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Abstract 

This thesis is divided into two parts. The first part is devoted to the 
study of an analytically solvable model of coupled parametric oscillators. 
The model comprises an infinite set of globally coupled harmonic oscillators 
whose frequencies are subjected to time-periodic, piecewise-constant mod­
ulations with randomly distributed quenched phases. This system exhibits 
a variety of amplitude instabilities. In addition to the familiar parametric 
instability of the individual oscillators, two kinds of collective instabilities 
are identified. In one, the mean amplitude diverges monotonically, while 
in the other the divergence is oscillatory. The frequencies of the collective 
oscillatory instabilities bear no simple relation to the natural frequency of 
the individual oscillators, or to the frequency of the external modulation. A 
phase diagram is constructed to delineate the extent of the different regimes 
in the space of the parameters of the perturbation (its amplitude and pe­
riod) . Some of the features of the collective instabilities in the mean field 
model are already present in the simple system of just two coupled para­
metric oscillators with out-of-phase perturbations. It is also shown that the 
above phenomena are robust, in the sense that they do not depend crucially 
on the details of the model. Numerical simulations support the theoretical 
predictions. 

The second part of the thesis uses the framework of the Landau-Lifshitz 
fluctuating hydrodynamics in order to study the statistical properties of 
Kolmogorov flow. A detailed analysis of the linearized fluctuation spectrum 
is carried out from the near-equilibrium regime up to the vicinity of t he first 
convective instability threshold ( that corresponds to the appearance of ro­
tating convective patterns). It is shown that in the long-time limit the flow 
behaves as an incompressible fluid, regardless of the value of the Reynolds 
number. This is not the case for the short-time behavior, where the incom­
pressibility assumption leads in general to an incorrect form of the static 
correlation functions, except near the instability threshold. However, in this 
latter region, nonlinear effects have to be taken into account appropriately. 
We derive the normal form amplitude equation for an incompressible fluid, 
and construct the velocity field close to, and just above, the threshold. The 
compressible case is analyzed as well. Using a perturbative technique, it is 



shown that close to the instability threshold the stochastic dynamics of the 
system is governed by two coupled nonlinear Langevin equations in Fourier 
space. The solution of these equations can be cast in the form of the ex­
ponential of a Landau-Ginzburg functional, which proves to be identical to 
the one obtained for the case of an incompressible fluid. The theoretical 
predictions are confirmed by numerical simulations of the full fluctuating 
hydrodynamic equations. It is also shown that the results of particle simu­
lations of Kolmogorov flow are vitiated by a spurious diffusion of the center 
of mass in phase space. The analytical expression for the corresponding dif­
fusion coefficient is derived, using which we show that the effect is negligible 
in a macroscopic system. 



Samenvatting 

Het eerste deel van <lit werk behandelt de studie van een analytisch oplosbaar 
model van gekoppelde parametrische oscillatoren. Dit systeem is samengesteld 
uit een oneindig groat aantal globaal gekoppelde oscillatoren, waarbij de 
frekwenties periodisch gemoduleerd warden met een willekeurige beginfase. 
Dit systeem vertoont een breed spectrum van amplitude instabiliteiten. 
Naast de welbekende parametrische instabiliteit warden twee andere col­
lectieve instabiliteiten aan het licht gebracht. In het ene geval is er een 
monotone divergentie van de gemiddelde amplitude, terwijl de divergentie 
oscillerend is in het andere geval. De frekwenties van deze oscillaties warden 
in verband gebracht met deze van de individuele oscillatoren en van de mod­
ulatie. De verschillende gebieden in de parameterruimte van de modulatie 
( amplitude en periode) warden in een fasediagram voorgesteld. Enkele eigen­
schappen van de collectieve instabiliteiten in het gemiddelde veld model zijn 
reeds aanwezig in een eenvoudig systeem van twee gekoppelde oscillatoren 
waarbij de modulatie in tegenfase verloopt. Verder wordt er aangetoond <lat 
de bovenstaande eigenschappen niet afhangen van specifieke details in het 
model. Numerieke simulaties bevestigen de theoretische voorspellingen. 

Het tweede deel handelt over de statistische eigenschappen van de Kol­
mogorov stroom, steunend op de Landau-Lifshitz theorie voor fluctuerende 
hydrodynamica. Een gedetailleerde analyse van het gelineariseerde fluc­
tuatie spectrum wordt uitgevoerd, vanuit evenwicht tot in de buurt van 
de eerste convectieve instabiliteit ( die correspondeert met rotationele con­
vectieve patronen). Voor lange tijden gedraagt deze stroom zich als een 
onsamendrukbare vloeistof, onafhankelijk van het Reynolds getal. Voor 
korte tijden daarentegen leidt de onsamendrukbaarheid tot een verkeerde 
vorm voor de statische correlatie functies, behalve in de buurt van de in­
stabiliteit. In <lit gebied daarentegen moet er weer rekening gehouden war­
den met niet lineaire effecten. De normaalvorm amplitude vergelijking voor 
een onsamendrukbare vloeistof wordt afgeleid, samen met het snelheidsveld 
dicht boven de instabiliteitsgrens. In geval van een samendrukbare vloeistof 
wordt aangetoond, gebruikmakend van storingsrekening, <lat dicht bij de in­
stabiliteitsgrens de stochastische dynamica van het systeem bepaald wordt 
door twee gekoppelde niet lineaire Langevin vergelijkingen in de Fourier­
ruimte. De oplossing van deze vergelijkingen kan geschreven warden als de 



exponentiele van een Landau-Ginzberg functionaal, die overeenkomt met 
deze voor het geval van een onsamendrukbare vloeistof. De theoretische 
':oorspellingen worden bevestigd door numerieke simulaties van het volledig 
stel hydrodynamische vergelijkingen. De simulaties van de deeltjesbeweg­
ing worden verstoord door een valse diffusie van het massamiddelpunt in de 
faseruimte. De analytische uitdrukking voor deze diffusie coefficient wordt 
afgeleid. 
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Chapter 1 

Introduction 

Over the past two decades there has been an increasing interest in the non­
equilibrium behavior of spatially extended systems modeled as ensembles of 
simple dynamical units coupled to each other. The collective evolution of 
such discrete coupled systems often exhibits qualitatively different behavior 
from that of the single units . 
An example of a system that has attracted a great deal of attention is a 
collection of a large number of coupled limit-cycle (phase) oscillators with 
randomly distributed natural frequencies [l]. This system has been invoked 
as a simple model for coupled chemical, biological or physical oscillators. A 
most spectacular collective phenomenon discovered with this model is a syn­
chronization phase transition involving mutual entrainment of the oscillators 
through frequency and phase locking. However, in this model the coupling 
is assumed to be sufficiently weak so that the amplitude is not affected. As 
a result, the model cannot describe amplitude instabilities. A system that 
does exhibit a rich variety of amplitude instabilities consists of coupled para­
metric oscillators and is the subject of this part of the present thesis [2] - [5] . 

An oscillator under the influence of a parametric (time-periodic) pertur­
bation can undergo an instability known as parametric resonance. Such 
parametric oscillators are encountered in a wide variety of physical systems 
- linear and nonlinear, deterministic as well as stochastic - in various con­
texts, including simple mechanical systems [6] (where such resonances were 
first identified), elementary particles [7], astrophysics [8], fluid mechanics 
[9], magnetism [10], plasma physics [11], electrical and electronic networks 
[12], optical systems and lasers [13], applied mechanics [14], and biophysics 

3 



--, 

[15], to cite only a few papers from a huge literature on the subject. A sim­
ilar (energetic) instability can also arise in oscillators whose frequencies are 
perturbed in a stochastic manner (see, e.g., [16]), while the effect of ther­
mal fluctuations is also well documented [17]. However, surprisingly little 
work has been done on systems of coupled oscillators with randomly vary­
ing or periodically varying natural frequencies - i.e., on coupled parametric 
oscillators. The few cases that we know of deal with a global parametric per­
turbation (i.e., one that acts on all the oscillators in exactly the same way), 
such as parametrically pumped electrons in a Penning trap [18], pattern 
formation under global exterior resonant forcing [19], time-periodic loading 
of an elastic system [20], and nonlinear parametrically driven lattices [21]. 

The focus of Part I of this thesis is the introduction and study of a sim­
ple linear model for coupled parametric oscillators that can be solved in full 
analytic detail: namely, an infinite set of globally mean-field coupled har­
monic oscillators, subject to time-periodic, piecewise-constant modulations 
with randomly distributed quenched phases [2] - [4]. ( "Quenched" in this 
context means that the phase of the frequency modulation of each oscillator 
is set at time t = 0 and remains unchanged thereafter.) The salient feature 
is the appearance of collective parametric instabilities that manifest them­
selves through an "explosion" of the mean displacement of the oscillators. 
Even though each individual oscillator is in its stable parameter domain, the 
average amplitude of the coupled system may diverge monotonically. This 
instability is re-entrant with respect to the strength of the spatial coupling 
of the oscillators, and persists in the overdamped limit. In the presence of 
a saturating nonlinearity, it generates a pitchfork bifurcation, correspond­
ing to a genuine second-order nonequilibrium phase transition (implying the 
spontaneous breaking of spatial symmetry and ergodicity) . In addition to 
this instability described by the monotonic growth of the mean amplitude, 
the globally-coupled infinite system can also undergo transitions to a collec­
tive oscillatory instability with an intrinsic frequency that is not connected 
in a simple way with either the frequencies of the individual oscillators, or 
that of the external modulation. A saturating nonlinearity turns this insta­
bility into a Hopf bifurcation, generating a limit cycle with the concomitant 
breaking of temporal symmetry and ergodicity. 

In trying to explain these manifestations of collective behavior, one is struck 
by the similarities with a simple model introduced recently [5]. This involves 
two coupled parametric oscillators modulated periodically, with a fixed phase 
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difference T between their modulations. The behavior of this "dimer" when 
T = Tp/2 (Tp is the period of the modulation) is remarkably similar to that 
of the globally-coupled infinite system, and the roots of the instabilities ob­
served in the latter are already present in this simple system. At an even 
more primary level, the seeds of these collective instabilities can be traced 
back to the behavior of single oscillators. In general, an individual oscillator 
tends to synchronize with the external modulation, whereas the coupling 
induces mutual synchronization between oscillators. These two tendencies 
cannot be satisfied simultaneously. Coupling between oscillators can then 
be seen as leading to a sort of "selection" among the single oscillator modes, 
enhancing some (destabilization) and smoothing out others (stabilization). 

A further remark is in order here about the motivation for the choice of 
our model. In a number of recent papers [22], several intriguing coopera­
tive phenomena have been reported in spatially extended systems subject 
to state-dependent (or multiplicative) noise (see [23] for a review). Genuine 
nonequilibrium phase transitions of both first and second order, involving 
the breaking of time and/or space translation invariance and ergodicity, 
have been found. Models with state-dependent noise are present in a wide 
variety of physical systems, e.g., in hydrodynamics [24], growth phenomena 
[25], lasers [26], etc. (see also [23]). In this context, Van den Broeck and 
Kawai [27] had the idea of investigating inertia-less, mean-field coupled par­
ticles subject to a parametrically perturbed elastic force, whose equations 
of motion look like 

1±(t) + w5[l + ~(t)]x(t) + k(x- < x >) = 0 , (1.1) 

and examining the effects of various types of perturbations~( t) of the restor­
ing force 1 . They compared the effect of a periodic modulation with a phase 
disorder with the effects of perturbations by white noise and dichotomous 
Markov noise. Besides the mean field version, which allows a general exact 
solution in all three cases, they also studied numerically lD and 2D systems 
with first-neighbour coupling between the oscillators. 

The main conclusion of their study was that periodic perturbation with 

1 In the thermodynamic limit of an infinite number of coupled particles, the mean 
< x > over the realizations of the perturbation is equal to the mean over the ensemble of 
particles. Here x is the coordinate of a typ.ical particle, 1 the friction coefficient, and w0 

corresponds to the unperturbed elastic force; k is the (spatial) coupling constant. 
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disorder can give rise to what they called "absorption-desorption" phase 
transitions that are similar to those induced by the noise. In particular, in 
lD and 2D systems one can recognize the appearance of long-range spa­
tial correlations in the vicinity of the phase transition. Moreover, they 
clarified the rather surprising mechanism behind such modulation-induced 
phase transitions, by tracing it back to the transient increase of the first 
moment, already observed in other systems with multiplicative noise that 
exhibit nonequilibrium phase transitions [28]. Indeed, it was shown that 
the first moment < x > undergoes, for a short time, an increase above its 
initial value; this is due to a minority of particles with large values of \x\. 
In the case of a sufficiently strong coupling, these members pull the other 
sites away from the "absorbing state" x = 0. However, as these particles 
start relaxing, other sites take over and pull the system even further away 
from zero, and so on. This pool of "transiently large-\x\" particles changes 
periodically with time in a complicated manner. The random ingredient 
contributes to the existence of a broad distribution of \x\ values, so that 
the average can deviate significantly from the typical value. This reasoning 
is in agreement with the fact that the transition from the absorbing state 
< x >= 0 to an explosive behavior < x >-+ ±oo when t -+ oo is re-entrant 
with respect to the strength k of the coupling. Indeed, when the coupling 
is too large, the difference between the oscillators is suppressed and the col­
lective instability disappears. 

When one takes into account the inertia of the particles, the dynamics 
becomes considerably richer; in particular, oscillatory modes of behavior 
are made possible . We therefore investigate the counterpart of eq. (1.1) 
that takes into account the inertial terms. In the next chapter, we first 
briefly present some examples of parametric oscillators in various physical 
contexts (Section 2.1) . We then review the behavior of a single parametric 
oscillator subject to a time-periodic, piecewise-constant modulation of its 
frequency (Section 2.2 and Appendix A). The elements that will be relevant 
for the coupled system, as described in the subsequent chapter, are brought 
to the fore. In Section 3.1 of Chapter 3 we introduce the globally coupled 
model. Section 3.2 and Appendix B establish the mathematical setting for 
the analysis of the globally coupled system as a mean-field problem. Typical 
numerical results are presented in Section 3.3. In Section 3.4 we collect these 
results in the form of a phase diagram that characterizes the behavior of the 
coupled system as the modulation parameters are varied. We discuss t he 
boundaries between stable and unstable behavior and also between different 
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instability regimes. Two interesting limiting cases are discussed in Section 
3.5, namely that of inertia-less particles and that of an adiabatic modulation. 
Finally, Section 3.6 (along with Appendix C) offers a comparison between 
the mean-field system and the dimer, which leads to a deeper insight into 
the mechanisms of the collective instabilities. Conclusions and a discussion 
of the results are presented in Chapter 4. 
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Chapter 2 

The Single Parametric 
Oscillator 

2.1 Parametric Resonance in Different 
Physical Contexts 

Generally speaking, parametric resonance refers to the instability of a system 
in response to a (time-periodic) modulation of one of its parameters. The 
simplest and best-studied example is the parametric harmonic oscillator 
(with a friction coefficient, and mass m = 1), given by 

(2 .1) 

where the frequency w(t) varies periodically in time according to 

(2.2) 

Here wo is the proper frequency of the unperturbed oscillator and ~7 (t) is 
a periodic function of time, ~-r(t) = ~r(t + Tp), with Wp = 21r/Tp as the 
frequency of the perturbation; T is the initial phase of the perturbation 1

. 

One of the trademarks of parametric resonance is that the most pronounced 
instability is induced by a superharmonic perturbation with frequency 
wp ~ 2wo. For the harmonic oscillator (with no saturating nonlinear terms 

10f course, -r can be set to zero through a suitable choice of the origin of time; however, 
we prefer to retain it explicitly, in order to make clearer the connection with the coupled 
system to be considered in the next chapter. 
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present) one observes an unlimited growth of the amplitude; in contrast to 
the "usual" resonance phenomena (for an oscillator subject to an additive 
periodic forcing), friction alone cannot limit this growth. 

As already mentioned in the Introduction, parametric resonance occurs in a 
wide variety of physical systems [6] - [15]. The oldest example is the para­
metrically driven pendulum. The frequency of small oscillations around the 
vertical resting position is of course wo = .Jgfi, where g is the acceleration 
due to gravity and l is the length of the pendulum. It is clear that w0 can 
be perturbed in two ways, by altering l and the effective g, respectively. 
We first consider a periodic modulation of l. The discovery of this form of 
parametric resonance dates back to way before the birth of Newtonian me­
chanics, and was already practised, for instance, in the cathedral of Santiago 
de Compostela in Spain, in the early Middle Ages. One can understand the 
concern of the local bishop to make his church smell fresh with incense, while 
an unending flux of pilgrims, walking all the way south from as far away 
as Germany and Holland, streamed in daily to pay their respects to the re­
mains of Saint James the Major. A giant censor, called 0. Botafumeiro, and 
weighing about 60 kg, hung from a rope that passed through a roller on the 
ceiling, 20 m high. By pulling and releasing this rope (6.l ~ 1.5 m) period­
ically, with five strong men at the task orchestrated by the initiated priest, 
the censor could be pumped in 17 cycles to a full swing, nearly touching the 
ceiling of the cathedral, happily releasing its beatifying odor as it passed 
1.5 m above the floor at about 50 km/h. This remarkable and spectacular 
physical phenomenon is reported and described in a medieval manuscript of 
1366. It should be noted that the physics of a pendulum with a time-periodic 
length is more complicated than that of (2.1), because the time derivative of 
the impulse p = d(lB)/dt will generate a time-dependent friction term. For 
a detailed treatment including the nonlinear terms, as well as a comparison 
with the experimental observation in Santiago de Compostela, see [29]. We 
note also that children have a rather direct experience of this phenomenon, 
when moving themselves up and down on a swing in order to increase the 
amplitude of its movement. 

The other way to vary the frequency of a pendulum is to modulate t he 
effective acceleration due to gravity. (We know from general relativity that 
gravitation is locally equivalent to an accelerated frame of reference.) By 
modulating the acceleration, one can modulate the effective value of g. This 
can be realized for the pendulum by periodically varying its suspension 
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point. For a frequency wp ~ 2w0 (and low friction), it is found that this 
induces, above a critical amplitude, a bifurcation to an amplified swinging 
motion of the pendulum around its equilibrium position. For a nicely doc­
umented computer experiment, see [30]. 

In 1831, Faraday discovered that a layer of fluid can develop surface ripples 
when the basin that holds it is periodically moved up and down. Faraday 
instability is another example of parametric instability. The surface of the 
water can be considered as consisting of an infinite number of harmonic oscil­
lators, namely the surface eigenmodes. In the case of so-called gravity waves 
(in deep water, neglecting dissipation and surface tension), the dispersion 
relation expressing the frequency wo(k) of these waves as a function of their 
wave vector k = 21r / >.. is particularly simple [31] and very similar to that 
of the pendulum, namely wo(k) = ,/gk. These waves are highly dispersive 
with a phase velocity wo(k)/k that is twice as large as the group velocity 
(UJ)o ( k) / dk. By periodically vibrating the whole basin containing the fluid 
with frequency wp, one is in fact periodically changing g. By parametric 
resonance, surface waves with frequency w0 ~ wp/2 will be most strongly 
excited. 

Perhaps one of the most spectacular illustrations of parametric resonance is 
the dynamical Casimir effect. We describe here a naive, "classical" picture 
of the effect. In 1948 Casimir showed [32] that two parallel, perfectly con­
ducting plates in vacuum are subjected to a mutual attractive force given 
by 

1r2 ncS 
F = 240d4 ' 

(2.3) 

where It is Planck's constant, c the speed of light, S the surface area of each 
plate and d the distance between them. The origin of the force lies in the 
vacuum fluctuations of the electromagnetic field. However, these ground 
state excitations (virtual photons) cannot have arbitrary wavelengths in the 
region between the plates, since the wavefunction must be exactly zero on 
the plates. T he lowest possible frequency for these virtual photons is thus 
wo = 21rc/ >.. = 1rc/ d. Since the virtual photons exert a pressure on the 
plates, and since all wavelengths are excited outside but not in the region 
in between the plates, a net force results. Another way to state this is that 
the energy density is lower in between the plates than in the region outside. 
The work done by the Casimir force upon separating the plates corresponds 
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exactly to the energy deficit between the two regions. Of course, the Casimir 
force also appears in other configurations of conductors, such as a plate and 
a sphere, or two spheres. Only recently has this phenomenon been observed 
directly and measured [33], and the results - found to be in agreement with 
the prediction of the Casimir formula (2.3) . From the relation w0 = 1rc/ d it is 
clear that a periodic modulation of the distance d corresponds to a paramet­
ric pumping of the modes between the plates: this is called the dynamical 
Casimir effect. The amplitude instability that one observes classically cor­
responds to the creation of photons in a quantum mechanical context. One 
thus expects that the mechanical work corresponding to the oscillation of 
the plates with frequency wp = 2wo, will be transformed into photons with 
frequency wo. Although our "translation" in terms of a classical language is 
rather heuristic, the results described here are in agreement with the pre­
dictions of a more detailed quantum field-theoretic calculation [34] . 

It is also interesting to note a close connection between the frictionless 
parametric oscillator and the Bloch theory of electrons in metals [37]. The 
stationary Schrodinger equation 

,, 2m 
7/J + h,2 (E - V) 7/J = 0, (2.4) 

where V is a spatially periodic potential modelling the attraction of the 
lattice ions on the electrons, is formally identical to eqs.(2.1) - (2.2), with 
t replaced by x and I set equal to zero. The energy values for which the 
corresponding wave function diverges exponentially with the distance form 
the forbidden bands and are the equivalent of the regions of parametric 
resonance in the oscillator problem. A specific square-wave form for the 
potential (the Kronig-Penney model in solid state physics) is equivalent to 
the piecewise-linear modulation of the frequency of the parametric oscillator 
to be considered in the next section. 

Finally, further examples of physical systems in which parametric resonance 
appears (35] include: LCR circuits ( C or L oscillates), spiral waves in ac­
tive media (an applied electrical field oscillates), ferrofluids and 2D electron 
gases ( an applied magnetic field oscillates), microwave guides ( the temper­
ature oscillates), and even the theory of the early universe (inflationary 
oscillations). 
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2.2 The Single Parametric Oscillator 

2.2.1 The "Piecewise Constant" Model 

Equation (2.1\ combined with (2.2), reads 

x + ,± + w5[l + ~r(t)Jx = 0 . (2.5) 

This is called Hill's equation [36], and it looks misleadingly simple. In fact, 
no general explicit solution of this equation is known. For the particular ( and 
extensively studied) case of a sinusoidal perturbation er(t) = Asin[wp(t+T)], 
it is known as the Mathieu equation. Explicit results are expressed in terms 
of the Mathieu functions, which are unfortunately quite complicated. We 
therefore turn to the case of a piecewise-constant periodic modulation 

~r(t) = A sgn [sinwp(t + T)] (2 .6) 

for which the analysis is more tractable, helping reveal the underlying physics. 

Let us focus first on the mechanism of the onset of the instability. For 
simplicity of exposition, we neglect friction for the moment(,= 0). During 
the time intervals where er is constant, (2.5) is the evolution equation of a 
plain harmonic oscillator, with conservation of the total energy, 

±2 w2x2 
- + - - = constant . 
2 2 

(2.7) 

Hence the motion lies on ellipses in the phase space (x, ±). Note that flat 
ellipses correspond to small w (fig. 2.1). Suppose we start in the low fre­
quency phase (e = - A) at x = 0 with :i: at some initial value (state 1 in 
fig.2.1). The phase point follows the ellipse until it reaches x = 0 with a 
nonzero maximal amplitude x . At this point (state 2), we switch to the 
higher frequency (e = A). By doing so, we replace a soft extended spring 
by a stiff one with the same extension , and therefore we have to pump in an 
amount of energy equal to the corresponding gain in potent ial energy. We 
now proceed with this stiff spring and the phase point moves on a vertically 
elongated ellipse, until we again reach x = 0 with nonzero x. At this point 
(state 3), we switch back to the soft spring, but with no cost in energy, 
since x = 0. This enables the oscillator to move to state 4 and so on. Thus 
energy is pumped in, while covering a full cycle in the perturbation in each 
half cycle of the oscillator itself. Whenever this condition for the period of 

12 



x 

-- -' , , large ffi 

4 

X 

Figure 2.1: A schematic representation of the phase-space trajectory of 
the parametric oscillator with piecewise linear modulation of its frequency, 
eqs.(2.5) - (2.6), without friction (, = 0). 

13 



the perturbation is fulfilled, the instability of the oscillator develops for any 
amplitude A of the perturbation. 

If friction is taken into account, the phase space trajectories of the un­
perturbed oscillator become spirals that decay to the origin. It is then 
understandable that the onset of the instability requires not only a definite 
period for the perturbation, but also an amplitude (of the perturbation) 
that is larger than a certain value, in order to compensate for the inward 
spiralling of the unperturbed trajectories. 

2.2.2 Analytic Solution 

We now turn to an explicit analytic solution for the piecewise constant 
model. The equation of motion can be solved using Floquet theory and 
Laplace transform methods, as shown in Appendix A. The temporal behav­
ior of oscillator's amplitude is expressed as a linear superposition of modes, 

x(t) = I::Cjesjt 
jEZ 

(2.8) 

where the cj's are constants determined by the initial conditions. The ex­
ponents Sj = Aj + iD.j (j E Z) are determined in terms of the resonance 
parameter R defined as 

R (w+Tp) (w_Tp ) wi + w~ . (w+Tp) . (w_Tp) = cos - - cos - - - sm - - sm - - , 
2 2 2w+w- 2 2 

(2.9) 

with 

(2.10) 

The exponents Sj are solutions of the equation 

cosh [ ( s + ~) Tp J - R = 0 . (2.11) 
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Their real parts are explicitly given by 

while the imaginary parts are 

{ (
. 1) J- - w nj = . 2 p 

JWp 

for 

for 

for 

for 

for 

R~ -1 

IRI ~ 1 

R~l 

R~ -1 

R ~ 1, 

n;= = [j ± 
2
~ arccos R] wp for IRI ~ 1 . 

(2.12) 

(2.13) 

Here arccos R lies in the range [O, 1r] and, as already mentioned, j is an 
integer. Note that the real parts of the exponents are in fact independent of 
j. One can therefore drop the subscript j on A and rewrite the amplitude 
(2.8) as 

x(t) = e/\.t L Cjemit 

jEZ 

(2.14) 

(plus another sum of the same type with a second value of A, in the cases 
when there are two possible values for A: see below.) . Correspondingly, the 
relative weights of the different modes remain the same for all time, i.e., they 
all decay (A < 0), or diverge (A > 0), or maintain their initial amplitudes 
(A = 0). None of them becomes relatively dominant with increasing time. 
Figure 2.2 · illustrates the dependence of the real and imaginary parts of 
the exponents on the resonance parameter R, for -2 ~ j ~ 2. 

There are two boundaries to be considered. 

a). The boundary IRI = 1 that separates the regimes where A and the D/s 
are R-dependent from the regimes where they are R-independent. When 
IRI < 1, A is R-independent, single-valued, and negative (unless there is no 
damping, 'Y = 0, in which case A vanishes and the motion is purely oscilla­
tory). At the bifurcation points R = ±1 the real part becomes R-dependent 
and two-valued, but remains negative until IRI reaches the critical value Re 
(see below). 
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Figure 2.2: Real part (upper graph) and imaginary part (lower graph) of 
the exponents Sj for j = -2, ... ,2 as a function of R (for 1 /wp = 0.1). 
The behavior associated with these exponents is described in detail in the 
text. Note the significance of the boundaries R = ±1, and of the boundaries 
R = ±Re where one value of A becomes positive. The latter mark the onset 
of single-oscillator parametric instability. 
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In contrast, when IRI < 1, the oscillator frequencies nj change continuously 
with Rand bear no simple relation to either Wp or the natural frequency wo. 
On the large- I RI side of this boundary, the frequencies nj are simply propor­
tional to the frequency wp of the modulation, nj = jwP or nj = (j -1/2)wp, 
with j E Z. 

For R > l note the existence of a zero-frequency mode of the oscillator, 
D,0 = 0, which simply provides a monotonically decaying contribution (for 
A < 0) or increasing contribution (for A > 0) to the displacement of the 
oscillator. 

b). The boundary IRI = Re, where 

Re = cash ( 'Y~p) (2.15) 

which is greater than unity unless 1 = 0. Beyond IRI = Re one of the A's be­
comes positive, leading to an exponential growth of the oscillator amplitude. 
The condition IRI = Re thus corresponds to the onset of the parametric res­
onance or, more appropriately, the parametric instability. Figure 2.3 depicts 
the boundaries of instability in the parameter space (A, Tp/To) for different 
values of the friction coefficient. Note that friction has a stabilizing effect, 
i.e., it reduces (quite dramatically) the extension of the instability regions. 
In particular, in the absence of friction 1 = 0, and for small amplitudes A of 
the perturbation, the boundaries of the instability are described simply by 

Tp/To = n(l±A2 /4) (n=l,2, ... ) (2.16) 

and 

Tp/To = n+l/2±A/27r (n=0,1,2, ... ). (2.17) 

The most pronounced and widest region of instability, especially for small 
A's, is delimited by Tp/To = 1/2 ± A/27r, in agreement with the previous 
qualitative discussion of the mechanism of parametric instability. 

