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1
Introduction

1.1 Brief Introduction to Machine Learning

Machine learning is a very interdisciplinary field, which comes as a result of the

interaction between three main areas of research, computer science and engineering,

applied mathematics and statistics. It is used in a wide range of applications, including

speech and handwriting recognition, detection of credit card fraud, game playing

and identification of spam-mail. It has been gaining popularity over the last years

in medical research. An application in this area can be found for example in the

preliminary diagnosis of a patient’s disease in view of instantaneous selection of the

treatment while awaiting conclusive test results. Machine learning has also been used

in the pharmaceutical industry, in the discovery process of new active compounds.

Two major branches can be distinguished in the machine learning framework:

supervised learning and unsupervised learning. Supervised learning is the term

applied in the machine learning field to techniques used to find a function mapping

pairs of inputs and desired outputs based on some training data. Inputs are typically

of the discrete, continuous or mixed types. Outputs are in general of two types,

continuous, in which it is called a regression problem, or a vector of class membership,

in which it is then called classification or discriminant analysis. After training the

procedure with a training dataset, new samples can be classified into one of the

predefined classes.

1



2 Chapter 1. Introduction

In the field of unsupervised learning, the focus of the researcher is different. The

idea is now to find or establish the existence of classes or clusters present in the data

at hand. This second situation is the topic of cluster analysis (Johnson and Wichern,

1992).

Discriminant analysis is a well-known procedure which dates back to the first

half of the twentieth century (Fisher, 1936). Since then, several procedures have

been proposed which enhanced the original ideas of Fisher. Flexible discriminant

analysis (Hastie, Tibshirani and Buja, 1994), penalized discriminant analysis (Hastie,

Buja and Tibshirani, 1995), mixture discriminant analysis (Hastie and Tibshirani,

1996), functional linear discriminant analysis (James and Hastie, 2001), are some of

these methods to mention a few. Nowadays, data-mining procedures such as random

forests (Breiman, 2001), neural networks (Haykin, 1999) and support vector machines

(Vapnik, 1998) are also gaining popularity in the supervised learning field and their

good performances have been shown in several applications.

1.2 Longitudinal Data Analysis

In health related research one is often confronted with longitudinal data, where

measurements of individuals are taken repeatedly over time. Since observations

coming from the same subject tend to be more alike than observations from different

subjects, they are said to be correlated. In order to be able to draw valid conclusions,

one needs to account for this correlation when analyzing this type of data.

In order to model continuous, normally distributed longitudinal outcomes, the

linear mixed effects model (Verbeke and Molenberghs, 2000) has become the most

commonly used tool. This model uses both population average (or fixed) and subject-

specific (or random) effects. Furthermore, it marginalizes to a multivariate normal

model with directly interpretable mean and covariance parameters.

In case of a discrete or categorical outcome variable, extensions of the generalized

linear model can be used. Two important representatives are generalized estimating

equations or GEE (Liang and Zeger, 1986) and the generalized linear mixed model or

GLMM (Breslow and Clayton (1993), Molenberghs and Verbeke (2005)).

1.3 Scope of this Thesis

In this thesis we will focus on the classification of multiple-class longitudinal data. The

motivation for this research was found in pre-clinical pharmaco-electroencephalogram
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(EEG) studies aiming at characterizing psychotropic drug effects on the basis of

spectral EEG analysis.

For thousands of years, psychoactive substances (i.e. pharmacological agents that

act on the central nervous system) have been used by humans in all known societies.

Despite the wide variety of effects that such substances can exert on the central

nervous system, attempts have been made to categorize drugs into psychoactive classes

based on therapeutic efficacy, such as antidepressants, antipsychotics, anxiolytics,

hypnotics and stimulants. In this thesis, we will base our classification procedure

on this categorization. Alternative classifications have been proposed, however so

far with limited preclinical predictive value for clinical usability. For a number of

psychiatric disorders more or less effective reference drugs exist. The availability of

these reference drugs makes it possible to classify novel, putative psychotropic agents

in a direct comparison of their (electro-)physiological profiles.

Pharmaco-ElectroEncephaloGraphy (EEG) is extensively used in humans for

the discrimination of clinically active, psychotropic drugs, which has fostered the

development of corresponding animal pharmaco-EEG models. In our motivating

study, rats were given a psychoactive compound and monitored during 16 hours. Six

clearly defined, spontaneously occurring sleep-wake stages are separated out: Active

Wake, Passive Wake, Light Sleep, Deep Sleep, Intermediate Stage Sleep and REM

Sleep. These six sleeping stages will be used for the classification of the psychotropic

drugs into the five reference classes.

From a statistical point of view, analyzing EEG data poses a number of important

challenges. First, there is the high-dimensionality of raw EEG data. Even after the

usual initial reduction of dimensionality involving a spectral analysis, in which the

power spectrum is subdivided into several, predefined frequency bands (e.g., delta,

theta, etc.), there is still a multitude of variables to be analyzed. Moreover, these

variables are measured repeatedly over time, hence we are dealing with longitudinal

data.

Secondly, there is no generally accepted functional form for the evolution of the

EEG activity over time. The longitudinal profiles are usually highly dynamic and

unpredictable within a given short time frame, the variability both between and

within subjects can be considerably large under influence of a certain dosage of the

pharmacological treatment. Thus, finding a suitable statistical model is therefore a

non-trivial task.

Lastly, given these complexities it is evident that to find out about the psycho-

activity of a novel drug (i.e. the prediction to which psychoactive class it belongs at

a certain dose) is not an easy process. While conventional discriminant analysis can
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be used, a fully satisfactory answer requires appropriately tailored methods.

The aim of this thesis is therefore to propose new procedures to classify

psychotropic pharmacological agents into one of the 5 major classes of psycho-activity

or placebo, based on the sleep-wake behaviour of rats as defined by EEG, EMG, and

locomotor activity.

1.4 Structure of this Thesis

In Chapter 2, the data used throughout this thesis is presented, and some background

information regarding EEG-experiments and psychotropic drug classes is provided. A

similar study has been conducted previously (Ruigt et al , 1993). The authors propose

a classification procedure of psychotropic drugs based on sleep-wake behaviour. Here

we will also apply this classification procedure in order to be able to compare their

results with those obtained using our proposed methodology.

In Chapter 3, we propose an exploratory tool, based on information theory, for

the visualization of classes in EEG data, which is applied to our motivating dataset.

Chapter 4 deals with the longitudinal aspect of the data. Two flexible modeling

techniques for longitudinal data are described and applied to the EEG dataset.

In Chapter 5 a new two-stage procedure for the classification of multiple-class

longitudinal data is proposed, called doubly hierarchical supervised learning analysis

(DHSLA). In the first stage, a flexible modeling technique, e.g. fractional polynomial

mixed models, is used to obtain a summary of the data, which is further used in the

second stage in a stepwise discriminant procedure. In the second step linear, flexible

and mixture discriminant analysis will be used. In this chapter we elaborate on the

methodology and in Chapter 6 the DHSLA is applied to our motivating study, with

different discriminant techniques in the second stage.

The procedure proposed possibly introduces selection bias. In order to deal with

this problem, we suggest a novel modification of the general model averaging approach

used in regression problems to the particular case of classification problems. This

model averaging will be integrated in the second stage of the DHSLA. In Chapter 7,

this approach will be outlined and applied to the EEG dataset.

For the classification of univariate longitudinal profiles, James and Hastie (2001)

proposed a functional linear discriminant analysis (FLDA). In Chapter 8, we present

an extension of this methodology for the case of multivariate longitudinal profiles using

a pseudo-likelihood modeling approach to deal with the multivariate characteristics of

the data. The performance of the multivariate functional linear discriminant analysis
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is evaluated on the EEG dataset and through simulations.

Finally, in Chapter 9, concluding remarks are formulated and a perspective for

future research is presented.





2
Motivating Study

The dataset used throughout the thesis is coming from an electro-encephalogram

study conducted at Janssen Pharmaceutica in Beerse (Belgium) aiming at classifica-

tion of potential new psychotropic drugs into one of five earlier defined psychotropic

drug classes and placebo.

We will first introduce the basic concepts of electro-encephalogram (EEG) studies

in section 2.1 and we will further expand on the definition of the five drug classes in

section 2.2. Thereafter, the setup of the experiment is described and finally we briefly

review the classification method for this type of data proposed by Ruigt et al (1993).

2.1 Introduction to Electro-Encephalogram Studies

Pharmaco-electro-encephalographical studies aim at characterizing psychotropic drug

effects, usually on the basis of spectral electro-encephalograms, which reflect cortical

brain activity. Frequency measurements range from below 3.5 Hz per second (so-

called delta activity), 4–7.5 Hz/s (theta activity), 8–12 Hz/s (alpha activity), 13–30

Hz/s (beta activity) and above 30 Hz/s (gamma activity). In Figure 2.1, the different

activities are illustrated on an EEG sample of one second.

Delta activity tends to have the highest amplitude and the slowest waves. It

is normally seen in babies or in adults in slow wave sleep. Theta activity may be

seen in children or during drowsiness or arousal in adults. It can also be seen in

7
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(a) One second of EEG signal

(b) Delta

(c) Theta

(d) Alpha

(e) Beta

(f) Gamma

Figure 2.1: (a) One second sample of an EEG. (b) – (f) delta-, theta-, alpha-, beta-

and gamma-waves filtered from sample (a).

meditation. Alpha waves occur when a person is alert in a relaxed way. Alpha activity

decreases with sleepiness and when the eyes are open. Low amplitude beta waves are

often associated with active, busy or anxious thinking and active concentration, while

rhythmic beta waves are generally linked with pathological or drug-related causes.

Gamma waves are associated with strong mental activity like solving problems, fear

and awareness.

EEG registrations are reliably carried out in humans and mammals alike. In

rodents the EEG can be used to determine sleep-wake architecture, when carried out

in conjunction with movement monitoring and a so-called electromyogram (EMG)
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that records muscle activity. A crucial problem for pharmaco-EEG studies is that the

pharmacological effects on the EEG are easily confounded by marked EEG alterations

associated with spontaneous changes in behaviour or vigilance. Several approaches

have been proposed to overcome this problem, however, in our dataset rats were left

undisturbed.

Typically, six sleep-wake stages are distinguished: (1) active wake (AW), char-

acterized by movement, theta activity and high EMG, (2) passive wake (PW), with

similar characteristics as the previous one, but without movement, (3) light sleep or

slow wave sleep 1 (SWS1), characterized by EEG spindles (short lasting burst of

phasic brain activity, indicative of transitions in neuronal synchronization), (4) deep

sleep or slow wave sleep 2 (SWS2), with slow waves and prominent delta activity, (5)

intermediate stage sleep (IS), with spindle-like activity against a background of theta

activity and low EMG, and (6) Rapid Eye Movement or REM Sleep (RS), with theta

activity and very low EMG.

2.2 Psychotropic Drugs, Background and Classifi-

cation

For thousands of years, humans in all known societies have used psychotropic drugs

(substances that act on the central nervous system (CNS) and affect mood, thinking,

and behaviour). Psychotropic drugs, whatever the substances used, rank second to

tenth among the most consumed medicinal products in Western nations (Zarifian

(1996)). Although there may be some controversies on classification for clinical

purposes (Zarifian (1988), American Psychiatric Association (2000)), psychotropic

drugs can be divided into 5 major classes according to their main indication in

psychiatry: antidepressants, antipsychotics, anxiolytics, hypnotics and stimulants

(Deniker (1982), Oughourlian (1984), Cohen and Cailloux-Cohen (1995)).

Antidepressants are amongst the drugs most commonly prescribed by psychiatrists

and general practitioners. They are used for alleviating depression or dysthymia

(milder depression). Clinical depression is characterized by a pervasive low mood,

loss of interest or pleasure in usual activities and a deep feeling of sadness. Known

antidepressants are bupropion, venlafaxine and paroxetine, to list some of them.

Antipsychotic drugs are used to treat psychosis, which is a generic term for a

mental state often described as involving a ’loss of contact with reality’. People

experiencing psychosis may report hallucinations or delusional beliefs and may exhibit

personality changes and disorganized thinking. This may be accompanied with
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unusual behaviour and difficulty with social interaction. Common conditions with

which psychosis might be reported include schizophrenia, bipolar disorder, mania

and delirium, which is an acute decline in attention-focus, perception and cognition.

Some known antipsychotics are risperidone, haloperidol and chlorpromazine.

The term anxiolytic is applied to a group of drugs used to relieve anxiety or prevent

anxiety attacks. The most common anti-anxiety medications include: flurazepam,

oxazepam and diazepam.

Hypnotic drugs induce sleep and are used in the treatment of insomnia and in

surgical anesthesia. Included in this class are zolpidem and zopiclone among others.

Stimulant drugs enhance the activity of the nervous system. They are used

to increase alertness and awareness in patients with narcolepsy, attention-deficit

hyperactivity disorder and short-term treatment of obesity. Well known stimulants

are cocaine, caffeine, amphetamine, nicotine, etc. The more powerful variants of these

drugs are often prescription medicines or illegal drugs.

Classifying drugs only on the basis of chemical structure would create numerous

categories, which would not necessarily be indicative of their therapeutic use and is

therefore not advisable. A better approach is to classify new chemical entities based

on their potential therapeutic activity. This classification ideally should be as early as

possible in the drug discovery process. Availability of an advanced classification model

or tool that uses a standardized physiological read-out (e.g., the electroencephalogram

or EEG) would greatly aid efficient determination of psychoactive properties of newly

synthesized chemicals.

The potential of using EEG-derived parameters (pharmaco-EEG) and character-

istic fingerprints on rodent sleep-wake architecture for the classification of drugs has

been recognized for several decades and is used as a valuable tool in both preclinical

drug discovery and clinical drug development (Fink (1959), Krijzer et al (1993),

Ruigt et al (1993), Depoortere et al (1995), Edgar (2002), Drinkenburg and Ahnaou

(2004), Uchida et al (2007)). In addition EEG technology has been used to identify

biomarkers that have predictive validity for clinical, pharmacological activity and

even for possible efficacy (i.e. as surrogate endpoint) for some diseases such as Major

Depressive Disorder (MDD) (Mucci et al (2006), Murck et al (2003), Staner et al

(2004)). All these have motivated the research on the classification of psychotropic

drugs based on EEG-information and its derivatives.
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2.3 Description of the Experimental Study

The motivating study includes 26 psychoactive agents at 4 different doses, including

dose 0. To each compound, 32 rats are randomly assigned, i.e., 8 per dose group.

After a washout period of 3 weeks, the same rats can be used in another experiment.

In total, 342 rats are included in the study. The number of times the rats are used

ranges from one up to eight times. Note that the same compound may belong to

different classes at different doses.

The brain signals of the rats are monitored during 16 hours, starting with a light

period of 10 hours, followed by a period of darkness of 6 hours. The administration

of the treatment is done at the beginning of the light period. Every two seconds,

the sleep-wake state of the rat is recorded. This information is then summarized

by measuring the time spent in each of the six sleep-wake stages per interval of 30

minutes.

It is well known that rats are nocturnal animals. In the conducted study this is

reflected in the jump in number of minutes spent in Active Wake and the decrease in

Light and Deep Sleep at time period 20. This feature is seen in all the classes. This

impact of the presence or absence of light is the reason why the light and dark period

were introduced in the first place.

This data is further subdivided into a training and a test dataset. In both cases,

there is expert knowledge available regarding the class membership of the compound-

by-dose combinations. The final training dataset contains 61 treatments: 23 placebos,

14 antidepressants, 7 antipsychotics, 2 anxiolytics, 5 hypnotics and 10 stimulants. In

the test dataset, there are 3 placebos, 4 antidepressants, 2 antipsychotics, 2 hypnotics

and 3 stimulants.

The compound-by-dose combinations in the training and the test dataset are given

in Tables 2.1 and 2.2. As an illustration the number of minutes spent in the six

sleep-wake stages for the eight rats who got clomipramine, which belongs to the

antidepressant class, are plotted in Figure 2.2. As we can see, the profiles are very

irregular, showing a high variability within and between rats receiving the same drug.

In Figure 2.3 an overview of the profiles in all compound-dose combinations in the

six psychotropic drug classes is given. Each line in the plot represents the mean of the

eight rats of one compound-dose combination. The plots show high variability within

the classes and within the compound-dose combinations. While this variability is

less pronounced for placebo and antidepressant, it is highly present in stimulants and

anxiolytics. Since we have only 2 compound-dose combinations in the anxiolytic class,

this class will be disregarded in further analyses. This leaves us with 59 compound-
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Table 2.1: Compound-by-dose combinations in the training dataset, sorted per class.

Class Drug Dose Class Drug Dose

(mg) (mg)

Antidepressant Clomipramine 22 Antipsychotic Chlorpromazine 1

Ritanserin 2.5 Clozapine 1

Paroxetine 3 Clozapine 3

Fluvoxamine 7.3 Haloperidol 1

Fluvoxamine 22 Haloperidol 3

Fluoxetine 10 Olanzapine 3

Mirtazapine 3 Risperidone 1

Desipramine 1 Anxiolytic Oxazepam 3.2

Desipramine 3 Buspirone 2.2

Imipramine 3 Stimulant Tacrine 10

Bupropion 10 Apomorphine 1

Citalopram 3 Amphetamine 1

Citalopram 10 Amphetamine 3

Bupropion 10 Amphetamine 10

Hypnotic Zolpidem 3 Cocaine 10

Zolpidem 10 Caffeine 10

Zopiclone 3 Caffeine 22

Zopiclone 10 Nicotine 0.5

Flurazepam 3 Nicotine 1

dose combinations or 472 rats in the training dataset.

When comparing the six classes, we see that a slightly different behaviour is

observed in different classes. For example, rats who were administered with a

stimulant compound spend more time in Active Wake and less in Light and Deep

Sleep, while rats who received an antidepressant spent less time in REM Sleep.

Table 2.3 presents an overview of the changes in EEG-defined sleep-wake behaviour

that are generally observed to be associated with the compounds belonging to the

different drug classes (Ruigt et al , 1993).
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Table 2.2: Compound-by-dose combinations in the test dataset, sorted per class.

Class Drug Dose Class Drug Dose

(mg) (mg)

Antidepressant Paroxetine 1 Hypnotic Gaboxadol 5

Fluvoxamine 3.7 Zopiclone 1

Mirtazapine 10 Stimulant Tacrine 2.5

Imipramine 10 Apomorphine 3

Antipsychotic Chlorpromazine 10 Apomorphine 10

Olanzapine 10

Table 2.3: Overview of generally observed changes in sleep-wake behaviour associated

with the six psychotropic drug classes.

Sleep-Wake Stage

Active Passive Light Deep Intermediate REM
Class Wake Wake Sleep Sleep Stage Sleep

Antidepressant � �

Antipsychotic � ↑

Anxiolytic � ↓

Hypnotic (↑) � (↑)

Stimulant �

2.4 Brief Review of Existing Methodology

Ruigt et al (1993) propose a method for prediction of psychotropic drug classes based

on a discriminant analysis of drug effects on rat sleep. They consider only the first

8 hours after drug injection and regroup the 30-minute periods for every sleep-wake

stage in a particular way, which will be described next, in order to cover the general

temporal characteristics of the drug effects on the sleep-wake stages.

For Active Wake, the considered periods are 0.5h – 3h, 3h – 5h and 5h – 8h. For

Passive Wake, the time periods are regrouped into 0h – 2h, 2h – 5h and 5h – 8h.

For Light and Deep Sleep, the periods 0h – 2h, 2h – 4h, 4h – 6h and 6h – 8h are

considered. Finally for REM Sleep and Intermediate Stage Sleep the considered time
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intervals are 0h – 1.5h, 1.5h – 4.5h, and 4.5h – 8h. In every period, the change in

percentage of the time spent in a certain sleep-wake stage compared with the placebo

group for the compound under investigation is recorded. These new variables are then

used in a linear discriminant analysis.

In their paper, Ruigt et al (1993) apply this method to a training dataset with

12 antidepressants, 7 antipsychotics, 4 stimulants, 3 anxiolytics, 4 hypnotics and 3

anticonvulsants. The classification results obtained with cross-validation are shown

in Table 2.4. In this dataset, stimulants, antipsychotics and anticonvulsants are well

differentiated, while the classification of hypnotics and anxiolytics is rather poor.

The overall error rate obtained for this dataset is 0.398, pointing already to room for

improvement.

In Table 2.5, we apply the method described above to our training dataset

with cross validation. The motivating study does not include anticonvulsants and

anxiolytics were excluded given the limited amount of information in this class.

Ruigt’s method performs reasonably well for hypnotics and stimulants, but the

performance in antidepressants and antipsychotics is very poor. The resulting overall

error rate obtained in this case is even larger (0.438), showing possible deficiencies in

the classification methodology proposed.
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Figure 2.2: Observed number of minutes spent in each of the six sleep-wake stages for

the eight rats receiving Clomipramine (Antidepressant).
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Figure 2.3: Number of minutes spent in the six sleep-wake stages per class. Each line

represents the mean profile over all the rats in one compound-dose combination.
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Table 2.4: Classification of Ruigt’s training dataset with method of Ruigt et al (1993)

with cross-validation.

Predicted Class

Class Placebo Antidep Antipsy Hypno Stimul Anxio Anticonv Total

Antidepressants 0 7 0 1 3 1 0 12

Antipsychotics 1 0 6 0 0 0 0 7

Hypnotics 3 0 0 1 0 0 0 4

Stimulants 0 0 0 0 4 0 0 4

Anxiolytics 2 1 0 0 0 1 0 4

Anticonvulsants 0 1 0 0 0 0 2 3

Table 2.5: Classification of the EEG training dataset with method of Ruigt et al (1993)

with cross-validation.

