R
IM

L
?

?
?

?
?
1

?
?

?

u
se

M
L

??
?

?
?

?
?

T
er

es
a

X
M

L
??

?
?

?
?

?
?

?

IS
M

L
?

?
?

?
?

?
?
?

U
IM

L
?

?
?

?
?
?

?
?

?

X
IM

L
?

?
?
2

?
?

?
?

?

U
si

xm
l

??
?

?
?

?
?

?
?

S
E

E
SC

O
A

X
M

L
??

?
?

?

1
R

IM
L

us
es

ex
is

ti
ng

W
3C

st
an

da
rd

s
2

A
ss

um
pt

io
n:

co
ul

d
no

t
be

ve
ri

fie
d

3.4 Discussion 47

La
ng

ua
ge

T
as

k
M

od
el

D
ia

lo
g

M
od

el
D

om
ai

n/
A

pp
lic

at
io

n
M

od
el

P
re

se
nt

at
io

n
M

od
el

A
U

IM
L

?
?

(t
ag

bi
nd

in
g

w
it

h
Ja

va
cl

as
se

s)
?
?

(P
re

de
fin

ed
se

t
of

in
te

ra
ct

or
s)

R
IM

L
?
?

(X
Fo

rm
s

ty
pe

da
ta

-b
in

di
ng

)
?
?

(P
re

de
fin

ed
se

t
of

in
te

ra
ct

or
s)

u
se

M
L

?
(F

iv
e

fin
e-

gr
ai

ne
d

in
te

ra
c-

ti
on

ty
pe

s)

?
?

(P
re

de
fin

ed
se

t
of

in
te

ra
ct

or
s)

IS
M

L
??

?
?

(s
ta

te
tr

an
-

si
ti

on
ne

tw
or

k)
?
?

?
?

?
(m

et
ap

ho
r

ba
se

d)
U

IM
L

?
?

(O
b
je

ct
O

ri
en

te
d)

?
?

?
(G

en
er

ic
m

ap
-

pi
ng

s)
X

IM
L

??
?
?

?
?

?
?

(G
en

er
ic

m
ap

-
pi

ng
s)

T
er

es
a

X
M

L
??

(C
on

-
cu

rT
as

kT
re

e
X

M
L
)

?
?

(T
ra

ns
it

io
n

R
ul

es
)

?
?

(C
on

cu
rT

as
kT

re
e

X
M

L
)

?
?

(S
up

po
rt

s
a

se
t

of
in

te
ra

ct
or

s
in

m
ul

ti
-

pl
e

m
od

al
it

ie
s)

U
si

xm
l

?
?

?
(G

en
er

ic
T
as

k
M

od
el

)
?
?

?
?

(O
b
je

ct
O

ri
en

te
d)

?
?

(P
re

de
fin

ed
se

t
of

in
te

ra
ct

or
s)

S
E

E
SC

O
A

X
M

L
?

(a
ct

io
n

pr
ot

oc
ol

)
?
?

(P
re

de
fin

ed
se

t
of

in
te

ra
ct

or
s)

T
ab

le
3.

2:
A

m
od

el
-b

as
ed

co
m

pa
ri

so
n

of
X

M
L
-b

as
ed

H
ig

h-
L
ev

el
U

se
r
In

te
rf

ac
e

D
es

cr
ip

ti
on

L
an

gu
ag

es
.

?:
m

od
el

ha
s

lim
it

ed
su

pp
or

t,
??

:
pr

ed
efi

ne
d

m
od

el
is

su
pp

or
te

d,
?

?
?:

ge
ne

ri
c

m
od

el
is

su
pp

or
te

d.
N

o
?

in
di

ca
te

s
th

e
m

od
el

is
no

t
su

pp
or

te
d.

48 High-Level User Interface Description Languages

Part II

HCI Engineering, Models and
Transformations

Chapter 4

Dygimes: Dynamically Generating Interfaces for
Mobile and Embedded Systems

Contents

4.1 Introduction . 51
4.2 Dygimes process . 53
4.3 XML-based User Interface Descriptions 54
4.4 Task Model . 56
4.5 The System Glue: an Interaction and Application

Model . 60
4.6 Automatic Layout Management 63
4.7 Customization and Templating 63
4.8 Towards a Tool Chain to support Model-Based

User Interface Development 65
4.9 Discussion . 68

4.1 Introduction

As a part of the research for this dissertation a framework for dynamically gen-
erating User Interfaces for embedded systems and mobile computing devices
has been developed, which is presented in this chapter. The main purpose of
the framework is to ease the work of the mobile and embedded user interface
designer and implementor, and to provide support towards the design of am-
bient and pervasive interactive systems. The term framework is coined here

52
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

as a library with a set of supporting tools on top of which user interfaces can
be built and deployed. It is not a code framework from the designers point
of view, since the designer can use the Dygimes framework without writing
any program code. Often the software implementor of an embedded system
or mobile computing device also takes care of the design and implementation
of the user interface for the system. This is mainly due to the device spe-
cific constraints that have to be taken into account: a thorough knowledge
of the device is necessary. The Dygimes framework is conceived to ease the
creation of the user interface without the need for specific knowledge of the
hardware or software platform. Runtime transformations of user interfaces for
adaptation to the target device are also supported. The Dygimes framework
supports dynamic generation of user interfaces in this sense it can automati-
cally (at run-time) compose user interfaces from information it retrieves from
the specifications and the host platform. E.g. we will show it can compose
a user interface dynamically from an annotated task specification. We will
also show it has an automatic layout management system that can change the
presentation of the user interface according to the target device without any
manual intervention.

Besides an overview of the framework and process, this chapter also pro-
vides an overview of the models we use, and how they are integrated into one
Model-Based User Interface Development environment. The following chap-
ters will elaborate more on the details of the different models, the relations
between these models, the algorithms that allow the generation of a (proto-
typical) user interface and the use of Dygimes in industrial settings. In part
III we will show the newest and future developments based on the Dygimes
framework, like context-sensitive and distributed user interfaces.

To summarize what will be discussed in the next sections: Dygimes is a
framework for generating multi-device user interfaces at runtime. High-level
XML-based user interface descriptions are used, in combination with a task
specification, an interaction specification and spatial layout constraints. The
high-level XML-based User Interface Description Language contains the Ab-
stract Interaction Objects that are included in the user interface. These Ab-
stract Interaction Objects are mapped to Concrete Interaction Objects[VB93];
the mapping process can be guided by providing customized mapping rules.

The user interface creation process is introduced in section 4.2, and dis-
cusses the required components to build multi-device user interfaces for em-
bedded systems and mobile computing devices. These components are dis-
cussed into detail in the following sections. First, XML-based user interface
descriptions are introduced in section 4.3 as the basic building blocks for the

4.2 Dygimes process 53

process. Continuing with section 4.4, the use of a task specification will be
explained, and the relation between the task specification and the XML-based
user interface descriptions. Section 4.5 shows how the created user interface
can be attached (or “glued”) to the interfaced functionality it presents in a
location-independent manner. Section 4.6 shows how the system can ensure
consistent user interfaces. This chapter also concludes with a discussion in
section 4.9.

4.2 Dygimes process

As stated in section 4.1, the main purpose of the framework is to ease the
work of the user interface designer as well as the work of the application
implementor. At the same time a clear separation between the work of the
designer and the work of the implementor is supported. This is desirable
because of the pitfalls involved in implementing user interfaces for embedded
systems and mobile computing devices. These user interfaces require specific
knowledge about the device and the software platform available for that device.

Throughout this chapter we will use a case study, managing a simple publi-
cation database, to show how the framework helps the user interface designers
and system implementors. The database requires the user to login before using
the system. The system offers roughly two different kinds of tasks: adding a
paper to the database or searching for a paper in the database. Both require
some information to complete the tasks successfully. We kept the example
intentionally simple for illustration purposes.

A task specification for this task is developed, enriched with the user in-
terface building blocks (see chapter 8). This will be sufficient to generate
prototype user interfaces useful in a user-centered design process. The time
needed to create these prototypes is extremely short because many of the
steps the designer had to do manually with traditional GUI building tool-
kits are now automated by the framework. For example the transformation
from the task specification to the resulting functional user interfaces built by
the user interface designer is done automatically, based upon the algorithm
discussed in chapter 5. A micro-runtime environment offers support for ren-
dering the created user interfaces independent of the chosen widget toolkit.
Section 4.4 will show how all user interfaces stay consistent with regard to the
task specification. A graphical overview of the user interface construction and
rendering process is shown in figure 4.1, all parts (including how the actual
communication with the functionality takes place) will be explained in the fol-
lowing sections. Everything inside the dotted lines is done automatically: the

54
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

Figure 4.1: The Dygimes process for creating mobile and multi-device User
Interfaces. Everything inside the dotted lines is done automatically.

designer inputs exists out of the task specification, the user interface building
blocks, the layout constraints. It is also the designers responsibility to relate
the user interface building blocks with tasks from the task specification. No-
tice context detection is not included in the runtime environment itself, but
still part of the non-interactive part (chapter 10 will explain how context is
being used with the Dygimes environment).

4.3 XML-based User Interface Descriptions

In accordance with the recent growth in mobile computing devices usage,
the demand for more suitable multi-device user interface building toolkits
also increases. The reuse of existing user interface designs for new devices
is problematic: new devices have other constraints making the reuse of these
designs very difficult. In contrast consistent look-and-feel is very important,
as it contributes to creating a “brand” for the products and makes it easier

4.3 XML-based User Interface Descriptions 55

for customers to use the new device. To enable flexible reusability of existing
designs, we need to abstract the way the user interface is created for a device
in a way it becomes less dependent on device-specific properties.

One way of doing this is the use of high-level XML-based user interface
descriptions. There are already several propositions and real world examples of
the usage of XML to describe user interfaces for multiple devices, most of them
are described in chapter 3. To give the reader an idea of which kind of XML-
based user interface descriptions are used in our system, listing 4.1 shows the
specification of a simple login-dialog. A more profound discussion of this XML
language is given in chapter 6. Section 4.5 discusses how generated events
are handled and section 4.6 discusses the spatial layout constraints. When
the renderer (the runtime environment) processes the description shown in
listing 4.1, it can produce concrete user interfaces for different target platforms
(shown in figure 4.2) without any human intervention.

Listing 4.1: The login dialog user interface description

<ui>
<group name="login">
<group name="userinfo">
<interactor>
<textfield name="login">
<info>login</info><text size="10"/>

</textfield>
</interactor>
<interactor>
<textfield name="passwd">
<info>password</info><text size="10"/>

</textfield>
</interactor>
</group>
<group name="control">
<interactor>
<button name="in"><info>Log In</info></button>
</interactor>
<interactor>
<button name="reset"><info>Reset</info></button>

</interactor>
</group>
</group>

56
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

</ui>

Notice the XML description allows to hierarchically group AIOs using the
group tag. This way all groups of AIOs that logically belong together are put
in the same physical space (e.g. in the same panel or window). At the lowest
level, all AIOs in a group should always be presented to the user together. The
hierarchical structure of the user interface description allows to recursively
group parts of the user interface, i.e. groups can contain other groups, which
in their turn can contain other groups themselves. In chapter 6 we will show
how the hierarchical structure of the user interface specification with XML and
the explicit notion of “groups” can be used to generate concrete presentations
for different (and multiple) devices.

This kind of adaptability is important to support device independent au-
thoring. An advanced algorithm to support device independent authoring is
provided by the MUSA system by Menkhaus and Fischmeister [MF04]. They
show how a richer semantics of the dialog model (the event handler graph) can
contribute to more suitable multi-device user interfaces. In the next sections
we show how we combine this presentation model with a task model and dialog
model to obtain suitable multi-device user interfaces.

4.4 Task Model

The design of a consistent interface starts at the task level. There are sev-
eral advantages of using a task specification: better requirements capturing,
consistent and detailed interface design and better integration with real-life sit-
uations [DFAB04]. Nevertheless, software developers seldom use task specifi-
cations to develop user interfaces for embedded systems and mobile computing
devices. One of the main reasons is the wide gap between the implementation
of the user interface with its specific device-dependent constraints, and the
task specification. To make task modeling more attractive there should be
a glue to overcome the gap between the technical challenge of realizing the
concrete user interface and designing it with help from a task model. The
framework presented here will offer such functionality.

Chapter 2 already discussed task modeling in general and the ConcurTask-
Trees notation in specific. The framework discussed in this dissertation uses
the ConcurTaskTrees task model proposed by Fabio Paternò [Pat00]. This
notation offers a graphical syntax, an hierarchical structure and a notation to
specify the temporal relation between activities. For illustration purposes, a
simple ConcurTaskTrees specification of the paper-database example is shown

4.4 Task Model 57

(a) AWT + Swing (b) Palm IIIc

(c) Cell phone (d) Browser

Figure 4.2: The login dialog, rendered for several devices

58
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

Figure 4.3: Managing a simple publication database

in figure 4.3. A lot of current research extends the ConcurTaskTrees notation
for multi-device task specifications. More details about this notation and how
we use it are given in chapters 1, 2 and 5.

To convert the task specification into a concrete user interface, the enabled
task sets have to be calculated (see section 5.5.3). The enabled task set gen-
eration is used as a glue between the realization of the user interface and the
task specification. This approach has also been described in [MPS03, PS02]
where the focus is on the design of user interfaces, whereas we concentrate
on runtime support for creating the user interfaces dynamically using widget
toolkits as well as markup languages for the resulting user interface.

The task models can be constructed with the ConcurTaskTrees tool[Pat00],
but we use our own enabled task set calculation algorithm: in our approach the
ConcurTaskTrees model is annotated with extra information. The algorithm
for calculating the enabled task sets from a task specification is included in
the Dygimes framework; the different task sets are generated by the runtime
environment. The designer does not have to check whether every possible user
interface is created for covering each aspect modeled in the task specification:
this is done automatically at runtime by the framework through the use of the
enabled task sets.

The paper database example illustrates this: its ConcurTaskTrees specifi-
cation is saved as an XML file and loaded in the annotation tool where the
specification can be decorated with XML-based user interface descriptions.
Figure 4.4 shows a proof-of-concept tool we developed, it shows the appropri-
ate building block linked to the “Log In” task. On the left-hand side there

4.4 Task Model 59

Figure 4.4: The ConcurTaskTrees annotation tool

is an overview of the task specification. The designer can select a task (a
leaf) and select the user interface building block (on the right-hand side) that
can present this task. This can be selected from a repository of pre-existing
building blocks, or loaded from an external XML document by the tool. This
supports better reuse of user interface specifications, since the relation be-
tween the task leafs and the user interface building blocks can be specified by
the designer and the user interface building blocks can be easily used again for
another task leaf. The tool stores all user interface building blocks that were
loaded in a central repository on the hard disk. When the designer wants to
annotate another task specification, formerly created building blocks are also
available. This tool is not an interactive graphical design tool to create the
user interface building blocks, but only relates the building blocks with the
task specification. To create these building blocks the tool shown in figure 4.7
can be used.

60
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

4.5 The System Glue: an Interaction and Applica-
tion Model

Once the designer is satisfied with the user interface, the next step is to “attach
the user interface to the application”. More particularly we need to provide
a mechanism in which the user can interact with application logic through
the generated user interface. The application logic is described in an appli-
cation model. Most Model-Based User Interface Development approaches are
attached to a particular application model, like an entity-relationship model
or an object-oriented model to describe the application objects. Our approach
aims to be independent of the application model as well as to be independent of
the location of the application objects. These two requirements are important
for multi-device User Interface Description Languages, e.g. a user interface
should be able to migrate to another device without the application objects
providing the functionality has to migrate together with the interface. Thus
an important property for the provided interaction mechanisms is the support
for location transparency : when a mobile device is used, the implementation of
the functionality does not have to be on the same device as the user interface
presenting this functionality. Section 4.2 also emphasized that we intend to
enable the separation of user interface design and system implementation of
embedded systems and mobile computing devices. This means we also need
to support several ways to exchange interactive messages between the user
interface and the application logic, which could be local or remote.

To overcome these problems, the framework offers an extensible “action-
handling” mechanism [VLC03b]. This mechanism is the glue between the
user interface and the functionality that will be invoked by the user interface.
Because a clear separation between the user interface and the application logic
is needed, Dygimes only needs to know which functionality can be invoked on
behalf of the logic and which interactors can be used to execute interactions.
It does not need to know how the logic implements the functionality (code
encapsulation) or where the implementation resides (location transparency).
Even the used technique to invoke the functionality needs to be adaptable.
To accomplish these goals, we use interaction descriptions that represent the
functionality offered by the application.

In Dygimes, an interaction description can be based on the Web Services
Description Language (WSDL, [con01e]). This technology allows the devel-
oper of the application logic to describe the operations, messages and data
types that are supported by the application using existing WSDL editing
tools. However, Dygimes also needs a binding between the interaction de-

4.5 The System Glue: an Interaction and Application Model 61

scription and the abstract user interface. This binding provides Dygimes with
the information needed to determine what must happen when a particular
event occurs. For this reason we added a section to the interaction description
that describes in what way the generated user interface will be bound to the
application logic. Suppose, for example, a user pushes the ”in” button from
listing 4.1. Listing 4.2 then shows what should happen as a response to this
action. In this case the loginProcedure operation is sent to the service. This
operation is defined in the ”paperDBport” portType of the WSDL document.
The <uib:parameter> tags describe the parameters. In this case, their values
will be extracted from the ”login” and ”passwd” interactors. It is clear that
this kind of description separates the development of the user interface and
the application logic and that it supports location-transparent late binding.

Listing 4.2: The binding between an abstract user interface and the application
logic

<uib:uibinding name="actionbinding" type="paperDBport">
<uib:interactorbinding name="in">

<uib:operationlink name="loginProcedure">
<uib:parameter name="login"/>
<uib:parameter name="passwd"/>

</uib:operationlink>
</uib:interactorbinding>

</uib:uibinding>

Dygimes supports different methods to carry out the specified interactions.
First, Direct Method Invocation (DMI) can be used to invoke functionality on
the application. DMI has the benefit of being fast. However, the drawback
with this technique is that DMI can only be used for local invocation with
applications implemented in a programming language supporting a reflection
mechanism (such as Java). To overcome this problem and to enable location
transparency, we make use of web service messaging protocols. These protocols
enable us to deploy Remote Procedure Calls (RPC) in an XML-syntax to
invoke application functionality. An example of such a technology is the Simple
Object Access Protocol (SOAP, [con00]). This protocol uses an XML-syntax
to describe which method needs to be invoked upon a web service, together
with the method’s actual parameters. Those parameters are marshaled from
language constructs to XML by using particular serializers. Dygimes also
supports XML-RPC1, which is a more efficient implementation of XML-based

1http://www.xml-rpc.com

http://www.xml-rpc.com

62
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

Figure 4.5: The location-transparent action handling glue

RPC. Figure 4.5 shows the extensible architecture of Dygimes enhanced with
an interaction model.

A WSDL-based interaction description together with XML-based messag-
ing protocols offer the following benefits:

• Applications become web services-aware through the SOAP implemen-
tation. This will be an important advantage in the near future;

• The used approach is device and programming language independent;

• Interaction with remote logic that runs behind company firewalls is sup-
ported;

• Common standards for handling interaction are used, namely XML and
web services;

• The automatic generation of functional user interfaces for remote appli-
cations in a location transparent manner is supported.

4.6 Automatic Layout Management 63

4.6 Automatic Layout Management

Abstract user interface descriptions and a constraint-based layout manage-
ment system are combined in our Dygimes framework for developing adaptive
user interfaces for a wide range of devices. When developing a user interface
description language that enables us to render the user interface presentation
on several different devices, a more flexible approach for laying out concrete
widgets than offeredd by the traditional layout management techniques offer
is necessary. We focus on screen size constraints because this is the most
stringent device constraint in this matter. For example, when a graphical user
interface designed for a desktop system has to be rendered for use on a very
small screen space (like on a mobile phone) most techniques fail to present a
usable interface. The usage of spatial layout constraints can help the designer
in these situations: the consistency of the user interface is enforced, yet the
user interface is flexible enough for large differences in available screen size.
There exist several other constraint-based layout management systems like the
ones presented in [Bor79, MBFB89, SMFBB93], but none really focus on pro-
viding a flexible layout for embedded systems and mobile computing devices.
The layout manager we implemented in the Dygimes framework does not guar-
antee a “visually pleasing“ user interface, but makes sure the user interface is
suitable and consistent on different devices. This also means the effects on the
usability of the user interface are unpredicatble: an automatic rearrangement
of the interface can lead to a less usable user interface. This is the price we
pay for adding this degree of flexibility to the system. Adding (platform de-
pendent) placement strategies, like the ones presented in [BHLV94], is planned
and this can be used to have ensure a certain degree of usability despite the
flexbility that is gained. The layout management algorithm is described in
chapter 7.

4.7 Customization and Templating

The previous sections explained that the framework uses High-Level User In-
terface Description Languages descriptions with constraints to render the user
interface. The translation from the AIOs into CIOs can be done fully automat-
ically, however this can give unexpected results. For this reason, the Dygimes
framework allows the designer to have more control over the rendering of the
user interface by allowing them to specify which CIO is used to render an AIO
[VLC03a]. Mapping rules can specify mappings for one AIO in one specific
interface or they can specify mappings for a range of AIOs. This way, the

64
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

designer can define a template, in the form of a set of mapping rules for a
certain platform, that can be refined and adapted for specific user interfaces.

The mapping rules are intentionally kept simple because they are to be
used at runtime on devices that can have very limited resources. The CIO
that will be used to render a certain AIO depends on the type of the AIO and
the name that identifies the AIO. Mapping rules can specify part of the name
of an AIO, the complete name of an AIO or no name in order to define their
applicability. We will illustrate this with the example of the paper database.

Listing 4.3: Two of the specified mapping rules
<mapping>
<aio2cio>
<aio>choice</aio>
<cio>awt.CheckboxGroup</cio>

</aio2cio>
</mapping>
<mapping>
<aio2cio>
<aio>choice</aio>
<cio>awt.List</cio>
<name>large</name>

</aio2cio>
</mapping>

For this example, we used a template for the Java AWT platform. Two
of the rules in this template are shown in listing 4.3. The first rule shows
that the AIO “choice” is mapped onto a CheckboxGroup by default (no name
is specified). When the number of items is large or varies over time, as is
the case for the AIO that contains the result of the query, a List widget is a
better choice. By giving the AIOs a name that contains “large”, the second
rule in listing 4.3 is used which gives the wanted result (figure 4.6(a)). If the
designer prefers a Java AWT Choice for rendering the query result, this can
be indicated by adding a rule that contains the full name of the AIO (figure
4.6(c)).

A feature of the templating system, which is not shown in this example,
is that it allows to specify a “null” CIO for AIOs that should not or cannot
be represented on a certain platform. This generates a lot of flexibility but
can introduce problems as well: when the AIO that cannot be represented
is crucial in a certain task, it can render a whole part of the user interface
useless. A way to deal with this situation in an effective way, without loosing

4.8 Towards a Tool Chain to support Model-Based User Interface
Development 65

(a) List (b) CheckboxGroup (c) Choice

Figure 4.6: Three possible mappings for the query result on the AWT platform

the flexibility of the system, is being worked on. Currently, the designer is
still forced to deal with this situation explicitly, by providing an adapted task
model for the specific device, as needs to be done in the approach taken by
Calvary et al[CCT+02].

4.8 Towards a Tool Chain to support Model-Based
User Interface Development

To support the use of Model-Based User Interface Development in the tradi-
tional software development process [Som04], we argue small functional tools
are more suitable than an integrated environment. Model-Based User Inter-
face Development typically requires the specification of selected models like
the task model, the dialog model, the user model and the presentation model.
Some of these models are already partially captured in the software process
that is instantiated.

Tools to support Model-Based User Interface Development can have a
larger impact and a greater success rate if they are built according to the
UNIX philosophy. One tool is responsible for exactly one design or develop-
ment task, and different tools can be used as filters for the output of the other
(like UNIX pipes). This should make it easier for tools to integrate in the
software process.

Basically, we divide support tools in roughly three categories:

Relationship Management : Tools that can relate different models to each
other by different types of relationships. How these relationships are
specified depends on the type of models being used.

66
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

Transformations : Tools that apply some kind of mapping algorithms on the
current model using the information available in the model (e.g. mapping
from an abstract to a more concrete model [4]). Transformations include
filtering, querying and deducting new relations from the models or even
the extraction of a different model based on another one.

Annotations : Tools that allow to add information to the model, that makes
it suitable for further processing the model, such as device specific in-
formation.

These three categories are similar to the three mechanisms proposed to solve
the mapping problem [LVS00]. Transformation tools perform model deriva-
tion and composition, while annotation tools can take care of the linking and
binding with other models. Notice that for the moment being, our main inter-
est is not on providing rich graphical design tools, but on tools for processing
selected models that may or may not have a graphical user interface. We be-
lieve this is valuable because of the current movement of the software process
to support design and development of multi-platform applications: the soft-
ware developer should be enabled to select the most appropriate models and
integrate these in the traditional software engineering process.

We introduce “singular task” tools that are appropriate for one type of task
like relating models, transforming models or annotating models with (extra)
information. In contrast with most other approaches a complete development
environment for the Model-Based User Interface Development approach pre-
sented here is not the goal because such an integration can make the separation
of concern harder (“who creates and edits which models?”). The tools that
were created following the singular task paradigm to support our approach
are:

User Interface Building Block Annotator This tool allows to attach XML-
based High-Level User Interface Description Languages to tasks of an hi-
erarchical task specification. Figure 4.4 shows the annotation tool that
can be used with the Dygimes framework. It can load a ConcurTaskTrees
specification and attach SEESCOA XML documents to the tasks.

Runtime Rendering Engine This tool, the “UiBuilder rendering engine”,
takes an XML-based High-Level User Interface Description Language
and renders it on an output device, taking into account the platform
on which it is being used. E.g. it can choose an available widget set
and select the most appropriate widget mappings for the current plat-

4.8 Towards a Tool Chain to support Model-Based User Interface
Development 67

Figure 4.7: Tool for managing spatial constraints. Preview of the user interface
is supported.

form. Both Uiml.net (chapter 9) and UiBuilder (chapter 6, the rendering
engine for SEESCOA XML) are rendering engines.

Layout Specification Tool Figure 4.7 shows an interactive tool that can
load a SEESCOA XML document and specify layout constraints between
the different AIOs that are specified [LCC03]. The designer can render
the user interface any time she/he wants, since this tools works on the
Dygimes framework which includes the UiBuilder renderer. Chapter 7
delves deeper into the way layout can be specified for an abstract user
interface.

TaskLib This tool provides a set of transformation algorithms to generate a
dialog model from a task model [LCCV03]. The task model should be
an hierarchical model and allow temporal relations between tasks. The
TaskLib tool is actually a front-end for the TaskLib library included
in the Dygimes framework. The TaskLib library implements several
algorithms from chapter 5.

In some situations the designer needs an overview of the different models
and immediate feedback of her/his manipulations on the models: for this
purpose an integrated tool can be built with these different singular task tools.

68
Dygimes: Dynamically Generating Interfaces for Mobile and

Embedded Systems

4.9 Discussion

This chapter served as an introduction and overview of the Dygimes frame-
work. Several aspects were highlighted, such as the process to design and
create user interfaces, different models that are used in the process and the
vision on (future) tool support for this kind of processes. Dygimes is a frame-
work for creating user interfaces for embedded systems and mobile computing
devices. It incorporates several techniques from Model-Based User Interface
Development, XML-based User Interface Description Languages, automatic
layout management and location transparent event handling. The main pur-
pose is to ease the creation of consistent, reusable and easy migratable user
interfaces. These user interfaces can automatically adapt to new devices, of-
fering the same functionality, without being redesigned. If one wants a better
adaptation to a particular device, the designer can choose to provide a set of
mapping rules and/or a set of better spatial constraints to embellish the pre-
sentation of the user interface for that device. Notice the actual user interface
does not need to be rebuilt from scratch here.

The next chapters will delve deeper into the different models and features
that are touched upon in this chapter.

Chapter 5

Models for Multi-Device User Interfaces

Contents

5.1 Introduction . 69
5.2 Related Work . 70
5.3 The Task Model within the Dygimes Framework . 72
5.4 ConcurTaskTrees formalism 73
5.5 An algorithm to calculate enabled task sets 77

5.5.1 Introduction . 77
5.5.2 Generating a priority tree 78
5.5.3 Calculating the enabled task sets 80

5.6 Activity Chain Extraction 84
5.7 Dynamic Behavior of the User Interface 85

5.7.1 Mapping Sets on States 87
5.7.2 Finding the Initial State 87
5.7.3 Detecting Transitions 87
5.7.4 Mapping the Finishing States 90
5.7.5 The resulting State Transition Network 91

5.8 Actual transitions between dialogs 93
5.9 Discussion . 94

5.1 Introduction

The introduction (chapter 1) showed us several models can be used in Model-
Based User Interface Development: presentation model, user model, data

70 Models for Multi-Device User Interfaces

model, task model, dialog model,. . . This chapter will focus on the relation
between the abstract models and the concrete models, more specific the task
model and the dialog model. We believe this can help to automate the trans-
formation of the specification of the models into a concrete user interface. One
of the problems encountered when progressing from one model to another is to
keep the different models consistent with each other. When a task specifica-
tion is used that can specify the temporal relations between (sub)tasks, these
relations can be exploited to extract (part of) the dialog model out of the task
specification. We believe the dialog model is an essential model to make the
transition between the abstract models and the concrete models.

A pragmatic approach will be taken in which feasibility is emphasized
over a completely automated transformation from the task specification into a
dialog specification. The designer should stay in control of the user interface
creation, with the transformation supporting him to keep both models (task
and dialog) consistent with each other. The dialog model can be generated
by incorporating part of the design knowledge and relying on the modeling
concepts available from the task model. We show how the dialog model is
governed by an appropriate task model although dialog and presentation model
are also closely related. The task design can be of a greater influence on the
final presentation of the concrete user interface, making it more suitable for
the tasks it should support.

The remainder of this chapter is structured as follows: section 5.2 reports
on some significant steps of different dialog models used in methods and tools
for user interface development, from the less expressive and executable to the
most ones. Section 5.6 explains how an activity chain can be used for extract-
ing a dialog model out of a task model. This is followed by an explanation
of the actual algorithm in section 5.5. How the transitions between different
windows are invoked, when the dialog model has to be rendered in a real user
interface, is explained in section 5.8.

In order to make this chapter more readable, some definitions from chapter
2 will be repeated.

5.2 Related Work

The State Transition Diagram [Par69] was probably the first and the most fre-
quently used formal method to model a dialog, as expanded in State Transition
Networks (STN) [Was85]. Other formal methods have also been investigated,
but there was no tangible proof of a far superiority of one of them over the
other ones with respect to all the criteria defined in [Coc87].

5.2 Related Work 71

Genius [JWZ93] produced from a data model multiple Dialog Nets, a spe-
cific version of a Petri Net for specifying coarse grained dialog in terms of
transitions (unspecified or fully specified) between views. The advantage of
Petri Nets over previously explored formal methods was that they show the
flow with indistinguishable tokens and places and marks can be introduced
one at a time.

Tadeus [SE96b] takes envisioned task and object models to infer design
of a dialog model expressed in Dialog Graphs, which are both graphically
and formally expressed, thus leading to model checking while keeping visual
usability.

The Interactive Cooperative Objects (ICO) formalism [BP99], based on
Petri nets, allows more expressive and modular dialog specifications than the
earlier attempts. In addition, any ICO specification of a dialog can be directly
executed, which reduces the gap between specification time and execution
time.

Windows Transitions [MV02] also extend STNs so as to create a visual and
formal method to specify coarse grained dialog between windows. The STN
is based on a series of window operations and transitions and can be drawn
on screenshots. However, this model is not generated, but produced by hand.
By consequence there is no guarantee to preserve constraints imposed by the
task.

Closely related work can also be found in [DFR03, DF04]: the relation
between task models and dialog model is closely investigated. Just as in our
approach the task model is considered as the starting point of most Model-
Based User Interface Development approaches. In contrast with our approach,
Dittmar and Forbrig extend and improve the task model so it can represent
actions and states. This leads to a better integration between task and dialog
models. The differences with our work are the use of different types and views
in the dialog graph that is supported in the work of Dittmar and Forbrig which
we do not support, and the automatic dialog generation in our approach which
is not available in [DFR03].

There is a need to produce a dialog model while maintaining a lightweight
approach that supports the designer in creating consistent and correct models.
The closest work is probably Teresa [MPS03], which is aimed at producing
multiple user interfaces for multiple computing platforms. We also rely on
the mechanisms introduced in Teresa and expand them in several ways that
will be outlined throughout this chapter. The main differences between the
Teresa tool and the Dygimes framework, are that the latter supports run-
time creation of user interfaces and the possibility to use different widget set

72 Models for Multi-Device User Interfaces

libraries in addition to mark-up languages. Instead of focusing on tool support
the Dygimes framework is focused on automatic creation of user interfaces.
While the Teresa tool offers a design environment, the Dygimes framework
offers a run-time environment with currently limited tool support. One of the
goals is to reuse existing tools for task modeling, so the Dygimes process does
not rely on a single monolithic integrated development environment.