An important difference between the present case and that of the usual 
additive periodic driving (and the usual resonance phenomena) is the fact 
that here friction does not prevent the divergence of the amplitude when 
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Figure 2.3: The boundaries of the region of parametric resonance for a single 
oscillator subject to a piecewise linear perturbation (2.6), in parameter space 
(A , Tp/To = wo/wp), for different values of the friction coefficient ,. Note 
that t he 1 = 0 curves touch the A = 0 axis. The domains inside the curves 
correspond to the region of instability. 
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one is in an unstable parameter regime. Nonlinear terms, e.g., -x3 in the 
right hand side of eq.(2.5), are needed to prevent the divergence, but these 
terms do not modify the appearance and the location of the instability. We 
also note that in the parametric instability region the oscillator's frequencies 
nj are simply proportional, through a (half)integer, to the frequency of the 
modulation, while A is strongly R-dependent. 

In fig. 2.4 we present the regions in parameter space (A, Tp/To) where 
IRI > 1: darker regions for R > l; lighter, for R < -1. The stability 
boundaries IRI = Re are also indicated by solid lines, the oscillator being 
unstable inside these boundaries. Note that the IRI = Re and IRI = 1 
boundaries almost coincide, because of the very low damping considered, 
namely 1 = 0.01. For small A's, as is well known, the instability appears in 
the vicinity of Tp :=::::; jT0/2 (j a natural number) . 

Although the boundary IR I = Re is important in determining the transi­
tion from stable to unstable behavior for the single parametric oscillator, 
we shall see in the next chapter that it does not play the same role for the 
coupled system, for which the boundary IRI = 1 turns out to acquire fur­
ther significance. Indeed, as we will see in Section 3.2, each individual pole 
Sj = A + i D.j gives rise to a "collective" pole in the coupled system, and 
these collective poles have different A's. Some modes may become unstable 
(A > 0), and therefore dominant, even when IRI < 1, while others remain 
stable (A < 0). The underlying mechanism is that , depending on whether 
or not the frequencies of the individual oscillators are proportional to the 
modulation frequency, in the coupled system the oscillators may get syn­
chronized either to the perturbation or to each other (through the mean), 
and this may result in the "enhancement" of some modes as compared to 
the others. 
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Figure 2.4: Shaded regions indicate R > l (darker) and R < - l (lighter). 
Solid lines delineate the boundaries IRI = Re. Damping 1 = 0.01, frequency 
wo = 0.4. 
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Chapter 3 

Coupled Parametric 
Oscillators 

3.1 The Basic Linear Model 

The physics of coupled oscillators has a long and very interesting history -
see, e.g., (20]. Of course, the simplest case of a linear chain of harmonically 
coupled particles is textbook material in introductory physics. In the con­
tinuum limit, one gets the non-dispersive wave equ~tion. When in addition 
each particle is subjected to a harmonic substrate potential, the equation of 
motion is known as the (discrete version of the) Klein-Gordon equation: 

(3.1) 

where Xi is the coordinate of the i-th oscillator, w0 the natural frequency, 
and k/2 the "normalized" spring constant coupling neighbouring oscillators. 
(The mass of each oscillator has been set equal to unity.) A great deal of 
effort, prompted in part by such surprising discoveries as the KAM theory 
and the existence of solitons (38], has been devoted to investigating what 
happens when nonlinear terms are added. Another major direction of re­
search, following the discovery of Anderson localization in linear systems 
with disorder and the relation to the theory of random matrices, has been 
the study of the effects of disorder [39]. 

This part of the thesis is devoted to the analysis of the exact solution for 
a simple linear model, namely a system of harmonically coupled parametric 
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oscillators with quenched randomly distributed phases. 

Consider a set of N parametric oscillators of unit mass, with displacements 
{xi}, each with a periodically modulated frequency and all of them harmon­
ically coupled to one another. We restrict our analysis to coupled linear 
parametric oscillators. A few comments on the nonlinear case will be pre­
sented in Chapter 4. The equation of motion of the i-th oscillator is given 
by 

N 

xi+ ,xi+ w5[l + ~i(t)]xi = - ! I)xi - Xj) , (3.2) 
j=l 

with i = 1, · · · , N . Analytic results are possible with a simple piecewise­
constant periodic modulation of the frequency of each oscillator (see Chapter 
2) given by 

~i(t) = A sgn [sinwp(t + Ti)] , (3.3) 

where wp = 21r /Tv (Tp - the modulation period), and the initial phase Ti is 
chosen at random for each oscillator from a uniform distribution between 0 
and Tp. We are mainly interested in the mean amplitude 

1 N 
(x) = - ~Xi 

N~ 
t=l 

(3.4) 

as a measure of the macroscopic behavior of the system. In the thermody­
namic limit N --+ oo, the site average (3.4) is equivalent to the average 
with respect to the random phase Ti of the displacement of a single oscillator 
i, namely, 

1 1Tp 
(x) = - x · dr.· T i i , 

p 0 
(3.5) 

which is independent of i. Equation (3.2) can then be reduced to a single 
mean-field differential equation, 

x + 1 x + w5[l + fr(t)]x = - k(x - (x)) , (3.6) 

where we have dropped the index i, and ~7 (t) denotes modulation with a 
random initial phase T (eq.(3 .3)). We note that the average (x) must be 
evaluated self-consistently using eqs. (3.5) and (3.6). 
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3.2 Collective Instabilities 

As explained in Appendix B, the first (and rather trivial) effect of the cou­
pling is a shift in the frequencies wo and W± of the single oscillator, according 
to 

Wk ~woJI+ \, 
WO 

,----------

W± = wo l ±A+ ~ - (i) 2 

w5 2wo 
(3.7) 

Correspondingly, all the single oscillator quantities - e.g., the resonance pa­
rameter R - must be calculated using these shifted values of the frequencies. 

The self-consistent equation for the mean leads, as shown in Appendix B, 
to a temporal behavior of the form 

(x) (t) = I: qerit , (3.8) 
lEZ 

where the constants q are determined by the initial conditions. The expo­
nents r1 = A1 + iD1 correspond to pure collective modes. They are complex 
solutions of the rather complicated equation 

F(r; Tp, A, wo, ,, k) = 

Tp w+ w_ [cosh CY~p) - R] x 

( 
2 12) 2 ( 2 12 ) 2 [ k ( wi + w: + ~ ) 1 

X W+ + 4 W_ + 4 ( -2) ( -2) - 1 
2 wi + f w: +f 

- kw+ (w! -w~)2 ( w~ - :
2

) sin ( w~Tp) [cosh ( ,Y~p) - cos ( w~Tp)] 

- kw_ (w! - w~)2 ( w! - :
2

) sin ( w~Tp) [cosh ( 'Y;p) - cos ( w~2TP)] 
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(3.9) 

where 

i' = 'Y + 2r = 'Y + 2A + 2iD . (3.10) 

Finding the complex roots of eq. (3.9) is difficult even numerically. There­
fore, we investigate the collective modes graphically, as shown in the next 
section. Graphical inspection not only provides a qualitative understanding 
of collective modes, but also helps in identifying suitable numerical algo­
rithms. 

When k --t 0, eq.(3.9) reduces precisely to eq.(2.11), i.e., the collective modes 
reduce to the single oscillator modes. This suggests that each single oscil­
lator mode Sj is the progenitor of a collective mode rj with different Aj 

and Dj in the coupled system. Much can therefore be learned about these 
collective modes from the single oscillator modes, as will become clear from 
what follows. An analysis of the temporal behavior of (x), as well as of 
the behavior of the single oscillators, enables us to identify four different 
possible regimes in the system: 

Regime A: 
Each single oscillator with the given shifted parameters is unstable (i.e., 
IRI > Re), while the mean (x) is zero. 

Regime B: 
Each oscillator is stable, and is in the region where its frequency is deter­
mined by the modulation frequency (i.e. , 1 < IRI < Re), while the mean 
diverges monotonically in time. This is the first type of collective instabil­
ity. 
This instability of the mean can also appear when each single oscillator is 
unstable, but the unstable collective mode diverges faster than the single 
oscillator modes. 
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Regime C: 
Each single oscillator is stable and its shifted frequency bears no simple 
relation to the natural shifted oscillator frequency or to the modulation fre­
quency (i.e., IRI < 1); and the mean oscillates with a diverging amplitude. 
This is the second type of collective instability. 

Regime D: 
Each single oscillator is stable and the mean tends asymptotically to zero 
(the "absorbing state"). 

In the following section we will present examples of realizations of the first 
three regimes. A detailed analysis of the behavior of the individual oscil­
lators allows one to clarify the mechanisms behind the different kinds of 
behavior. 

3.3 Results 

Before proceeding further, let us emphasize that in the following we make 
a careful distinction between a single oscillator and an individual oscillator. 
The former refers to an independent oscillator with parameters wk (shifted 
proper frequency) and , , while the latter will refer to one of the oscillators 
in a coupled system with parameters wk, ,, and k. 

We present three examples that correspond, respectively, to the first three 
regimes listed at the end of the last section. Each case is discussed with 
the help of three corresponding figures. Note that the parameter values 
k = 1.28, wo = 0.4, , = 0.01, and A = 1.0 are used in all the figures, and 
that only the shifted proper frequency wk of the oscillator is different from 
one case to another. 

The first set of figures represents the exponents of the collective modes. 
We recall that in order to find the poles r1 = A1 + iD.1 associated with the 
collective modes one needs to solve the set of coupled equations 

Re F(r; Tp, A, wo, ,, k) = 0 , 

Im F(r; Tp, A, wo, ,, k) = 0 
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obtained from eq.(3.9). In figure 3.1 we plot the left-hand sides of eqs. (3.11) 
and (3.12) as contour lines in the space (A/wp, 0/wp) [solid lines for eq.(3 .11), 
and dashed lines for eq.(3.12)]. The thick lines indicate zero contours. The 
solutions we seek are therefore the intersections of these two sets of thick 
lines, and are indicated by open circles. The poles of single oscillators with 
shifted frequency are indicated by solid black circles. There is, of course, 
an infinite number of exponents, but we only exhibit the relevant ones. In 
figure 3.2 we depict the corresponding mean amplitude, mean standard de-

viation Lix = J (x2) - (x)2, and the trajectory of an individual oscillator 
as functions of t ime. as they serve to characterize the particular situation. 
Finally, the associated phase trajectories are also presented in figure 3.3. 
Figures 3.4 - 3.6 and 3.7 - 3.9 represent the corresponding figures for two 
other values of wk, as described below. 

Regime A: 
Figure 3.1 shows the contours and poles for the case Wk = wp/2, which corre­
sponds to R = -1.0062. Since R < -1, the poles of single oscillators appear 
on the lines Dj/Wp = j -1/2, each as a pair because in this regime there are 
two values of A associated with each n. Only the poles for j = 1 are shown, 
as the others (and there is an infinite number of them) are off the scale of 
this figure. Since IRI > Re = 1.00077 for these parameters, one of each 
pair of poles has a positive A. The amplitude of a single oscillator would 
therefore diverge exponentially. However, as the numerical calculations in­
dicate, all the collective modes have A = -1 /2. Therefore, as indicated by 
eq.(3.8), the mean amplitude decays to zero, despite the instability of single 
oscillators. 

Computer simulation results for various trajectories of a system of 100000 
oscillators with these parameters are shown in fig. 3.2. We see that the 
mean amplitude is indeed zero, and that the standard deviation Lix = 
V(x2) - (x)2 diverges. The inset shows the same two trajectories as well as 
the diverging trajectory of an individual oscillator. 

Phase trajectories of individual oscillators in the coupled system are shown 
in fig. 3.3. Each circle indicates a snapshot of an individual oscillator. Solid 
circles represent oscillators with positive modulation and open circles cor­
respond to those with negative modulation at the time of the snapshot . 
Only 2000 oscillators out of 100000 are shown. The six snapshots show that 
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Figure 3.1: Contour plots of the left-hand side of eq. (3.11) (solid lines) 
and eq. (3.12) (dashed lines) for wo = 0.4, k = 1.28, 'Y = 0.01, A = 1.0, 
and Tk = 2 Tp, which lead to R = 1.00617. Poles of a single oscillator are 
indicated by solid circles. Thick lines correspond to solutions of eqs. (3.11) 
(solid) and (3.12) (dashed) . The intersections of the solid and dashed thick 
lines, indicated by open circles, are thus solutions of eq. (3.9). Although 
there is a single oscillator pole with positive A there is no positive-A. collective 
mode. 
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Figure 3.2: Trajectories associated with fig. 3.1. T hick solid line: mean 
(x) . T hin solid line: standard deviation 6 x. T he inset also includes the 
trajectory x of an individual oscillator ( dashed line). 
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Figure 3.3: Phase point snapshots of 2000 individual oscillators in the system 
associated with figs . 3.1 and 3.2. Note the scale changes with increasing time. 

with increasing time the phase volume increases (note the different scales 
in each snapshot), which is consistent with the divergent behavior of each 
oscillator and with the growth of the deviation .6.x, and also provide con­
firmation that there is indeed no mutual synchronisation or other kinds of 
organized collective motion. The persistent separation of solid and open 
circles into separate quadrants indicates that individual oscillators are syn­
chronized ·with the external modulation. Note that any individual oscillator 
moves clockwise, switching colors accordingly. Ih this case, the only effect 
of coupling is the frequency shift (3.7). 
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Regime B: 
Interesting behavior is observed when Wk = wp, that is, the single oscillator 
frequency is equal to the modulation frequency. The contours and poles for 
this case are shown in fig. 3.4. Since R = 1.0001, the single oscillator has 
poles at nj = j wp. Only the poles for j = 0 are shown. R is just below 
Re = 1.0031 , and therefore all the single oscillator modes have negative A's 
(single oscillator trajectories decay to the absorbing state x = 0). However, 
one of the collective modes has a pole with n = 0 and a positive A. All 
the other collective modes in eq.(3.8) are dominated by this nonoscillatory 
unstable mode, and therefore the mean amplitude diverges monotonically. 

Computer simulation results for the associated trajectories are shown in fig. 
3.5. The mean decays slowly at the beginning and then diverges monoton­
ically. The standard deviation diverges as well, and does so more rapidly. 
The individual oscillator trajectory also diverges; in this instance, although 
each single oscillator would be stable, the coupling causes individual oscil­
lators in the system to become unstable. In other words, each oscillator is 
driven by the diverging mean in eq. (3.6). 

The phase trajectories in fig. 3.6 show that after an initial transient (first 
three panels, where the open circles hide most of the solid circles), individual 
oscillators in the coupled system oscillate with increasing amplitude about 
(x), while the mean (x) is moving away from the origin. In the long-time 
limit, each oscillator "forgets" its initial conditions and is driven by the 
mean. Therefore, while the phase of each individual oscillator is determined 
by the phase of the modulation, the amplitude in phase space is deter­
mined by the mean. Correspondingly, the oscillators become "am plitude­
synchronized" through the mean. 

Until the synchronization is well established, the individual oscillators de­
cay because the single oscillator modes have negative A. As in the previous 
case, the phases of all single-oscillator modes with nj =/- 0 become synchro­
nized with the external modulation. However, in contrast with the previous 
case, there is now a zero-frequency mode which does not have a phase to 
be synchronized. This mode is therefore not affected by the phase of each 
oscillator, or by the phase of the modulation. The zero-frequency mode 
shifts the center of oscillation away from x = 0 in either the positive or the 
negative direction. In the presence of coupling the oscillators tend to follow 
the mean, and therefore shift in the same direction, thus breaking the sym-
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Figure 3.4: Contour plots of the left-hand side of eqs. (3.11) (solid lines) 
and eq. (3.12) (dashed lines) for wo = 0.4, k = 1.28,, = 0.01, A= 1.0, and 
Tk = Tp, which lead to R = 1.0001. Poles of a single oscillator are indicated 
by solid circles. Thick lines correspond to solutions of eqs. (3.11) (solid) 
and (3.12) (dashed). The intersections of the solid and dashed thick lines, 
indicated by open circles, are thus solutions of eq. (3.9). Although the single 
oscillator poles have all negative A, the collective modes include a pole with 
positive A and n = 0. This mode diverges exponentially without oscillation. 
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Figure 3.5: Trajectories associated with fig. 3.4. Thick solid line: mean 
(x). Thin solid line: standard deviation ~x. The inset also includes the 
trajectory x of an individual oscillator ( dashed line). 

metry of the system. Note that the open and solid circles no long lie entirely 
in separate quadrants. Thus, in this case the effect of coupling is not only 
a shift in the frequency according to (3.7), but also the more interesting 
collective symmetry-breaking monotonic divergence of the mean amplitude 
and the mutual synchronization of the individual oscillator amplitudes. 

One can sometimes encounter this nonoscillatory instability of the mean 
even if the single oscillators are unstable (i.e., are in their parametric reso­
nance region). In these cases, the positive A of the collective mode is always 
larger than that of the single oscillator modes; the collective mode domi­
nates the dynamics of the mean. 
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Figure 3.6: Phase point snapshots of 2000 individual oscillators in the system 
associated with figs. 3.4 and 3.5. Note the scale changes with increasing time. 
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Figure 3.7: Contour plots of the left-hand side of eqs. (3.11) (solid lines) 
and eq. (3.12) (dashed lines) for wo = 0.4, k = 1.28, 'Y = 0.01, A = 1.0, and 
Tk = 4 Tp/3, which lead to R = -0.01037. Poles of a single oscillator are 
indicated by solid circles. Thick lines correspond to solutions of eqs. (3.11) 
(solid) and (3.12) (dashed). The intersections of the solid and dashed thick 
lines, indicated by open circles, are thus solutions of eq. (3.9). Although 
the single oscillator poles all have negative A, the collective modes include 
a pole with positive A and nonzero n. This mode diverges exponentially in 
an oscillatory manner. 
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Figure 3.8: Trajectories associated with fig. 3. 7. Thick solid line: mean 
(x). Thin solid line: standard deviation .6.x. The inset also includes the 
trajectory x of an individual oscillator ( dashed line) . 
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Figure 3.9: Phase point snapshots of 2000 individual oscillators in the system 
associated with figs. 3.7 and 3.8. Note the scale changes with increasing time. 
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Regime C: 
This occurs, for instance, when Wk = 3 wp/4 (which lies in between the two 
previous cases), so that IRI < 1 (and, of course, the single oscillators are not 
in the parametric resonance situation). However, fig. 3.7 indicates that at 
least one of the collective modes has a positive A as well as a non-zero n. 
Therefore, the mean (x) oscillates with a diverging amplitude. Recall that 
when IRI < 1 the eigenfrequencies of single oscillators vary continuously with 
R but do not match either the frequency of the modulation or the natural 
shifted frequency of the oscillator. Therefore, the individual synchronization 
to the external modulation plays no role and the phases of the oscillators 
are free to synchronize with one another through a synchronization to the 
phase of the mean. 

Computer simulatious whm,e re:mlts are shown in fig. 3.8 confirm the oscil­
latory instability, and the phase space points of individual oscillators shown 
in figure 3. 9 corroborate this phase synchronisation. Although the solid and 
open circles again form separate groups, the entire ring of open and solid 
circles alternates between the positive quadrants and negative quadrants: 
all the oscillators are mutually synchronized. 

In the next section we collect the results for the coupled system into a 
phase diagram indicating the regions of stability and instability of different 
types. 

3.4 Phase Diagram 

A convenient way to summarize various observations and characterize the in­
stabilities systematically is by means of appropriate phase diagrams in which 
the stability boundaries are depicted as functions of the system parameters. 
Since there are many parameters in this model, t he full diagram would in­
volve a many-dimensional representation. We present the diagram in the 
two-dimensional space (A, Tp/Tk) that characterizes the external modula­
tion for a given set of oscillator parameters Wk, k, and 1 . 

Figure 3.10 shows the phase diagram for the system parameters indicated in 
the caption. The colored regions denote unstable regimes, each color coding 
for a particular type of instability (regimes A to C); white regions corre­
spond to the absorbing state (regime D). 
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Regime A: 
The yellow region denotes parameter ranges where the individual oscillators 
are unstable but the mean amplitude for the coupled system is zero - "in­
coherent unstable oscillations". In this case the distinction between "single 
oscillators" and "individual oscillators" becomes moot, since the mean term 
in eq. (3.6) plays no role. 

Regime B: 
Blue regions - "saddle nodes" - denote monotonic divergence of the mean 
with one positive A and zero D. Green regions - "unstable nodes" - also 
denote monotonic instabilities but with two positive A's and zero D. Note 
that there may exist superpositions of the green (or blue) regions with the 
yellow ones, as already mentioned in the previous section. 

Regime C: 
Oscillatory instabilities of the mean with positive A and nonzero D are de­
picted in pink - "unstable spirals". 

In our terminology for various instabilities we have loosely followed the usual 
conventions of nonlinear dynamics. 

The phase diagram just described is quite rich and intricate. Instabilities 
cover even larger regions in parameter space, and do so with increasing intri­
cacy, as the damping 1 decreases. A typical phase diagram for low damping 
is shown in fig. 3.11. 

It is also helpful to follow the behavior of the oscillator system across the 
various collective instability boundaries by considering the signs_ of D and A 
for the collective modes as one increases the modulation amplitude A (thus 
moving upward vertically along the phase diagram) for different fixed val­
ues of the modulation period Tp. Various associated bifurcation diagrams 
presenting A (solid lines) and D (dotted lines) as functions of A are shown 
in fig. 3.12, for oscillator parameters identical to those of fig. 3.10. 

Consider first the period Tp = 0.75 Tk, shown in panel (a) . As A increases, 
A changes sign, becoming positive at Ac = 1.14, while D remains positive 
throughout. This represents a transition from a stable spiral to an unstable 
one (pink region in fig. 3.10). 
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Figure 3.10: Phase diagram for the mean field model with oscillator pa­
rameters wo = 0.4, k = 1.28 and , = 0.16. White regions denote stable 
regimes . The various instability regimes are color coded as indicated. The 
characteristic behavior in each instability regime is described in the text. 
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Figure 3.11 : Phase diagram for the mean field model with oscillator para­
meters wo = 0.4, k = 1.28 and 'Y = 0.01. 
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Figure 3.12: Bifurcation diagrams showing A (solid lines) and n (dotted 
lines) with changing modulation amplitude A for various values of the mod­
ulation period. Panel (a): Tp/Tk = 0.75; (b): Tp/Tk = 2.0; (c): Tp/Tk = 3.0; 
(d): Tp/Tk = 3.9. The behavior implied by these diagrams is discussed in de­
tail in the text. Oscillator parameters are wo = 0.4, k = 1.28, and,= 0.16. 
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Consider next the period Tp = 2 Tk, shown in panel (b). Here A becomes 
positive at Ac = 3.06, while n remains positive. This therefore again marks 
a transition from a stable spiral to an unstable one (pink region). However , 
with a further increase in amplitude, n eventually goes to zero at A~= 3.51, 
where A bifurcates into two positive values (an unstable node, green region) 
via a saddle-node bifurcation. The oscillatory instability thus switches to a 
monotonic instability at this point. 

A different transition pattern is seen when Tp = 3Tk, shown in panel (c) . 
It begins with a stable spiral and switches to a stable node at Ac = 2.91. 
With a further increase in amplitude the system undergoes a transition to 
a saddle node (blue region) at A~ = 3.04. 

A more complex transition pattern is shown in panel (d), in which the 
character of the instability changes several times along the line Tp = 3.9Tk. 
As usual, at low amplitudes there is a stable spiral. At the point Ac = 2.99 
the system moves into an unstable spiral (pink region). The unstable spiral 
becomes an unstable node (very small green region in the phase diagram) 
via a saddle-node bifurcation at A~ = 3.30. A further transition to a saddle 
node (blue) occurs at A~ = 3.4. 

In the next section we will investigate the appearance of these instabili­
ties in two limiting cases, namely that of negligible inertia (particle mass 
m ---+ 0), the so-called overdamped limit; and the adiabatic limit Tp ---+ oo of 
an infinite modulation period. 

3.5 Two Limiting Cases 

3.5.1 The m = 0 Limit 

An interesting limit is that of negligible inertia (particle mass m ---+ 0), for 
which eq. (3.2) becomes 

N 

,xi+ wJ [1 + ~i(t)] xi= - ; I)xi - Xj) , (3.13) 
j = l 

with the mean field version 

(3 .14) 
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This limit is realized for high friction and high natural frequencies of the 
oscillators, so that inertial effects are negligible compared to the friction and 
elastic force terms. 

It is obvious that the phenomenon of individual parametric resonance dis­
appears in this limit, as well as any oscillating collective instability. But 
the collective nonoscillatory (0 = 0) instabilities persist, and their frontier, 
defined simply by the condition A= 0, is given from eq.(3.9) by 

4 A2 k/w5 [ h ATP h (1 + k/w5)Tp] 
Tp [(1 + k/w5)2 - A2]2 cos -2- - cos 2 

= [l _ k/w5(l + k/w5) ] sinh (1 + k/w5)Tp . (3_15) 
(1 + k/w5) 2 - A2 2 

(In writing down this equation we have set 'Y /w5 = 1 through a suitable time 
scaling.) The corresponding curves in the (A, k/w5) plane are represented in 
figure 3.13 for different values of the period Tp of the external modulation. 
These results are similar to those obtained in [2] for the case of a sinusoidal 
parametric perturbation instead of the piecewise-constant one used here. 
We remark that, in general, the transition is re-entrant with respect to the 
strength k of the coupling. This phenomenon, that has no equivalent in 
equilibrium phase transitions, has already been obser.ved in Refs. [27] and 
[28], for an extended system subjected to multiplicative coloured noise. 

3.5.2 The Adiabatic Limit 

As we saw in the previous section, increased damping leads, in general, to 
greater stability: the stability boundaries "move up" in the phase diagram 
when 'Y is increased, indicating that a stronger modulation is needed to cause 
unstable behavior. Furthermore, the oscillatory instabilities eventually dis­
appear with increasing modulation period Tp, leaving only the monotonic 
collective instabilities. However, it should be noted that the latter, for suf­
ficiently large modulation period, are simply due to an inversion of the 
effective harmonic potential and hence not due to any special collective ef­
fects. That there might be an inversion can already be anticipated from the 
fact that at least one of the shifted frequencies in eq. (3.7) could become 
imaginary. 

An analysis of the system for large Tp is fairly simple and instructive in 
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Figure 3.13: The borderlines in the parameter plane (A, k/w'J) for the col­
lective instability in the inertialess limit, for different values of the external 
period Tp-

elucidating the source of instabilities more explicitly. In the adiabatic limit 
Tp -t oo the single oscillator frequencies are frozen in time, half of them at 
the value w+ and the other half at w_, where 

W± =wo 
k 

1+-2 ±A. 
2Wo 

The mean field equations of motion are then simply 

k 
(x)_+,(x)_+w~(x) _ = 2 (x)+, 

(3 .16) 

(3.17) 

where (· · · )± indicates an average over the oscillators with frequency W± 
respectively. This 4 x 4 system can be diagonalized analytically. The eigen-
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modes of the coupled system are characterized by the complex frequencies 

n(l) · 'Y ± 
H± = 1,2 Wo 

k 'Y2 
1+ ---+ 

2w2 4w2 
0 0 

n(2) .'Y ± 
H± = 1,2 WQ 

k 'Y2 
1+ ----

2w2 4w2 
0 0 

A2+ (~)
2 

2w2 
0 

A2 + (~)
2 

2w2 
0 

(3.18) 

(3.19) 

This case clearly illustrates the distinction between what we have called "sin­
gle oscillator instabilities" and "collective instabilities" . The former refers 
to the frequencies (3.16) while the latter refers to (3.18) and (3.19). While 
the single oscillators would remain stable until A > As = l + k/2w5 (at 
which point w_ becomes imaginary), the chain becomes destabilized when 

A reaches the value Ac= Jl + k/2w5, where the imaginary part of n~) be­
comes negative. Note that the transition point is independent of 'Y· Beyond 
Ac the system is in a saddle-point/unstable-node instability region of non­
oscillatory exponential growth; beyond As this is simply due to a potential 
inversion for the individual oscillators. In the phase diagrams in figs. 3.10 
and 3.11 this translates to a stability boundary that settles at Ac = 3 as 
Tp -. oo. In particular, the boundar_y Ac = v'l + k/w5 remains valid in the 
inertia-less limit m -, 0, consistent with the early work of Van den Broeck 
and Kawai [27], and our discussion in the foregoing. 

One concludes that the origin of the instabilities presented as narrow blue 
and pink tongues in the low-A region of figs. 3.10 and 3.11 is entirely differ­
ent from the mechanism based on the temporarily inverted potential. Some 
more insight into the mechanism of these instabilities can be obtained us­
ing the simple model of two coupled parametric oscillators (the so-called 
parametric dimer), presented in the next section. 