Predicted Class

Class Antidep Antipsy Hypno Stimul Total

Antidepressants 49 37 19 7 112

Antipsychotics 20 23 7 6 56

Hypnotics 4 4 32 0 40

Stimulants 5 9 3 63 80



3
Visualizing Classes in EEG

Data

3.1 Introduction

Ever since the introduction of Shannon’s entropy (Shannon, 1948), information theory

has been of great theoretical and applied interest. While initially information theory

was designed to solve problems in the field of communication theory, it is nowadays

used in a much broader range of context. It has found applications in statistical

inference (Kullback, 1959), biology (Adami, 2004), quantum information theory

(Bennett and Shor, 1998), alongside many other areas.

Informally, mutual information is the information shared between two random

variables. It thus measures to what extent knowledge of one of these variables reduces

the uncertainty about the other one. In this chapter we apply the concept of mutual

information in the field of classification of longitudinal profiles. Our purpose is to

propose a simple graphical tool to explore the classes in a multi-class longitudinal

classification problem. More precisely, we want to know how much information a new

observation has in common with each of the considered classes in the training data

set, and use this knowledge to classify the new observation. In this way, the classes

can be visualized in a simple plot, showing the densities of a function of the mutual

19
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information measure, constraining this measure to lie between 0 and 1, for the class of

interest against the remainder of the classes. The measure makes use, in an intuitive

way, of the variability between and within classes.

In Section 3.2, the concept of mutual information is briefly reviewed, together

with the estimation procedure proposed by Kraskov et al (2004) and the use of this

to visualize a measure, which can be seen as a distance between and within a particular

class and the rest (Wouters et al , 2008b). Thereafter, the proposed method is applied

to our data, and the results are outlined in Section 3.3 and discussed in Section 3.4.

3.2 Methodology

3.2.1 Mutual Information Concepts

The entropy H(X) of a random variable X is the uncertainty of that random variable,

defined by

H(X) = −

∫

f(x) log f(x)dx (3.1)

where f(x) is the density function of X. The mutual information I(X,Y ) of two

random variables X and Y , measures the reduction in uncertainty about X due to

the knowledge contained in Y .

I(X,Y ) = H(X) −H(X|Y ) (3.2)

If X and Y are two continuous random variables, their mutual information can be

written as:

I(X,Y ) =

∫ ∫

f(x, y) log

(

f(x, y)

fx(x)fy(y)

)

dxdy (3.3)

where f(x, y) is the joint density function of X and Y , and fx(x) =
∫

f(x, y)dy and

fy(y) =
∫

f(x, y)dx are the marginal density functions of X and Y respectively. In

other words, mutual information quantifies the distance between the joint distribution

of the random variables X and Y on the one hand and what the joint distribution

would be if X and Y were independent on the other hand. When X and Y

are independent, their mutual information I(X,Y ) equals 0. Moreover, mutual

information is nonnegative and symmetric, i.e., I(X,Y ) = I(Y,X).

To estimate I(X,Y ) from a set of data points {xi, yi} alone, without knowing the

densities f , fx and fy we will use the method suggested by Kraskov et al (2004). They

propose two algorithms, both based on entropy estimates from k-nearest neighbour

distances. According to Kraskov et al (2004), both algorithms perform very similarly

with respect to computation time, statistical error and systematic error and score
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better than conventional estimators in terms of bias. In what follows we will restrict

to the algorithm based on rectangular neighbourhoods, but the other method can be

used as well.

First note that the mutual information I(X,Y ) can be written as

I(X,Y ) = H(X) +H(Y ) −H(X,Y ), (3.4)

As a consequence estimating H(X), H(Y ) and H(X,Y ) is enough to get an estimate

for I(X,Y ). For this purpose we can use the Kozachenko-Leonenko estimate for

Shannon entropy (Shannon, 1948):

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N
∑

i=1

log ε(i), (3.5)

where ψ(x) = d
dx log Γ(x) is the digamma function, ε(i)/2 is the distance between

xi and its k-th neighbour, d is the dimension of x and cd is the volume of the d-

dimensional unit ball.

As proposed by Kraskov et al (2004) we will now denote the edge lengths of the

smallest rectangle around point i containing k neighbours by εx(i) and εy(i). The

number of points with ||xi −xj || ≤ εx(i)/2 and ||yi −yj || ≤ εy(i)/2 are given by nx(i)

and ny(i), respectively. The estimate for the mutual information is now

Î(X,Y ) = ψ(k) − 1/k − 〈ψ(nx) + ψ(ny)〉 + ψ(N) (3.6)

where 〈. . .〉 denotes averages, both over all i = 1, . . . , N and over all realizations of

the random samples.

The mutual information can be linked to the information-theoretic measure of

association defined by

R2
h(X,Y ) = 1 − e−2I(X,Y ) (3.7)

This measure of association ranges from 0 to 1 and equals zero if and only if X and

Y are independent.

Intuitively, this measure can be used to have an idea how much information each

member of a class, c say, contains about the class itself (for this we will use the mean

of all elements in the class c), and how distant they are from the other classes (mean

of the compound-dose combinations that do not belong to the class c). This measure

can be computed for each of the compound-dose combinations, leading to a measure

that can be associated to distance within the class c and distance between the class

c and the rest of the classes, respectively (Wouters et al , 2008b).
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3.2.2 Computational Issues

In our situation, the mutual information is calculated to determine how much

information is shared between two classes with respect to one or a group of variables.

The six variables we consider are the number of minutes spent in each of the six

sleeping stages in 32 subsequent periods of 30 minutes.

For each group of variables, we propose to determine the association between class

c and class c′, the latter corresponding to all other classes, as

R2
h(c, c′) =

1

2

(

1

n1

∑

s∈c

R2
h(s, c̄′) +

1

n2

∑

s′∈c′

R2
h(s′, c̄)

)

, (3.8)

where n1 and n2 are the number of observations in class c and c′ respectively, s

are the measurements for subject s that belongs to class c and c is the mean of the

observations in c, both with respect to the group of variables under consideration.

The association within a certain class c can be determined by (3.8) for each

observation within class c, with respect to the mean of the class c, upon replacing c′

with c.

Since we have only a small number of observations in each of the classes, we will

use bootstrap samples (Efron, 1979) to get a more reliable estimate of the association

between and within classes. When calculating the between-class association of c and

c′, we take 1000 bootstrap samples in c and c′ by resampling the six-variate profiles

of the rats in class c and c′ respectively. For each of these bootstrap samples we

calculate the association between all observations in c and the mean of the samples.

For the within-class association, we proceed in a similar way. Now, this can be used

to estimate the distribution of the within- and between-class distances, which brings

forward how much a class is overlapping with the rest of the classes. It also provides

information about the variability within a class. For each class, the group of variables

that produces the smallest overlap between that class and the rest will be retained.

Eventually, this can also be used to calculate the sensitivity and specificity for

each class with respect to the rest of the classes based on this set of variable. To

illustrate how this is computed, we focus on the placebo class. The cut-off value vpl

for placebo will be defined as the point where the density function of the measure of

association R2
h(placebo,placebo) crosses the density function of R2

h(rest,placebo), and

such that the area under each density curve, respectively above and below the cut-off,

is maximized. The sensitivity for placebo is now calculated as the area under the

placebo density curve above vpl, where the specificity is defined as the area under the

density curve for the other classes below vpl. Other cut-off values can be entertained,

depending on the objectives of the study.
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Table 3.1: Information-theoretic measure of association R2
h(c, c′) (and standard error)

for the 5 classes (columns) and the mean of each class (rows) when all six sleeping

stages are used.

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.79 (0.05) 0.74 (0.06) 0.75 (0.06) 0.74 (0.06) 0.60 (0.12)

Antipsy 0.74 (0.06) 0.87 (0.04) 0.79 (0.05) 0.77 (0.06) 0.73 (0.08)

Antidep 0.75 (0.06) 0.79 (0.05) 0.82 (0.05) 0.76 (0.06) 0.69 (0.10)

Hypnot 0.74 (0.06) 0.77 (0.06) 0.76 (0.06) 0.85 (0.09) 0.63 (0.13)

Stimul 0.60 (0.12) 0.73 (0.06) 0.69 (0.10) 0.63 (0.13) 0.77 (0.10)

3.3 Results

For each of the 5 classes in the EEG dataset, we calculate the mutual information

within and between the classes with respect to the 6 sleeping stages, using 1000

bootstrap samples from the training dataset. This means that to calculate the

measure of association R2
h we are using all 6 sleeping stages from the EEG experiment.

In Table 3.1 we see in each row the information-theoretic association between the

considered class and the 4 other classes. The within-class association is displayed in

boldface. Standard deviations are presented parenthetically.

The difference between within- and between-class association is rather small. This

indicates that using all information does not necessarily mean that we will reach good

differentiation. It is even possible that using all information is generating too much

noise, thereby creating difficulties to separate out the classes.

We know that the sleeping stages influenced by a psychotropic compound can

be different for different classes. For example, for stimulants it is expected that

the number of minutes spent in Active Wake should be larger than for the other four

classes. In a similar fashion, this occurs for other classes, in which other sleeping stages

can be influenced by the compound-dose combination. Therefore, instead we perform

the same bootstrap exercise, but now on all possible combinations of sleeping stages.

For each of these combinations the means and the 90% quantiles of the information-

theoretic associations within a class and between this class and the rest is computed.

The combination of variables for which the overlap between such two quantiles is the

smallest is retained. The sleeping stages used for each class are reported in Table 3.2.

With this combination of sleeping stages, we get the associations as displayed in



24 Chapter 3. Visualizing Classes in EEG Data

Table 3.2: Sleeping stages used for each class.

Class Sleeping Stages

Placebo Active Wake – Light Sleep

Antipsychotic Active Wake – Passive Wake – REM Sleep

Antidepressant Active Wake – Light Sleep

Hypnotic Active Wake – Light Sleep

Stimulant Active Wake – Light Sleep – Deep Sleep

Table 3.3: Information-theoretic measure of association R2
h(c1, c2) (and standard

error) for the 5 classes (columns) and the mean of each class (rows) using only the

selected sleeping stages.

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.84 (0.03) 0.68 (0.09) 0.81 (0.03) 0.70 (0.08) 0.66 (0.08)

Antipsy 0.68 (0.09) 0.84 (0.05) 0.74 (0.08) 0.65 (0.11) 0.67 (0.11)

Antidep 0.81 (0.03) 0.74 (0.08) 0.85 (0.03) 0.68 (0.12) 0.68 (0.10)

Hypnot 0.70 (0.08) 0.65 (0.11) 0.68 (0.12) 0.80 (0.09) 0.48 (0.21)

Stimul 0.66 (0.08) 0.67 (0.11) 0.68 (0.10) 0.48 (0.21) 0.79 (0.08)

Table 3.3. In Figure 3.1 the density function for the associations within each class

is plotted with a solid line, the density of the association between this class and the

rest of the classes is plotted with a dashed line. Below the graphs, the 90% quantiles

for within-class (solid) and between-class (dashed) associations are displayed, where

the bullet is indicating the median. The wide quantile for the hypnotics reveals that

there is a large variability within this group, which is not unexpected given the low

number of hypnotic compounds in the training dataset. Also for stimulants, we notice

high variability, which can be attributed to the natural variability in this drug class.
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Figure 3.1: Density plots for the association within (solid) and between (dashed) classes. Below are the 90% quantiles for within-

(solid) and between- (dashed) class association.
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Both Table 3.3 and Figure 3.1 reveal that placebo and antidepressant are not

clearly separated from the rest. For the other three classes, we get a nice distinction

between these classes and the remaining four, although there still is some overlap in

the quantiles.

For each class, we can calculate the specificity and sensitivity, as indicated in

Figure 3.1. The cut-off value, taken as the value in which both curves intersect, is

also marked in the figure. The sensitivity for hypnotics and stimulants are rather

low, meaning that we have a high probability of incorrectly classifying an hypnotic

or stimulant. This seems to contradict the results we have seen in Table 3.3, but it

can be explained by the large variability in these two classes, which is not taken into

account in Table 3.3.

On the other hand, for placebo and antidepressants, we get a relatively low

specificity, so the probability of classifying a compound wrongly into one of these

classes is rather high.

The low specificity for placebo can be explained by the relatively large amount of

compounds in this class (40% of the training dataset), leading to a small variability

in R2
h(placebo,placebo), while the variability in R2

h(rest,placebo) is much larger

since 4 smaller classes are pooled here. Also antidepressants are well represented

in the training dataset (24%), which is again reflected in the small variability in

R2
h(antidep, antidep), but now the rest of the classes are dominated by placebo which

explains the small variability inR2
h(rest, antidep). The low specificity therefore reflects

mainly the fact that placebo and antidepressants are difficult to separate out.

Let us now turn to the test dataset. For each of the test compounds we calculate

the association between this compound and a class mean for all the bootstrap samples

in this class. The mean association with that class is indicated in Figure 3.2 with a

cross. So for each compound, we get 5 crosses, one for each of the classes. The

quantiles as already shown in Figure 3.1 are again plotted here for comparative

purposes.

The association between the three placebo test compounds and placebo is indeed

high and falls within the interval of the within-class association. But also the

association between these compounds and both antidepressant as well as hypnotic

is high. Thus, the logical conclusion is that these compounds are not likely to

be antipsychotics or stimulants, but no decisive answer can be given on the actual

class of the compounds. Both antipsychotic test compounds seem to belong to the

hypnotics instead of antipsychotics. The association between test compound 5 and

antipsychotic is even very low. For the sixth test compound, the associations with

placebo, antidepressant and hypnotic fall nicely within the quantiles for these classes,
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making it hard to predict the class. A similar problem arises for the antidepressant

test compounds 7 and 9, but for these ones the association with antidepressant falls

borderline outside the quantile. Test compound 8, which is also an antidepressant,

has a low association with all the classes, but can be borderline interpreted as an

hypnotic. Based on the quantiles, we would correctly classify test compounds 10 and

11 as hypnotics. Finally, for the stimulant test compounds 12 and 14, we can conclude

that they probably belong to stimulants, given the structure brought forward in the

graph, while compound 13 would be wrongly classified as an hypnotic.

In the test dataset, the hypnotic and the stimulant compounds have a high

association with their own class and a lower association relative to the quantile with

the other drug-classes. So, based on the information-theoretic association, we would

expect to predict their class correctly. While for the placebo and antidepressant test

compounds we see that the association with the actual class is high, the association

between the compound and some other classes is also high, indicating potential

problems in identifying such compounds. For the antipsychotic test compounds, the

association with the antipsychotic training data falls below the lower boundary of the

corresponding quantile, while the association with hypnotics is relatively high. This

would lead to an incorrect classification.

3.4 Discussion

In this chapter we proposed an exploratory tool to visualize classes in EEG data.

Rather than the actual prediction of the class of a new compound, we focus on how well

separated the classes are in a particular set of data, to be able to explain difficulties in

the classification procedure. This method can also be used to detect a-typical samples

in both training and test datasets.

The overlapping density plots, together with the sensitivities and specificities for

each of the classes already reveal that the classification of EEG data is a difficult

task. For hypnotics and stimulants, this can be explained by the high variability in

the data. This indicates that elaborate classification techniques, taking into account

the longitudinal nature of the data are needed to perform a formal classification.

It is also important to note that considering more information does not auto-

matically lead to improved classification. Here, we have shown that when not all 6

sleeping stages (all information about the psychotropic drug) are used to obtain a

measure of the within- and between-distances for each class, a better distinction can

be obtained. This also can induce a reduction of the variability associated with each
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of these measures. For the selection of the sleeping stages to be used in each class, we

looked at the overlap in the quantiles. Of course, other selection criteria can be used

here. A valuable alternative could be to select those sleeping stages that maximize

both specificity and sensitivity for the considered class.

Further potential for the information-theoretic approach is in the screening of new

variables. Instead of going through the entire classification process, new variables

can be quickly tested for their discriminative potential, by computing the association

within and between each of the classes.
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Figure 3.2: Information-theoretic association between the test compounds and the five

drug classes (indicated with a cross), together with the quantiles for the association

between and within classes.
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Modeling EEG Data

This chapter focusses on how to deal with the longitudinal character of the data. For

the modeling of this type of data, mixed effects models are a widely used approach

(Verbeke and Molenberghs, 2000). To capture the irregular trends in the individual

profiles in the EEG dataset, an even more flexible model is needed. Several approaches

can be used that allow flexibility in order to cope with the irregularities observed in

the mean profiles. In this thesis we will focus on two modeling approaches: (1)

a fractional polynomial model (Royston and Altman, 1994) combined with random

effects and (2) a mixed model with splines as fixed and random effects (Ruppert et

al , 2003).

4.1 Methodology

We will briefly introduce the linear mixed model methodology (Verbeke and Molen-

berghs, 2000) which is the basis of the two modeling approaches used throughout this

thesis.

4.1.1 Linear Mixed Model

Let us first introduce some notations. Let Yi denote the ni-dimensional vector of

measurements available for subject i = 1, . . . , N . A linear mixed effect model or

31
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LMM then assumes that Yi satisfies

Yi = Xiβ + Zibi + εi, (4.1)

where β is a p-dimensional vector of population-average regression coefficients, also

called fixed effects and bi is a q-dimensional vector of subject specific regression

coefficients, also called random effects. The matricesXi and Zi are (ni×p) and (ni×q)

matrices of known covariates also known as design matrices. The random effects bi and

residual components εi are assumed to be independent with distributions N(0,D),

and N(0,Σi), respectively. Note that Σi depends on i only through ni, the number

of measurements available for subject i. Thus, in summary,

Yi|bi ∼ N(Xiβ + Zibi,Σi). (4.2)

Inference is based on the marginal distribution of Yi which can be expressed as

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi) (4.3)

Now that we have introduced the notions of the linear mixed model, we can continue

with the description of the fractional polynomial mixed model that we propose to fit

to the EEG data.

4.1.2 Fractional Polynomial Mixed Model

Fractional polynomials consider beside the integer powers of a covariate (e.g. time)

also fractional powers. In this way a wide range of shapes can be modeled. As soon as

non-integer powers are allowed for, the number of potential models is endless and it

is wise to consider a priori a sensible model building strategy. This has been provided

by Royston and Altman (1994).

A fractional polynomial of degree m (Royston and Altman, 1994) is defined as

any function of the form

φm(X;β,p) =
m
∑

k=0

βkHk(X), (4.4)

where the degree m is a positive integer, p is a real-valued vector of powers with p1 ≤

. . . ≤ pm and β0, β1, . . . , βm are real-valued coefficients. We set p0 = 0, H0(X) = 1,

and, for k = 1, . . . ,m

Hk(X) =















lnX if pk = 0 and pk 6= pk−1,

Xpk if pk 6= pk−1,

Hk−1(X) lnX if pk = pk−1.

(4.5)
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Royston and Altman (1994) argue that fractional polynomials with degree higher

than 2 or 3 are rarely required in practice and that powers can be restricted to the

set Ω = {−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2}. Therefore, second-degree fractional

polynomials will be used in combination with the mixed effects model (4.1). For all

36 pairwise combinations of p1 and p2 in Ω, a fractional polynomial model is fitted.

The Akaike’s Information Criteria (AIC), obtained for the 36 models, are sorted and

the powers p1 and p2 that lead to the smallest AIC value are retained.

In our application, a different fractional polynomial mixed model will be fitted

for every compound-dose combination j, to allow for different shapes in different

compound-doses. In each of these models, a random effect per subject is included.

The model is given by

Yij = (β0j + b0ij) + (β1j + b1ij)Hj1(Xij) + (β2j + b2ij)Hj2(Xij) + εij , (4.6)

where Yij is the n-dimensional vector of measurements for subject i in compound-

dose combination j. βj is the 3-dimensional vector of fixed effects for compound-dose

combination j and bij is the 3-dimensional vector of subject-specific random effects

for compound-dose combination j. The random effects bij and residual components

εij are assumed to be independent with distributions N(0,Dj), and N(0,Σij),

respectively, where Dj is an unstructured (3×3) matrix and Σij is a diagonal (n×n)

matrix.