5.3 The Task Model within the Dygimes Frame-
work

Within the Dygimes Framework we make extensively use of the task model. It
is the first model the designer creates and the Dygimes process defines several
steps in which the task model is enhanced and other models are created based
on the task model in comprehensible steps. Figure 5.1 gives an overview of
the design cycle to construct an interactive system. The following steps are
included in a design cycle:

1. A ConcurTaskTrees task specification is provided. The leaves in the task
specification are annotated with abstract user interface descriptions (user
interface building blocks). Graphical tool support to attach the user
interface building blocks is provided (see figure 4.4).

2. The task specification and abstract user interface descriptions are merged
into one “annotated” task specification. Both the task specification and
user interface descriptions can be expressed using XML. This allows a
smooth integration and results in a singe XML document the system can
process.

3. The enabled task sets are calculated (a custom algorithm to calculate
these is provided in the Dygimes framework).

4. The initial Task Set is located (the first Task Set which is shown in a
user interface when the application is used, see section 5.7.2).

5. The dialog model can be created using the temporal relations between
tasks and the enabled task sets provided in the task model (see section
5.7.3). The dialog model is expressed as a State Transition Network
(STN).

6. The Abstract user interface description is generated out of the enabled
task sets and the STN. The STN provides the navigation between the

5.4 ConcurTaskTrees formalism 73

different dialog windows and the enabled task set specifies the necessary
content of a dialog window.

7. The transitions are integrated into the user interface description.

8. The actual user interface is generated and shown to the designer or the
user.

9. The designer can test the user interface and provide feedback by changing
the Compound Task Sets (CTS, see section 5.4) and Abstract Presenta-
tion.

10. The Compound Task Sets can be adapted by the designer.

11. Transitions are recalculated according to the new Compound Task Sets.

Although this is not a traditional design cycle as one can find in [DFAB04] for
example, it is closely related to transformational development and software
prototyping in Software Engineering [Som04].

5.4 ConcurTaskTrees formalism

The task specification central in our approach is the ConcurTaskTrees nota-
tion [Pat00], introduced in section 2.3. We tried to take a pragmatic approach:
while working bottom-up towards usable algorithms to calculate the Enabled
Task Sets and extract a dialog specification from a task specification, we pro-
vide some semi-formal definitions.

For a good understanding of the algorithm presented in this chapter, we
introduce the following notation. Let T be an infinite set of tasks. By R we
denote the set of relations {[], |[]|, |=|, [>, >>, []>>, |>} ∪{d} where d is
the decomposition relation.

Definition 13 A ConcurTaskTrees task model M is a rooted directed tree
where every node is a task in T . In addition, there can be arcs between tasks
carrying labels from R modeling connections by temporal operators. An arc
labeled o from task t to t′ is denoted by t

o→M t′.

For the remainder of this chapter we fix a task model M . Using the introduced
notation we can define a set of tasks of a task model M :

Definition 14 By T (M) we denote the set of tasks occurring in M .

74 Models for Multi-Device User Interfaces

Figure 5.1: The Dygimes User Interface design and generation process

We will define also other relations in this chapter. These definitions have the
sole purpose to support the development of the algorithm. A more precise
way for defining semantics can be done using Kripke semantics [CGP99] for
example.

We will make use of the “mobile phone task specification” for illustration
purposes; a task model describing some functionalities offered by a regular
mobile phone. It describes the steps to adjust the volume or read an SMS
message. The task specification is shown in figure 5.2(a).

A very important advantage of the ConcurTaskTrees formalism is the pos-
sibility to generate Enabled Task Sets (ETS) out of the specification (see sec-
tion 2.3). Based on the definition of an enabled task set, an Enabled Task
Collection (ETC) E is a set of sets of tasks (E ⊆ 2T). In [Pat00] an algorithm
is given to compute a specific enabled task set of a given task model M , we
denote the latter by E(M). Usually there are several enabled task sets which

5.4 ConcurTaskTrees formalism 75

can be calculated out of a task model.
The enabled task sets calculated from the model in figure 5.2(a) are:

ETS1 = {Select Read SMS, Select Adjust V olume,Close, Shut Down}
ETS2 = {Select SMS,Close, Shut Down}
ETS3 = {Show SMS, Close, Shut Down}
ETS4 = {Select Adjust V olume,Close, Shut Down}
ETS5 = {Adjust, Close, Shut Down}

(5.1)

Based on the heuristics given in [PS02], adhesive and cohesive tasks can
be defined as follows (definitions 15 and 16):

Definition 15 Two tasks t, t′ ∈ T (M) are cohesive w.r.t. a task model M
if there is a set S ∈ E(M) such that {t, t′} ⊆ S.

Definition 16 Two tasks, t and t′, are called adhesive if they are not cohe-
sive, but they are semantically related to some extent.

[PS02] also introduces some rules for merging enabled task sets, which can be
very useful when there are a lot of enabled task sets. These heuristics can be
used to identify adhesive tasks: two tasks which do not belong to the same
enabled task set, but their respective enabled task sets can be merged into
one enabled task set. On the other hand, merging enabled task sets can cause
problems when a user interface for a mobile phone has to be generated starting
from the task model. Typically, a mobile phone can only show one task at the
same time due to the screen space constraints. Consequently, a fine-grained
set of enabled task sets can ease the automatic generation of user interfaces
subject to a (very) small screen space. We defined some heuristics for splitting
up enabled task sets in [CLC04d].

In addition, we define a Compound Task Set (CTS) based on the definition
of a task set:

Definition 17 A Compound Task Set of a task model M is a collection of
tasks C ⊆ T (M) such that

• every two distinct tasks in C are cohesive or adhesive; and,

• for every t ∈ C there is an St ∈ E(M) such that t ∈ St; in addition,
St ⊆ C.

76 Models for Multi-Device User Interfaces

(a) A ConcurTaskTrees specification for using some functionalities
offered by a mobile phone.

(b) State Transition Network describing the behavior of figure 5.2(a)

Figure 5.2: A ConcurTaskTrees diagram for a mobile phone (5.2(a)) and its
State Transition Network (5.2(b)).

5.5 An algorithm to calculate enabled task sets 77

The different CTSs indicate which user interface building blocks (attached to
the individual leaf tasks) can be presented as a group to the user. Notice the
composition of a CTS depends on the heuristics the designer applies. In step
9 of figure 5.1, the designer can choose to group certain enabled task sets.
Our system relies on the designer to decide what is desirable and what is not.
Heuristic rules to contract or split the enabled task sets as proposed in [PS02]
or [CLC04d] can be automatically applied by the designer if she/he wishes
to do so. Our system provides consistency checks so whenever these heuristic
rules are applied, all models that are influenced by these heuristics will update
accordingly. The heuristic rules can be used to guide the designer to make
better decisions with the next implementation of the Dygimes framework.

The next step is to discover for every S ∈ E(M) the set R ⊆ E(M) of
enabled task sets where every enabled task set in R can replace S when that
enabled task set is finished. So, we will try to discover transitions that allow
the user to go from one enabled task set to another according to the temporal
relations defined in the task specification.

5.5 An algorithm to calculate enabled task sets

5.5.1 Introduction

In our framework, the enabled task sets are calculated by transforming the
ConcurTaskTrees specification into a priority tree and applying the prede-
fined rules (somewhat modified) described in [Pat00]. A priority tree is a
ConcurTaskTrees specification, where all the temporal relations of the same
level in the task hierarchy have the same priority according to their defined
order. Such a tree can be obtained by recursively descending into the Con-
curTaskTrees specification inserting a new level with abstract tasks where the
temporal operators on the same level do not have the same priority. This does
not change the semantic meaning. A more formal definition of a priority tree
can be found in [CC03] and is repeated here in definition 18.

Definition 18 A Priority Tree of a task model M , denoted by P(M), is
a ConcurTaskTree with the same semantic meaning as M but where ∀t ∈
T (P(M)) with children t1, ..., tn where n ≥ 3: ∀i ∈ {1, ..., n−2} with ti

oi→P(M)

ti+1 and ti+1
oi+1→ P(M) ti+2, oi and oi+1 share the same priority.

78 Models for Multi-Device User Interfaces

Choice Choice ([]) highest priority
Parallel Composition Independent Concurrency (|||), Concurrency

with Information Exchange (|[]|)
Interrupt Disabling ([>) l

Suspend Resume (|>)
Enabling Sequential Enabling (>>), Sequential Enabling

with Information Passing ([]>>)
lowest priority

Table 5.1: The priority order of ConcurTaskTrees temporal operators.

5.5.2 Generating a priority tree

For calculating the enabled task sets we used the algorithm described in
[Pat00], and made some adjustments to it. Unfortunately, the algorithm given
there has some minor bugs, which makes the generated enabled task sets incor-
rect in some situations1. To overcome this problem and to be able to integrate
the algorithm in custom tools, our own algorithm for calculating the enabled
task sets will be used.

Using the priorities of the temporal operators (sect. 5.4) we can transform
the original tree (which represents the task model) into a priority tree by us-
ing the precedence of the temporal operators. We use the priority table 5.1
to transform a general ConcurTaskTrees into a priority tree (e.g. Interleaving
has a higher precedence then disabling). The temporal operators in the Con-
curTaskTrees notation have the following precedence: {[]} > {|[]|, |||} >
{[>} > {|>} > {>>, []>>}. Using this table we can construct a priority
tree: this is a representation of the original tree that has only operators of
the same precedence on each level of the tree. The tree is transformed by
inserting abstract tasks on the appropriate levels. An example of a regular
ConcurTaskTrees tree and its priority tree can be seen in figure 5.3.

1Current implementations of the Teresa tool resolve most of the bugs.

5.5 An algorithm to calculate enabled task sets 79

(a
)

n
o
rm

a
l
tr

ee
(b

)
p
ri

o
ri

ty
tr

ee

F
ig

ur
e

5.
3:

A
C

on
cu

rT
as

kT
re

es
tr

ee
an

d
it

s
pr

io
ri

ty
re

pr
es

en
ta

ti
on

80 Models for Multi-Device User Interfaces

5.5.3 Calculating the enabled task sets

We need two additional functions for calculating the enabled task sets out
of a ConcurTaskTrees specification: first and body. first(t) identifies the set
of subtasks of task t which should be executed first. If t has no subtasks,
than first(t) = t. body(t) identifies the set of subtasks of task d which are
not included in first(t). Notice first({t1, ..., tn}) = {first(t1), ..., first(tn)}.
The same goes for body. In the algorithm a task kan also be labeled with
“lfirst” and “lbody”, indicating the task should be replaced by a selection
of its subtasks according to its label in the next iteration of the algorithm
(lfirst(t) is true if t is labeled with “first”, otherwise it is false).

The functions parent and children are also introduced, to make the algo-
rithm easier to read. The parent function returns the parent node of a node,
if any. For example: parent(t) = k says the parent of the node t is k. The
children function gives us the children of a node, which is just an expres-
sion for the decomposition relation introduced in section 2.3: children(t) =
{n1, n2, .., nm} where n1, ..., nm are the result of the decomposition of t. Of
course this implies parent(n1) = t, parent(n2) = t,...,parent(nm) = t. Notice
children(t) = first(t) ∪ body(t).

Also consider the function necessaryTasks(S, t) with S being an enabled
task set and t ∈ T (M), this function returns a set with all the tasks of S that
have a common disabling parent with t or have certain concurrent relation
with t by which we mean directly through temporal operators on the same
level or through parents on a higher level in the tree.

Using the priority order from table 5.1, a priority tree can be composed
from the ConcurTaskTrees model. We obtain the following algorithm to cal-
culate the enabled task sets out of the priority tree:

1. The initial set of enabled task sets ET S contains a single enabled task
set ets1 = {tr}, that only contains the root node tr.

2. while ∃d ∈ etsi where 1 < i < #ET S; and (children(d) 6= ∅)∨first(d)∨
body(d)

(a) If (d is a leaf) do:

• If(lfirst(d)): remove the lfirst label from d
• Else If(lbody(d)): ETS ← ETS \ etsi

(b) If (children(d) 6= ∅), take the next level in the tree in which
children(d) = {n1, n2, ..., nm} participate

• If (n1
[]→ n2) (choice):

5.5 An algorithm to calculate enabled task sets 81

i. etsk ← (etsi \ {d}) ∪ {n1, n2, ..., nm} and ETS ← (ETS \
etsi) ∪ etsk

ii. ∀node ∈ {n1, n2, ..., nm} make a new ETS and add it to
the set of enabled task sets: ET S ← ET S ∪ {{lbody(n1) ∪
etsi} ∪ ... ∪ {lbody(nm) ∪ etsi}

• If (n1
|||→ n2 ∨ n1

|[]|→ n2) (parallell composition):
i. Replace d with children(d) in etsi: etsi ← (etsi \ {d}) ∪
{n1, n2, ..., nm}

• If (n1
[>→ n2 ∨ n1

|>→ n2) (interrupt):
i. etsk ← lbody(n2) ∪ (etsi \ {d})
ii. etsi ← {n1} ∪ lfirst(n2) ∪ etsi \ {d}
iii. ETS ← ETS ∪ etsk

• If (n1
>>→ n2 ∨ n1

[]>>→ n2) (enabling):
– If(lbody(d))

i. ETS ← ETS ∪ {{n1 ∪ necessaryTasks(etsi, d)} ∪ ... ∪
{{nm ∪ necessaryTasks(etsi, d)}

ii. ETS ← ETS \ etsi

– Else If (lfirst(d))
i. etsk ← lfirst(n1) ∪ (etsi \ {d})
ii. ETS ← ETS ∪ {{lbody(n1)} ∪ necessaryTasks(etsi, d)}
iii. ETS ← ETS \ etsi

– Else
i. ETS ← ETS ∪ {(etsi \ {d})∪ {n1}} ∪ ...∪ {(etsi \ {d})∪
{nm}}

ii. E′(M)← E′(M) \ {etsi}

3. Eliminate all User Tasks because they are not shown in a user interface.

When the algorithm described here finishes, we have all the possible enabled
task sets from the task specification2. Since an enabled task set specifies
all tasks that should be “accessible” at one point in time we can map these
enabled task sets on dialogs in the dialog model. This corresponds with finding
all the possible combinations of presentation units (see definition 9) which
should be available in an integrated user interface. Each enabled task set can

2In fact there is a post-processing stage involved that removes duplicate entries and
removes possible inconsistent tasks from a task set.

82 Models for Multi-Device User Interfaces

be represented by one or more presentation units, so each enabled task set
presents one integrated user interface. Following definition 12 we can say this
algorithm offers full coverage for the task specification.

As an example of the algorithm, consider the ConcurTaskTrees model given
in figure 5.3. To calculate the enabled task set out of this model, the model has
to be saved into an XML document first. This XML document will be imported
into the uibuilder.navigation library (part of the Dygimes Framework), to
build an internal representation for this task-model suitable for “UiBuilder”,
the Dygimes rendering engine. The UiBuilder is a user interface rendering
engine which takes abstract XML-based user interface descriptions as input,
and renders them in an appropriate form for the target platform [LVC02].

The enabled task sets which are retrieved by using the algorithm described
here are: ET S ={{Provide id + password}, {Check id+password}, {Log Out,
Record video, Present camera’s, Pick camera}, {Observe camera, Log Out,
Record video}, {Pick camera, Log Out, Record video}}. For each element in
ET S an integrated user interface should be provided. Notice this approach
makes the transition from a task-model to an effective user interface easier,
more consistent but also less interactive.

To make the automatic creation and grouping of the user interface accord-
ing to the calculated enabled task set work, High-Level User Interface Descrip-
tion Languages are integrated into the ConcurTaskTrees model. This is done
by importing the XML document which can be saved with the ConcurTask-
Trees Environment in our annotation tool (figure 4.4). The ConcurTaskTrees
Environment is a closed source application, so we need to post-process its
output, instead of changing the implementation of the environment.

A simple task specification for an email client is presented in figure 5.4;
this task specification is created with ConcurTaskTrees Environment. This
can be saved as an XML document and imported in our annotation tool. The
annotation tool attaches High-Level User Interface Description Languages on
the leaf tasks that specify how the task can be presented in a concrete user
interface. Saving this annotated specification results in an enhanced Concur-
TaskTrees document that also includes High-Level User Interface Description
Languages for the tasks it specifies. The result of this step (step 1 from the
Dygimes design cycle) is graphically presented in figure 5.5. The enabled

5.5 An algorithm to calculate enabled task sets 83

Figure 5.4: A simple email client task specification.

Figure 5.5: A simple email client task specification annotated with user inter-
face building blocks.

84 Models for Multi-Device User Interfaces

task sets from the specification in figure 5.4 are shown in equation 5.2.

ETS0 = {LogIn}
ETS1 = {Quit, Select Change Options, Select Check Mail, Select Compose Mail}
ETS2 = {Quit, Show Messages, Select Message}
ETS3 = {Quit, Show Message, Select Quit Reading}
ETS4 = {Quit, F ill in To, F ill in Subject, Enter Text, Submit Mail, Cancel}
ETS5 = {Adjust Options, Quit}

(5.2)
Full coverage of this set of enabled task sets can be realized by merging the
different user interface building blocks attached to each task for each enabled
task set. For example, ETS4 is the aggregation of the building blocks attached
to the tasks “Quit”, “Fill in To”, “Fill in Subject”, “Enter Text”, “Submit
Mail” and “Cancel”. This results in:

ETS4=
{ Quit, Fill in To, Fill
in Subject, Enter Text,
Submit Mail, Cancel }

=

5.6 Activity Chain Extraction

We define an Activity Chain as a path of different dialogs to reach a certain
goal. A dialog is uniquely defined by the enabled task set which it presents.
Each dialog is considered a step in the usage of the application, so a graph
of enabled task sets can be built representing the flow of the dialogs the user
may see. Each enabled task set is a node in this graph and can have a directed
edge to other enabled task sets, which represents the transition of one dialog
to another dialog. In addition, a start task set can be identified presenting the
initial dialog. Given these properties, the activity chain can be specified as a
State Transition Network (STN).

An STN is defined as a connected graph with labeled directed edges. Edges
are labeled with tasks. Nodes are the sets in E(M). In addition, there is an
initial node and a finishing node.

For example, figure 5.2(b) shows the STN for the task model shown in
figure 5.2(a). Intuitively, an STN seems insufficient to describe the behavior
because of the concurrency supported in the task model. However, tasks which

5.7 Dynamic Behavior of the User Interface 85

are executing in the same period of time belong to the same enabled task set ,
which makes concurrent enabled task sets unnecessary. We will only need one
active state in the generated dialog specification; STNs are sufficient for this
purpose. This condition may not hold when collaborative user interfaces are
considered though.

In figure 5.2(b), the transitions between states are labeled with the task
names, where Shut Down is the exit transition. The goal is to find and re-
solve these transitions automatically, so the generated user interface is fully
active and the system offers support for several related dialogs, without the
need to implement the transitions explicitly. By using automatically detected
transitions, the user interface designer can make an appropriate dialog model
without burdening the developer. It suffices to describe the “transition con-
ditions” when a transition is triggered in the program code. Three different
levels of dialogs can be identified: intra-widget (how widgets behave), intra-
window (what is the dialog inside a window) and inter-window (how the dif-
ferent windows behave w.r.t each other). The focus in this chapter lies on the
inter-window level.

Transitions between states in the STN can be identified by investigating
the temporal operators that exist between tasks in the task specification. Usu-
ally, one proceeds from one enabled task set to another when an enabling or
disabling operator is detected. More formally (based on definition 13), this
can be expressed by introducing the following definition:

Definition 19 Let S1, S2 ∈ E(M), t1 is a candidate transition in one of
the following cases:

• t1
>>→M t2, t1 ∈ S1 and t2 ∈ S2

• t2
[>→M t1, {first(t1), t2} ⊆ S1 and body(t1) ⊆ S2

Here, first(t) is the first subtask of t that has to be performed, and body(t)
are the subtasks of t not included in first(t). These two functions are defined
in [Pat00] and explained in section 5.5.3.

5.7 Dynamic Behavior of the User Interface

In short, building the STN to guide the activity chain consists of:

1. A set of states; every enabled task set is mapped on a state;

86 Models for Multi-Device User Interfaces

2. A set of transitions; every task involved in a disabling or enabling relation
can be a candidate transition as described in definition 19;

3. An initial state; this is the unique initial enabled task set shown to the
user;

4. A set of finishing states; the set of enabled task sets that can terminate
the application;

5. An accept state; arriving in the accept state will terminate the applica-
tion. The accept state can be reached out of a finishing state.

The rules we will show here are obtained based on empirical results, not
by mathematical deduction. This means we can not prove they are correct
in every situation, but only know that they work in many situations. As a
starting point, our algorithm from section 5.5 is based in the algorithm given
in [Pat00]. All the temporal operators are considered allthough there is no
generic process: for each priority level (see table 5.1) is treated separately. The
algorithm is implemented and tested successfully on several examples, there
are only a few cases we know about that give incorrect results. Most of these
incorrect results were due to the occurence of concurrency in combination with
other operators in the task specification which would lead to an extra ETS.
This kind of errors were corrected by adding a post-processing stage in the
software which can detect these incorrect results and remove the accordingly.

In the next section, we will show some example rules to extract the STN
out of the task specification. This is done in four steps: finding the states of
the STN, locating the start state, collecting the transitions between states and
finally locating the finishing or “accept” state. The most challenging part is
collecting the transitions of the STN: this requires investigating the temporal
relations in the task model and deciding which task will invoke another enabled
task set.

Before we continue, we define two functions: firstTasks and lastTasks:

firstTasks : takes a node n of the ConcurTaskTrees task model and returns
the left-most group of leaves that are descendants of n and are all ele-
ments of the same enabled task set. This function will return a single
enabled task set if no ancestor of n is involved in a concurrent relation.

lastTasks : takes a node n of the ConcurTaskTrees task model and returns
the right-most group of leaves that are descendants of n. When a con-
currency or a choice relation is specified between siblings on the right
hand-side, these are processed recursively and joined together.

5.7 Dynamic Behavior of the User Interface 87

5.7.1 Mapping Sets on States

The easiest part is finding which states to use in the STN. This is a one-to-one
mapping of all enabled task sets which can be retrieved from the Task Model.
So every s ∈ E(M) is a state in the STN. For example; in the STN for the
mobile phone example (figure 5.2(a)), each enabled task set is mapped on a
state resulting in 4 different states.

5.7.2 Finding the Initial State

The initial state can be found by mapping the first enabled task set that will
be presented to the user onto this state. This enabled task set is referred to as
the start enabled task set or Ss. To find this enabled task set we first seek the
left-most leaf tl in the ConcurTaskTrees specification that is not a user task.
This task appears before every enabling temporal operator so it must belong
to the start task set.

However, tl can belong to different enabled task sets when it has an an-
cestor involved in a concurrent temporal relation. If tl only belongs to one
enabled task set, the start enabled task set is found. To find Ss when tl be-
longs to more than one enabled task set we check which tasks must belong
to Ss by a recursive calculation of the first of the root. The enabled task set
containing all the tasks of firstTasks(root) is selected. This enabled task set is
unique, because the root node can not have ancestors involved in a concurrent
relationship with its siblings.

Consider the example in figure 5.6(a). Taking the firstTasks(root) gives us
Ss = {Task1.1, Task2.1}.

5.7.3 Detecting Transitions

Once all enabled task sets are mapped onto states of the STN, transitions be-
tween the different states have to be detected. Transitions are regular tasks; in
[PS02] transition tasks between Task Sets are also defined but without letting
the system detect them automatically. Our approach detects the transitions
automatically relying on the temporal operators in the task model.

To detect candidate transition tasks, the task model has to be scanned for
all candidate transitions according to definition 19. First, the task model is
transformed into a priority tree before further processing. For every candidate

task t1 ∈ T (M) where t2
[>→M t1 or t1

>>→M t2 and t1 and t2 belong to differ-

88 Models for Multi-Device User Interfaces

ent enabled task sets 3, the selection of transition tasks out of the candidate
transitions can be done as follows:

If the temporal operator is enabling: t1
>>→M t2 , one of the following

four steps is taken:

1. t1 and t2 are leaves, one of the two following two steps is valid:

(a) t2 belongs to just one task set: all enabled task sets containing t1
trigger the enabled task set that contains t2.

(b) t2 belongs to several enabled task sets: for every e in E(M), t1 ∈ e,
there is a transition T and a task set Tl where Tl is the same task
set as e except for t1 is replaced by t2 in the task set. Such a task
set exists due to the presence of a concurrency temporal operator
between ancestors of t1 and t2. Figure 5.6(b) shows the enabling
transitions of the task model in figure 5.6(a). Consider the enabling
relation between Task 1.1 and Task 1.2. Three enabled task sets
contain Task 1.1 namely ets1, ets2 and ets3 and three other enabled
task sets contain Task 1.2 namely ets4, ets5 and ets6. ets1 and ets4

differ only by one task. Here Task 1.1 is replaced by Task 1.2 so we
introduce this transition: ets1

Task1.1−−−−−→ ets4. All other transitions
in this example can be found in the same way (e.g. ets2 and ets5

differ by the same tasks).

2. t1 is a leaf, t2 is not: t1 triggers the enabled task set of the firstTasks(t2)
if t1 and t2 have no ancestor involved in a concurrent relation. Figure
5.7 shows how this situation maps on a STN. Even if one of the descen-
dants of t2 is involved in a concurrency or choice relation this does not
change the process: they would belong to the same enabled task set by
definition. If there is an ancestor of t1 and t2 which has a concurrent
temporal relation with another task, detecting the correct transition is
more difficult, and an approach similar as 1b is applied.

3. t2 is a leaf, t1 is not: in this case the triggering task is found by taking
the right-most leaf of the descendants of t1. This can be done by using
the function lastTasks: the tasks returned by lastTasks(t1) are the tasks
that trigger t2. Figure 5.8 shows an example. If there is an ancestor of
t1 and t2 which has a concurrent temporal relation with another task,
the same approach as 1b has to be applied.

3Notice t1 and t2 have the same ancestors, since they are siblings

5.7 Dynamic Behavior of the User Interface 89

(a) ConcurTaskTrees diagram (b) State Transition Network

Figure 5.6: ConcurTaskTrees with concurrency (5.6(a)) and the resulting State
Network Diagram (5.6(b))

4. Neither t1 nor t2 are leaves: lastTasks(t1) collects the “last” tasks of t1
as in 3. Now apply 2 on each last task and t2 as if they had an enabling
temporal operator between each other. Figure 5.9 shows an example.

If the temporal operator is disabling: t1
[>→M t2 , then first(t2) is a

disabling task (first is defined in section 5.6) and one of the following steps is
taken:

1. If t2 has an ancestor that is an iterative task ti: for each enabled task
set E containing t2 add a transition E

t2→ startTaskSet(ti), where
startTaskSet(ti) is the first task set of the subtree with root ti.

2. If t2 has an ancestor a with an enabling operator on the right hand side:
let r be the right hand side sibling of a and add transitions as if there is
an enabling operator between t2 and r.

3. In all other cases; for each enabled task set E containing t2 add a tran-
sition to the accept state: E

t2→ qaccept. qaccept is a finishing state and
will be further explained in section 5.7.4.

Figure 5.10 shows a ConcurTaskTrees specification with a disabling relation
and the extracted STN. Notice how the task Quit is responsible for both
transitions to the accept state.

90 Models for Multi-Device User Interfaces

(a) ConcurTaskTrees diagram (b) State Transition Network

Figure 5.7: TaskStart ID Form is a leaf and TaskPerform Query is no leaf.

(a) ConcurTaskTrees diagram (b) State Transition Network

Figure 5.8: TaskSubmit is a leaf and TaskSelect F ile is no leaf.

5.7.4 Mapping the Finishing States

To complete the STN, the “last” enabled task sets with which the user interacts
have to be located. For this reason we introduce a new definition for expiring
task.

Definition 20 A task t ∈ T (M) is an expiring task, when t is a leaf and
there is no t′ ∈ T (M) such that t

o→M t′ with o ∈ O.

If an expiring task te has an ancestor with an enabling operator on the right
hand side, we have already taken care of this leaf by detecting enabling tran-
sitions (see section 5.7.3). If this is not the case, further examination of the

5.7 Dynamic Behavior of the User Interface 91

(a) ConcurTaskTrees diagram (b) State Transition Network

Figure 5.9: Neither TaskPersonal Info or TaskJob Info are leaves.

task is required:

• If te has an ancestor that is an iterative task ti: for each enabled task
set e containing te add a transition: e

te→ startTaskSet(ti).

• Else: for each enabled task set e containing ti add a transition: e
te→

qaccept.

5.7.5 The resulting State Transition Network

Once the system has processed the steps described in the previous sections,
a complete STN has been built. This STN describes a dialog model that is
correct w.r.t. the task specification: the order of tasks that can be executed
(the order between the enabled task set) is now also expressed in the STN. This
is a powerful tool for designers to check whether their task specification meets
the requirements before the working system has to be built. The designer can
rely on the STN to produce a usable prototype supporting navigation through
the user interface.

Referring back to the task specification for the email application shown in
figure 5.4 and its enabled task sets shown in equation 5.2, we can construct the
STN for this example by applying the algorithm from this chapter on the spe-
cification. The resulting STN can be seen in figure 5.11. Since the High-Level
User Interface Description Language for each enabled task set is available, we

92 Models for Multi-Device User Interfaces

(a) ConcurTaskTrees with dis-
abling task

(b) The resulting STN for (a)

Figure 5.10: Extracting the STN when a disabling relation is involved

Figure 5.11: The state transition network for the email application

5.8 Actual transitions between dialogs 93

Figure 5.12: The state transition network for the email application

can render the concrete user interface for each state in the STN. Figure 5.12
shows the STN with each state replaced by its concrete user interface. The
advantage of the Dygimes framework is it allows direct prototyping this way:
the designer can see immediately how changes in the task specification reflect
on the user interface compositions and user interface navigation.

5.8 Actual transitions between dialogs

Once the STN is completely defined, the system still lacks a way of detecting
the actual conditions when the transition takes place. In most cases the con-
dition for a transition is the execution of a task, so this has to be monitored
during the lifetime of the application. The run-time system for executing the
models is responsible for this monitoring role. In the Dygimes framework,
where high-level XML-based user interface descriptions are attached as user
interface building blocks to leaves in the task model, a specialized action han-
dling mechanism [CLV+03] is implemented to take care of the state transitions.
For now, widgets playing a key role for a dialog (e.g. a “next” button in an
installation wizard) are identified by the designer by introducing a special

94 Models for Multi-Device User Interfaces

“action” and attaching it to the presentation model. The specialized action
contains the preconditions and will be executed only when the preconditions
are fulfilled.

When several concurrent tasks are included in the same enabled task set,
which are all labeled as a transition in the STN, the system has to wait until
all these tasks are finished. This can not be detected in the STN, in this case
knowledge about the temporal relations is necessary. One possible solution is
to group the concurrent tasks and handle them as if they were one task. For
desktop systems concurrent tasks are not unusual, but for small devices (like
PDA, mobile phone) the concurrency will be limited by the constraints of the
device.

5.9 Discussion

This chapter showed how the task, dialog and presentation model are related
to each other in the Dygimes user interface creation process. We believe the
approach proposed here is a simple and intuitive approach in contrast with
most other approaches. It is not bound to any notations, but does rely on
the possibility of grouping tasks from the task model based on the temporal
relations that are specified by the task specification. We will show how this
approach is also applicable with other XML-based High-Level User Interface
Description Languages that allow to define user interface structure and layout
separately (see chapter 9).

An important advantage of our approach is it requires no completely new
integrated tools to create the task specification or XML-based High-Level User
Interface Description Language; it is applicable with the existing tools like
the ConcurTaskTrees Environment for the task model and SEESCOA XML,
XForms or UIML for the presentation model. Whenever the XML-based High-
Level User Interface Description Language can be split up into several parts
which can be randomly merged afterward, the same approach as presented in
this chapter and chapter 4 can be used.

Chapter 6

Presentation of the User Interface

Contents

6.1 Introduction . 95
6.2 Towards an XML-based HLUID Language 97
6.3 A Declarative Language for User Interface Design 98
6.4 SEESCOA XML . 100
6.5 UiBuilder: A SEESCOA XML Renderer 105
6.6 Event handling in SEESCOA XML 110
6.7 Discussion . 113

6.1 Introduction

The most visible and concrete model that can be found in Model-Based User
Interface Development is the presentation model. It defines the actual user
interface and is the last step before the final user interface. In the Dygimes
framework the presentation model has support for four different aspects that
are applicable for presentation models in general:

Structure : the structure is just an hierarchical view on the user interface,
like shown in figure 6.1. This chapter will show more details about this
aspect.

Layout : the layout for a multi-device presentation model should be flexible
and more scalable than the layout management of traditional widget

96 Presentation of the User Interface

sets. Because of its importance a separate chapter is devoted to layout
management (chapter 7).

Rendering hints : the user interface needs to be tuned so it also fits the
specific needs of the designer. Section 4.7 was devoted to this subject.

Widget mappings : to show a user interface, the structure containing ab-
stract representations of the user interface has to be converted in a widget
set specific user interface. The widget mappings convert the structure
in an appropriate containment hierarchy using a set of concrete widgets
that are defined in these mappings.

The information contained in these four parts of the presentation model should
be sufficient to create a complete user interface. Notice the presentation model
can be used as a stand-alone model: it does not depend on other concrete
models like the dialog model for example. These four aspects presented here
are not unique for the SEESCOA presentation model: other High-Level User
Interface Description Languages also contain these four different parts (see
chapter 3).