3.6 The Parametric Oscillator Dimer 

3.6.1 The Dimer Model 

Recent work [5] involves a model closely related to ours, namely, that of two 
coupled oscillators subject to parametric modulations with a phase difference 
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T. The equations of motion for this system are just the N = 2 version of 
eq.(3.2) (again for unit mass m = 1), 

k 
±1 = -w5 [1 + 6(t)] x1 - 'YX1 - 2(x1 - x2) , 

±2 = -w5 [1 + 6(t)] x2 - 'Y±2 -1(x2 - x1) . (3.20) 

The piecewise-constant periodic modulations of the two oscillators differ by 
a constant phase T, so that we can write eq. (3.3) for this case as 

6 ( t) = A sgn sin(wpt) , 

6(t) = Asgn sin[wp(t + r)] . (3.21) 

We want to investigate whether the mean position (x) = (x1 + x2)/2 repro­
duces the macroscopic behavior of the mean in the globally coupled model. 

In the absence of parametric modulation (A = 0), one is left with coupled 
ordinary damped harmonic oscillators, whose total energy decays exponen­
tially to zero. Note that in this case the dimer has two eigenmodes, the 
symmetric (or mutually synchronizea) mode x1(t) = x2(t), and the antisym­
metric (or mutually antisynchronizea) mode x1 (t) = -x2(t), with the former 
having a (slightly) lower proper energy. 

When the parametric modulations are applied, energy is periodically pumped 
into the system, which may or may not lead to parametric resonance, i.e., 
to an infinite growth of the amplitude of the two oscillators. The above­
mentioned symmetric and antisymmetric motions are, in general, no longer 
the eigenmodes of the dimer (except, of course, for T = 0). However, the 
motion is always a linear combination of these modes and, in particular, the 
behavior of the mean is reflected in the excitation of the symmetric mode 
by the parametric modulations. 

A simple analysis, based on Floquet theory, was carried out in [5] in order 
to establish the boundaries of the parametric resonance for the dimer, as a 
function of the parameters A, Tp = 21r /wp, wo, 'Y, k and r. The simplifying 
feature (as in the case of the mean-field model) is that the piecewise constant 
parametric modulation leads to a piecewise linear system. One can then 
construct the Floquet operator explicitly by simply multiplying the piece­
wise linear evolution operators. Consequently, its eigenvalues { .. \ }i=l,2,3,4 
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(l>.11 2: l..\21 2: j..\3j 2: l..\41) can be computed without any difficulty (although 
there is no simple analytic expression for them). Parametric instability oc­
curs when l>.11 > 1, and one can therefore directly get the implicit equation 
for the boundaries of the regions of instability. (See Appendix C for further 
details.) 

One of the main conclusions is that the regions of parametric instability 
are sensitively dependent on the phase difference T . Of particular interest is 
the behavior of the anti-phased dimer T = Tp/2. This particular case cap­
tures many of the features of the mean-field coupled system. This assertion 
is based on the comparison of the regions of parametric resonance (see [5]), 
as well as the bifurcation diagrams for the dimer that take into account the 
details of qualitatively different trajectories, as will be seen below. 

3.6.2 Comparison with the Mean-Field Model 

In order to characterize different types of parametric instability, and to 
facilitate comparison with the mean field results, we present bifurcation di­
agrams using the same color conventions as in the diagrams for the mean 
field model, figs. (3.10) and (3.11). 

If Im ..\1 :/- 0, then clearly one has an oscillatory instability, represented 
by the pink regions. If Im ..\1 = 0, the instability can be either oscillatory 
or monotonic. Using the eigenvector corresponding to ..\1 as initial condi­
tion, we have determined whether or not < x > crosses zero during a full 
period of the modulation. If it does, the point is assigned to a pink region. 
If it does not, the eigenvalue ..\2 , that is second largest in magnitude, will 
determine whether the point belongs to a blue (l..\21 ::::; 1) or green (l>.21 > 1) 
region. The pink, blue and green regions all arise from the instability of the 
symmetric mode. 

The yellow region, on the other hand, requires the instability of the an­
tisymmetric mode and the decay of the symmetric mode. However, such a 
purely antisynchronous solution is forbidden in the case r = Tp/2 [5], i.e., 
yellow regions cannot appear at all in the anti-phased dimer. 

Results for relatively large damping ('y /wo = 0.4) are presented in the bifur­
cation diagram of fig. 3.14, which should be compared with fig. 3.10. The 

47 



similarity between the two figures is remarkable. Despite some extra green 
regions and the absence of the yellow tongue, one notices that the principal 
resonance regions of the dimer bifurcation diagram for 1/2 ;S Tp/Tk ;S 3/2 fit 
the same region in the mean-field model almost exactly. The green regions 
connected to pink regions in the mean-field model are also well emulated by 
the dimer. 

Figure 3.15 illustrates the bifurcation diagram for a small value of the damp­
ing, 1 /w0 = 0.01. Comparison with figure 3.11 shows that although the 
agreement between the two models is not as good as it is for higher values 
of 1 /wo, the basic structure and similarities of the phase diagram and the 
bifurcation diagram are nonetheless preserved. The main differences are the 
complex pink patterns in the region Tp/Tk ~ 3 of the dimer. Also, as in the 
high-, case, the dimer has larger green regions than the mean field model, 
suggesting that the coupling in the latter plays a stronger role in stabilizing 
the system. But what is important is that, in spite of these differences, the 
principal resonance region 1/2 ;S Tp/Tk ;S 3/2 again shows an almost perfect 
match. 

In the dimer, the competition between two kinds of synchronization plays 
a key role in the destabilization of the system: on the one hand, synchro­
nization between each oscillator and its modulation; on the other hand, 
synchronization between the two oscillators. This competition is essentially 
governed by the values of A and k. Larger values of A favor the former, 
while larger values of k favor the latter. When the coupling is weak, the en­
ergy difference between the symmetric and the antisymmetric modes is small 
and both can be excited. In this case, the individual oscillators are nearly 
independent and the stability diagram of the dimer is similar to that of a 
single oscillator. As the coupling strength increases, the energy of the an­
tisymmetric oscillations increases until eventually only in-phase oscillations 
are energetically accessible. This mutually synchronized motion brings the 
system out of synchronization with the modulation. The stability diagram 
of the anti-phased dimer in the (Tp/Tk, k) plane shown in fig. 3.16 illus­
trates this explanation. 

First consider Tp/Tk ~ 0.5 , where a single oscillator is in the main para-
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Figure 3.14: Bifurcation diagram for the anti-phased dimer with the same 
parameters as in fig. 3.10. 
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Figure 3.15: Phase diagram for the anti-phased dimer with the same para­
meters as in fig. 3.11. 
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Figure 3. 16: Upper panel: Bifurcation diagram for the anti-phased dimer in 
the (Tp/Tk, k) plane for A = 0.9, 'Y = 0.01 , and wo = 0.4, using the same 
color convention as in fig. 3.10. Lower panel: R [eq. (2 .9)] as a function of 
Tp/Tk ; light grey areas denote R < - 1 and dark grey areas R > 1. 
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metric instability region 1(R < - 1, the first light-grey region in the lower 
panel of fig. 3.16). For small k, the dimer is also unstable and still domi­
nated by the antisymmetric mode ( even though the symmetric mode cannot 
disappear, as mentioned above). However, as k increases, the excitation of 
the antisymmetric mode becomes more difficult and the symmetric mode 
becomes dominant, and the system is stabilized. When 0.5 ;S Tp / Tk ;S 1, 
a single oscillator is stable (IRJ < 1, between the dark- and light-grey re­
gions). In this parameter region, individual oscillators do not have to be 
synchronous to the modulation, see fig. 2.2. They are free to become mutu­
ally synchronized and the system becomes unstable above a certain coupling 
strength. Since the symmetric mode dominates, this type of instability per­
sists even for large k. Finally, when Tp/Tk ~ 1, the single oscillator is 
again in an unstable region (R > 1, the dark-grey region) . Although the 
situation is similar to the first case, the individual oscillators now have a 
zero-frequency mode which is not subject to synchronization with the mod­
ulation. Therefore, the zero-frequency mode of the two oscillators can be 
mutually synchronized, which produces a monotonic growth of the mean. 

The good agreement between the dimer and mean-field models is not merely 
a coincidence. Consider one particular test oscillator in the globally coupled 
system. Now define the set of its "associates" as made up of all the oscilla­
tors whose modulation phases lie within an interval ±Tp/ 4 around its phase. 
The set of its "opponents" comprises all the other oscillators, whose average 
modulation phase is opposite to that of the test oscillator. When the oscil­
lators are synchronized to the modulations, the associates are also mutually 
synchronized to one another, regardless of the coupling. When the coupling 
increases, there is a competition between two kinds of synchronization: syn­
chronization between opponents and associates, and synchronization with 
their own modulations. This situation is similar to that of the anti-phased 
dimer, which helps explain the remarkable similarities between the instabil­
ity diagrams of the dimer and mean-field models. Note that this description 
becomes exact in the quenched limit (see Subsection 3.5.2), the associates 
and opponents being represented, respectively, by < x >+ and < x >- . 
From this perspective, the choice T = Tp/2 for the dimer appears as a nat­
ural one, being not only a particularly symmetric case in the general dimer 
problem [5], but also the effective phase difference between the two groups. 

1Recall that for small friction coefficients -y, the boundaries IRI = 1 and JRI = Re 
nearly coincide. 
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Chapter 4 

Discussion and Conclusions 

We have investigated the collective instabilities of a simple model of glob­
ally and harmonically mean-field coupled linear parametric oscillators, sub­
jected to periodic piecewise linear perturbations of their frequencies. The 
initial phases of the individual perturbations are randomly and uniformly 
distributed in the interval between zero and Tp (the period of the external 
perturbation). Owing to its simplicity, this model can be completely solved 
analytically, as shown in Section 3.2. Therefore, one can study the collective 
behavior of the oscillators in various regimes determined by the values of 
the intrinsic parameters of the oscillators and by the characteristics of the 
parametric perturbation. We showed that collective instabilities occur in 
certain parameter regimes and presented phase diagrams as a function of 
the perturbation parameters, indicating detailed stability boundaries and 
the types of instability. 

First, an analysis of the single oscillator (Section 2.2) enabled us to identify 
the modes that contribute to the oscillator's displacement. Their temporal 
behavior ,..,., exp(sjt) is determined by the complex poles Sj = Aj + iDj of 
the Laplace transform of the propagator. The structure of these poles is 
controlled by the so-called resonance parameter R, as given by eqs.(2.9), 
(2.12), and (2.13) . As long as IRI is less than a critical value Re(> 1), the 
oscillator is stable, i.e., all the poles have negative real parts. The border­
line between stability and instability is given by the parametric resonance 
condition IRI = Re. Another important borderline is given by IRI = 1. For 
IRI < 1, the A's are R-independent, while the 0/s are R-dependent; this 
means that the oscillating frequencies nj of the modes bear no simple rela-
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tion either to the proper frequency of the oscillators w0 , or to the frequency 
of the parametric perturbation Wp· For IRI > 1, the A's become R-dependent 
(and two-valued), while the !1/s are R-independent, and simply equal to a 
(half)integer multiple of the modulation frequency. An important feature 
of the poles is that (for a fixed value of R) all of them have the same real 
part Aj = A. This implies that they preserve their relative weights in the 
oscillator's behavior (as dictated by the initial conditions), i. e., there is no 
mode that dominates over all the others. 

The situation becomes very different when such parametric oscillators are 
coupled, for instance, via a mean-field interaction. An immediate and rather 
trivial effect is a shift in the proper frequencies of the oscillators. But the 
most remarkable thing is that each mode of the single oscillator gives birth 
to a mode of the collective system, with modified A's and D's. For given 
values of the parameters, the A's are no longer the same for all the modes. 
Therefore, there appears the possibility of the asymptotic predominance of 
some modes that may become unstable (A> 0), while the other modes re­
main stable. Correspondingly, the collective instabilities are no longer those 
of the single oscillator. In particular, the IRI = Re boundary loses its signif­
icance, i.e., it no longer constitutes a frontier separating regions of stability 
and instability. 

In addition to the familiar parametric instability of individual oscillators 
(regime A), two kinds of collective instabilities are identified (as well as the 
individual motions that underly them). In one of the instabilities, the mean 
amplitude diverges monotonically (regime B). In the other type of collec­
tive instability, the divergence is oscillatory (regime C). The frequencies of 
collective oscillatory instabilities, in general, bear no simple relation to the 
frequencies of the individual oscillators, or to the frequency of the pertur­
bation. 

Generally speaking, instabilities arise from phase synchronization, although 
not all phase synchronization leads to instability. There are two possible 
competing synchronization mechanisms: synchronization of individual os­
cillators with the external modulation ("modulation-synchronization"), and 
mutual synchronization between oscillators ( "mutual synchronization"). In 
the absence of the external modulation, only mutual synchronization is pos­
sible. On the other hand, when the coupling is absent, a single oscillator 
satisfying the parametric resonance condition IRI > R e synchronizes with 
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the external modulation. In the presence of external modulations with ran­
dom phases and coupling, even in a parameter regime where either mecha­
nism by itself would lead to synchronization, it is not possible for both types 
of synchronization to occur simultaneously. As already mentioned, the col­
lective behavior can therefore be discussed in terms of the two competing 
synchronization mechanisms. 

Regime A: 
Here R < -Re, the individual uncoupled oscillators are parametrically un­
stable. When these oscillators are coupled, one can imagine one of two 
possible scenarios. If the coupling leads to mutual synchronization, the 
individual oscillators can no longer be synchronous with the external modu­
lation and therefore the coupled system has been stabilized by the coupling. 
On the other hand, if the coupling does not lead to mutual synchronization, 
but instead there is modulation synchronization, then the oscillators may 
be individually unstable, but with < x >= 0. Our results indicate that 
the second scenario is the correct one for sufficiently small values of k, as 
shown in the yellow regions of "incoherent instability" in figs. 3.10 and 3.11. 
Modulation synchronization has won out. On the other hand, there is a cou­
pling energy cost to the lack of mutual synchronization, which slows down 
the instability of individual oscillators relative to their uncoupled amplitude 
growth. For larger k's the first scenario takes over, and the yellow region 
disappears above a certain value of the coupling. 

Regime B: 
This is the parametric resonance regime R > Re. The situation is in some 
ways similar to the previous case, but there is a major difference: there is 
now a mode, the "j = O" mode, whose frequency is zero and which therefore 
cannot synchronize with the modulation, in contrast to the other modes. 
The amplitude of this mode can grow monotonically in either direction, and 
the coupling among the oscillators leads to a tendency for the zero-mode of 
all the individual oscillators to move in the same direction. Thus, while the 
growth rate of the j =I- 0 modes is reduced by coupling due to the lack of 
mutual synchronization, that of the j = 0 mode is enhanced because the 
coupling fosters mutual synchronization of this mode. 

Regime C: 
If the individual oscillators are not in regimes of parametric instability, and 
moreover JRJ < 1, there is no synchronization to the modulation and the os-
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cillators are free to synchronize with one another. Mutual synchronization is 
thus established and the mean < x > becomes oscillatory with (practically) 
the same frequency as that of individual oscillators in the coupled system. 
The oscillatory mean drives the system into unstable states via the mean 
field coupling. 

Regime D: 
Both the individual oscillators and the mean go to the "absorbing" zero 
state. 

As complete analytical results on the characteristics of the collective modes 
are available, one can construct the phase diagram in the space of the per­
turbation parameters (A, Tp/T0), as discussed in Section 3.4. 

An interesting fact is that many of the features of the behavior of this 
infinite system are already manifest in the behavior of the very simple sys­
tem of just two coupled oscillators, with a difference T = Tp/ 2 between 
the phases of their perturbations. In the absence of external modulation, 
this dimer has two eigenmodes: symmetric or mutually synchronized (lower 
energy), and antisymmetric or mutually anti-synchronized (higher energy). 
In the presence of time-periodic piecewise linear modulations which are ex­
actly out of phase, a competition ensues between these two modes (which 
are no longer normal modes). This competition is in many ways similar 
to the competition between modulation synchronization and mutual syn­
chronization described for the globally coupled system, and here again it 
determines the stability of the dimer. When the coupling is weak, the en­
ergy difference between symmetric and antisymmetric modes is small and 
both can be excited. In this case, the individual oscillators are nearly in­
dependent and the stability diagram of the dimer is similar to that of a 
single oscillator. The synchronization of each oscillator with its modulation 
dominates the behavior, and instabilities thus represent unbounded excita­
tion of the antisymmetric mode. With increasing coupling, the energy of 
the antisymmetric mode increases, until it is too high to be excited. Only 
the symmetric mode can be excited, i.e., the oscillators become mutually 
synchronized. The synchronization with t he modulation is thus destroyed, 
and the associated parametric instability is suppressed. Although the sim­
ilarity between the dimer and globally coupled model is remarkable, these 
two systems also exhibit various important differences. In the dimer model, 
mutual synchronization only involves two oscillators, of course; on the other 
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hand, in the global coupling model an oscillator must be synchronous with 
essentially all the others to create collective motion. Therefore, in the ther­
modynamic limit N - oo, the collective instability in the global coupled 
system is a genuine phase transition, whereas the instabilities in the dimer 
are simple bifurcations. Nevertheless, the stability boundaries and dynamics 
of the mean amplitudes in both cases show striking similarities. 

There also exists a case that lies, in some sense, in between these two and 
that promises interesting new features: a one-dimensional chain of oscilla­
tors with nearest-neighbour coupling. When the phase of the modulations 
of the oscillators in the chain is chosen at random, there is a significant 
chance that both neighbours of any given oscillator have phases close to 
its phase. In this case, the oscillator in the middle can easily establish 
simultaneously both mutual synchronization with its neighbours and syn­
chronization with its modulation. Therefore, locally this oscillator could 
become unstable. On the other hand, if the neighbours of a given oscilla­
tor are modulated with phases opposite to its own modulation phase, the 
oscillator may be stabilized. Therefore, the spatial pattern of the modula­
tion phase is expected to play an important role, and the instability may 
become wavelength-dependent, suggesting spatial pattern formation. Of 
course, such patterns cannot be observed in either a dimer or a globally­
coupled model. 

We now turn to a discussion that is intended to show the robustness of 
the phenomena described. Although no simple analytical results can be ob­
tained in the cases we briefly present below, numerical simulations offer a 
large spectrum of reliable information. 

First, the same collective instabilities are possible when the global coupling 
is replaced by nearest-neighbour coupling on a 2D square lattice, for exam­
ple. Of course, the phase diagram would look different - in the sense that the 
positions of the instability regions would be different. However, new phe­
nomena might be observerd which are not possible in the mean-field case -
such as, for example, the appearance of spatial regions with alternately high­
and low-amplitude movements of the particles. A "global" synchronisation 
of the particles is much more difficult to achieve, as in t he case of the ID 
lattice briefly discussed above. 

Second, other types of disorder in the phases of the perturbation can be 
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studied, for example other distributions of quenched phases with compact 
support, or quenched incommensurate phases, or phases with a random time 
evolution - e.g., a dichotomic Markov process. This case, as well as the cor­
responding white noise limit, has been studied in [40]. Also, the shape of 
the individual perturbations need not be a piecewise constant. In all these 
cases similar results are obtained. 

Third, by analogy with other nonequilibrium phase transitions involving 
the instability of an absorbing state [41], the inclusion of nonlinear terms 
(for example, a -x3 term in eq.(3.6)) will not modify the appearance or 
location of the instability - corresponding to unstable spirals, saddle nodes 
and unstable nodes, respectively - but will prevent the divergence of the 
fluctuations that would occur if the system had been a linear one. A gen­
uine second-order nonequilibrium phase transition occurs, with (x) as the 
symmetry-breaking order parameter; its effective value grows continuously 
from zero as one leaves the absorbing state. An exact analytic treatment 
of the problem is impossible in these instances , but numerical simulations 
provide convincing evidence. See figure 4.1 for an example. 

Finally, as we have shown, the monotonic growth of the mean can also 
appear in two limiting cases in which the individual parametric resonance 
dissapears. One of them is the limit of massless particles, while the other is 
that of "quenched disordern Tp - oo (for which half the oscillators - chosen 
at random - are excited with ~ = constant = A, and the other half with 
~=-A). 
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Figure 4.1: The order parameter (x) as a function of A for the parameter 
values wo = 0.4, 1 = 0.16, k = 1.28 and Tp = To, obtained by numerical 
simulation of a globally coupled system with size N = 1000 (dashed line) 
and N = 5000 (full line). The arrow indicates the theoretical location of the 
phase transition, A = 3.038, cf. eq. (3.9). Each point represents the mean 
over the results of 20 runs. 
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Appendix A 

Time Evolution of a Single 
Parametric Oscillator 

We solve the equation of motion (2.5) using a standard Floquet method. The 
damping term can be eliminated by introducing a new variable y defined by 

x(t) = e- 'Ytl2y(t) , 

so that eq. (2.5) becomes 

jj +w2 (t)y = 0, 

with the t ime-dependent frequency1 

(A.l) 

(A.2) 

(A.3) 

The solution of the undamped frequency-modulated oscillator (A.2) can be 
expressed in terms of the time-evolution operator g-r (t) from t = 0 up to 
time t, as 

( 
y(t) ) ( y(O) ) 
y(t) = g,.(t) y(O) . (A.4) 

For a piecewise constant modulation such as (2.6), the explicit form of the 
time-evolution operator is known. Using its periodicity and composition 
property we note that, fort = nTp + u, 

1 Recall that the arbitrary phase T can be set to zero here, but is retained explicitly in 
order to make the connection with the coupled system (Chapter 3) clearer. 
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It is thus sufficient to find g 7 (t) fort E [O, Tp]. 
When the phase is T E [O, Tp/2], the frequency varies as 

W+ for t E 0,~ -T) , 

w(t) = w_ for t E ~ -T,Tp-T) 
(A.6) 

W+ for t E [Tp - T, Tp] 
' 

while for T E [Tp/2, Tp), 

w_ for t E [O, Tp - T) ' 

w(t) = w+ for t E f T,-T,~ -T) , (A.7) 
for 3T ) w_ t E T-T,Tp ' 

where the frequencies W± are defined in eq. (2.10) . During each constant­
frequency time window, the system evolves according to the well known 
propagator of a simple harmonic oscillator of the appropriate frequency, 

1 
( cos[w±(t - t')] }± sin[w±(t - t')] ) 

g±(t, t) = . . 
-w± sin[w±(t - t')] cos[w±(t - t')] 

(A.8) 

The full operator g7 (t) can be expressed as a product of the 9±'s. For the 
case (A.6), 

g+(t, 0) 

for t E [o, ~ - T) , 
g_ (t, ~ -T) g+ (~ -T, 0) 

for t E [ ~ - T, Tp - T) 
g+(t,Tp - T)g-(Tp-T,~-T)g+ (~-T,0) 

for t E [Tp - T, Tp) , 
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and for the case (A.7), 

g_(t,0) 
for t E [O,Tp-T), 

g+(t, Tp - T)g-(Tp - T, 0) 

for t E [Tp - T, 3f P - T) , 

g_ (t, 
3fp - T) g+ (

3
fP-T,Tp-T) g_(Tp-T,0) 

for t E [ 
3f P - T, Tp) . 

(A.10) 

These expressions can be simplifed further by using time-translation invari­
ance, g±(t + u, t' + u) = g±(t, t') = g± (t - t', 0). Therefore one can put 
g±(t, 0) = g±(t) with no loss of generality. 

In particular, for t = Tp, 

where 

(A.11) 

for TE r 0, ~) , 

for T E [ ~, Tp) . 

(A.12) 

This allows us to conclude that the trace, determinant, and eigenvalues of 
gT(Tp) do not depend on the phase T. 

Transforming back to the original variables, we finally obtain the time­
evolution operator for x(t) and x(t), 

(A.13) 

i.e., 

( 
x(t) ) ( x(O) ) 

x(t) + 1x(t) = GT(t) x(O) + 1x(O) · (A.14) 
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A.1 Laplace Transform Method 

The linear character of the problems suggests the use of Laplace transforms 
in order to get more information on the temporal evolution of the amplitude 
of the oscillator. We have 

[G-r(s)] 11x(O) + [G-r(s)h2 (~x(O) + x(O)), (A.15) 

where [G-r(s)]ij is a matrix element of the Laplace transform of the time­
evolution operator. In general, if x(s) has poles at Sj = Aj + iDj, with j 
running over some given set of values J, then 

x(t) = L CjeAjteif!jt , 
jEJ 

(A.16) 

where the Cj 's are constants determined ( through the inverse Laplace trans­
form) by the initial conditions, 

Cj = 21ri }~n:}s-Sj) {[c-r(s)]ll x(O) + [c-r(s)L2 (~x(O) +x(o))} . 
(A.17) 

We see from (A.15) that the poles of x(s) are determined by the poles of 
[G-r(s)]11, 12, With the help of eqs . (A.5), (A.11), and (A.13), 

G-r(s) = fo
00 

e-stG-r(t)dt 

to [e-sTvG-r(Tp)]m loTv e- stG-r(t)dt 

(I - e-sTvG-r(Tp) )- l foTp e- stG
7

(t)dt 
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where I is the 2 x 2 identity matrix and 

1 T /2 1 R = 2e"I v Tr G0 (Tp) = 2 Tr g0 (T) 

(w+Tp) (w_Tp) w! + w:. . (w+Tp) . (w_Tp) cos -- cos -- - sm - - sm --
2 2 2w+w- 2 2 

(A.19) 

represents the resonance parameter 2. It is directly seen that the poles Sj 

of x(s) are given by the condition (2.11) in the main text, that corresponds 
to a zero denominator in the expression (A.18) for the Laplace transform of 
the evolution operator. We note that there is a countable infinity of such 
poles, i.e., j E Z. 

2The geometric series in eq.(A.18) converges provided 
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Appendix B 

Time Evolution of the Mean 
in the Mean-Field Model 

The mean field equation (3.6) can be rearranged as 

x + ,x + {w5[l + ~7 (t)J + k}x = k (x) , (B.1) 

which describes a single parametric oscillator of "shifted" proper frequency 

(B.2) 

driven by an effective force k (x). Therefore, it can be solved using the time­
evolution operator (A.13) of a single oscillator, except that W± in eq. (2.10) 
must be replaced with the new shifted frequencies 

W± = w0 1 ± A + ~ - (_']_) 
2 

w5 2wo 
(B.3) 

The general solution of eq. (B.l) can be written as 

( 
x(t) ) 

x(t) + 1x(t) Gr(t) ( x(O) ~?ix(O) ) 

+ kG7 (t) lot G 7 (t')-l ( (xi')) ) dt' . (B.4) 
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Taking the average of eq. (B.4) with respect to the random phase and the 
initial conditions, we obtain a self-consistent equation for the mean ampli­
tude, 

(x(t)) ([Gr(t)]n) (x(O)) + ([Gr(t)]i2) (~ (x(O)) + (±(0))) 

+ k lat K(t - t') (x(t')) dt' , (B.5) 

where the kernel is defined by 

(B.6) 

The kernel in (B.6) depends only on the time difference strictly because of 
Lhe ·un'iju.,-m <lbtrilmtion of the initial phases T. One can solve the integral 
equation (B.5) using Laplace transforms. The solution in Laplace space is 
given by 

(B.7) 

As already explained for the case of the single oscillator in Appendix A, 
the temporal evolution of the mean is determined by the poles of the cor­
responding Laplace transform, (x (s)). It is directly seen that the poles of 
the single oscillator with shifted frequency (that correspond to the poles of 
the Laplace transform of the evolution operator) are no longer poles for the 
Laplace transform of the mean, i.e., the modes of the single oscillator are 
no longer modes of the mean. Instead, equation (B.7) has a set of poles 
determined by the condition 

(B.8) 

and this set obviously differs from the set derived for a single parametric os­
cillator. A rather lengthy calculation allows us to find an explicit expression 
of this condition - namely, eq.(3.9). 
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Appendix C 

The Parametric Oscillator 
Dimer 

Rewriting equations (3.20) and (3.21) that specify the model, we have 

x1 = -w5 [1 + 6(t)] x1 - ,±1 -1(x1 - x2) , 

x2 = -w5 [1 + 6(t)] x2 - ,±2 - 1(x2 - x1) , (C.l) 

with 

6(t) = A sgn sin(wpt) , 

6(t) = A sgn sin[wp(t + r)] . (C.2) 

A simple rescaling of time to dimensionless units t' = tw0 shows that these 
equations are governed by the dimensionless parameter combinations r = 
wo/wp = Tp/To, A, k/w5, ,/wo and e = wpr. Moreover, the behaviour of 
the system is invariant with respect to the transformation e - 27r - e, since 
this just amounts to an exchange of the indices labelling the oscillators. 
Defining the four-dimensional vector in phase space 

X(t) -UD ' (C.3) 

eqs.(C.l) can be written in the matrix form X(t) = E(t)X(t), where the 
matrix E is periodic in time, 

E(t) = E(t + Tp) . (C.4) 
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Let G(t) denote the corresponding time-evolution operator, i.e., 

X(t) = G(t)X(O) . (C.5) 

This obeys the differential equation 

G(t) = E(t) G(t) , (C.6) 

with the initial condition 

G(O) =I, (C.7) 

the 4 x 4 unit matrix. Owing to the periodicity of the matrix E one has 

G(t + nTp) = G(t) G(nTp) = G(t) [G(Tp)t . (C.8) 

This leads to the conclusion that the long-time behavior of the system is 
determined by the eigenvalues {,\}i=l,2,3,4 of the Floquet operator G(Tp) , 
which propagates the system in phase space during a full period Tp of the 
modulation. It is obvious that the system becomes unstable, i.e., a para­
metric resonance occurs, if maxj{l>-jl} > 1. 