Since we are using different combinations of powers p1 and p2, it is possible to

end up with large scale differences between the covariates in the model, especially

when the range of values taken by Xij is large, which can then induce computational

problems when inverting X ′X. To avoid this, the covariates Hj1(Xij) and Hj2(Xij)

are standardized in the following way:

Xij` =
Hj`(Xij) − E[Hj`(Xij)]

√

Var[Hj`(Xij)]
, ` = 1, 2. (4.7)

which leads to the following model

Yij = (β0j + b0ij) + (β1i + b1ij)Xij1 + (β2j + b2ij)Xij2 + εij , (4.8)

Now it is clear that for these new standardized variables Xijl, the scale lies between

0 and 1, which solves the computational issues. Centering the predictor variable also

reduces the multicollinearity drastically as is stated by Neter et al (1996) (P. 296)

and tends to avoid computational difficulties.
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Fractional Polynomial Mixed Model for EEG Data

Let us now have a look at the parametrization of the fractional polynomial model for

the EEG dataset. Since we want to allow for a different shape in each compound-dose

combination, we model the number of minutes spent in the 6 sleep-waking stages for

every compound-dose combination in the training and the test dataset by a fractional

polynomial model with mixed effects. In this way, not only the coefficients, but also

the powers p1 and p2 can be different for different compound-dose combinations. For

example, for the minutes spent in Active Wake in time period k for rat i in compound-

dose combination j the model (4.8) becomes

(AW min)ijk =
[

(β0j + b0ij) + (β1j + b1ij)
t
p1jl

k − E[tp1jl ]
√

Var[tp1jl ]
+ (β2j + b2ij)

t
p2jl

k − E[tp2jl ]
√

Var[tp2jl ]

]

I(tk) +

[

(γ0j + c0ij) + (γ1j + c1ij)
t
p1jd

k − E[tp1jd ]
√

Var[tp1jd ]
+ (γ2j + c2ij)

t
p2jd

k − E[tp2jd ]
√

Var[tp2jd ]

]

(1 − I(tk))

+εijk, (4.9)

where (AW min)ijk is the number of minutes spent in AW for rat i in compound-

dose combination j during the kth time period (i = 1, . . . , 8, j = 1, . . . , 64 and

k = 1, . . . , 32). The index l refers to the light period, d to the dark period. We

standardized the vectors tp1 and tp2 , where t is the vector of all time periods,

t = (1, . . . , 32)′. The vectors βj = (β0j , β1j , β2j) and γj = (γ0j , γ1j , γ2j) are

the compound-dose specific regression coefficients for the light and the dark period

respectively, while bij = (b0ij , b1ij , b2ij) and cij = (c0ij , c1ij , c2ij) are the random

effects or rat specific coefficients. The random effects bij and cij are assumed to be

independent with distributions N(0,Db
j) and N(0,Dc

j) respectively, where Db
j and Dc

j

are unstructured (3×3) matrices. The residual components εijk are also independent

with distribution N(0, σ2
j ). The function I(t) is an indicator function specified as

I(t) =







1 if t ≤ 20,

0 otherwise.

in order to identify the change between light and dark period.

In analogy to equation 4.9 similar models can be defined when one of the powers

p1jl, p2jl, p1jd or p2jd equals zero or when p1jl = p2jl or p1jd = p2jd.
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4.1.3 Splines Model Using Mixed Model Parametrization

Another flexible way to smooth the irregular trends in the data is through cubic

splines, which are piecewise third degree polynomials with components smoothly

spliced together. The regions defining the pieces are separated by a series of knots

ξ1, · · · , ξK , not necessarily equally spaced. Ruppert et al (2003) define a cubic spline

model with knots ξ1, · · · , ξK by

S(x) = β0 + β1x+ β2x
2 + β3x

3 +

K
∑

k=1

βk+3(x− ξk)3+. (4.10)

where (x − ξk)3+ are the truncated power basis functions, the subscript + is the

notation for the positive part of the function. It is clear that K + 4 basis functions

are needed to describe a cubic spline with K knots, which are the K truncated power

basic functions (x− ξk)3+, complemented with the functions 1, x, x2 and x3.

A natural cubic spline additionally requires that the function is linear beyond

the boundary knots. A natural cubic spline with K knots is represented by K basis

functions. One can start from the natural truncated power basis and derive the

reduced basis functions Ni(x) by imposing the boundary constraints. In this way, we

arrive at

N1(x) = 1, N2(x) = x, Nk+2(x) = dk(x) − dK−1(x) (4.11)

where k = 1, · · · ,K − 2 and

dk(x) =
(x− ξk)3+ − (x− ξK)3+

ξK − ξk
(4.12)

While the truncated power basis is simple in concept, it can lead to severe rounding

problems when powers of large numbers must be calculated, which makes this basis

not too attractive numerically. An alternative choice are B-spline basis functions

(Dierckx, 1993), which are defined strictly local. They are non-zero over an interval

of at most five knotpoints, meaning that their evaluation rarely gets out of hand.

A simple and straightforward method to fit splines is by considering the coefficient

of each knot a fixed effect, usually referred to as regression spline. However, this

approach tends to overfit the data, leading to a too coarse regression curve. This

can be overcome by including splines in the mixed model framework, meaning that

each knot point coefficient acts as a random effect (Verbyla et al (1999), Ruppert

et al (2003)). The variance component governing these random effects controls and

describes the degree of flexibility and smoothness of the model.
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In what follows, we will use the natural cubic splines as fixed and random effects

in the mixed effects model 4.1. We consider then the design matrix

Z =











N1(x1) · · · NK(x1)
...

. . .
...

N1(xn) · · · NK(xn)











(4.13)

The mixed effects model with natural cubic splines as fixed and random effects can

be written as

Yi = Ziβ + Zibi + εi, (4.14)

where β, bi and εi are defined as in (4.1).

Splines Model for EEG Data

For each sleeping stage we will now fit a linear mixed model with natural cubic splines

as fixed and random effects for each compound-dose combination separately. For the

light period we assume five equally spaced internal knots, and four knots in the dark

period. For example, the model for the minutes spent in Active Wake for subject i in

compound-dose combination j in the light period now becomes

(AW min)ij = (β0j + b0ij + Zlightβj + Zlightbij + εij

with design matrix Z specified as

Zlight =











Nl1(t1) · · · Nl5(t1)
...

. . .
...

Nl1(t20) · · · Nl5(t20)











where Nl1, · · · , Nl5 are the five B-spline basis functions for a natural cubic spline with

five knots. Since the time points are equal for all the subjects, we get the same design

matrix Zlight for all subjects in all compound-dose combinations. Similarly, a model

with four knots is specified for the dark period, with basis functions Nd1, · · · , Nd4.

This results in the following model for the minutes spent in Active Wake in time

period k for rat i in compound-dose combination j

(AW min)ijk = [(β0j + b0ij) +Nl1(β1j + b1ij) +Nl2(β2j + b2ij) +Nl3(β3j + b3ij)

+Nl4(β4j + b4ij) +Nl5(β5j + b5ij)] I(tk)

+ [(γ0j + c0ij) +Nd1(γ1j + c1ij) +Nd2(γ2j + c2ij) +Nd3(γ3j + c3ij)

+Nd4(γ4j + c4ij)] (1 − I(tk)) + εijk, (4.15)
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where I(t) is defined as in equation (4.9). The vectors βj = (β0j , β1j , · · · , β5j) and

γj = (γ0j , γ1j , · · · , γ4j) are the compound-dose specific regression coefficients for the

light and the dark period respectively, while bij = (b0ij , b1ij , · · · , b5ij) and cij =

(c0ij , c1ij , · · · , c4ij) are the random effects or rat specific coefficients. The random

effects bij and cij are assumed to be independent with distributions N(0,Db
j) and

N(0,Dc
j) respectively, where Db

j and Dc
j are unstructured (3 × 3) matrices. The

residual components εijk are also independent with distribution N(0, σ2
j ).

4.2 Application to the EEG Dataset

We will now apply both modeling approaches to the EEG data, and compare their

fitting abilities.

4.2.1 Fractional Polynomial Mixed Model

The model described in Section 4.1.2 was fitted to the data. As an illustration,

the fitted models for Active Wake, Light Sleep and Deep Sleep for one compound-

dose combination in each of the 5 classes are shown in Figure 4.1. The individual

observed profiles for each of the eight rats in the compound-dose combination are

represented by grey lines, with the blue dashed line representing the mean of that

particular compound-dose combination and the red solid line depicting the fitted

fractional polynomial model. For all the classes, the fitted profile nicely follows the

mean evolution over time. Since we allowed for different parameters for light and

dark period in model 4.9, the jump at time point 20 could be captured. For the other

sleeping stages, and the other compound-dose combinations in the dataset, similar

model fits were obtained.

4.2.2 Splines Model

The splines model parametrization described in Section 4.1.3 is now used to model

the EEG data. Figure 4.2 shows the observed profiles for Active Wake, Light Sleep

and Deep Sleep for the eight rats in one compound-dose combination in each class

(grey solid lines), together with the mean observed profile (blue dashed line) and the

fitted spline model (red solid line). For each of the compound-dose combinations, the

fitted profiles follow the mean evolution over time. Also here, the jump at time point

20, is nicely captured, since different model parameters are allowed for the light and

the dark period. Similar model fits were obtained for the other sleeping stages and
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the other compound-dose combinations.

4.3 Discussion

In Figure 4.3, the model fits obtained with the fractional polynomial mixed model and

the splines mixed model are compared. For one compound-dose combination in each

of the classes, we draw in black the mean observed profile for the number of minutes

spent in each of the six sleeping stages. In red is the fitted profile for the fractional

polynomial mixed model, while in blue we have plotted the model fit obtained with

the splines mixed model.

Both models are following the data very well. Except for REM Sleep in the placebo

and antidepressant compound-dose combination, the fits are very similar. In the plots

for REM Sleep in placebo and antidepressant, it can be seen that the splines model

is trying to capture the irregularities in the profile, while the fractional polynomial

mixed model only focusses on the main trend.

By allowing for different parameters for the light and the dark period, we are

able to capture the jump at the moment that the light is switched off. However, by

doing this we assume indirectly that the sleep wake pattern in the dark period is

independent of the pattern in the light period, which might be questionable, but it

simplifies the model and the fitting process dramatically, avoiding also computational

issues.
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Figure 4.1: Fractional Polynomial Mixed Model. Observed individual profile for Active

Wake, Light and Deep Sleep, for the eight rats in one compound-dose combination in

each of the classes in grey solid lines together with the mean profile for that compound-

dose combination (blue dashed line) and the fitted fractional polynomial mixed model

(red solid line).
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Figure 4.2: Splines Model. Observed individual profile for Active Wake, Light and

Deep Sleep, for the eight rats in one compound-dose combination in each of the classes

in grey solid lines together with the mean profile for that compound-dose combination

(blue dashed line) and the fitted splines model (red solid line).
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Figure 4.3: Observed mean profile for one compound-dose combination in each of the classes in black solid lines together with the

fitted fractional polynomial mixed model in red and the fitted splines mixed model in blue.





5
Doubly Hierarchical

Supervised Learning Analysis

Developing classification rules for complex data structures, such as multiple-class

problems with a longitudinal design, is a non-trivial task and requires appropriately

tailored methods. Precisely these features are encountered in EEG experiments,

where we have the number of minutes spent in 6 sleeping stages (multivariate),

measured at 32 time-intervals (longitudinal) for 5 classes (multiple-class). Classical

supervised learning techniques are not suited to handle the combination of a multiple-

class problem and a longitudinal design. In order to deal with these features in the

construction of a classification rule, we propose a flexible two-step procedure, termed

doubly hierarchical supervised learning analysis (DHSLA) which copes with such

issues (Wouters et al , 2007a).

In the first section of this chapter, the general idea of this two-step procedure is

explained. Later, in the next two sections, we elaborate on the first and second step

respectively. The final section is devoted to study some computational issues that

could arise.

43
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Figure 5.1: Diagram representing the doubly hierarchical supervised learning analysis.

5.1 Description of General Two-stage Procedure

To establish classification rules for application with multiple-class longitudinal data

we propose a flexible hierarchical supervised learning tool, that allows to take into

account the specific nature of the multiple drug classes, as well as the longitudinal

aspect of the data. The procedure is schematically represented in Figure 5.1. In

the first stage of the DHSLA, the longitudinal profiles are modeled and appropriate

summaries are extracted from the model fit. These summary measures are then used,

in the second stage, as input for the supervised learning analysis, in view of classifying

the data. This second stage proceeds in a hierarchical fashion.

In both the first and the second stage, various techniques can be used. In the two

subsequent sections we will elaborate on the two stages in turn and highlight a few

implementations of the procedure.

The term doubly hierarchical supervised learning analysis refers to the hierarchical

structure present in our data (which will be modelled using hierarchical models) on

the one hand, and the hierarchical character of the supervised learning procedure on

the other hand.

The evaluation of the DHSLA procedures is done through cross-validation on

the two levels in the dataset, i.e. the rat and the compound-dose combination level

(Section 5.5). Because of the hierarchical character of the procedures some issues arise

regarding the selection of the variables, which is solved using a lack of classification

measure, and the calculation of the posterior probabilities. These issues will be dealt

with in Section 5.4 – 5.6.
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5.2 Phase I: Modeling the Data

In the first phase of the doubly hierarchical supervised learning analysis, the data is

modeled using a flexible model. Different modeling techniques can be used here. As

we have seen in the previous chapter, both fractional polynomial mixed models and

splines mixed models are fitting the data very well. We have chosen to work with

the fractional polynomial mixed model, but splines mixed models would have been a

sensible choice as well.

5.3 Phase II: Supervised Learning Approach

The continuation of the classification procedure necessitates informative summaries

of the highly variable longitudinal profile available for each rat. To this end, the

parameters of the models in the first stage, i.e., the collection made up of β0j + b0ij ,

β1j + b1ij , β2j + b2ij and the powers corresponding with Hj1 and Hj2, denoted by p1j

and p2j , will be used as input in the supervised learning procedure.

To establish and optimize a flexible classification rule, we proceed in a stepwise,

hierarchical fashion. In a first step we discriminate, one class from the rest, using the

parameters describing the longitudinal profiles. Then, focus shifts to the remaining

classes. This process continues until a complete decision tree has been built. The

order in which the classes are discriminated is determined based on the performance

in the training dataset. Different orders are checked and the one that leads to the

best classification results using cross-validation, is retained.

Various supervised learning techniques can be used at this stage, three of which will

be considered here: linear (LDA), flexible (FDA), and mixture (MDA) discriminant

analysis. We will briefly outline each of the three choices in turn in the next

subsections.

We will construct a toy example using a small crossectional part of the EEG

dataset, containing 48 rats who received placebo compounds and 80 rats treated with

stimulant compounds. The number of minutes spent in Active Wake and Deep Sleep

during the first 2 hours are considered as covariates. The three supervised learning

approaches will be applied to the toy example to illustrate the discriminant properties

of each procedure. The data is shown in Figure 5.2, where rats receiving placebo

treatments are represented by red spheres and rats receiving stimulant compounds

are displayed as green triangles.
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Figure 5.2: Toy example. Number of minutes spent in Active Wake (X-axis) and Deep

Sleep (Y-axis) during the first 2 hours of the observation period, for placebo (spheres)

and stimulants (triangles).

5.3.1 Linear Discriminant Analysis

In linear discriminant analysis (Johnson and Wichern, 1992), each class c is assumed

to follow a multivariate normal distribution N(µc,Σ) with class-specific mean µc and

common variance-covariance matrix Σ, leading to a linear decision rule. In the case

of two classes this rule is given by

(µ1 − µ2)
T Σ−1x −

1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) ≥ ln

[

c(1|2)

c(2|1)

p2

p1

]

(5.1)

where c(1|2) is the cost of misclassifying a subject from class 2 in class 1 and pc

(c = 1, 2) is the prior probability of belonging to class c. One assigns a new subject

with response vector x to class 1 if the inequality is satisfied, and to class 2 otherwise.

Using Bayes’ theorem, the posterior probability of belonging to class k can be

calculated as

P (c|x) =
pcfc(x)

∑

u pufu(x)
(5.2)

where fc(x) is the group-specific density estimate at x from class c given by

fc(x) = (2π)−
p
2 |Σ−1

c | exp
(

−0.5(x − µc)
T Σ−1

c (x − µc))
)

(5.3)

In Figure 5.3(a) the classification result obtained with LDA for the toy example

is shown. The observations on the left side of the boundary (indicated in red) are
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(a) Linear Discriminant Analysis

20 40 60 80 100 120

0
10

20
30

40
50

Active Wake (2h)

D
ee

p 
S

le
ep

 (
2h

)

(b) Flexible Discriminant Analysis
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(c) Mixture Discriminant Analysis

placebo − correctly classified
placebo − misclassified
stimulants − correctly classified
stimulants − misclassified

Figure 5.3: Classification result for the toy example obtained with (a) linear

discriminant analysis, (b) flexible discriminant analysis, with MARS and (c) mixture

discriminant analysis, with 3 prototypes per class. The region classified as placebo is

indicated in red, the region classified as stimulants in green.

classified as placebo, while the ones on the right side are assigned to stimulants. We

used cross-validation to classify the subjects in the dataset. In this way, two rats who

received a placebo treatment and six rats who received a stimulant were misclassified.

The linearity of rule (5.1) makes it easy to implement and interpret the decision

boundaries. Unfortunately, in a number of situations linear decision boundaries are

not adequate to separate the classes. To account for this, Hastie, Tibshirani and

Friedman (2001) propose generalizations of LDA, such as flexible discriminant analysis

(FDA), mixture discriminant analysis (MDA), and penalized discriminant analysis

(PDA). In what follows, we will confine attention to FDA, because of its ability to

model irregular decision boundaries, and MDA which allows us to use more than one

prototype per class.
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5.3.2 Flexible Discriminant Analysis

The linear discriminant analysis can be regarded as a sequence of linear regression

followed by classification to the closest class centroid in the space of fits. In that case,

the linear regression is defined via

ASR =
1

n

K
∑

`=1

[

n
∑

i=1

(θ`(gi) − xT
i β`)

2

]

. (5.4)

where θ1, · · · , θK are independent scorings for the class labels and η` = XTβ` are

the corresponding linear maps. These scores and maps are chosen to minimize the

average squared residual (ASR).

The linear regression can now be generalized to a more flexible function (Hastie,

Tibshirani and Friedman, 2001). In this more general form, the regression problems

are defined via

ASR =
1

n

L
∑

`=1

[

n
∑

i=1

(θ`(gi) − f(xi))
2 + λJ(f)

]

,

where J is a regularizing function.

In our particular case, we use Multivariate Adaptive Regression Splines (MARS)

models (Friedman, 1991). The input space is partitioned into regions, each with its

own linear regression equation. The MARS equation is given by

f(x) = γ0 +

M
∑

m=1

γmhm(x),

where M is the number of non-constant terms in the model and hm is a basis function

in the collection

C = {(Xj − t)+, (t−Xj)+|t ∈ {x1j , x2j , . . . , xnj}, j = 1, 2, . . . , p} ,

with n the number of observations.

The classification obtained for the toy example with flexible discriminant analysis

using MARS is shown in Figure 5.3(b). The resulting boundaries are clearly more

flexible than the ones obtained with LDA, but still we were not able to classify

correctly two rats from the placebo group and six rats from the stimulant group.

Note that we get indeed more flexible boundaries with FDA, but there is a price

to pay. Too flexible models can result in overfitting, and the generalizability of the

results may be in doubt. We try to overcome this issue by using cross validation in

the selection of the model.
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5.3.3 Mixture Discriminant Analysis

Mixture discriminant analysis (Hastie, Tibshirani and Friedman, 2001) is an extension

of LDA, to be viewed as a prototype classifier with each class represented by its

centroid. We assign an observation to the closest centroid using an appropriate

distance measure. In many situations, a single prototype per class is not sufficient, in

which case mixture models can be used. Assume classes have several prototypes,

thence a Gaussian mixture model for the class c could be considered. The

corresponding density is

P (X|c) =

Rc
∑

r=1

πcr
φ(X;µcr

,Σ),

where the mixing proportions satisfy
∑Rc

r=1 πcr
= 1, Rc is the number of prototypes

for class c and Σ the covariance matrix used as a metric throughout. For class c

with a priori probabilities Πc, we estimate the parameters by maximizing the joint

log-likelihood:
K
∑

c=1

∑

gi=c

log

[

Rc
∑

r=1

πcr
φ(X;µcr

,Σ)Πc

]

.

The expectation-maximization (EM) algorithm is a convenient mode to obtain

maximum likelihood estimates (Dempster, Laird, and Rubin, 1977). The algorithm

consists of iterating between the expectation (E) and maximization (M) steps, until

convergence. In our situation, they take the following forms.

E-step: Given the current values for the parameters, compute the weights associated

with the subclasses cr:

W (cr|xi, gi) =
πcr

φ(xi;µcr
,Σ)

∑Rc

l=1 πcl
φ(xi;µcl

,Σ)
. (5.5)

M-Step: Compute weighted MLEs for the parameters of each of the component

Gaussian densities, within each of the classes, using the weights obtained from

(5.5).

In Figure 5.3(c) we see the classification result for the toy example obtained with

MDA using a mixture of three normal densities in each class. The result is now two

misclassified rats in placebo, and four misclassified rats in stimulants.

As in FDA, also here the concern of overfitting raises, but again we will use cross-

validation deal with this issue.



50 Chapter 5. Doubly Hierarchical Supervised Learning Analysis

5.4 A Proposal for a Measure of

Lack-of-Classification

To determine the goodness of our discriminant analysis, we have to take into account

not only the error rate and the posterior probability with respect to the class

discriminated in step s, denoted by Cs, but also with respect to the other classes

in step s, denoted by C−s. Therefore we calculate Error1, focussing on the false-

negative cases, and Error2, which is monitoring the false-positives, as follows:

Error1s = ERRCsC−s
+ (1 − PPCsCs

) (5.6)

Error2s = ERRC−sCs
+
∑

k 6=Cs

PPkCs
(5.7)

where ERRkl is the misclassification percentage from class k into class l and PPkl is

the posterior probability for rats belonging to class k to be classified in class l.

The lack-of-classification measure (LC) in step s is now defined as a weighted sum

of Error1 and Error2.

LCs = ws1 · Error1s + ws2 · Error2s. (5.8)

Different weights ws1 and ws2 can be chosen, depending on the type of application.

In our particular case, we chose the weights ws1 = s+ 1 and ws2 = 2 · (g − s). Along

the process more weight is given to the false-negatives whereas the weight given to

the false-positives is decreased. The choice of these weights is based on the fact that

the algorithm discriminates in the first steps the classes that are well differentiated

from the rest whereas in the final steps the classes are less clearly separated.

The lack-of-classification measure is now standardized and corrected for the

number of parameters in the model by multiplying with a decreasing function of

the number of sleep-wake stages used, given by F (ss).

LC’s = 1 −

(

1 −
LCs

2 · ws1 + (g − s+ 1) · ws2

)

· F (ss). (5.9)

Again, different choices can be entertained for F (ss). We choose to proceed with

F (ss) = 0.999ss.