For reasons explained in sections 6.2 and 6.3 we choose to represent the
presentation model as an XML-based language. This happened at the end of
the year 2000, at that moment there were only few well-known XML-based
languages in contrast with four years later. At the time SEESCOA XML was
implemented, only UIML, XUL and XIML were well-known, and XForms was
just starting. Our main target was somewhat different from the approaches
that existed back then: to create a multi-device user interface language that
was flexible enough to be used for deeply embedded devices that offered a
limited screen space and non-traditional input facilities (e.g. touch screen,
keypad instead of keyboard,. . .). Keeping this in mind, SEESCOA XML was
one of the first XML-based High-Level User Interface Description Languages
that was especially created for embedded systems and mobile computing de-
vices although only little was made public at the time. The name “SEESCOA
XML” for our markup language was introduced by others because of its as-
sociation with the IWT SEESCOA project. Since initially this markup was
being used to develop multi-device user interfaces for this project, we kept the
name.

SEESCOA XML can be categorized as “intention-based” (as defined by
AUIML, see also section 3.3.1): section 6.4 defines a set of abstract interaction
objects that are partially related to the intention or type of interaction that is
requested. The difficulty was to find a suitable balance between an abstraction

6.2 Towards an XML-based HLUID Language 97

that is high enough to support multiple widget sets and modalities on the one
hand, and a language that is expressive enough to describe common user
interfaces.

This chapter is structured as follows: section 6.2 identifies the requirements
of a User Interface Description Language. Next, in section 6.3 a motivation
is provided for choosing XML as the User Interface Description Language.
Section 6.4 describes the SEESCOA XML-based High-Level User Interface
Description Language. The scalability of SEESCOA XML was tested by us-
ing this description in a multi-modal environment: [LLCR03] provides some
insights w.r.t. this assessment of the language. The chapter is concluded with
a discussion in section 6.7.

6.2 Towards an XML-based High-Level User Inter-
face Description Language

Because of the evolving market towards embedded systems and mobile com-
puting devices, a more general approach for describing a user interface for an
embedded system or mobile computing device is necessary. The specification
of the presentation model should not contain device- or platform-specific in-
formation because this prevents reuse of the specification. This is in fact the
reoccurring theme in this dissertation text and the reason we describe the pre-
sentation model with a High-Level User Interface Description Language. In
search of a notation for describing such a presentation model it should satisfy
the following requirements, which we identified by experience :

Platform independent : because of the heterogeneity of embedded sys-
tems, a user interface designer should be allowed to design without hav-
ing to worry about the system on which the interface will be used. Of
course there are certain restrictions to this, which we will discuss further
on in this text.

Declarative : describing a user interface asks for a certain level of expres-
siveness for describing human-computer interaction.

Consistent : the notation should be consistent and well-defined.

Unconventional I/O : embedded and mobile computing devices are less
conservative in input and output devices. For example: while most
contemporary desktop computers have a mouse and a keyboard, this

98 Presentation of the User Interface

is not a requirement for a mobile device, which could very well have a
touch-screen and speech recognition.

Rapid prototyping : in a highly competitive market, such as mobile de-
vices, developers and designers want to tailor the software towards the
users or user groups. A user interface notation should allow rapid pro-
totyping to get the users involved in the development process sooner.

Constraint sensitive : because of the constraints embedded systems are
coping with, the designers must be able to specify the constraints, or
have the system automatically generate them.

Easily extensible : we want to extend our user interface with extra func-
tionality, without starting from scratch.

Reusability : when a family of products is evolving, we want to reuse the
design for the old devices in an optimal way.

Notice these are not style guidelines and have no influence on the actual ap-
pearance or usability of the interactive system. These guidelines are rather
structural guidelines that define the requirements for a suitable specification
language.

6.3 A Declarative Language for User Interface De-
sign

The previous section listed several properties the user interface description
language should have. Instead of creating a new kind of description language
from scratch, we propose the usage of the eXtensible Markup Language (XML)
for describing a user interface. This description language can offer us the
properties we want:

Platform independent : XML is platform independent in the same sense
that Java is platform independent: if there is an XML parser available
on the system, the XML description can be used. If there is no suitable
XML parser available for your target platform, XML is so simple that
writing your own parser is fairly easy.

Declarative : one can specify “what” kind of interface is desired, without
specifying “how” this interface should be built.

6.3 A Declarative Language for User Interface Design 99

Consistent : through the usage of DTD1 XML can be consistent. A DTD
specifies a set of rules the XML file has to fulfill.

Unconventional I/O : XML can describe unconventional I/O: there are
plenty of examples to provide evidence, e.g.: WML [Cov01] and VoiceXML
[con01d].

Rapid prototyping : in various ways an XML-based user interface descrip-
tion can be rendered; e.g. with a stylesheet in a browser or with a
Java-based XML renderer.

Constraint definitions : XML can contain constraint definitions; as well
for the form of the XML itself, as for external resources we can add con-
straint definitions. An example language that is widely used is the Re-
source Description Framework (RDF, http://www.w3.org/RDF/) lan-
guage.

Easily extensible : because XML is a metalanguage it is by nature an ex-
tensible language.

Reusability : it is relatively easy to reuse an existing piece of XML in a new
design.

There is another advantage not addressed in the previous paragraph: be-
cause of the simple grammar and structure of XML it is an intuitive markup
language. User interface designers do not need a firm technical background
to work with XML. Also, it is easy to convert an XML description to differ-
ent kinds of output presentations using XSLT2. Using XSLT, XML can be
converted into HTML+CSS3 for desktop browsers, into VoiceXML for speech
driven input or into WML for mobile phones.

This is not the first time XML is proposed to be used as a user interface
description language; chapter 3 discusses some other initiatives that are com-
parable with our approach. While most of these description languages only
work at design time, we would like to propose an architecture for run-time user
interface creation and adaptation, inspired by migratory applications [BC95]
and remote user interface software environments [LK93]. This would enable us
to “download” a user interface together with constraints and necessary trans-
formations. Our description language should serve two purposes: adaptation

1Document Type Definition
2eXtensible Stylesheet Language Transformations
3Cascading StyleSheets: a stylesheet for an HTML document

http://www.w3.org/RDF/

100 Presentation of the User Interface

and plasticity of user interfaces like introduced in [TC99]. While enabling us
to tailor the user interface for particular devices and particular users (adap-
tation) it should take the defined constraints into account while preserving
usability.

Having summarized the benefits of using XML as a User Interface De-
scription Language, it remains an open issue how the user interface will be
presented in the XML file, including the constraint definitions. Looking at
figure 6.1, we see that a user interface can be structured as a tree, which is
the basic structure of an XML file. We have a main window in which the
user interface building blocks like buttons, sliders, etc. are laid out. In the
main window we can have other windows containing building blocks, which in
turn can be windows. It is advisable to make an abstraction here, like the pro-
posed distinction into AIOs and CIOs [VB93], presented in figure 6.1, or to use
abstract widgets [KAS96]. An AIO represents an abstract interface widget,
independent of any platform. A CIO is a possible “implementation” for such
an AIO. Using these concepts allows abstracting the user interface indepen-
dent of the target platform. Abstract widgets represent practically the same
thing: they are abstract platform independent representations of platform de-
pendent widgets. If we want to add run-time layout management taking into
account constraints defined by the environment, we will have to dynamically
change the presentation of an AIO. This can happen due to screen size limi-
tations for example. [EVP01] tries to solve this problem at design time using
an intelligent agent (a mediator) for laying out user interface components.

For mobile devices this seems too much focused on actual screen-output,
because no unconventional output device is taken into account. There might be
an embedded system or computing device that has no screen at all, and has
only some buttons and speech interaction for example. Then the on-screen
data could be converted into a spoken dialog either way. Assuming speech
interaction can be stored in XML, we could follow the same tree-structure for
a speech-enabled dialog as we did for the windows.

6.4 SEESCOA XML

In this section we introduce the original Document Type Definition (DTD)
for the SEESCOA XML language. First introduced in [LC01], it has evolved
from a “serialization” language that was in syntax close to program objects
into an abstract notation for specifying common user interfaces for multiple
devices. SEESCOA XML is comparable with AUIML (see section 3.3.1 and
[Mer01, MWK04]) as it tries to define abstract interaction objects. It can

6.4 SEESCOA XML 101

Figure 6.1: On the left a contextual representation (AIO), on the right the
java.awt classes used to represent the presentation (CIO)

also be compared to the XForms notation, which is closest to the expressive
power that can be found in SEESCOA XML for describing the user inter-
face presentation [VLC04]. Although the SEESCOA XML was never released
as an official User Interface Description Language, it was one of the first at-
tempts to specify an XML-based High-Level User Interface Description Lan-
guage targeted towards embedded systems (and later on mobile devices). It
was designed to be compact and easy to write, interpret and render. The lim-
ited set of interactors one can specify emphasis this: button, label, textfield,
range, choice, videowidget, table, canvas are the types of interactors that are
supported. These interactors provide a clear notion of their purpose while a
renderer can take advantage of the multiple possible presentations that can be
provided for the interactor.

For readability purposes, the schema for the SEESCOA XML language is
expressed as a DTD document in listing 6.1.

Listing 6.1: The SEESCOA High-Level User Interface Description Language
Schema.

<!ELEMENT ui (title,group)>
<!ELEMENT title EMPTY>

<!ELEMENT group (interactor|group)*>
<!ATTLIST group name ID #REQUIRED

x CDATA #IMPLIED
y CDATA #IMPLIED
rows CDATA #IMPLIED
columns CDATA #IMPLIED>

102 Presentation of the User Interface

<!ELEMENT interactor (button|label|textfield|range|
choice|videowidget|table|canvas)>

<!ATTLIST interactor x CDATA #IMPLIED
y CDATA #IMPLIED>

<!ELEMENT button (info,action?)>
<!ATTLIST button name ID #REQUIRED>

<!ELEMENT label (info)>
<!ATTLIST label name ID #REQUIRED>

<!ELEMENT textfield (info,text?,size)>
<!ATTLIST textfield name ID #REQUIRED>

<!ELEMENT range (info,min,max,start,tick,action?)>
<!ATTLIST range name ID #REQUIRED>

<!ELEMENT choice (info,choicetype,item+)>
<!ATTLIST choice name ID #REQUIRED>

<!ELEMENT videowidget (info,mediasource,withcontrols)>
<!ATTLIST videowidget name ID #REQUIRED>

<!ELEMENT table (info,rows,columns,columnnames,tablerow+)>
<!ATTLIST table name ID #REQUIRED>

<!ELEMENT canvas ((info,height,width,graphic*)|(info,graphic))>
<!ATTLIST canvas name ID #REQUIRED>

<!ELEMENT info (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT start (#PCDATA)>
<!ELEMENT tick (#PCDATA)>
<!ELEMENT choicetype (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ELEMENT mediasource (#PCDATA)>

6.4 SEESCOA XML 103

<!ELEMENT withcontrols (#PCDATA)>
<!ELEMENT rows (#PCDATA)>
<!ELEMENT columns (#PCDATA)>
<!ELEMENT columnsnames (#PCDATA)>
<!ELEMENT tablerow (#PCDATA)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT width (#PCDATA)>
<!ELEMENT graphic (#PCDATA)>
<!ELEMENT action (ANY)>
<!ATTLIST action type CDATA #REQUIRED>
<!ELEMENT func (#PCDATA)>
<!ATTLIST func class CDATA #REQUIRED>
<!ELEMENT port (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT param EMPTY>
<!ATTLIST param name IDREF #REQUIRED>
<!ELEMENT update (#PCDATA)>

Listing 6.2 provides an example of how a user interface for a surveillance
camera can be described in SEESCOA XML. Listing 6.2 is not simplified:
the user interface description is meant to be human-readable and machine-
processable at the same time. The description allows human users to specify
the user interface on a high level. On the other hand, the structured and
hierarchical approach by using XML as a notational language to describe the
user interface allows machines to process and use these descriptions without
human intervention. Our notation uses a range of tags that are easy to read
and understand for humans. Care has been taken to introduce no ambigu-
ities in the specification and to enable easy migration to other specification
languages.

Listing 6.2: An example SEESCOA XML listing for a camera. Developed
for the SEESCOA researcht project (IWT 980374) in cooperation with other
partners.
<ui>
<title>Camera</title>
<group name="videopanel">
<interactor>
<video name="video">
<text>Camera 2 video stream</text>
<mediasource>http://twiki.luc.ac.be/camera:8888</mediasource>

104 Presentation of the User Interface

</video>
</interactor>
<interactor>
<range name="zoomrange">
<text>Zoom</text>
<min>-100</min>
<max>100</max>
<start>0</start>
<tick>25</tick>
<action>
<func service="Mosaic.camera2">setZoom</func>
<param name="zoomrange"/>

</action>
</range>
</interactor>
<interactor>
<range name="focusrange">
<text>Focus</text>
...
<action>
<func service="Mosaic.camera2">setFocus</func>
<param name="focusrange"/>

</action>
</range>

</interactor>
</group>
</ui>

The available types of tags are limited, but a lot of dialog-based user in-
terfaces can already be implemented using these widgets (e.g. all kinds of web
forms). There are two tag types which are of particular importance: group
tags and action tags. The group tags allow to group objects which have no
meaning when they are separated . An example of this is a “date interactor”:
the interactors involved for filling in a date should not be separated (listing
6.3). Groups can be nested: they can be hierarchically structured. This en-
ables us to reuse groups of interactors, and make new composed groups. The
action tags allow a user to specify which action to fire if the interactor (which
is the parent node) is manipulated. The action tag specifies the target (this
can be a class name, a server,. . .) and the functionality that has to be invoked

6.5 UiBuilder: A SEESCOA XML Renderer 105

from this target. It is also possible to specify parameters and use the names of
the interactors or groups for these parameters. Our system will automatically
extract the current content out of the interactor or group (to which these pa-
rameter identifiers point) and pass it to the invoked functionality. Section 6.6
provides more insight in the use of the action element: it is used to link the
user interface to “domain” or “application” objects.

Listing 6.3: A date group

<group name="date">
<interactor>
<range name="day">...</range>
</interactor>
<interactor>
<range name="month">...</range>
</interactor>
<interactor>
<range name="year">...</range>
</interactor>
</group>

6.5 UiBuilder: A SEESCOA XML Renderer

Since an XML-based User Interface Description Language needs a renderer or
a transformer to generate a concrete user interface from an XML document,
SEESCOA XML is supported by the rendering engine UiBuilder. UiBuilder
is part of the Dygimes system, and can create a concrete user interface from
a SEESCOA XML document in Java AWT, Java Swing, Java kAWT and
HTML. For parsing the XML document, both the DOM[con01b] and SAX4

interfaces can be used by the renderer to ensure maximum portability. The
UiBuilder rendering engine is limited to providing a translation between the
abstract and concrete user interface and only takes care of singular presenta-
tion units.

Figure 6.2 shows an interface for a camera surveillance system, where two
SEESCOA XML documents are merged to obtain the concrete interface. Part
(1) is the user interface for a camera component and visualizes only the con-
trols of the camera (see also listing 6.2). Part (2) visualizes a motion detection
component that could be used by the surveillance system. Both components

4SAX: Simple API for XML

106 Presentation of the User Interface

Figure 6.2: Camera-based surveillance system using UiBuilder to render a user
interface for the camera [RB03] : part (1) shows the interface for listing 6.2,
part (2) shows the interface for listing 6.4.

.

provide their own SEESCOA XML description (listing 6.4 shows part of the
complete document). UiBuilder merges the various SEESCOA XML docu-
ment to present a single user interface. Chapter 8 elaborates on the relation
between software components and SEESCOA XML.

Listing 6.4: SEESCOA XML description for a motion detection software com-
ponent. Developed for the SEESCOA researcht project (IWT 980374) in co-
operation with other partners.

<ui>
<title>Motion Detector</title>
<group name="mgui" rows="2" columns="1">

<group name="canvaspointer" x="1" y="1"
rows="1" columns="1">

<group name="coordinatesoutput" x="1" y="1"
rows="1" columns="2">

<interactor x="1" y="1">
<textfield name="pX">

<info>X=</info>
<text> </text>

</textfield>
</interactor>

6.5 UiBuilder: A SEESCOA XML Renderer 107

<interactor x="2" y="1">
<textfield name="pY">

<info>Y=</info>
<text> </text>

</textfield>
</interactor>

</group>
</group>
<group name="settings" x="1" y="2"

rows="3" columns="1">
<interactor x="1" y="1">

<range name="framerate">
<info>Framerate</info>
<min>1</min>
<max>10</max>
<start>5</start>
<tick>1</tick>
<action type="component">
<func class="testcases.scss.MDClient">
GUISet</func>
<param name="framerate"/>
<type>framerate</type>
<port>EventsMD</port>
</action>

</range>
</interactor>
<group name="osettings" x="1" y="2"

rows="1" columns="3">
<interactor x="1" y="1">

<choice name="sens">
<info>Sensitivity</info>
<choicetype>single</choicetype>
<item>No Changes</item>
<item>Large Changes</item>
<item>Changes</item>
<item>Small Changes</item>
<item>Every Change</item>

</choice>
</interactor>

108 Presentation of the User Interface

<!-- ... -->
</group>

</group>
</group>
</ui>

Figure 6.3 gives an overview of the core class hierarchy of the UiBuilder
rendering engine. Notice it has a hard-coded set of classes of the interactors
that can be used. In contrast with the UIML renderer presented in chapter
9, UiBuilder is not extensible to other widget sets or new widgets without
writing new code. The primary reason was the original target for the UiBuilder
rendering engine: the main deployment platform were (custom) embedded
systems. Figure 1.1 on page 6 shows a setup with some custom hardware that
uses the UiBuilder rendering engine to generate the user interface.

6.5 UiBuilder: A SEESCOA XML Renderer 109

F
ig

ur
e

6.
3:

U
iB

ui
ld

er
C

or
e

C
la

ss
H

ie
ra

rc
hy

110 Presentation of the User Interface

The layout of a user interface is supported in two ways by the renderer:
a grid-based layout mechanism and a constraint-based one. The former is
simple and has a predictable effect, while the latter is far more scalable but less
predictable. The constraint-based layout mechanism is discussed in chapter 7.
The grid-based layout can be used by adding two attributes to each group and
interactor: the x- and y-coordinates. If no placement is provided, the layout
manager will place all interactors along a vertical line following the order of
the interactor specification in the XML document.

6.6 Event handling in SEESCOA XML

In SEESCOA XML it is very simple to associate an action with an event
of a widget. We take advantage of the XML structure by adding action
tags as children of interactors. Section 4.5 showed the action tags are part
of the interaction model provided by Dygimes. SEESCOA XML offers an
extensible action mechanism, that allows to have a custom description of the
application binding. The sole assumption is that the SEESCOA XML renderer
should implement the plugin for the type of action that is provided. Figure 6.3
shows the place of the action system in the object hierarchy of the Uibuilder
core. This class diagram is simplified to give an overview of the core code
architecture.

In the UiBuilder core implementation, every class that inherits from the
Action class implements a specific protocol. The pieces of implementation
that support an action protocol are referred to as “action plugins”. The de-
signer or user interface developer has to specify which type of action is spec-
ified between <action type="thetype"> and </action>. While parsing a
SEESCOA XML document, UiBuilder will load the appropriate action plugin
and pass the action subtree so it can be processed and stored by an action plu-
gin object. An action is an “executable” object: it has an execute funtion that
performs the statements specified in the subtree of the action element. This
can include information with application objects, executing scripts (Python
scripts are supported) or even creating a speech-based response to an event.

Listing 6.5 shows an example of two range interactors that communicate
with each other by using direct method invocation (DMI) on existing objects.
There is an update tag that can specify the interactors that consume the result
of an action if there is a result available. In this case the implementation
of examples.Default.echo merely passes the value, which it gets from the
parameter <param name="range1"/>, back as a result. In the example both
ranges will always show the same value.

6.6 Event handling in SEESCOA XML 111

Listing 6.5: Communicating range interactors in SEESCOA XML

<ui>
<title>Range example</title>
<group name="ranges" rows="1" columns="2">

<interactor x="1" y="1">
<range name="range1">

<min>0</min>
<max>1000</max>
<tick>1</tick>

<action>
<func class="examples.Default">echo</func>
<param name="range1"/>
<update>range2</update>
</action>

</range>
</interactor>
<interactor x="2" y="1">

<range name="range2">
<min>0</min>
<max>1000</max>
<tick>1</tick>

<action type="direct">
<func class="examples.Default">echo</func>
<param name="range2"/>
<update>range1</update>
</action>

</range>
</interactor>

</group>

Listing 6.6 shows the simple SEESCOA XML description for the user interface
in figure 6.5 that copies text from one textfield into another one with only a
small Python script. Jython5 is used as Python interpreter, and the Python
scripts could get data from the user interface that was rendered by using a
special API.

Listing 6.6: Python support in SEESCOA XML

<ui>

5http://www.jython.org/

http://www.jython.org/

112 Presentation of the User Interface

(a) AWT (b) Swing

Figure 6.4: Communicating range interactors rendered from a SEESCOA
XML description

<title>Simple Script Example</title>
<group name="scripters-group">

<interactor>
<textfield name="sourcefield">

<info>sourcefield</info>
<text>sourcetekst</text>

</textfield>
</interactor>
<interactor>

<textfield name="targetfield">
<info>targetfield</info>
<text> </text>

</textfield>
</interactor>
<interactor>

<button name="script-it">
<info>Copy Text</info>
<action type="script">

<script type="python">
<![CDATA[

from uibuilder.widgets import WidgetDataInPython
widgetdata = WidgetDataInPython()
textfieldData = widgetdata.getTextfieldData("sourcefield")
widgetdata.updateTextfield("targetfield",textfieldData)

]]>
</script>

</action>

6.7 Discussion 113

</button>
</interactor>

</group>
</ui>

Figure 6.5: User Interface with Python support rendered in AWT from listing
6.6

6.7 Discussion

This chapter presented SEESCOA XML, an XML-based User Interface De-
scription Language that was conceived in 2000 and which we mainly created in
2001 for embedded systems and mobile computing devices. A clear motivation
why XML was chosen as a basis to create this language is provided. There
weren’t many other initiatives besides UIML, XIML, XForms and XUL at the
time we created the SEESCOA XML language. In contrast with these other
approaches, SEESCOA XML targets a renderer with a smaller footprint. In
contrast with the current state-of-the-art in XML-based User Interface De-
scription Languages as presented in chapter 3, the SEESCOA XML language
already implemented several ideas that can be found among the other initia-
tives. This indicates the choices made when we started with SEESCOA XML
were the correct ones. There is also a clear focus to support the presentation
model; the other models in Dygimes are supported in another independent
way (which will be shown in section 9.7).

This renderer, UiBuilder, is the part of Dygimes that converts an ab-
stract user interface into a concrete user interface. One of the differences
with other similar renderers is the support for custom protocols to interact
with the application domain. UiBuilder has an easy extensible mechanism
that supports different types of code execution mechanisms: Direct Method
Invocation, XML-RPC, Python scripts, SOAP messages,. . . . There is no re-
striction on the type of protocol in the SEESCOA XML DTD.

The major drawback in our implementation is the predefined set of in-
teractors. We can create simple form-based applications for a wide range of
devices because we define a common denominator of the widgets supported

114 Presentation of the User Interface

on these devices. This makes the user interface very portable, but much less
expressive. In the discussion of chapter 3 we positioned SEESCOA XML (see
also figure 3.1) as one of the XML-based User Interface Description Languages
with the lowest user interface coverage. Although this means it is not capable
of rendering “rich” graphical user interfaces, it does supports a large range
of platforms without needing to change anything in the presentation speci-
fication. We started to create a state-of-the-art UIML renderer on the .Net
Framework, presented in chapter 9, that provides an extensible architecture
and is able to describe much richer graphical user interfaces then SEESCOA
XML, but does not support the same degree of plasticity of a user interface
without the need to change the presentation specification.

Chapter 7

Multi-device Layout Management

Contents

7.1 Introduction . 115
7.2 Related Work . 116
7.3 Constraint Satisfaction and Layout Management . 118
7.4 Calculating Presentation Structures 120

7.4.1 Describing spatial constraints 120
7.4.2 Building the layout description graph 121
7.4.3 Calculating widget positions 121
7.4.4 Conflict handling . 122
7.4.5 Further screen space reduction strategies 123

7.5 Discussion . 123

7.1 Introduction

This chapter describes how a constraint-based layout management system en-
ables the user interface designer to deploy his/her interface to a wide range of
devices. A layout management system takes care of positioning components
within the user interface. While the variety of mobile computing systems
grows, the development techniques for providing user interfaces targeted at
these systems are maturing slowly. Because of the many available program-
ming languages and interface toolkits for creating user interfaces for mobile
systems, there is a need to design the user interface independent of these

116 Multi-device Layout Management

choices. On the other hand the approach should be practical to reduce the
time-to-market.

Based on the different models we introduced in chapter 2, we define a layout
management system that applies on presentation units. Since a presentation
unit can be dynamically composed out of different tasks, the layout manage-
ment system should be able to work on a user interface that was not explicitly
designed but algorithmically composed. Since we can define building blocks in
a High-Level User Interface Description Language, we can extend this High-
Level User Interface Description Language with a specification for the layout
of the user interface. Furthermore we need to apply this specification method
recursively upward so different user interface description fragements can be
composed to make up one presentation unit and have some kind of layout
specification to relate the different parts in the composition w.r.t each other.
The layout specification is created at design-time, while the actual layout of
the user interface is computed at run-time according to the device constraints.

The next section gives an overview of the related work for this topic. Sec-
tion 7.3 will discuss the usage of constraint solving and logical grouping of
the layout manager we implemented [LCC03]. Details about the actual layout
adaption process taking into account available screen space are explained in
section 7.4. This chapter is concluded with a discussion of the obtained results
in section 7.5.

7.2 Related Work

As we will show in section 7.4.1 the specification of the user interface structure
and the specification of the layout can be separated. Since we target multi-
ple devices with different resources like screen size and different widget sets,
this separation is essential. There has been a wide diversity of work inves-
tigating appropriate layout algorithms for different kinds of computer-aided
visualization of information.

Most noticeable are the existing layout managers like those used by the
“classical” widget sets like Java AWT and Swing graphical user interface (GUI)
toolkits [WC] or the Gimp Toolkit (Gtk) [MT02]. They provide an hierarchi-
cal approach, where layouts can be nested in other layouts. This has proven
to be both intuitive and flexible. For example, Java-based GUIs can already
be shown on different devices whilst adapting to their new environment. Un-
fortunately this approach lacks flexibility when the constraints of the new
environment become more extreme. The GUI does not have the possibility to
“regroup” itself in another presentation structure for better presentation while

7.2 Related Work 117

respecting the constraints. In other words the current layout managers are not
scalable enough to handle the wide difference in screen sizes from today’s de-
vices. Since it is even more difficult to obtain a layout management algorithm
which scales over multiple modalities we will limit ourselves to graphical layout
management. E.g. when we have an XML-based High-Level User Interface
Description Language that can be converted into a form-based as well as a
speech-based interface the layout should minimally specify spatial constraints
for the form-based interface and temporal constraints for the speech-based
interface. Since a general layout management system, that is independent of
the concrete interface representation, remains insufficient for current emerg-
ing technologies we focus on finding a solution for graphical interfaces first.
We believe there should be a different layout mechanism for each modality
(e.g. graphical user interface of speech-based) that can be used since different
modalities will have different notions of layout.

[LF01] provides a survey of work on automated layout techniques for pre-
sentation models. Most of the research on automated layout management
is concentrated on constraint-based layout systems. Two approaches can be
identified that are of interest for our work: spatial layout constraints and ab-
stract constraints. Spatial constraints express the positioning of components
with respect to each other. Abstract constraints express a logical relation
between components. For example, “caption A is left of list B” is a spatial
constraint and “caption A describes the content of list B” is an abstract con-
straint. Abstract constraints are always transformed into spatial constraints
before they can be used.

[BHLV94] and [VG94, Van95] describe some techniques for automated lay-
out management, more in particular the dynamic right-bottom and the static
two-column strategy. These techniques are not constraint-based, as opposed
to the approach we present in this chapter. In the past, there have been sev-
eral attempts to create constraint-based layout managers, like models created
in Thinglab [Bor79, MBFB89] and the application of the DeltaBlue algorithm
in [SMFBB93]. Our approach is partially inspired by the work presented
in [SMFBB93]. Two-dimensional GUIs are often described with linear con-
straints. Because constraint satisfaction is a difficult problem to solve, some
research was conducted toward efficient algorithms for constraint satisfaction
problems using linear constraints [BMSX97]. When transporting a GUI to
another device with different constraints, a suitable presentation model has to
be generated that is still conform with the predefined requirements for laying
out the interface.

[EVP01] describes a method to generate and select a presentation model for

118 Multi-device Layout Management

GUIs on mobile computing devices. It also describes the influence of interactor
selection on the allocated screen space. Through iterative specialization steps a
platform-optimized presentation can be retrieved from a platform independent
user interface description. Each iteration can apply two redesign strategies in
this approach: (1) remodeling logical windows within a presentation unit and
(2) remodel AIOs in a logical window. Automatic interactor selection based
on selection rules is described in [VB93]. Its purpose is to select an optimal
set of Abstract Interaction Objects (AIOs) presenting some functionality for
a specific target platform. Notice the selection rules from [VB93] can be used
in the remodeling steps in [EVP01] to obtain more intelligent and adjustable
adaptation behavior.

A more recent approach is SUPPLE [GW04] which treats the rendering
of a user interface as an optimization problem. It takes into account a set of
interface and device constraints to obtain a legal mapping from an interface
element to a widget. Notice this is a one-on-one mapping from an AIO onto
an individual widget. Notice this approach could also be combined with the
selection rules of [VB93] to make it more adjustable for the designer.

7.3 Constraint Satisfaction and Layout Management

As a first step toward constraint-based layout management, we use four simple
linear spatial constraints to describe the positioning of the widgets in respect
to each other: left-of, right-of, above and below. In addition the available space
to lay out the widgets is divided in a grid. Each bucket in the grid is uniquely
identified by its x and y position within the grid. Notice the linear constraints
can be expressed in a mathematical form: take the constraint widget A left-
of widget B for example. If widget A is put in bucket X with coordinates
(x1, y1) and widget B is placed in bucket Y with coordinates (x2, y2) than the
constraint can simply be expressed as x1 < x2.

Several traditional layout managers do offer some kind of spatial con-
straints, like the GridBagLayout of the Java GUI toolkit[WC] or the “pack-
ing” containers provided by Gtk [MT02]. However, our approach differs with
traditional approaches because we also use the hierarchy as described by the
High-Level User Interface Description Language (see chapters 3 and 6) instead
of directly implementing the hierarchy in the programming code. Constraints
are only defined between siblings in the description tree: this means spatial
constraints are only specified between abstract interaction objects in the same
group or groups who share the same parent group in the hierarchy. A set
of constraints is related to a group of widgets that logically belongs together

7.3 Constraint Satisfaction and Layout Management 119

Figure 7.1: A visual representation of the constraint definition

this way. This is shown in figure 7.1. The hierarchy divides the interface in
logical groups. These groups can be subdivided in other groups and so on. All
widgets, part of the same group, have a logical relation with respect to each
other. Some rules can be applied here:

• A group describes a set of logically related abstract interactors or
groups of abstract interactors. The designer should decide which widgets
are gathered in a group.

• A group can be specified splittable. This specifier allows the layout
manager to show the abstract interactors or groups of abstract interac-
tors in separate spaces.

• The group specifier non-splittable forces the layout manager to show
the children of the group as a whole to make sense to the user. Notice
non-splittable is only valid for the direct children of the group, and does
not constrain the further offspring.

In contrast with the traditional layout managers, our system does not rely on
a particular programming language to produce the GUI. In combination with
the High-Level User Interface Description Languages introduced in chapter 6,
we get a very loosely-coupled user interface for an application.

120 Multi-device Layout Management

7.4 Calculating Presentation Structures

As mentioned before, only spatial constraints (specified at design-time) will be
employed in our implemented system. The use of only this kind of constraints
is sufficient because they directly determine the geometric structure of the
layout. Abstract constraints which describe a high-level relation between two
components are omitted in our approach because they are always transformed
to spatial constraints in a later stage.

7.4.1 Describing spatial constraints

A simple XML-based syntax is used for describing constraints between two
components. A formulation of a constraint network for listing 6.3 is depicted
in listing 7.1. The first constraint in this network implies that label will ap-
pear somewhere above date in the resulting layout. If the set of constraints
is sufficiently large, there is a strong likelihood that conflicts will arise: for
example, some constraints may contradict others and possibly make the set of
constraints unsolvable. For handling these kind of inconsistencies, priorities
are introduced in our system. A priority, represented by an integer value, can
be applied to each constraint. Higher values indicate stronger constraints and
lower values represent weaker constraints.

Listing 7.1: A SEESCOA XML constraint description for a group of AIOs.

<constraints>
<constraint type="above" priority="5">
<interactor name="label"/>
<interactor name="date"/>

</constraint>
<constraint type="left" priority="7">
<interactor name="day"/>
<interactor name="month"/>

</constraint>
<constraint type="right" priority="7">
<interactor name="year"/>
<interactor name="month"/>

</constraint>
<constraint type="left" priority="7">
<interactor name="day"/>
<interactor name="year"/>

7.4 Calculating Presentation Structures 121

</constraint>
</constraints>

Once the layout specification is created, a concrete layout is computed
at run-time. The user interface renderer will use the steps described in the
following sections to find a suitable layout that respect the spatial layout
constraints as described by the layout specification.