The simplifying feature of the piecewise linear perturbation used here is 
that , in a period Tp, the evolution operator is known for each time window 
of constant values of the two modulations. Therefore , the Floquet operator 
is the product of these known evolution operators. 

For the sake of clarity, let us first analyse the frictionless case , = 0. The 
interval Tp can be divided in four subintervals of constant values of t he mod­
ulations 6 and 6, namely (6, 6) = (A, A), (A, -A), (- A, - A), (-A, A) 
when T :::; Tp/2 and (6, 6) = (A, -A), (A, A), (-A, A), (- A, -A) for 
T 2'. Tp/2 . For each such subinterval the propagator is known: 

-m1Sp + P1Sm 

-m1Cp + P1Cm 

k(-sp + Sm) 
k(-cp + Cm) 
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k(-Cp + Cm) 

k(spP2 - smM2
) 

- m2Cp + P2Cm 
m2spP2 - p2smM2 

k(-sp + Sm) 
k(-cp + Cm) 

- m2Sp + P2Sm 

-m2cp + P2Cm 
(C.9) 

) . 



p2 = wr + w~ + J(wr - w~)2 + 4k2 
' 

2 

M 2 =wt+ w~ - .j(wt -w~) 2 + 4k2 

2 ) (C.10) 

where wr,2 = w5(l + 6,2) + k are the constant frequencies corresponding to 
each time subinterval. Further, 

cp = cos(Pt) ; Sp = p-l sin(Pt) ; 

Cm= cos(Mt) ; Sp= M-1 sin(Mt) ; 

m1,2 = M 2 
- wr,2 ; P1,2 = P 2 

- wr,2 . 

Finally, the Floquet operator is given by 

G(Tp) = G_+(r) G __ (Tp/2 - r) G+-(T) G++(Tp/2 - r) 

when r ~ Tp/2, and 

(C.11) 

(C.12) 

G(Tp) = G __ (r -Tp/2) G_+ (Tp - r) G++(r -Tp/2) G+-(Tp - r) 
(C.13) 

As already explained, the stability properties of the coupled system are 
determined by the modulii of the four eigenvalues _.X1 , .. . .X4 of t he Floquet 
operator. Note that when T = 0 or r = Tp/2, the expression for G(Tp) 
reduces to the product of just two matrices. 

The case when damping is also present can be dealt with as in the case of 
the single oscillator, i.e., by noting that if X ( t) is a solution for , = 0, then 
Y(t) = e--yt/2:X(t) is a solution for 1 /= 0, where X(t) = X(t)lw2 --+w2 --y2; 4 . 

1,2 1,2 

A final remark: In the absence of damping, Liouville's theorem ensures 
that <let G(Tp) = A1A2A3A4 = l. In contrast with the single oscillator case, 
the condition Aj = ±1 is not sufficient to determine the boundaries of the 
region of parametric resonance. For coupled oscillators, the eigenvalue with 
the largest magnitude can cross the unit circle 1-Xjl = 1 and hence enter a re­
gion of instability (parametric resonance) in other directions in the complex 
plane. The roots of the fourth order characteristic polynomial of the Floquet 
operator must be found numerically to determine the instability boundaries. 
This is computationally quite feasible, since one has an analytic expression 
for the Floquet operator. 
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Chapter 1 

Introduction 

Fluids under various nonequilibrium constraints (temperature gradients, 
shears, etc.) may develop very rich modes of behavior, that often lead to 
the formation of complex nonequilibrium structures [1] and can culminate 
in turbulence-like manifestations. These esentially nonlinear phenomena 
have attracted a lot of interest in the last few decades. Correspondingly, a 
central issue in nonequilibrium statistical physics is the role of fluctuations 
in the onset of hydrodynamical instabilities that lead to the appearance of 
new flow patterns. Various approaches have been established [2, 3] , and 
taken together they have enabled us to get a deep insight in the (fluctuat­
ing) behavior of nonequilibrium fluids and to draw some general conclusions. 

One of the most important conclusions from the nonequilibrium statisti­
cal mechanics of fluids is the fact that in nonequilibrium stationary states, 
long-ranged spatial and temporal correlations of the relevant hydrodynamic 
variables are always present, even far away from any hydrodynamic insta­
bility or critical point. This is in contradiction with the classical picture of 
Bogoliubov [4] and Uhlenbeck [5], that suggests that dynamic correlations of 
the molecules interacting via short-range forces should also be short-ranged. 
Preliminary evidence that the dynamic correlations may become long-ranged 
in fluids occurs near an equilibrium critical point, where the thermal conduc­
tivity diverges. As the critical molecular fluctuations extend over distances 
much larger than the intermolecular distances, they can be treated using the 
formalism of some form of generalized hydrodynamics. Critical phenomena 
can then be explained by a theory of hydrodynamic mode coupling [7]. Sub­
sequent developments have revealed that dynamic correlations may become 
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long-ranged even far away from criticality: a second breakdown of the clas­
sical picture appeared with the attempts to extend the Boltzmann equation 
to moderately dense gases [8]. The transport coefficients were formally rep­
resented as virial expansions; but the coefficients of these expansions (that 
contain cluster integrals involving the interaction of 2, 3, 4, ... molecules) 
can be shown to diverge. This can be attributed to the existence of long­
distance molecular correlations (namely, to an increased frequency of the 
occurrence of so-called "ring collisions", i.e., sequences of n collisions among 
n molecules, n 2: 3; this is connected to the fact that in a moderately dense 
fluid the mean free time/path is almost of the same order as the interaction 
time/radius). A suitable "resummation" procedure allows one to express 
the coefficients of the virial expansion in terms of hydrodynamic modes and 
to show that the nonanalytic (logarithmic) behaviour of the transport co­
efficients in terms of particle density can be again interpreted as resulting 
from hydrodynamic mode couplings. 

Attention turns now to the nonequilibrium regimes. At a fundamental level, 
kinetic theories (and, more generally, for fluids of arbitrary densities, non­
equilibrium ensemble methods [9]) are able to account for the generic long­
r~nge behaviour of nonequilibrium correlation functions. Through a suitable 
coarse-graining procedure (using a Zwanzig-type projection operator), one 
can obtain "hydrodynamic" equations for t he unequal- and equal-time core­
lation functions of the microscopic densities of mass, momentum and energy. 
The nonequilibrium constraints imposed on the system are found to lead to 
couplings of these "hydrodynamic modes" (between themselves and/ or to 
the external fields), that are similar to those that are responsible for the 
anomalous behaviour of the transport coefficients of a fluid in equilibrium 
near its critical point. These couplings are therefore connected to the long­
range behaviour of the correlations. In the same spirit (but with a slightly 
different technique), Procaccia and co-workers [10] started from the Liouville 
equation and constructed an ensemble distribution function for the station­
ary nonequilibrium state, in terms of which both equal- and unequal-time 
correlation functions can be computed. Both these procedures [9, 10] allow 
one to calculate the dynamic form factor Sq(w) (see Appendix A), and to 
analyse the effect of long-range density fluctuations on light scattering. 

Another approach is the extension of the time correlation function method 
of linear response (the Green-Kubo formalism) to the description of nonlin­
ear transport in systems far from equilibrium. The most clear results are 
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those obtained in the case of a fluid under shear. Here again, mode-coupling 
effects lead to a nonanalytic dependence on the shear rate of both the pres­
sure and of the self-diffusion coefficient. This is related to a long-time tail 
in the velocity autocorrelation function [11] . 

But the most frequently-used theoretical approach for the study of the fluc­
tuations is the Landau-Lifshitz fluctuating hydrodynamics [12], mainly be­
cause of its simplicity as compared to the more fundamental approaches men­
tioned above. Fluctuating hydrodynamics is a phenomenological, Langevin­
type stochastic formulation of standard fluid mechanics. It is based on 
two fundamental hypotheses. First, the fluid is considered as a continuous 
medium, in which each infinitesimal volume element is itself taken to contain 
a very large number of constituent particles. Second, the assumption of local 
equilibrium: at each instant, every volume element of the fluid is in equi­
librium with its surroundings and thermodynamics is locally valid. If one 
neglects the internal degrees of freedom of the molecules, then the state of 
the fluid is described mathematically by the momentum density field and the 
fields of two thermodynamic quantities supplemented by a suitable equation 
of state - for example, the mass and total energy densities. Then the stan­
dard hydrodynamic equations are nothing but the conservation equations 
for these quantities, with the generic form 

oh(r, t) "T"'1 [h D ] 
Ot = - V . V + h ' (1.1) 

h(r, t) representing the density of a generic hydrodynamic variable, and 
v the velocity field. The non-convective (i.e., the dissipative) part of the 
variable's flow density Dh is expressed through the closure relation. For the 
momentum flow, it is given by Newton's law (eventually in the Navier-Stokes 
form) for the dissipative part of the pressure tensor; and for the total energy 
flow, by Fourier's law for the heat flux. 

Spontaneous fluctuations of hydrodynamic variables are then introduced 
into these transport equations by adding random components to the dis­
sipative parts of the pressure and heat fluxes. Since these fluxes are not 
conserved quantities, the correlations of the random terms are expected to 
be short-ranged and short-lived, so that on a hydrodynamic scale they are 
assumed to be delta-correlated. Their strengths are not arbitrary; rather, in 
view of the local equilibrium assumption, they are chosen to yield the correct 
equilibrium thermodynamic fluctuations in agreement with the fluctuation-
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dissipation relations. 

For a 3D fluid, t he basic equations of the fluct uating hydrodynamic for­
malism, in the field variables p(r, t), v(r, t) and T(r, t), read 

8p at + V · (pv) = 0 , 

p~: = -p(v·V)v-Vp+77~v+((+i)v(V·v)+Fext-V·S, 

8T · 
pcv8t = -pcv(v · V)T- (3TV · v + V · (""VT) - V · q. (1.2) 

Here, besides the usual notations 1 , F ext refers to the density of an applied 
external force field, S is the fluctuating part of the pressure tensor, and 
q is the fluctuating part of the heat flow. These stochastic variables are 
Gaussian white noises with zero mean, 

(Sik(r, t)) = 0 , 

(gi ( r, t)) = 0 , 

and variances (for a 3D fluid) given by 

(Sij(r, t)Sk1(r', t')) = 

(1.3) 

= 2 
k: T [ 77 (8ik<\1 + 8itDjk) + ( ( - i) DijDkl] 8(r - r') 8(t - t') ·, 

(gi(r, t)gk(r' , t')) = 2 ""kB T Dik 8(r - r') 8(t - t') , 

(Sij(r, t)gk(r', t')) = 0 (1.4) 

(T and, in general, 77, (, ""as well, are space and time dependent.) 

Fluctuating hydrodynamics has been used by various authors to study the 
statistical properties of simple fluids subject to nonequilibrium constraints, 
such as a temperature gradient (e.g., near a Rayleigh-Benard convective 
threshold) [13] or shear [14]. Long-range correlations of the fluctuating hy­
drodynamic variables result in a simple, direct manner, and are reflected, 
in particular, in the structure of the dynamic form factor. The principal 

1 p is the mass density, v the velocity, p the hydrostatic pressure, T/ and ( the shear and 
bulk viscosity coefficients in the Navier-Stokes expression for the viscous pressure tensor, 
Cv the isochoric specific heat, /3 = (8p/8T)p , T the temperature and 1,, the thermal 
conductivity coefficient in the Fourier expression for the heat flow. 
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difficulty of the method comes from the problem of incorporating boundary 
conditions. It is a remarkable and non-trivial fact that fluctuating hydro­
dynamics and ensemble-like theories give identical results, especially if one 
recalls that the ensemble method has to resort to mode-coupling theory to 
compute equal-time correlations functions, while these correlations follow 
directly from the Langevin assumption in the equations of fluctuating hy­
drodynamics. The connection between these methods and the deep source 
of their agreement are discussed in detail by Kirkpatrick and co-workers [9]. 

Recent light scattering results (see Appendix A), obtained for systems under 
a temperature gradient, have shown quantitative agreement with theoret­
ical predictions [15]. Quantitative agreement has also been demonstrated 
with results based on particle simulations, for systems under a temperature 
gradient [16, 17], under shear [18], and near the convective Rayleigh-Benard 
instability [19]. We note that computer simulations can in principle be ex­
tended to highly nonequilibrium regimes that are difficult to attain in light 
scattering experiments. 

All these results corroborate the fact that the Landau-Lifschitz fluctuat­
ing hydrodynamics is a robust, reliable framework to study nonequilibrium 
fluctuations. 

On the other hand, macroscopic studies of sub-sonic hydrodynamical insta­
bilities are usually based on the incompressibility assumption. This choice 
is partly due to the fact that even in the absence of noise the mathematical 
analysis of convective instabilities arising in compressible fluids proves to 
be quite involved [20, 21]. The difficulty of assigning appropriate boundary 
conditions also plays a role. However, as was first pointed out by Zaitsev 
and Shliomis [22], the incompressibility assumption is essentially inconsis­
tent with the very foundations of the fluctuating hydrodynamics form alism, 
since it imposes fictitious correlations between the velocity components of 
the fluid . Indeed, it is easy to see that the idea of simultaneous fluctuations 
at different points of an incompressible fluid has no physical meaning at all, 
since the signal propagation velocity in such a medium is infinitely large: the 
incompressibility condition V · v = 0 implies that the velocity fluctuations 
are correlated in the entire volume of the fluid. 

From another point of view, the compressibility of the fluid mostly affects 
fast sound modes, whereas the dynamics of the system near an instability 
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threshold is governed by slow dissipative modes, and these two time-scales 
are well separated in a fluid. We may thus expect that the behavior of a fluid 
evolving near a subsonic instability threshold is practically unaffected by its 
compressibility. This intuitive argument has been used by many authors who 
have considered fluctuating incompressible hydrodynamic equations, or even 
the corresponding normal form amplitude equations themselves2 , to which 
random noise terms are added [23]. In these approaches, the characteristics 
of the noise terms cannot be related to equilibrium statistical properties of 
the fluid, and thus remain arbitrary. A more satisfactory approach would 
be to start with the full compressible fluctuating hydrodynamic equations. 
Reducing these equations to a final normal form amplitude equation near 
the instability would lead directly to the explicit form of the associated noise 
terms consistent with such requirements as the fluctuation-dissipation theo­
rem. Such a procedure, however , proves to be quite difficult mainly because 
of the boundary conditions. To the best of our knowledge, the only attempt 
in this direction has been made by Schmitz and Cohen [20] for the case of 
the Benard instability. Concentrating on the behavior of a small layer in 
the bulk, these authors have succeeded in deriving the linearized fluctuating 
equations close to the convective instability. Whether this technique can be 
generalized to derive the corresponding normal form amplitude equation for 
the case of the Benard instability is not clear at the present time. 

One way to overcome this conceptual difficulty is to look for idealized mod­
els which, in spite of their extreme simplicity, can nevertheless lead to hy­
drodynamical instabilities analogous to those observed in real systems. A 
complete analysis of such a simple model will then allow us to draw some 
general conclusions that may be applied to more complicated systems as well. 

This part of the present thesis is devoted to the study of such a model 
proposed some fifty years ago by Kolmogorov 3 . This is a two-dimensional 
flow resulting from a static forcing that is periodic in one of the two spatial 
coordinates. The basic flow essentially follows the applied force field, as 
long as the intensity of the latter is sufficiently small. However, if the ap­
plied force is progressively increased, this laminar flow becomes unstable and 
gives rise, through an initial bifurcation, to rotating convective patterns. A 
succession of bifurcations of increasing complexity leads finally to a turbu-

2These are usually postulated on the basis of the symmetries present in the system. 
3 See [24] for a description a.nd an experimental realization. 
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lent behavior, with a specific underlying mechanism of energy transfer ( the 
so-called "Kolmogorov-Kraichnan inverse energy cascade" [25]). The rich­
ness of this so-called Kolmogorov flow, combined with its simplicity, has at­
tracted a great deal of both theoretical and numerical work. Meshalkin and 
Sinai [26] analysed the appearance of the first instability using a continued­
fraction technique, with a suitable truncation procedure; some of the results 
were found independently by Green [27], who also predicted the possibility 
of secondary instabilities. Lorenz [28] seems have been the first to study 
the nonlinear regime resulting from the first instability and to evoke the 
possibility of a turbulence-like behaviour. Nepomniaschichii [29] and later 
Sivashinsky [30] went further into the nonlinear analysis and succeeded in 
reducing the nonlinear evolution to a description in terms of a Kuramoto­
Sivashinsky equation, which is known to possess chaotic solutions. Finally, 
She [31] carried out a numerical analysis of the successive bifurcations that 
lead to turbulence, and of the energetics in the turbulent regime. Particle 
simulations, based on lattice-Boltzmann [32] or lattice-gas automata [33], 
have been used to study the statistical properties of the flow in the high 
Reynolds number regime [31, 34, 35, 36]. The basic aim of most of these 
works is the study of the mechanisms that lead to turbulence. All these 
theoretical studies have concentrated on the case of an incompressible fluid. 

We take a different approach. Taking advantage of the simplicity of this 
flow, we make a complete comparative analysis of the compressible and 
incompressible cases, from equilibrium up to the vicinity of the first insta­
bility threshold that leads to rotating convective patterns. Both the linear 
(near-equilibrium) and nonlinear (near-instability) regimes are investigated. 
Fluctuations are accounted for in the framework of the Landau-Lifshitz for­
malism. This allows us to draw some general conclusions on the role of com­
pressibility, as well as that of fluctuations in the onset of the hydrodynamic 
instabilities. All the theoretical deductions are supported by numerical sim­
ulations of the underlying equations of fluctuating hydrodynamics. Particle 
simulations are also discussed. 

The next chapter is devoted to the study of the linear regime before the 
onset of the first instability leading to convective rolls [37]. We start with 
a description of Kolmogorov flow, and review some well known aspects of 
its macroscopic behavior. As will be seen, the periodic boundary conditions 
associated with this model permit a detailed analysis of the linearized fluc­
tuating hydrodynamic equations to be made, and, consequently, of the the 
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fluctuation spectrum as well. Long-range correlations of the velocity fluctu­
ations are obtained. In particular, we are able to show that in the long-time 
limit the flow behaves basically as if the fluid were incompressible, regard­
less of the value of the Reynolds number. The situation is different for 
the short-time behavior. We establish that here the incompressibility as­
sumption leads to an incorrect form of the static correlation functions (in 
agreement with the prediction of Zaitsev and Shliomis [22]) , except near 
the instability threshold, where our results strongly suggest that the in­
compressibility assumption again becomes valid. On the other hand, the 
linearized fluctuating hydrodynamic equations are clearly not valid close to, 
and beyond, the instability threshold. Although extensive numerical sim­
ulations have basically confirmed our predictions, a satisfactory answer to 
this important problem requires a full nonlinear analysis of the fluctuating 
Kolmogorov flow. 

This is done in Chapter 3 (see also [38]). First, a nonlinear analysis is 
carried out for an incompressible fluid. The normal form amplitude equa­
tion is derived, and the explicit forms of the stationary stream function and 
the associated velocity field just above the instability are constructed. The 
subsequent section is devoted to the analysis of a compressible fluid. We first 
set up a perturbative technique based on a natural small parameter present 
in the system: namely, the ratio of the time scales of viscous dissipative 
modes and sound modes. This technique allows us to identify the relevant 
normal modes of the system, as well as the couplings between them, result­
ing in the relevant critical dynamics. It is then shown that the behaviour of 
the system is basically the same as that derived for an incompressible fluid, 
at least close to the instability threshold. We then focus on the statistical 
properties of the flow and show that, close to the instability, the stochas­
tic dynamics of the system is governed by a set of two nonlinear coupled 
Langevin equations in Fourier space. Here again, the equivalence with the 
incompressible case is established. The theoretical predictions are confirmed 
by numerical simulations of the nonlinear fluctuating hydrodynamic equa­
tions. 

Chapter 4 is devoted to an analysis of particle simulations of Kolmogorov 
flow [39]. It is shown that a spurious diffusion of the center of mass in the 
phase space corrupts the statistical properties of the flow. The analytical 
expression for the corresponding diffusion coefficient is derived. Although 
this effect is shown to be unimportant in practice in a macroscopic system, 
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it dramatically affects particle simulations of all types: molecular dynamics, 
Bird algorithm, and lattice-particle simulations. One has therefore to take 
it into account appropriately. 

The final chapter is devoted to concluding remarks. 
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Chapter 2 

The Linear Regime 

2 .1 Kolmogorov Flow 

Consider a two-dimensional isothermal flow in a rectangular box oriented 
along the coordinate axes: 0 :::; x :::; Lx, 0 :::; y :::; Ly. Periodic boundary 
conditions are assumed in both directions and the flow is maintained through 
an external force field of the form 

F ext = Fa sin ( 2 7r n y /Ly) lx , (2.1) 

where lx is the unit vector in the x-direction. This model represents the so­
called Kolmogorov flow, and it belongs to the wider class of two-dimensional 
(potentially) negative eddy viscosity flows [40]. It is entirely characterized 
through the strength Fa of the force field, the parameter n, which controls 
the wave number of the forcing, and the aspect ratio ar, defined as 

(2.2) 

In the following, we will concentrate mainly on the case n = 1. 

According to the Landau-Lifshitz theory, the fluctuating hydrodynamic equa­
tions for this model read 

and 

fJp 
fJt 

-V · (pv) (2.3) 

8v 
p 8t = -p (v · V) V - VP - V · (7 + F ext, (2.4) 
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where p is the mass density, p the hydrostatic pressure and a the two­
dimensional fluctuating stress tensor: 

(
av- 8v· ) 

(J .. - - 11 _i + - 1 - 8· -V · v - '8· · V · v + S· · i1 - ., 8 8 i1 ., i,1 i 1 . 
Xj Xi 

(2.5) 

Sis a random tensor whose elements {Sij} are Gaussian white noises with 
zero mean and covariances given by: 

(Sij(r, t) Ske(r', t')) = 2ksTo 8(t - t') 8(r - r') [17(Dik8je + 8ie8jk) 

+ ( ( - 77 )8ij8ke] , (2.6) 

where To stands for the (uniform) temperature. For simplicity, we shall 
assume that the shear and bulk viscosity coefficients, r, and (, are state in­
dependent, i.e., that they are constant. 

One more remark in the context of fluctuations: When imposing a force 
field, one has to keep in mind that both in microscopic simulations and in 
real systems, the fluid is made out of individual particles. Hence what one 
can impose is not a bulk force, but rather an acceleration field acting on the 
particles. Since the density of particles is fluctuating, we conclude that the 
external field in the momentum equation (2.4) is also a fluctuating quantity: 

Fext = p(x,y) ao sin(21rny/Ly) lx, (2.7) 

where a0 is the amplitude of the imposed acceleration field. This is an inter­
esting problem in its own right, and will be discussed in detail in Chapter 4. 
For the present we need to note that this effect is only important for parti­
cle simulations of the flow, i.e., for systems involving a rather small number 
of particles (as compared, say, to Avogadro's number). On a macroscopic 
scale, this effect is completely negligible. Therefore, in this chapter and in 
the next one, we will consider Fo as a constant, non-fluctuating quantity. 

Let us now focus on the deterministic behavior. It can be checked easily 
that in the stationary state the pressure and the density are uniform in 
space (Pst = Po, Pst = po), whereas the velocity profile basically follows the 
external force field, 

Vst = uo sin (21ry/Ly) lx, 

FoLi 
uo = 4 7r2 r, . 
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For sufficiently small F0 , this stationary flow is stable. As we increase Fo, 
however, the flow becomes unstable giving rise to rotating convective pat­
terns. Other instabilities of increasing complexity may occur for larger val­
ues of Fo, culminating in a chaotic behavior similar to what is observed in 
turbulent flows [28, 31, 35]. In this thesis we shall limit ourselves to the 
analysis of the system near its first instability. 

We have yet to supplement the momentum conservation equation (2.4) with 
an equation of state relating the pressure to the density (recall that the sys­
tem is isothermal). In this section we shall simply assume that the flow is 
incompressible, i.e., 

OU av 
V·v= - +-=0, 

ox 8y 
(2.9) 

where u and v represent the x and y components of the velocity, respectively. 
Relation (2.9) implies a uniform density p0 throughout the system for all 
time, if this is initially the case. It also implies the existence of a scalar 
function 'lj;(x, y, t), known as the stream function, defined by the relations 

(2.10) 

Scaling length by Ly, velocity by u0 and time by Ly/uo, the dimensionless 
equation for the stream function reads 

81/J 8('7
2 

'ljJ) + 81/J 8('7
2

1/J) + R-1 "v2("v21/J) 
[)y ax ox oy 

8('721/J) 
= 8t 

+ 81r3 R- 1 cos (21ry) , (2.11) 

where R is the Reynolds number, 

R = pouoLy 
rJ 

(2.12) 

a measure of the "distance" from equilibrium. The stationary solution of 
(2.11) reads 

1 
1Pst = -

2 
7r COS (2 7r y). (2.13) 

Setting 1/J = 1Pst + 81/J, and linearizing (2 .11) around 1Pst, one gets 

o("v2 o'I/J) . o("v2 o'lj;) 2 . a 81/J at sm(21ry) ox - 41r sm(21ry) ox 
+ R-1 "v2 ("v2 81/J). (2.14) 
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As the boundary conditions are periodic, 8'1j;(x, y, t) can be expanded in 
Fourier series 

00 

8'1j;(x, y, t) = L exp ( - 2 7r i ky y) exp ( - 2 7r i kx x / ar) 8'ljJ kx, ky ( t) , 
kx,ky=-oo 

Equation (2.14) can then be transformed to : 

where we have set 

-41r2 R-1 (k; + ky 2 )8'l/Jkx, ky 

+1rkx [8'1/Jkx,ky+l - OVJkx,ky - 1] 

kx ky [ ] + 27r k;2 k 2 OVJkx,ky + 1 + OVJkx,ky-l , 
X + y 

(2.15) 

(2.16) 

(2 .17) 

In its general form, the analysis of this equation is quite difficult [26]. On 
the other hand, if '1/Jst is stable, then in the long-time (hydrodynamic) limit, 
the evolution of the system will be governed mainly by the long-wavelength 
modes. Accordingly, we start our analysis by considering only the modes 
ky = 0, ±l, i.e., we assume that 8'ljJ(kx, ky t) ~ 0 for lkyl ~ 2 [27]. This is 
the so-called three-mode approximation and its validity and limits are verified 
through comparisons with the appropriate computer simulations and calcu­
lations from near equilibrium up to the vicinity of the instability threshold, 
as will become clear subsequently. 

The infinite set of coupled eqs.(2.16) is therefore truncated (for each fixed 
kx) to a set of just three equations. Defining the vector 

(2.18) 
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this set can be written in the following matrix form : 

with 

861/,k,,(t) = A(k ) . D"'' (t) at X 'f' kx ' 

A(kx) = 

'ff kx 
- 41r2 R- 1(1 + k;) 

0 

(2.19) 

(2.20) 

We note that the matrix A(kx) is diagonal for kx = 0, so that the solution 
of eq. (2.19) reduces to: 

8'1/Jo,1(t) "' 8'1/Jo, - i(t) "' exp(- 41r2 R- 1 t). (2.21) 

Further, by the definition of the stream function (eq. (2.10)), 'l/Jo,o(t) = 0 
for all t. We thus concentrate on the case kx =I= 0, looking for a similarity 
transformation T(kx) · A(kx) · T-1 (kx) which diagonalizes the matrix A(kx). 
After some algebra, one finds 

as well as 
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1 
1 

-1 ) 
-1 ' 
1 

(2.22) 

(2.23) 



Here {.\(kx)}i=l,2 ,3 are the eigenvalues of A(kx), given by 

(2.24) 

Equation (2.19) then becomes 

(2.25) 

where 

(2.26) 

It follows from (2.24) that >.2(kx) and >.s(kx) are always negative, whereas 
there exists a critical value of the Reynolds number 

(0 < k; < 1) (2.27) 

for which >.1(kx) vanishes, thus indicating the limit of stability of the cor­
responding mode [41]. Clearly Re(kx) is an increasing function of lkxl, so 
that the first modes to become unstable correspond to lkxl = 1, provided 
the aspect ratio ar > 1. Asar ---t 1, Re ---t oo, indicating that no instability 
can develop for perturbations of the same spatial periodicity as the applied 
force [42]. In the following, we shall therefore concentrate mainly on the 
case ar > 1. For ar = 2, relation (2.27) predicts a critical Reynolds number 
Re ~ 12.8255. Analytical calculations can still be handled (using Maple or 
Mathematica symbolic programs) when the modes ky = ±2 are taken into 
account as well, and lead to 

R(s)(k ) = R (k ) [1 + - k! (k; +_3) 1-1/2 
C X e X 2 ( k~ + 4) 2 ( k~ - 1) 

-2 (0 < kx < 1) . 