Note that LC’s is a useful device to ensure that a particular sleeping stage be

added, whenever the researcher is quite certain that such a stage would lead to added

benefit in terms of classification. Of course, the choice for this particular function is

a pragmatic one and, arguably, other functional forms could be entertained as well.

The most important thing here is that this choice exhibits good behaviour.
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The model leading to the lowest lack-of-classification LC’ will be retained.

5.5 Selection Procedure to Retrieve Best Model

We consider two different selection procedures, both based on 10-fold cross-validation,

a technique to be described next, inspired by the fact that the dataset can be divided

randomly at each of two different hierarchical levels.

In the first approach (Selection Procedure I), we use rats as the unit of analysis.

The 472 rats comprising the dataset are then randomly divided into ten groups. For

every parameter combination obtained from the fractional polynomial models and

for each sleep-wake stage, one of the 10 samples is used as a test dataset, while

the remaining 9 samples are assigned the role of training sets. For the test dataset,

both the misclassification error and the posterior probabilities are calculated. The

combination of sleep-wake stages resulting in the lowest lack of classification measure

is retained. This is repeated for every step in the DHSLA.

Selection Procedure II uses 10-fold cross-validation at the compound-dose combi-

nation level. We randomly divide the 59 such combinations into ten approximately

equal sized groups and then proceed in the same way it was described above.

For each selection procedure, the error count is calculated at both levels, i.e.,

rat and compound-dose combination. The first is computed as the average of the

percentage of misclassified rats in each class (errorrat), while the second uses the

percentages of compound-dose combinations that are misclassified in a particular

class (errorc-d).

5.6 Adjusted Posterior Probabilities

The posterior probabilities for a hierarchical classification process need to be adjusted.

In each step, we have to correct the posterior probabilities of a compound-dose

combination for the fact that this combination has not been classified in one of the

previous steps.

For the first step, we calculate the posterior probabilities P1 of belonging to the

class that we want to discriminate in step 1 and Q1 = 1−P1. Given that s splits have

been made, the values of the posterior probabilities at split s+ 1 are then multiplied

with the posterior probabilities of not being classified at the previous steps in the

class we were interested to discriminate from the rest. So,
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P adj
s+1 = Qadj

i Ps+1 (5.10)

Qadj
s+1 = Qadj

i Qs+1 (5.11)

In what follows, all posterior probabilities reported will use the correction outlined

here.



6
Comparison of Doubly

Hierarchical Supervised

Learning Analysis with

Different Discriminant

Techniques

In this chapter we will apply the doubly hierarchical supervised learning analysis

with fractional polynomial mixed models in the first phase and the three different

discriminant techniques explained in the previous chapter in the second phase. The

procedure is schematically represented in Figure 6.1. The results in this chapter are

based on Wouters et al (2007b).

6.1 Phase I: Fractional Polynomial Mixed Model

As a prelude to our doubly hierarchical supervised learning analysis, we model, for

every compound-dose combination in the training and the test dataset, the number

53
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�
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�
�Compound-Dose - FPMM - Coefficients - LDA

FDA
MDA

-

�
�

�
�Predicted Class

Figure 6.1: Diagram representing the doubly hierarchical discriminant analysis, when

a fractional polynomial mixed model (FPMM) is used in Stage I and linear (LDA),

flexible (FDA) or mixture discriminant analysis (MDA) are used in Stage II.

of minutes spent in the 6 sleep-waking stages by a fractional polynomial model with

mixed effects as has been done in Chapter 4. Not only the coefficients, but also the

powers p1 and p2 can be different for different compound-dose combinations. For the

minutes spent in each sleeping stage in time period k for subject i in treatment j we

will fit model (4.9)

Given that the drugs are administered at the beginning of the light period and

based on experts’ belief that the action may be quite different during the initial

period, it is sensible to allow for a different, perhaps more pronounced action of

the drug during the first three hours after administration. Therefore, we choose to

consider a separate model for the first three hours, for example for Active Wake this

model becomes

(AW min)ijk = (δ0j+d0ij)+(δ1j+d1ij)
t
p1jf

k − E[tp1jf ]
√

Var[tp1jf ]
+(δ2j+d2ij)

t
p2jf

k − E[tp2jf ]
√

Var[tp2jf ]
+εijk.

(6.1)

Figure 6.2 shows the fitted models for all the compound-dose combinations in each

of the 5 classes. For placebo we see a very consistent course in all the compound-

dose combinations. For other classes, especially for the stimulants, there is a wide

variability in shapes.
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Figure 6.2: Fitted fractional polynomial mixed model for all the compound-dose combinations in the five drug classes.
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6.2 Phase II: Hierarchical Supervised Learning Anal-

ysis

The training dataset is used to build a doubly hierarchical supervised learning

rule, following the principle laid out in Chapter 5. For each compound-by-dose

combination, we will derive five variables, based on the empirical Bayes estimates,

obtained from the fractional polynomial mixed model. We will do so for every response

variable in the light period, i.e., β0j +b0ij , β1j +b1ij , β2j +b2ij , p1jl and p2jl, the dark

period γ0j + c0ij , γ1j + c1ij , γ2j + c2ij , p1jd, p2jd, and also for the first three hours of

the light period δ0j + d0ij , δ1j + d1ij , δ2j + d2ij , p1jf and p2jf , where j = 1, . . . , 59.

For each of these new variables, the number of ‘observations’ equals the number of

rats in the compound-dose combinations.

In all three discriminant procedures, the order in which the classes are separated

will be the same, but the sleep-wake stages used in each step are allowed to

differ. As schematically presented in Figure 6.3, we sequentially discriminate first

stimulants, then antipsychotics, antidepressants and finally hypnotics are separated

from placebo. This choice was guided by considering the results from the exploratory

phase, supplemented with pharmacological information from the experts. Arguably,

in general, such a choice will always have a somewhat subjective component to it and

ought to be guided by substantive considerations.

The posterior probabilities will be calculated as indicated in Section 5.6 and

schematically presented in Figure 6.3. In this way, we adjust for the fact that we

have a hierarchical classification procedure.

Originally, the sleep-waking stages used in each step were determined ad hoc,

based on the results of the exploratory analysis and prior experts knowledge. For

example, it is known that a stimulant induces Active Wake and reduces Light and

Deep Sleep. This information could be used in the first step. Later the selection

procedures described in Section 5.5 in combination with the lack of classification

measure LC’ were used to obtain the sleep-wake stages in each step in a more formal

way. Parameters for a certain sleep-waking stage in the light period and the first three

hours are never included in the same step, given that they are describing essentially

the same period. The fact that a certain sleep-wake stage is retained in a particular

step in the DHSLA merely means that the behaviour of the rats for this particular

compound-dose combination within this particular class is different from that of rats

not belonging to this class, relative to the sleep-wake stage being scrutinized.

In what follows, the results obtained with linear discriminant analysis, flexible
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All Treatments
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P1

Stimulants P adj
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?
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Antipsychotics P adj
2 = P2 ·Q1
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Q2
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Hypnotics P adj
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Q4
?

Placebo P adj
5 = Q1 ·Q2 ·Q3 ·Q4

Figure 6.3: Phase II of the Doubly Hierarchical Supervised Learning Analysis. In each

step, one class is discriminated from the rest.

discriminant analysis built on MARS, and mixture discriminant analysis with two

subclasses per group are compared with respect to the sleep-wake stages used in each

step and the performance with 10-fold cross validation on the rat level (Selection

Procedure I) as well as the compound-dose level (Selection Procedure II). Also the

classification results in the validation dataset will be compared.

6.2.1 Linear Discriminant Analysis

10 fold cross validation on rat level (Selection Procedure I)

The sleep-wake stages selected in each of the steps of the linear discriminant analysis,

by 10-fold cross validation using the rat level are displayed in Table 6.1. As could be

expected Active Wake, Light Sleep and Deep Sleep play a role in the discrimination of

stimulant compounds. This lines up with expectation because a stimulant generally

increases Active Wake and reduces Light and Deep Sleep. When comparing the sleep-

wake stages retained for antidepressant and hypnotic with the generally observed



58 Chapter 6. Comparison of DHSLA with Different Discriminant Techniques

Table 6.1: Linear Discriminant Analysis. Sleep-waking stages used in each step of the

DHSLA with 10-fold cross validation by rat.

Selection Procedure I

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul PW SWS2 AW SWS1 RS AW SWS1

(2) Antipsy PW SWS2 IS AW PW SWS2 AW

(3) Antidep SWS2 IS RS SWS1 SWS2 AW PW

(4) Hypno AW SWS2 IS RS

changes associated to these two classes, see Table 2.3, we see indeed that Passive

Wake and REM Sleep for antidepressant, and Deep Sleep for hypnotic were retained.

For antipsychotics, we expect to see Light Sleep and Intermediate Stage Sleep, based

on Table 2.3, but Light Sleep was not retained in this step.

Table 6.2 shows the number of observations classified in the 5 classes per class,

obtained by 10-fold cross validation using the rat level (Selection Procedure I). In

the upper panel we see the number of rats classified into each drug class. Except

for one antipsychotic rat which is misclassified as antidepressant and two stimulant

rats which end up in the placebo and the hypnotic class, all the rats were correctly

classified. The error on the rat level, errorrat, is thus 1.6%. In the lower panel of

Table 6.2, we classify the compound-dose combination as a whole, by looking at the

mean posterior probabilities over the eight rats in that compound-dose. In this case,

all the compound-doses were correctly classified, which results in error rate errorc-d

of 0%.

The adjusted posterior probabilities for LDA with cross-validation on the rat level

are shown in Table 6.3. The posterior probabilities for correct classification are all

above 0.94.

10 fold cross validation on compound-dose level (Selection Procedure II)

The sleep-waking stages selected by 10-fold cross validation on compound-dose level

are shown in Table 6.4. Also here we see a lot of similarities with the generally

observed changes associated with the concerned classes in Table 2.3. When comparing
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Table 6.2: Linear Discriminant Analysis. Summary of the hierarchical discrimination

procedure for the training data set, using 10-fold cross validation on the rat

level (number of rats (upper panel) and compound-dose combinations (lower panel)

classified in each drug class).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul Total

Placebo 184 0 0 0 0 184

Antipsy 0 55 1 0 0 56

Antidep 0 0 112 0 0 112

Hypnot 0 0 0 40 0 40

Stimul 1 0 0 1 78 80

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul Total

Placebo 23 0 0 0 0 23

Antipsy 0 7 0 0 0 7

Antidep 0 0 14 0 0 14

Hypnot 0 0 0 5 0 5

Stimul 0 0 0 0 10 10

the selected sleep-wake stages with the ones that were retained with 10-fold cross

validation on the rat level, we see some resemblances. For example for stimulants,

Active Wake during the first three hours, Light Sleep in the dark period and Passive

Wake in the light period were retained in both cases. Light Sleep was retained in

the first three hours in selection procedure I, while in selection procedure II it was

retained in the light period, which is also covering the first three hours. For the other

classes we observe some further similarities between the two selection procedures.

Passive Wake and Intermediate Stage Sleep in the light period and Active Wake and

Deep Sleep in the dark period were selected for the classification of antipsychotics

with both procedures. For antidepressants, Intermediate Stage Sleep and REM Sleep

in the light period, and Active Wake in either the light or the first three hour period
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Table 6.3: Linear Discriminant Analysis. Adjusted posterior probabilities for the

training data set obtained with 10-fold cross-validation on the rat level.

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.97 0.02 0.01 0.00 0.00

Antipsy 0.01 0.94 0.03 0.00 0.02

Antidep 0.00 0.03 0.95 0.01 0.01

Hypnot 0.00 0.00 0.01 0.99 0.00

Stimul 0.01 0.01 0.02 0.00 0.96

are retained. Finally for hypnotics, Deep Sleep in the light period and Active Wake

and Intermediate Stage Sleep in the light period or the first three hours were retained

by both selection procedures.

The number of sleep-wake stages retained with both selection procedures is

comparable. For step 2 and 3 the same number of sleep-wake stages was selected.

For step 1 less sleeping stages were retained with procedure II, while for step 4, much

less sleep-wake stages were needed in procedure I.

The results for the 10-fold cross validation using the compound-dose combination

level are shown in Tables 6.5 and 6.6.

The number of rats and compound-dose combinations classified in each of the six

classes is given for each psychotropic drug class in Table 6.5. The resulting error

rate on the rat level is now 9% and the one on the compound-dose level is 6%. Both

errors are much higher if we compare with the results obtained with cross validation

on the rat level. First, additional randomness is introduced in selection procedure

II due to random sampling. Second, the dataset considered contains relatively few

compound-by-dose combinations. Third, and very fundamentally, leaving out rats

versus leaving out compound-dose combinations does not assess the same aspects.

Indeed, by removing rats from a combination, one can still estimate, admittedly

somewhat less precise, all parameters associated to such a combination. This is

obviously not true when an entire combination is removed. Therefore, both methods

focus on different aspects of variability, associated with rat-level and compound-by-

dose combination-level replication, respectively. Thus, there is room for both.
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Table 6.4: Linear Discriminant Analysis. Sleep-waking stages used in each step of the

DHSLA with 10-fold cross validation by compound-dose combination.

Selection Procedure II

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul PW SWS1 SWS1 AW

(2) Antipsy AW PW SWS1 IS AW SWS2 IS

(3) Antidep AW PW SWS1 IS RS IS RS

(4) Hypno PW SWS2 IS RS AW SWS1 IS

Table 6.6 presents the adjusted posterior probabilities, showing posterior proba-

bilities for correct classification above 73% for all the classes. For placebo we get even

93%. Although the posterior probabilities and classification percentages are still high,

also here we can see that the results obtained by cross validation using the rat-level

seem more promising, but might suffer generalizability.

Validition Dataset

Let us now turn to the validation dataset. The posterior probabilities obtained here

with the sleep-wake stages selected with 10-fold cross validation on the rat level are

presented in the upper panel of Table 6.7, while the lower panel shows the results

obtained with the selection procedure on the compound-dose level. Both selection

procedures produce poor classification results in the test dataset. For the selection

procedure I, placebo and stimulants get still a high posterior probability in the

correct class, even 96% for placebo, while the other three classes get a very low

posterior probability for the correct class. For selection procedure II, antidepressants

and stimulants are doing better than in selection procedure I. But for placebo and

hypnotic, the performance is less good.

6.2.2 Flexible Discriminant Analysis

The sleep-wake stages selected per step when flexible discriminant analysis is used in

the DHSLA for the two selection procedures described in Section 5.5 are shown in

Table 6.8. Similar to the case when the linear discriminant analysis is used in the
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Table 6.5: Linear Discriminant Analysis. Summary of the hierarchical discrimination

procedure for the training data set, using cross validation on the compound-dose

level (number of rats (upper panel) and compound-dose combinations (lower panel)

classified in each drug class).

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul Total

Placebo 176 0 0 8 0 184

Antipsy 0 46 4 6 0 56

Antidep 0 0 106 6 0 112

Hypnot 0 0 0 40 0 40

Stimul 3 2 9 1 65 80

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul Total

Placebo 22 0 0 1 0 23

Antipsy 0 7 0 0 0 7

Antidep 0 0 13 1 0 14

Hypnot 0 0 0 5 0 5

Stimul 0 0 1 0 9 10

DHSLA, we see that the number of sleep-wake stages retained does not differ much

for both selection procedures. Also, we note that for some classes both selection

procedures arrive at selecting the same sleep-wake stages, indicating association

between the class and its effect on a particular sleep-wake stage. For example, for

stimulants, we retain Light Sleep in the light period or the first three hours, with either

selection procedure. For antipsychotics, Passive Wake, Deep Sleep and Intermediate

Stage Sleep in the light period and Active Wake, and Intermediate Stage Sleep in

the dark period are common to both selection procedures. Intermediate Stage Sleep

and REM Sleep in the light period, and Active Wake and Passive wake either in the

light period or in the first three hours are retained with both selection procedures for

antidepressants. Finally, for hypnotics, Deep Sleep in the light period and Active
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Table 6.6: Linear Discriminant Analysis. Adjusted posterior probabilities for the

training data set obtained with 10-fold cross-validation on the compound-dose level.

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.94 0.01 0.01 0.04 0.00

Antipsy 0.00 0.72 0.10 0.11 0.07

Antidep 0.00 0.18 0.75 0.06 0.01

Hypnot 0.00 0.04 0.18 0.78 0.00

Stimul 0.04 0.04 0.09 0.04 0.79

Wake in the light period or the first three hours is selected with both selection

procedures.

Regarding the adjusted posterior probabilities, the upper panel of Table 6.9

displays very high posterior probabilities for the correct classification with flexible

discriminant analysis, obtained with Selection Procedure I. For Selection Procedure II,

high posterior probabilities, above 70%, for placebo, antipsychotics, antidepressants,

and stimulants are obtained, while the adjusted posterior probability obtained for

hypnotics is considerably lower.

The adjusted posterior probabilities obtained for the validation dataset using FDA

with both selection procedures are shown in Table 6.10. For selection procedure I we

get very high posterior probabilities in the correct class for placebo, antipsychotic

and stimulants. For antidepressant and hypnotic, the chance of correct classification

is rather low. When the classification were selected with cross-validation on the

compound-dose level, the posterior probabilities in the correct classes are all above

50% and even around 70% for placebo and hypnotics.

6.2.3 Mixture Discriminant Analysis

The corresponding results for mixture discriminant analysis in the training dataset

are presented in Tables 6.11 and 6.12, respectively.

Similar conclusions can be drawn here with respect to the sleep-wake stages

retained at each step. The number of sleeping stages retained is similar for both
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Table 6.7: Linear Discriminant Analysis. Adjusted posterior probabilities for the

validation data set obtained with 10-fold cross-validation on the rat level (upper panel)

and the compound-dose level (lower panel).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.96 0.00 0.04 0.00 0.00

Antipsy 0.38 0.33 0.03 0.26 0.00

Antidep 0.11 0.45 0.16 0.16 0.12

Hypnot 0.48 0.03 0.31 0.18 0.00

Stimul 0.01 0.23 0.07 0.04 0.65

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.33 0.00 0.05 0.62 0.00

Antipsy 0.24 0.33 0.00 0.43 0.00

Antidep 0.02 0.38 0.49 0.02 0.09

Hypnot 0.93 0.02 0.02 0.03 0.00

Stimul 0.00 0.03 0.28 0.00 0.69

selection procedures, and some of them are selected by both procedures. For example,

for stimulants, Deep Sleep and REM Sleep in the light period, Active and Passive

Wake in the dark period and Active Wake and Light Sleep in the first three hours

or the light period, are chosen irrespective of the selection procedure used. Also for

the other classes in the hierarchical procedure similarities between the two selection

procedures are observed.

For the adjusted posterior probabilities, we observe, once more, very promising

results for Selection Procedure I. All posterior probabilities for the correct classes are

above 98%. For Selection Procedure II, all adjusted posterior probabilities, except for
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Table 6.8: Flexible Discriminant Analysis. Sleep-waking stages used in each step of

the DHSLA with 10-fold cross validation by rat (upper panel) and compound-dose

combination (lower panel).

Selection Procedure I

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul SWS1 SWS2 PW SWS1 SWS2 AW

(2) Antipsy PW SWS2 IS AW PW IS RS

(3) Antidep SWS2 IS RS SWS1 SWS2 AW PW

(4) Hypno AW QW SWS2 RS

Selection Procedure II

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul AW RS AW PW SWS1

(2) Antipsy PW SWS2 IS RS AW SWS2 IS

(3) Antidep AW PW SWS1 IS RS IS RS

(4) Hypno SWS1 SWS2 SWS2 IS RS AW IS

antipsychotics, are above 83%. For antipsychotics, we obtain a posterior probability

for the correct class of 61%.

The adjusted posterior probabilities for the validation dataset, obtained with

mixture discriminant analysis with selection procedure I and II are presented in

Table 6.13. For the selection based on 10-fold cross validation on the rat level,

a high posterior probability for placebo in the placebo class was achieved, while

for antipsychotics, antidepressants and stimulants, the posterior probability for the

correct class is around 45% and for hypnotics only 26%. For selection procedure II, a

very high posterior probability was obtained in the antipsychotic and stimulant class.

Placebo, antidepressants and hypnotics present much smaller posterior probabilities.
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6.3 Discussion

In this chapter we applied our doubly hierarchical supervised learning analysis to

classify compounds with psychotropic potential into standard classes as they have

been defined by Deniker (1982) by using the longitudinal sleep-wake pattern collected

on rats. The doubly hierarchical supervised learning analysis was used with a

fractional polynomial mixed model in the first stage of the procedure and a stepwise

linear, flexible or mixture discriminant analysis in the second stage. Selection of the

variables used in each step of the hierarchical discriminant procedure was done using

either the individual or the compound-by-dose combination as unit of analysis.

The number of sleep-wake stages used by the procedure at each step is very stable

across the three discriminant techniques for both selection procedures. Some sleep-

wake stages are retained in all analyses irrespective of the discriminant analysis or

the selection procedure. The sleep-wake stages that are generally observed in practice

to be influenced by a certain psychotropic drug class, as was seen in Table 2.3, were

indeed retained for the corresponding step in most of the procedures.

It appears that the level on which the cross-validation is performed plays an

important role in the selection of the sleep-wake stages. For antipsychotics (step

two), Passive Wake is selected in the dark period for all three discriminant techniques

for Selection Procedure I, but does not show up in any of the analyses when Selection

Procedure II is applied. The same is observed for Deep Sleep in the light period

and Light and Deep Sleep in the dark period when antidepressants are discriminated,

or for REM Sleep in the light period for the classification of hypnotics in the last

step. On the other hand, we have some sleep wake stages that are needed in all three

analyses when using Selection Procedure II, but not at all when Selection Procedure

I is used, such as Intermediate Stage Sleep in the dark period for the classification of

antidepressants and REM Sleep in the dark period for the classification of hypnotics.