7.4.2 Building the layout description graph

Because constraints are only allowed between siblings, each component of the
group will be associated by a unique bucket in the grid. Our implemented
algorithm will initially solve the x coordinates of the components (coordinates
indicate the position in the grid, not the absolute coordinates on the screen).
A graph will be composed where each node represents a component with his x
coordinate and each edge represents a constraint between the two components
connected by the edge. Considering the constraints in listing 7.1, the resulting
graph will have an outcome as depicted in figure 7.2(a). Like mentioned earlier,
each edge with the label left can be expressed as x1 < x2. A possible solution
for the constraints represented in the graph is depicted in figure 7.2(b). Single
nodes represent components from which the x coordinates are not affected by
the constraints. The y coordinates for these components will be determined at
a later stage in the algorithm. After the solution has been calculated for the
x coordinates, the same strategy will be applied for the y coordinates. The
resulting graph and a possible solution for the y coordinates are depicted in
figure 7.2(c) and figure 7.2(d).

7.4.3 Calculating widget positions

The results of the two proceeding steps will be combined. This leads to a
general solution where the component month has the coordinates (1,1) for
example. The final stage of the algorithm consists of assigning a value from the
predefined domain to the still unassigned coordinate variables. The domain
is the range of integers between 0 and the maximum cells plus one. When
the component day with coordinates (?,0) is considered, the user interface
designer has the responsibility to locate a free bucket in column 0 to place the
component in. ’?’ reflects that every free place in column 0 can be used. This
can be filled in automatically when required or can be chosen by the designer.
E.g. the algorithm can choose the first bucket (=row) that is available in that
column, just like a FlowLayout in Java would do.

122 Multi-device Layout Management

(a) The graph of the x coordinates (b) Possible solution of the graph in
7.2(a)

(c) The graph of the y coordinates (d) Possible solution of the graph in
7.2(c)

Figure 7.2: The calculation of the presentation structure

7.4.4 Conflict handling

The occurrence of cycles in the graph implies the presence of conflicting con-
straints. Each edge in a cycle represents a constraint that conflicts with an-
other one in the cycle. The constraint with the weakest priority will be re-
moved to break the cycle. If the constraints have equal priority, the first one
will be removed and the other will be maintained. The presence of multiple
edges between two nodes also implies a conflict in the spatial layout con-
straints: a component can not be placed at the same time at the right and left
side of another component. The edge with the highest priority will be kept,

7.5 Discussion 123

and the conflicting constraints with lower priorities will be removed from the
constraint graph. Notice this is still what the designer required, since it is the
designers responsibility to specify the priority of the constraints.

7.4.5 Further screen space reduction strategies

After the presentation structure which is defined by the user interface designer
is calculated, the possibility exists that the layout does not fit on the screen. A
layout adapter is imposed to resolve this problem by adapting the presentation
structure to the limited screen size of the target platform. One of the strategies
employed by the adapter to shrink the presentation consists of reducing the
sizes of the textfields. Several similar rules can be applied (e.g. figures can be
reduced). The functionality of the user interface will remain intact.

A more powerful strategy to reduce screen space consists of placing the
components of a splittable group after each other in a card layout or with
tabbed panes, like shown in figure 7.3. This strategy takes benefit from the
hierarchical nature of the user interface specification. It is important to notice
that after applying this method the constraints between the children of the
group are no longer valid. The adapter applies these strategies iteratively
on the presentation structure and after each iteration will be checked if the
layout fits the screen. However sometimes it is impossible to shrink the layout
to the size of the screen of the target platform. An appropriate warning will
be displayed if the user interface cannot be rendered.

7.5 Discussion

The approach presented here is based on a set of simple spatial constraints
to specify the layout of a user interface. Together with the hierarchy of the
user interface they allow us to provide a flexible layout management system
that scales from mobile phones towards desktop computers. There are several
drawbacks in our approach however:

• It is only suitable for purely graphical two-dimensional user interfaces

• The designer is given only a limited overview the effects of the constraints
that are specified because the user interface is dynamically composed by
the executable models

• The system offers only limited expressibility in favor of a more scalable
approach

124 Multi-device Layout Management

(a) Desktop (b) IPaq 3970

(c) Palm IIIc (d) Cell phone

Figure 7.3: A multi-device hotel registration form

7.5 Discussion 125

Being introduced in Dygimes at early 2003 it was a very experimental sys-
tem that scaled from screens of desktop PCs to the screens of mobile phones
like figure 7.3 shows. The algorithm used is comparable to the one introduced
in RIML [KWWZ04] because this could be expressed in terms of presentation
units (dialogs), hierarchical grouping with the “splittable” aspect and the sim-
ple spatial layout that use an underlying grid to calculate the logical position
of the different elements. A graphical tool is available that allows to specify
constraints in an interactive way. The graphical tool can render the user in-
terface at any time so the designer can see the effect of adding,removing or
changing a constraint. This tool is shown in figure 4.7 on page 67.

At the current stage we are working on a system that allows to distribute
the interface over several devices according to the task, dialog and presen-
tation specification [VC04]. One step in this direction are migratable user
interfaces according to the context-of-use. The devices that are available in
the user’s environment can be part of this context-of-use. Our current exten-
sion, DynaMo-AID, written on top of the Dygimes framework supports exactly
this and will be presented in chapter 10.

126 Multi-device Layout Management

Chapter 8

Components and Multi-device User Interfaces: The
SEESCOA experiment

Contents

8.1 Introduction . 127
8.2 Component-Based Software Development 129
8.3 User Interface Descriptions and Components . . . 130

8.3.1 The SEESCOA Component Framework 130
8.3.2 The Rendering Component 134
8.3.3 A Case Study: a Camera Surveillance system 135
8.3.4 Decomposing tasks: relating components to tasks . . 137

8.4 Discussion . 140

8.1 Introduction

In the previous chapters we focused on the task, dialog, and presentation mod-
els and we omitted the domain and application models. In this chapter we
show how our approach can be integrated with a custom application model.
The domain model will be presented as a set of software components here, al-
though the approach is not limited to software components but is as applicable
for webservices for example.

One of the results of the SEESCOA1 [UBHB01] project is a common soft-
1Software Engineering for Embedded Systems using a Component-Oriented Approach,

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/SEESCOA/

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/SEESCOA/

128 Components and Multi-Device User Interfaces

ware platform, using components for embedded systems on a Java Virtual Ma-
chine. With this specific component-based approach for embedded systems, we
can develop a framework for user interfaces adapting to the environment and
device specific constraints as well as encourage reuse. The SEESCOA method
is a component-based software development approach combined with ideas of
contract-based specification for software objects. The SEESCOA components
are considered as the application model here. These components provide the
application logic within the interactive system.

Besides the application model, this chapter also focuses on run-time mi-
gratable user interfaces, which need to be independent of the target device,
the target software platform and the interaction modalities. To enable mi-
gratable interfaces, a user interface can be considered as a presentation of a
single service or several more functionally grouped services. These ideas are
combined with a component-based approach allowing the designer to design
user interfaces for particular components, which can be merged automatically
at a later stage. This enables user interface designers to concentrate on what is
important for multi-device user interfaces: how to present the user interface in
a structured and logical manner. Notice this step makes the relation between
the application models and the presentation model explicit.

Throughout this chapter we will use an example case study to illustrate the
concepts we introduce: a small camera surveillance system using 4 different
cameras. For each camera a software abstraction is provided by wrapping it
with a SEESCOA component. Aggregating the four camera components by
another component allows us to observe four cameras at the same time. Each
camera has its own properties: some cameras can zoom in and out, other also
allow to change the framerate,. . . All the components that are provided for this
surveillance system make up the domain of this particular interactive system.
Thus a domain is completely defined by the set of SEESCOA components that
are used to implement the application functionality here.

This chapter is structured as follows: in section 8.2 a short introduction
into Component-Based Software Development is provided. Since the focus of
this thesis is not on Component-Based Software Development, we limit the dis-
cussion of this topic to the essential parts necessary to develop the remainder
of this chapter. Continuing with section 8.3, we show how these descriptions
can be combined with software components in general, and SEESCOA com-
ponents in particular. The case-study is presented in more detail to show the
results of the approach proposed here. This chapter also concludes with a
discussion in section 8.4.

8.2 Component-Based Software Development 129

8.2 Component-Based Software Development

Central to Component-Based Software Development is the definition of a soft-
ware component. One of the most generic definitions is introduced by Clemens
Szyperski in [Szy98]:

A software component is a unit of composition with contextually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
third-party composition.

Within the SEESCOA project, a component has a well defined description
[com01]:

A component is a reusable documented entity that is used as a
building block for software systems. It is used to perform a par-
ticular function in a specific application environment within a spe-
cific component system. Components are composed (glued together)
using their interfaces. These interfaces consist of provided inter-
faces and required interfaces. A provided interface describes how
the functionality has to be accessed. A required interface describes
what is needed to perform this functionality.

A clear distinction is made between the component blueprint and component
instance. The blueprint is the description of the component, comparable with
its interface and documentation. The instance is just the instantiation of this
blueprint. Components are documented on four different levels:

1. the Syntactic level,

2. the Semantic level,

3. the Synchronization level and

4. the Quality-of-Service level.

SEESCOA components are targeted for embedded systems and can be
reused easily in heterogeneous environments. Support for reuse is accom-
plished by adding Design-by-Contract[UBHB01] facilities to the component
language. Based on the ROOM2 notation, the SEESCOA notation provides
ports serving as connectors between components. The SEESCOA component

2ROOM: Real-time Object-Oriented Modeling

130 Components and Multi-Device User Interfaces

system is completely asynchronous and uses the Java programming language
as a common platform. Components communicate by sending asynchronous
messages to each other, and not by using traditional synchronous message calls.
For a full discussion of the SEESCOA methodology and run-time system, we
refer to [UBHB01, UBB01]. Figure 8.1 shows part of the camera surveillance
system case study (introduced in the next sections) in the SEESCOA compo-
nent notation.

8.3 User Interface Descriptions and Components

8.3.1 The SEESCOA Component Framework

One of our involvements in the SEESCOA project is merging user interface de-
sign and component-based development for embedded systems. A traditional
approach, making a “static” user interface as a layer on a service or a data layer
has proven to lack flexibility. Based on the definitions given in section 8.2, we
consider components as units that contain logically grouped functionality and
data, each living in their own memory space. They should offer an abstract
description of how the service or data offered by a (set of) component(s) can
be presented. Think about components as software units offering a particu-
lar service through their interface: their interface is actually a description of
their functionality. It is a natural extension to also allow components to de-
scribe what they want to offer to a human user. Each component can provide
a description expressed in XML of the functionality it offers. Alternatively,
they also could express in which way they could be interacted with. This is
not true for all components of course (some just offer basic functionality on a
lower level for other components), so only the components directly interested
in human interaction should provide an abstract user interface description.
This distinction allows us to define three different kinds of components from
a interface design perspective here:

Internal components are components that implement functionality that
will never be exposed directly in a user interface. These include the
“core” components which encapsulate the basic functionality.

Surface components make up the layer that defines the functionality that
has to be made explicit in the user interface and which can be used by
the human user to interact with the system: this is the application model
or domain model in Model-Based User Interface Development. Surface
components can use or be composed out of internal components.

8.3 User Interface Descriptions and Components 131

Figure 8.1: Part of the Camera Surveillance System in the SEESCOA compo-
nent notation [RB03]

.

132 Components and Multi-Device User Interfaces

Figure 8.2: Surface, internal and rendering components in the Mosaic example

Rendering components are responsible to visualize the user interface. Ren-
dering components have a predefined blueprint and communicate with
the Input and Output devices on behalf of the surface components. No-
tice there can be several rendering components, thus supporting dis-
tributed user interfaces if the component system supports distributed
communication.

The goal of this layered approach is to define the boundary between the ap-
plication programmer and user interface designer. The interface designer only
needs the (documentation of the) set of surface components, while the appli-
cation programmer is mainly concerned with the internal components. The
rendering components act as services for application programmers and inter-
face designer and are not part of the application model.

When building applications out of components a user interface can be
automatically derived from the set of surface components: each component
provides its user interface in the form of an XML description [LVC02]. These
XML descriptions can all be seen as subtrees of the final composed user in-
terface description. I.e. the user interface will be automatically composed by
connecting the user interface descriptions of the components into a complete
user interface description. Figure 8.4 shows how this works using a small ex-

8.3 User Interface Descriptions and Components 133

ample: the Camera Mosaic component which is described in more detail the
next section (section 8.3.3). Each component can contain a description of their
user interface: a description of a Camera can be found in listing 8.1 and of the
Mosaic in listing 8.2. Figure 8.2 gives an overview of the components classified
by the concepts introduced in the previous paragraph. Figure 8.4 presents how
the descriptions can be combined at run-time to create the user interface out
of the components. All components can export their user interface description,
but only the surface components are responsible for the final user interface: if
surface components use other internal components it is their responsibility to
merge the different user interface descriptions accordingly and communicate
with the rendering component(s) to handle user interface events.

Listing 8.1: user interface description of a single camera component

<group name="camera2">
<interactor>
<videowidget name="video">...</videowidget>

</interactor>
<interactor>
<range name="zoomrange"><action>
<func service="Surveillance.Controls">setFocus</func>

<param name="camera2"/>
<param name="zoomrange"/>

</action></range>
</interactor>
<interactor><range name="focusrange">...</range></interactor>
<interactor>
<button name="camera1_onoff"><action>

<func service="Surveillance.Controls">switch</func>
<param name="camera2"/>

<param name="camera1_onoff"/>
</action></button>

</interactor>
</group>

Listing 8.2: user interface description of a Mosaic component

<ui>
<title>Camera mosaic</title>
<group name="mosaic">
<group name="camera1">&CAMERA1</group>

134 Components and Multi-Device User Interfaces

<group name="camera2">&CAMERA2</group>
<group name="camera3">&CAMERA3</group>
<group name="camera4">&CAMERA4</group>

</group>
</ui>

Notice this approach allows components to migrate and offer their services
in other places. The user interface will integrate smoothly with other compo-
nents on the target system: it can be connected to a surface component that
will merge the user interface description with the descriptions of other compo-
nents it aggregates, or can act as a surface component. The Component-Based
Software Development approach supports a distributed view on assembling
applications out of components and generating their user interface: parts of
the user interface are allowed to migrate together with the functionality the
components offer. Finally, the user interface description can be submitted to
a rendering component as an XML document containing the user interface
description. An example of such an XML document is given in listing 8.1.

8.3.2 The Rendering Component

As we take a Component-Based Software Development approach for designing
user interfaces for embedded systems, there is one “basic” type of component
that supports user interaction: the user interface rendering component. This
component can be compared to a web-browser: a description for an interface
can be submitted to the component and it will take care of rendering this
description. Nevertheless, there are some differences: the component can re-
ceive a description of a user interface and render it to different kinds of output
devices and widget sets. The state of the user interface can be “serialized”
back into XML and relocated, which makes the component approach suitable
for distributed systems or remote user interfaces. The SEESCOA component
system takes care of the communication and makes it network transparent.
Notice the rendering engine is also embedded in a component, so this com-
ponent can also have a user interface description of its own functionality. To
show its user interface the rendering component can send its user interface
description to itself: it can be “bootstrapped”.

Migratability of interfaces is implicitly supported because the SEESCOA
component system is a distributed system. The rendering components can
reside everywhere it has access to input/output hardware and can take input
from every component no matter what its location is in the networked system.

8.3 User Interface Descriptions and Components 135

Figure 8.3: Component composition example: a simple camera surveillance
system

This results in migratable user interfaces, provided the component infrastruc-
ture supports location independent communication between components.

8.3.3 A Case Study: a Camera Surveillance system

To illustrate how components can deliver their own user interface description,
we developed an example case study in the context of the SEESCOA project:
a surveillance system. The example surveillance system consists of 4 cam-
eras, each camera is represented by a component. The system also contains
a Mosaic component, combining the controls for each camera in a combined
control (figure 8.1). The Mosaic component communicates with a rendering
component which renders a user interface to an output device. The setup is
presented in figure 8.3. Notice each camera component has its own user inter-
face description (such as the one shown in listing 6.2) presented as an XML
document. This is shown by the trees attached to the camera components in
figure 8.3. Each camera may offer different possibilities so they can all have
different user interface descriptions (The camera component is a component
which abstracts the hardware and presents a physical surveillance camera).

Because of the possibility to specify hierarchical groups, the Mosaic com-
ponent can take the four individual controls and add them as subtrees in a
new tree. The Mosaic component only needs to add a new root with 4 groups
as the children of the root node. Each control can be attached to a group node

136 Components and Multi-Device User Interfaces

Figure 8.4: The Mosaic component combining several user interface descrip-
tions

(figure 8.4, the group nodes are colored gray). The user interface description
produced by the Mosaic component is passed to the rendering component and
rendered according to the chosen back-end. This illustrates how combining
components to access their provided functionality in one application auto-
matically results in a combined user interface of these components. Notice
several hierarchies can be mixed if desired: a subtree can be attached to an
“open” node on another level in a new tree. This should be done with care:
the chances of illogical and unusable generated user interfaces can increase
by doing this. Our current system does not link the several subtrees across
hierarchies, so no further support for mixing hierarchies is provided.

Depending on the target device the user interface for the Mosaic component
will be different. Suppose for example we want to access the Mosaic component
using a traditional desktop computer: the rendering component for a desktop
PC will load the available CIOs and try to map the AIOs, [VB93]) described
in the Mosaic user interface description on a widget set suitable for a desktop
machine: figure 8.5 shows this. If we want to access the functionality of the
Mosaic component using our PDA, the rendering component for a PDA will
act the same: it will try to load the available CIOs and map the AIOs on
this set of CIOs. This time the rendering component knows the PDA has
limited possibilities, so it adapts the concrete user interface to the screen
space constraints. Figure 8.6 shows the results using a PDA (Palm IIIc). The
focus of this work was not data communication but run-time user interface
migration, so we did not spend time investigating effective data communication
between devices. The videostream for the PDA was actually implemented by
sending separate down-scaled images to the device over its infrared connection.
Of course, this can be done much more effectively using other techniques or

8.3 User Interface Descriptions and Components 137

Figure 8.5: The Mosaic component on a desktop

means of communication.

8.3.4 Decomposing tasks: relating components to tasks

The case study introduced in section 8.3.3 is a very simple interaction session
with a single dialog. We consider an interaction session as the interaction
which happens to complete a subtask, like “select camera” in figure 8.7 for
example. An interaction session can be represented by one or more user in-
terface building blocks in a presentation unit. Most user interfaces have more
than one interaction session: in a dialog-based user interface several dialogs
are presented after each other according to the actions the user executes. A
design method to take this into account is required at this stage. The design
method should enable the designer to decompose tasks hierarchically, and link
several interaction sessions to each other in order to achieve the postulated
goal. This method should support a device-independent specification of the
user interface.

To solve this problem, we combine our approach introduced in chapter 4
with our component-based description method. One of the advantages of the

138 Components and Multi-Device User Interfaces

(a) Pick a camera. . . (b) . . . and observe it

Figure 8.6: The Mosaic component on a PDA

ConcurTaskTrees notation is that we can extend it to model context-sensitive
user tasks as described in [PLV01]. Characteristics that determine the context
of use include the computing platform, the available interaction devices, avail-
able screen space,... When one or more of these characteristics change, a recon-
figuration of the user interface may be required to adapt to the new context of
use. [PLV01] proposes a notation to model context-sensitive user tasks. Their
solution consists of a ConcurTaskTrees task model with roughly the follow-
ing parts: a non-context-sensitive ConcurTaskTrees part and context-sensitive
parts depending on some conditions. In [CLC04c] we extended this work with
support for run-time context detection and multiple device interfaces. A more
thorough explanation can be found in chapter 10. The second advantage is
the asynchronous nature of the SEESCOA component system: ConcurTask-
Trees allows to describe temporal relations, and includes concurrent tasks in
its notations. A third advantage is the hierarchical structure it offers: our
approach also uses a hierarchical notation to describe the user interface in a
device independent manner.

Now suppose a human guard has access to a security system using a regular
workstation or a PDA. Some tasks he can perform on the workstation are not
possible on the PDA. Suppose for example that it is not possible to observe

8.3 User Interface Descriptions and Components 139

Figure 8.7: ConcurTaskTree diagram: checking for burglars with the camera
surveillance system in a context-sensitive way

more than one camera at the same time on the PDA due to the minor screen
space provided by it. So it depends on the context of use (the device that’s
being used in this case) whether the operator can pick just one or multiple
cameras to observe at a time. Obviously we can say that this is a context-
sensitive task. There are also a couple of non-context-sensitive tasks in this
case. The operator must login to the system before he can pick cameras. Also
he can choose to stop observing or pick other cameras to observe. While the
guard is observing a camera (or cameras depending on the context) the other
cameras will continue to record their video streams until the guard logs out
again. The enhanced ConcurTaskTrees tree is shown in figure 8.7.

While being a good solution for modeling context-sensitive tasks there are
two minor drawbacks to it. The first one is that some subtrees may appear
more than once in the model. For example in figure 8.7 the subtree Observe
Single Camera appears in the two different contexts of use. [PLV01] solves
this by factoring out these subtrees by placing them in the context-insensitive
part of the model. The second drawback is that we still have to model every
possible context of use: for each device different properties have to be taken
into account. In our approach we try to avoid this by using abstract user
interface descriptions for an interaction task. A ConcurTaskTrees description
can be saved as an XML document, which allows us to attach our own XML
description at the leafs representing an interaction task. These XML descrip-
tions are actually the composed descriptions of the components which are used
at that moment. A ConcurTaskTrees description becomes a way to describe
how we want to interact with a set of given components in a particular stage
of the usage of an application. We gain a model-based approach for designing

140 Components and Multi-Device User Interfaces

Figure 8.8: ConcurTaskTree diagram: checking for burglars with the camera
surveillance system

the user interface, extending the component-based approach for modeling the
software itself. So, instead of using a context-sensitive description as shown
in figure 8.7 we can accomplish the same thing with a non context-sensitive
description as shown in figure 8.8. We recognize that these are just the first
steps, and the method has not been tested for a wider range of devices yet.
When using totally different ways of interaction (e.g. not dialog-based), we
expect we need context-sensitive parts as a consequence of particular other
ways to complete the subtasks.

8.4 Discussion

In this chapter we presented a case study where Dygimes, and in particular the
UiBuilder rendering engine, were successfully used for embedded systems. A
camera surveillance system was implemented using solely the SEESCOA com-
ponent system and its supporting tools, and the UiBuilder rendering engine
for creating the user interfaces. The full case study architecture and imple-
mentation is discussed in [RB03]. The SEESCOA Component system served
as the application (and domain) model in this case.

The integration with the SEESCOA components proves SEESCOA XML

8.4 Discussion 141

can be used with a non-traditional application model. E.g. most application
models rely on object-oriented concepts (classes and interfaces) being avail-
able, while SEESCOA XML provides an extensible action mechanism to use a
multitude of application model types (web services, object oriented libraries,
components,. . .).

This chapter also shows some Dygimes tools can be used separately. In
this case UiBuilder is embedded as a component and acts just like the other
components in the component system. It takes SEESCOA XML descriptions
as input and generates an interface on the platform it resides on. Migratability
of interfaces is implicitly supported because the SEESCOA component system
is a distributed system: UiBuilder components can reside everywhere it has
access to input/output hardware and can take input from every component
no matter what its location is in the networked system.

A complete user interface is the aggregation of all components that have
a SEESCOA XML description to specify the properties they want to offer
to a human user. The system can generate its user interface by retrieving
all components that are annotated with a user interface description from the
complete set of components and merge these descriptions. The UiBuilder
component will automatically generate the appropriate interface for the whole
application w.r.t. the host platform.

142 Components and Multi-Device User Interfaces

Chapter 9

Uiml.net: an Open Uiml Renderer for the .Net
Framework

Contents

9.1 Introduction . 143
9.2 UIML Overview . 145
9.3 Related Work . 148
9.4 The Renderer . 149

9.4.1 Overall Design . 149
9.4.2 Dynamic Core . 151

9.5 Inter-vocabulary distances 153
9.6 The Layout Problem 157
9.7 UIML and Dygimes 159

9.7.1 Integration with the task specification 161
9.7.2 Generation of the dialog model 161

9.8 Discussion . 164

9.1 Introduction

The goal of this chapter is twofold:

• to verify the applicability of the Dygimes process with another presen-
tation model,

• to evaluate the Java-based SEESCOA XML renderer w.r.t. other tech-
nologies.

144 Uiml.net: an Open Uiml Renderer for the .Net Framework

Based on the findings of chapter 3 we select UIML as a worthy alternative
for SEESCOA XML . Since UIML is above all useful as a notation for the
presentation model, this makes it a good alternative for SEESCOA XML.

An important drawback in the framework introduced in the previous chap-
ters is its inability to dynamically extend the AIOs and CIOs it is able to
handle. Most High-Level User Interface Description Languages have this limi-
tation because they attempt to define a general set of AIOs which are sufficient
to built the most common interfaces. For example, in chapter 3 we showed
Teresa XML, XForms, AUIML and UsiXML have a predefined set of AIOs.
Unfortunately, once the design reaches the presentation level it remains diffi-
cult to specify this in a device-independent manner.

Chapter 3 pointed out there are very few High-Level User Interface Descrip-
tion Languages that succeed in being generic enough to be really independent
of the widget set (e.g. some can only be used with Java widgets, or are only
suitable with webbrowser support). The User Interface Markup Language
(UIML) [APB+99, Pha00] is a specification that is independent of a widget
set and claims to be device-independent as well. Because the specification has
matured over the years and efforts are emerging to submit it as a World Wide
Web Consortium (W3C) specification, it is beneficial to develop renderers for
the specification. Some of the current research efforts include creating better
support for multi-platform user interfaces [FPQAS02, Pha00] and integration
in Model-Based User Interface Development (TIDE, [FPQAS02]).

Targeting multi-device environments implies the UIML renderer has to
be very flexible: on different devices there could be different widget sets, or
the widget set API can be slightly different due to the different device pro-
files. This work also targets to create a UIML renderer that can manage
and support evolution in widget set APIs and differences in widget set vo-
cabularies without the need for changing the renderer itself. The renderer we
implemented is designed to easily support a wide range of widget sets with a
minimal effort. This is proved by the three widget sets it supports: Gtk#1,
System.Windows.Forms (SWF)2 and Wx.NET 3.

The remainder of this chapter is structured as follows: section 9.2 gives a
short introduction into the UIML language. It provides the necessary details
of the specification to understand the following sections. Next, in section
9.3 some related work and underlying technologies are discussed evaluating

1http://gtk-sharp.sourceforge.net/
2http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/

html/frlrfSystemWindowsForms.asp
3http://wxnet.sourceforge.net/

http://gtk-sharp.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWindowsForms.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWindowsForms.asp
http://wxnet.sourceforge.net/

9.2 UIML Overview 145

the use of UIML to illustrate the context of the work. This is followed by a
description of the implemented renderer in section 9.4. Several aspects will be
highlighted with the emphasis on the flexibility of the renderer. Section 9.6
identifies the layout management problem and proposes a solution for future
High-Level User Interface Description Language renderers. In section 9.7 we
illustrate the modular design of the Dygimes process by replacing SEESCOA
XML for this purpose by UIML. This chapter is concluded with a discussion
in the last section.

9.2 UIML Overview

The UIML specification is currently under revision for submission as a W3C
standard. Consequently this means some changes in the specification can be
expected and current renderer software design should support easy refactoring
to adopt these changes.

An UIML document exists of several parts [AH04b] that are shown in
figure 9.1. Together they form the Meta-Interface Model (MIM):

Interface describes four parts of the user interface:

Structure : describes the “hierarchy” of the user interface. It defines
the different parts that are contained in the user interface, and the
interactor name of each part.

Style : describes properties of the parts defined in the structure. This
allows to change properties of the interactors like text, color,. . . The
layout is also defined as a style of the parts in structure. Unfor-
tunately the current way of defining a layout is not suitable for
multi-device user interfaces, section 4.6 will elaborate further on
this.

Content : separates the content of the interface (e.g. the list of items
that has to appear in a list presentation) of the other parts.

Behavior : defines rules with actions that are triggered when some
condition is met. Some kind of event mechanism is offered to the
user interface designer this way.

Vocabularies are referred to as peers in the UIML specification: this contains
the mapping with the concrete user interface toolkit. To allow the use of
different devices and different GUI libraries, one can define several peers
for the same UIML document while choosing the appropriate peer at

146 Uiml.net: an Open Uiml Renderer for the .Net Framework

run-time. The renderer described in this chapter is limited to 2D widget
sets.

Logic defines how to bind the user interface with the application logic. More
precise it describes the mappings with the software interface to commu-
nicate with the application logic.

Listing 9.1 shows an example of a UIML document, where the different parts
can be distinguished. Rendering the UIML document from listing 9.1 with
the Gtk# vocabulary would result in the interface shown in figure 9.2.

Figure 9.1: The UIML Meta-Interface Model

Listing 9.1: The UIML code for the Dictionary example depicted in 9.2.

<?xml version="1.0"?>
<!DOCTYPE uiml

PUBLIC "-//Harmonia//DTD UIML 3.0a Draft//EN"
"http://uiml.org/dtds/UIML3_0a.dtd">

<uiml>
<interface>

<structure>
<part class="Frame" id="OuterFrame">
<part class="HBox" id="hl1">
<part class="VBox" id="vl1">

9.2 UIML Overview 147

<part class="Label" id="TermLabel" />
<part class="Combo" id="TermList" />

</part>
<part class="VBox" id="vl2">
<part class="Label" id="DefnLabel" />
<part class="Text" id="DefnArea" />

</part>
</part>

</part>
</structure>
<style>
<property part-name="OuterFrame" name="label">Simple Dictionary
</property>
<property part-name="TermLabel" name="text">Pick a term:</property>
<property part-name="DefnLabel" name="text">Definition:</property>
<property part-name="TermList" name="content">
<constant model="list">
<constant id="Cat" value="Cat" />
<constant id="Dog" value="Dog" />
<constant id="Mouse" value="Mouse" />

</constant>
</property>

</style>
<behavior>
<rule>
<condition>
<event part-name="TermList" class="EntrySelect"/>

</condition>
<action>
<property part-name="DefnArea" name="text">
<call name="Dict.lookup">
<param>
<property part-name="TermList" name="entry"/>

</param>
</call>
</property>

</action>
</rule>

</behavior>

148 Uiml.net: an Open Uiml Renderer for the .Net Framework

</interface>
<peers>
<presentation base="gtk-sharp-1.0.uiml"/>

<logic id="dictionary">
<d-component id="Dict" maps-to="Dictionary">
<d-method id="lookup" return-type="string" maps-to="Lookup">

<d-param id="animal" type="System.String"/>
</d-method>

</d-component>
</logic>
</peers>

</uiml>

Figure 9.2: The dictionary example from listing 9.1 rendered with the Gtk#
vocabulary.

9.3 Related Work

Until now, we are not aware of any previous work describing the actual im-
plementation of an UIML renderer and releasing the source code. There were
some initiatives in the past, but most of these projects only implemented parts
of an obsolete specification version or are no longer supported. [BS02] describes
how UIML can be converted into program code. Harmonia [FPQAS02] offers
a Java-based UIML renderer that implements most of the specification. Sev-
eral other implementations are gathered on http://www.uiml.org, but most
of them are deprecated.

http://www.uiml.org

9.4 The Renderer 149

However, there are several research initiatives that are based on the UIML
specification. DISL is a language developed by Bleul et. al. [BMS04] that
extends UIML with a dialog model. Zuehlke et. al. introduced useML
[ZMBR04]: a model-based, task-oriented and platform independent XML-
based description language. By combining UIML and useML, UIML is en-
hanced with support for abstract models: it becomes independent of the plat-
form and a task-oriented user interface structure is added. CUIML is an
extension of UIML by Sandor and Reicher [SR01] that adds support for multi-
modal user interfaces (form-based, 3D and voice interfaces) and a controller
in the sense of the Arch architecture [Cou93].

It is clear that UIML was designed with Object-Oriented programming
languages in mind. Most mappings on the user interface toolkit and the re-
lations with the application logic rely on the existence of “classes” in the OO
sense. The most mature implementation of the UIML renderer is the one
provided by Harmonia, and is implemented in Java. However, the .Net frame-
work offers some new possibilities to develop a UIML renderer. For example
it supports on-the-fly executable code generation and better integration with
web services. This is the first attempt to write a UIML renderer for the .Net
Framework.

Portability to different platforms and availability are important issues, so
the renderer was both implemented on the Microsoft .Net Framework and
the Mono (http://www.go-mono.com) implementation of .Net. Both .Net
Frameworks implement the same ECMA standard, so the implementation was
reusable as is for both .Net Frameworks. The UIML renderer we provide also
works in the Compact .Net Framework and therefore is also available for PDAs
and smart phones.

9.4 The Renderer

9.4.1 Overall Design

A High-Level User Interface Description Language can be processed in two
different ways: either it can be compiled or rendered. The former transforms
the specification into program code, the latter provides a rendering engine
that can interpret the UIML document. When the UIML document is trans-
formed into source code (“compiled”), on its turn the resulting source code
needs to be compiled. Transforming the UIML document into program code
is advantageous when the code still needs to be manually changed afterward.

The rendering approach is more complex to implement, but is more flexible:

http://www.go-mono.com

150 Uiml.net: an Open Uiml Renderer for the .Net Framework

it allows fast prototyping because an UIML document can be tested directly, it
can offer dynamic changes in the user interface and a transparent mechanism
for connecting the rendered user interface with the application logic.