(2.28) 
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For ar = 2, one finds a critical Reynolds number R~5
) ~ 12.8738, so that 

the discrepancy remains below 0.4%. Numerical evaluation of Re performed 
with a total amount of 103 modes shows no further significant discrepancy. 
This is an indication that one can rely reasonably well on a three-mode ap­
proximation (that is O'lPk,.,,,ky(t) ~ 0 for lkyl 2: 2), at least as long as R is 
close to Re, As will be shown in the next chapter, this approximation leads 
to the correct velocity field beyond the instability. We shall use this ap­
proximation below to study the statistical properties of the system. Among 
other results, this will also allow us to decide whether or not the three-mode 
approximation applies for near-equilibrium situations as well. 

2.2 Hydrodynamic Fluctuations 

To study the spectra of the fluctuations, we first linearize the hydrodynamic 
equations (2.3) and (2.4) around the stationary state. Setting p = Po + 8p, 
p = Po + 8p and v = Vst + 8v, and following Landau and Lifshitz [12], 
the fluctuating hydrodynamic equations read 

-po - + - - uo sin(21ry/L )- , (
o8u 88v) o8p 
ox oy y ox 

(2.29) 
o8p 
ot 

o8v 
Poat - po(Vst ·V)8v -po(8v-V)vst - V8p - V-8a. 

(2.30) 

8a is the two-dimensional linearized fluctuating stress tensor, 

(
o8v· o8v · ) 80-·· = -n __ i+ _ _ J _8··V · 8v - 1 8··V·8v + S ·· iJ . , 8 8 iJ " iJ iJ . 

Xj Xi 
(2.31) 

We have yet to specify the equation of state. Since the fluid is compressible 
and isothermal, we simply set 

8p = c;8p, (2.32) 

where c5 is the isothermal speed of sound. Scaling lengths by Ly , time by 
Ly/cs, 8p by Po and 8v by the speed of sound, the dimensionless fluctuating 
equations in Fourier space are 

27f i (kx OUkx,ky + kyOVkx,ky) 

+ s R1rkx(8pk,, ,ky+1 - 8pk,,,ky-1) , 
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1r c R( 8vkx, ky+l + 8vkx, ky-I) 

+ 1rcRkx(8uk.,,,ky+l - 8uk.,,,ky-I) 
2 -2 2 

- 4 7r c(kx + ky) 8ukx, ky 
2 - -

- 4 7r a c kx(kx 8uk.,,, ky + ky 8vk.,,, ky) 

+ 21rikxDPkx,ky + Fkx,ky(t), (2.34) 

1rcRkx(8vkx,ky+l - 8vkx,ky-I) 
2 -2 2 · - 41r c(kx + ky) DVkx,ky 
2 -

- 41r acky(kxDUkx,ky + kyDVkx,kJ 

+ 21rikyDPkx,ky + Gkx,ky(t), (2.35) 

where 

a =(/ry (2.36) 

and 

(2.37) 

The functions Fk.,,, ky and Gk.,,, ky are Fourier components of the noise terms ; 
their covariances follow directly from eqs.(2.6), 

\Fk,,, ky(t)Fk~,k)t')) = 

\ Fk.,,, k)t) Gk~, k~ ( t')) 

\ Gk.,,, ky (t) Gk~, k)t')) 

where k = (kx/ar , ky) and 

81r2c A [(a + 1) k; + k~] 8k+k',O 8(t - t'), 

81r2c A a kx ky 8k+k' ,o 8(t - t'), 

2 -2 2 81r c A [kx + (a + 1) ky] 8k+k',O 8(t - t'), 

(2.38) 

(2.39) 
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M = ar Po L/ being the total mass of the system. 

The analysis of the Langevin equations above can be simplified greatly by 
observing that the quantity € must remain small if one wishes to remain 
within the limit of validity of the hydrodynamic regime [43]. Further, as 
already mentioned, we limit ourselves to strictly subsonic flows, so that 
cR = uo/ c5 < < 1. We thus have at our disposal a natural small parameter 
which, however, has to be used with care since the solution of the Langevin 
equations (2.33) - (2.35) proves to be singular in the limit€ -t 0. Moreover, 
it turns out that the behavior of the system is qualitatively independent of 
the value of the bulk viscosity coefficient and so ( to avoid cumbersome nota­
tion) we simply set a= 0 (recall that a= (/77). Even then the calculations 
are lengthy and tedious; therefore we concentrate here mainly on the final 
results, giving only a brief sketch of the intermediate steps. 

We pay particular attention to two quantities. First, the dynamic structure 
factor or scattering function (see Appendix A), defined as the space-time 
Fourier transform of the density autocorrelation function: 

1
+00 

Sk(w) = -oo dt exp(iwt) (8pk(t)8P-k(O)), (2.40) 

(8pk(t) 8p_k(O)) = ;
2 

/ / dr dr' exp { 21ri k · (r - r')} ( 8p(r, t) 8p(r', 0)) , 

(2.41) 

where the integrals extend over the surface S = ar x 1 of the system. Next, 
the space-time Fourier transform of the velocity autocorrelation function , 
defined in a similar fashion: 

1
+00 

Wk(w) = -oo dt exp ( i wt) (8vk( t) · 8v -k(O)) , (2.42) 

as well as its static (equal-time) counterpart, 

(2.43) 

Analytic calculations can be done in two "extreme" situations: either in the 
vicinity of equilibrium (through a perturbative technique to be presented 
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below), or in the vicinity of the instability point (where we will use the 
three-mode approximation presented in the previous section). In both sit­
uations, the calculations 1 are extremely lengthy. However, as they do not 
present any conceptual difficulty, we omit the details here. 

First of all, it is found that the behavior of the scattering function is es­
sentially the same in both the extreme cases. Namely, to dominant order in 
c, Sk(w) is not affected by the nonequilibrium constraints, i.e., it maintains 
its equilibrium form, 

(2.44) 

where k 2 = (k; + k~). We note that the scattering function exhibits only 
sound mode peaks (Brillouin lines) . The absence of a purely dissipative 
mode around w ~ 0 (the Rayleigh line) is directly related to the fact that 
Kolmogorov flow is strictly isothermal. Indeed, this means not only a con­
stant temperature throughout the system, but also infinite thermal conduc­
tivity, i.e., AT - oo (Appendix A), which leads to an instantaneous decay 
of any entropy fluctuations. Therefore, the scattering function does not con­
tain much information about the nonequilibrium constraints imposed on the 
system - except the fact that they do not affect the sound modes. 

On the other hand, the velocity autocorrelation function Wk(w) does ex­
hibit a purely dissipative viscous regime around w ~ 0, together with a 
"sound regime" located around w ~ ± 21r\k\. Here again we find that, to 
leading order in E:, the sound regime is not affected by the nonequilibrium 
constraints and behaves very much like the scattering function, 

(2.45) 

The part of the autocorrelation function that corresponds to the viscous 
regime w ~ 0 (i.e., that corresponds to the long-time behavior of the sys­
tem) is strongly dependent on R, and is therefore a source of information on 
the nonequilibrium state of the system. In the following we will therefore 
concentrate mainly on the spectrum of the velocity fluctuations. 

1These were done using a combination of Maple symbolic calculus and FORTRAN 77 
numeric calculus. 
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We first consider the near-equilibrium situations, limiting ourselves to rel­
atively small values of the Reynolds number R. In this case the Langevin 
equations (2.33)-(2.35) can be solved perturbatively by expanding the hy­
drodynamic variables around their equilibrium values: 

8p = 8peq + µ 8p1 + µ2 8p2 + .. . 
8v= 8veq+µ8v1+µ 2 8v2+ .. . 

(2.46) 

(2.47) 

where the parameterµ is defined asµ= R/21r. After some lengthy algebra, 
one gets for the static correlation function 

A (10 + 2 k6 + 5 k4 + k2) 
x x x [1 + O(c2, (R/21r)2)], 

2 ( k; + 4) ( 2 k; + 5) ( 2 k; + 1) ( k; + 1) 
2 

(2.48) 

where 

(2.49) 

is the equilibrium contribution. To simplify the presentation, we have con­
sidered the case ky = 1. 

To check the validity of this result, we have solved numerically the Langevin 
equations (2.33)-(2.35). The traditional procedure consists of simulating 
the corresponding stochastic processes and using the hydrodynamical sam­
ple paths (time series) so obtained to construct the various correlation func­
tions. This procedure is quite simple to set up, but requires very long runs in 
order to get reliable statistics in nonlinear problems. Alternatively, one can 
directly solve the equations governing the evolution of the correlation func­
tions, that are obtained easily from the underlying Langevin equations [44]. 
The principle of this procedure - the so-called direct method of integration of 
the linear Langevin equations - is described in Appendix A. It is, of course, 
an exact method, and quite fast computationally, but it is limited to linear 
problems. We have used both techniques. The former was used to simulate 
the full nonlinear hydrodynamic equations (2.3) and (2.4) with a noisy stress 
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tensor, in real space. The space of an Lx x Ly cell is discretized in both x 
and y directions, and the values of the fluctuating variables in the nodes of 
this grid allow us to calculate the corresponding Fourier transforms, and to 
construct the corresponding correlation functions. In the long-time limit, 
one can obtain the values of the static correlation functions. The second 
method was used to study the statistical properties of the linear Langevin 
equations (2.33)-(2.35), with a cut-off beyond the first forty-one ky modes 
(i.e., setting 8pkx, ky(t) = 8vkx,ky(t)::::::: 0 for lkyl 2 21). 

In figure 2.2 we have presented the static velocity autocorrelation function, 
as given by the relation (2.48), together with the corresponding numerical 
solution obtained using the second of the two computational techniques de­
scribed above. As may be seen, quantitative agreement is demonstrated for 
R s; 4 but discrepancies gradually appear ru:; we cumsider larger values of Lhe 
Reynolds number. This is to be expected since the validity of the relation 
(2.48) can only be guaranteed for small values of the Reynolds number. 

It is also instructive to study the properties of the static correlation function 
in real space, (8v(r) · 8v(O)). This can be obtained by summing the prod­
uct (8vk · 8v_k) exp[27ri(xkx+Yky)] over (kx, ky), Analytical calculations, 
however, prove to be extremely difficult to handle for the general case. We 
therefore limit ourselves to a special case where only one of the wavenumbers 
is summed over, the other being held fixed. Specifically, we set ky = 0 to 
obtain: 

(8vk,, · 8v- k,J - 2A = ( 2R )' C )( _ ) [1+ O(c
2

, (R/2~)')]. 
7l' 2 k2 + 1 1 + 2 k 2 

X X 

(2.50) 

Note that setting ky = 0 is equivalent to taking the spatial average over the 
y direction (cf. eq. (2.41)), so that relation (2.50) holds only for kx =/= 0. 
In fact, 8v0,0 (t) = 0, since the linear momentum of the center of mass is a 
conserved quantity. With this restriction, the summation can be performed 
in a straightforward manner to give 

(8v(x) · 8v(O)) 

{
V2 cosh[\1'27r (x - ar/2)] 

sinh( 7l' ar / V2) 
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2A [8(x) - ar] = 
cosh[2 7l' (x - ar/2)] 

sinh ( 7r ar) 7l'~r} , 
(2.51) 
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Figure 2.1: Fourier transform of the nonequilibrium part of the static ve­
locity autocorrelation function, normalized by the corresponding equilib­
rium part, as a function of the Reynolds number. The solid curve repre­
sents the theoretical prediction, as given by eq. (2.48), whereas the dia­
monds correspond to results obtained by numerical simulation of the linear 
Langevin equations (2.33)-(2.35). The parameters are ar = 2, c = 10~2 , 

A= 10- 3 /256 (defined by eq. (2.39)), ky = l, kx = l (i.e., kx = 1/ 2). The 
estimated statistical errors are less than 4%. 

98 



where the second term on the left-hand side is the equilibrium contribu­
tion [45] (the stationary fluctuations around equilibrium, in accordance with 
standard linear response theory, are a-correlated in space). Note the pres­
ence of a constant term in both the equilibrium and nonequilibrium (right­
hand side) parts, which ensures the conservation of linear momentum. The 
nonequilibrium contribution to (8v(x) · 8v(O)) exhibits long-range correla­
tions since the correlation length is clearly of the order of the size of the 
system. This is shown in figure 2.2 for R = 3, where quantitative agreement 
with numerical results is observed . The existence of long-range correlations 
is generic for fluids under shear constraints and have been predicted by sev­
eral authors [11 , 45], and confirmed by both microscopic [18] and lattice-gas 
automata simulations [36]. On the other hand, experimental evidence has so 
far only been reported for fluids under a temperature gradient, where quan­
titative agreement with fluctuating hydrodynamics has been demonstrated 
[15] . 

Let us now consider the far from equilibrium case. As pointed out in the 
last section, for R close to Re one can expect the three-mode approximation 
(that is, OPkx,ky(t) and 8vkx,ky(t) are~ 0 for lkyl ~ 2) to be reasonably 
reliable. As a consequence, eqs . (2.33)-(2.35) reduce to a system of nine 
coupled linear Langevin equations for each fixed kx which, for consistency, 
must be limited to lkxl::; max{ar, 2}. The calculations can nevertheless be 
done, leading to the following expression for the static velocity autocorrela­
tion function: 

AR
2 

[ 2 2 ] (8vk · 8v_k) - 2A = ( _ ) 1 + O(c R ) , 
2 ( R~ - R2

) 1 + 2 ki 
(2.52) 

where the second term on the left-hand side is the equilibrium contribut ion, 
Rc(kx = 1) is given by eq. (2.27), and ky = l. The nonequilibrium part 
diverges as R - Re, but then, of course, the linearized Langevin equations 
cease to be valid. Note also that a development of (2.52) in powers of R/21r 
for small values of R/21r does not lead to (2.48). This shows that the three­
mode approximation, while appropriate for the description of the system in 
the vicinity of its first instability, i.e., for R close to Re, ceases to be valid 
near equilibrium, i.e., for small values of R. 

In figure 2.3 we have depicted the result (2.52) for increasing values of 
R, together with the numerical solution of the linear Langevin equations 
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Figure 2.2: Nonequilibrium part of the static velocity autocorrelation func­
tion, normalized by A, as a function of the spatial coordinate x . The solid 
curve represents the theoretical prediction, as given by eq. (2.51), whereas 
the diamonds correspond to results obtained by numerical simulation of t he 
linear Langevin equations (2.33) - (2 .35). The Reynolds number is set to 
R = 3 and the other parameters are as given in the caption of figure 2.2. 
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(2.30), as well as the results obtained by simulation of the full nonlinear hy­
drodynamic equations (2.3), (2.4) with a noisy stress tensor. Quantitative 
agreement is observed for values of R up to 12, but significant discrepancies 
start to show up as R -+ Re :::::J 12.87 where the linearized theory leads to 
a diverging correlation function (cf. eq. (2.52)). This is not the case for 
the correlation function obtained using the full nonlinear equations, which 
seems to exhibit a maximum around Re, It should however be noted that, 
owing to the slowing down of the relaxation of the "critical" Fourier modes, 
statistical errors are quite important for R close to Re (about 15% for the 
last four data points), so that no definitive conclusion can be drawn at this 
stage. The analysis of the statistical properties of the nonlinear regime is 
relegated to Chapter 3. 

2.3 Validity of the Incompressibility 
Assumption 

As already mentioned, the macroscopic studies of subsonic hydrodynamical 
instabilities are based on the incompressibility assumption which is funda­
mentally inconsistent with the very foundations of the fluctuating hydrody­
namics formalism [22]. For instance, using the time Fourier transform of 
eqs.(2.33)-(2.35) and (2.38), it is easy to show that, at equilibrium (R = 0), 
one has 

(2.53) 

where Uk(w) and Vk(w) are the space-time Fourier transforms of 
( 8u(r, t)8u(r', O) ) and ( 8v(r, t)8v(r', 0) ) respectively. On the other hand, 
the incompressibility assumption, eq. (2.9), implies 

(2.54) 

where the subscript "inc" refers to incompressible fluids. It is seen that, 
except near the origin w :::::J O (i.e., in the long-time limit), this result is 
clearly in contradiction with t he correct equilibrium form, eq. (2.53). In 
particular, the equilibrium static autocorrelations are independent of the 
wave vector, 

(2.55) 
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Figure 2.3: Fourier transform of the nonequilibrium part of the static veloc­
ity autocorrelation function, normalized by the corresponding equilibrium 
part, as a function of the Reynolds number. The solid curve represents the 
prediction based on the three-mode approximation, eq. (2.52), while crosses 
and diamonds correspond to numerical results obtained respectively by the 
simulation of linear and nonlinear Langevin equations, eqs. (2.30), (2.3) 
and (2.4). The parameters are as given in the caption of figure 2.2. The 
estimated statistical errors are about 15% for the last four data points. 
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whereas relation (2.54) leads to 

(2.56) 

The situation is somewhat different for the nonequilibrium case. As we have 
shown in the previous section, to leading order in c, both the scattering func­
tion and the sound regime of the velocity autocorrelation function assume 
their equilibrium forms, regardless of the value of the Reynolds number. 
The nonequilibrium constraints thus mainly affect the behavior of the fluid 
near the origin w ~ 0, i.e., the viscous regime. This result has an interesting 
consequence. It suggests that, as far as the nonequilibrium properties of 
the fluid are concerned, one may rely on the incompressibility assumption, 
eq. (2.9), since the compressibility of the fluid affects mainly the sound 
modes, which are well separated from the purely viscous modes, as long as 
c is small. Rather complicated analytical calculations confirm the above 
arguments and lead to the following relation: 

Uk(w) - Uk(w)eq = ~; [l + O(c2 R2)] . 
Vk(w) - Vk(w)eq k;; (2.57) 

Here both the numerator and the denominator on the left-hand side turn out 
to have Lorentzian shapes, sharply peaked around the origin (with a width 
of the order of c), since the sound regime cancels out. Nevertheless, be­
cause of the presence of the equilibrium contributions, the relation (2.57) is 
still in contradiction with the incompressibility condition, eq. (2.54). There 
exist, however, two different situations where this objection can be ruled out: 

(i) Near the origin, w ~ 0, where the fluid satisfies the incompressibility 
condition already at equilibrium, i.e. , Uk(w)eq k; ~ Vk(w) eq k;. Obviously, 
this situation concerns only the long-time behavior of the fluid. For instance, 
the static correlation functions, obtained from (2.57), obey 

(6uk8u_k) -A=~; [l + O(c2 R 2)] , 

(6vk 6v-k) - A k; 
(2.58) 

which contradicts the incompressibility condition (2.54). 

(ii) A more interesting situation concerns the behavior of the fluid near the 
instability, where it can be shown that in the limit R -, Re both the sta-

tic and dynamic velocity correlation functions behave as O [ (R~ - R 2)-
1
], 
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cf. eq.(2.52). In other words, for R sufficiently close to Re, equilibrium 
contributions become negligible, so that the fluid basically behaves as an 
incompressible one. 

It should however be borne in mind that this appealing conclusion is based 
on the linearized Langevin equations (2.33)-(2.35) which are not valid near 
the convective instability. The study of the statistical properties of the sys­
tem in the critical regime requires a nonlinear analysis of the fluctuating 
equations, which will be reported in the next chapter. Instead, here we 
resort to numerical analysis. More specifically, we have simulated the full 
nonlinear fluctuating hydrodynamic equations to obtain the ratio of the x 

and y components of the static velocity autocorrelation function for several 
values of the Reynolds number. The results are depicted in fig. 2.4 for 
kx = ky = l, ar = 2 (so that the expected value of this ratio for an incom­
pressible fluid is 4). This is precisely what we observe, but only for values 
of R ~ 12.8 (recall that Re~ 12.87), a domain which lies beyond the range 
of validity of the linearized hydrodynamic equations. 
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Figure 2.4: Ratio of x and y component of the velocity autocorrelation func­
tion in Fourier space, as a function of the Reynolds number. The parameters 
are ar = 2, c = 10- 2 , A= 10-6 (defined by eq.(2.39)), ky = 1, kx = 1 (i.e. , 
kx = 1/2). The dashed line represents the expected ratio for an incom­
pressible fluid, while the diamonds correspond to results obtained by the 
simulation of the full nonlinear Langevin equations, eqs. (2.3) and (2.4) . 
The estimated statistical errors do not exceed 8%. 
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Chapter 3 

The Nonlinear Regime 

3.1 Incompressible Kolmogorov Flow in the 
Vicinity of the Instability 

As was seen in the preceding chapter, the laminar flow (2.8) becomes un­
stable for a certain value Re (eq. (2.27)) of the Reynolds number; above 
this threshold, rotating convective patterns emerge. In the vicinity of this 
threshold linear analysis fails, and one has to take into account the nonlinear 
effects that are present in the system. The study of the nonlinear equations 
that govern the evolution of a dynamical system is, in general, an extremely 
difficult task. It gets simplified in the vicinity of a bifurcation point; indeed, 
in this situation (as explained in Appendix B, see also [46, 47]), the system 
evolves in a restricted phase space, the center manifold, its dynamics then 
being determined by the slow variables ( all the other fast variables following 
this evolution adiabatically). In the concrete case of Kolmogorov flow, there 
are two more elements that contribute to simplify the nonlinear analysis : (i) 
periodic boundary conditions, that enable the use of the Fourier transform 
formalism; (ii) the three-mode approximation (described in the previous 
chapter), that reduces the number of the relevant dynamical variables to 
the modes with lkyl = 0, 1 (and, consistently, with lkxl < max{ar,2}). 

To start with, let us consider the incompressible deterministic flow. As 
we saw in section 2.1, the incompressible system is completely described 
by the stream function 'lj;(x, y, t) (eq. (2.10)), whose laminar stationary 
profile is given by (2.13) (we use the dimensionless variables introduced in 
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Section 2.1). The nonlinear evolution equation for 8'1j; = '1/J - 'I/Jst reads 

As in the linear case, we take the Fourier transform of this equation, 

-41r2 R-1 (k; + ky 2)8'1/Jk,,, ky 

+1rkx [6'1/Jkx,ky+l - D'I/Jkx,ky-1] 

kx ky [ ] +27r k-2 k 2 8'1/Jkx,ky+l + D'I/Jkx,ky -1 
X + y 

k~,k~=-oo 

(3.1) 

(3.2) 

We proceed to an initial truncation of this infinite set of coupled equations, 
by using the three-mode approximation, i.e., we assume that 8'1/Jkx,ky ~ 0 for 
lkyl ~ 2. Then, using the transformations T(kx) and its inverse, T-1 (kx) 
(eqs.(2.22),(2.1)), one can express the truncated set of equations in terms of 
the normal modes 8¢>i(kx, t) (i = 1, 2, 3) 1 as 

(i=l,2,3) (3.3) 

1Note that, in view of the relations 6'1/J-kx, -kv = 6'1/Jt, kv (where• denotes the complex 
conjugate), the modes 6¢i( - kx, t) and 6¢i(kx, t) are related according to 

6¢1 (- kx, t) = -6¢; (kx, t) , 

6¢2(-kx, t) = - 6¢;(kx, t) ' 

6¢3(- kx, t) = +o¢;(kx, t). 
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where the cl.>i(kx, t)'s are infinite sums (with respect to k~) of second-order 
polynomials of the type 8</)p(k~, t)8¢1(kx - k~, t) (p, l = l, 2, 3). Consis­
tent with the three-mode approximation for ky, one can now proceed to a 
truncation of (3.3) to modes with lkxl < max{ar, 2} . But the system can 
be simplified further by taking into account the following: Close to the bi­
furcation point R ~ Re, the mode 8¢1(kx = 1) and its complex-conjugate 
8¢i(kx = 1) exhibit a critical slowing down since >.1(kx = 1) ~ 0. All the 
other modes represent the fast modes (in the terminology of the method 
of adiabatic elimination of variables, see Appendix B). On the slow time 
scale t ,.._, 0 [>.1(kx = 1)-1], they can then be considered as stationary, their 
time dependence arising mainly through 8¢1 (kx = 1, t) and its complex 
conjugate. Indeed, setting 88¢1(kx = 0, t)/8t ~ 88¢1(kx ~ 2, t)/8t ~ 
~ 88¢2(kx, t)/8t ~ 88¢3(kx, t)/8t ~ 0 , one can express the fast modes in 
terms of the slow mode, 6¢1 (kx = 1, t) and its complex-conjugate 6¢1 *(kx = 
1, t). If we now insert the expressions thus obtained for the fast modes into 
the evolution equations of the slow modes, we obtain a closed nonlinear equa­
tion for the latter. In practice, however, such a calculation is only possible 
close to the the bifurcation point, where the amplitude of 8¢1(kx = 1, t) 
is supposed to approach zero as R --+ Re. In fact, there exist other types 
of transitions, such as the one arising in the Van der Pol equation, where 
the amplitude of the solution above the instability does not vanish as one 
approaches the critical point [48]. Detailed analysis shows that this is not 
the case here (i.e., l8¢1(kx = 1, t)I --+ 0 as R --+ Re), so that we can limit 
ourselves to lowest orders in l8¢1(kx = 1, t)j. 

Correspondingly, the infinite set (3.3) reduces finally to 2 

88¢1(kx = 1, t) 
at A1(kx = l)8¢1(kx = 1, t) 

a1 [8¢3(kx = 0, t) + 8</)3(kx = 0, t)] 8¢1(kx = 1, t) 
f318</)3(kx = 2, t) 8¢i(kx = 1, t) , 

A3(kx = 0)8~3(kx = 0, t) 

+ a2 8¢1 (kx = 1, t)8¢i(kx = 1, t) ~ 0 

2 For uniformity, we use the notations 
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88cp3(kx = 2, t) 2 ot = A3(kx = 2)8¢3(kx = 2, t) - f32 8¢1 (kx = 1, t) ~ 0 , 

(3.4) 

and their complex conjugates. These equations are valid up to terms of 
order l8¢1(kx = 1, t)15

. Here the a's and (J's are given, to leading order in 
IR/ Re -11, by 

(3.5) 

Finally, one obtains the so-called normal form or amplitude equation for the 
slow mode, 

88¢1(kx = 1, t) = AO,/, (k = l t) 
0t ~1 X > 

-,l8</>1(kx = 1, t)f 0</>1(kx = 1, t) [1 + O(l8</>1(kx = 1, t)l 2
)] , 

(3.6) 

where 

and , is a positive constant which, to leading order in IR/ Re - 11, is given 
by 

= Sv'27r3 (a~+ 17a: + 16a; - 32) (a;+ 1)2 

1 a~ (a? - 1)3/2 (a? + 2)3 (a? + 4)2 (3.8) 
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Above the bifurcation point R > Re (A > 0), the amplitude equation (3.6) 
admits two stable stationary solutions, corresponding to the rotation sense 
of the streamlines of the fluid: 

(3.9) 

where Bo is a constant whose value depends on the initial conditions. The 
fact that the stationary solution still depends on the initial conditions sim­
ply reflects the Galilean invariance in the x-direction which results from the 
periodic boundary conditions imposed on the system. Using relation (3.9), 
one can compute the explicit form of the fast modes for kx = 0, ±1, ±2. Ap­
plying the inverse transform T-1(kx) (eq. (2.1)) to the vector ocp±(kx) = 
( D</Jf, D</Jt, 8</Jt) and taking its inverse Fourier transform, one gets the ex­
plicit expression for the stream function in real space. To O(R/Rc - 1), we 
obtain 

7/J!(x, y) 

(3.10) 

where we have set 18¢1! = l8¢1( kx = 1)±1. Using relations (2.10), the 
velocity profiles can now be obtained in a straightforward manner. We find 

47!" 
u!(x, y) = sin(27ry) =f ( 2 ) !8¢11 sin (21rx/ar - Bo) cos(27ry) 

ar + 2 

_ Rc(kx = 1)2 

18¢ 
1

2 [l _ 
(a;+2)2 1 

- (a; 1
4
)2 cos (47rx/ar - 2Bo)] sin(21ry) . 

(3.11) 
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Figure 3.1: Density plot of the stream function, eq. (3.10), for R = 15, 
ar = 2 and Bo = 0. For the sake of clarity, a vector plot of the velocity field 
is also included. 

± Rc(kx = 1) I ( [ . 
V 5t(x, y) = ± (a;+ 

2
) 8¢1 kx = 1) 1 sm (21rx/ar - Bo) 

4 7f • ] + R (k _ ) cos (21rx/ar - Bo) sm(21ry) 
ar c x - l 

(a;+~~~=:+ 4)2 l8¢1(kx = 1) 1
2 

sin (41rx/ar - 2Bo) cos(21ry) . 

(3.12) 

A density plot of the stream function (3.10) is given in figure 3.1 for R = 15, 
ar = 2 and Bo = 0 where, for the sake of clarity, a vector plot of the velocity 
field is also included. We note that the flow has an ABC-like topology [49], 
with closed streamlines (eddies), open ones and separatrices between them. 

