
Towards a Geometric Interpretation of Double-Cross
Matrix-based Similarity of Polylines

Bart Kuijpers and Bart Moelans
Theoretical Computer Science

Hasselt University & Transnational University of Limburg, Belgium
{bart.kuijpers, bart.moelans}@uhasselt.be

ABSTRACT
One of the formalisms to qualitatively describe polylines in
the plane are double-cross matrices. In a double-cross ma-
trix the relative position of any two line segments in a poly-
line is described with respect to a double cross based on their
start points. Two polylines are called DC-similar if their
double-cross matrices are identical. Although double-cross
matrices have been widely applied, a geometric interpreta-
tion of the similarity they express is still lacking. In this pa-
per, we provide a first step in the geometric interpretation of
this qualitative definition of similarity. In particular, we give
an effective characterization of what DC-similarity means for
polylines that are drawn on a grid. We also provide algo-
rithms that, given a DC-matrix, check whether it is realiz-
able by a polyline on a grid and that construct, if possible,
in quadratic time example polylines that satisfy this matrix.
We also describe algorithms to reconstruct polylines, satis-
fying a given double-cross matrix, in the two-dimensional
plane, that is, not necessarily on a grid.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
Miscellaneous; H.2.8 [Database applications]: Datamin-
ing, Spatial databases and GIS

General Terms
Algorithms, Theory

Keywords
Double-cross calculus, polylines, similarity

1. INTRODUCTION AND SUMMARY
The double-cross calculus [10, 19] was introduced as a

formalism to qualitatively describe configurations of several
vectors in the plane. In this language, two vectors are en-
coded as a 4-tuple that expresses their relative orientation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’08 , November 5-7, 2008. Irvine, CA, USA
Copyright 2008 ACM 978-1-60558-323-5/08/11 ...$5.00.

with respect to each other. The double-cross formalism is
used, for instance, in the qualitative trajectory calculus [6, 7].
In turn, the qualitative trajectory calculus has been used to
test polyline similarity with applications to query-by-sketch,
indexing and classification [13].

In this paper, we consider polylines in the two-dimensional
plane and model them as finite sequences of vertices, or
equivalently, as finite sequences of contiguous vectors. The
double-cross matrix (DC-matrix) of a polyline contains for
each pair of vectors in the polyline the 4-tuple that expresses
their relative orientation. For a polyline consisting of N vec-
tors, the DC-matrix has N2 entries but only the N(N−1)/2
above the diagonal matter. It is well-known that not every
N by N matrix of such 4-tuples is the DC-matrix of a poly-
line [6]. Two polylines with the same DC-matrix are called
DC-similar. We are interested in a geometric interpretation
of the concept of DC-similarity and the literature on this
topic has not yet provided a satisfying answer to this diffi-
cult question. The main contribution of this paper are some
first steps in the geometric interpretation of this qualitative
definition of similarity. In each direction of our investiga-
tion, we limit the full difficulty of the problem by removing
some degrees of freedom.

In a first direction, we give an effective characterization
of what DC-similarity means for polylines that are drawn
on a grid. For a polyline on a grid, we call the vertical
and horizontal straight lines through its vertices its vertical
and horizontal carriers and we call the order in which they
appear as we go through the polyline from start to end the
V- and H-order of the polyline. We call two polylines VH-
equivalent if they have the same V-order and the same H-
order.

To a polyline on a grid, we associate a canonical polyline,
which is VH-equivalent to the original polyline and which
has the same DC-matrix as the original polyline. In fact, the
canonical polyline can be seen as the smallest realization of
a DC-matrix. And it turns out that VH-equivalence is the
notion that captures the geometric information contained in
the DC-matrix: two polylines have the same DC-matrix if
and only if, after alignment, they are VH-equivalent (their
last vectors may differ in length, though). We also give an
algorithm that on input a DC-matrix of size N by N , checks
in O(N2) time whether it is realizable by a polyline on a grid.
If so, it also produces an example polyline on an exponen-
tially large grid in O(N2) time. From this example polyline,
the V- and H-order can be derived and once these are found,
many example polylines satisfying the given DC-matrix can
be generated, among which the canonical polyline. They all



differ in horizontal and vertical compressions and dilatations
from the canonical polyline.

For polylines whose vertices are snapped to the grid, the
above results can be improved on. Here, once the realizabil-
ity of a DC-matrix has been checked (in O(N2) time again),
it can be realized in O(N) time.

In a second direction, we look at polylines in the two di-
mensional plane, not necessarily on a grid. A geometric
characterization of DC-similarity is still failing here. As a
first step in understanding DC-similarity, we look at the re-
alization of DC-matrices. By algebraically interpreting the
entries in a DC-matrix, algorithms from computational al-
gebra, such as cylindrical algebraic decomposition [4], can
produce in exponential time example polylines satisfying a
given DC-matrix (and can also be used to verify their re-
alizability). This approach is only practical for very small
matrices. We propose a heuristic algorithm that produces,
for a given DC-matrix, example polylines with vectors of
equal length.

This paper is organized as follows. In Section 2, we de-
fine polylines and the double-cross formalism. In Section 3,
polylines on grids are studied. Section 4 addresses the re-
construction of polylines in the plane.