Several parts of the renderer can be distinguished:

Vocabulary Generator One of the most cumbersome and tedious tasks is
to create a vocabulary for a particular widget set. When the vocab-
ularies are manually edited this often results in different incompatible
vocabularies and incomplete mappings. When the widget set API gets
updated, often the vocabulary has to be updated manually if one wants
to support the latest version of the widget set. This process can be auto-
mated when the implementation language supports reflection, e.g. Java
and C# have reflection support. Reflection allows software to inspect
implementation code and APIs at run-time.

Interface reader In the initial stage the UIML document has to be pro-
cessed. The Interface reader processes the document and stores it in
an appropriate data structure. Notice that it is recommended to keep
this data structure in memory during the lifespan of the user interface:
dynamic changes in the style and the user interface structure can be
supported better this way.

Style repository The style properties included in a UIML document are
implemented in a repository-like manner. On the one hand the part
that is specified beforehand is queried using XPath expressions. On the
other hand there is support for properties that are added at run-time by
an internal data structure.

Rendering Backends The specification allows different peers to co-exist for
the same interface specification. A peer defines the language bindings
for the interface, thus which widget set is being used and how it can
interact with the application logic.

System Glue The system glue connects the concrete interface with the ap-
plication logic. There are different ways to do this; by means of direct
method invocation, remote method invocation or through web services.
All three ways are supported by the .Net framework making it a powerful
choice for implementing the renderer.

Figure 9.3 gives an overview of the architecture of the renderer. Uiml.net
runs on the .Net Framework, which can use multiple widget sets. It takes

9.4 The Renderer 151

as input a UIML document, and reads the vocabulary which is referred from
the UIML document. It loads the generic rendering core, and selects the
appropriate rendering extensions for the widget set that is being used in the
vocabulary. With this information it can render the user interface. Figure 9.4
illustrates the rendering process of the Uiml.net renderer. Uiml.net deserializes
the UIML document into an internal data-structure (this is convenient for
changing the user interface at run-time for examples). This structure is used by
the generic rendering core which takes care of converting the part structure into
a user interface hierarchy by using the mappings specified in the vocabulary.
It also applies all the properties from the style fragment. The widget set
specific rendering backend primarily adds support for special constructors and
widget set specific properties that can not be handled in a generic way (e.g.
a tree widget can be completely different among widget sets). The widget set
specific rendering backend also has type converters that convert data from a
string into a type that is suitable for the target widget.

Figure 9.3: A rough sketch of the Uiml.net architecture

9.4.2 Dynamic Core

Roughly spoken there are two ways of implementing a renderer for a user
interface markup language:

Static renderer The implementation relies on specific knowledge of the wid-
get set. The types offered by the target GUI library are loaded and used
at compile-time.

152 Uiml.net: an Open Uiml Renderer for the .Net Framework

Figure 9.4: Processing an UIML file with Uiml.net

Dynamic renderer The implementation does not rely on specific knowledge
of the widget set. The types offered by the target GUI library are loaded
and used at run-time.

The former is more robust but less flexible and requires more program code.
The latter takes full advantage of the information offered by the peer de-
scriptions (vocabularies); it requires a detailed mapping description in the
vocabulary however.

Reflection is a very powerful tool to use when mapping the AIOs onto CIOs
[VB93]. AIOs are abstract representation of widgets, and CIOs are the con-
crete representation; e.g. a “range indicator” is an AIO and can be mapped
to a slider widget (which is a CIO). In general, reflection is very powerful
in the implementation of extensible XML-based User Interface Description
Language renderers. The Uiml.net rendering engine itself has no notion of
concrete widgets, but will be guided by the vocabulary to search for the ap-
propriate mapping. Even when the concrete widgets are found (including its
class name and properties), the renderer will avoid using the explicit class
names. Instead it queries the available libraries containing possible widget
sets with the information retrieved from the vocabulary. The reflection mech-

9.5 Inter-vocabulary distances 153

anism allows to construct new objects using solely this information. This has
several advantages:

• The rendering engine is reusable for other widget sets, since it does not
explicitly create the concrete widgets.

• The vocabulary can be extended independent of the renderer. When
the widget set is updated, only the vocabulary has to be updated. New
entries in the vocabulary can be used without further adaption of the
program code.

• The renderer is more portable across devices. E.g.: it can be ported to
platforms that only offer a limited version of the same widget set.

We tested the extensibility by adding a new widget set from scratch. Since
we started with Gtk# and had a fairly complete rendering engine for this
widget set, we added the SWF widget set afterward. This took one person
(a 3rd year computer science student) without any previous knowledge of the
code two days of work: a half day to understand the Gtk# specific rendering
code, one day to create a SWF rendering backend and another half day to
support event handling for this widget set. Most of the time was spent in
creating the vocabulary for the SWF widget set, a task that could be partially
automatized by a vocabulary generator. The only changes that had to be
made were adding the necessary code to the SWF namespace; the original
code did not change in any way to add this widget set! For each widget set
that is supported there is a small piece of code that is written especially for
this widget set however. This piece of code manages the “specificities” of
the target widget set: widget constructors and the widget set containment
hierarchy can be very different between different kinds of widget sets. Layout
is another aspect that behaves very differently among different widget sets.

9.5 Inter-vocabulary distances

Since the implementation of the renderer itself is focused on being highly ex-
tensible, it is important to allow a designer to reuse a user interface design
with another widget set while making minimal changes. The rendering back-
end that is responsible for creating the concrete user interface is selected by
looking at the vocabulary the UIML document refers to. An optimal situation
would be to only change the vocabulary reference to render the user inter-
face to another widget set, but different widget sets have similar widgets in
common that still have other properties.

154 Uiml.net: an Open Uiml Renderer for the .Net Framework

Instead of identifying a generic vocabulary (a single vocabulary for dif-
ferent widget sets) like proposed in [FPQAS02], we follow another route to
support multiple widget sets. With a generic vocabulary a trade-off has to be
made: without an extra pre- or post-processing stage the specific capabilities
of a widget set are limited by the generic vocabulary. In our approach the
inter-vocabulary distance is minimized by following some simple rules when a
vocabulary for a particular widget set is created:

• The vocabularies offer the same degree of abstraction in the mappings
they define. There is a common set of interactors that appear in most vo-
cabularies, each vocabulary that can be used with Uiml.net has support
for Container, Button, Label, Frame, Entry, Text, Image, CheckButton,
RadioButton, ToggleButton, ProgressBar, Combo, List, Tree, Calen-
dar, ColorSelection, FontSelection, HorizontalRange and VerticalRange.
These are all interactors that can be easily mapped onto widgets in a
widget set. The vocabularies use the same naming scheme for the widget
mappings: the semantics of a widget is used to determine its name in
the vocabulary. All vocabularies use the same semantics, but could map
this on different widgets.

• The layout of the parts from the structure fragment of a UIML document
has to be generalized for the supported vocabularies, without the need
to implement a complex algorithm inside the rendering engine.

• Event handling is independent of the widget set: the vocabulary should
offer a widget set independent way for doing this. At the time of writing
the most convenient way is to provide an observer for each widget as a
callback function.

To show how this results in widget set independent building blocks that
can be easily reused we provide a simple example of a user interface specified
in UIML. We want to use both the Gtk# and SWF vocabularies to render
the user interface and minimize the effort that is necessary to do this. Figure
9.6 shows the user interface rendered with the Gtk vocabulary and the SWF
vocabulary. In figure 9.5 the differences between both UIML documents are
shown graphically: left is the UIML document for the Gtk# example, and at
the right the UIML document for the SWF example. Between the listings the
differences are marked by solid filled quadrilaterals. Two important differences
can be notice here:

1. The structure part of the user interface is the same except for layout-
specific components

9.5 Inter-vocabulary distances 155

2. The properties from both documents share a general set of properties,
and differ in the specific properties mostly induced by layout manage-
ment specific properties.

For form-based user interfaces these two differences occur independent of the
complexity of the user interface (e.g. user interfaces that contain much more
widgets than the user interfaces from figure 9.6 are identical for the greater
part except for the two differences detected here). The behavior section of the
user interface is identical no matter which vocabulary is used. This leads to the
conclusion that both the structure and properties part of a UIML document
are insufficient to generalize the layout description of a user interface.

156 Uiml.net: an Open Uiml Renderer for the .Net Framework

F
ig

ur
e

9.
5:

D
iff

er
en

ce
s

be
tw

ee
n

G
tk

#
an

d
SW

F
in

te
rf

ac
e

sh
ow

n
by

th
e

M
el

d
to

ol

9.6 The Layout Problem 157

(a) Gtk# vocabulary (b) SWF vocabulary

Figure 9.6: Copy Text example with UIML

9.6 The Layout Problem

As demonstrated in section 9.5, one of the pitfalls making UIML less suit-
able for multi-device interfaces is the lack of support for uniform layout man-
agement. As an example a calculator that is rendered on three different
platforms is shown in figure 9.7. The Gtk# example differs with both Sys-
tem.Windows.Forms examples in 69 lines of code: the Gtk# example has a
more elaborate part structure where containers are specified that handle part
of the layout. This adds 12 part elements more in the structure for Gtk#,
while there are 57 properties more in the System.Windows.Forms examples
than there are in the style properties for the Gtk# example. Both the .Net
and Compact .Net have the same amount of part tags and property tags,
they still differ in the 57 properties there were necessary to specify a Sys-
tem.Windows.Forms layout. This is due the absolute coordinates that have to
be used for that widget set. Nevertheless all three examples have exactly the
same positioning of elements with respect to each other.

We propose to use spatial hierarchical layout constraints to overcome this
problem. [MHP00] rightfully argues that constraint-based systems have not
caught on for user interfaces, nevertheless simple constraints can be successful
for specifying (“constraining”) the layout of a system. Chapter 7 showed how
a simple constraint-based layout manager can result in a very scalable (or
“plastic”) user interface.

Typically the layout of the user interface is influenced by the interface
and style parts of the UIML document. Our approach differs with traditional

158 Uiml.net: an Open Uiml Renderer for the .Net Framework

(a) Mono and
Gtk#, 413 lines
UIML code

(b) Microsoft .Net and Sys-
tem.Windows.Forms, 451
lines UIML code

(c) Microsoft Com-
pact .Net and Sys-
tem.Windows.Forms,
451 lines UIML
code

Figure 9.7: A calculator on multiple platforms and with multiple widget sets

approaches in the sense that we also use the hierarchy as described by UIML
in the structure element instead of directly referring to the individual parts.
Most available vocabularies have the layout specified as parts of the properties
that can be defined in the style section of a UIML document.

In the way we implemented the renderer, the structure part determines how
the concrete user interface will be nested and the style part specifies the more
widget set related possibilities using layout managers. Using spatial layout
constraints this separation can be preserved, while adding adaptability when
rendering the user interface. Constraints are only defined between siblings in
the structure tree. 9.8 shows the kind of flexibilty that has is supported by
SEESCOA XML, but is not included in Uiml.net: 9.8(a) shows a “desktop”
interface for browsing pictures, and figure 9.8(b) shows a rearrangement so
the part of the user interface for navigating through the pictures can be used
on a PDA. The layout constraints for the five pictures that control the large
picture is shown in figure 9.9. The hierarchy divides the interface in groups
and these groups can be subdivided in other groups and so on. All widgets
that are part of the same group, have a logical relation with respect to each
other. Some rules can be applied here:

9.7 UIML and Dygimes 159

• A group describes a set of logically related abstract interactors or
groups of abstract interactors. The designer should decide which widgets
are gathered in a group. In UIML syntax this could be obtained by
adding a property to a part that serves as a container: this property can
specify the semantic relation between its children.

• A group can be specified splittable (as a UIML property for that part).
This specifier allows the layout manager to show the abstract interactors
or groups of abstract interactors in separate spaces.

• The group specifier non-splittable (as a UIML property) forces the
layout manager to show the children of the group as a whole to make
sense to the user. Note that “non-splittable” is only valid for the direct
children of the group, and does not affect the further offspring.

The type of semantic relation between sub-parts of the same part is specified in
the general vocabulary and can be used as hints for the layout manager. E.g. a
pagination algorithm as the one RIML [KWWZ04] uses could be useful when
migrating the interface to a device with less screen space: the “splittable”
property is sufficient to support this kind of algorithms.

For now, we have not implemented this into the Uiml.net renderer be-
cause it makes the renderer less portable. The layout management should be
generic and not related to any widget set and modalities. By consequence
this requires adding new elements into the UIML specification, e.g. tags to
define constraints. The spatial constraints are implemented in the Dygimes
framework [CLV+03, LCC03] for testing purposes and has proven to be a
feasible solution for user interfaces containing a limited amount of widgets.
Results obtained in this experiment to combine a High-Level User Interface
Description Language with spatial constraints can be seen in figure 7.3. The
figure shows a hotel registration form described in a High-Level User Interface
Description Language that is rendered to different devices.

9.7 UIML and Dygimes

This section shows how UIML can be used as a replacement presentation
specification in the Dygimes Framework and run-time environment. In our
approach, we can provide UIML with a dialog model and task model without
changing or extending the UIML language itself. While most other approaches
try to integrate this kind of models in the UIML specification itself; we con-
straint UIML to the presentation and application model. More specific: we

160 Uiml.net: an Open Uiml Renderer for the .Net Framework

(a) On a desktop (b) The controls ren-
dered separate

Figure 9.8: The Multi(ple)-device Picture Browser with UIML

constrain UIML to the description of isolated dialogs. Looking at the different
parts of a UIML document it is clear structure and style only apply to the user
interface itself. The behavior part describes only the behavior inside a dialog
in our approach. In the peers part, the logic section defines the application
model.

For each dialog in the user interface, we need a complete UIML description
to create the final user interface for this dialog. The final UIML description
is obtained by merging different parts of a UIML description that are related
with the different models. This can be expressed with the concepts introduced
in chapter 2. Using another markup language with the Dygimes process is just
a matter of splitting the new markup language in the appropriate sub-parts,
and relate these sub-parts to the different models that are being used. These
sub-parts were introduced in section 6.1: structure, layout, rendering hints
and mappings. In the next subsection we will show it is sufficient to relate
structure sub-parts as user interface building blocks to tasks.

9.7 UIML and Dygimes 161

Figure 9.9: Layout constraints for the controls of figure 9.8

9.7.1 Integration with the task specification

A leaf task from an hierarchical task description is visualized by a user in-
terface building block. This user interface building block contains an abstract
description of a part of a user interface that can be considered as a “unit”: it
would not be meaningful to split up the user interface any further. Figure 4.4
shows how this was done with SEESCOA XML (since this is a prototype tool,
the user interface building block could also be presented graphically by the
tool instead of as the XML listing). If we would like to use UIML it is only
a matter of replacing the SEESCOA XML descriptions with UIML structure
sub-parts.

Let us reconsider the simple task specification in figure 5.9(a). We could
create user interface building blocks for each leaf task that should be visualized.
This gives us the set of user interface building blocks shown in table 9.1. For
each task there is a UIML document that visualizes the task. For clarity, only
the structure fragment of the various building blocks is shown in table 9.1.

9.7.2 Generation of the dialog model

The set of dialogs necessary to have full coverage are generated automatically
from the task specification: this is accomplished by the algorithms from chap-
ter 5. Since a dialog is actually a mapping from a set of leaf tasks onto a
presentation unit, the user interface building blocks attached to these tasks
make up the presentation unit.

To know which dialogs are related to the task specification, we use the
algorithms of chapter 5. This gives us the following enabled task sets for the

162 Uiml.net: an Open Uiml Renderer for the .Net Framework

Task UIML structure UI building block

Enter
Name

<part class="VBox">

<part class="HBox">

<part class="Label" id="lsurname"/>

<part class="Entry" id="surname"/>

</part>

<part class="HBox">

<part class="Label" id="lname"/>

<part class="Entry" id="name"/>

</part>

<part class="Button" id="ok"/>

</part>

Select
Male

<part class="HBox">

<part class="CheckButton" id="male"/>

</part>

Select
Female

<part class="HBox">

<part class="CheckButton" id="female"/>

</part>

Choose
Current
Job

<part id="Top" class="Frame">

<part class="VBox">

<part class="CheckButton"

id="lcurrent"/>

<part id="currentjob" class="List"/>

</part>

</part>

Select
Unem-
ployed

<part class="HBox">

<part class="CheckButton" id="unemployed"/>

</part>

Submit
<part id="stop" class="Frame">

<part id="submot" class="Button"/>

</part>

Table 9.1: User Interface building blocks for each leaf task from figure 5.9(a)

9.7 UIML and Dygimes 163

task specification:

ETS1 = {Enter Name}
ETS2 = {Select Male, Select Female}
ETS3 = {Choose Current Job, Select Unemployed}
ETS4 = {Submit}

So we have to provide four different dialogs to have a full dialog coverage for
this task specification. Take ETS3 for example: it has two tasks, which should
be visualized in the same period of time. Merging the user interface building
blocks for these tasks is easy: it is just a matter of creating a new “container”
part and adding the two structure fragments as children of this container
in a new UIML document. The container part can be structured in several
ways, depending on the designer preferences. Table 9.2 shows two possible
containers: the left container just uses a horizontal layout and the container
on the right uses tabbed pages. It is a trivial task to automate the merge of the
UIML building blocks in these containers. In the example the UIML building
block of the task “Choose Current Job” is inserted first, and the task “Select
Unemployed” is inserted second in the container. The properties are not shown
in the example because merging them is even simpler: the list of properties of
the building blocks can be concatenated as can the behavior rules. Containers
are simple layout patterns that could be pre-generated for the designer and
customized afterward. In this example we made the completion of the enabled
task set ETS3 explicit in the container by adding a part “confirm” that maps
on a button to indicate the information for this dialog is complete.

To make this work in Uiml.net, it is actually sufficient to support the
template element. A template is described by the UIML specification as follows
[AH04b]:

UIML templates enable interface implementers to design parts of
their UI (or even the entire UI itself) as reusable components to
be exploited by other UIs. [...] Templates work as follows. Most
elements can contain the source attribute; let such an element be E.
The source attribute names a <template> element (either within
the same document or in another document). The <template>
element named must be an element of the same type as the element
E (i.e., have the same tag name). The source attribute causes the
body of the element inside the <template> to be combined with
the body of E.

This is not yet supported in Uiml.net, but should pose no real problems since
most of the necessary code is already available. The comment

164 Uiml.net: an Open Uiml Renderer for the .Net Framework

<!-- insert UIML structure first task here -->

could easily be replaced by

<part id="task1" source=#task1" how="replace"/>

where the UIML structure with identifier task1 is a template that presents
the user interface building block for task 1.

The last step to create the dialog model is the detection of transitions
between the different enabled task sets. The dialog model is created in an
identical way as the one previously presented in chapter 5. For this example
the resulting dialog modal is shown in figure 5.9(b).

9.8 Discussion

We discussed the implementation of a User Interface Markup Language (UIML)
renderer and possible extensions in this chapter like obtaining better adapt-
ability for multiple/multi-device environments throughout the usage of spatial
constraints. We explored how we could create a renderer that supports late-
binding of a widget set with its application model through reflection, instead of
binding with a widget set at compile-time. This results in a rendering engine
that is extremely extensible and supports evolution of widget set vocabularies.

To demonstrate the reusability of the Dygimes approach with another
XML-based User Interface Description Language, section 9.7 showed how
UIML could easily replace SEESCOA XML and take advantage of the sup-
port for the task model, dialog model, and inter-model transformations that
are available in Dygimes. There are also three important comparisons be-
tween SEESCOA XML and its UiBuilder rendering engine and UIML and its
Uiml.net rendering engine possible here:

1. Java versus .Net for embedded systems and mobile devices

2. Java versus .Net for their user interface support

3. UIML versus SEESCOA XML

We will discuss briefly our conclusions for these three comparisons:

1. Java is still more suitable for developing software targeting embedded
systems and mobile computing devices. Java is more widespread and
supported on different operating systems. The Compact .Net Framework
is only supported on the Microsoft operating system. Different profiles

9.8 Discussion 165

allow Java to be “deeply” embedded. On the other hand, the Compact
.Net Framework is not limited to one programming language.

2. The .Net framework has many potential candidates for implementing
GUIs like bindings for XWindows, Gtk, Qt and the Eclipse-based SWT.
However, Java has more suitable widget sets available that are scalable
for a wide range of devices. The major drawback is there is less choice
in “backend” widget sets because the .Net Framework allows smooth
integration with native libraries while this is more difficult with Java.

3. UIML is a far more powerful User Interface Description Language than
SEESCOA XML: it provides a generic way to describe the UI. It does not
restrict the User Interface Description Language syntax to a particular
set of widgets. The SEESCOA XML does restrict the available widget
set in favour of better support for embedded systems. In contrast with
SEESCOA XML, UIML is less suitable for embedded devices: it lacks
an appropriate method for layout specification and needs a predefined
GUI library vocabulary (“peers”) to use a particular widget set.

The source code of Uiml.net can be obtained at https://sourceforge.
net/projects/uimldotnet/ and is licensed under the Lesser General Public
License v2.1. Uiml.net supports Gtk#, System.Windows.Forms and part of
the Wx.NET widget sets and works on the Microsoft .Net Framework, Mono
and the Microsoft Compact .Net Framework (for PDAs and smart-phones).

https://sourceforge.net/projects/uimldotnet/
https://sourceforge.net/projects/uimldotnet/

166 Uiml.net: an Open Uiml Renderer for the .Net Framework

Vertical Container Tabbed Container

<part class="VBox">

<part class="HBox">

<!-- insert UIML structure

first task here -->

<!-- insert UIML structure

second task here -->

</part>

<part class="Button" id="confirm"/>

</part>

<part class="VBox">

<part id="tabs" class="Tabs">

<part id="Tab1" class="TabPage">

<!-- insert UIML structure

first task here -->

</part>

<part id="Tab2" class="TabPage">

<!-- insert UIML structure

second task here -->

</part>

<part class="Button" id="confirm"/>

</part>

Table 9.2: Two examples of merging UIML building blocks from an enabled
task set with a predefined container.

Part III

Towards Context-Sensitive
Model-Based User Interface

Development

Chapter 10

Extending Dygimes for Context-Sensitive User
Interface Development

Contents

10.1 Introduction . 169
10.2 Related Work . 170
10.3 Dygimes Once Again 171
10.4 Design Process . 172

10.4.1 The Context-Sensitive Task Model 173
10.4.2 The Presentation Model 175

10.5 A Case Study: Manage Stock 177
10.6 Discussion . 183

10.1 Introduction

Recent advances in mobile computing devices and mobile communication sup-
port more complex interaction between different devices. This allows users
to migrate from their single “computer on the desk” setup to a heteroge-
neous environment where she/he uses several devices to accomplish her/his
tasks. Although the provided hardware and software becomes more powerful,
it makes designing the interface more complex. Different contexts (device con-
straints, environment of the mobile user,. . .) have to be taken into account.
The nomadic nature of future applications also demands a new way to design
interaction using multiple devices. We use the following definition, based on

170
Extending Dygimes for Context-Sensitive User Interface

Development

Dey’s definition of a context-sensitive system [DSA01] and with the focus on
sensing the environment in order to pursue uniformity and clarity in this work:
Context is the information gathered from the environment which can influence
the tasks the user wants to, can or may perform.

Combining the work presented in the previous chapters with context-
sensitive task specifications like presented in [PLV01, SLV02], we can realize a
supporting framework for the design and creation of context-sensitive multiple-
and multi-device interaction. By multiple-device interaction we mean the user
interface is distributed over different devices. The implementation has been
tested as a component of the Dygimes framework [CLV+03].

The remainder of this chapter is structured as follows: section 10.2 dis-
cusses the related work, introducing the state of the art in context-sensitive
task modeling. This is followed by an overview of the design process needed
to create a context-sensitive user interface in section 10.4. In section 10.3 the
Dygimes process is repeated but with a focus on context-sensitive user inter-
face design. Three stages are described: the creation of the task model, the
extraction of the dialog model and the generated presentation model. Next a
case study shows how things work in practice. Finally, the obtained results
and their applicability are discussed at the end of this chapter.

10.2 Related Work

Pribeanu et al. [PLV01] proposed several possible approaches to adapt the
ConcurTaskTrees notation for ıcontext-sensitive task modeling. As pointed
out in [PLV01] and [SLV02], the context of use of the application influences
which parts of the task model are executed. A context-sensitive (or context-
dependent) and a context-insensitive (or context-independent) part of the task
model can be identified and processed accordingly. The context-sensitive part
can be related to the context-insensitive part in multiple ways [PLV01]:

• Both parts are specified in one task model: the monolithic approach

• The context-insensitive parts are connected to the context-sensitive parts
with general arcs: graph-oriented approach

• The context-insensitive parts are connected to the context-sensitive parts
with special arcs that can constitute a decision tree: separation approach

The last approach in particular is interesting: although it allows different parts
for different contexts of use to be integrated in one model, there is a decision

10.3 Dygimes Once Again 171

tree that provides a nice separation. We choose to insert decision node in
the task specification instead of decision trees. Of course, decision nodes can
have other decision nodes as descendants. The children of a decision node
are possible subtrees where one of them will be chosen in a preprocessing
step. Section 10.4 explains in detail how a concrete task specification can be
obtained by preprocessing the decision nodes.

Paternò and Santoro [PS02] present a method to generate multiple inter-
faces for different contexts of use starting from one task model. In contrast
with their approach, we do not focus on the design aspect as much as they
do, but emphasize the run-time framework necessary for accomplishing this.
To our knowledge, the ıTeresa tool supports the creation of one task model
for multiple devices, but currently does not take into account multiple devices
interacting at once or the interface migrating from one device to another.

Calvary et al. [CCT00, CCT01] describe a process where a Platform and
Environmental Model are used to represent context information. The process
allows to create user interfaces for two running systems in different contexts.
Although at several stages in the user interface design process (Task Specifica-
tion, Abstract user interface, Concrete user interface, Runtime Environment)
a translation can take place between the two systems, the designer will have
to change the task specification manually in the process if the context has an
influence on the tasks that can be performed.

Nichols et al. [NMH+02] defined a specification language and communica-
tion protocol to automatically generate user interfaces for remotely controlled
appliances. The language describes the functionalities of the target appliance
and contains enough information to render the user interface. In this case, the
context is secured by the target appliance represented by its definition.

Ali and Pérez-Quiñones [FPQAS02] also use a task model, together with
ıUIML [APB+99], to generate user interfaces for multiple platforms. The task
model has to increase the abstraction level of the UIML specification, which
is necessary to guide the user interface onto different devices.

10.3 Dygimes Once Again

Most of the work presented in this chapter is built upon our framework ıDy-
gimes (chapter 4). One of the aims in this chapter is to extend this framework
to support design for context-sensitive user interfaces through selected models
from Model-Based User Interface Development.

The Dygimes framework supports roughly the following steps for creating
user interfaces:

172
Extending Dygimes for Context-Sensitive User Interface

Development

1. Create a context-sensitive task specification with the ConcurTaskTrees
notation

2. Create user interface building blocks for the separate tasks

3. Relate the user interface building blocks with the tasks in the task spe-
cification

4. Define the layout using constraints

5. Define custom properties for the user interface appearance (e.g. preferred
colors, concrete interactors,. . .)

6. Generate a prototype and evaluate it (the dialog model and presentation
model are calculated automatically)

7. Change the task specification and customizations until satisfied

This is a clear variation on the “traditional” multi-device user interface cre-
ation process that was presented in chapter 4. The basis of the process is step
1: the creation of a context-sensitive task specification.

10.4 Design Process

The proposed approach extends the process for automatically generating pro-
totype user interfaces from annotated task models that include user interface
building blocks. Figure 10.1 shows the extended process where a context-
sensitive task model is considered to generate user interfaces depending on the
context at the time the user interface is rendered. First, a ıcontext-sensitive
task model is constructed and high-level user interface building blocks are at-
tached to the leaves as described in the previous section. Next, the context is
captured and the proper context-specific ConcurTaskTrees specification will
be generated automatically. Subsequently the enabled task sets are calculated.

After this step, the appropriate dialog model is extracted automatically
from the task model like shown in chapter 5. Each dialog is still related to
the set of tasks it presents, thus also to the appropriate user interface building
blocks it can use to present itself. The context-sensitive information in the
task specification is taken care of in a “preprocessing” step, which we will
explain now into further detail.

10.4 Design Process 173

Figure 10.1: Context-Sensitive user interface Design Process

10.4.1 The Context-Sensitive Task Model

As pointed out in section 10.2, there are three proposed approaches to model
context-sensitive task models. Our approach is inspired by the third one,
the separation approach, but instead of collecting decision trees, we propose
another way where the context-insensitive part points directly to context-
sensitive subtrees through decision nodes. These nodes are marked by the
D in the example in figure 10.2. Although this resembles the graph-oriented
approach, the context-sensitive subtrees are the direct children of the decision
node. When the context-sensitive parts are resolved, the decision node will
be removed and replaced by the root of the selected subtrees of that decision
node.

The decision nodes are executed in the first stage of the user interface
generation process. This results in a normal ConcurTaskTrees specification,
but also one that is suitable according to the rules defined in the decision nodes.

174
Extending Dygimes for Context-Sensitive User Interface

Development

The normal ConcurTaskTrees specification enables the provided algorithm to
extract the dialog model automatically adapted to the current context.

In order to link the context detection and the task model, some information
about which subtree has to be performed in which case is added to the ıdecision
node. Listing 10.1 shows a simple scheme (as a Document Type Definition)
defining how rules can be specified for selecting a particular subtree accord-
ing to a given context. Conditions can be defined recursively and numerical
and logical operators are provided (=, <, >,∨,∧) to cope with several context
parameters. In listing 10.2 an example is presented where the current context
will be decided on the basis of comparing X and Y coordinates provided by a
Global Positioning System (ıGPS) module. The XML specification provides
a way to exchange context information. Tool support should be provided to
hide the complexity of the decision XML for the designer.

Note the approaches described in [PLV01, SLV02] focus on the design of
the interface at the task level. This work shows how the task model is used at
run-time to generate context-dependent user interfaces. This is accomplished
by providing a framework (Dygimes, section 4.2) that can interpret a task
specification and generate a presentation for the given task specification. The
framework resolves the context dependencies beforehand, resulting in a pre-
sentation that is adapted to the context of use. The next section explains how
we proceed from the task specification to the presentation of the user interface
by using a dialog model.

Listing 10.1: Decision DTD
<?xml version="1.0"?>
<!ELEMENT decision ((cond,true,false)

|(value,case+))>
<!ELEMENT cond (value,value)>
<!ATTLIST cond type CDATA #IMPLIED>
<!ELEMENT value (cond | #PCDATA)>
<!ATTLIST value type CDATA #IMPLIED>
<!ELEMENT true (#PCDATA)>
<!ATTLIST true platform #IMPLIED>
<!ELEMENT false (#PCDATA)>
<!ATTLIST false platform CDATA #IMPLIED>
<!ELEMENT case (value|cond)>
<!ATTLIST case platform CDATA #IMPLIED>

Listing 10.2: Decision XML example

10.4 Design Process 175

<decision>
<cond type="and">
<value type="cond">

<cond type="lt">
<value type="context">
GPS:Xcoord

</value>
<value type="int">
1

</value>
</cond>

</value>
<value type="gt">

<cond type="equals">
<value type="context">

GPS:Ycoord
</value>
<value type="int">

54
</value>

</cond>
</value>

</cond>
<true platform="context">left</true>
<false platform="context">right</false>
</decision>

10.4.2 The Presentation Model

The last step of the adjusted design process has to render the dialog model on
the available output devices. This is the presentation of (the different parts
of) the concrete user interface. Because the decision nodes have their own
rule set, the resulting task specification can use different devices to reach the
user’s goal. Several tasks from different subtrees can be executed in the same
period of time, it is even possible the user interacts with multiple devices:
the user interface for that set of tasks can be distributed over several devices
[VC04]. The case study in the next section will show how different devices can
be involved when executing the task specification.

The nodes in the dialog model are enabled task sets. One such node repre-

176
Extending Dygimes for Context-Sensitive User Interface

Development

sents all user interface building blocks that have to be presented to complete
the current enabled task set (section 4.2 showed that user interface building
blocks were attached to individual tasks). The tasks in an enabled task set are
also marked with their target device, so two different situations are possible:

1. All tasks in an enabled task set are targeted to the same device.

2. Not all tasks in an enabled task set are targeted to the same device.

Situation (1) allows the user interface to be rendered completely on one
device. (2) demands that the user interface is distributed over different de-
vices. For this purpose the device-independence of the abstract user interface
description has to be extended towards the use of multiple devices. On the
level of the presentation model, the high-level user interface description of a
dialog are rendered as concrete dialogs, this can be accomplished by using two
important techniques:

• Customized mappings from Abstract Interaction Objects (AIOs) to Con-
crete Interaction Objects (CIOs) [VB93]. The rendering engine for each
device can choose for itself the concrete widget selected to present an
AIO. This can be customized afterward by the designer [VLC03a].

• Positioning of the widgets is done through constraints which are defined
in a language-independent manner. The renderer can use the infor-
mation about the hierarchical widget containment to split up the user
interface in different parts. Details of this approach can be found in
[LCC03] and chapter 7.

Customized mapping rules and device-independent layout management are
two important techniques for realizing device-independent distributed user
interfaces.