We recall that the above results rest on the three-mode approximation. To 
check the validity of this basic assumption, we have solved numerically the 
incompressible nonlinear hydrodynamic equations for ar = 2, using standard 
techniques [50]. Figure 3.2 compares contour plots of the stream function 
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0.0 0.5 1.0 1.5 2.0 

Figure 3.2: Stationary state contour plot of the stream function for R = 15, 
ar = 2 and 00 = 0. The full and dashed lines correspond to the theoretical 
prediction (eq. (3.10)) and numerical results, respectively. T he discrepancy 
is less than 5%. 
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0.05 'Pst(x, Y = 3/4) 

0 

-0.05 
0 0.5 1 1.5 2 

Figure 3.3: Horizontal profile of the stationary state stream function, with 
y = 3/4, as a function of the coordinate x for R = 13, ar = 2 and Bo= 0. The 
full and dashed lines represent theoretical predictions obtained by using an 
estimation of the critical Reynolds number based on five-mode (eq. (2.28)) 
and three-mode (eq. (2.27)) approximations, respectively. The diamonds 
correspond to numerical results. 
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thus obtained with its corresponding theoretical counterpart, eq. (3.10), 
for R = 15. Given the relatively large distance from the critical point 
(R/ Re - l ~ 17%), the agreement is much better than expected, the dis­
crepancy remaining below 5%. Surprisingly, the agreement does not improve 
as we consider smaller values of the Reynolds number. This is shown in fig­
ure 3.3, where both the numerical and theoretical horizontal profiles of the 
stream function (at a fixed value of the vertical coordinate, y = 3/4) are 
depicted for a value of the Reynolds number R = 13. The discrepancy now 
exceeds 10%. To understand the origin of this unexpected behavior, we note 
that the value of the critical Reynolds number that we have used to evaluate 
the stream function (eq. (3.10)) is based on the three-mode approximation 
(eq.(2.27)). As shown before, the accuracy of the value of Re in the latter 
is about 0.4%, which is acceptable so long as the distance from the critical 
point (R/ Re - 1) remains much larger than 0.4%. But when R = 13, the 
distance from the critical point is about 1 % which is of the same order as the 
accuracy of Re. This explains the relatively larger discrepancy observed in 
figure 3.3. To overcome this difficulty, one has to compute a more accurate 
value of the critical Reynolds number, based for instance on the five-mode 
approximation. As is well known [47], this correction concerns only the value 
of Re, and in no way compromises the validity of the amplitude equation 
(3.6) and its corresponding solution, eq.(3.10). This is illustrated in figure 
3.3, where excellent agreement with the numerical result is obtained if we 

use Ri5\kx = 1) as the critical Reynolds number. For smaller values of R, 
one can numerically compute the value of Re to the accuracy required and 
use it as an input in the amplitude equation (3.6). 

So far, we have limited ourselves to the analysis of the deterministic equa­
tions, i.e., we have neglected possible noise terms. In principle, there is 
no difficulty in taking into account the noise contributions as well, except 
that the amplitudes of the field variables (8¢1 , 8¢2 , 8¢3) are now directly 
related to the amplitude B of the noise, which is typically a small para­
meter. The relevant fast variables are O(B 112), whereas the slow variables 
8¢1(kx = 1, t), 8¢i(kx = 1, t) are O(B 114). Keeping this in mind, one can 
repeat all the calculations above in the presence of noise. A detailed discus­
sion of the stochastic adiabatic elimination of the fast variables is given in 
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Appendix B, following [48]. To leading order in l8¢1(kx = 1, t)I, one finds 

88</Ji(kx = 1, t) 
at 

88</Ji(kx = 1, t) 
8t 

= )..8cp1(kx = 1, t) 

,l8¢1(kx = 1, t)l28¢1(kx = 1, t) + e(t), 

= ).. 8</>i(kx = 1, t) 

, l8¢1(kx = 1, t)l2 8</>i(kx = 1, t) + e*(t). 

(3.13) 

The functions ~(t) and its complex-conjugate C(t) are Gaussian white noises 
with zero means and correlations given by 

where 

({Ct) ect')) 

(e(t) C(t')) 

and M is the total mass of the system, 

0, 

B8(t - t'), (3.14) 

(3.15) 

(3.16) 

The results derived in this section are based explicitly on the incompressibil­
ity assumption. However, as discussed in the Introduction, this assumption 
is inconsistent with the very foundations of the fluctuating hydrodynamic 
formalism. On the other hand, we have presented in the previous chapter 
(Section 2.3) numerical evidence that in the vicinity of the bifurcation point 
the system behaves basically as an incompressible fluid. We therefore ex­
pect that the Langevin equation (3.13) should remain valid for R sufficiently 
close to Re. We shall clarify this important issue in the next section. 
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3.2 Nonlinear Fluctuations in 
Compressible Flow 

Let us now consider the compressible hydrodynamic equations (2.3)-(2.5) 
for which we need to specify an equation of state. Since the system is 
isothermal, we simply set 

2 
p = cs p' (3.17) 

where Cs is the isothermal speed of sound. As in the previous section, we 
start with the linearized (fluctuating) hydrodynamic equations around the 
reference state {po, Vst}, where V 6 t is given by eq.(2.8). Setting 

p Po+ 6p, 
V Vst + 8v, (3.18) 

and scaling lengths by Ly, time by Ly/cs , 8p by Po and 8v by the speed of 
sound cs , one obtains the dimensionless linear fluctuating equations (2.33)­
(2.35) in Fourier space (Section 2.2). We recall that R is the Reynolds 
number (defined in eq.(2.12)), 

€ - T/ 
- Po Cs Ly' 

(3.19) 

and 

a= (/TJ. (3.20) 

The functions Fkx, ky and Gkx, ky are Fourier components of the noise terms, 
with covariances given by eqs.(2.38) and (2.39). 

For the sake of clarity, we first focus on the deterministic behavior, i.e., 
we drop for the moment the noise contributions in the evolution equations 
(2.33)-(2.35). Furthermore, we shall limit ourselves to the three-mode ap­
proximation, i.e., we shall neglect the modes with lkyl 2: 2, for the very same 
reasons that we have discussed for the incompressible case. With these as­
sumptions, eqs.(2.33)-(2.35) reduce to a system of nine coupled equations. 
It can then be checked that the change of variables 

DptJt) Dpk.,,l(t) ± DPkx,-l(t) 

8utJt) = 8ukx, l (t) ± 8ukx, -1(t) 

8vt(t) 8vkx,1(t) ± 8vkx,-1(t) 
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leads to a partial diagonalization of the evolution equations, i.e., the equa­
tions for the variables { 0Pkx,O, op,;_:,;, OUkx,O, ou,;,x, ovt} decouple from the 
rest. Furthermore, their associated eigenvalues turn out to remain strictly 
negative, regardless of the value of the Reynolds number R, so that they are 
not relevant for the onset of the convective instability. We therefore focus on 
the remaining four variables {opt, out, Ovkx, Ovkx,O}. Defining the vector 

one readily finds 

where the matrix C(kx) is given by 

21rikx 
- 41r2e:(1 + ak; + k;) 

- 41r2e:akx 
0 

21ri 

-41r2e:akx 
-41r2e:(1 j- a + k;) 

1re:kxR 

(3.22) 

(3.23) 

(3.24) 

The analysis can be simplified to some extent by recalling that the parameter 
E: is small within the limits of validity of the hydrodynamic regime [43]. 
Furthermore, we only consider strictly sub-sonic flows, so that we restrict 
the analysis to a parameter domain where 

E: « l and e:R = uo/ Cs « l. (3.25) 

Accordingly, we evaluate the eigenvalues of the matrix C(kx) perturbatively, 

(3.26) 
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After some algebra, one finds, to 0(€2), 

5;3(kx) = 

5;4(kx) = 

21ri J1 + k~ - 21r2 (a + 1) €(1 + k;), 

- 2 1r i J 1 + k~ - 2 1r2 
( a + 1) € ( 1 + k;) . (3.27) 

The eigenvalues >-1 (kx) and >.2(kx) correspond to dissipative viscous modes, 
while 5;3(kx) and 5;4(kx) are related to the propagation of damped sound 
waves. It can then easily be checked that the real parts of 5;2(kx), 5'3(kx) 
and 5;4(kx) are always negative, whereas there exists a critical value of the 
Reynolds number, given by 

-2 

Rc(kx) = 2 tn2,,,. l + kx (0 k-2 1) yL,,. < X < l J1 - k~ 
(3 .28) 

for which 5;1(kx) vanishes. This yields the limit of stability of the corre­
sponding mode. 

Remarkably, the above expression of the critical Reynolds number is iden­
tical to the one obtained in the incompressible case, cf. eq.(2.27). In fact, 
detailed analysis shows that the relation (3.28) is exact, i.e., it is indepen­
dent of€, at least within the framework of the three-mode approximation. 
On the other hand, if the modes ky = ±2 are taken into account as well, a 
lengthy calculation ( using Maple) leads to 

R(5)(k ) = R (k ) [1 + _ k~ (k; +_3) i-l/
2 

+ 0 ((u0 /c )2) 
C X C X 2 ( k~ + 4 )2 ( k~ - 1) S 

-2 
(0 < kx < 1) . (3.29) 

This is again equivalent to the corresponding result obtained for the incom­
pressible case (eq. (2.28)), the correction being 0(€2). In p·articular, the 
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first mode to become unstable corresponds to \kx\ = 1, provided ar > 1. 

We note that the matrix C is singular for kx = 0, when one of its eigen­
vectors vanishes. This is the mode bvo,o, which is identically zero because 
of linear momentum conservation. Accordingly, in what follows we shall 
concentrate on the case kx -/= 0, looking for a similarity transformation 
S(kx)C(kx)S-1 (kx) which diagonalizes the matrix C(kx). For consistency, 
here again we perform the calculations perturbatively, i.e., we expand S(kx) 
in powers of c: 

(3.30) 

Note that this method constitutes an alternative to the multiple time scale 
perturbation theory [51] that was generalized by Schmitz and Cohen [20] in 
order to study the Benard instability in a compressible fluid. 

Since the explicit form of the eigenvalues is known up to O(c2), we only 
need to evaluate S(kx) (and its inverse s-1(kx)) up to the same order. De­
spite this simplification, the general expression of S(kx) is quite involved: 

S(kx) = 

c(21r + W) i kx i(21r + W) 

41rkx(l + k;) 21r(l + k;) 21r(l_+ k;) 21rRk; 
c(21r - W) i kx i(21r - W) 

41rkx(l + k;) 21r(l + k;) 21r(l + k;) 21rR~; 

-21riV -21rikx - 21ri 
41rcRkx (3.31) 

}1+~; 

21riU -21rikx -21ri 
41rcRkx 

J1+k~ 

Its inverse, also to O(c2
), is given by 

g-l (kx) = 
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Here 

and 

21rc:R2k3 
X 21rc:R2k3 

X i i 

W(l + ki) W(l + ki) 41rJ..1 + ki 41rJ1 + ki 
i1r(21r - W) i7r(21r + W) ikxU ikxV 

w w 41r(l + ki)3/2 41r(l + ki)3/2 
i1rkx(21r - W) i'lrkx(21r + W) iU iV 

w 
i1r Rk; 

w 

w 41r(l + ~i)3/2 41r(l + kj)3/2 

_ i1rRk; c:Rkx c:Rkx 
w 81r(l + k;)3/ 2 81r(l + ki)3/2 

U Vl + k; + i1rc(u + 1)(1 + k;) , 

V Vl + ki - i1rc:(a + 1)(1 + k;) , 

W= 41r2 + 2k2 1 - ~i R2 
xl + ki 

(3.32) 

(3.33) 

We are interested in the nonlinear evolution equation near the instability 
threshold. The calculations follow exactly the same steps as in the in­
compressible case (Section 3.1). But, of course, they are even more in­
volved and lengthy than in the previous instance. We will only give a brief 
sketch of the intermediate steps. We start by taking the Fourier transform 
of the fluctuating hydrodynamic equations (2.3)-(2.5). Using the change 
of variables (3.18) and (3.21), we derive the nonlinear fluctuating equa­
tions for 8hkx. We then apply the transformation S(kx) to the latter, 
obtaining an infinite set of coupled nonlinear equations for the variables 

( 8¢1 (kx), 8¢lkx), 8cps(kx), 8</>lkx)) = 8¢k,,(t) = S(kx) · 8hkx. Close to the 

bifurcation point R ~ Re , the modes 8¢1(kx = 1) and its complex conju­
gate exhibit a critical slowing down, since \(kx = 1) ~ 0. We can therefore 
proceed to an adiabatic elimination of the other fast modes 8¢1 (kx # ±1), 
8¢2, 8¢3, and 8¢4, limiting ourselves to leading order in l8¢1(kx = 1)1 (see 
the paragraph preceding eq. (3.13)). The final result is a set of two cou­
pled Langevin equations for the slow mode 8¢1(kx = 1, t) and its complex 
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conjugate 8¢i(kx = 1, t): 

88¢1(kx = 1, t) 
ot 

88¢i(kx = 1, t) 
ot 

with 

>.8¢1(kx = 1, t) 

i'l8¢1(kx = 1, t)l2 8¢1(kx = 1, t) +l(t) 

>.8¢!(kx = 1, t) 

i'l8¢1(kx = 1, t)l 2 8¢i(kx = 1, t) + l*(t) , 
(3.34) 

- - uo [ 2 2 ] 2 a; + 1 ( R
2

) ,\ = .X1(kx = 1) = .A - 1 + O(u0/cs) :::::i 41r c 2 ( 2 2
) 1 - R~ 

Cs ar ar + 
(3.35) 

and 

(3.36) 

Here ..\ and I are given by eqs. (3.7) and (3 .8), respectively. The functions 
l(t) and its complex-conjugate l*(t) are Gaussian white noises with zero 
means and correlations given by 

with 

\ l(t) {(t')) 

\ ((t) {*(t')) 

0, 

138(t - t')' 

where Band A are given by eqs. (3.15) and (2.39), respectively. 

(3.37) 

(3.38) 

Although the form of the Langevin equations (3.34) is the same as the 
one obtained for the incompressible case, eqs. (3.13), the two sets are nev­
ertheless not equivalent since their coefficients are clearly different, even at 
the leading order in c. The main reason for this apparent discrepancy is 
related to the fact that, for the incompressible case, the analysis has been 
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carried out by scaling the velocities by uo, whereas for the compressible case 
they have been scaled by c8 , the velocity of sound. If we now revert to 
the former scaling, i.e. we perform the change of variables t -+ t c5 /uo, 
{u,v}-+ uo/c5 {u,v}, then eqs. (3.34) lead to 

8¢1(t) = uo 8</>1(t) [1 + O(u6/c;) J (3.39) 
Cs 

Remarkably, this result shows that, to leading order in c:, the evolution 
of fluctuating compressible and incompressible hydrodynamic equations are 
governed by the same slow mode, at least for values of the Reynolds number 
close to its critical value. 

Let us first consider the macroscopic behavior. Using eqs. (3.35), (3.36) 
and (3.39), one can go back step by step and derive the evolution equations 
of the hydrodynamical velocities near the instability threshold. It can then 
easily be checked that, to leading order in c:, the compressible stationary 
velocity profiles are given by their incompressible expressions, eqs. (3.11) 
and (3.12). To check this important result, we have solved numerically the 
full nonlinear compressible hydrodynamic equations and compared the re­
sult with analytical expressions obtained for the incompressible case. A 
typical result is shown in figure 3.4, where Ust(X, y = 1/ 4) as a function of 
V5 t(X, y = 1/4) is depicted for R = 15, c: = 10- 2 and ar = 2. Given the 
relatively large values of the Reynolds number (R/ Re -1 ~ 17%) and c:, the 
agreement is very good, the discrepancy remaining below 5%. 

We now concentrate on the behavior of the fluctuations, as described by the 
Langevin equations (3.34). The associated Fokker-Planck equation reads 

8P(8¢1, 8¢i, t) 
at 

+ 

For the stationary distribution, one finds 
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0.5 Ust (y = 1/4) 

0 

-0.5 
0.81 

-----------

0.84 

I 

I 

Vst (y = 1/4) 

0.87 0.9 

Figure 3.4: Vertical versus horizontal components of the stationary state 
velocity field with y = 3/4. The full line corresponds to theoretical predic­
tions, as given by eqs. (3.11) and (3.12), whereas the dashed line is obtained 
by solving numerically the compressible nonlinear hydrodynamic equations. 
The parameters are R = 15, ar = 2, Oo = 0 and € = 10- 2

• The discrepancy 
is about 5%. 
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with 

(3.42) 

where erfc denotes the complementary error function. With the help of this 
result, one readily gets 

(3.43) 

Away from the bifurcation point (X < < 0) the quartic term in (3.41) is 
negligible, so that the distribution is Gaussian and 

- ) AR2 a4 (a2 +2) 
\l8¢1(kx = 1)12 G ~ 21r2 (R~(kx = ~) _: R2) (a; + 1) (3.44) 

The fluctuations thus behave as l8¢1(kx = 1)1 ,....., O(A112
). Recall that the 

parameter A is inversely proportional to the total number of particles in the 
system, so that A < < 1 ( cf. eq. (2.39)). As one approaches the bifurcation 
point, the Gaussian character of the distribution is gradually lost. Right at 
the bifurcation point, >. = 0, one has 

/l8¢1(kx = 1)12)- = 2car [Rc(kx = l)A]
112

, 
\ >-=O "'(7f 

(3.45) 

which shows that the fluctuations now behave as l8¢1(kx = 1)1 ,....., O(A114). 

The enhancement of fluctuations and the change of the probability law at 
the bifurcation point are a direct manifestation of the breaking of the spatial 
symmetry associated with the emergence of convective patterns. 

On the other hand, the fast modes 8¢1(kx f:. ± 1) , 8¢2, 8¢3 and 8¢4 con­
tinue to remain Gaussian, regardless of the value of the Reynolds number. 
Detailed analysis shows that their contribution to nonequilibrium statisti­
cal properties of the fluid remain of the order of u5f c~ . In other words, 
the fluctuation spectrum of hydrody~amic variables is determined mainly 
by the statistical properties of 8¢1 ( kx = 1) and its complex conjugate. For 
instance, the static velocity autocorrelation function is found to satisfy the 
equation 

1r
2
(a; + 1) / - 2) [ ( 2) J (8vk · 8v_k) - 2A = a; (a;+ 2)2 \l8¢1(kx = 1)1 1 + 0 (uo / cs) , . 

(3.46) 
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where the second term on the left-hand side is the equilibrium contribution 
and ( 18¢i(kx = 1)12) is given by eq. (3.43) . 

It is instructive to study the Gaussian limit, R < < Re, where the linearized 
Langevin equations, eqs. (2.33)-(2.35), remain valid. As has been shown 
in Section 2.2, eq.(2.52), they lead to the following expression for the static 
velocity autocorrelation function, in the particular case kx = ky = 1: 

AR2 a2 

(8v1,1 · 8v-1,-1)G - 2A = 2 (R~ _ R 2 ) (:; + 2) (3.47) 

Now, the insertion into eq. (3.46) of the Gaussian form of (lc5¢1 (kx = 1)12), 

as given by eq. (3.44), leads to precisely the same result. We thus con­
clude that our general expression ( eq. (3.46)) remains valid in the Gaussian 
regime R < < Re, despite the fact that it has been derived for R in the close 
vicinity of the bifurcation point (R ~ Re). 

To check the validity of our theoretical results, we have simulated the non­
linear fluctuating hydrodynamic equations (2.3)-(2.5) for different values of 
R, setting ar = 2, c = 10-2 and A = 10-3 /256 ~ 3.9 x 10- 6. The esti­
mated statistical error remains below 5% for R :S 10, but grows rapidly as 
we consider higher values of R, reaching about 13% for R ~ Re· Above 
the bifurcation point, R;:: Re, the stationary distribution has two maxima, 

located at 8¢,f(kx = 1) = ±/fii, which correspond (up to a phase factor) 
to the deterministic stationary solutions of the amplitude equation (3.9). 
Because of the presence of noise terms, the system visits these states in a 
rather random fashion, resulting in a sizeable dispersion. This is specially 
true for R close to Re, which is precisely the situation where our theoretical 
predictions are expected to be applicable. Under these circumstances, ob­
taining reliable statistics requires prohibitively large computing times. We 
have therefore limited the numerical simulations to values of Reynolds num­
bers R ~ Re. 

The results are presented in figure 3.5, together with both the complete 
solution and the linearized solution, eqs. (3.46) and (3.47), respectively. 
The linear theory (Gaussian limit) shows quantitative agreement for values 
of R/ Re up to about 86%, but significant discrepancies start to show up 
as R -+ Re where the theory leads to diverging correlation functions (see 
eq. (3.47)). This is not the case for the complete solution, eq. (3.46), 
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which exhibits perfect quantitative agreement for R/ Re up to 95%. A rela­
tively small discrepancy of about 8% is however observed for higher values 
of R. Although this discrepancy remains within the range of the estimated 
statistical errors, its systematic occurrence requires some clarification: It 
is important to recall that the results derived in this section are valid to 
O(u~/c~). Now, by definition u0 /cs = Re (see eq. (3 .25)), and since we 
have set c = 10-2, Rec ~ 0.13 at the bifurcation point. This relatively 
large value of Rec might well be the source of the observed discrepancy. To 
check the validity of this argument, it is useful to perform the simulations 
all over again for a smaller value of c. However, since the relaxation time of 
hydrodynamical modes grows as c-1 , reaching the same degree of statistical 
accuracy as in the previous cases requires much longer running times. For 
this reason we decided to perform only one more simulation right at the 
critical point, R = Re, setting c = 10- 3 . The theoretical prediction for 
the nonequilibrium part of the velocity correlation function is 2.31 x 10-6 . 

The simulation leads to 2.24 x 10-6 with an estimated statistical error of 
about 15%. The discrepancy is now about 3%, much smaller than in the 
case c = 10-2 . 
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F igure 3.5: Fourier transform of the nonequilibrium part of the static veloc­
ity autocorrelation function, normalized by the corresponding equilibrium 
part, as a function of R/ Re. The solid and dashed curves represent the com­
plete and the linearized solutions, eqs. (3.46) and (3.47) , respectively. The 
black dots correspond to numerical results obtained by the simulation of the 
nonlinear compressible fluctuating hydrodynamic equations. The parameter 
values are ar = 2, E = 10- 2 and A = 10- 3 /256. The estimated statistical 
error is about 13% for the last data point . 
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Chapter 4 

Spurious Diffusion in 
Particle Simulations of 
Kolmogorov Flow 

The purpose of this chapter is to point out a subtle problem concerning the 
nonequilibrium fluctuations that appear in Kolmogorov flow. It is shown 
that the center of mass of the system undergoes a spurious diffusion that 
corrupts the statistical properties of the flow. 

Let us return to the fluctuating hydrodynamic equations t hat describe the 
flow, 

{) p 
8t = -V · (pv), (4.1) 

[)~tv) = -V · (pvv) - Vp - V · u + Fext. (4.2) 

We recall that p is the mass density, p the hydrostatic pressure and er the 
two-dimensional stress tensor, 

CTij = - 'f/ ( ! :: + : :~ - Dij V · v) - ( Dij V · v + Sij . (4.3) 

S is a random tensor whose elements { Sij} are Gaussian white noises with 
zero mean and covariances given by [12] 

(Sij(r,t)Ske(r',t')) = 2ksTo8(t - t')8(r-r') 

[rJ(DikDje + 8u8jk) + (( - rJ)DijDke] (4.4) 
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where To is the (uniform) temperature. For simplicity, it is assumed that 
the shear and bulk viscosity coefficients r, and ( are state-independent, i.e., 
they are constant. The external force 

Fext = Fosin(21rny/Ly)lx. (4.5) 

For sufficiently small F0 the mean stationary flow essentially follows the 
external field, 

V 5t = uosin(21rny/Ly)lx, 

FoL; 
uo = . 41r2n2r, 

(4.6) 

For sufficiently high Fo this laminar flow becomes unstable and gives rise to 
the familiar rotating convective patterns. 

As we have already pointed out in Section 2.1, when imposing a force field, 
one has to keep in mind that in microscopic simulations as well as in real 
systems, the fluid is made up of individual particles. Hence what one can 
impose is not a bulk force, but rather an acceleration field acting on the 
particles. Since the density of particles is fluctuating, we conclude that the 
external field in the momentum equation (4.2) is also a fluctuating quantity: 

F ext= p(x, y) ao sin (21rn y/ Ly) l x, (4.7) 

where ao is the amplitude of the imposed acceleration field. Moreover, since 
the external field in Kolmogorov flow is space-dependent, the force acting 
on a particle depends on its exact position so that the total force F(t) in 
the x-direction will also be fluctuating, even though the total number of 
particles is conserved. As a result, the center of mass linear momentum 
lx(t) undergoes a stochastic motion driven by a scalar force F(t): 

8Jx(t) = ~ {Lx dx {Ly dyp(x,y,t) sin(21rny/Ly) = F(t). (4.8) 
at Lx Ly lo lo 

In strictly subsonic regimes the flow behaves essentially as an incompressible 
fluid (as follows from the preceding chapters), so that the average density is 
uniform in space, (p) = PO· It then follows from eq. (4.8) that (F(t)) = 0. 
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To find the correlation function (F(t)F(t')), we consider the spatial aver­
age of the hydrodynamical equations (4.1) and (4.2) over x. The corre­

sponding spatially averaged density p(y, t) = L ft" dx p(x, y, t), and the 

y-component of the velocity v(y, t) = L f
0
Lx dx vy(x, y, t), are not affected 

by the external constraints, i.e., they assume their equilibrium form. In 
particular, in the stationary regime one has (p) = po and (v) = 0, inde­
pendent of the value of a0 . To study the fluctuations around this state, 
we introduce the deviations tip(y, t) = p(y, t) - p0 , tiv(y, t) = v(y, t) and 
tip(y, t) = p(y, t) - (p). These obey the following linearized equations : 

with 

{)tip 
at 

8tiv 
Poat 

8tiv 
-po 8y ' 

_ 8 tip + ( 
77 

+ () 82 
tiv _ 8 Syy ' 

ay ay2 ay 

(Syy(y,t)Syy(y1, t1
)) = 2 kf~

0 
(11+()ti(t-t1)8(y-y1

). 

(4.9) 

(4.10) 

(4.11) 

To close this set of equations, we need to specify the equation of state. Since 
the fluid is isothermal , we simply set 

tip = c; op, 

where c5 is the isothermal speed of sound. 

(4.12) 

The stochastic differential equation for the fluctuating force F(t) now fol­
lows easily by multiplication of ( 4.9) and ( 4.10) by sin (2 1r n y / Ly) and 
cos (2 1rn y/ Ly), respectively, followed by integration over y. One obtains: 

d2 F(t) 17 + ( 41r2n2 dF(t) 41r2n2c; F() = ()() 
dt2 + Po Li dt + Li t t ' 

(4.13) 

where B(t) is a Gaussian white noise with zero mean and variance given by 

kB To (21rn) 4 

(e(t)()(t')) = LxLy (rJ + ()a5 Ly ti(t - t'). (4.14) 

We conclude that F(t) is a Gaussian non-Markovian process, that obeys the 
equation of a Brownian damped harmonic oscillator. The exact form of the 
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force correlation is easily obtained from (4.13) and (4.14), but the final ex­
pression is rather lengthy. On the other hand, the validity of hydrodynamics 
can only be guaranteed if the parameter 

c = TJ 
Po Cs Ly 

(4.15) 

remains small [43]. Accordingly, to leading order inc, the force correlation 
reads: 

( ()F( )) _ 2 2 ksTo (- 47r
2
n

2 rst) (21rncst) 
F t O - p0 a0 N 2 exp L2 cos L 

2m cs y y 
( t 2". 0) , 

(4.16) 

where rs = (TJ + ()/2p0 is the two-dimensional sound damping coefficient, 
N is the total number of particles and m their individual mass. 

Turning to /x(t), which is nothing but the time integral of F(t), we con­
clude that it is a Gaussian stochastic process with zero average and a second 
moment given (again to leading order in c) by 

(J;(t)) = 

{ rs t + (
27rnCs t)] } cos L . 

y 

( 4.17) 

As stated, lx(t) behaves diffusively (in momentum space) with a diffusion 
coefficient given by 

D = lim 
t->oo 

(J';(t)) 
2t 

2 2 ksTo r 
= Poao 2mNc! s· 

( 4.18) 

It is important to note that in real macroscopic systems the actual diffusion 
of the center of mass remains questionable for the following reason. The 
imposition of periodic boundary conditions is one of the basic simplifying 
features of Kolmogorov flow. This is all right for a system of infinite extent, 
consisting of periodically repeated Kolmogorov units, as long as only macro­
scopic properties are concened. However, when the fluctuations are under 
investigation, it is essential to realize that periodic boundary condit ions im­
ply a perfect correlation of the fluctuating forces in the different units. This 
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is obviously unphysical ( except for the theoretical case of a system defined 
on a torus). In any case, the diffusion coefficient D is unobservable in macro­
scopic systems1. 