Variables that appear in a certain step for all three discriminant analyses,

regardless of the selection procedure, can be seen as important variables for the

discrimination of that particular class from the rest. The first three hours are part of

the light period; therefore we will consider a variable as common when it is used either

in the light period or in the first three hours. In general, Active Wake in either the light

or the first three hour period is showing up in the first step, designed to discriminate

stimulants from the rest. This agrees with expectation, because stimulants generally

increase the wakefulness. Passive Wake in the light period appears in all six analyses

in the second step to classify antipsychotics. Active Wake, Intermediate Stage Sleep

and REM Sleep in the light or the first three hour period seem to be crucial in the
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classification of an antidepressant. Finally for hypnotics, we see that Active Wake,

Deep Sleep and REM Sleep in either the light period or the first three hours are

retained in all the analyses.

An overview of the error rates in the training dataset on rat and compound-dose

level, obtained in the six analyses are summarized in the left panel of Table 6.14.

The error rates obtained with cross validation on the rat level are lower than those

obtained with cross validation on the compound-dose level. This is not surprising

because in the first approach all compound-dose combinations are still represented in

the training dataset. On the other hand, when leaving out a whole combination, we

get problems for classes where only a few combinations were available (e.g. Hypnotics

and Antipsychotic). The two approaches can not be compared, and should be seen

next to each other as two different views on the same problem.

In the training dataset, the three discriminant techniques produce comparable

results in terms of adjusted posterior probabilities and error rates. Therefore we are

inclined to recommend the use of linear discriminant analysis in similar settings also

in view of its simplicity. However when looking at the performance in the test dataset,

we see that flexible and mixture discriminant analysis are performing better in terms

of both posterior probabilities and error rates.

In general almost all methods have some difficulty to discriminate between

placebo and antidepressant components and, to a lesser extent, between hypnotic

and antidepressant drugs. We can find some evidence for that when comparing the

profiles in the test dataset with the profiles of the reference compounds in the training

dataset. In Figures A.1 – A.5 in Appendix A, the test compounds in each class are

plotted versus the compounds in the five classes in the training dataset. Ideally

the test compounds of a certain class should nicely fit within the range and shapes

of the respective training compounds. This is certainly the case for the stimulant

and placebo test compounds (Figure A.1 and A.5, which is reflected in their good

classification results with almost all the methods. When looking at Figure A.2, we

would expect difficulties to classify the antipsychotic test compound, since they show

a different behaviour for Active Wake and Light Sleep compared to the training

compounds in the antipsychotic class. This was indeed the case for the DHSLA

with linear discriminant analysis, but in flexible and mixture discriminant analysis,

these two sleeping stages were not used in the discrimination of antipsychotic (step

2), and therefore the compounds could be classified well. For the antidepressant and

hypnotic test compounds we see in Figure A.3 and A.4 that they fit indeed within the

range and shape of the antidepressant compounds in the training dataset, but they

also show similarities with the other four classes, which makes it of course difficult to
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classify them correctly.

One possible drawback of this method is the selection of the level to be used in

the cross validation. Another could be the fact that several thousand models can

be used to discriminate a particular class from the rest and we are just selecting the

model which perform best in terms of misclassification error and posterior probability.

Introducing then model selection uncertainty.

As a final remark, the methods developed here are tightly linked to the motivating

problem, coming from the wish to classify potentially active psychotropic compounds

or, rather, compound-by-dose combinations. It is evident that the methodology can

be used in a variety of similar preclinical and clinical settings, across the widest range

of therapeutic areas. The method has been tuned for this particular dataset, but

the general idea as presented in Figure 5.1 can be applied to any other dataset. The

techniques used in both the first and second phase of the procedure can be tuned to

the situation at hand.
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Table 6.9: Flexible Discriminant Analysis. Adjusted posterior probabilities for the

training data set obtained with 10-fold cross-validation on the rat level (upper panel)

and the compound-dose level (lower panel).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.99 0.00 0.01 0.00 0.00

Antipsy 0.01 0.98 0.01 0.00 0.00

Antidep 0.02 0.02 0.95 0.01 0.00

Hypnot 0.00 0.01 0.00 0.90 0.00

Stimul 0.00 0.01 0.00 0.00 0.99

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.74 0.07 0.09 0.10 0.00

Antipsy 0.12 0.72 0.13 0.01 0.03

Antidep 0.00 0.10 0.79 0.11 0.01

Hypnot 0.13 0.03 0.29 0.57 0.00

Stimul 0.04 0.06 0.03 0.08 0.79



70 Chapter 6. Comparison of DHSLA with Different Discriminant Techniques

Table 6.10: Flexible Discriminant Analysis. Adjusted posterior probabilities for the

validation data set obtained with 10-fold cross-validation on the rat level (upper panel)

and the compound-dose level (lower panel).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.99 0.01 0.00 0.00 0.00

Antipsy 0.12 0.82 0.01 0.05 0.01

Antidep 0.11 0.27 0.24 0.22 0.16

Hypnot 0.56 0.17 0.23 0.04 0.00

Stimul 0.00 0.14 0.01 0.00 0.84

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.67 0.00 0.01 0.32 0.00

Antipsy 0.49 0.51 0.00 0.00 0.00

Antidep 0.02 0.26 0.61 0.04 0.07

Hypnot 0.00 0.00 0.27 0.73 0.00

Stimul 0.01 0.19 0.17 0.00 0.63
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Table 6.11: Mixture Discriminant Analysis. Sleep-waking stages used in each step

of the DHSLA with 10-fold cross validation by rat (upper panel) and compound-dose

combination (lower panel).

Selection Procedure I

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul PW SWS2 RS AW PW AW SWS1

(2) Antipsy PW SWS2 PW SWS1 IS AW RS

(3) Antidep AW SWS1 SWS2 IS RS SWS1 SWS2

(4) Hypno AW SWS1 SWS2 IS RS IS

Selection Procedure II

Stages used in the following periods

Step Light Period Dark Period First 3 Hours

(1) Stimul AW SWS1 SWS2 RS AW PW SWS1

(2) Antipsy PW SWS2 IS IS

(3) Antidep IS RS PW IS AW PW SWS1

(4) Hypno PW SWS2 IS RS AW SWS1 IS
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Table 6.12: Mixture Discriminant Analysis. Adjusted posterior probabilities for the

training data set obtained with 10-fold cross-validation on the rat level (upper panel)

and the compound-dose level (lower panel).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.99 0.01 0.00 0.00 0.00

Antipsy 0.00 0.98 0.00 0.02 0.00

Antidep 0.00 0.00 0.99 0.01 0.00

Hypnot 0.00 0.00 0.01 0.99 0.00

Stimul 0.01 0.00 0.00 0.00 0.99

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.85 0.02 0.09 0.04 0.00

Antipsy 0.12 0.61 0.09 0.12 0.06

Antidep 0.03 0.05 0.85 0.04 0.03

Hypnot 0.00 0.01 0.08 0.91 0.00

Stimul 0.00 0.11 0.06 0.00 0.83
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Table 6.13: Mixture Discriminant Analysis. Adjusted posterior probabilities for the

validation data set obtained with 10-fold cross-validation on the rat level (upper panel)

and the compound-dose level (lower panel).

Selection Procedure I

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.76 0.20 0.04 0.00 0.00

Antipsy 0.02 0.49 0.04 0.45 0.00

Antidep 0.06 0.20 0.43 0.08 0.23

Hypnot 0.35 0.31 0.08 0.26 0.00

Stimul 0.00 0.25 0.00 0.00 0.42

Selection Procedure II

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.32 0.04 0.22 0.42 0.00

Antipsy 0.10 0.83 0.08 0.00 0.00

Antidep 0.01 0.24 0.25 0.28 0.22

Hypnot 0.52 0.00 0.40 0.08 0.00

Stimul 0.00 0.00 0.00 0.00 1.00
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Table 6.14: Linear Discriminant Analysis. Summary table for the error rates obtained

in train and validation dataset, with both selection procedures.

Train Test

Technique Selection Procedure errorrat errorcv errorrat errorcv

LDA I Rat level 0.009 0.000 0.583 0.600

II Compound-dose level 0.093 0.043 0.650 0.600

FDA I Rat level 0.005 0.000 0.385 0.350

II Compound-dose level 0.161 0.129 0.404 0.383

MDA I Rat level 0.000 0.000 0.483 0.500

II Compound-dose level 0.123 0.094 0.475 0.483



7
A Model Averaging Approach

for Doubly Hierarchical

Supervised Learning Analysis

As we have seen in the previous chapters, the classification problem under considera-

tion poses several challenges. First, one has to address how to use all the features in

the data at hand to establish a classification rule. Second, we have to select the sleep-

wake stage and the period (light, dark or first 3 hours) to be used to establish such

discrimination rule, given the fact that maybe not all are needed. Third, and closely

linked to the previous issue, given that an exhaustive search needs to be carried

out, a selection bias may also be introduced and could play an important role on

the performance of the discriminant procedure used. While the first two challenges

are already dealt with in chapter 5 and 6, the third one is still an open problem.

This chapter is devoted to study this third issue in more detail and proposes an

approach based on the model averaging ideas used on regression models (Burnham

and Anderson, 2002). The lack of fit measure defined in chapter 5, is used to calculate

the weights in the model average.

In Section 7.1, the methodology is explained, starting from the general form of the

doubly hierarchical supervised learning analysis as explained in chapter 5. Thereafter

75



76 Chapter 7. A Model Averaging Approach for DHSLA

the model-averaging principle is modified to be used with linear discriminant analysis.

Finally, the results obtained with model averaging are shown in Section 7.2 and

compared to the initial classification results.

7.1 Methodology to Study Model Selection Bias in

the Context of Doubly Hierarchical Supervised

Learning Analysis

We start again from the doubly hierarchical supervised learning analysis. In the first

phase we will use a fractional polynomial mixed model. For the second phase, we saw

in Chapter 6 that LDA, FDA and MDA produce comparable results in the training

dataset with respect to posterior probabilities and error counts. Therefore, the linear

discriminant analysis will be preferred in view of its simplicity.

However, the doubly hierarchical supervised learning analysis might suffer from

model selection bias. To avoid this we can base the classification in stage II on more

than one model. Barnard (1963) provided the first mention of model combination

in the statistical literature in a paper studying airline passenger data. Bates and

Granger (1969) stimulated the contribution of articles in the economics literature

about the combination of predictions from different forecasting models. Later several

articles appear and in the late 90s, George (1998) reviews bayesian model selection

and discusses bayesian model averaging (BMA) in the context of decision theory.

Draper (1995), Chatfield (1995), and Kass and Raftery (1995) all review BMA and

the costs of ignoring model uncertainty. Many model averaging approaches have been

proposed in the literature, Hoeting et al. (1999) wrote a tutorial pointing out the

uncertainty in model selection, leading to over-confident inferences and decisions that

are more risky than one thinks they are, proposing a bayesian model averaging which

provides a coherent mechanism for accounting for this model uncertainty. Also several

frequentist approaches for model averaging have been presented in the literature,

Hjort and Claeskens (2003) build a general large-sample likelihood apparatus in which

limiting distributions and risk properties of estimators-post-selection as well as of

model average estimators are precisely described, also explicitly taking modelling bias

into account. Williams and Christian (2006) introduce frequentist model-averaged

estimators for univariate twin data analysis that use information-theoretic criteria to

assign model weights. Burnham and Anderson (2002) also proposed model averaging

to deal with model selection bias in the case of regression models. We will use this
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Figure 7.1: Diagram representing doubly hierarchical supervised learning analysis with

model averaging, when a fractional polynomial mixed model (FPMM) is used in Stage

I and linear (LDA) discriminant analysis is used in Stage II.

last approach and adapt it to fit in the discriminant analysis framework.

The current procedure, consisting of the doubly hierarchical supervised learning

analysis, extended with model averaging, is schematically presented in Figure 7.1.

Before we turn to the model averaging in discriminant analysis in Section 7.1.2, we

briefly review the model averaging approach as proposed by Burnham and Anderson

(2002) in Section 7.1.1.

7.1.1 Model Averaging in the Context of Regression Models

Let us first have a look at the model averaging approach proposed by Burnham

and Anderson (2002). We illustrate this approach in the case of a linear regression

problem. In many cases, one has a large number of closely related models. Defining

a best model is often not satisfactory since this choice can vary from dataset to

dataset, collected under the same underlying process. In order to get a more stabilized

inference, Burnham and Anderson (2002) suggest to use model averaging.

Assume we have a linear regression model m given by

Yi = β
(m)
0 +

n(m)
∑

j=1

β
(m)
j xij + ε

(m)
i (7.1)

For each model m, the AIC (Akaike, 1973) is calculated, and the difference with the
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minimum AIC over all possible models is computed

∆m = AICm − AICmin. (7.2)

To calculate the new coefficients ˆ̄βj for the model average overRmodels, βj is averaged

over all the models in which xj appears.

ˆ̄βj =

∑R
m=1 wmIj(m)β̂

(m)
j

w+(j)
(7.3)

where

wm =
exp(−∆m/2)

∑R
r=1 exp(−∆r/2)

(7.4)

w+ =

R
∑

m=1

wmIj(m) (7.5)

and

Ij(m) =







1 if predictor xj is in model m,

0 otherwise.

Inferences will now be made based on model

Yi = ˆ̄β0 +
n
∑

j=1

ˆ̄βjxij + εij (7.6)

This approach has both practical and philosophical advantages. Burnham and

Anderson (2002) argue that where a model averaged estimator can be used it often

has reduced bias and better precision compared to β̂ from the selected best model.

Model averaging has been used in the context of regression in several applications

(e.g. Faes et al. (2007), Hansen (2007)).

7.1.2 A Novel Proposal of Model Averaging for Linear Dis-

criminant Analysis

We can now extend the model averaging of Burnham and Anderson to the case of

linear discriminant analysis (Wouters et al , 2008a). Let us focus on step s, for each

subject i we use a set of p measures Xi = (Xi1, . . . ,Xip). We assume now that each

class c has an underlying multivariate normal distribution with mean µc and common

variance-covariance matrix Σ.

Class c ∼ fc(x) =
1

(2π)p/2 | Σ |1/2
exp[−

1

2
(x − µc)

′Σ−1(x − µc)] (7.7)
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Since the first part of equation 7.7 is independent of the class and since we assume

equal variance covariance matrix, this density can be seen as a linear function of x

with coefficients αj , j = 1, . . . , p.

fc(x) ∼ exp[

p
∑

j=1

αjcxj ] (7.8)

The posterior probability of belonging to class c when x was observed is given by:

P (c|x) =
pcfc(x)

∑gs

l=1 plfl(x)
(7.9)

where pc is the prior probability for class c and gs is the total number of classes in

step s. In our situation, we can assume that all classes are equally likely to occur,

which is translated in equal prior probabilities pc = 1/gs. Together with equation 7.8,

this reduces the posterior probabilities to

P (πc|x) =
1

gs

exp[
∑p

j=1 αjcxj ]
∑gs

l=1 exp[
∑p

j=1 αjlxj ]
(7.10)

We use the lack of classification measure LC’ defined in chapter 5, equations (5.6) –

(5.9), to determine the goodness of a model.

LC’s = 1 −

(

1 −
LCs

2 · ws1 + (g − s+ 1) · ws2

)

· F (ss). (7.11)

While before, the model with the lowest lack of classification was retained, we focus

now on the R models with the lowest LC’. For these R models we calculate weights

w(m) in analogy to the weights defined in equation (7.4), where the bracketed upper

index is referring to the model under consideration. The AIC is replaced by the lack

of classification measure LC’ which gives us

w(m)
s =

exp(−∆
(m)
s /2))

∑R
r=1 exp(−∆

(r)
s /2)

, (7.12)

where

∆(m)
s = LC’(m)

s − min
r

(LC’(r)s ).

The coefficients αjc in the discriminant analysis equation (7.10) are now averaged

over the R best models as follows

ˆ̄αjc =

∑R
m=1 w

(m)Ij(m)α̂
(m)
jc

w+(j)
, (7.13)
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where

w+(j) =

R
∑

m=1

w(m)Ij(m),

and

Ij(m) =







1 if predictor xj is in model m,

0 otherwise.

Here, α̂
(m)
jc denotes the estimator of αjc based on model m. The notation w+(j) is the

sum of the weights over all models in the set where predictor variable j is explicitly

in the model.

7.2 Results - EEG Data

In chapter 6, a fractional polynomial model was built for each compound-dose

combination and each sleep-wake stage for the light and the dark period separately as

well as for the first three hour period. The parameters of these 18 models were used

in the second step in a stepwise discriminant analysis. For all possible combinations

of these 18 groups of parameters, a discriminant analysis with 10-fold cross-validation

on rat level and compound-dose level (Selection Procedures I and II) was performed in

each step. The model with the lowest lack of classification measure LC’ was retained.

When parameters for a certain sleep-wake stage in the light period are used in a

model, then the model does not contain the parameters for that sleep-wake stage

during the first three hours and vice versa, because they are both partly describing

the same time period.

The results obtained with linear discriminant analysis in Stage II of the DHSLA

were summarized in Tables 6.1– 6.7. For both selection procedures I and II, we found

that the adjusted posterior probabilities for the correct classes are very high in the

training dataset. In the test dataset we obtained a high posterior probability for

placebos and for stimulants with selection procedure I, while the probabilities for the

other three classes are much lower. For selection procedure II, only stimulants can

be classified well. The error rate for both selection procedures was about 60 percent.

Although the procedure is doing very well in the training dataset, with 10 fold cross

validation, we get surprisingly bad results in the test dataset. One possible reason for

this is the model selection bias. To solve this we use the modified model averaging

approach as described in section 7.1.

The model averaging approach will be evaluated using the training and the test

dataset. Cross-validation, at rat- and compound-dose level, will only be used to
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Table 7.1: Linear Discriminant Analysis. Summary table for the error rates obtained

in train and validation dataset, with both selection procedures.

Train Test

Selection Procedure errorrat errorcv errorrat errorcv

I Rat level 0.001 0.000 0.631 0.600

II Compound-dose level 0.015 0.000 0.650 0.600

calculate the lack-of-classification measures and to select the best model. Once the

order of the models is obtained, the train-test setting will be used to evaluate the

performance of the model averaging approach. Using cross-validation at this stage

will sharply increase the computation time and is therefore not desirable. In what

follows, we will still distinguish between selection procedure I and II, but this is only

referring to the selection, and the order, of the models and not to the classification

results themselves.

7.2.1 Selection Procedure I: Based on Rat-Level

To be able to compare the classification results, the error rates for the training and test

data set and the posterior probabilities obtained in the test dataset, are recapitulated

in Table 7.1 and 7.2 respectively. Since the error rate in the training dataset is already

very low, there is not much room for improvement here. Therefore, we will focus in

this chapter on the classification of the test dataset. The results obtained in the

training dataset can be found in Appendix B.

In Table 7.3, the adjusted posterior probabilities obtained by averaging over the

25 best models are presented. We see here that for antidepressant and hypnotics, the

classification has not improved, but for antipsychotics and stimulants we get a much

better performance. Placebo was already well classified with only one model, and

is still getting a high posterior probability for the correct class when 25 models are

combined. The error count on the compound-dose level is here 0.400.

In the upper left panel of Figure 7.2 the error rates, on the compound-dose level,

for the test dataset, obtained with model averaging over the 1, 10, 25, 50, 100, and

200 best models for selection procedure I are graphically displayed. The error rate can

be reduced to 40 percent when 10 or more models are combined. Using 200 models

seems to introduce too much noise, leading to a slightly higher error rate. The error
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Table 7.2: Linear Discriminant Analysis. Adjusted posterior probabilities for the test

data set obtained without model averaging when selection procedure I is used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.96 0.00 0.04 0.00 0.00

Antipsy 0.38 0.33 0.03 0.26 0.00

Antidep 0.11 0.45 0.16 0.16 0.12

Hypnot 0.33 0.02 0.42 0.23 0.00

Stimul 0.01 0.23 0.07 0.04 0.65

Table 7.3: Model Average. Adjusted posterior probabilities for the validation data set

obtained with model averaging with the 25 best models when selection procedure I is

used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.96 0.00 0.04 0.00 0.00

Antipsy 0.16 0.80 0.00 0.04 0.00

Antidep 0.04 0.46 0.07 0.19 0.24

Hypnot 0.33 0.01 0.37 0.29 0.00

Stimul 0.00 0.19 0.02 0.00 0.79

rate could be reduced even further by restricting to the models with only 4 or only 5

sleep-wake stages as can be seen in the other panels of Figure 7.2.

When restricting to the models with 7 sleep-wake stages, we see that the error rate

stabilizes after 100 models. For the model averaging restricted to 4, 5, or 6 sleep-wake

stages we still have a decreasing trend when going from 100 to 200 models, but adding

more models did not lead to a further decrease (results not shown).

In Figure 7.3, the adjusted posterior probabilities for the correct classification in

the five classes are plotted for model averaging on 1, 10, 25, 50, 100, and 200 models.