It is possible several concurrent tasks located in the same enabled task
sets have to be rendered on different devices. Since the presentation building
blocks are attached to the tasks as XML documents, the presentation for an
individual device can be calculated for each device separately. Notice when
concurrent tasks are rendered on separate devices, some kind of middleware
will be necessary to support data-exchange between both tasks in a heteroge-
neous environment. In contrast with e.g. WebSplitter [HPN00] the focus is
not on distribution of content, but distributed support of task execution.

10.5 A Case Study: Manage Stock 177

10.5 A Case Study: Manage Stock

Figure 10.2 shows the manage stock example. The following situation occurs:
the storekeeper of a warehouse keeps track of the stock using two devices. First
a desktop PC is used to manage the purchase and sales of articles. Second an
employee checks and updates the stock amounts using his PDA to note the
changes immediately. When the amount of a certain article is updated by the
desktop PC (see figure 10.4), for example when new goods are purchased, the
employee receives a message on his PDA. When he/she stands in the vicinity
of a printer supporting Radio Frequency Identifier (ıRFID) tags, this can be
detected and the information of the product can be viewed and printed. As

Figure 10.2: Context-Sensitive Task Model of the Manage Stock example

a result, the example contains two types of context denoted by the decision
tasks: platform (Update and Request Overview) and location (Overview PDA).
To link the context handler to the appropriate decision node, decision rules
need to be attached to these nodes. Listing 10.3 shows an example for the
Overview PDA task. In this case there will be a call for the canPrint function
in the RFID Reader.

Listing 10.3: Decision rules for the Overview PDA task

178
Extending Dygimes for Context-Sensitive User Interface

Development

Figure 10.3: Overview PDA subtree

<decision>
<cond type="equals">

<value type="context">RFID:Reader:canPrint</value>
<value type="boolean">true</value>

</cond>
<true platform="context">

Show Properties (No Printing)
</true>
<false platform="context">

Properties (Printing)
</false>

</decision>

Listing 10.4: Decision XML for the Use Properties task
<decision>

<cond type="equals">
<value type="context">RFID:Reader:canPrint</value>
<value type="boolean">true</value>

</cond>
<true platform="context">Show Properties (No Printing)</true>
<false platform="context">Properties (Printing)</false>

10.5 A Case Study: Manage Stock 179

</decision>

Figure 10.4: Update PC subtree

The first step to automatically generate the user interface is to convert the
context-sensitive task model into a context-specific task model. This is why
the condition in the decision XML has to be evaluated for each decision node
and the decision node is replaced by its subtree which matches the current
context. In the Overview PDA task example from figure 10.3, there will be
an evaluation of the canPrint function. If the return value equals true the
Properties (Printing) subtree will replace the decision node, else the Show
Properties (No Printing) will. Figure 10.5 shows the context-specific task
model in case of using the PC to change the stock amounts and the PDA to
notify the employee within the reach of an RFID supporting printer.

The next step uses a custom algorithm (described in section 5.5.3) to cal-
culate the enabled task sets:

ETS1 = {Log In} ⇒ Pall

ETS2 = {Select Purchase(Ppc), Select Sell(Ppc), Shut Down} ⇒ Ppc

ETS3 = {Enter Product(Ppc), Enter Amount(Ppc), Enter Price(Ppc),
Shut Down} ⇒ Ppc

ETS4 = {Enter Product(Ppc), Enter Amount(Ppc), Enter Price(Ppc),
Shut Down} ⇒ Ppc

ETS5 = {Update Amount(Ppc), Shut Down} ⇒ Ppc

ETS6 = {Update Amount(Ppc), Shut Down} ⇒ Ppc

ETS7 = {Show Properties(Ppda), Shut Down} ⇒ Ppda

ETS8 = {Select Print(Ppda), Shut Down} ⇒ Ppda

ETS9 = {Print(Ppda), Shut Down} ⇒ Ppda

(10.1)
Px indicates on which platform the tasks can be executed. x = all means

the platform does not matter, and the task can be executed both on a PC or on

180
Extending Dygimes for Context-Sensitive User Interface

Development

Figure 10.5: Context-Specific Task Model

a PDA. This example only contains tasks restricted to either a PC or a PDA
because no enabled task set contains tasks marked Ppc and Ppda. Remark that
the only difference between ETS3 and ETS4, and ETS5 and ETS6 is they
are children from another task. Afterward, the dialog model (figure 10.6) is
automatically extracted. Finally the actual user interface is rendered by the
run-time environment. Figure 10.7 shows the dialog model with the rendered
user interfaces.

10.5 A Case Study: Manage Stock 181

Figure 10.6: Dialog Model (The accept state caused by the Shut Down task is omitted

to avoid cluttering the picture.)

182
Extending Dygimes for Context-Sensitive User Interface

Development

F
ig

ur
e

10
.7

:
D

ia
lo

g
M

od
el

w
it

h
th

e
co

nc
re

te
di

al
og

s

10.6 Discussion 183

10.6 Discussion

This chapter shows how context information can be integrated in interface
design to generate multi- and multiple-device user interfaces at run-time. The
ConcurTaskTrees formalism is combined with decision nodes and rules to allow
the user interface to adapt to the context while still being consistent w.r.t.
the design. An important case is where the context can indicate the change
in interaction device while executing a task. Our model allows this change
by providing an appropriate dialog model including the transitions between
dialogs on the same device and transitions between dialogs on different devices.
The presentation model also supports dialogs that are distributed over several
devices. The precondition to make this work is the context must be frozen
from the start until the end of the main task.

The work presented in this chapter is preliminary work, built upon the re-
sults of the previous chapters. We are extending support for context-sensitive
user interfaces with Model-Based User Interface Development by introducing
a degree of ıdialog plasticity in [CLC04b] and making context explicit in the
different models that are used in the Dygimes process in [CLC04a].

184
Extending Dygimes for Context-Sensitive User Interface

Development

Chapter 11

Future Work

Contents

11.1 Dynamic Model-Based User Interface Development186
11.2 Distributed User Interfaces 187
11.3 Next-Generation Widget Toolkits 187
11.4 Software Engineering 188

This chapter provides new research topics and questions that can be tackled
in the near future. Referring back to the scenario’s in chapter 1 we see there
are still gaps that need to be filled up. The CoDAMoS project1 is a Flemish
project that targets exactly the kind of technologies that is necessary to realize
the aforementioned scenarios. Within the EDM there is also ongoing research
work that goes beyond the topics presented in this dissertation. This chapter
gives an overview of the topics I consider to be the most important ones.

In short term a few improvements can be made to the Dygimes frame-
work. The tools that are provided now are proof of concept tools and are not
suitable for use in a real environment. The tools lack usability and do not
provide enough feedback to the designer. Concerning the separate modules,
the rendering engine needs to be expanded so it can express more divers user
interfaces (see also chapter 9 for a possible expansion) and the layout manage-
ment module needs to take into account user defined rules to make the final
user interface more usable and visually pleasing. The framework should also

1CoDAMoS (Context-Driven Adaptation of Mobile Services) project IWT 030320, http:
//www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/

186 Future Work

be expanded to include other models more easily. In spite of these improve-
ments that would make our achievements more usable, Dygimes has proved to
be suitable as a basis to implement new ideas that improve Model-Based User
Interface Development. Chapter 10 already showed it could be easily extended
to include “context” in the task model: [CLC04a, CLC04d, VC04, CLC04b]
are all publications that rely on the Dygimes framework as the basis for their
developments.

11.1 Dynamic Model-Based User Interface Devel-
opment

Interactive software has escaped from the desktop computer and can accom-
pany the user(s) everywhere they go. The user will no longer be the only entity
influencing an interactive system, there will be others (unexpected) entities
that influence the state and behavior of a system, human and non-human.
There is a big challenge in finding appropriate ways for modeling these kind of
systems, the application logic as well the interactive part. Context-sensitive
systems will increasingly become important as software becomes more mobile
and our environment gains in computing power and network communication
possibilities. The next-generation Model-Based User Interface Development
Environment should integrate context explicitly in the user interface design
process, with a clean comprehensible definition of context.

Within the CoDAMoS project, an ontology for context was created that
can serve as a basis for this integration [PVW+04]. The main difficulties start
once context for a Model-Based User Interface Development Environment is
defined: models should become fully dynamic. E.g. the task specification
could change according to newly found context information, but how should
these changes be anticipated at the design stage of an application. E.g. the
execution of a task could become impossible because of changes in the envi-
ronment of the user. Other models such as the dialog model, presentation
model and even the domain model will also be influenced. We published some
preliminary work in [CLC04b] and have another paper submitted [CLC04a].
This kind of work would support the design of pervasive interactive systems
and enable us to create ambient intelligent environments from a user’s point
of view.

11.2 Distributed User Interfaces 187

11.2 Distributed User Interfaces

In this dissertation we emphasized multi-device user interfaces, and even inter-
faces that could migrate from one device to another and adapt according to the
target device. A user interface should be designed such that it could be easily
used while being distributed over multiple (possibly communicating) devices.
A user interface should take advantage of all the appropriate devices that are
within the user’s reach, and essentially be able to split itself into several parts
so that each part could be allocated to the most appropriate device. There
are many issues that have to be tackled here: define an optimal topology for
a user interface distribution, create or use an environment that helps to har-
vest the different devices and supports transparent communication between
devices, determine usability metrics for certain distribution topologies,. . .

Again, this kind of work would support the creation of interactive pervasive
systems and ambient intelligent environments for the user’s point of view.
Some preliminary work from our research group concerning distributed user
interfaces can be found in [VC04].

11.3 Next-Generation Widget Toolkits

The two previous goals are not possible without the support of a toolkit to
actually realize the final concrete user interfaces. Before we can take the
leap towards real distribution using multiple modalities and dynamic models,
we should draw up what will be a next-generation widget toolkit (widget is
used here in the broad sense, meaning a concrete interactor). At current, a
great diversity can be detected that is too scattered to allow a designer to
take advantage from all: physical or tangible widgets, speech widgets, GUI
widgets,. . .

First thing is first: before physical widgets and the like come into play
there will be some time to look into GUI and voice interfaces and how these
can be adapted to the new needs. Traditional GUIs need to be enhanced
with a new type of layout system that is device independent but also allows a
smoother transition of (parts of) the GUI into a speech interface. The first step
towards distribution is to make traditional GUIs “distribution-aware” so they
can stretch over several screens for example. Usability borders of an adaptive
interface is also an aspect that will gain importance: as the requirement for
plasticity of the user interface presentation rises, we need to decide on the
borders of this plasticity w.r.t. the usability of the user interface. We did
some very preliminary work on the last subject in [LC04a].

188 Future Work

11.4 Software Engineering

Since the OMG introduced Model Driven Architecture (MDA) as the new pro-
cess for creating multi-platform software, the urge to integrate Model-Based
User Interface Development and traditional software engineering has only be-
come more prominent. The IFIP working group 2.7 / 13.4 on User Inter-
face Engineering2 has organized several workshops around this topic. Model-
Based User Interface Development and MDA seems to fit nicely together: e.g.
UsiXML [LVM+04b] is an example that uses a transformation approach just
like MDA does. But there are many issues that need to be resolved: the
fact there is no environment that is widely accepted and integrates Model-
Based User Interface Development and a general software engineering tool is
an indication there is still some work that needs to be done.

Suggestions here are to define a standard model for Model-Based User
Interface Development and relate it to software engineering processes such as
MDA or the Rational Unified Process (RUP). This means the different stages
of a process (requirements, analysis, design, testing, deployment), structures
(waterfall model, star model, transformational development,. . . [Som04]) and
notations (UML, Booch, Rumbaugh, . . .) need to be aligned with the different
models and model notations from Model-Based User Interface Development.
To allow a wide adoption an integrated case tool combining these techniques
is a must.

2http://www.se-hci.org

http://www.se-hci.org

Chapter 12

Conclusions

This dissertation is concluded with a short summary of the work and an
overview of our achievements.

12.1 Model-Based User Interface Development

Model-Based User Interface Development has been an active research subject
since many years, and has become more relevant each year. Since the rise of
a new class of computing devices this approach has gained even more impor-
tance. It offers us a method to cope with a new set of requirements that are
subject to continuous changes. Since the explosion of different kinds of devices
this has become one of the main problems in user interface design: minimiz-
ing the effort while supporting a maximal wide range of different devices. In
this dissertation we have presented a new system for Model-Based User Inter-
face Development: Dygimes. This systems supports and can execute selected
models (abstract and concrete) to create an interactive system for multiple
devices.

Dygimes provides a simple and clear process to create multi-device and
multi-context user interfaces. The design of the user interface starts with the
task model as the central model. Once the task specification is created in the
appropriate notation other models are related with this model or are generated
on the basis of this model. By using several algorithms the consistency be-
tween the different models is ensured, and the user interface designer will end
up with an interactive system that aligns perfectly with the predefined task

190 Conclusions

specification. This does not mean the designer has no further influence: the
specific user interfaces, referred to as user interface building blocks, are still be-
ing created by the user interface designer. With SEESCOA XML, layout can
be specified by using constraints that cover the relations between interactors
insided buiding blocks as well as the positioning of different building blocks
with respect to each other. Depending on the User Interface Description Lan-
guage being used the designer can also specify rendering hints that influence
the appearance of the user interface. Finally, the widget mappings can change
the final user interface by changing the selection of concrete interaction objects
for each abstract interaction object.

The techniques introduced in this text are becoming more common to
create user interfaces because of the changing requirements. Even though not
always as visible, task-based design gains popularity and multi-device user
interface creation is a must. The next step is to support context-sensitive user
interfaces.

12.2 Achievements and Main Contributions

This section tries to summarize our achievements and main contributions to
this field of research. In section 1.2 we wrote down our motivation and aims
for conducting this work. We recapture the five challenges from section 1.2
and evaluate our achievements and contributions for each of these challenges:

Challenge 1 Task-Centered Interfaces: a great deal of effort has been
put into this challenge. Our approach allows a task centered design of
the user interface, and ensures consistency of all final user interfaces with
the task specification.

Challenge 2 Multi-Platform Support: it was our primary goal to ensure a
user interface designer only had to design the user interface once instead
of doing a redesign for each platform that should be supported. We
think we have succesfully done this by adding new techniques along the
way starting from the task model to the concrete user interface: we
created an XML-based User Interface Description Language, provided
device independent layout management and introduced support for an
arbritrary application domain,. . . Because of the combination of using an
XML-based User Interface Description Language with a flexible layout
management algoritme a user interface becomes more “plastic” so it can
adapt better to the target platform. Without restrictions to a specific
type of application domain it becomes easier to deploy the user interface

12.3 Scientific Contributions and Publications 191

and allow it to access the application logic remotely or locally depending
on the situation.

Challenge 3 Interface Tailoring: Only minor effort went into this subject.
Depending on the XML-based User Interface Description Language that
has been used the designer can specify “rendering hints” that influence
the appearance of the final user interface. E.g. Seescoa XML has a
separate subsystem that allows interface tailoring to a certain degree
and UIML can make use of style properties to taylor the user interface.

Challenge 4 Multi-Modal Interfaces: besides some tests we did to sup-
port speech-driven dialogs in SEESCOA XML, no efforts were done to
create a full multi-modal output model for Dygimes. We are convinced
other modalities require different designs methodologies, and only parts
of the designs for the different modalities can be based on the same de-
sign specifications. Other initiatives (e.g. Teresa) proof the task model
can be a good basis to develop a multi-modal user interface, although the
design for different modalities has to be split up at a certain more con-
crete stage. It is unclear how different modalities can be mixed together
however.

Challenge 5 Support for Context-Sensitive Interfaces: the Dygimes
framework allowed us to build extensions that support the design of
context-sensitive user interfaces. We already created a prototype design
environment that integrates context and design at realtime. Context can
be gathered by sensor data or simulated, and the designer can immedi-
ately see how this data influences the different models and the final user
interface while she/he is designing the user interface.

12.3 Scientific Contributions and Publications

The work presented here is built upon four years of research. This section
provides an overview of the publications that reported on this research, and
were presented in international scientific conferences.

[LC01], 2001 Kris Luyten and Karin Coninx. An XML-based runtime user interface
description language for mobile computing devices. In Johnson [Joh01], pages
17–29

This paper laid out the foundations of our current work and introduced the
multi-device user interface creation together with XML-based High-Level User

192 Conclusions

Interface Description Language in our research. As such its content contributed
to chapter 6.

[LLCR03], 2002 Kris Luyten, Tom Van Laerhoven, Karin Coninx, and Frank Van
Reeth. Runtime Transformations for Modal Independent User Interface Migra-
tion. Interacting with Computers, 15(3):329–347, 2003
This journal article illustrates next step we took: investigate the feasibility to
support multiple modalities besides multiple devices.

[LVC02], 2002 Kris Luyten, Chris Vandervelpen, and Karin Coninx. Migratable
User Interface Descriptions in Component-Based Development. In Forbrig et al.
[FLUV02], pages 62–76
This paper went beyond the multi-device concepts and introduced an applica-
tion model as a set of components and distribution of the user interface and
application logic over different devices. It serves as a basis of chapter 8.

[LCCV03], 2003 Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdonckt.
Derivation of a Dialog Model for a Task Model by Activity Chain Extraction.
In Jorge et al. [JNF03], pages 203–217
After introducing a domain model and distributed interfaces in the previous
model, the next challenge was to take into account the necessary temporal
rules to generate a dialog-based user interface. We designed and developed an
algorithm that extracts a dialog specification from a task specification based
on the temporal relations between the tasks. It is the basis of chapter 5.

[CLV+03], 2003 Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den
Bergh, and Bert Creemers. Dygimes: Dynamically Generating Interfaces for
Mobile Computing Devices and Embedded Systems. In Luca Chittaro, editor,
Mobile HCI, volume 2795 of Lecture Notes in Computer Science, pages 256–
270. Springer, 2003
A complete overview of our process is published in this paper, in particular how
it supports mobile systems. It is the basis of chapter 4.

[LC04b], 2004 Kris Luyten and Karin Coninx. Uiml.net: an Open Uiml Renderer
for the .Net Framework. In Limbourg et al. [LJV04]
Since the target platforms for our user interfaces expanded beyond embedded
systems and mobile computing devices, the need for a new kind of XML-based
User Interface Description Language arised. It needed to be a highly extensible
language. We choose to implement a UIML Renderer and presented our results
in a paper. This paper is the basis of chapter 9.

[CLC04c], 2004 Tim Clerckx, Kris Luyten, and Karin Coninx. Generating Context-
Sensitive Multiple Device Interfaces from Design. In Limbourg et al. [LJV04]
This paper adds context-awareness to the approach which is described in the
previous paper. It does this on a task level, where context decision nodes are
used to make it context-aware. It is the basis of chapter 10.

12.4 Concluding Remarks. . . 193

Besides these international scientific publications we published a technical
report on device independent layout techniques in early 2003. This publication
is the basis of most of chapter 7:

[LCC03], 2003 Kris Luyten, Bert Creemers, and Karin Coninx. Multi-
device Layout Management for Mobile Computing Devices. Technical
Report TR-LUC-EDM-0301, Expertise Centre for Digital Media – Lim-
burgs Universitair Centrum, Belgium, 2003

In addition, based on the experiences obtained by the research contribu-
tions presented in this chapter, we organized a workshop at AVI’2004:

[LALV04], 2004 Kris Luyten, Marc Abrams, Quentin Limbourg, and Jean
Vanderdonckt, editors. Developing User Interfaces with XML: Advances
on User Interface Description Languages. Sattelite workshop of Advanced
Visual Interfaces (AVI) 2004, Expertise Centre for Digital Media, 2004

Some XML-based User Interface Description Languages that were presented
on this workshop are also discussed in chapter 3.

12.4 Concluding Remarks. . .

In 2001 the research group “Gebruikersgerichte Systeemontwikkeling” (User-
Centered System Development) was created and lead by prof. dr. Karin
Coninx, based on the topics that are presented in this dissertation. Now, in
2004, there are three more PhD students doing research in this group and we
are involved in several regional and European projects. The new PhD studies
in our group have come into existence part because of the dissertation you just
have read: unlike what we thought in 2001, this research topic offers many
new challenges that can not possibly be done in one dissertation. Chapter 11
offered an insight in what is going on now in our research group. Model-Based
User Interface Development is a reoccurring theme in all of them: in our work
we combine the old ways with the new ones and try to generate solutions for
existing problems with this combination.

194 Conclusions

Appendix A

Scenarios

A.1 Scenario 1: Teaching with Technology

A university decides to install projectors on the ceiling of every classroom.
They will be using the system described in this dissertation to make the pro-
jectors accessible to different members of the teaching staff and maintenance
personnel. All of the employees of the university have a PDA device (e.g. a
Palm device), which can receive data over a infrared connection. Alternatively,
a radio-based Bluetooth link between the PDA and the projector can be used.
The PDA will be used as a remote control for the projector. During the first
class of Thursday, professor Wasaname will have to use the projector for her
lectures in HCI. She walks into the classroom and transmits her slides, stored
on the PDA, to the projector using the infrared connection. Let us assume
the projector knows the slide format and can store and project these. After
she has finished transmitting the slides she indicates on her PDA she wants to
control the projector. Because her user profile is stored on the PDA, it infers
she only wants to cruise through the slides, maybe zoom in on some details
and make some annotations, but nothing more. She is not interested in config-
uring the projector settings like changing the resolution or the color settings.
Using this knowledge the PDA “asks” the projector to transmit only those
parts of its user interface professor Wasaname is interested in. The projector
serializes that part of the user interface and passes it to the PDA device, using
the infrared connection. The professor can now project the slides using the
PDA as a remote control.

During her first class, professor Wasaname notices the bad resolution and

196 Scenarios

brightness of the projector. After her lesson, a member of the maintenance
personnel is asked to fix the problem. The diligent responsible man gets right
to the classroom and indicates he wants to use the projector. Looking at his
profile, the PDA notices this person is mainly interested in the configuration
possibilities of the projector, and asks the projector to only transmit that part
of the user interface dedicated to that task. Using his PDA the maintenance
man adjusts the brightness and resolution of the projector to a satisfying level.

A.2 Scenario 2: Mobile Communication

Instant Messaging (IM) is one of the most popular forms of communication
on the Internet. When the user is mobile, sometimes IM over the Internet is
not possible and the user will use its mobile phone. This scenario describes
extended IM, where the location of the user and the device he/she uses is
transparent for the IM service. IM will become context-sensitive, observing
information in its environment and adapting according to this information.

The scenario in this section is developed in cooperation with the Research
and Development group of Alcatel1 as part of a CoDAMoS deliverable.

This evening a soccer match is scheduled between RC Genk and RSC
Anderlecht. Dave, Evy and Rob are three soccer fans and are interested in
going to the match. They are also three friends, although Dave and Evy are
supporters of RC Genk and Rob is a supporter of Anderlecht. Since the match
is being played in Anderlecht, they are arranging how to get there using the
Instant Messaging software on their desktop PC. The match starts at 8 o’clock,
so in a group chat they agree to leave at 6 o’clock and Dave will drive.

Dave planned to drop those music sticks he lent from her off at Evy’s and
asks whether she knows when she will arrive home so he can come by. Evy
commands by the use of her voice her car to calculate the approximate time
she will arrive at her home. The car’s software uses its internal GPS and
route-planner and calculates the result. It notifies Evy with the result and
Evy commands the car to send this result to Dave and to notify him when
she really arrives at home (in case the estimation was not correct by some
chance). The car can use the software of the mobile phone to perform this
functionality.

1Alcatel in Belgium is part of the worldwide Alcatel group. Alcatel designs, develops and
builds communication networks that allow telecommunications operators and companies to
transmit all types of content (voice, data or multimedia) to their customers worldwide.
http://www.alcatel.be/

http://www.alcatel.be/

A.2 Scenario 2: Mobile Communication 197

Evy arrives at her home, and meets with Dave there to receive her music
sticks. Since Evy has hurt her foot and has to stay at home this evening, she
will watch the soccer match on her television, while staying in contact with
Rob and Dave. At home, she notices a virtual indicator, coming from Rob,
on the television inviting her to watch the match together. He will be at the
stadion and stay in touch with her through Instant Messaging, as is Dave.

Rob and Dave both carry a mobile phone with a built-in camera and IM
software on it. In their collars they have a microphone allowing them to speak
to each other without taking the phone out of their pockets. When Evy sits
in front of the television and turns it on, she won’t be disconnected with her
friends if she does not want to. Her mobile phone and set-top box synchronize
their contact lists, taking into account the privacy settings of each contact.
When she puts on the channel that broadcasts the soccer match, and gets a
short update on-screen of her friends watching the same channel. They are all
presented by their personal avatars, blended with the television screen.

She wants to make a prediction about the game and put it on a virtual
whiteboard so her friends can see it. She can see the predictions her friends
made too. After the match the people who predicted the correct result get a
free drink at the pub where she always meets with her friends.

But Evy watches the soccer match together with her mother, and she
does not want to distract her with the messages she exchanges with Dave and
Rob. So she gets her PDA and the set-top box will open a channel to the
PDA so the messages sent to her will only be shown on the PDA and not
on the television screen. When her mother enters the room, her “private”
contacts disappear from the screen and only the contacts that are shared with
her mothers contact list are still visible. The avatars disappear of the screen
so her mother does not get to see them. The PDA takes over functionality
previously offered by the set-top box. This way she can share the television
screen with others while her private communications will be automatically
redirected to her PDA. The set-top box serves as a kind of local messaging
service for the family “participants” of the current television show.

Once Rob and Dave enter the sports ground (each on the other side, be-
cause they are fans of different soccer teams) their mobile phones notice they
are inside. The contact list of Evy will be automatically updated with entries
for Dave and Rob, because they are now also participating (as viewers) at the
same event. From now on the group can start sharing experiences with each
other. If she wishes Evy gets to hear the crowd in real-time through the voice
communication from where Dave and Rob are standing. The snapshots they
take with their mobile phones’ built-in camera can be browsed on the PDA

198 Scenarios

by Evy.
Evy goes to the kitchen for a drink, but she is a really big fan so she

does not want to miss one bit of the match. While she moves away, the set-
top box detects she is not watching anymore. However, her PDA still is in
watching mode. So available information like the current score and who is
in ball-possession will be transmitted to the PDA in real-time. The PDA is
not programmed beforehand to visualize this information. It will receive a
User Interface Description that allows the PDA to render the content in an
appropriate form. The User Interface will be merged with the communication
channel for IM, so both IM and observing the state of the match will be
possible at the same time. Even if the connection between the PDA and the
set-top box fails, she does not have to worry: every bit of the broadcast is
recorded digitally so she can replay the stuff she missed.

Anderlecht had just scored a goal and Evy is sure it was off-side. Only,
the television images are not clear enough, so she asks Rob whether he knows
for sure. Luckily, Rob has recorded a small image and he sends it over to Evy.
While the set-top box processes the video, it checks the timestamps in the
video format. Evy replays the goal on the big television screen while she lets
Rob’s video play on her PDA. Both the set-top box and the PDA synchronize
so she gets to see both views (different angles) at the same time. She is a little
bit disappointed: it was certainly not off-side.

A.3 Scenario 3: A Mobile Tourist Guide in a Mu-
seum

A group of teenagers will visit the Gallo-Roman Museum of Tongeren as part
of their history course together with the teacher for this course. They will get
a guided tour through the museum by an experienced guide. This is a common
activity for the class, and they are required to assemble information from these
activities. The information they assemble is part of their exam and it will help
them in getting high scores. The whole museum visit is about discovering
history ; getting to know the historic facts by “playing” archaeologist.

Luckily education has changed a bit. Every student has its personal in-
formation space that includes all kinds of personal devices they carry with
them and the information contained on this set of devices. All students have
a Personal Digital Assistant (PDA) that allows them to capture data, carry
digital information, process and visualize information and communicate with
each other. A PDA is every kind of device that can be hold in one hand, has

A.3 Scenario 3: A Mobile Tourist Guide in a Museum 199

input and output capabilities, and can load new software while it is running.
In this context, a mobile phone can be used as a PDA. For their museum visit
they are required to carry their PDA with them.

When the class arrives at the museum, they will be split in several groups.
The students in these groups can cooperate to find (discover) useful informa-
tion and process it accordingly. To support easy information exchange the
PDAs of a group are logically connected; they can access each others infor-
mation. Once the teenagers enter the museum entry hall, they are registered
by the museum administration. Since the PDA is a personal device it has
the user profile of the owner stored. Their PDAs send the parts that are
not private of their profiles to the museum over their wireless connection for
registration purposes (this kind of data could also be used for data-mining),
in return their PDA is connected to the wireless LAN of the museum. The
museum and visit specifications are downloaded onto the PDA automatically.
A general micro-interpreter transforms these specifications in a user interface
on the PDA. The specifications contain a task specification (what can be done
in the museum, what are the goals of the visit), a domain specification (an on-
tology that specifies the essential objects in the museum and their relations), a
presentation specification (the way the information is shown to the user) and
an interaction specification (what kind of data exchange exists between the
different specifications and between the PDA and the museum system). Other
specifications that contribute to the complete interface are also transmitted,
but are of minor importance.

The teacher checks whether everyone is registered in the museum and
ready to start, after which the tour begins. The visit to the museum is a
combination of a kind of discovery game and a guided tour. The goal of the
visit is to discover the meaning of the Dodecahedra artifact. Throughout the
tour there will appear questions on the screens of their PDA, which leads
the group to a piece of information. To answer the questions correctly they
will need to pay attention to what the guide says, and to what the artifacts
they can view tell them. If they need more information of an artifact the
visitor only has to move closer to the artifact: the PDA sensor will sense the
proximity of the artifact and show more information about that particular
artifact. The communication works in two ways: the user can send questions
to the artifact by hand (by voice and speech-recognition) and whenever the
information that could answer this question is stored with the artifact it will be
sent to the PDA. This way the user “gathers” useful data about the different
artifacts, which can help her/him to solve the mystery of the Dodecahedra. If
one member of the group solves a question, the next piece of information that

200 Scenarios

is necessary is unlocked for the whole group. A distributed system takes care
of the communication between the different PDAs.

When the users walk through the museum, both the user interface and the
data in the user interface will adapt. The museum is divided into different
areas, where each area represents another period in history. When the users
enter another area, the system sends another presentation specification to the
PDA, and the user interface will be adapted at runtime to reflect the historical
changes (e.g. from the human being a collector to a hunter).

Guiding a visit of a whole class of teenagers is not an easy task: the guide
needs to control the group and the PDAs that are used in the group. The guide
needs to avoid the visitors can try to unravel the next part of the Dodecahedra
mystery before the group has moved on to the next part of the exhibition.
The guide can control the visitors PDA to ensure the visit stays focused on
the artifacts that are nearby the class. With an appropriate selection menu,
the guide can disable and enable parts of the user interface and the data that
is shown to the users.

When a guide approaches information panels (output screens like televi-
sion screens, whiteboards, flat screens, projector screens,. . .) a part of the
interface of the guide will change into a remote control for these information
panels. Only the PDA of the guide will download the user interface for the
information panel, because the user interface is only available for PDAs with
the appropriate user profile. The guide can select a set of information she/he
wants to show on the information panel.

During their visit all PDAs capture the route that has been taken, the
information that has been communicated and the answers on the questions
the students have solved on the device. Cameras in different corners of the
museum capture the moments a guide is explaining something and these cap-
tured movies are also transferred to the PDAs. This way each student has a
completer overview and reference from their visit.

At the end of the tour each group has an overview of their answers on
the questions and the list of their observations they made during the tour,
both visualized on their PDA. Now it’s time for each group to suggest an
answer for the Dodecahedra mystery. Their suggestions are compared to some
of the existing theories that are revealed at the end of the tour by the guide
(by projecting possible explanations on the information panel at the exit).
By looking through the sequence of questions and answers initiated by the
students, they can evaluate how good of an archaeologist they would be.

A.4 Technological Challenges 201

A.4 Technological Challenges

The first scenario (A.1) can be situated as our goal when we started to develop
this approach, we wanted to be able to support:

• Migratable User Interfaces: interfaces that can be transferred from one
device to another one.

• Adapting the user interface to the host device.

• Transferring control over a device to another device, supporting the users
task.

The second scenario (A.2) introduces ambient intelligence; “context” be-
comes more important here:

• The user interface becomes context-aware.

• Communication between devices and devices, people and devices, and
people and people becomes more important.

• Intelligent integration of devices in the environment

• Multi-modal interfaces

Finally, the third scenario (A.3) shows the importance of social networking
that should be taken into account when designing user interfaces. These three
scenarios illustrate the goals that were set in several of our research projects.
This dissertation selects some of the technical requirements that are necessary
to develop scenario one and two. The third scenario mainly adds some social
aspects to the ones that are already mentioned in the previous two scenarios.

202 Scenarios

Appendix B

Nederlandstalige Samenvatting (Dutch Summary)

B.1 Inleiding

Door de toenemende diversiteit van beschikbare “programmeerbare” appara-
ten wordt het ontwikkelen voor interactieve systemen voor deze toenemende
diversiteit complexer. Gebruikersinterfaces dienen herbruikbaar te zijn voor
verschillende apparaten die telkens andere, specifieke eigenschappen bezitten.
Er is een nood aan een methodologie die het ontwerp, de ontwikkeling en de
verspreiding van dit soort gebruikersinterfaces. We zullen in de rest van dit
hoofdstuk het over “multi-apparaat interfaces” als we het hebben over gebrui-
kersinterfaces die zonder enige manuele aanpassing kunnen opnieuw gebruikt
worden op diverse, onderling verschillende apparaten.