The situation is entirely different in microscopic simulations where the total 
number of particles N barely exceeds 105 . To estimate the importance of 
the diffusion of the center of mass, and the corresponding effect on the sta­
tistical properties of the system in numerical simulations, we first note that 
the ratio kB T0 /m c~ is of the order of unity. Next, we observe that there is 
a minimum run time for simulations, namely the hydrodynamic relaxation 
time Th ~ LxLy/I's; typical runs last for several times Th , It then follows 
from eq. (4.17) that for large t (i.e., t > Th) the velocity fluctuation (f;) / P5 
of the center of mass is 

( v;(t)) (4.19) 

where no = N / LxLy is the number density. This quantity has to be com­
pared with the spatial average of the mean square flow velocity u;., which 
is of the order of u5/2 (see eq. (4.6)). The relative importance of the cen­
ter of mass diffusion can thus be quantified by the square root of the ratio 
(v;(t)) /u'fn. Using the explicit form of uo (eq. (4.6)) , one finds that for 
t > Th, 

(4.20) 

where ar = Lx/ Ly is the aspect ratio. 

As an example, consider a two dimensional Boltzmann gas for which there 
exists an efficient algorithm, proposed two decades ago by Bird [52], that 
is about 3 orders of magnitude faster than the corresponding traditional 
molecular dynamics simulation. A typical case is a system involving 20 000 
hard disks of diameter d, with Lx x Ly = 2000 x 1000 d2 (i.e. ar = 2 and 
no = 10-2 particles per d2 ), n = 2, Cs ~ 1 and 'T/ ~ 0.3 (in system units, 
where lengths, masses and velocities are scaled by the disk diameter d, the 

1 Let us take the example of a liquid under normal conditions, for which typically 
kB To/me; rv 1, Cs rv 103 m/ s, Ly rv 10- 3 m, £ rv 10-6

' r s rv 10- 6 m 2 
/ s, Po 

10- 3 kg/m2
, poao rv 10- 4 kg/ms2

, and N ~ 1018 
• These values lead to D rv 

10- 38 kg2 /m2 8 3 . 
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particle mass m and the thermal velocity, JksTo/m, respectively). It then 
follows from eq. ( 4.20) that after only one relaxation time, µ( Th) ~ 7 x 10-2 

which is certainly not negligible, all the more so since typical running times 
are 10 to 100 times larger than Th· 

One way to avoid this problem is to increase the number of particles, while 
keeping the number density no = 10-2 particles per d2, since the Bird al­
gorithm is then applicable. However, to reach reasonably small values of µ, 
for instance µ( Th) ~ 10-4 , one has to consider a simulation involving over 
107 particles. Such simulations would require a prohibitively long running 
time with present day computers. 

The only other alternative is to increase the number density as well. For 
a given number of particles, the best strategy is to choose no so that the 
Reynolds number is as high as possible, since this is precisely one of the 
main objectives of numerical simulations [53]. In the case of subsonic hard 
disk flows, the appropriate number density turns out to be about no = 0.27 
particles per d2 [54]. For a system containing 5 · 105 particles, Lx x Ly 
= 960 x 1920 d2 , c5 ~ 1.6 and r, ~ 0.4; µ( Th) is then about 4 x 10- 4, which 
is quite satisfactory. However, a number density no ~ 0.27 corresponds to 
a moderately dense Enskog gas for which the Bird algorithm is no longer 
applicable [55]. Instead, one has to use the traditional hard disk molecular 
dynamics method which, as mentioned before, is about 3 orders of magni­
tude slower than the corresponding dilute gas simulation. Moreover, the 
collision frequency grows linearly with the number density, which further 
increases the run time by at least another order of magnitude. Under these 
conditions, pursuing the simulation for a single relaxation time Th is about 
the best one can achieve with present day computer performances. Although 
such a relatively short simulation might be satisfactory to study the average 
properties of the system, it is certainly not enough to extract the associated 
fluctuation spectrum. 

The discussion above highlights the usefulness of lattice-particle simulations 
for the study of the relatively high Reynolds number flows. But these model 
simulations have their own limitations. Because the motion of particles takes 
place within a restricted geometry ( 4 or 6 linear directions), with the cor­
responding restricted number of velocities, reaching local equilibrium now 
requires many more collisions than in the case of hard disk dynamics [56]. 
As far as macroscopic properties of the system are concerned, this is only a 
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minor problem, since lattice-particle simulations typically run seven orders 
of magnitude faster than hard disk molecular dynamics. The major draw­
back however is that such a long time simulation inevitably increases the 
effect of the center of mass diffusion reported here. This spurious diffusion 
has also been noted very recently by Boon et al. [57] in a. study of the tur­
bulent diffusion in Kolmogorov flow. 

In conclusion, while the foregoing diffusion of the center of mass in Kol­
mogorov flow does not affect the average macroscopic behavior of the system, 
it does vitiate the other statistical properties, and to a significant degree un­
der conditions that are typical for many microscopic simulations. The best 
way to get around this problem is to include in the simulation algorithm an 
ad hoc mechanism that prevents the momentum fluctuations of the center 
of mass. This can be accomplished rather easily in lattice-particle simula­
tions [58], but its counterpart in molecular dynamics simulations is rather 
less obvious. 
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Chapter 5 

Conclusions 

In this brief final chapter, we summarize the main results of Part II of this 
thesis. 

Our initial motivation was to find a solution to the problem of using fluctuat­
ing hydrodynamics or the incompresibility assumption for the study of a fluid 
in the vicinity of the onset of a hydrodynamic instability, as explained in the 
Introduction. The idea was to choose a model that, on the one hand, would 
exhibit hydrodynamic instabilities analogous to those encountered in real 
systems, and, on the other hand, would be simple enough to be amenable to 
a complete analytical treatment . Our choice was Kolmogorov flow, mainly 
because of the periodic boundary conditions associated with it. Also, this 
model exhibits a primary hydrodynamic instability through which laminar 
flow undergoes a transition to a rotating convective pattern 1 . A detailed, 
comparative analysis of this simple model flow has been presented for both 
the compressible and incompressible cases, from equilibrium up to the vicin­
ity of the first instability threshold. The objective has been to understand at 
a more quantitative level the roles of compressibility and fluctuations in the 
onset of the instability, and to deduce some general conclusions regarding 
this aspect. 

Chapter 2 dealt with the study of the statistical properties of the linearized 
Kolmogorov flow. Following a description of the model and a review of its 

1If the nonequilibrium constraint imposed on the fluid is progressively increased, other 
successive, increasingly complex bifurcations appear - leading, finally, to chaotic behavior. 
We have not been concerned here with these secondary bifurcations. 
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macroscopic behavior, a linear stability analysis indicated the location of 
the instability threshold Re in terms of the Reynolds number R of the flow. 
The simplicity of the model permits a detailed analysis of the fluctuation 
spectrum from near equilibrium up to the vicinity of the first instability lead­
ing to convective rolls. For the latter case, the analytical calculations were 
based on a three-mode approximation in which only the Fourier modes with 
wavenumber lkyl ::; 1 are retained; while for the former case we have set up 
a perturbation scheme around the equilibrium. Extensive numerical calcu­
lations allow us to delineate clearly the limits of validity of both regimes. In 
particular, we have shown that the three-mode approximation holds already 
for R/ Re ~ 0.65 and leads to a divergence of the velocity autocorrelation 
as R --+ Re, On the other hand, the simulation of the full nonlinear fluctu­
ating hydrodynamic equations indicates that the validity of the linearized 
hydrodynamic equations can be guaranteed for Reynolds numbers as high 
as R ,::;j 0.9Re. 

It was also shown that the dynamic structure factor of the fluid is prac­
tically unaffected by nonequilibrium constraints. This is not surprising: as 
already discussed in the Introduction, the nonequilibrium constraints are 
expected to affect mainly the viscous, slow modes of the system (the ones 
that are connected to the onset of the instability); or, in terms of the struc­
ture factor, to affect the central (Rayleigh) peak. However, because of the 
strictly isothermal character of Kolmogorov flow, this peak is completely 
absent in the present instance. Therefore, the form factor does not yield 
any information about the nonequilibrium regime. This is compensated for 
by the behaviour of the velocity autocorrelation function, which exhibits 
a purely dissipative viscous regime, together with a "sound propagation" 
regime. While the latter is not affected by the nonequilibrium constraints, 
the former yields valuable information about the nonequilibrium state of 
the system. Also, the static velocity autocorrelation function is found to be 
long-ranged in space, even in the vicinity of equilibrium. 

Another interesting result concerns the validity of the incompressibility as­
sumption which greatly simplifies the mathematical analysis of the problem. 
The compressibility of a fluid mainly affects fast sound modes whereas the 
dynamics of the system near an instability is governed mainly by dissipa­
tive slow modes. This intuitive argument has been used by many authors 
who have considered fluctuating incompressible hydrodynamic equations, or 
even direct ly the corresponding normal form amplitude equations to which 
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random noise terms are added [59] . In these approaches, the characteristics 
of the noise remain arbitrary, because they cannot be related to equilibrium 
statistical properties of the fluid. A more satisfactory approach would be 
to start with the compressible fluctuating hydrodynamic equations. Such 
a procedure, however, proves to be extremely difficult mainly because of 
the problem of boundary conditions. Here again, the relative simplicity of 
Kolmogorov flow allows some further progress to be made in this important 
issue. In this respect, we have shown that in the long-time limit the flow 
behaves as an incompressible fluid , regardless of the value of the Reynolds 
number. However, this does not hold good for the short-time behavior. In 
particular, the incompressibility assumption in general leads to an incor­
rect form of the static correlation functions. The only exception is near 
the convective instability, where we have shown that the incompressibility 
assumption remains valid. 

'rhe pre,blem with this conclusion is that the linearized fluctuating hydro­
dynamic equations, on which the analysis in Chapter 2 is based, are no 
longer valid close to the instability threshold. Although extensive numerical 
simulations have basically confirmed our predictions, a full answer to this im­
portant problem requires nevertheless a nonlinear analysis of the fluctuating 
Kolmogorov flow. This was dealt with in Chapter 3. The case of an incom­
pressible fluid was considered first. A deterministic analysis enables one to 
identify the slow modes and adiabatically eliminate the fast modes, to obtain 
the nonlinear normal form amplitude equation. We could then derive the 
explicit form of the stationary stream function, as well as the corresponding 
velocity profiles, in real space. Numerical studies of the nonlinear hydrody­
namical equations confirm the theoretical predictions. Next, we considered 
the stochastic behaviour in the limit of a weak noise. Using a suitable singu­
lar rescaling of the variables and a "stochastic adiabatic elimination" of the 
fast modes, we showed that the stochastic evolution in the vicinity of the 
threshold is essentially given by two coupled nonlinear Langevin equations 
in Fourier space. Their solutions can be cast in the form of the exponen­
tial of a Landau-Ginzburg functional. The case of compressible Kolmogorov 
flow was considered afterwards. The analysis is simplified by noticing that 
the evolution of a compressible fluid is generally characterized by two dif­
ferent time scales: a slow one, related to the dissipative viscous modes; and 
a fast one, expressing the propagation of ( damped) sound modes. The ratio 
c of these time scales must be a small quantity to ensure the validity of 
the hydrodynamic approach. We thus have at our disposal a natural small 
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parameter, which is used to set up a perturbative formalism. As already 
mentioned, this method represents an advantageous alternative to the mul­
tiple time scale theory [51] that was generalized by Schmitz and Cohen [20] 
in order to study the Benard instability in a compressible fluid. Using this 
perturbation technique, we have shown that the macroscopic behavior of 
the fluid is not affected, up to O(c2), by the compressibility, in agreement 
with the intuitive arguments presented in the Introduction. We then estab­
lished that, to the same degree of precision, the stochastic dynamics of the 
compressible system is also identical to the one obtained for the case of the 
incompressible fluid. These theoretical predictions have been confirmed by 
numerical simulations of the nonlinear fluctuating hydrodynamic equations. 

Finally, in Chapter 4 we discussed a rather subtle problem concerning the 
nonequilibrium fluctuations that appear in the model: owing to the density 
fluctuations in the system, the density of the applied external force is also a 
fluctuating quantity. This leads to a stochastic motion of the center of mass 
of the system in phase space, which, in turn, affects the statistical proper­
ties of the flow. An analytical expression is derived for the corresponding 
diffusion coefficient in phase space. The effect turns out to be completely 
insignificant for macroscopic systems, while it dramatically affects the parti­
cle simulations. Analysing different situations, we showed that its influence 
cannot be eliminated in practice in molecular dynamics simulations, while 
in lattice-particle simulations one may use ad hoc algorithmic procedures to 
diminish its effects. 
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Appendix A 

Light Scattering by 
Hydrodynamic Modes 

An electromagnetic wave propagating in a transparent medium is scattered, 
i.e., it gives birth to small-intensity scattered waves, with frequencies and 
directions that are different, in general, from those of the incident wave. 
Scattering is due to the changes in the disordered motion of the electric 
charges of the medium under the influence of the field of the incident wave, 
resulting in the emission of scattered waves. The variations in the frequency 
of the scattered waves with respect to the incident wave can then be seen 
as Doppler shifts determined by the movement of the particles. 

The fact that the wavelength of visible light is very large compared to molec­
ular sizes and intermolecular distances allows us to formulate a macroscopic 
description of this phenomenon. Light scattering is then regarded as a re­
sult of local fluctuations in the dielectric constant of the medium, which in 
turn are caused by hydrodynamic density fiuctuations1 , and this is precisely 

1 A simple reasoning to show this: A light beam incident on a medium polarizes it; 
the electric charges, accelerated in the field of the wave, radiate light. All the particles 
in an infinitesimal volume element fl V experience essentially the same incident electric 
field; this differs from one fl V to another by a phase factor. If all these small regions were 
optically identical, then the total scattered field ( the sum of all the fields scattered by these 
volume elements) would vanish: the waves scattered from these volumes would be identical 
except for a phase factor, leading to their mutual cancellation when summed. Hence a 
non-vanishing scattered field arises when there are variations in the optical properties of 
different volume elements, i.e., when there are density inhomogeneities (fluctuations) in 
the medium. 
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Figure A.l: Schematic representation of a light scattering experiment 

the point of interest to us. In general, for a fluid (in or out of equilibrium) 
these density fluctuations may diffuse in the medium or may propagate as 
damped sound waves. The latter will result in a shift in the frequency of 
the scattered waves, while the diffusion will only result in a dispersion of 
the frequencies of the scattered waves around the frequency of the incident 
wave. These are the features the Doppler effect is expected to present in this 
case. We present below a simplified macroscopic theory of light scattering, 
that enables us to see how such an optical experiment can be used to get 
information about the hydrodynamic state of a fluid. 

Consider a simple scattering experiment as shown schematically in fig. A. l. 
A non-magnetic, non-conducting, non-absorbing fluid of volume V, with av­
erage dielectric constant c, is placed in the field of a plane, monochromatic, 
polarized incident wave (Ei, Di, Hi, Bi) given by 

Ei(r, t) = Eo ni exp(i(ki · r - wit)] , 

Di= cEi; Bi= JJ,oHi , 

and the source-free Maxwell equations 

BB· 8Di v x Ei = - at i ; v x Hi = at ; 
V · Di = 0 ; V · Bi = 0 . 
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Let (Es, Ds, Hs, Bs) denote the scattered field at a point of the medium 
with an instantaneous dielectric coefficient 

c(r, t) = c + 8c(r, t) . (A.3) 

The scattered fields also satisfy Maxwell's equations, of course. Further, 

(A.4) 

while 

(A.5) 

the term 8c(r, t) Es being negligibly small. We will assume, for simplicity, 
that the detector is immersed in a medium with the same dielectric constant 
c. After some simple manipulations, eqs. (A.2)-(A.5) give for the polarized 
scattered field at the detector 

{ [
Eoni f c5c(r, t') [· ')] ] } E 5 (R, t) = ntnt · V x V x 47rc Jv IR- rl exp i(ki · r - Wit dr , 

(A.6) 

where t' is the retarded time 

t' = t - -ftµo IR - rl . (A.7) 

If the detector is at a large distance R from the scattering medium, we have 

R IR - r l ~ R - r · R , 

so that (A.6) finally leads to 

E 5 (r, t) = nt nt · (kt x kt x ni) 4::R exp [i(kt · R - Wit)]· 

Iv dr exp(iq · r)8c(r, t) , 

where 
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is the scattered wavevector and 

is the momentum transfer, related to the scattering angle e by 

q = 2 ki sin( e /2) . 

(A.11) 

(A.12) 

The fluctuations of the dielectric constant can be expressed in terms of the 
polarizability µ of the molecules of the medium, their molecular mass m and 
the fluctuations of the density: 

8c:(r, t) = 1!_ 8p(r, t) . 
m 

Introducing the spatial Fourier transform of the density fluctuations, 

8p(q, t) = i drexp(iq · r) 8p(r, t) , 

(A.13) 

(A.14) 

and working out the cross products in eq.(A.9), we finally get 

k}Eoµ 
Es(r, t) = -n1 (ni · nJ) 

4
7rcmR exp [i(kf' R-wit)] 8p(q, t). (A.15) 

The time correlation function of Es can be evaluated as 

k4E2µ2 
(E;(R, 0) · Es(R, t)) = 

16
7r;m~c:2R2 (ni · IlJ)

2 exp(-iwit)(8p(q, 0)8p(q, t)). 

(A.16) 

Finally, the spectral density of the light scattered into the detector such that 

is simply one half the Fourier transform of the temporal correlation function 
of the electric field Es, namely, 

k4E2µ2 
I(q,wf, R) = 327r{m~c:2R2 (ni · n1)2 Sq(wJ -wi), (A.17) 

where the spectral density of the hydrodynamic density fluctuations, 

1 100 

Sq(w) = 
2

71" - oo dtexp(iwt)(8p(q, t)8p*(q, 0)), (A.18) 
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is the dynamic structure factor. This is the relation sought: the scatter­
ing that produces a wavevector difference q and frequency shift w in the 
scattered light with respect to the incident one is due to the hydrodynamic 
density fluctuations of wavevector q and frequency w. What is usually mea­
sured in light scattering spectroscopy is J(q, Wf, R) for a given geometry 
(fixed q, R) as a function of w (w1)- Also, the integrated intensity 

l
oo k4E2µ2 

J(q, R) = d!..v1I(q, Wf, R) = 
32 

{ ~ 2R2 (ni · n1) 2 Sq, 
- oo 7f m c 

(A.19) 

with 

(A.20) 

yields information about the mean-square fluctuations of the density for a 
given value of the wavevector. 

As an example, we will focus in what follows on the dynamic structure factor 
for a simple fluid in equilibrium 2 : v = 0 (fluid at rest), p = po (uniform 
density), T = To (uniform temperature), and Fext = 0 (no external forcing). 
This will enable us to understand how the hydrodynamic processes that take 
place in a fluid affect the form of the dynamic structure factor. Small fluc­
tuations around equilibrium are described by the linearized hydrodynamic 
equations 

aop 
at 

aov 
Poat = 

aov 
Poat 

aoT 
at 

-poV · 8v, 

-V8p +77b.8v+((+i)V(V-8v)+F (in 3D), 

-V8p + 77b.8v + (V(V · 8v) + F (in 2D) , 

/3To "' --V -8v +-b.8T + Fr, 
PoCv pocv 

(A.21) 

where F(r, t ) = -V · S(r, t), Fr(r, t) = -V · g(r, t)/ PoCv, /3 = (ap/aT) p, 
and Cv is the isochoric specific heat. S(r, t) is the fluctuating part of the 
viscous pressure tensor, and g(r, t) the fluctuating part of the heat flow. 
They are Gaussian white noises with zero mean and covariances that are 

2 This entails a direct calculation of the temporal correlation functions from the linear 
Langevin equations. This method is used in Chapter 2. 

143 



prescribed by the Landau-Lifshitz theory of hydrodynamic fluctuations ac­
cording to 

(Sik(r, t)) = 0 , 

(gi(r, t)) = 0 , 

(Sij(r, t)Sk1(r', t')) = 

= 
2
k:T [77 (8ik8jt + 8il8jk) + ( ( -1) 8ij8kt] 8(r - r')8(t - t') (3D), 

(Sij(r, t)Sk1(r', t')) = 
2kBT [ ] , ( ') ( ) = -- 77 (8ik8jl + 8il8jk) + (( - 77) 8ij8kl 8(r - r )8 t - t 2D , 

p 

(gi(r, t)gk(r', t')) = 2;,,kBT8(r - r')8(t - t') , 

(Sij(r, t)gk(r', t')) = 0 . (A.22) 

Eqs.(A.21) is modified slightly by taking into account the fact that 

8p = a8 p + (38T , (A.23) 

where 

<> = (!: t = 7c;, fJ = (!;)' = poc,(c,,/T0 )
1
1

2 
(' ~ 1 r , (A.24) 

Cs = (op/op)s being the velocity of the sound and 'Y = ep/cv, We take the 
divergence of the momentum equation and introduce the new variable 

8x = V · 8v. (A.25) 

Then 

o8p 
8t = -po8x, 

o8x 
Po 88t = ( r/2 ( 1) 1/2 -,c;.6.8p - PoCs ~ 1 ~ .6.8T + 

+ ( ( + 177) .6.8x + V · F (in 3D) , 

o8x 
Po o8t = ( r/2 ( 1) 1/2 -,c;.6.8p - pocs ~ 1 ~ .6.8T + 

+ (( +77).6.8x + V · F (in 2D), 
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88T (To)1;2('-l)1/2 "" - = -Cs - -- 8x+-6;.8T+Fr. 
8t Cv 'Y PoCv 

(A.26) 

Taking the Fourier transform of these equations, 

88p(q,t) _ 8 ( ) ot - -po X q, t , 

88x(q, t) 
8t 

2 ( )1/2 ( 1)1/2 
;;

0
q28p(q,t)+q2cs ~ 1

~ 8T(q,t)-

- (+ 417!3q28x(q, t) +iq ·F(q, t) (in 3D), 
Po 

88x(q, t) 
8t 

= ;;o q28p(q, t) + q2cs (~) 1/2 ( 'Y ~ 1) 1/2 8T(q, t) -

- ( + 17 q28x(q, t) + iq · F(q, t) (in 2D) , 
Po 

88T(q, t) 
8t 

- -cs(::) 1/2 ( 'Y ~ 1) 1;2 8x(q, t) -

- _:5'_q28T( q, t) + Fr( q, t) . 
pocv 

(A.27) 

The variances of the noises F(q, t) and Fr(q, t) can be deduced from the 
Fourier transforms of the expressions in (A.22) for (Sij(r, t)Sk1(r', t')) and 
(gi(r, t)gk(r', t')). 

We are interested in the correlation function (8p(q, t)8p*(q, O)); therefore, 
we solve the linear Langevin-type equations (A.27) through the so-called 
direct method, i.e., we find directly the correlation functions 

Cpp(q, t) = (8p(q, t)8p*(q, 0)) , 

Cxp(q, t) = (8x(q, t)8p*(q, 0)) , 

Crp(q, t) = (8T(q, t)8p*(q, 0)) . 
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Multiplying eqs.(A.27) by 8p*(q, t) and taking averages (fort> 0) leads to 

8Cpp __ C at - . Po XP, 

where 

8Cxp c~q2 2 2 ( Cv) 1/2 
-!:)- = - -Cpp - 2rq Cxp + q Cs T, sCrp 

ut Po, o 
(in both 3D and 2D) , 

s = ( 'Y ~ 1 ) 1/2 , 

r = ( + h (in 3D) , 
2po 

r = ( + 7/ (in 2D) , . 
2po 

and the thermal diffusivity coefficient 

We obtained (A.29) using the relations 

(Fi(q, t )8p*(q, 0)) = 0 (t > 0) , 

(Fr(q, t)8p*(q, 0)) = 0 (t > 0) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

implied by causality. The linear system of equations (A.32) allows us to ex­
press the correlations Cpp, Cxp, and Crp as functions of their initial values, 
i.e. , their static, equilibrium values. 

It is not necessary to find the exact (and rather complicated) solution of 
the system of equations, as long as we are only interested in the hydro­
dynamic regime. Let us first consider the underlying physics, in order to 
understand the relative importance of the different terms. rq2 , Arq2 , and 
c5 q have the dimensions of inverse time. The first two are related to the 
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dissipative viscous and thermal processes, while the third is connected to 
sound propagation. For a dilute system, elementary kinetic theory gives 

(A.33) 

where l is the mean free path. That is, the hydrodynamic equations are 
valid for spatial lengths 

i.e., as long as 

Introducing the parameter 

1 Jrl ~ - >> l, 
q 

2rq 
E:=--' 

Cs 

we see that the hydrodynamic description is valid as long as 

c << 1. 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

Although this criterion was justified for the case of a dilute fluid, experiments 
show that its validity extends to dense fluids as well. 
We will simplify eqs.(A.29) by introducing, besides c, the parameter 

, Ar 
a = 2r = 0(1). (A.38) 

We also scale time according to 

(A.39) 

and use the dimensionless variables 

(A.40) 
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Then eqs. (A.29) become 

0 

1/, 
0 

-1 
-€ 

-s 

0 ) ( c-- ) s . c;; 
-ac Ct1> 

(A.41) 

whose eigenvalues and eigenvectors will be found perturbatively. The char­
acteristic polynomial 

A 3 + c( 1 + a) A 
2 + ( 1 + ac2

) A + ac / 1 = 0 

has, to O(c2) , the solutions 

ca 
A1 = - - ' 

'Y 

A23 = ±i+ w - c(a+ 1) 
' 2, 2 

The corresponding left eigenvectors are, to O(c), 

while the right eigenvectors are 

<I>i = s
2 

( 1, 0, -~) , 

<I>2 = _!__ (1, i,, 1 s) , 2, 

<P3 = 2~ (1 , -i,, ,s) 

(A.42) 

(A.43) 

(A.44) 

(A.45) 

It can be shown easily that the first eigenvalue is associated with the diffusive 
propagation of entropy; hence <I>1 is called entropic or thermal diffusivity 
mode. The second and third eigenvalues are associated with the propagation 
of damped pressure (sound) waves, and therefore <I>2 and <I>3 are called sound 
modes. The condition c < < 1 is therefore just the condition that sound waves 
propagate faster than they are damped. 
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Finally, 

(A.46) 

In particular, reverting to the original variables, 

Cpp(q, t) [ 1 ~ 1 
exp(-Arq2t) + ~ exp(-rsq2t) cos(c8qt)] Cpp(q, 0) 

l!!L exp(-r8 q2t) sin(csqt)Cxp(q, 0) 
Csq 

+ Po (cv) 1/2 ('Y - 1) 1/2 [- exp(-Arq2t)+ 
Cs to I 

+ exp(-f8 q2t) cos(c5 qt)] Crp(q, 0) . (A.47) 

Here 

(A.48) 

is the so-called sound damping coefficient. The standard procedure now is to 
use eqs.(A.27) (multiplied, respectively, by 8p*(q, t), 8x*(q, t) and 8T(q, t) 
and averaged), as well as Stratonovich's relationships3 to find the values of 
the static moments and correlators (j8p( q)j2), (8x( q)8p*( q)), (8T( q)8p*( q)) , 
(l8x(q)j2), etc. But here we shall simply take advantage of the fact that we 

3Consider a set of n Langevin equations: 

d;i = f;(et1, ... , Ctn)+ {;(t) , i = 1, .. , n 

where {;(t) are Gaussian white noises with zero mean and covariances 

({;(t){;(t')) = Q;;8(t - t') , 

and /i are analytic functions of a1, ... , Ctn. Then: 

(ai(t){;(t')) = { Q;;/
2

' 
0, 
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are concerned with the fluctuations around equilibrium, so that Cpp(q, 0), 
Cxp(q, 0) and Crp(q, 0) have their equilibrium values4 

Hence 

Cpp( q, 0) = p5kaToxr V , 
Cxp(q, 0) = O , 

Crp(q, 0) = O. 

2 ['Y - 1 2 p0kaToxrV -,- exp(-Arq t) 

+~exp(-rsq2 t)cos(csqt)] , 

and the structure factor reads: 

4 Consider a function J(r, r') = f(r - r') and its Fourier transform 

f ( ) J J iq•r - iq,r' f( ')d d 1 q, - q = e e r - r r r . 
V V 

With a change of variables {for a simplex domain V) 

r+~ ' ' R = -
2
-, s = r - r , V x V --+ V x V , 

we obtain 

f(q, -q) = i dR [, eiq·s f(s)ds = (
2
~)

3 
J,, eiq·• f(s)ds . 

In particular, if f(r - r') = o(r - r'), 

f(q, - q) = V. 

For the equilibrium correlation functions (60] 

(op(r)op(r' )) = p6kBToxT8(r - r') , 

(8p(r)8v(r ')) = 0 , 

(8p(r)8T(r')) = 0 . 

This leads directly to eqs. (A.49). 
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The spectrum of the scattered light thus consists of three Lorentzians - the 
so-called Rayleigh-Brillouin spectrum. The central peak at w = 0 (width 
ATq2), called the Rayleigh peak, arises from diffusive entropy fluctuations 
(i.e., it corresponds to the thermal diffusivity mode). The two symmetric 
spectral lines that are shifted in frequency by ±c5 q respectively (and have a 
width r 5 q2) ·are the Stokes and anti-Stokes components of the Brillouin dou­
blet; they correspond to (thermally excited) propagating sound waves. As 
may be seen directly, the Rayleigh-Brillouin spectrum gives information on 
both thermodynamic quantities ('y, c5 , XT) as well as transport coefficients 
( AT, K,, rs)- As already pointed out at the beginning of this Appendix, this 
structure of the spectrum can easily be understood in terms of the Doppler 
effect. Indeed, a perturbation in density of wavevector q propagates in the 
fluid through two mechanisms. The first is sound propagation with velocity 
cs, parallel and anti-parallel to q, which leads to a Doppler shift ±csq in 
the frequency of the scattered light (i.e., to the Brillouin peaks). Also, the 
microscopic mechanism responsible for the damping of the sound waves (the 
diffusion of the sound wavefront) results in a finite width of the spectral 
lines (i.e., a dispersion of the frequencies of the scattered waves around the 
peaks Wi ± csq). This is, of course, also a Doppler effect, but one arising 
from a disordered motion. The second mechanism of thermal diffusion of 
density does not modify the frequency (i.e., the peak is centered at w = 0), 
but leads to a finite width of the spectral line. For more details, we cite 
Refs. [61], [62], and [63]. 