As reference, a horizontal line is drawn at the initial value, obtained with only the best



7.2. Results - EEG Data 83

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Models

E
rr

or
co

un
t

Best overall

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Models

E
rr

or
co

un
t

4 sleep stages

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Models

E
rr

or
co

un
t

5 sleep stages

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Models

E
rr

or
co

un
t

6 sleep stages

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Models

E
rr

or
co

un
t

7 sleep stages

Figure 7.2: Model Averaging. Error rates in the test dataset obtained with

modelaveraging for 1, 10, 25, 50, 100 and 200 models, applied to DHSLA with

Selection Procedure I.

model. For placebos, antipsychotics, hypnotics and stimulants, an improvement is

obtained by combining 10 models or more. Including more than 100 models does not

improve the posterior probabilities anymore. For antidepressants, model averaging

does not lead to higher posterior probabilities for correct classification.

7.2.2 Selection Procedure II: Based on Compound-Dose Level

Also for selection procedure II, i.e. cross-validation on the level of the compound-

dose combination, we recapitulate the results obtained with the best combination of

sleep-wake stages in the light, dark and first period in Tables 7.1 and 7.4.

In Table 7.5 we see the adjusted posterior probabilities obtained with model

averaging over the 25 best models when using selection procedure II. Also here we see

a major increase in posterior probability for the correct class in placebo, antipsychotic

and stimulants. For antidepressant and hypnotic the posterior probabilities could not

be improved with 25 models. The error rate on the compound-dose level is 0.417. The
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Table 7.4: Linear Discriminant Analysis. Adjusted posterior probabilities for the test

data set obtained without model averaging when selection procedure II is used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.33 0.01 0.05 0.61 0.00

Antipsy 0.24 0.34 0.00 0.42 0.00

Antidep 0.02 0.38 0.49 0.02 0.09

Hypnot 0.93 0.02 0.02 0.03 0.00

Stimul 0.01 0.02 0.28 0.00 0.69

Table 7.5: Model Average. Adjusted posterior probabilities for the validation data set

obtained with model averaging with the 25 best models when selection procedure II is

used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.89 0.00 0.11 0.00 0.00

Antipsy 0.32 0.62 0.02 0.04 0.00

Antidep 0.05 0.51 0.21 0.12 0.11

Hypnot 0.70 0.03 0.20 0.07 0.00

Stimul 0.01 0.08 0.20 0.00 0.71

error rates on the compound dose level for the test dataset are shown in Figure 7.4.

With model averaging over all the models, irrespectively of the number of sleep-wake

stages used, the error rate is even reduced to 26% (upper left panel). When restricting

to the models with only 4, 5, 6, or 7 sleep-wake stages, the error rate converges to the

same value of 0.26. In all of these cases, more than 100 models was not needed.

In Figure 7.5, the adjusted posterior probabilities in the five drug classes obtained

with model averaging are presented. Again a reference line is drawn at the value of

the error rate obtained with only one model. For the adjusted posterior probabilities

for placebos, antipsychotics, hypnotics and stimulants combining 10 models or more
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results in a large improvement in posterior probabilities for correct classification.

Including more than 100 models does not improve the posterior probabilities anymore.

For antidepressants the posterior probabilities obtained with model averaging are even

lower than the initial ones.

7.3 Concluding Remarks

When applying the doubly hierarchical supervised learning analysis to the EEG data,

we could see that the misclassification error was very low in the training dataset,

for both selection procedures I and II. However, for the test dataset, the error rate

turned out to be around 0.60 in both cases. One of the reasons for this can be the

model selection bias. Burnham and Anderson (2002) proposed a solution by model

averaging for this in the case of regression problems. In this chapter, we have modified

this model averaging approach to fit in our DHSLA procedure.

In general, model averaging improved the classification results. This can be seen

in the decreased error rates and in the posterior probabilities for correct classification

for almost all classes. If there is room for improvement, model averaging will enhance

the classification. But we can not expect miracles: if classes are poorly separated,

the model averaging will hardly improve the results. This has been observed for

antidepressants and to a lesser extent for hypnotics, which has already been pointed

out in the previous chapters as well.

For Selection Procedure I, restricting to the models with only four or only five

sleep-wake stages leads to the best classification results. More than 200 models were

not needed. For Selection Procedure II, it does not matter whether or not one restricts

to the models with only a fixed number of sleep-wake stages. In all situations, the

error rate converges to a value around 0.26 for 100 models or more.

When comparing the best results obtained for Selection Procedures I and II, we

can see that they perform similarly in terms of adjusted posterior probabilities and

error rates.

Adding more sleep-wake stages does not necessarily lead to better classification

results, this has also been discussed already in previous chapters.
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Figure 7.3: Model Averaging. Adjusted posterior probabilities in the test dataset obtained with modelaveraging for 1, 10, 25, 50,

100 and 200 models, applied to DHSLA with Selection Procedure I.
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Figure 7.4: Model Averaging. Error rates in the test dataset obtained with

modelaveraging for 1, 10, 25, 50, 100 and 200 models, applied to DHSLA with

Selection Procedure II.
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Figure 7.5: Model Averaging. Adjusted posterior probabilities in the test dataset obtained with modelaveraging for 1, 10, 25, 50,

100 and 200 models, applied to DHSLA with Selection Procedure II.
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Multivariate Functional

Linear Discriminant Analysis

in Combination with

Pseudo-likelihood Techniques

In the previous chapters we have presented a two-step strategy to deal with

classification problems where the predictor variables are longitudinal. This procedure

first models the data and uses the model parameters in a discriminant analysis, but

the correlation between the predictor variables is ignored. In this chapter, we propose

a discriminant procedure that is taking into account both the longitudinal and the

multivariate aspect of the data in a single stage.

James and Hastie (2001) propose a functional linear discriminant analysis (FLDA)

to deal with classification of univariate longitudinal predictor variables. This method

generalizes linear discriminant analysis to functional data and possesses all the

usual LDA tools, including a low-dimensional graphical summary of the data, and

classification of new curves. This approach will be described in Section 8.1.

In Section 8.2, we will propose an extension of this method for the case where

89
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several longitudinal profiles are recorded for the same individual by combining

the functional linear discriminant analysis with a pseudo-likelihood modeling ap-

proach (Fieuws and Verbeke, 2006).

The performance of this procedure is established through simulation studies, using

different number of classes and observations on the one hand, and through application

to the EEG dataset on the other hand. The results obtained here are presented in

Section 8.3 and 8.4.

8.1 Univariate Functional Linear Discriminant Anal-

ysis

James and Hastie (2001) introduce a generalization of linear discriminant analysis

to the case of longitudinal data by taking into account the covariance structure in

the data when calculating the distance between observations. In order to be able to

handle irregularly sampled curves, they propose to use a linear mixed model with

splines as fixed and random effects (see Section 4.1.3) to estimate the covariance

structure. Later, this covariance matrix is used to classify the observations based on

the mahalanobis distance. Assume we have a nic-dimensional vector of observations

Yic for subject i in class c and let s(t) denote a natural cubic spline basis with

dimension q (see Section 4.1.3). A linear mixed model with the basis functions s(t)

as fixed and random effects is now fitted to the data

Yic = Sicβc + Sicbic + εic

where Sic is a q × nic-dimensional matrix of basis functions

Sic = (s(tic1), · · · , s(ticnic
))T ,

βc and bic are q-dimensional vectors of fixed and random effects respectively. The

random effects bic and the residual components εic are assumed to be independent

with distributions N(0,Dc) and N(0,Σic) respectively, which leads us to the following

model

Yic ∼ N(Sicβc,Γic)

where

Γic = Σic + SgridDcS
T
grid

where Sgrid is the natural cubic spline basis matrix evaluated in a fine lattice of

points, which is in practice the set of all time points present in the data. Once the
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parameters in the model have been estimated, we can use the estimated covariance

matrix to classify a new curve.

For a new curve y we can now calculate the distance to class c as follows

d(y, c) = (y − Ȳc)Γc(y − Ȳc)
T (8.1)

where Ȳc is the mean in class c. The curve y is now classified to the class c for which

the distance d(y, c) is minimal.

In the particular case where all the subjects are measured at the same timepoints,

the basis matrix Sic is the same for all the subjects and can be denoted by S. The

distance between y and class c now simplifies to

d(y, c) = (y − Ȳc)(Σc + SDcS
T )(y − Ȳc)

T (8.2)

8.2 Multivariate Extension of Functional Linear

Discriminant Analysis

Now that we have briefly described the FLDA methodology, we will present in this

section an extension of the functional linear discriminant analysis of James and Hastie

(2001) to the case of multivariate longitudinal data. When dealing with more than

one longitudinal variable, there are two sources of associations we need to account

for. The first one is the correlation between the timepoints, which FLDA nicely deals

with. The second one is the correlation between the longitudinal variables. A fully

multivariate model would be the natural choice, but given the complexity of the data,

computational issues are commonly present during such modeling exercise. Therefore,

we are proposing to use a pseudo-likelihood modeling approach (Fieuws and Verbeke,

2006) combined with smoothing techniques such as splines, in order to allow for mean

shape flexibility to model the multivariate longitudinal characteristics.

8.2.1 Pseudo-Likelihood Approach to Model Multivariate Lon-

gitudinal Profiles

Let us first introduce the pseudo-likelihood modeling approach proposed by Fieuws

and Verbeke (2006). Suppose we want to model m different outcomes jointly. The

linear mixed model for one single ni-dimensional outcome Yi for subject i is given by

Yi = Xiβ + Zibi + εi (8.3)
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where β is the vector of fixed effects and bi the vector of random effects. The matrices

Xi and Zi are (ni × p) and (ni × q) matrices of known covariates. The random effects

bi and the residual components εi are assumed to be independent with distributions

N(0,D) and N(0,Σi) respectively. Σi only depends on i through its dimension ni,

meaning that the parameters in Σi are common to all subjects. Thus, in summary,

Yi|bi ∼ N(Xiβ + Zibi,Σi) (8.4)

or marginally

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi) (8.5)

Inference is based on maximizing the marginal log-likelihood function l(Y |θ),

where θ is the vector containing all parameters (fixed effects and covariance

parameters).

The random effects model (8.3) can be easily extended to jointly model m

outcomes Y1i, · · · ,Ymi assuming a mixed model for each outcome, and combining

these univariate models through the specification of a joint multivariate distribution

for all random effects. However, as the number of outcomes and/or the number of

random effects per outcome increases, the dimension of the joint covariance matrix of

the random effects bi grows, leading to computational problems.

To solve the computational issues, Fieuws and Verbeke (2006) propose to reduce

the dimensionality by fitting all pairwise models separately. In this way, the number

of parameters to be estimated is decreased and thus computational burden is avoided.

For a pair of outcomes r, s we fit the following model
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(8.6)

for r = 1, · · · ,m − 1, s = r + 1, · · · ,m. The matrices Xri,Xsi, Zri and Zsi are

(ni×p) and (ni×q) matrices of known covariates. The variance-covariance matrices of

the random effects Dr,Drs and Ds are unstructured (q×q) matrices and the variance
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matrices of the residuals Σr,Σrs and Σs are usually assumed to be diagonal (ni ×ni)

matrices with equal variances on the diagonal, i.e. σrIni
, σrsIni

and σsIni
. For each

pair of outcomes, the log likelihood will be maximized.

N
∑

i=1

lrsi(Yri,Ysi|Θr,s) (8.7)

where N denotes the total number of subjects and Θr,s is the vector of all parameters

in the bivariate model for pair (r,s).

Once all pairwise models are fitted, for some parameters a unique estimate is

obtained, e.g. for the pairwise covariance matrices of the random effects Drs, while

other parameters are estimated multiple times, for example the covariance matrix

of the random effects from the same outcome Dr. Fieuws and Verbeke propose to

estimate the overall covariance matrix D∗ of the random effects as a block matrix,

with Dr,s in the off-diagonal block (r,s), and the mean of the matrices Dr, coming

from all the pairs consisting of Yr in the r-th diagonal block, for r = 1, · · · ,m − 1

and s = r+ 1, · · · ,m. In a similar way an estimate for the overall residual covariance

matrix Σ∗ is obtained by averaging Σr over all pairs containing Yr and putting Σrs

on the off-diagonal positions.

Standard errors can also be obtained using results from pseudo-likelihood theory,

ample details can be found in Fieuws and Verbeke (2006).

8.2.2 Multivariate Functional Linear Discriminant Analysis

Using the pseudo-likelihood methodology described in the previous section, we can

now extend the functional linear discriminant analysis to the case of multivariate

longitudinal data (Wouters et al , 2008c). For notational simplicity we will assume

that all subjects are measured at the same timepoints, but the classification rule can

easily be extended to the case of different timepoints per subject.

Fitting the model

First a joint pseudo-likelihood model, as in equations (8.6) and (8.7), will be fitted

for each class. In analogy to James and Hastie (2001) we choose to use a natural

q-dimensional spline basis for the fixed as well as the random effects. Let Yric and

Ysic denote the n-dimensional vector of measurements for response variable r and s
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respectively for subject i in class c.
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Ysic



 =





S 0

0 S
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βsc
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S 0

0 S
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0

0



 ,





Drc Drsc

Drsc Dsc
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εric

εsic



 ∼ N









0

0



 ,





Σrc Σrsc

Σrsc Σsc









(8.8)

The fixed effects βc in class c will be estimated by β∗
c which is an (n · q) vector

consisting of the averages over all the pairs. The covariance matrices D∗
c and Σ∗

c

for the random effects and the residual components in class c, can be estimated as

described in section 8.2.1, leading us to the overall covariance matrix Γ∗
c in class c

Γ∗
c = Σ∗

c + SfullD
∗
cS

T
full

where

Sfull =

















S 0 · · · 0

0 S · · · 0
...

...
. . .

...

0 · · · · · · S

















(8.9)

where S is a q-dimensional natural spline basis matrix.

Model Illustration

As an illustration we write down the model for the particular case of three n-

dimensional responses V1, V2 and V3. Fitting a pseudo-likelihood model with q knots

for class c comes down to fitting the following three pairwise models
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where Sq is the (n × q) natural cubic splines basis matrix with q knots, and all the

D-matrices are unstructured (q × q) matrices.
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The final model then becomes
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(8.10)

with
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Classification

We can now basically use the classification rule proposed by James and Hastie, now

incorporating the variance-covariance matrix obtained from the pseudo-likelihood

model. For a new observation Ynew, which is am·n vector consisting of m longitudinal

curves measured at n timepoints, the functional distance d(Ynew, c) to class c is

calculated using the mean and covariance structure estimated in the pseudo-likelihood

models as follows

d(Ynew, c) = (Y new − Sfullβ
∗
c ) Γ∗

c (Y new − Sfullβ
∗
c )

T
. (8.11)

The new observation Ynew will now be classified into the class for which the functional

distance is minimal.

8.2.3 Computational Issues

Some computational issues arise when modeling multivariate outcomes using pseudo-

likelihood methodology. Since the covariance matrix Γ∗
c is not guaranteed to be

positive definite, problems can occur in the calculation of the functional distance.

To solve this issue, we followed two strategies.



8.2. Multivariate Extension of Functional Linear Discriminant Analysis 97

Rousseeuw and Molenberghs (1993) Strategy

A first option is to correct the covariance matrix to be positive definite as proposed

by Rousseeuw and Molenberghs (1993). The covariance matrix Γ∗
c can be written as

Γ∗
c = PcΛcP

T
c

where Λc is a diagonal matrix, containing the eigenvalues of Γc and P is an orthogonal

matrix of the corresponding eigenvectors. In a positive definite matrix all the

eigenvalues are positive. To transform a non-positive definite matrix to a positive

definite one, Rousseeuw and Molenberghs (1993) therefore proposed to replace the

negative values in Λc by a small positive value, which gives us a diagonal matrix

Λc,modif. The modified covariance matrix Γ∗
c,modif can now be calculated by

Γ∗
c,modif = PcΛc,modifP

T
c

This modified covariance matrix is now positive definite and it can be used instead of

the original covariance matrix in equation (8.11), which becomes now

dmodif(Ynew, c) = (Y new − Sfullβ
∗
c ) Γ∗

c,modif (Y new − Sfullβ
∗
c )

T
. (8.12)

Pairwise Strategy

For each of the pairwise models, the estimated variance covariance matrices are

known to be positive definite. Therefore we can calculate the distance between a

new observation and a particular class for each pair of covariates. For example for

covariates r and s, we compute the distance to class c as

drs(Y new, c) =









Ynew,r

Ynew,s



−





S 0

0 S









βrc

βsc







Γrs,c









Ynew,r

Ynew,s



−





S 0

0 S









βrc

βsc









T

with

Γrs,c =





Σrc Σrsc

Σrsc Σsc



+





S 0

0 S









Drc Drsc

Drsc Dsc









S 0

0 S





T

where βrc,βsc,Σrc,Σsc,Σrsc,Drc,Dsc,Drsc and S are defined as in equation 8.8. The

distance between the new observation and class c is calculated as the average of all

the pairwise distances.

dpair(Ynew, c) =
1

m(m− 1)/2

m−1
∑

r=1

m
∑

s=r+1

drs(Ynew, c) (8.13)
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8.3 Simulation Study

Before we turn to the classification of the EEG dataset, the performance of the method

will be evaluated trough a simulation study. Since we want to mimic a real-life

application, we will use the EEG dataset as a basis for the generation of the data.

Several settings, regarding the number of classes and the number of subjects in each

class will be considered.

We will describe the three different settings used in the simulation study in

Section 8.3.1. The results are reported and discussed in Section 8.3.2.

8.3.1 Simulation Setting

The simulation setting is based on the EEG dataset and the estimated parameters

obtained for this data. A three-variate longitudinal profile is generated using the

parameters in the pseudo-likelihood model with splines for the covariates Active Wake,

Light Sleep and Deep Sleep of the EEG-dataset.

Let us start with the first setting. In this setting, we restrict to only two classes,

based on parameters obtained for antipsychotics and stimulants in the EEG dataset.

For both classes, a pseudo-likelihood model using splines with five knots as random

and fixed effects, is fitted to the three covariates in the light period. For antipsychotics,

the model is written as follows
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where all the parameters are defined as in model (8.10). For class C1 we now

generate a new dataset with M subjects by sampling from the normal distribution

N(µ∗
ap,Γ

∗
ap), where µ∗

ap and Γ∗
ap are defined as follows
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Basically, this means that in each simulated dataset, we have M three-variate

longitudinal profiles, at 20 timepoints. Similarly, we generate datasets with M profiles

in class C2 by sampling from the normal distribution N(µ∗
st,Γ

∗
st). The number of

samples M in each generated dataset will take values 20, 40, 60 80 and 100. The

simulated training dataset now consists of the data generated in both classes. An

independent test dataset with 10 profiles in each class is generated from the same

distribution. This test dataset will be classified using MFLDA with splines with two

or three knots based on the training dataset.

Setting two is essentially the same as setting one, but now one extra class C3,

based on antidepressants in the EEG dataset, is added. In setting three, we start

from the three classes of setting two and add another class C4, based on hypnotics.

Given the complexity and the computational time needed for such exercise, we

will run 100 simulations for each setting and for each number of observations.

Let us now turn to the classification results obtained for each of the three settings.

8.3.2 Simulation Results

In order to illustrate the three simulation settings, one dataset was selected randomly

from the simulated data in each setting. For each of these datasets, 10 profiles were

randomly picked and displayed in Figures 8.1 – 8.3. As in the EEG dataset, the

profiles are highly irregular and the classes are difficult to differentiate at sight.

In Table 8.1 the overall error rates in setting 1, 2 and 3 are displayed. Between

parentheses are the corresponding standard deviations. For each setting, four different

analyses were performed, MFLDA with two or three knots using the modified distance

measure to correct for positive definiteness or using the pairwise strategy.

It can be seen that the error rates increase when introducing more classes, while

they decrease when more subjects are added to the training datasets. The MFLDA

using three knots performs better in terms of misclassification rate than the MFLDA
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Figure 8.1: Generated data in simulation setting 1 for the three variables based on the

estimated parameters from the EEG dataset for Active Wake, Light Sleep and Deep

Sleep respectively, in the classes antipsychotics (class C1) and stimulants (class C2).

with only two knots. This is expected since the model with two knots smooths out

more drastically the trend in the datasets compared to the model with three knots,

and thus is less efficient to estimate the variance-covariance matrix, which is a key

feature in the classification procedure. Nevertheless, it is important to note that the

MFLDA based on only two knots is still performing well in setting 1 and 2 and should

not be set aside since it is computationally less demanding than MFLDA with three

knots and the performance of both methods is comparable.

Comparing the results obtained with the correction for positive definiteness and

with the pairwise strategy shows us that in general the error rates obtained with

the latter method is giving a lower overall error rate than strategy one. Only when

four classes are considered (setting 3), MFLDA with the pairwise strategy encounters

more problems to discriminate between the classes. The standard deviations for

the error rates obtained with the pairwise strategy are in general smaller than the

ones obtained with the correction for positive definiteness, producing then narrower
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Figure 8.2: Generated data in simulation setting 2 for the three variables based on the

estimated parameters from the EEG dataset for Active Wake, Light Sleep and Deep

Sleep respectively, in the classes antipsychotics (class C1), stimulants (class C2) and

antidepressants (class C3).

confidence intervals, and thus more informative results.

In Tables 8.2 – 8.4 the error rates (and corresponding standard deviations) for

each of the classes in the three settings are reported. For setting 1 the error rates per

class and the corresponding standard deviations decrease with increasing sample size.

For setting 2, we notice that in all four classification methods, there is a problem

to differentiate class 3 from the rest. This problem is more pronounced with two knots

compared to three knots. With low sample size (less than 60 subjects in the training

dataset), also class 1 is poorly discriminated. Note also that when only 2 knots are

used, the classification of class 3 does not improve with increasing sample size, while

class 1 does improve. When 3 knots are used, both for class 1 and class 3 the error

rate reduces with increasing sample size, but the pairwise strategy performs better

than the correction for positive definiteness strategy, even when the sample size is

small.
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Figure 8.3: Generated data in simulation setting 3 for the three variables based on

the estimated parameters from the EEG dataset for Active Wake, Light Sleep and

Deep Sleep respectively, in the classes antipsychotics (class C1), stimulants (class

C2), antidepressants (class C3) and hypnotics (class C4).