In deze dissertatie wenden we model-gebaseerde interface ontwikkeling aan
ter ondersteuning van multi-apparaat interfaces. Model-gebaseerde interface
ontwikkeling was reeds een gekende manier van “traditionele” interface ont-
wikkeling in het begin van de jaren 90, en blijkt tevens uitermate geschikt te
zijn voor het ontwerp van multi-apparaat interfaces [EVP01, SLV02, PS02,
CLV+03, CLC04b, MPS04].

Szekely identificeerde vier uitdagingen in [Sze96] voor model-gebaseerde
interface ontwikkeling:

• Uitdaging 1: Taak-gebaseerde interfaces.

• Uitdaging 2: Ondersteuning voor een diversiteit aan apparaten.

• Uitdaging 3: Verfraaien van interfaces.

204 Nederlandstalige Samenvatting

• Uitdaging 4: Multi-modale interfaces.

De eerste drie uitdagingen worden in deze dissertatie behandelt, waarbij het
zwaartepunt ligt op uitdagingen één en twee. We voegen een vijfde uitda-
ging toe aan deze vier uitdagingen, waaraan we ook de nodig aandacht zullen
besteden:

• Uitdaging 5: Ondersteuning voor context-gevoelige interfaces.

Sectie B.9 zal wat dieper ingaan op deze vijfde uitdaging.
Het doel van deze thesis bestaat eruit om een methodologie en raamwerk

te ontwikkelen die de creatie van multi-apparaat interfaces ondersteunt in alle
stadia van de ontwikkeling (design, implementatie, deployment) en een om-
geving aanbiedt om deze interfaces uit te voeren. Hierbij wordt er aandacht
besteed aan de herbruikbaarheid van de verschillende technieken die voorge-
steld worden.

B.2 Model-gebaseerde Gebruikersinterface Ontwik-
keling

Vooraleer dieper in te gaan op de methodologie die we zullen voorstellen, bekij-
ken we wat model-gebaseerde interface ontwikkeling exact voorstelt. Vanwege
de grote diversiteit is er geen algemeen aanvaarde afbakening van wat model-
gebaseerde interface ontwikkeling juist betekent en hoe “model” kan gedefini-
eerd worden. Er is echter wel een consensus over de concepten die algemeen
gebruikt worden: een model kan bekeken worden als een verzameling onder-
ling gerelateerde informatie die een bepaald aspect van een interactief systeem
op een abstracte manier beschrijft, waarbij de laag-niveau details achterwe-
ge gelaten worden maar de belangrijke “karakteriserende” details opgenomen
worden in het model.

Vele van de eerste model-gebaseerde aanpakken borduurden verder op een
meer formele basis [LS96b, SLN92, SSC+95], maar dit bleek onvoldoende
bruikbaar te zijn voor de modale interface ontwerper en/of ontwikkelaar. De
declaratieve aard van model-gebaseerde interface ontwikkeling [Pin00] resul-
teert echter reeds in een “meer formele” basis van de gebruikte notaties. We
zien dan ook dat een informele notatie, gecombineerd met een formele ba-
sis de voorkeur heeft [MPS04, MPS02, LVM+04b, LV04, LVM+04a, CLV+03,
CLC04b].

Er zijn verschillende algemeen aanvaarde modellen, zoals het taakmodel,
het dialoogmodel, het presentatiemodel, het domeinmodel, het gebruikersmo-

B.3 Dygimes: Dynamische Generatie van Interfaces voor Mobiele
en Ingebedde Systemen 205

del en het applicatiemodel. Elk van die modellen beschrijft een belangrijk
aspect van het interactieve systeem: zo beschrijft het taakmodel het doel dat
de gebruiker kan bereiken met het systeem en welke taken er door het systeem
ondersteund worden. Het dialoogmodel is sterk gerelateerd en beschrijft de
manier waarop er met de interface gewerkt kan worden: zo kan de navigatie
doorheen verschillende onderdelen van een interface beschreven worden met
een dialoogmodel. Het presentatiemodel specificeert wat er juist zal getoond
worden aan de gebruiker; het definieert de structuur en inhoud van de dia-
logen die aan de gebruiker gepresenteerd worden. Deze drie modellen staan
ook centraal in onze aanpak, Dygimes, die we in de volgende sectie uitgebrei-
der zullen bespreken. De verschillende modellen kunnen onderling gerelateerd
en/of getransformeerd worden [LVS00, CLC04d, VLF03] en vormen zo een
krachtig geheel om een gebruikersinterface te specificeren waarbij aan de hand
van de modellen kan geverifieerd worden dat deze aan de vooropgestelde eisen
voldoet.

B.3 Dygimes: Dynamische Generatie van Interfa-
ces voor Mobiele en Ingebedde Systemen

Dygimes staat voor Dynamische Generatie van Interfaces voor Mobiele en In-
gebedde Systemen [CLV+03] en is een raamwerk en omgeving voor het bouwen
en uitvoeren van multi-apparaat interfaces. Het steunt op de principes van
model-gebaseerde interface ontwikkeling: er wordt namelijk gebruik gemaakt
van het taak-, het presentatie- en het dialoogmodel om de interface te ontwer-
pen. Verder voorziet Dygimes een runtime omgeving die deze modellen kan
uitvoeren: m.a.w. die de gebruikersinterface beschreven door deze modellen
enkel aan de hand van deze modellen kan genereren en tonen. Bij Dygimes
hoort een proces dat gevolgd kan worden om de interface te creëeren. Dit
proces staat beschreven in figuur 4.1 op pagina 54; het gedeelte dat binnen de
stippellijnen staat wordt automatisch afgehandeld, het gedeelte erbuiten vergt
input van de interface ontwerper en/of ontwikkelaar.

Voor het taakmodel maken we gebruik van de ConcurTaskTrees (CTT)
notatie [MPS02, Pat00]. Dit is een hiërarchisch taakmodel met een grafische
notatie. CTT ondersteunt de temporele operatoren die ook te vinden zijn
in LOTOS [LFHH91]. Het feit dat er concurrente taken toegestaan worden
resulteert in het concept van Enabled Task Sets (ETS). Een ETS is een verza-
meling van taken die tijdens dezelfde tijdsperiode actief kunnen zijn. In onze
aanpak wordt elke ETS op een dialoog met de gebruiker gemapt.

206 Nederlandstalige Samenvatting

Het dialoogmodel wordt opgebouwd door een automatische transformatie
die we uitvoeren op het taakmodel [LCCV03]. Met een zelf geschreven algo-
ritme berekenen we de ETSs en leggen een volgorde in de tijd op aan de ETSs.
We maken hiervoor gebruik van een staten-transitie netwerk: de ETSs zijn de
staten in het netwerk en de transities tussen de staten worden gedetecteerd
door een algoritme dat de temporele relaties uit het taakmodel verwerkt.

Het presentatiemodel in Dygimes wordt gespecificeerd aan de hand van
een XML-gebaseerde hoog-niveau gebruikersinterface taal. Secties B.5 en B.8
geven twee mogelijke talen die in het Dygimes proces en raamwerk hiervoor
gebruikt kunnen worden, namelijk SEESCOA XML en UIML. In het geval
van SEESCOA XML kan er gebruik gemaakt worden van een flexibel layout
management algoritme dat gebruik maakt van spatiële constraints (beperkin-
gen). Zo wordt een gebruikersinterface voldoende rekbaar om gebruikt te
worden in een multi-apparaat omgeving. Figuur 7.3 op pagina 124 toont hoe
dezelfde gebruikersinterface-beschrijving kan gebruikt worden op verschillende
apparaten: hiervoor dient er geen manuele tussenkomst meer te gebeuren.

Een specifiek, voorgedefinieerd applicatiemodel wordt niet gebruikt in Dy-
gimes. Er wordt echter wel een “open protocol” voorzien vanuit Dygimes om
met verschillende soorten applicatiemodellen te werken. Zo kan er gebruikt
gemaakt worden van het direct oproepen van code, via XML-RPC code oproe-
pen of van webdiensten [VLC03b]. Figuur 4.5 op pagina 62 toont hoe de link
met het applicatiemodel op een transparante en locatie-onafhankelijke manier
kan gemaakt worden. Met dit systeem kan de applicatielogica zowel lokaal als
van op afstand door de interface gebruikt worden.

Voor de verschillende stadia in het Dygimes gebruikersinterface creatie
proces, zijn er prototype applicaties gebouwd die telkens (een deel van) een
stadium ondersteunen. Zo kan men gebruik maken van de volgende applicaties:

• Een applicatie die het taakmodel kan annoteren met gebruikersinterface
bouwblokken (in de vorm van herbruikbare SEESCOA XML documen-
ten, zie figuur 4.4 op pagina 59).

• Een applicatie, UiBuilder, die SEESCOA XML documenten kan rende-
ren voor een bepaald platform (zie figuur 6.3 op pagina 109).

• Een applicatie waarmee de spatiële constraints voor een gebruikersinter-
face bouwblok kunnen gespecificeerd en getest worden (zie figuur 4.7 op
pagina 67).

• Een applicatie, TaskLib, die een taakmodel omzet naar een dialoogmo-
del.

B.4 Modellen voor Interface Ontwerp voor meerdere Apparaten207

De volgende secties zullen meer informatie verstrekken over hoe de model-
len respectievelijk gebruikt worden in ons systeem.

B.4 Modellen voor Interface Ontwerp voor meerde-
re Apparaten

Het taakmodel staat centraal in onze aanpak. Alvorens andere artefacten wor-
den gecreëerd wordt er een taakspecificatie gemaakt in de CTT notatie. Deze
taakspecificatie wordt vervolgens geannoteerd met gebruikersinterface bouw-
blokken. Dit betekent dat het taakmodel en (gedeeltelijk) het presentatiemo-
del door de ontwerper gemaakt worden. De geannoteerde taakspecificatie kan
dan verder getransformeerd worden in een dialoogspecificatie, die vervolgens
dan gebruikt kan worden om de interface effectief af te beelden.

De transformatie van een taakmodel naar een dialoogmodel is een complex
proces en verloopt in verschillende stappen:

• De ETSs worden uit de taakspecificatie afgeleid, en vormen de dialogen
van het dialoogmodel.

• De initiële ETS (waarmee het programma van start gaat) wordt gede-
tecteerd.

• De transities tussen de verschillende dialogen worden berekend uit de
temporele relaties die voorkomen in het dialoogmodel. Vanaf dit mo-
ment wordt het dialoogmodel voorgesteld als een volledig staten-transitie
netwerk.

• Vanuit het dialoogmodel kan met behulp van het presentatiemodel een
gebruikersinterface gegenereerd worden.

• De designer kan veranderingen aanbrengen aan het dialoogmodel door
heuristieken erop uit te voeren [CLC04d], de samenstelling van ETSs
handmatig te veranderen,. . .

Figuur 5.1 op pagina 74 toont de verschillende stappen die genomen worden.

B.5 Presentatie van de Gebruikersinterface

De presentatie van de gebruikersinterface wordt in Dygimes verzorgd door
een XML-gebaseerde hoog-niveau gebruikersinterface beschrijvingstaal. SEE-
SCOA XML is een XML-gebaseerde interface beschrijvingstaal, ontworpen

208 Nederlandstalige Samenvatting

op het einde van het jaar 2000 als een simpele, leesbare hoog-niveau speci-
ficatie taal om overdraagbare gebruikersinterfaces voor ingebedde systemen
te bouwen [LC01, LLCR03, VLC04]. De taal werd ontwikkeld tijdens het
IWT/STWW SEESCOA project, en werd gebruikt als eerste XML-gebaseerde
beschrijvingstaal. Een volledig schema voor deze XML taal is afgebeeld in lis-
ting 6.1 op pagina 101. Voorbeelden van het gebruik van dit schema kan men
vinden in listings 6.2 op pagina 103, 6.3 op pagina 105, 6.4 op pagina 106,
6.5 op pagina 111 en 6.6 op pagina 111. Merk op dat SEESCOA XML een
hiërarchische structuur heeft bestaande uit groepen (de group tag), die zelf
groepen of interactoren kunnen bevatten. Groepen zijn verzamelingen van
elementen die logisch samen horen in de interface.

Om gebruik te kunnen maken van de SEESCOA XML taal werd er een
Java-gebaseerde interface renderer ontwikkelt: de UiBuilder renderer. UiBuil-
der kan SEESCOA XML documenten omzetten naar Java AWT, Java Swing,
Java kAWT, HTML en Java MIDP gebruikersinterfaces. Figuur 7.3 op pa-
gina 124 toont hoe eenzelfde SEESCOA XML beschrijving resulteert in een
bruikbare interface op meerdere apparaten. In een experiment werd de taal
zelfs gebruikt om interfaces in een virtuele omgeving aan te spreken [LLCR03]:
een interactie component uit de virtuele omgeving (in ons experiment een joy-
stick) kon omgezet worden in een SEESCOA XML beschrijving zodanig dat
een interactief element kon migreren van in een virtuele wereld naar een mobiel
apparaat.

Een belangrijk onderdeel is de gebruikersinterface laten communiceren met
de echte applicatielogica. Hiervoor voorzag SEESCOA XML een “open pro-
tocol” dat toelaat om de renderer en de XML-taal uit te breiden met een
willekeurige manier om met applicatielogica te communiceren. Het klasse-
diagram in figuur 6.3 op pagina 109 toont hoe dit ondersteunt werd in de
code. Een action tag in de XML beschrijving bevatte een subboom (in XML)
die gëınterpreteerd kon worden door een “action plugin”. De voorbeelden in
listings 6.5 op pagina 111, 6.6 op pagina 111 en 8.1 op pagina 133 geven res-
pectievelijk weer hoe men directe aanroepen kan doen, Python scripts kan
gebruiken en gebruik kan maken van SEESCOA componenten (zie sectie B.7).

De beslissing om XML te gebruiken voor het beschrijven interfaces wordt
bekrachtigd door de opgang van XML-gebaseerde gebruikersinterface beschrij-
vingen tijdens de laatste jaren [LALV04]. We vinden een grote diversiteit te-
rug, en vele andere initiatieven gaan ook veel verder dan enkel het beschrijven
van de presentatie en nemen ook andere modellen op in de beschrijving. Ta-
bellen 3.1 en 3.2 op pagina’s 46 en 47 en figuur 3.1 op pagina 44 positioneren
de verschillende initiatieven ten opzicht van elkaar.

B.6 Layoutbeheer voor Meerdere Apparaten 209

B.6 Layoutbeheer voor Meerdere Apparaten

Om een gebruikersinterface bruikbaar te maken op meerdere apparaten zonder
voor elk apparaat de interface opnieuw te ontwerpen en te bouwen, is er nood
aan een flexibel layoutbeheersysteem. Dit systeem moet toelaten om de layout
van gebruikersinterface te veranderen aan de hand van de beperkingen die
opgelegd worden door het doelapparaat.

De layout moet op een generieke manier kunnen gespecificeerd worden zo-
danig dat de interface flexibel genoeg is om zonder wijziging op verschillende
apparaten en platformen gebruikt te worden, terwijl de logisch samenhang
toch behouden blijft. We hebben geopteerd om de hiërarchische structuur die
we in SEESCOA XML vinden uit te buiten en tussen interactoren of groepen
die op hetzelfde niveau in de hiërarchie voorkomen bepaalde beperkingen op
te leggen[LCC03]. We maken gebruik van spatiële constraints om dit te ver-
wezenlijken. Figuur 7.1 op pagina 119 toont grafisch hoe de layout op deze
manier gespecificeerd kan worden. Listing 7.1 op pagina 120 toont de layout
constraints beschreven in XML. Tussen de siblings in de boom kunnen layout
constraints voorkomen, maar echter niet tussen verschillende niveaus in de
boom.

Binnen een groep gelden de volgende regels:

• Een groep beschrijft een verzameling van logisch samenhangende inter-
actoren.

• Een groep kan als opsplitsbaar gekenmerkt worden: hierdoor kan de
layout manager beslissen de verschillende kinderen in de groep op te
splitsen en op verschillende schermen te tonen.

• Een groep kan als niet opsplitsbaar gekenmerkt worden: hierdoor zal
de layout manager ervoor zorgen dat deze groep altijd als één geheel
getoond zal worden.

Om de layout te berekenen wordt er gebruik gemaakt van een simpel con-
straint oplossings-algoritme, gëınspireerd door [SMFBB93]. Dit gebeurt door
een geschikte plaats te vinden in een voorgedefinieerde grid waarin de ver-
schillende interactoren moeten gelegd worden. De dimensie van de grid wordt
vooraf bepaald aan de hand van de beschikbare ruimte en de gewenste grootte
of het gewicht (belang) van de interactoren. De layout zal pas berekend worden
als de gebruikersinterface gerendered wordt op het doelapparaat waarbij het
de beschikbare schermgrootte dan in rekening neemt. Indien de schermruimte
te beperkt is om heel de interface te tonen, wordt er gebruik gemaakt van het

210 Nederlandstalige Samenvatting

opsplitsen van groepen die als opsplitsbaar gekenmerkt werden. De kinderen
van een splitsbare groep kunnen achter elkaar gezet worden, met behulp van
tabbladen bijvoorbeeld.

B.7 Componenten en Gebruikersinterfaces voor Meer-
dere Apparaten

Als mogelijk applicatiemodel hebben we Dygimes gebruikt als raamwerk voor
gebruikersinterfaces bovenop het SEESCOA componentensysteem. Het SEE-
SCOA componentensysteem is een resultaat van het IWT/STWW SEESCOA
project, en is een asynchroon componentensysteem voor ingebedde systemen.
Het gebruik van SEESCOA componenten is tevens locatie-transparant wat
zeer nuttig blijkt om migreerbare gebruikersinterfaces mee te bouwen. Vanuit
het standpunt van de ontwikkelaar van de gebruikersinterface onderscheiden
we 3 types van SEESCOA componenten:

Interne componenten : implementeren functionaliteit die nooit rechtstreeks
in een gebruikersinterface getoond zal worden

Oppervlakte componenten : worden expliciet gemaakt in de gebruikers-
interface; ze bevatten functionaliteit die gevisualiseerd dient te worden
en/of waarmee de gebruiker interactie kan hebben.

Rendering componenten : hebben als functie de gebruikersinterfaces voor
oppervlakte componenten te renderen op een specifiek apparaat.

Zowel interne componenten als oppervlakte componenten kunnen typisch een
hoog-niveau XML-beschrijving van de gebruikersinterface bevatten die ze wil-
len aanbieden. Het zijn echter de oppervlakte componenten die de gebrui-
kersinterfaces van interne componenten ophalen en een rendering component
aanspreken om voor de visualisatie te zorgen.

Software die gebouwd wordt door middel van SEESCOA componenten
moet op deze manier geen aparte gebruikersinterface meer voorzien: de com-
plete interface is simpelweg een aggregatie van de interfaces die alle oppervlak-
te componenten aanleveren. Aangezien niet alle oppervlakte componenten al-
tijd nodig zijn, kan men een selectie maken van de oppervlakte componenten
die op een bepaald moment moeten gevisualiseerd worden aan de hand van de
taak die moet uitgevoerd worden (gespecificeerd in taakmodel).

Het SEESCOA componentensysteem is een mooi voorbeeld van hoe een
willekeurig applicatiemodel kan gebruikt worden om de gebruikersinterface

B.8 Uiml.net: een Open Uiml Renderer voor het .Net Raamwerk211

van de juiste functionaliteit te voorzien. Daarnaast heeft de integratie met
het SEESCOA componentensysteem tevens bewezen dat de UiBuilder renderer
geschikt was voor ingebedde systemen.

B.8 Uiml.net: een Open Uiml Renderer voor het
.Net Raamwerk

Ter vergelijking en als alternatief voor het door ons zelf ontwikkelde SEES-
COA XML (ondersteund door een Java-gebaseerde renderer), hebben we een
renderer voor de User Interface Markup Language ([AH04b, Pha00, APB+99,
AH04a], UIML) gebouwd met behulp van C# op het .Net raamwerk. Onze
renderer, Uiml.net [LC04b], is de eerste vrije renderer die de UIML 3.1 spe-
cificatie implementeert. Een UIML beschrijving van een gebruikersinterface
bestaat ruwweg uit 5 delen: enerzijds de interface die 4 subdelen bevat en an-
derzijds de peers. De interface beschrijving maakt een strikte scheiding tussen
structuur, stijl, inhoud en gedrag. De peers bevatten informatie over hoe de
structuur en stijl in een concrete interface omgezet kunnen worden en hoe het
gedrag kan gekoppeld worden aan echte applicaties.

Een belangrijke motivatie voor de creatie van een UIML renderer was om
te breken met de voorgedefinieerde set van abstracties die beperkend werk-
ten met SEESCOA XML. Uiml.net voorziet daarom een reflectieve rendering
kern. De renderer heeft geen interne informatie over de widgets die gebruikt
worden om de abstracties uit een UIML document om te zetten in een con-
crete gebruikersinterface, maar maakt gebruik van een externe beschrijving
van de beschikbare mappings. Dit heeft tot gevolg dat Uiml.net geschikt is
voor het gebruik van meerdere widget sets; momenteel worden Gtk#, Sys-
tem.Windows.Forms en Wx.NET ondersteund. Daarnaast kan Uiml.net met
Mono, het Microsoft .Net raamwerk en het Microsoft .Net Compact raam-
werk gebruikt worden. Dit maakt de software zelf grotendeels platform- en
apparaat-onafhankelijk.

We kunnen aantonen dat UIML en SEESCOA XML perfect uitwisselbaar
zijn als alternatieven voor het presentatiemodel in het Dygimes proces. SEE-
SCOA XML en UIML bieden beiden een interface beschrijvingstaal aan die
tevens kan gëıntegreerd worden met een applicatiemodel en die kan gebruikt
kan worden vanuit het taakmodel. Zo laat tabel 9.1 op pagina 162 zien hoe
UIML als een gebruikersinterface bouwblok met een taak kan gerelateerd wor-
den, waarna exact dezelfde procedure kan gebruikt worden om tot een werken-
de interface te komen. Een van de grote verschillen is de manier van layout

212 Nederlandstalige Samenvatting

management: in UIML dient dit ingebakken te worden in de interface be-
schrijving en is grotendeels afhankelijk van de gebruikte widget set waarmee
zal gerendered worden. Om dit op te vangen kan er gebruik gemaakt worden
van container templates (zie tabel 9.2 op 166) om verschillende bouwblokken
in één dialoog te zetten.

B.9 Context in de Ontwikkeling van Gebruikersin-
terfaces

Naar de toekomst toe zullen context-gevoelige gebruikersinterfaces sterk aan
belang winnen. Context-gevoelige gebruikersinterfaces kunnen zich aanpassen
aan de context waarin ze gebruikt worden, waarbij context ruim gëınterpreteerd
wordt als aan de hand van de definitie gegeven door Dey [DSA01]: “Context is
de informatie afkomstig uit de omgeving die de taken die gebruiker wil, moet
of zou kunnen uitvoeren bëınvloeden”.

We breiden de Dygimes omgeving uit om context in de verschillende model-
len in rekening te brengen. Deze uitbreiding, Dynamo-AID [CLC04c, CLC04b],
integreert context in het taakmodel door middel van beslissingsknopen. Fi-
guren 10.2 op pagina 177 en 10.3 op pagina 178 tonen een taakmodel waarin
beslissingsknopen gebruikt worden. Een beslissingsknoop verbindt een aantal
alternatieve en wederzijds exclusieve subtaken en bevat een verzameling regels
die aan de hand van de beschikbare context-informatie beslissen welke sub-
taak voor een bepaalde context in de boom gëıntegreerd dient te worden. Deze
beslissingsknopen vervangen zichzelf dus door één van hun subtaken gekozen
aan de hand van de selectieregels die in zo een beslissingsknoop zitten. Listing
10.2 op pagina 174 toont een voorbeeld van zulke selectieregels, het schema
dat de syntax van de regels bepaalt is afgebeeld in listing 10.1 op pagina 174.

Het integreren van context heeft tevens invloed op de dialoogspecificatie
daar Dygimes deze genereert uit de taakspecificatie [CLC04b]. Dit kan tot
onverwachte en/of ongewenste resulaten leiden in de structuur van en de navi-
gatie doorheen de gebruikersinterface. Er wordt daarom aan een interactieve
applicatie gewerkt om tijdens het design reeds werkende prototypes te gene-
reren van context-gevoelig interfaces [CLC04a] zodanig dat de ontwerper da-
delijk de resultaten van context-wijzigingen kan bekijken en zelf beperkingen
op kan leggen over hoe context de gebruikersinterface mag wijzigen.

B.10 Besluit 213

B.10 Besluit

We besluiten deze dissertatie met een terugkoppeling naar de uitdagingen die
op het begin gedefinieerd werden. Van de vijf uitdagingen werden er de voor-
opgestelde drie ingevuld: taak-gebaseerde interfaces, ondersteuning voor een
diversiteit aan apparaten en ondersteuning voor context-gevoelige interfaces.
Daarnaast werd er ook wat aandacht besteed aan het verfraaien van de inter-
faces. Het vooropgestelde doel werd bereikt door bestaande technieken, zoals
model-gebaseerde ontwikkeling van gebruikersinterfaces, te combineren met
nieuwe technieken, zoals XML-gebaseerde gebruikersinterface beschrijvingen
en flexibele layout management. Vele van de voorgestelde technieken kunnen
apart gebruikt worden zonder dat het hele Dygimes proces moet doorlopen
worden: zo kan men bijvoorbeeld de UiBuilder of Uiml.net renderers losstaand
van het taak- en dialoogmodel gebruiken en kan de TaskLib applicatie gebruikt
worden om apart taakspecificaties mee te verwerken.

Multi-apparaat interfaces zijn echter nog maar het topje van de berg. We
hebben al een uitbreiding gedaan naar context-gevoelige interfaces, maar kij-
ken tevens uit naar oplossingen voor het ontwerp, de implementatie en de
ondersteuning van gedistribueerde interfaces (een gebruikersinterface die ge-
lijktijdig van verschillende communicerende apparaten gebruik kan maken).
Tijdens het implementeren van de verschillende technieken werd het ook dui-
delijk dat de huidige widget sets onvoldoende voorbereid zijn op de uitdagingen
van de volgende generatie interfaces die in pervasive en ubiquitous omgevingen
de communicatie met de gebruiker zullen verzorgen. De ondersteuning van de
ontwikkeling gericht op context-gevoelige interfaces is al een eerste stap om
deze volgende uitdagingen aan te pakken.

214 Nederlandstalige Samenvatting

Bibliography

[AH04a] Marc Abrams and Jim Helms. Retrospective on UI Description
Languages, Based on 7 years Experience with the User Interface
Markup Language (UIML). In Luyten et al. [LALV04], pages 1–8.

[AH04b] Marc Abrams and Jim Helms. User Interface Markup Language
(UIML) Specification version 3.1. Technical report, Harmonia,
2004.

[All84] James F. Allen. Towards a general theory of action and time.
Artificial Intelligence, 23(2):123–154, 1984.

[APB+99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: An
Appliance-Independent XML User Interface Language. WWW8
/ Computer Networks, 31(11-16):1695–1708, 1999.

[APQA04] Mir Farooq Ali, Manuel A. Pérez-Quiõnes, and Marc Abrams.
Building Multi-Platform User Interfaces with UIML, pages 95–
116. In Seffah and Javahery [SJ04], 2004.

[Bau96] Bernard Bauer. Generating User Interfaces from Formal Spec-
ifications of the Application. In Vanderdonckt [Van96], pages
141–157.

[BC95] K. Bharat and L. Cardelli. Migratory applications. In Eighth
ACM Symposium on User Interface Software and Technology,
pages 133–42, 1995.

[BCPS04] Silvia Berti, Francesco Correanim, Fabio Paternò, and Carmen
Santoro. The TERESA XML Language for the Description of
Interactive Systems at MultipleAbstraction Levels. In Luyten
et al. [LALV04], pages 103–110.

216 BIBLIOGRAPHY

[BHL+95] François Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux,
Isabelle Provot, Benoit Sacré, and Jean Vanderdonckt. Towards
a systematic building of software architecture: The TRIDENT
methodological guide. In Philippe Palanque and Rémi Bastide,
editors, Design, Specification and Verification of Interactive Sys-
tems ’95, pages 262–278, Wien, 1995. Springer-Verlag.

[BHLV94] François Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux,
and Jean Vanderdonckt. Towards a Dynamic Strategy for
Computer-Aided Visual Placement. In Workshop on Advanced
Visual Interfaces, pages 78–87. ACM press, 1994.

[BMS04] Steffen Bleul, Wolfgang Mueller, and Robbie Schaefer. Multi-
model Dialog Description for Mobile Devices. In Luyten et al.
[LALV04], pages 95–102.

[BMSX97] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving
Lineair Arithmetic Constraints for User Interface Applications.
In Proceedings of the 13th Annual Symposium on User Interface
Software and Technology (UIST-97), 1997.

[Bor79] Alan Borning. ThingLab – A Constraint-Oriented Simulation
Laboratory. Technical report, XEROX PARC, 1979. report SSL-
79-3.

[BP99] Rémi Bastide and Philippe Palanque. A Visual and Formal Glue
Between Application and Interaction. Visual Language and Com-
puting, 10(3), 1999.

[BS02] Carsten Binnig and Andreas Schmidt. Development of a UIML
Renderer for Different Target Languages: Experiences and Design
Decisions. In Kolski and Vanderdonckt [KV02], pages 267–274.

[CC03] Tim Clerckx and Karin Coninx. Integrating Task Models in Au-
tomatic User Interface Design. Technical Report TR-LUC-EDM-
0302, EDM/LUC, 2003.

[CCT00] Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Embed-
ding Plasticity in the Development Process of Interactive Sys-
tems. In 6th ERCIM Workshop ”User Interfaces for All”. Also
in HUC (Handheld and Ubiquitous Computing) First workshop
on Resource Sensitive Mobile HCI, Conference on Handheld and
Ubiquitous Computing, HU2K, Bristol, 2000.

BIBLIOGRAPHY 217

[CCT01] Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Supporting
Context Changes for Plastic User Interfaces: A Process and a
Mechanism. In Proceedings of IHM-HCI, 10-14 september 2001,
Lille, France, 2001.

[CCT+02] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Lim-
bourg, Nathalie Souchon, Laurent Bouillon, and Jean Vander-
donckt. Plasticity of User Interfaces: A Revised Reference Frame-
work. In First International Workshop on Task Models and Dia-
grams for User Interface Design TAMODIA2002, pages 127–134,
July 18–19 2002.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT Press, 1999.

[CH03] Simon Crowle and Linda Hole. ISML: An Interface Specification
Meta-Language. In Jorge et al. [JNF03], pages 381–396.

[CLC04a] Tim Clerckx, Kris Luyten, and Karin Coninx. Designing Interac-
tive Systems in Context: From Prototype to Deployment. 2004.
Submitted for Percom’2005.

[CLC04b] Tim Clerckx, Kris Luyten, and Karin Coninx. DynaMo-AID: a
Design Process and a Runtime Architecture for Dynamic Model-
Based User Interface Development. In The 9th IFIP Work-
ing Conference on Engineering for Human-Computer Interaction
jointly with the 11th International Workshop on Design, Specifi-
cation and Verification of Interactive Systems, Tremsbttel Castle,
Hamburg, Germany, pages 142–160, 2004.

[CLC04c] Tim Clerckx, Kris Luyten, and Karin Coninx. Generating
Context-Sensitive Multiple Device Interfaces from Design. In Lim-
bourg et al. [LJV04].

[CLC04d] Tim Clerckx, Kris Luyten, and Karin Coninx. The Mapping
Problem applied to Model-Based User Interface Development for
Context-Aware Applications. 2004. Submitted for Tamodia’2004.

[CLV+03] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den
Bergh, and Bert Creemers. Dygimes: Dynamically Generating
Interfaces for Mobile Computing Devices and Embedded Systems.
In Luca Chittaro, editor, Mobile HCI, volume 2795 of Lecture
Notes in Computer Science, pages 256–270. Springer, 2003.

218 BIBLIOGRAPHY

[CMP04] Francesco Correani, Guilio Mori, and Fabio Paternò. Supporting
Flexible Development of Multi-Device Interfaces. In The 9th IFIP
Working Conference on Engineering for Human-Computer Inter-
action jointly with the 11th International Workshop on Design,
Specification and Verification of Interactive Systems, Tremsbttel
Castle, Hamburg, Germany, pages 161–176, 2004.

[Coc87] Gilbert Cockton. Interaction Ergonomics, Control and Separa-
tion: Open Problems in User Interface Management. Information
and Software Technology, 29(4):176–191, 1987.

[com01] Software engineering for embedded systems using a component
oriented approach; deliverable 2.2.a/3.3.a: Component composi-
tion, seescoa confidential. Technical report, Katholieke Univer-
siteit Leuven, Vrije Universiteit Brussel, 2001.

[con00] World Wide Web consortium. Simple Object Access Proto-
col (SOAP). World Wide Web, http://www.w3.org/TR/SOAP/,
2000.

[con01a] World Wide Web consortium. Cascading Style Sheets (CSS).
World Wide Web, http://www.w3.org/Style/CSS/, 2001.

[con01b] World Wide Web consortium. Document Object Model (DOM).
World Wide Web, http://www.w3.org/DOM/, 2001.

[con01c] World Wide Web consortium. eXtensible HyperText Markup
Language (XHTML). World Wide Web, http://www.w3.org/
MarkUp/, 2001.