We note that this form of the scattered spectrum is obtained as long as 
the fluid is far from any critical point, i.e., the fluctuations are small and 
the linear formalism is valid. In the vicinity of a critical point, fluctuations 
are greatly enhanced and become long-ranged; the linear formalism breaks 
down and the hydrodynamic modes become coupled nonlinearly. This is 
reflected in the spectrum of the scattered light through the appearance of 
critical opalescence. We also note that the boundary effects have been ne­
glected in the above formalism. 

It is interesting to ask what happens in nonequilibrium systems. As soon 
as the fluid is driven out of equilibrium, the hydrodynamic fluctuations be­
come long-ranged in space and time, and this will affect the structure of 
the dynamic form factor in a specific manner that carries information on 
the nonequilibrium constraints imposed on the system. For example, let 
us consider a case that has been extensively studied both theoretically and 
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experimentally, namely, a fluid subjected to a stationary temperature gradi­
ent. In the first approximation, the temperature gradient may be expected 
to cause an asymmetry in the Brillouin lines, since the sound waves prop­
agating parallel to the temperature gradient will probe regions of different 
temperatures ( an effect that is proportional to the temperature gradient). 
For sufficiently large temperature gradients, the Rayleigh line is also mod­
ified ( an effect of the second order); it is found to be a superposition of 
two Lorentzians centered at w = 0. One of these is still caused by a heat 
mode and has a width Arq2, though its amplitude is enhanced; the other 
Lorentzian has a width r,q2 

/ po and is due to a viscous mode that couples to 
the density in the presence of the temperature gradient. 

Many of the theoretical predictions of the Landau-Lifshitz fluctuating hy­
drodynamics have been well verified through light scattering experiments 
[15]. There remains, however, a paucity of experimental results, because 
of numerous practical and technical complications. Given these limitations 
on laboratory experiments, another useful approach is by direct computer 
simulations [19]. The overall conclusion arrived at i·s that, except for certain 
extreme conditions (e.g., high Mach number shock waves [64]), the hydro­
dynamic equations remain surprisingly robust 5 . Hence they may be used 
in describing fluids far from equilibrium, with the added advantage of their 
relative simplicity as compared to more fundamental approaches [9, 11]. 

5 See, however, Ref. [65] which reports on the failure of the hydrodynamic theory in 
describing plane Poiseuille flow for a dilute gas. 
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Appendix B 

Adiabatic Elimination of 
Fast Variables 

The :fluctuations of the hydrodynamic variables can be studied by adopting 
a Langevin approach and incorporating the effect of thermal agitation in a 
phenomenological manner, by the addition of a purely stochastic term to the 
macroscopic hydrodynamic equations. This term is not arbitrary, of course: 
for :fluctuations around equilibrium it must be consistent with standard lin­
ear response theory and the :fluctuation-dissipation relationships that follow 
from this. Its amplitude is inversely proportional to the square root of the 
system size, and therefore this term is small in any macroscopic system 
(i.e., we are in the so-called weak noise limit); its effect is small as long as 
the macroscopic state of the system is stable, but becomes macroscopically 
important when the stability of the system is altered, e.g., in the vicinity 
of a bifurcation. One can say, in general, that the relative :fluctuations are 
greatly enhanced in the vicinity of an instability point, but the concrete way 
in which this happens depends essentially on the form of the nonlinearities 
in the system. 

The study of the behavior of the system in the vicinity of a critical point is 
greatly simplified because the actual dynamics takes place in a restricted, 
low-dimensional geometry ( on the so-called center manifold), and the gov­
erning dynamical laws also get simplified, as will be explained below. While 
these effects can be understood relatively unambiguously in a deterministic 
system, their settlement and interpretation are more difficult in the case 
of stochastic evolution. In order to clarify these ideas, we start by review-
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ing some basic elements from the theory of deterministic dynamical systems, 
and subsequently turn to the more complicated case of stochastic dynamical 
systems in the limit of weak noise. 

B.1 Deterministic Systems 

Consider a general autonomous n-dimensional dynamical system 

x = f(x), x = {xi}i=l, ... ,n E IRn, f: IRn ---t lRn, (B.l) 

where f is a nonlinear function of the x/s. Suppose that (B.1) admits a 
steady-state solution (a fixed or critical point) xo, 

J(xo) = 0. (B.2) 

An important question concerning the fixed point is that of its stability; this 
can usually be reduced to the study of the stability of the trivial solution of 
the associated linear system 

(B.3) 

where D f( x o) is the Jacobian matrix off at the point x0 . The critical point 
xo is asymptotically stable if all the eigenvalues of the stability matrix A have 
negat ive real parts. 

Another questions refers to the form of the phase trajectories of the dy­
namical system (B.l) in the vicinity of the fixed point. There is a great 
difference between a hyperbolic fixed point (i .e., for which none of the eigen­
values of A has a real part that is zero) and that of a non-hyperbolic fixed 
point. In any case, the central role in the analysis is played by the invariant 
manifolds. A surface S C mn is called an invariant manifold 1 for the dy­
namics (B .1) if any phase trajectory that intersects S at a certain instant of 
time is entirely contained in S. We look first at the invariant manifolds of 
the associated linear dynamics (B.2), as they are relevant to the structure of 
the invariant manifolds of (B.1). Obviously, each sub-space spanned by an 
eigenvector of the stability matrix A is an invariant manifold for the linear 
dynamics around Xo . It is useful to regroup these elementary manifolds into 

1 S has to have the structure of a differentiable manifold of some rank 2: 1, but we do 
not go into these technicalities here. 
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three larger invariant manifolds Es, Eu and Ee, of dimensions s, u and c 
respectively: 

(B.4) 

Es, Eu and Ee are spanned by the s, u and c eigenvectors of the stability 
matrix A that correspond, respectively, to eigenvalues of A with positive, 
negative and zero real parts. They are called the stable, unstable and center 
manifolds, as the trajectories on them respectively approach the fixed point, 
flow away from it, and neither approach nor move away from it in the long­
time limit. It is useful to introduce a linear transformation of (B.2) that 
separates these behaviors, 

(B.5) 

where As is as x s matrix that only has eigenvalues with negative real parts . 
Corresponding statements apply to the matrices Au and Ac. Returning to 
the nonlinear dynamics specified by (B.1) , this can be written down in a 
simpler form by shifting the fixed point to the origin and then using the 
transformation T to change variables to u, v, w: 

( 
u ) ( As 0 1 = ~ ~u 

0 ) ( u ) ( Ns(u, v. w) ) 
0 v + Nu(u, v, w) 
Ac W Nc(u, v, w) 

(B.6) 

where the N's stand for the nonlinear terms. It can then be demonstrated, in 
general, that the fixed point (u, v, w) = (0, 0, 0) possesses ans-dimensional 
local stable invariant manifold ws, a u-dimensional local unstable invariant 
manifold wu, and a c-dimensional local invariant center manifold we, that 
intersect at the origin and to which the Euclidean spaces Es, Eu, and Ee 
are respectively tangent at the origin. More precisely, 

ws = {(u , v, w) Ems X mu X mc1 V = ht(u), w = h~(u), 

ht,w(O) = 0, Dht, w(O) = 0, !lull sufficiently small} , 

w u {(u, v, w) Ems X mu X mc1 u = h~(v), w = h!(v), 

h~,w(O) = 0, Dh~,w(O) = 0, llvll sufficiently small} , 

we {(u, v, w) Ems X mu X mc1 u = h~(w), V = h~(w), 

h~,v(O) = 0, Dh~,v(O) = 0, llwll sufficiently small} (B.7) 
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Moreover, ws and wu have the asymptotic properties of their local tangent 
spaces Es and Eu respectively. Note that if the fixed point is hyperbolic 
(Ee is a null space), then the solutions of the nonlinear vector field (B.6) 
in a sufficiently small neighbourhood of the origin behave in essentially the 
same way as the solutions of the associated linear vector field. For a non­
hyperbolic fixed point, however, the nature of the solutions in the center 
manifold we cannot in general be inferred from the nature of the solutions 
in the local tangent space Ee. A deeper analysis is required, along the lines 
described below. 

We will assume, for simplicity, that there is no unstable dynamics in the 
neighbourhood of the origin, i.e., wu = 0; this is a rather drastic limitation, 
but it can be shown [66] that the inclusion of the unstable directions does 
not modify in any essential manner the formal aspects of the theory to be 
presented. Therefore, consider vector fields of the form 

w = Acw +Nc(w, u), 

u=Asu+Ns(w,u), 

( w' u) E JRC X IRS ' 

Nc(O , 0) = 0, N5 (0, 0) = 0 , 

DNc(O, 0) = 0, DN5 (0, 0) = 0 . (B.8) 

Here Ac [resp., As] is a c x c [resp.,s x s] matrix whose eigenvalues have zero 
[negative] real parts, and the N's represent nonlinear terms. As we have 
seen, there exists a local invariant center manifold for (B.8), 

we = {(w, u) E JRC x JRSI u = h(w), h(O) = 0, Dh(O) = 0, 

11 w 11 sufficiently small} . (B.9) 

The dynamics of (B.8) restricted to the center manifold is given, for l!wll 
sufficiently small, by the c-dimensional vector field w satisfying 

w = Acw + Nc(w, h(w)) . (B.10) 

The dynamics of (B.10) near w = 0 determines that of (B.8) near (w, u) = 
(0, 0). Indeed, the type of stability of the zero solution of (B.10) (whether it 
is stable, or asymptotic stable, or unstable) dictates the stability of the zero 
solution of (B.8). Further, if (w(t), u(t)) is some solution of (B.8) starting 
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sufficiently close to the origin, then there exists a solution 1/J(t) of (B.10) 
such that, in the long-time limit, 

w(t) = 1/J(t) + O(e--Yt) , 

u(t) = h('lj)(t)) + O(e--yt) , (B.11) 

where 'Y is the smallest absolute value of the (negative) real parts of the 
eigenvalues >.A. of As, 

'Y = min{-[Re(>.A.]} . (B.12) 

The meaning of all this is that for trajectories which start outside the center 
manifold, the dynamics in the initial stages evolves rapidly, being dictated 
by the eigenvalues of As in directions normal to the center manifold. Con­
sequently, these trajectories "contract" onto the center mauifol<l on a fast 
time scale of the order of 'Y-1. The subsequent evolution takes place on 
the center manifold, on a slow time scale, and is governed by the nonlinear 
terms Nc(w, h(w)). 

The equation of the center manifold is obtained by imposing the condition 
that it be invariant with respect to the dynamics (B.8), 

Dh(w)[Acw + Nc(w, h(w)] - A 5 h(w) - N 5 (w, h(w)) = 0, (B.13) 

which is in general a complicated nonlinear partial differential equation. 
However, for most physical applications, the nonlinear terms are generally 
polynomials; (B.13) then admits a solution in powers of w, to any desired 
degree of accuracy. We note in this context that this polynomial expansion, 
in its lowest order, is equivalent to that obtained through the adiabatic 
elimination of variables [46, 47]. This method takes into account the rapid 
contraction of the phase space trajectories onto the center manifold, and 
exploits the fact that, at each instant of time, the "fast-variables" u "follow" 
the movement of the "slow variables" w - i.e., they relax rapidly to values 
dictated by the instantaneous, slowly varying values of thew's. This permits 
one to set u ~ 0 in eq.(B.8), to obtain 

A5 u + N5 (w,u) = 0. (B.14) 

This is solved for u (iteratively in powers of w), and the result is inserted 
in the first equation in (B.8), to obtain the evolution equation for the slow 
variables w. 
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Some of the low-order nonlinear terms in (B.10) can sometimes be eliminated 
through a nonlinear transformation on w (a similarity transformation), lead­
ing to the so-called normal form for (B.10) . 

B.1.1 Center Manifolds Depending on Parameters 

In many physical situations, the dynamical system (B.8) depends on a set 
of p parameters collectively denoted byµ, i.e., 

W = Acw + Nc(w, u, µ), 
u = A 5 u + N 5 (w, u, µ) , 

( w' u, µ) E JRC X ]R8 
X JRP ' 

Nc(O, 0, 0) = 0, Ns(O, 0, 0) = 0 , 

DNc(O, 0, 0) = 0, DNs(O, 0, 0) = 0 . (B.15) 

The eventual dependence of the matrices Ac and As on µ can be circum­
vented, as will be shown below. 

In order to handle such a parametrized system, one considers the parameters 
µ as new dependent variables, i.e., 

w = Acw + Nc(w, u, µ) , 

µ=0' 
il= Asu+Ns(w, u, µ). (B.16) 

Although this seems to be just a formal operation, it is fact an important 
step from the point of view of bifurcation theory. According to the discus­
sion in the foregoing, there exists a local center manifold of the fixed point 
(w, µ, u) = (0, 0, 0) of the dynamical system (B.16), given by 

we = {(w, µ, u) E JRC x JRP x IR5
I u = h(w, µ), h(O, 0) = 0, 

Dh(O, 0) = 0, llwll sufficiently small, 11µ11 sufficiently small} 

(B.17) 

The vector field (B.16) relaxes rapidly to the center manifold dynamics, 

w = Acw + Nc(w, h(w, µ), µ) , 
µ= 0. 
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It is very important that the center manifold exists in a sufficiently small 
neighbourhood of the origin (0, 0) in both wandµ. Indeed, it is possible that 
bifurcations of the point (0, 0) appear (see below), i.e., stationary solutions 
can be created or destroyed by perturbing nonhyperbolic fixed points. The 
fact to remember is that all the bifurcating solutions will be contained in the 
center manifold. For computing the center manifold u = h(w, µ), we impose 
the condition that it be invariant under the dynamics (B.16): this gives 

Dxh(w, µ) [Acw + Nc(w, h(w, µ), µ)] - A 8 h(w, µ) - N 8 (w, h(w, µ), µ) = 0 , 
(B.19) 

which is very similar to eq. (B.13). 

Finally, note that when the parameters are considered as new dependent 
variables , Lerms like µw and µu become nonlinear terms and get included 
in Ne and Ns, respectively, and not in Ac and A 8 • 

B.1.2 Local Bifurcation of a Fixed Point 

Let us assume for simplicity that the local center manifold of the fixed point 
(w, µ, u) = (0, 0, 0) of the dynamical system (B.15) is one-dimensional 
( c = 1), and also that there is only one parameter in the system (p = l). 
Then the orbit structure near (0, 0, 0) is determined by the associated center 
manifold equation (B.18), that takes the simple form 

w = f(w, µ), 

with 

f(O, 0) = 0 

(the fixed point condition) and 

of ow (0, 0) = 0 

(B.20) 

(B.21) 

(B.22) 

(the zero eigenvalue condition). Depending on the values ofµ, eq.(B.20) 
admits, in general, different stationary points 

w = 0---+ f(w, µ) = 0 - w = w(µ) (B.23) 

of different stabilities. We say that the hyperbolic fixed point (w, µ) = 
(0, 0) of a one-parameter family of the one-dimensional vector field (B.20) 
undergoes a bifurcation at µ = 0 if the flow for w near zero and µ near zero 
is not qualitatively the same as the flow at µ = 0. 
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• Two flows 
x = f(x), iJ = g(y) (x, y E JR) 

are said to be qualitatively equivalent if there is a diffeomorphism that 
transforms orbits of the first flow to orbits of the second flow, pre­
serving the time-orientation (but not necessarily the parametrization 
by time). Therefore, the existence of bifurcating solutions means the 
existence of at least two types of trajectories that are not qualitatively 
equivalent - those for µ = 0 and those for µ =/=- 0. 

• In practice, the hyperbolic fixed point (w, µ) = (0, 0) ofa one-dimensio­
nal vector field is a bifurcation point if 
- either more than one curve of fixed points (B.23) passes through 
(0, 0) in the (w, µ) plane, 
O'T' 

- only one curve of fixed points passes through (0, 0), and it lies entirely 
on one side of the lineµ= 0 in the (w, µ) plane. 

• The condition that a fixed point is hyperbolic is a necessary but not 
sufficient condition for a bifurcation to occur in one-parameter families 
of vector fields. 

The foregoing comprises the fundamentals to be recalled before we go on 
to the case of stochastic dynamic evolution in the presence of a weak noise. 
The connection of the latter to the deterministic case will become clear as 
we proceed. For further details we cite Refs. [66]-[68]. 

B.2 Adiabatic Elimination of Stochastic 
Variables in the Limit of a Weak Noise 

As mentioned in the beginning of this Appendix, in studying the stochastic 
behavior of a macroscopic system, one is generally led to a set of parameter­
dependent nonlinear Langevin equations in the limit of a weak noise: 

Wi = fi(W, µ) +c:1l2Fi(t), i = 1, .. . n , 

W = {Wih=I, ... n, € << 1, 

(Fi(t)) = 0 , (Fi(t)Fj(t')) = Qi/>(t - t') . (B.24) 

The corresponding Fokker-Planck equation reads 

aP(W, t) a c: a2 

at = - awi [fi(w, µ)P(W, t)J + 2 Qij awiawj P(W, t) . (B.25) 
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One is usually interested in the asymptotic, stationary behavior of the sys­
tem, in the limit of a vanishingly small noise. For finite times t it has 
been proven [69] that the stochastic trajectory W(t) and the deterministic 
(macroscopic) trajectory W(t), given by 

(B.26) 

stay close to each other almost everywhere, at least if this is initially the 
case. More precisely, 

IIW(t) - W(t)J I ,..., O(c1
/

2
) , Vt~ tinitial , t finite. (B.27) 

Moreover, for the case of a ID system, the stochastic trajectory tends to the 
deterministic one in the limit c ---t O for any time - including the asymptotic 
limit t - oo - provided that the macroscopic state is unique and globally 
stable (this includes states of marginal stability). However, nothing can be 
said, in general, about the way in which the stochastic trajectory approaches 
the deterministic one in the long time limit, 

limt-+oollW(t) - W(t)II,..., 0(/) . (B.28) 

Things are even more complicated when the deterministic counterpart ex­
hibits a critical behavior, i.e., in the vicinity of a bifurcation point. (See 
[48] for a clear illustration of this point through a simple example.) As 
long as the system is far from a critical point, the fluctuations of all the 
variables have a Gaussian character and behave like c1/ 2 . When the critical 
point is approached, the fluctuations get amplified and eventually lose their 
Gaussian character. Also, the fluctuations of the slow modes and of the fast 
modes acquire different c-scaling behaviors. 

In order to clarify this problem, we shall limit ourselves to the case that 
is relevant for our study of Kolmogorov flow in Chapter 3. (We refer to [48] 
for more general cases.) The stochastic dynamics of concern is described by 
the set of nonlinear Langevin equations 

0
-::-;1 = >.1 W1 - a1 W1 (W2 + W;) - /31 WiW3 + c112 F1 , 

8W2 * 1/2 at = >-2W2 + a2W1W1 + c F2, 

8W3 2 1/2 at = >.3W3 - /32W1 + c F3 , (B.29) 
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and their complex conjugates 2. Here the a's and /3's are constants (usually 
positive), A2 and A3 are always strictly negative, and A1 is negative below 
the critical point and becomes zero at the critical point. F1, F2, Fs and 
their complex conjugates are Gaussian white noises with zero mean and 
covariances given by 

(Fi(t)Fj(t!)) = 0 , 

(Fi(t)F}(t')) = Q/jij8(t - t') , i, j = 1, 2, 3 . (B.30) 

The corresponding Fokker-Planck equation for the associated (transition) 
probability reads 

8P(W1, W2, Ws, Wi, W2, W3, t) 
at 

- a~
1 

{[A1 W1 - o:1(W2 + W;)W1 - /31 Wi*Ws] P} + c.c. 

- 8~2 [(A2W2 + o:2IW112) P] + c.c. 

-
8

~
3 

[(AsWs - /32Wf) P] + c.c. 

( 
82 82 82 ) 

+E Qi 8W18Wt + Q2 8W28W2 + Qs awsaw; p , (B.3l) 

where c.c. stands for the complex conjugate of the corresponding preceding 
expression. We find the correct E-behavior of W1, W2, Ws by introducing 
the scaled variables 

(B.32) 

and choosing the exponents a and b < l such that the following requirements 
are satisfied at all times, including the asymptotic limit t -+ oo: 

• Cl: P(x, y, z, x*, y*, z*, t) is normalizable in the limit E-+ O; 

• C2: P does not factorize trivially into a product of 8-functions in the 
variables; 

• C3: all the moments of x, y and z are finite for E-+ 0 . 
Note that this condition excludes the possibility of Brownian processes 
(with or without drift) for the variables x, y, z. 

2 An asterisk denotes the complex conjugate . 
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Also, in order to explore the vicinity of the critical point, we set 

(B.33) 

where A is some negative constant, and the exponent c is a measure of the 
distance to the critical point. When c = 0, we are far away from the critical 
point, and increasing c means an approach to the threshold; there exists a 
critical value of c (yet to be determined) which delimits the critical regime 
from the noncritical one. 

Let us first consider a Gaussian initial condition for P, i.e., a scaling a= b = 
1/2. Then, to leading order inc, eq.(B.31) reduces to a linear Fokker-Planck 
equation for the scaled variables, 

(B.34) 

Therefore the probability distribution retains its Gaussian nature. The evo­
lution equations for the variances are easily deduced to be 

d 
dt {xiXj) = (,\ + Aj)(xixj) , 

:t (xix;)= (>.i + Aj)(xixj) + Qi8ij, {x, y, z} = {xih =l ,2,3· 

(B.35) 

It is then seen that the scaling a = b = 1/2 is still valid for the asymptotic 
stationary state, provided the variances of the scaled variables do not diverge. 
This clearly depends on the eigenvalues Ai, i = 1, 2, 3. Indeed, fort --t oo, 

(i,j= 1,2,3), (B.36) 

and so the Gaussian law is valid as long as the stationary state is asymptoti­
cally stable. At the critical point we have >.1 = 0, and therefore (lxl2)st --t oo 
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according to the above formulas; it is clear that a different scaling behavior 
now comes into play. 

We now introduce the scaled variables defined in (B.32) and (B.33) in (B.31), 
to obtain 

aP(x, y, z, x*, y*, z*, t) 
at 

{-:x { [Accx - a1c1-bx(y + y*) - .811o
1-bx*z] P} 

- ~ [ ( A2Y + a2cl+b-2alx l2) P] 

- :z [ ( A3Z - .82cl+b-
2
ax

2
) P] } + c.c. 

(Q 2a-l 0
2 

2b-l a2 
2b-l a2 

) 
+ lC oxox* + Q2c oyoy* + Q3c ozoz* p. 

(B.37) 

Consider also the evolution equation for the reduced distribution P(x, x*, t) 
obtained from (B.37) by integrating with respect toy, z, y* and z*: 

oP(x, x*, t) 
at 

-:x { [ Accx - a1c1-bx ( (y jx, x*)+ (y*[x, x*)) 

,81c1-bx*(zlx, x*) J P(x, x*, t)} 
Q 2a-l 82 P(x, x*, t) 

+ lC oxox* ' (B.38) 

where (ylx, x*) [resp., (y*jx, x*), (zlx, x*)] is the mean of y [resp., y*, z] 
given x, x*. That is, 

(ylx , x* ) = j yP(x, y, z, x*, y*, z*, t)dy dz dy* dz* 

= P(x, x*, t) j yP(y, z, y*, z*, tjx, x*)dydzdy* dz*. (B.39) 

Analogous expressions hold good for (y*[x, x*) and (z lx, x*). 

Imposing the conditions (Cl) - (C3) on P(x, y, z, x*, y*, z*, t), P(x, x*, t) 
and P(y, z, y*, z*, tjx, x*), it is found that a and b satisfy the following set 
of inequalities: 
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(i) 
1 
2 ~ a, b < l (B.40) 

Proof Let us suppose the contrary - for example, that b < 1/2 and a is 
arbitrary (the case a < 1/2 and b arbitrary is analogous). (C2) requires 
that the processes are not dominated by the noise, and therefore 

1 + b - 2a < 0 --+ a > 1/2 . 

The equation for the conditional probability, as deduced from 
leading order inc:, reduces to 

8P(y, z, y*, z*, tlx, x*) 
at 

(B.37) to 

and this (with a fixed drift term) is a Brownian process for {y(t), z(t), y*(t), 
z*(t)}, contrary to the condition (C3) . 

(ii) 
1 

a> 2 (B.42) 

Otherwise, the process { x ( t), x* (t)} is purely stochastic, as seen from (B.38) . 

(iii) 
b<a (B.43) 

Otherwise, as seen from (B.37), the process {x(t), y(t), z(t), x*(t), y*(t), 
z* ( t)} is purely deterministic. 

Taking these constraints into account, t he leading terms in c: in (B.37) are 

8P(x, y, z,~*, y*, z*, t) { {-:y [(A2y+ a 2c:l+b-2a lx12)p] 

+ :z [ ( A3Z - (hcl+b- 2ax2
) P]} + c.c. 

+c:2b- 1 ( Q2 a:;y* + Q3 a:;z* ) P} [1 + O(c:r)], 

(B.44) 
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with some r > 0. Therefore, integrating with respect to y, z, y* and z*, 

(B.45) 

It is seen that at this order in c the variables x and x* do not evolve in time: 
we will call them slow variables, while y, z , y*, z* are the fast variables. 
Combining (B.44) and (B.45), one obtains for the conditional probability 

8P(y, z, y*, z*, tlx, x*) 
at = 

+ :z [ ( A3z - /J2cl+b-2ax2) P] } + c.c. 

+ c2b-1 ( Q2 a:;y* + Q3 a:;z*) p} [1 + O(cr)]' 

(B.46) 

which describes the way in which the fast variables y, z, y*, z* follow the 
slow ones x, x*. If we are only concerned with the evolution of the slow vari­
ables, it suffices to consider the stationary solution to which the conditional 
probability relaxes on a time of the order of unity, namely, 

In order to get a nonsingular behavior in the limit c - 0, it is necessary 
that 

We also note that if 

1 
1 - 2b = 0 , or b = -2 . 

1 + b- 2a = 0, 
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or a= -

4' 

(B.48) 

(B.49) 



these values of a and b satisfy all the restrictions involved. One can therefore 
adopt them as the relevant scaling laws. Correspondingly, (B.47) becomes 

P,,(y, z, y', z'lx, x') = (,,:~~~/' exp ( ~: ly+ ~:lxl'l
2

) 

x exp ( ~: lz - ~:X'I') . (B.50) 

This allows us to calculate the conditional averages that appear in eq. (B.38) 
for the slow variables, namely, 

(ylx, x*) = (y*lx, x*) = ->..:2 
lx\2 , 

( I *) {h 2 
Z x, X = A3 X • (B.51) 

We thus obtain, finally, a closed equation for P(x, x*, t): 

aP(x, x*, t) 
at = cl/2 { -:x { [ Acc-1/2x - ,lxl2x] P(x, x*' t)} 

Q 
82 P(x, x*, t)} 

+ l oxax* ' 

where 

It is now obvious that the critical value of the exponent c is 

1 
Ccritical = 2 , 

i.e., the critical behavior manifests itself when .\1 = O(c112
). 

(B.52) 

(B.53) 

(B.54) 

We are ready, now, to compare these results with those presented earlier 
for the deterministic system. First of all, we distinguish between two time 
scales: a slow one for the variables x and x*; and a fast one for y, z, y* and 
z* . In the vicinity of the bifurcation point, for >..1 = O(c112), we obtain a 
closed equation for the probability density of the slow variables x, x*, by 
taking into account the way in which the fast variables follow the slow ones, 
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eqs.(B.50) and (B.51). The expressions in (B.51) for the conditional aver­
ages correspond to the deterministic adiabatic elimination of fast variables 
(as described in the foregoing Section, and according to the deterministic 
part of eqs.(B.29)) . Finally, 

Pst(x, x*) = N - 1 exp [ i
1 

( Acc-l/2 lxl2 
- ~lx14)] (B.55) 

with 

N = ~ J7l' Qi/, exp (A2c2c-l / ,Q1) erfc (-Acc- l/2 / v',Qi) , 
(B.56) 

where erfc stands for the complementary error function. It can easily be 
shown that the Gaussian character of the fast variables is preserved, but 
their critical fluctuations are enhanced relative to their "far-from-critical" 
expressions (B.36) . Therefore, only the slow variable is characterized by 
critical non-Gaussian fluctuations, eqs.(B.51), (B.54) and (B.55), when c ~ 
1/2. 
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