In setting 3, the error rates in class 1, 2, and 3 are similar as in setting 2, but the

error rates obtained in class 4 are dramatically high, especially for the analysis with

2 knots using pairwise strategy. Since the profiles for class 3 and 4 were generated

based on antidepressants and hypnotics in the EEG dataset respectively, this problem

is not unexpected and it confirms our belief that hypnotics and antidepressants are

hardly separable. Even though the pairwise strategy produces higher error rates for

class 4, both strategies reduce the error rate with about 30% when comparing a model

using 3 knots and 2 knots.

To have a further idea on the separability of the classes in the EEG dataset,

we repeated the simulation exercise with setting 1 for all the pairs of classes. The

results of these analyses are shown in Appendix C and can be summarized as follows.

Antipsychotics and stimulants were differentiated well in all settings. Placebos are

hardly differentiable from antipsychotics and antidepressants. Also between hypnotics
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and antidepressants the classification is poor. This last one explains the classification

results in setting 3 of the simulation study. If we can not distinguish between

antidepressants and hypnotics when there are no other compounds in the dataset,

we cannot expect to get a good classification result with two additional classes.
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Table 8.1: Overall misclassification error (and empirical standard deviations) obtained in the simulation studies for the three settings

(2, 3 and 4 classes) with MFLDA with two (left panel) or three knots (right panel).

2 knots 3 knots

Number of Correction Pairwise Correction Pairwise

Subjects Positive Definite Classification Positive Definite Classification

Setting 1 20 0.065 (0.082) 0.013 (0.026) 0.035 (0.061) 0.005 (0.019)

40 0.060 (0.079) 0.012 (0.026) 0.008 (0.037) 0.002 (0.009)

60 0.021 (0.037) 0.011 (0.023) 0.001 (0.007) 0.002 (0.009)

80 0.029 (0.057) 0.008 (0.020) 0.001 (0.007) 0.001 (0.005)

100 0.016 (0.032) 0.007 (0.022) 0.001 (0.008) 0.002 (0.010)

Setting 2 20 0.201 (0.079) 0.169 (0.086) 0.213 (0.074) 0.128 (0.064)

40 0.175 (0.087) 0.144 (0.074) 0.151 (0.079) 0.094 (0.058)

60 0.149 (0.066) 0.141 (0.073) 0.124 (0.073) 0.076 (0.052)

80 0.140 (0.059) 0.132 (0.063) 0.119 (0.069) 0.087 (0.051)

100 0.141 (0.072) 0.131 (0.070) 0.092 (0.059) 0.069 (0.048)

Setting 3 20 0.295 (0.086) 0.346 (0.073) 0.290 (0.083) 0.251 (0.077)

40 0.282 (0.072) 0.329 (0.055) 0.221 (0.084) 0.229 (0.064)

60 0.271 (0.068) 0.333 (0.056) 0.194 (0.074) 0.222 (0.060)

80 0.269 (0.071) 0.326 (0.049) 0.201 (0.066) 0.215 (0.063)

100 0.271 (0.072) 0.328 (0.056) 0.188 (0.069) 0.219 (0.057)
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Table 8.2: Error rates for the simulation study with 2 classes and corresponding empirical standard deviations (between parentheses)

obtained with MFLDA with two knots (upper panel) and three knots (lower panel) using the correction for positive definiteness or

the pairwise distances.

Setting 1 – 2 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C1 Class C2

20 0.112 (0.163) 0.018 (0.066) 0.018 (0.041) 0.008 (0.037)

40 0.120 (0.158) 0.001 (0.010) 0.020 (0.049) 0.004 (0.019)

60 0.041 (0.074) 0.001 (0.010) 0.020 (0.045) 0.002 (0.014)

80 0.057 (0.114) 0.002 (0.014) 0.014 (0.037) 0.002 (0.014)

100 0.032 (0.063) 0.000 (0.000) 0.014 (0.045) 0.000 (0.000)

Setting 1 – 3 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C1 Class C2

20 0.062 (0.120) 0.008 (0.034) 0.004 (0.024) 0.005 (0.026)

40 0.014 (0.074) 0.002 (0.014) 0.000 (0.000) 0.003 (0.017)

60 0.000 (0.000) 0.002 (0.014) 0.000 (0.000) 0.004 (0.019)

80 0.001 (0.010) 0.001 (0.010) 0.000 (0.000) 0.001 (0.010)

100 0.000 (0.000) 0.003 (0.017) 0.000 (0.000) 0.005 (0.022)
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Table 8.3: Error rates for the simulation study with 3 classes and corresponding empirical standard deviations (between parentheses)

obtained with MFLDA with two knots (upper panel) and three knots (lower panel) using the correction for positive definiteness or

the pairwise distances.

Setting 2 – 2 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C3 Class C1 Class C2 Class C3

20 0.321 (0.255) 0.003 (0.017) 0.278 (0.249) 0.169 (0.211) 0.006 (0.042) 0.333 (0.282)

40 0.267 (0.268) 0.002 (0.014) 0.256 (0.255) 0.107 (0.141) 0.001 (0.010) 0.325 (0.240)

60 0.172 (0.202) 0.002 (0.014) 0.272 (0.217) 0.093 (0.137) 0.002 (0.014) 0.327 (0.237)

80 0.148 (0.177) 0.000 (0.000) 0.272 (0.201) 0.043 (0.073) 0.001 (0.010) 0.352 (0.202)

100 0.138 (0.187) 0.003 (0.017) 0.282 (0.217) 0.064 (0.113) 0.003 (0.017) 0.325 (0.227)

Setting 2 – 3 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C3 Class C1 Class C2 Class C3

20 0.256 (0.241) 0.013 (0.056) 0.370 (0.270) 0.168 (0.169) 0.013 (0.034) 0.202 (0.169)

40 0.123 (0.180) 0.003 (0.017) 0.326 (0.249) 0.125 (0.155) 0.004 (0.020) 0.152 (0.155)

60 0.071 (0.131) 0.003 (0.017) 0.297 (0.227) 0.109 (0.133) 0.006 (0.024) 0.114 (0.132)

80 0.065 (0.102) 0.002 (0.014) 0.290 (0.220) 0.103 (0.129) 0.005 (0.022) 0.152 (0.152)

100 0.045 (0.078) 0.004 (0.019) 0.228 (0.187) 0.074 (0.097) 0.006 (0.024) 0.126 (0.129)
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Table 8.4: Error rates for the simulation study with 4 classes and corresponding empirical standard deviations (between parentheses)

obtained with MFLDA with two knots (upper panel) and three knots (lower panel) using the correction for positive definiteness or

the pairwise distances.

Setting 3 – 2 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C3 Class C4 Class C1 Class C2 Class C3 Class C4

20 0.340 (0.276) 0.006 (0.024) 0.278 (0.253) 0.557 (0.273) 0.156 (0.213) 0.007 (0.026) 0.355 (0.302) 0.865 (0.156)

40 0.227 (0.242) 0.000 (0.000) 0.276 (0.234) 0.623 (0.228) 0.106 (0.141) 0.003 (0.017) 0.278 (0.228) 0.929 (0.107)

60 0.190 (0.221) 0.000 (0.000) 0.265 (0.217) 0.630 (0.195) 0.088 (0.154) 0.002 (0.014) 0.310 (0.211) 0.931 (0.103)

80 0.156 (0.193) 0.001 (0.010) 0.261 (0.207) 0.660 (0.213) 0.079 (0.114) 0.004 (0.019) 0.266 (0.190) 0.954 (0.066)

100 0.114 (0.180) 0.001 (0.010) 0.299 (0.194) 0.669 (0.205) 0.044 (0.078) 0.002 (0.014) 0.344 (0.078) 0.922 (0.112)

Setting 3 – 3 knots

Correction PD Pairwise Strategy

M Class C1 Class C2 Class C3 Class C4 Class C1 Class C2 Class C3 Class C4

20 0.281 (0.255) 0.008 (0.031) 0.339 (0.250) 0.531 (0.299) 0.223 (0.208) 0.008 (0.027) 0.182 (0.179) 0.590 (0.234)

40 0.104 (0.169) 0.005 (0.022) 0.337 (0.244) 0.440 (0.279) 0.126 (0.139) 0.007 (0.026) 0.178 (0.142) 0.607 (0.216)

60 0.050 (0.096) 0.003 (0.017) 0.298 (0.219) 0.427 (0.255) 0.106 (0.113) 0.002 (0.014) 0.132 (0.129) 0.649 (0.201)

80 0.078 (0.131) 0.003 (0.017) 0.255 (0.240) 0.469 (0.289) 0.102 (0.115) 0.002 (0.014) 0.142 (0.138) 0.615 (0.205)

100 0.051 (0.073) 0.002 (0.014) 0.230 (0.191) 0.470 (0.254) 0.077 (0.098) 0.003 (0.017) 0.136 (0.125) 0.659 (0.179)
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8.4 Application: The EEG Dataset

8.4.1 Pseudo-Likelihood Model

Before we turn to the classification results obtained with the multivariate functional

discriminant analysis, let us first zoom in on the pairwise modeling results.

When dealing with all data, obtained in the light and the dark period, we will

need to fit all pairwise combinations of 6 responses in the light period and 6 in the

dark period, leading to 66 pairwise models. This is computationally very demanding

and will therefore not be presented here. Instead we will restrict to the light period,

since we know that most of the action of the drugs will be located there.

For subject i in class c the model is specified as



















































AW minic(t) = SeegβAW,c + SeegbAW,ic + εAW,ic(t)

PW minic(t) = SeegβPW,c + SeegbPW,ic + εPW,ic(t)

SWS1 minic(t) = SeegβSWS1,c + SeegbSWS1,ic + εSWS1,ic(t)

SWS2 minic(t) = SeegβSWS2,c + SeegbSWS2,ic + εSWS2,ic(t)

IS minic(t) = SeegβIS,c + SeegbIS,ic + εIS,ic(t)

RS minic(t) = SeegβRS,c + SeegbRS,ic + εRS,ic(t)

(8.14)

where t = 1, · · · , 20 is the vector of timepoints in the light period and Seeg is a natural

cubic spline basis matrix for t with 5 knotpoints, βAW,c, · · · , βRS,c, bAW,ic, · · · ,

bRS,ic are 5-dimensional vectors of coefficients. The fixed effects vector βc =

βAW,c, · · · ,βRS,c describes the average evolution. The random effects bAW,ic, · · · ,

bRS,ic follow a 30-dimensional joint normal distribution with mean 0 and covariance

matrix Dc. The error components εAW,ic, · · · , εRS,ic follow a 6-dimensional normal

distribution with mean 0 and covariance matrix Σc.

The pairwise fitting described in Section 8.2.1 results in 5 estimates for each fixed

effect, each variance of the random effects and each variance of the error components.

The mean of these estimates is computed to get an estimate of the parameters. For the

covariances between each two random effects and between each two error components,

one single estimate is obtained and thus there is no need for further adjustment.

In Figure 8.4 the model obtained with the pseudo-likelihood pairwise modeling

approach in the light period is shown together with the mean profiles for the

treatments in the five drug classes. All graphs show that the fitted line follows the

trends present in the data.
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Figure 8.4: Observed mean profile per treatment (grey) with observed mean profile per class (blue dashed line) and fitted pseudo-

likelihood model with spline basis for each sleeping stage and each class (red solid line).
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8.4.2 Multivariate Functional Linear Discriminant Analysis

Stepwise MFLDA

Given the results of the simulation study that 2 classes were easier to classify, we will

develop a stepwise classification rule in analogy to the doubly hierarchical supervised

learning analysis. In this way, the variability in the data is reduced along the process,

making it easier to classify the classes in the last steps of the procedure. Also, in each

step, different sleeping stages can be used in the classification rule, making it possible

to fine-tune the procedure to the considered classes.

To select the sleeping stages to be used in step s, the classification performance in

the training dataset is evaluated by means of an error measure taking into account the

misclassifications in the class to be discriminated in step s as well as the misclassified

observations in the other classes. The error measure, in analogy with the measurement

proposed in Chapter 5, is defined as

Errors = ws1ERRCsC−s
+ ws2ERRC−sCs

(8.15)

where ERRCsC−s
is the percentage of misclassified observations in the class discrimi-

nated in step s, while ERRC−sCs
is the percentage of observations in the other classes

that are misclassified in the class discriminated in step s. The weights ws1 and ws2

can be chosen according to the situation. In analogy to the DHSLA we choose here

ws1 = s+ 1 and ws2 = 2 · (5− s). The combination of sleeping stages resulting in the

smallest value for Errors is retained in step s.

For that combination of sleeping stages, the error rate is calculated on the rat level

(errorrat) as well as on the compound-dose level (errorcd). The error rate on the rat

level is calculated with the percentage of rats misclassified in each class. For the error

rate on the compound-dose level, we focus on the classification of a compound-dose,

which is defined as the class for which the average distance over all the rats in the

concerned compound-dose is minimal.

For both levels, rat and compound-dose combination, the order in which the drug

classes need to be discriminated is determined as the one for which the final error

(errorrat or errorcd) is minimal.

Classification Results

Now we can turn to the actual classification of the EEG dataset with multivariate

functional linear discriminant analysis. We start with the fitting process for each

class and calculate the distance between an observation in the training or test dataset
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and each of the classes. The observation will be classified to the class for which this

distance is minimal.

We will start with the results obtained with the modified distance measure dmodif.

Afterwards the results with the pairwise distance measure dpair are discussed. For

both measures, we will first focus on the results obtained when the selection procedure

of the sleeping stages is based on the rat level, followed by the results on the

compound-dose level.

In the stepwise procedure, there are 120 possible sequences in which the classes

can be differentiated. To determine which order is best, we calculate the error in

the training dataset on the rat-level and the compound-dose level for each of the 120

orders. The order that leads to the smallest error will be retained. This is done for

the classification with both distance measures. In the upper panels of Figure 8.5, the

density function of the error rates in the training and test dataset on the rat level

with the modified distance measure is plotted. The red cross marks the minimal error

rate in the training dataset, and the corresponding error rate in the test dataset,

while the blue cross indicates the minimum error rate in the test dataset and the

corresponding error rate in the training dataset. The spread in the error rates is

rather small, meaning that the order in which the classes are separated has not a

big impact on the final classification result. When choosing the order that leads to

the smallest error rate in the training dataset, the error in the test dataset is also

relatively small.

The order chosen for the classification with the modified distance measure on the

rat level is shown in Table 8.5. The sleeping stages selected in each of the steps are

also presented in the table. Although the order we selected now is different from the

order used in the DHSLA, we can still compare the sleeping stages we retain for a

certain class with the ones that were retained for the DHSLA. Notice hereby that most

sleeping stages that were selected in all the DHSLA analyses for a certain class, are

also retained now. For example, for antidepressants we selected Intermediate Stage

Sleep and REM Sleep, for hypnotics Deep Sleep and REM Sleep and for stimulants

we selected Active Wake.

In Table 8.6 the classification result obtained in the training (upper panel) and

test dataset (lower panel) with the correction for positive definiteness strategy are

shown. The percentages in this table are the proportions of rats classified in each

class. For the training dataset we get a high percentage of correctly classified rats

in placebo, antipsychotics and stimulants and to less extent also for hypnotics. For

antidepressants, the error rate is somewhat larger. The overall error rate on the rat

level in the training dataset is 0.248. In the test dataset, only placebos could be
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Figure 8.5: Density of the error rates in training and test dataset obtained with

MFLDA using the modified distance measure.
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classified well. For the other four classes the classification percentage in the correct

class was below, or equal to, 50%. The overall error rate here is 0.496.

If instead we focus on the level of compound-by-dose combination, we note

somewhat different results. The lower panel of Figure 8.5 shows the densities of

the error rates on the compound-dose level in training and test dataset. Again the

red and blue cross correspond to the order with the minimal error rate in training

and test dataset respectively. We see immediately that the spread in the error rates

is much larger compared to the rat level. The order corresponding to the red cross

is presented in Table 8.7 together with the sleeping stages selected in each of the

steps. Also here, we see similarities with the sleeping stages retained in the DHSLA

analyses, e.g. Active Wake for stimulants, Passive Wake for antipsychotics and REM

Sleep for hypnotics.

Table 8.8 shows the classification result on the compound-dose level obtained with

the modified distance measure. In the training dataset, we get again high classification
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Table 8.5: Sleeping Stages used in each step of the MFLDA with modified distance

measure, on rat level.

Step Sleeping Stages

Step 1: Placebo AW - PW - SWS2 - RS

Step 2: Antidepressants SWS2 - IS - RS

Step 3: Hypnotics SWS1 - SWS2 - IS - RS

Step 4: Stimulants AW - PW - SWS2 - RS

percentages in the correct classes for all the drug classes except antidepressants.

Most antidepressants were classified as antipsychotic. The overall error rate on the

compound-dose level in the training dataset is 0.134. In the test dataset, both placebo

and antipsychotics could be well classified now, but there are still problems to classify

antidepressants, hypnotics and stimulants correctly. The overall error rate on the

compound-dose level is here 0.383.

The same analyses can be done with the pairwise strategy. In Figure 8.6, the

density function for the error rates in training and test dataset on the rat level (upper

panels) and compound-by-dose combination level(lower panels) are presented. Also

here we observe that the variability in error rate is much larger for the compound-dose

level, compared to the rat level. But in both scenarios, we can see that when choosing

the order with the lowest error rate in the training dataset, the error rate in the test

dataset is relatively small as well.

Let us first focus on the rat level. The selected order and the corresponding

sleeping stages for each of the steps are shown in Table 8.9. As for the DHSLA,

Active Wake is retained to classify stimulants, and Active Wake, Intermediate Stage

Sleep and REM Sleep are retained for the classification of antidepressants. Table 8.10

describes the results obtained on the rat level when MFLDA is used with the pairwise

distance calculation. In the training dataset we get now high classification percentages

for the correct class in all five classes, while in the test dataset, antidepressants,

hypnotics and stimulants are still poorly classified. The overall error rate on the rat

level is here 0.199 in the training dataset and 0.442 in the test dataset.

On the level of the compound-by-dose combination, the order of the steps and

the sleeping stages to be used in each of the steps are displayed in Table 8.11. Also

here the sleeping stages selected in all the DHSLA analyses for the discrimination of a
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Table 8.6: Classification percentages for the EEG training dataset and test

dataset, with modified distance measure, on rat level (errorrat(train) = 0.248,

errorcd(train) = 0.174, errorrat(test) = 0.496, errorcd(test) = 0.267).

Training Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 83.15% 5.43% 6.52% 4.89% 0.00%

Antipsy 10.71% 80.36% 5.36% 1.78% 1.78%

Antidep 9.82% 21.43% 59.82% 8.93% 0.00%

Hypno 25.00% 2.50% 2.50% 70.00% 0.00%

Stimul 3.75% 7.50% 6.25% 0.00% 82.50%

Test Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 83.33% 0.00% 4.17% 12.50% 0.00%

Antipsy 0.00% 37.50% 50.00% 0.00% 12.50%

Antidep 25.00% 25.00% 43.75% 6.25% 0.00%

Hypno 50.00% 8.33% 0.00% 41.67% 0.00%

Stimul 0.00% 20.83% 33.33% 0.00% 45.83%

certain class are retained here, such as Active Wake and REM Sleep for hypnotics and

antidepressants, Active Wake for stimulants and Passive Wake for antipsychotics. The

classification results for the training and the test dataset can be found in Table 8.12.

Also here we get a high correct classification percentage for all five classes in the

training dataset. The overall error rate on the compound-dose level in the training

dataset is even 0.034. For the test dataset, the percentage of correctly classified rats

in the placebo group is somewhat smaller than in the previous analyses, but this is

amply compensated in the other classes, where we get now classification percentages

in the correct class above 55% for antipsychotics, antidepressants and stimulants. The
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Table 8.7: Sleeping Stages used in each step of the MFLDA with modified distance

measure, on the compound-by-dose combination level.

Step Sleeping Stages

Step 1: Stimulants AW -PW - RS

Step 2: Antipsychotics PW - SWS1 - SWS2 - IS - RS

Step 3: Placebo PW - SWS1 - SWS2 - IS - RS

Step 4: Hypnotics SWS2 - IS - PS

overall error rate on the compound-dose level in the test dataset is now 0.452.

To be able to compare the results in the four different analyses (with the modified

and pairwise strategy on both rat and compound-dose level), we summarize the error

rates obtained on the rat and the compound-dose level for the four procedures in

Table 8.13. We can see here that for both levels of analysis, the procedure based on

the pairwise strategy in general produces smaller error rates.

8.5 Concluding Remarks

In this chapter a novel extension of the functional linear discriminant analysis,

called MFLDA, is introduced. Since a pseudo-likelihood model is used to model

the multivariate longitudinal data, the estimated variance-covariance matrix is not

guaranteed to be positive definite. To overcome this problem we followed two

different strategies. On the one hand a correction, proposed by Rousseeuw and

Molenberghs (1993), was applied to the variance-covariance matrix to ensure the

positive definiteness of this matrix. On the other hand, the distance between two

subjects was calculated for each pair of covariates in the dataset and the final

distance between the subjects was defined as the mean of all pairwise distances. The

performance of MFLDA with both approaches was evaluated on the EEG dataset and

through simulations.