[con01d] World Wide Web consortium. Voice eXtensible Markup Language.
World Wide Web, http://www.w3.org/TR/voicexml/, 2001.

[con01e] World Wide Web consortium. Web Services Description Lan-
guage specification. World Wide Web Consortium, http://www.
w3.org/TR/wsdl, 2001.

[con01f] World Wide Web consortium. XForms. World Wide Web, http:
//www.w3.org/TR/xforms/, 2001.

[con03] World Wide Web consortium. CC/PP W3C workgroup homepage.
World Wide Web, http://www.w3.org/Mobile/CCPP/, 2003.

http://www.w3.org/TR/SOAP/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://www.w3.org/TR/voicexml/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/Mobile/CCPP/

BIBLIOGRAPHY 219

[Cou93] Joëlle Coutaz. Encyclopedia of software engineering. Wiley and
sons, 1993.

[Cov01] Robin Cover. WAP Wireless Markup Language Specification
(WML). World Wide Web, http://www.oasis-open.org/
cover/wap-wml.html, 2001.

[Cro04] Simon Crowle. Into the mangle: Software engineers run creases
through a user interface metaphor. In Luyten et al. [LALV04],
pages 47–54.

[DBS+01] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and
J-C. Burgelman. Scenarios For Ambient Intelligence In
2010. Technical report, IST Advisory Group – Eu-
ropean Comission Community Research, February 2001.
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf.

[DF04] Anke Dittmar and Peter Forbrig. The Influence of Improved Task
Models on Dialogues. In Limbourg et al. [LJV04].

[DFAB04] Alan Dix, Janet Finlay, Gregory Abowd, and Russel Beale.
Human-Computer Interaction (third edition). Prentice Hall, 2004.

[DFR03] Anke Dittmar, Peter Forbrig, and Daniel Reichart. Model-based
Development of Nomadic Applications. In International Work-
shop on Mobile Computing, 2003.

[DSA01] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Concep-
tual Framework and a Toolkit for Supporting the Rapid Prototyp-
ing of Context-Aware Applications. Human-Computer Interaction
(HCI) Journal, 16(2-4):97–166, 2001.

[ED04] David England and Min Du. Temporal Aspects of Multi-Platform
Interaction, pages 53–68. In Seffah and Javahery [SJ04], 2004.

[EVP01] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Apply-
ing Model-Based Techniques to the Development of UIs for Mobile
Computers. In Sidner and Moore [SM01], pages 69–76.

[FLUV02] Peter Forbrig, Quentin Limbourg, Bodo Urban, and Jean Vander-
donckt, editors. Interactive Systems: Design, Specification, and
Verification, 9th International Workshop, DSV-IS 2002, Rostock,

http://www.oasis-open.org/cover/wap-wml.html
http://www.oasis-open.org/cover/wap-wml.html

220 BIBLIOGRAPHY

Germany, June 12–14 , Revised Papers, volume 2221 of Lecture
Notes in Computer Science. Springer, 2002.

[FPQAS02] Mir Farooq Ali, Manuel A. Pérez-Quiõnes, Marc Abrams, and
Eric Shel. Building Multi-Platform User Interfaces with UIML.
In Kolski and Vanderdonckt [KV02], pages 255–266.

[FS98] Peter Forbrig and Chris Stary. From Task to Dialog: How Many
and What Kind of Models do Developers Need. In Birgit Boms-
dorf and Gerd Szwillus, editors, From Task to Dialogue: Task-
Based User Interface Design, 1998. CHI’98 workshop.

[GEM94] Phil Gray, David England, and Steve McGowan. XUAN: Enhanc-
ing UAN to capture Temporal Relationships among Actions. In
Proceedings of the conference on People and computers IX, pages
301–312. Cambridge University Press, 1994.

[Gre86] Mark Green. A Survey of Three Dialog Models. ACM Transac-
tions on Graphics, 5(3):244–275, July 1986.

[GW04] Krzysztof Gajos and Daniel S. Weld. SUPPLE: automatically
generating user interfaces. In Vanderdonckt et al. [VJR04], pages
93–100.

[HC84] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic.
Methuen, London, 1984.

[HGHW01] David Hyatt, Ben Goodger, Ian Hickson, and Chris Waterson.
XML User Interface Language (XUL) Specification 1.0. World
Wide Web, http://www.mozilla.org/projects/xul/, 2001.

[HPN00] Richard Han, Veronique Perret, and Mahmoud Naghshineh. Web-
Splitter: a Unified XML Framework for Multi-device Collabora-
tive Web Browsing. In Proceedings of the 2000 ACM conference
on Computer Supported Cooperative Work, pages 221–230. ACM
Press, 2000.

[HSH90] H. Rex Hartson, Antonio C. Siochi, and D. Hix. The UAN: a
User-oriented Representation for Direct Manipulation Interface
Designs. ACM Transactions on Information Systems (TOS),
8(3):181–203, 1990.

http://www.mozilla.org/projects/xul/

BIBLIOGRAPHY 221

[JNF03] Joaquim A. Jorge, Nuno Jardim Nunes, and João Falcão e Cunha,
editors. Interactive Systems. Design, Specification, and Veri-
fication, 10th International Workshop, DSV-IS 2003, Funchal,
Madeira Island, Portugal, June 11–13, Revised Papers, volume
2844 of Lecture Notes in Computer Science. Springer, 2003.

[Joh01] Chris Johnson, editor. Interactive Systems: Design, Specifica-
tion, and Verification, 8th International Workshop, DSV-IS 2001,
Glasgow, Scotland, UK, June 13–15, Revised Papers, volume 2220
of Lecture Notes in Computer Science. Springer, 2001.

[JWZ93] Christian Janssen, Anetee Weisbecker, and Jürgen Ziegler. Gen-
erating User Interfaces from Data Models and Dialog Net Spec-
ifications. In ACM Conf. on Human Aspects in Computing Sys-
tems InterCHI’93, pages 418–423, Amsterdam, April 24–28 1993.
Addison-Wesley.

[KAS96] Shiro Kawai, Hitoshi Adai, and Tadao Saito. Designing Interface
Toolkit with Dynamic Selectable Modality. In Proceedings of the
second annual ACM conference on Assistive technologies, pages
72–79, 1996.

[KV02] Christophe Kolski and Jean Vanderdonckt, editors. Computer-
Aided Design of User Interfaces III, volume 3. Kluwer Academic,
2002.

[KWWZ04] Oskari Koskimies, Michael Wasmund, Peter Wolkerstorfer, and
Thomas Ziegert. Practical Experiences with Device Independent
Authoring Concepts. In Luyten et al. [LALV04], pages 17–24.

[LALV04] Kris Luyten, Marc Abrams, Quentin Limbourg, and Jean Vander-
donckt, editors. Developing User Interfaces with XML: Advances
on User Interface Description Languages. Sattelite workshop of
Advanced Visual Interfaces (AVI) 2004, Expertise Centre for Dig-
ital Media, 2004.

[LC01] Kris Luyten and Karin Coninx. An XML-based runtime user
interface description language for mobile computing devices. In
Johnson [Joh01], pages 17–29.

[LC04a] Kris Luyten and Karin Coninx. ImogI: Take Control Over a
Context-Aware Electronic Mobile Guide for Museums. In Bar-
bara Schmidt-Belz and Keith Cheverst, editors, HCI in Mobile

222 BIBLIOGRAPHY

Guides, Glasgow, 2004. Sattelite workshop of Mobile’HCI 2004.
http://research.edm.luc.ac.be/~imogi/.

[LC04b] Kris Luyten and Karin Coninx. Uiml.net: an Open Uiml Renderer
for the .Net Framework. In Limbourg et al. [LJV04].

[LCC03] Kris Luyten, Bert Creemers, and Karin Coninx. Multi-device
Layout Management for Mobile Computing Devices. Technical
Report TR-LUC-EDM-0301, Expertise Centre for Digital Media
– Limburgs Universitair Centrum, Belgium, 2003.

[LCCV03] Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdon-
ckt. Derivation of a Dialog Model for a Task Model by Activity
Chain Extraction. In Jorge et al. [JNF03], pages 203–217.

[LF01] Simon Lok and Steven Feiner. A Survey of Automated Lay-
out Techniques for Information Presentations. In Proceedings of
SmartGraphics 2001, March 2001.

[LFHH91] L. Logrippo, M. Faci, and M. Haj-Hussein. An Introduction to
LOTOS: Learning by Examples. Computer Networks and ISDN
Systems, 23(5):325–342, 1991.

[LJV04] Quentin Limbourg, Robert Jacob, and Jean Vanderdonckt, edi-
tors. Computer-Aided Design of User Interfaces IV, volume 4.
Kluwer Academic, 2004.

[LK93] J. Landay and T. Kaufmann. User Interface Issues in Mobile Com-
puting. In Fourth Workshop on Workstation Operating Systems,
Napa, CA, 1993.

[LLCR03] Kris Luyten, Tom Van Laerhoven, Karin Coninx, and Frank Van
Reeth. Runtime Transformations for Modal Independent User
Interface Migration. Interacting with Computers, 15(3):329–347,
2003.

[LS96a] Frank Lonczewski and Siegfried Schreiber. The FUSE-System: an
Integrated User Interface DEsign Environment. In Vanderdonckt
[Van96], pages 37–56.

[LS96b] Frank Lonczewski and Siegfried Schreiber. The FUSE-System:
an Integrated User Interface Design Environment. In Computer-
Aided Design of User Interfaces, 1996.

http://research.edm.luc.ac.be/~imogi/

BIBLIOGRAPHY 223

[LV04] Quentin Limbourg and Jean Vanderdonckt. Transformational De-
velopment of User Interfaces with Graph Transformations. In
Limbourg et al. [LJV04].

[LVC02] Kris Luyten, Chris Vandervelpen, and Karin Coninx. Migratable
User Interface Descriptions in Component-Based Development.
In Forbrig et al. [FLUV02], pages 62–76.

[LVM+04a] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Lau-
rent Bouillon, Murielle Florins, and Daniela Trevisan. USIXML:
A User Interface Description Language for Context-Sensitive User
Interfaces. In Luyten et al. [LALV04], pages 55–62.

[LVM+04b] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Lau-
rent Bouillon, and Victor López-Jaquero. USIXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In
The 9th IFIP Working Conference on Engineering for Human-
Computer Interaction jointly with the 11th International Work-
shop on Design, Specification and Verification of Interactive Sys-
tems, Tremsbttel Castle, Hamburg, Germany, pages 89–107, 2004.

[LVS00] Quentin Limbourg, Jean Vanderdonckt, and Nathalie Souchon.
The Task-Dialog and Task-Presentation Mapping Problem: Some
Preliminary Results. In Palanque and Paternò [PP00], pages 227–
246.

[MBFB89] J. Maloney, A. Boming, and B.N. Freeman-Benson. Constraint
Technology for User Interface Construction in ThingLab II. In
OOPSLA, 1989.

[Mer01] Roland A. Merrick. Device Independent User Interfaces in XML.
BelCHI Kick-off meeting, 2001. http://www.belchi.be/event.
htm.

[MF04] Guido Menkhaus and Sebastian Fischmeister. Adaptation for De-
vice Independent Authoring. In Luyten et al. [LALV04], pages
151–158.

[MFC01] Andreas Mülller, Peter Forbrig, and Clemens Cap. Model-Based
User Interface Design Using Markup Concepts. In Johnson
[Joh01], pages 30–39.

http://www.belchi.be/event.htm
http://www.belchi.be/event.htm

224 BIBLIOGRAPHY

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present,
and future of user interface software tools. ACM Trans. Comput.-
Hum. Interact., 7(1):3–28, 2000.

[MPS02] Giulio Mori, Fabio Paternò, and Carmen Santoro. CTTE: support
for developing and analyzing task models for interactive system
design. IEEE Transactions on Software Engineering, 28(8):797–
813, 2002.

[MPS03] Guilio Mori, Fabio Paternò, and Carmen Santoro. Tool Support
for Designing Nomadic Applications. In Proceedings of the 2003
international conference on Intelligent user interfaces, pages 141
– 148, Miami, Florida, USA, January 12–15 2003.

[MPS04] Giulo Mori, Fabio Paternò, and Carmen Santoro. Design and
development of multidevice user interface through multiple log-
ical descriptions. Transactions on Software Engineering, 30(8),
August 2004.

[MT02] Ian Main and The GTK Team. GTK+ 2.0 Tutorial. World Wide
Web, http://www.gtk.org/tutorial, 2002.

[MV02] Efrem Mbaki and Jean Vanderdonckt. Window Transitions: A
Graphical Notation for Specifying Mid-level Dialogue. In First
International Workshop on Task Models and Diagrams for User
Interface Design TAMODIA2002, pages 55–63, July 18–19 2002.

[MWK04] Roland A. Merrick, Brian Wood, and William Krebs. Abstract
User Interface Markup Language. In Luyten et al. [LALV04],
pages 39–46.

[NMH+02] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,
Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. Gener-
ating remote control interfaces for complex appliances. In User
Interface Software and Technology, 2002.

[Ols92] Dan Olsen. User Interface Management Systems: Models and
Algorithms. Morgan Kaufman Publishers Inc., 1992.

[Par69] David L. Parnas. On the use of transition diagrams in the de-
sign of a user interface for an interactive computer system. In
Proceedings of the 1969 24th national conference, pages 379–385,
1969.

http://www.gtk.org/tutorial

BIBLIOGRAPHY 225

[Pat97] Fabio Paternò. Formal Reasoning about Dialogue Properties with
Automatic Support. Interacting with Computers, 9(2):173–196,
November3 1997.

[Pat00] Fabio Paternò. Model-Based Design and Evaluation of Interactive
Applications. Springer, 2000.

[PE99] Angel Puerta and Jacob Eisenstein. Towards a General Compu-
tational Framework for Model-Based Interface Development Sys-
tems. In IUI 1999 International Conference on Intelligent User
Interfaces, pages 171–178, 1999.

[PE02] Angel Puerta and Jacob Eisenstein. XiML: A Common Repre-
sentation for Interaction Data. In Sixth International Conference
on Intelligent User Interfaces, pages 214–215, 2002.

[PE04] Angel Puerta and Jacob Eisenstein. XIML: A Multiple User In-
terface Representation Framework for Industry, pages 119–148.
In Seffah and Javahery [SJ04], 2004.

[Pha00] Constantinos Phanouriou. UIML: A Device-Independent User In-
terface Markup Language. PhD thesis, Virginia Tech, 2000.

[Pin00] Paulo Pinheiro da Silva. User Interface Declarative Models and
Development Environments: A Survey. In Palanque and Paternò
[PP00], pages 207–226.

[PL94] Fabio Paterno and Ales Leonardi. A Semantics-based Approach
for the Design and Implementation of Interaction Objects. Com-
puter Graphics Forum, 13(3):195–204, 1994.

[PLV01] Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt.
Task Modelling for Context-Sensitive User Interfaces. In John-
son [Joh01], pages 60–76.

[PP00] Philippe Palanque and Fabio Paternò, editors. Interactive Sys-
tems: Design, Specification, and Verification, 7th International
Workshop, DSV-IS 2000, Limerick, Ireland, June 5-6, Revised
Papers, volume 1946 of Lecture Notes in Computer Science.
Springer, 2000.

[PS02] Fabio Paternò and Carmen Santoro. One model, many interfaces.
In Kolski and Vanderdonckt [KV02], pages 143–154.

226 BIBLIOGRAPHY

[Pue97] Angel R. Puerta. A model-based interface development environ-
ment. IEEE Softw., 14(4):40–47, 1997.

[PVW+04] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy
Georges, Peter Rigole, Tim Clerckx, Yolande Berbers, Karin Con-
inx, Viviane Jonckers, and Koen De Bosschere. Towards an Exten-
sible Context Ontology for Ambient Intelligence. In Proceedings
of EUSAI 2004, November 8–10 2004. Accepted for publication.

[RB03] Peter Rigole and Yolande Berbers. The working of the SEESCOA
common test case. Technical Report Report CW 354, Department
of Computer Science – K.U.Leuven, Belgium, 2003.

[Sch96] Egbert Schlungbaum. Model-based User Interface Software Tools
- Current State of Declarative Models. Technical Report 96-30,
Graphics, Visualization and Usability Center – Georgia Institute
of Technology Atlanta, 1996.

[SE96a] Egbert Schlungbaum and Thomas Elwert. Automatic User In-
terface Generation from Declarative Models. In Vanderdonckt
[Van96], pages 3–17.

[SE96b] Egbert Schlungbaum and Thomas Elwert. Dialogue Graphs - a
formal and visual specification technique for dialogue modelling.
In Formal Aspects of the Human Computer Interface, 1996.

[SJ04] Ahmed Seffah and Homa Javahery, editors. Multiple User Inter-
faces – Cross-platform Applications and Context-aware Interfaces.
Wiley, 2004.

[SLN92] Pedro A. Szekely, Ping Luo, and Robert Neches. Facilitating
the exploration of interface design alternatives: the HUMANOID
model of interface design. In CHI, pages 507–515, 1992.

[SLV02] Nathalie Souchon, Quentin Limbourg, and Jean Vanderdonckt.
Task Modelling in Multiple contexts of Use. In Forbrig et al.
[FLUV02], pages 60–76.

[SM01] Candy Sidner and Johanna Moore, editors. Proceedings of the
2001 International Conference on Intelligent User Interfaces,
January 14-17, 2001 , Santa Fe, New Mexico. ACM, 2001.

BIBLIOGRAPHY 227

[SMFBB93] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and
Alan Borning. Multi-way versus One-way Constraints in User
Interfaces: Experience with the DeltaBlue Algorithm. Software -
Practice and Experience, 23(5):529–566, 1993.

[Som04] Ian Sommerville. Software Engineering. Addison-Wesley, 7th edi-
tion, 2004.

[SR98] Kurt Stirewalt and S. Rugaber. Automating User-Interface Gen-
eration by Model Composition . In Proceedings of the IEEE Inter-
national Conference on Automated Software Engineering , 1998.

[SR01] Christian Sandor and Thomas Reicher. CUIML: A Language for
the Generation of Multimodal Human-Computer Interfaces. In
Proceedings of the European UIML Conference, 2001.

[SSC+95] Pedro A. Szekely, Piyawadee Noi Sukaviriya, Pablo Castells,
Jeyakumar Muthukumarasamy, and Ewald Salcher. Declara-
tive Interface Models for User Interface Construction Tools: The
MASTERMIND Approach. In EHCI, pages 120–150, 1995.

[Sti97] Kurt Stirewalt. Automatic Generation of Interactive Systems
from Declarative Models. PhD thesis, Georgia Institute of Tech-
nology, 1997.

[Sti99] Kurt Stirewalt. MDL: a Language for Binding UI Models. In
Vanderdonckt and Puerta [VP99], pages 159–170.

[SV03] Nathalie Souchon and Jean Vanderdonckt. A Review of XML-
complaint User Interface Description Languages. In Jorge et al.
[JNF03], pages 377–391.

[Sze96] Pedro Szekely. Retrospective and Challenges for Model-Based
Interface Development. In Vanderdonckt [Van96], pages xxi–xliv.

[Szy98] Clemens Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley / ACM Press, 1998.

[TC99] David Thevenin and Joëlle Coutaz. Adaptation and Plasticity of
User Interfaces. In Workshop on Adaptive Design of Interactive
Multimedia Presentations for Mobile Users, 1999.

228 BIBLIOGRAPHY

[The01] David Thevenin. Adaptation en Interaction Homme-Machine :
le cas de la Plasticité. PhD thesis, Université Joseph Fourier -
Grenoble 1, 2001.

[UBB01] David Urting, Stefan Van Baelen, and Yolande Berbers. Embed-
ded Software using Components and Contracts (Position Paper).
In European Conference for Object-Oriented Programming, 2001.

[UBHB01] David Urting, Stefan Van Baelen, Tom Holvoet, and Yolande
Berbers. Embedded Software Development: Components and
Contracts. In Proceedings of the IASTED International Con-
ference Parallel and Distributed Computing and Systems, pages
685–690, 2001.

[Van93] Jean Vanderdonckt, editor. Computer-Aided Design of User In-
terfaces I, volume 1. Kluwer Academic, 1993.

[Van95] Jean Vanderdonckt. Knowledge-Based Systems for Automated
User Interface Generation : the TRIDENT Experience. In Pro-
ceedings of the CHI ’95 Workshop on Knowledge-Based Support
for the User Interface Design Process, May 1995.

[Van96] Jean Vanderdonckt, editor. Computer-Aided Design of User In-
terfaces II, volume 2. Kluwer Academic, 1996.

[VB93] Jean Vanderdonckt and François Bodart. Encapsulating Knowl-
edge for Intelligent Automatic Interaction Objects Selection. In
ACM Conference on Human Aspects in Computing Systems In-
terCHI’93, pages 424–429. Addison Wesley, 1993.

[VC04] Chris Vandervelpen and Karin Coninx. Towards Model-Based
Design Support for Distributed User Interfaces. 2004. Accepted
for publication at NordiCHI 2004, 23-27 October, Tampere, Find-
land.

[VG94] Jean Vanderdonckt and Xavier Gillo. Visual Techniques for Tra-
ditional and Multimedia Layouts. In Advanced Visual Interfaces,
pages 95–104, 1994.

[VJR04] Jean Vanderdonckt, Nuno Jardim Nunes, and Charles Rich, edi-
tors. Proceedings of the 2004 International Conference on Intel-
ligent User Interfaces, January 13-16, 2004, Funchal, Madeira,
Portugal. ACM, 2004.

BIBLIOGRAPHY 229

[VLC03a] Jan Van den Bergh, Kris Luyten, and Karin Coninx. A Run-
time System for Context-Aware Multi-Device User Interfaces. In
HCI International 2003, Volume 2, Crete, Greece, pages 308–312.
Lawrence Erlbaum Associates, June 2003.

[VLC03b] Chris Vandervelpen, Kris Luyten, and Karin Coninx. Location-
Transparent User Interaction for Heterogeneous Environments.
In Constantine Stephanidis and Julie Jacko, editors, Human-
Computer Interaction: Theory and Practice (Part II), Volume
2, pages 313–317. Lawrence Erlbaum Associate, June 2003.

[VLC04] Jan Van den Bergh, Kris Luyten, and Karin Coninx. Evaluation
of High-Level user Interface Description Languages for Use on
Mobile and Embedded Devices . In Luyten et al. [LALV04], pages
87–94.

[VLF03] Jean Vanderdonckt, Quentin Limbourg, and Murielle Florins.
Deriving the Navigational Structure of a User Interface. In
M. Rauterberg and J. Wesson, editors, Proceedings of 9th IFIP
Conf. on Human-Computer Interaction Interact’2003 (Zrich, 1-5
September 2003), pages 455–462, 2003.

[VP99] Jean Vanderdonckt and Angel Puerta, editors. Computer-Aided
Design of User Interfaces III, volume 3. Kluwer Academic, 1999.

[Was85] Anthony Wasserman. Extending State Transition Diagrams for
the Specification of Human-Computer Interaction. IEEE Trans-
actions on Software Engineering, 11:699–713, 1985.

[WC] Kathy Walrath and Mary Campione. The Swing Tuto-
rial. World Wide Web, http://java.sun.com/docs/books/
tutorial/books/swing/index.html.

[WD90] Won Chul Kim and James D. Foley. DON: User Interface Pre-
sentation Assistant. In User Interface Software and Technology.
ACM Press, October 1990.

[ZMBR04] Detlef Zuehlke, Kizito Mukasa, Alexander Boedcher, and Achim
Reuther. useML: A Human-Machine Interface Description Lan-
guage. In Luyten et al. [LALV04], pages 119–126.

http://java.sun.com/docs/books/tutorial/books/swing/index.html
http://java.sun.com/docs/books/tutorial/books/swing/index.html

Index

Model-Based User Interface Development,
9

abastract model, 70
abstract interaction objects, 26
abstract models, 19
Abstract User Interface Markup Language,

35
action, 19, 104
action plugin, 110
activity chain, 84
AIO, 26
Allen’s temporal logic, 22
annotation tool, 82
application model, 11
AUIML, 35, 96
automated transformation, 70

BOSS, 16
building block annotator, 66

CADUI, 9
candidate transition, 85, 87
Cascading StyleSheets, 35
CC/PP, 34
CIO, 26
CoDAMoS, 185
common denominator, 32
component

definition, 129
internal, 130
rendering, 132
surface, 130

compound task sets, 73
concrete interaction objects, 26
concrete model, 70

concrete models, 19
ConcurTaskTree, 20

environment, 15
temporal operators, 21

ConcurTaskTrees, 15
Consensus, 36
constraints, 98
context, 169–183

definition, 170
context model, 11
context-sensitive system, 186
CSS, 35, 99
CUIML, 149

data model, 11
decision nodes, 171
decision tree, 171
description language, 98

properties, 98
design-time tool, 13
Dialog and Interface Specification Language,

40
dialog model, 11, 23

definition, 24
full dialog coverage, 25
state transition network, 91
transitions, 93

DISL, 40, 149
distributed user interfaces, 26, 187
Document Object Model, 34
DOM, 34
domain model, 11
DON, 12
DSV-IS, 9
DTD, 99
Dygimes, 12, 15, 52, 71, 72, 159, 185, 189

INDEX 231

activity chain, 84
context-sensitive, 171
design cycle, 72
process, 72
state transition network, 91
UiBuilder, 105
UIML, 159

dynamic model, 28

enabled task collection, 22
enabled task set, 22, 77

algorithm, 77
definition, 22

enabled task sets, 74
environmental model, 171
executable model, 19
eXtended User Agent Notation, 21

full coverage, 25, 26, 161
dialog, 25
presentation, 26

full presentation coverage, 27
FUSE, 13, 16

Genius, 71
group, 104
Gtk#, 144

Humanoid, 13

ICO, 71
intent-based, 35
inter-model relationships, 27
inter-vocabulary distance, 154
interaction session, 137
Interactive Cooperative Objects, 71
Interface Specification Meta-Language, 39
intermediate model, 24
internal component, 130
IUI, 10

JavaScript, 35

layout, 95, 110
grid-based, 110

layout specification tool, 67
layout system, 187
LOTOS, 21

mapping problem, 27
Mastermind, 11
MDA, 188
meta-widget, 32
metaphor based, 39
MIM, 145
Mobi-D, 12
model

definition, 16
model derivation, 27
model drive architecture, 188
model linking, 28
model manipulation, 28
model update, 28
model-based, 10, 13

architecture, 13
derivation, 27
dialog model, 23
environment, 13, 18
environmental model, 171
Formalization, 16
linking, 28
manipulation, 28
mapping, 27
platform model, 171
presentation model, 25
relationships, 27
system, 13
task model, 19
tools, 65
update, 28
user interface development, 10

Mono, 149
Mozilla, 34
multi-device, 10

pagination, 36
Panel Definition Markup Language, 35
Pattern User Action Notation, 22
PDA, 39
plasticity, 28, 187

dialog plasticity, 28
platform model, 171
presenation model, 11
presentation model, 25, 36, 95, 97

aspects, 36, 95
definition, 26
full presentation coverage, 27

232 INDEX

layout, 95
rendering hints, 96
requirements, 97
structure, 95
widget mappings, 96

priority order, 80
priority tree, 80
PUAN, 22
Python, 110, 111

rational unified process, 188
RDF, 35, 99
reflection, 150, 164
renderer, 105
Renderer Independent Markup Language,

36
rendering component, 132
rendering engine, 185
rendering hints, 96
Resource Description Framework, 35
ROOM, 129
run-time system, 13
run-time tool, 13
RUP, 188

SEESCOA, 7, 96, 127
notation, 130

SEESCOA XML, 7, 96, 100, 164
action, 104, 110
DTD, 101
event handling, 110
group, 104
interactors, 101
renderer, 105
versus UIML, 164

semi-dynamic model, 28
software components, 127
state transition diagram, 70
state transition network, 70, 91
static model, 28
structure, 95
surface component, 130
surveillance camera, 103
SWF, 144
System.Windows.Forms, 144

Tadeus, 12, 71
task analysis, 19

task model, 11, 19
building block annotator, 66
ConcurTaskTree, 20
definition, 19

TaskLib, 67
template, 163
Teresa, 15, 38, 71
TIDE, 144
tools, 65
Trident, 12

UAN, 21
UAprofile, 34
UiBuilder, 66, 105

class diagram, 109
extensibility, 108

UIML, 7, 40, 96, 108, 113, 143–165
architecture, 150
behavior, 145
container, 163
content, 145
full coverage, 161
layout, 157
meta-interface model, 145
structure, 145
style, 145
template, 163
versus SEESCOA XML, 164

Uiml.net, 7, 150
UML, 188
useML, 149
user interface building block, 66, 161
user interface description language

requirements, 97
User Interface Markup Language, 40
user model, 11
Useware Markup Language, 37
UsiXML, 42

vocabulary generator, 150

widget mapping, 96
windows transitions, 71
Wx.NET, 144

Xaml, 34
XForms, 34, 36, 96, 101, 113
XHTML, 36
XIML, 41, 96, 113

INDEX 233

XML User interface Language, 34
XSLT, 99
XUAN, 21
XUL, 34, 96, 113

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Listings
	List of Tables
	I User Interface Creation for Mobile and Embedded Systems
	Introduction
	Problem Statement
	Motivation and Aims
	Overview

	Model-Based User Interface Development
	Introduction
	Model-Based User Interface Development
	A Definition and some History
	A More Precise Definition of Models
	Our Selected Models

	The Task Model
	The Dialog Model
	The Presentation Model
	Model Relations and Mappings
	Plasticity and Context in Models
	Discussion

	High-Level User Interface Description Languages
	Introduction
	History of XML-based User Interface Description Languages
	An overview of XML-based High-Level User Interface Description Languages
	Abstract User Interface Markup Language (AUIML)
	Renderer Independent Markup Language (RIML)
	Useware Markup Language (useML)
	Teresa XML
	Interface Specification Meta-Language (ISML)
	The User Interface Markup Language (UIML)
	XIML
	UsiXML

	Discussion

	II HCI Engineering, Models and Transformations
	Dygimes: Dynamically Generating Interfaces for Mobile and Embedded Systems
	Introduction
	Dygimes process
	XML-based User Interface Descriptions
	Task Model
	The System Glue: an Interaction and Application Model
	Automatic Layout Management
	Customization and Templating
	Towards a Tool Chain to support Model-Based User Interface Development
	Discussion

	Models for Multi-Device User Interfaces
	Introduction
	Related Work
	The Task Model within the Dygimes Framework
	ConcurTaskTrees formalism
	An algorithm to calculate enabled task sets
	Introduction
	Generating a priority tree
	Calculating the enabled task sets

	Activity Chain Extraction
	Dynamic Behavior of the User Interface
	Mapping Sets on States
	Finding the Initial State
	Detecting Transitions
	Mapping the Finishing States
	The resulting State Transition Network

	Actual transitions between dialogs
	Discussion

	Presentation of the User Interface
	Introduction
	Towards an XML-based HLUID Language
	A Declarative Language for User Interface Design
	SEESCOA XML
	UiBuilder: A SEESCOA XML Renderer
	Event handling in SEESCOA XML
	Discussion

	Multi-device Layout Management
	Introduction
	Related Work
	Constraint Satisfaction and Layout Management
	Calculating Presentation Structures
	Describing spatial constraints
	Building the layout description graph
	Calculating widget positions
	Conflict handling
	Further screen space reduction strategies

	Discussion

	Components and Multi-Device User Interfaces
	Introduction
	Component-Based Software Development
	User Interface Descriptions and Components
	The SEESCOA Component Framework
	The Rendering Component
	A Case Study: a Camera Surveillance system
	Decomposing tasks: relating components to tasks

	Discussion

	Uiml.net: an Open Uiml Renderer for the .Net Framework
	Introduction
	UIML Overview
	Related Work
	The Renderer
	Overall Design
	Dynamic Core

	Inter-vocabulary distances
	The Layout Problem
	UIML and Dygimes
	Integration with the task specification
	Generation of the dialog model

	Discussion

	III Towards Context-Sensitive Model-Based User Interface Development
	Extending Dygimes for Context-Sensitive User Interface Development
	Introduction
	Related Work
	Dygimes Once Again
	Design Process
	The Context-Sensitive Task Model
	The Presentation Model

	A Case Study: Manage Stock
	Discussion

	Future Work
	Dynamic Model-Based User Interface Development
	Distributed User Interfaces
	Next-Generation Widget Toolkits
	Software Engineering

	Conclusions
	Model-Based User Interface Development
	Achievements and Main Contributions
	Scientific Contributions and Publications
	Concluding Remarks…

	Scenarios
	Scenario 1: Teaching with Technology
	Scenario 2: Mobile Communication
	Scenario 3: A Mobile Tourist Guide in a Museum
	Technological Challenges

	Nederlandstalige Samenvatting
	Inleiding
	Model-gebaseerde Gebruikersinterface Ontwikkeling
	Dygimes: Dynamische Generatie van Interfaces voor Mobiele en Ingebedde Systemen
	Modellen voor Interface Ontwerp voor meerdere Apparaten
	Presentatie van de Gebruikersinterface
	Layoutbeheer voor Meerdere Apparaten
	Componenten en Gebruikersinterfaces voor Meerdere Apparaten
	Uiml.net: een Open Uiml Renderer voor het .Net Raamwerk
	Context in de Ontwikkeling van Gebruikersinterfaces
	Besluit

	Bibliography