For the EEG dataset, a stepwise classification procedure was performed, where

in each step one class is separated from the remaining classes using MFLDA. The

selection of the class to be discriminated in each step and the selection of the sleeping

stages to be used in each of the steps is done on the rat level and on the compound-by-

dose combination level, leading to four different classifications. For all four analyses,
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Table 8.8: Classification percentages for the EEG training dataset and test dataset,

with the modified distance measure, on the compound-dose level (errorrat(train) =

0.306, errorcd(train) = 0.134, errorrat(test) = 0.471, errorcd(test) = 0.383).

Training Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 80.98% 13.59% 2.17% 2.72% 0.54%

Antipsy 5.36% 91.07% 0.00% 0.00% 3.57%

Antidep 10.71% 52.68% 31.25% 4.46% 0.89%

Hypno 22.50% 17.50% 0.00% 60.00% 0.00%

Stimul 5.00% 10.00% 1.25% 0.00% 83.75%

Test Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 87.50% 8.33% 0.00% 4.17% 0.00%

Antipsy 0.00% 87.50% 6.25% 0.00% 6.25%

Antidep 18.75% 56.25% 18.75% 3.12% 3.12%

Hypno 66.67% 8.33% 0.00% 25.00% 0.00%

Stimul 4.17% 33.33% 16.67% 0.00% 45.83%

the training dataset could be classified well, being slightly worse than with the

DHSLA. The classification of the test dataset was even better than the one obtained

with DHSLA (without model averaging). The MFLDA with the pairwise strategy

leaded in general to a smaller error rate in training and test dataset compared to the

MFLDA with the correction for positive definiteness.

The same was seen in the simulation studies with two or three classes. In

the setting with four classes, MFLDA with the correction for positive definiteness

produces a smaller error rate than MFLDA with the pairwise strategy. In this setting,

the fourth class, based on hypnotics, and to lesser extent the third class, based on
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Figure 8.6: Density of the error rates in training and test dataset obtained with

MFLDA using pairwise distances.

antidepressants, were hard to separate out. This lines up with expectation, since also

in the original EEG dataset, these two classes are difficult to discriminate.

Increasing the size of the training dataset resulted in a decreasing error rate in the

simulation studies with 2 or 3 classes. In the study with four classes, a higher sample

size could not improve the classification results much, which enhances the impression

that hypnotics and antidepressants are problematic to separate out.

The number of knots in the splines models had an influence on the classification

results. For all three settings, MFLDA with three knots gave a better classification

than the one with only two knots. This could be expected since the variance-

covariance structure is modeled better when three knots are used. A higher number of

knots or a different pseudo-likelihood model, e.g. based on fractional polynomials, was

not incorporated in the simulation study, but can be considered as well. The number

of knots, and in general the pseudo-likelihood model to be used in the MFLDA, should

be carefully determined depending on the application at hand.
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Table 8.9: Sleeping Stages used in each step of the MFLDA with pairwise distance

calculation, on the rat level.

Step Sleeping Stages

Step 1: Placebo AW - SWS1 - SWS2 - RS

Step 2: Stimulants AW - PW - SWS1 - RS

Step 3: Antidepressants AW - SWS2 - IS - RS

Step 4: Antipsychotics SWS1 - SWS2 - IS - RS

Table 8.10: Classification percentages for the EEG training dataset and test dataset,

with pairwise distance calculation, on the rat level (errorrat(train) = 0.199,

errorcd(train) = 0.274, errorrat(test) = 0.442, errorcd(test) = 0.383).

Training Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 85.87% 6.52% 7.07% 0.54% 0.00%

Antipsy 5.36% 89.29% 1.78% 1.78% 1.78%

Antidep 4.46% 23.21% 65.18% 6.25% 0.89%

Hypno 17.50% 2.50% 5.00% 75.00% 0.00%

Stimul 3.75% 5.00% 6.25% 0.00% 85.00%

Test Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 87.50% 4.17% 4.17% 4.17% 0.00%

Antipsy 0.00% 56.25% 43.75% 0.00% 6.25%

Antidep 25.00% 25.00% 43.75% 3.12% 3.12%

Hypno 41.67% 8.33% 8.33% 41.67% 0.00%

Stimul 4.17% 25.00% 20.83% 0.00% 50.00%
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Table 8.11: Sleeping Stages used in each step of the MFLDA with pairwise distance

calculation, on the compound-dose level.

Step Sleeping Stages

Step 1: Hypnotics AW - SWS1 - IS - RS

Step 2: Antidepressants AW - SWS2 - RS

Step 3: Stimulants AW - SWS2

Step 4: Antipsychotics AW -PW - SWS1 - SWS2 - IS - PS

Table 8.12: Classification percentages for the EEG training dataset and test dataset,

with pairwise distance calculation, on the compound-dose level (errorrat(train) =

0.236, errorcd(train) = 0.034, errorrat(test) = 0.452, errorcd(test) = 0.367).

Training Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 78.26% 11.41% 5.43% 3.26% 1.63%

Antipsy 3.57% 67.86% 19.64% 7.14% 1.79%

Antidep 7.14% 13.39% 66.96% 6.25% 6.25%

Hypno 12.50% 2.50% 2.50% 82.50% 0.00%

Stimul 2.50% 3.75% 7.50% 0.00% 86.25%

Test Dataset

Predicted Class

Class Placebo Antipsy Antidep Hypno Stimul

Placebo 66.67% 8.33% 4.17% 20.83% 0.00%

Antipsy 0.00% 56.25% 31.25% 0.00% 12.50%

Antidep 21.87% 15.63% 59.38% 3.12% 0.00%

Hypno 41.67% 0.00% 25.00% 33.33% 0.00%

Stimul 0.00% 12.50% 29.17% 0.00% 58.33%
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Table 8.13: Multivariate Functional Linear Discriminant Analysis. Summary table

for the error rates obtained in train and validation dataset.

Train Test

Classification Selection Procedure errorrat errorcv errorrat errorcv

PD Correction I Rat level 0.248 0.174 0.496 0.267

II Compound-dose level 0.306 0.134 0.471 0.383

Pairwise Distances I Rat level 0.199 0.274 0.442 0.383

II Compound-dose level 0.236 0.034 0.452 0.367



9
Concluding Remarks and

Further Research

9.1 Concluding Remarks

In this thesis, we have focussed on the classification of multiple class, multivariate

longitudinal data. This research was driven by a study conducted to classify

psychotropic drugs based on electro-encephalogram or EEG data. For each of the

compound-by-dose combinations in the five psychotropic drug classes, data on the

sleep-wake behaviour of rats were collected during a 16 hours period. The sleep-

wake behaviour was summarized into six standard sleep-wake stages, resulting in a

six-variate longitudinal profile per rat.

From a statistical point of view, analyzing EEG data poses important challenge,

because of the high-dimensionality and the longitudinal character of the data. The

longitudinal profiles are usually highly irregular and the variability between and within

subjects are relatively high.

9.1.1 Exploratory Tools

For the visualization of multiple class multivariate longitudinal data, we proposed

a graphical tool to explore characteristics of classes in the data at hand, using the
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so-called mutual information measure. Rather than the actual prediction of the class

of a new compound, we focus on how well separated the classes are in a particular set

of data, to be able to explain difficulties in the classification procedure.

The mutual information measure quantifies the amount of information a new

observation has in common with each of the classes in the dataset. In this way,

the classes can be visualized in a simple plot, showing the densities of the mutual

information measures, for the class of interest against the remainder of the classes.

With these density plots, the level of overlap between one class and all other classes

can be measured.

The overlapping quantiles, together with the specifities and sensitivities revealed

that classifying EEG data is a difficult task, indicating the need for elaborate

classification techniques, which take into account the longitudinal nature of the data

and also possible association between the six-variate longitudinal variables.

9.1.2 Doubly Hierarchical Supervised Learning Analysis

In this thesis, we proposed a general and simple procedure that can be applied

to establish classification rules for application with multiple class longitudinal

data, called doubly hierarchical supervised learning analysis (DHSLA). This flexible

procedure takes into account the specific nature of the multiple drug classes, as well as

the longitudinal character of the data. The method consists of two stages, in stage one

the longitudinal profiles are modelled using a flexible modeling technique to account

for the irregularities in the profiles, then a summary extracted from this model is used

in stage two in a stepwise classification process.

Several variations to this procedure were applied to the EEG data. In stage one,

a fractional polynomial mixed model was always used, while in stage two, linear,

flexible and mixture discriminant analysis were incorporated. The three different

techniques were found to produce comparable results in the training dataset with

respect to adjusted posterior probabilities and error rates. In the test dataset, DHSLA

with flexible and mixture discriminant analysis were performing slightly better than

DHSLA with linear discriminant analysis. Especially placebo, antidepressants and

hypnotic were poorly discriminated.

Concerns regarding model selection bias arose when applying the DHSLA

procedure. Therefore an extension of model averaging to the case of linear

discriminant analysis was developed. This novel approach was then integrated in

the second stage of the DHSLA in order to get more robust classification results.

This leaded to a considerable improvement of the classification in the train as well as
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the test dataset, but still antidepressant and hypnotic were difficult to separate.

For the selection of the variables to be used in each step of the stepwise

classification procedure, we concentrated on two levels, the rat and the compound-

dose level. Both approaches must be seen next to each other, since they both shed

a different light on the classification problem at hand. When the interest of the

researcher is in the classification of rats rather than treatments, the rat level should

be the level to focus on and vice versa.

9.1.3 Multivariate Functional Linear Discriminant Analysis

Although in the DHSLA the longitudinal character of the data is taken into account,

the multivariate aspect is still ignored, thus we are implicitly assuming that each

longitudinal variable is independent of all other ones. In order to deal with both

aspects of the data we extended the functional linear discriminant analysis of James

and Hastie (2001) for the case where several longitudinal profiles are recorded for the

same individual. When dealing with multivariate longitudinal data, the correlation

between the variables must be taken into account in our classification. A fully

multivariate model would have been the natural choice, but given the complexity of

the data, computational issues are commonly present during such modeling exercise.

Therefore, we proposed to use a pseudo-likelihood modeling approach (Fieuws and

Verbeke, 2006) combined with smoothing techniques such as splines, to model the

multivariate longitudinal characteristics.

While the computational issues are overcome by this modeling approach, others

arise, since the fitted covariance matrix obtained from the modeling approach is not

always positive definite. To solve this issue, we proposed to use a modification of the

variance covariance matrix which is positive definite or to calculate the average of the

distance between a new observation and the classes in the training dataset for each

pair of variables. Both strategies were followed and compared.

The performance of the MFLDA is established through application to the EEG

dataset as well as through simulation studies, using different number of classes and

observations. The classification is evaluated based on the error rate using a train-test

setting.

It is also important to highlight that when we compare DHSLA, without

considering model averaging, and MFLDA, the latter performs slightly worse in the

training dataset, but better in the test dataset. The MFLDA with pairwise strategy

was in general performing better than MFLDA with the correction for positive

definiteness counterpart. Also here, hypnotics and antidepressants poses difficulties
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to differentiate observations from both classes.

The simulation studies reveal that the number of subjects in the training dataset

and the model used to fit the longitudinal profiles are crucial. When more subjects are

included in the training dataset, and when the variance-covariance structure in the

training dataset is properly estimated, better classification results are be obtained.

9.2 Further Research

The research presented in this thesis allows to indicate several interesting topics for

further investigation in the classification of multiple-class multivariate longitudinal

data.

A first issue raised by clinical experts, is the need for a quick and simple method

for the screening of potentially new variables that may improve the classification. A

possible solution for this could be the mutual information measure, which can be used

to determine the discriminative property for each new variable.

A second important issue is the methods to be used in each stage of the DHSLA.

In this thesis, we restricted to a fractional polynomial mixed model in stage 1 and

a linear, flexible and mixture discriminant analysis in stage 2. In both stages other

techniques can be considered as well. For instance a splines mixed model or other

flexible modeling technique can be used in stage 1 and different supervised learning

methods can be applied in stage 2, such as non-parametric discriminant analysis,

support vector machines, neural networks, random forests, . . . . The performance of

these methods can be further evaluated through simulation studies.

Also in MFLDA, the use of different discriminant techniques instead of linear

discriminant analysis can be investigated. A few potential choices are flexible, mixture

and penalized discriminant analysis, but also other techniques can be investigated as

well.

A final issue is the discrimination of hypnotics and antidepressants in the EEG

dataset. In general all methods have some difficulties to classify these two classes.

While at first sight this is a drawback, we should approach such a conclusion with

due caution. First, it is conceivable that a given component at a certain dose has

more than one modalities of activity. Second, the very classification into psychotropic

classes, while generally used, remains arbitrary and should perhaps be called into

question. At least, a revision might be in place.
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Figure A.1: Fitted fractional polynomial mixed model for all placebo the compound-dose combinations in the validation dataset,

together with the fitted fractional polynomial mixed models in the five drug classes in the training dataset.
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Figure A.2: Fitted fractional polynomial mixed model for all placebo the compound-dose combinations in the validation dataset,

together with the fitted fractional polynomial mixed models in the five drug classes in the training dataset.
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Figure A.3: Fitted fractional polynomial mixed model for all placebo the compound-dose combinations in the validation dataset,

together with the fitted fractional polynomial mixed models in the five drug classes in the training dataset.
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Figure A.4: Fitted fractional polynomial mixed model for all placebo the compound-dose combinations in the validation dataset,

together with the fitted fractional polynomial mixed models in the five drug classes in the training dataset.
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Figure A.5: Fitted fractional polynomial mixed model for all placebo the compound-dose combinations in the validation dataset,

together with the fitted fractional polynomial mixed models in the five drug classes in the training dataset.



B
Model Average: Results for

the Training Dataset

B.1 Selection Procedure I

Table B.1: Model Average. Adjusted posterior probabilities for the training data set

obtained with model averaging with the 25 best models when selection procedure I is

used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.99 0.01 0.00 0.00 0.00

Antipsy 0.00 0.97 0.01 0.00 0.02

Antidep 0.00 0.02 0.98 0.00 0.00

Hypnot 0.00 0.00 0.00 1.00 0.00

Stimul 0.01 0.01 0.00 0.00 0.99

137
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Figure B.1: Model Averaging. Error rates in the test dataset obtained with

modelaveraging for 1, 10, 25, 50, 100 and 200 models, applied to DHSLA with

Selection Procedure I.
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Figure B.2: Model Averaging. Adjusted posterior probabilities in the test dataset obtained with modelaveraging for 1, 10, 25, 50,

100 and 200 models, applied to DHSLA with Selection Procedure I.
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B.2 Selection Procedure II

Table B.2: Model Average. Adjusted posterior probabilities for the training data set

obtained with model averaging with the 25 best models when selection procedure II is

used.

Predicted Class

Class Placebo Antipsy Antidep Hypnot Stimul

Placebo 0.99 0.01 0.00 0.00 0.00

Antipsy 0.00 0.94 0.01 0.05 0.00

Antidep 0.00 0.02 0.97 0.01 0.00

Hypnot 0.00 0.00 0.00 1.00 0.00

Stimul 0.01 0.01 0.04 0.01 0.93
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Figure B.3: Model Averaging. Error rates in the training dataset obtained with

modelaveraging for 1, 10, 25, 50, 100 and 200 models, applied to DHSLA with

Selection Procedure II.
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Figure B.4: Model Averaging. Adjusted posterior probabilities in the training dataset obtained with modelaveraging for 1, 10, 25,

50, 100 and 200 models, applied to DHSLA with Selection Procedure II.
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Table C.1: Simulation study based on two classes: Error rates and corresponding

standard deviations (between parentheses) obtained with MFLDA with two knots using

the correction for positive definiteness or the pairwise distances.

Placebo vs Antipsychotic

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.434 (0.293) 0.173 (0.189) 0.834 (0.176) 0.000 (0.000)

40 0.560 (0.304) 0.123 (0.196) 0.931 (0.112) 0.000 (0.000)

60 0.710 (0.263) 0.038 (0.105) 0.951 (0.088) 0.000 (0.000)

80 0.631 (0.296) 0.046 (0.134) 0.951 (0.076) 0.000 (0.000)

100 0.679 (0.284) 0.045 (0.131) 0.959 (0.085) 0.000 (0.000)
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Table C.2: Simulation study based on two classes (continuation): Error rates and

corresponding standard deviations (between parentheses) obtained with MFLDA with

two knots using the correction for positive definiteness or the pairwise distances.

Placebo vs Antidepressant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.800 (0.201) 0.110 (0.168) 0.966 (0.076) 0.011 (0.040)

40 0.874 (0.183) 0.051 (0.153) 0.995 (0.022) 0.000 (0.000)

60 0.938 (0.097) 0.033 (0.074) 0.998 (0.014) 0.000 (0.000)

80 0.919 (0.154) 0.043 (0.142) 0.998 (0.014) 0.000 (0.000)

100 0.973 (0.060) 0.003 (0.017) 0.999 (0.010) 0.000 (0.000)

Placebo vs Hypnotic

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.150 (0.198) 0.201 (0.208) 0.106 (0.154) 0.295 (0.249)

40 0.095 (0.116) 0.173 (0.153) 0.081 (0.112) 0.253 (0.195)

60 0.059 (0.091) 0.160 (0.141) 0.049 (0.076) 0.232 (0.173)

80 0.072 (0.095) 0.167 (0.136) 0.062 (0.087) 0.252 (0.177)

100 0.047 (0.072) 0.147 (0.134) 0.036 (0.063) 0.235 (0.073)

Placebo vs Stimulant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.005 (0.026) 0.004 (0.040) 0.013 (0.037) 0.000 (0.000)

40 0.006 (0.024) 0.000 (0.000) 0.013 (0.037) 0.000 (0.000)

60 0.008 (0.027) 0.000 (0.000) 0.014 (0.035) 0.000 (0.000)

80 0.005 (0.022) 0.000 (0.000) 0.009 (0.029) 0.000 (0.000)

100 0.009 (0.029) 0.000 (0.000) 0.019 (0.048) 0.000 (0.000)
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Table C.3: Simulation study based on two classes (continuation): Error rates and

corresponding standard deviations (between parentheses) obtained with MFLDA with

two knots using the correction for positive definiteness or the pairwise distances.

Antipsychotic vs Antidepressant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.300 (0.262) 0.267 (0.245) 0.145 (0.209) 0.348 (0.276)

40 0.235 (0.252) 0.281 (0.238) 0.108 (0.158) 0.345 (0.251)

60 0.142 (0.184) 0.275 (0.237) 0.070 (0.098) 0.335 (0.230)

80 0.170 (0.227) 0.250 (0.207) 0.054 (0.099) 0.314 (0.185)

100 0.096 (0.145) 0.289 (0.214) 0.056 (0.099) 0.306 (0.187)

Antipsychotic vs Hypnotic

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.153 (0.206) 0.136 (0.192) 0.000 (0.000) 0.438 (0.266)

40 0.055 (0.120) 0.170 (0.165) 0.000 (0.000) 0.484 (0.256)

60 0.035 (0.098) 0.208 (0.193) 0.000 (0.000) 0.529 (0.227)

80 0.046 (0.119) 0.223 (0.201) 0.000 (0.000) 0.547 (0.216)

100 0.015 (0.063) 0.229 (0.161) 0.000 (0.000) 0.512 (0.195)

Antipsychotic vs Stimulant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.112 (0.163) 0.018 (0.066) 0.018 (0.041) 0.008 (0.037)

40 0.120 (0.157) 0.001 (0.010) 0.020 (0.049) 0.004 (0.020)

60 0.041 (0.074) 0.001 (0.010) 0.020 (0.045) 0.002 (0.014)

80 0.057 (0.114) 0.002 (0.014) 0.014 (0.038) 0.002 (0.014)

100 0.032 (0.063) 0.000 (0.000) 0.014 (0.045) 0.000 (0.000)
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Table C.4: Simulation study based on two classes (continuation): Error rates and

corresponding standard deviations (between parentheses) obtained with MFLDA with

two knots using the correction for positive definiteness or the pairwise distances.

Antidepressant vs Hypnotic

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.049 (0.107) 0.527 (0.243) 0.003 (0.022) 0.861 (0.174)

40 0.031 (0.080) 0.580 (0.255) 0.001 (0.010) 0.901 (0.131)

60 0.026 (0.081) 0.638 (0.239) 0.000 (0.000) 0.928 (0.103)

80 0.011 (0.037) 0.631 (0.237) 0.000 (0.000) 0.932 (0.103)

100 0.009 (0.029) 0.632 (0.211) 0.000 (0.000) 0.929 (0.107)

Antidepressant vs Stimulant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.020 (0.071) 0.004 (0.024) 0.001 (0.010) 0.001 (0.010)

40 0.028 (0.113) 0.000 (0.000) 0.001 (0.010) 0.000 (0.000)

60 0.004 (0.024) 0.000 (0.000) 0.005 (0.022) 0.000 (0.000)

80 0.006 (0.031) 0.000 (0.000) 0.001 (0.010) 0.000 (0.000)

100 0.008 (0.052) 0.000 (0.000) 0.001 (0.010) 0.000 (0.000)

Antipsychotic vs Stimulant

Correction PD Pairwise Distance

N Class 1 Class 2 Class 1 Class 2

20 0.005 (0.022) 0.001 (0.010) 0.011 (0.034) 0.000 (0.000)

40 0.006 (0.028) 0.000 (0.000) 0.002 (0.014) 0.000 (0.000)

60 0.001 (0.010) 0.000 (0.000) 0.002 (0.014) 0.000 (0.000)

80 0.001 (0.010) 0.000 (0.000) 0.002 (0.014) 0.000 (0.000)

100 0.001 (0.010) 0.000 (0.000) 0.002 (0.014) 0.000 (0.000)