Related work. In recent years, the growing number of
location-aware devices has given rise to a increasing avail-
ability of mobility data. There is a big interest in the analy-
sis of data produced by moving objects [11]. The traces left
by moving objects are typically interpolated between mea-
sured points and we can roughly say that they are polylines
in the plane [12, 18]. While trying to group or cluster moving
objects, similarity measures between trajectories [16] have
gained in importance. Also in other areas of spatio-temporal
datamining there is an interest in similarity measures [14].
Although there are some authors that address the temporal
dimension of trajectories [15, 17], the majority of the work
only looks at the geometric shape of the trajectories [5, 6, 7,
11, 13, 19]. So, actually, we consider in this context, poly-
lines with a walk-through direction. Most similarity mea-
sures are quantitative and they do not sufficiently support
intuitive or common-sense oriented human-computer inter-
action [5]. Therefore there is increasing interest in naive
geography [8] and qualitative representations. We also refer
to [5, 6] and references therein.

2. DEFINITIONS AND PRELIMINARIES
In this section, we define polylines in the plane and explain

the formalism of double-cross matrices and how it is used to
measure similarity of polylines.

2.1 Polylines
Let R denote the set of real numbers and R2 the real

plane. We now define how a polyline, that is, a piecewise
linear curve in R2, is represented.

Definition 1. A polyline P in R2 is given by the or-
dered list of coordinate pairs of its vertices, that is, P =
〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉. The vertices (x0, y0) and
(xN , yN ) are respectively called the start and end vertex
of P . We assume that consecutive vertices are different.
For i = 1, . . . , N , we denote the closed line segment between
(xi−1, yi−1) and (xi, yi) by Li(P ) and the the vector from

(xi−1, yi−1) to (xi, yi) by
−→
`i (P ). We say that N is the size

of P .

PLj

(xi−1, yi−1)
(xj, yj)

(xj−1, yj−1)

RLij

(xi, yi)
PLi −→uij

Figure 1: Double-cross design: the lines RLij , PLi,
PLj.

The semantics of the polyline P is the subset of R2

consisting of all line segments between consecutive vertices
of P , or sem(P ) :=

S
1≤i≤N Li(P ).

If P is clear from the context, we will omit (P ) from the
above notations. Further, we remark that polylines may be
self intersecting. It is reasonable to assume that polylines
coming from GIS applications have vertices with rational
coordinates.

Below, we often have to align the start vectors of two
polylines. Let P and Q be two polylines and let αPQ be

the unique affinity of R2 that maps
−→
`1 (P ) to

−→
`1 (Q). The

transformation αPQ can be decomposed into a translation
τPQ that maps the start vertex of P to the start vertex

of Q; a rotation ρPQ that aligns τPQ(
−→
`1 (P )) with

−→
`1 (Q);

and finally a point-scaling (or homotecy) σPQ that maps

ρPQ(τPQ(
−→
`1 (P ))) onto

−→
`1 (Q).

2.2 Double-Cross Matrices
The double-cross calculus [10, 19] was introduced as a for-

malism to qualitatively represent a configuration of several
vectors in the plane. Specifically, in this formalism, two
vectors are encoded by means of a 4-tuple that expresses
the relative orientation of both vectors with respect to each
other. Above, we have associated to a polyline P the vec-

tors
−→
`1 , . . . ,

−→
`N , representing oriented line segments between

consecutive vertices. We use the double-cross formalism to
qualitatively present the orientation between

−→
`i and

−→
`j by

means of a 4-tuple

DC(
−→
`i ,
−→
`j ) = (C1 C2 C3 C4) ∈ {−, 0,+}4.

To determine C1, C2, C3 and C4, first of all, we define a dou-

ble cross for the vectors
−→
`i and

−→
`j , determined by three

lines: the reference line RLij connecting (xi−1, yi−1) and
(xj−1, yj−1); the perpendicular lines PLi on RLij through
(xi−1, yi−1); and PLj on RLij through (xj−1, yj−1). We
refer to the vector between (xi−1, yi−1) and (xj−1, yj−1) as
−→uij . The lines RLij , PLi, PLj and the vector −→uij are illus-
trated in Figure 1. The entries C1, C2, C3 and C4 express

how
−→
`i and

−→
`j are located towards RLij ,PLi and PLj . We

now define this more formally [6, 7, 10, 19].

Definition 2. For
−→
`i ,
−→
`j with (xi−1, yi−1) 6= (xj−1, yj−1),

DC(
−→
`i ,
−→
`j ) = (C1 C2 C3 C4) is defined as follows:



C1 = − iff (xi, yi) lies on the same side of PLi

as (xj−1, yj−1) and (xi, yi) 6∈ PLi;
C1 = 0 iff (xi, yi) ∈ PLi;
C1 = + iff else;
C2 = − iff (xj , yj) lies on the same side of PLj

as (xi−1, yi−1) and (xj , yj) 6∈ PLj;
C2 = 0 iff (xj , yj) ∈ PLj;
C2 = + iff else;
C3 = − iff (xi, yi) lies on the left of −→uij;
C3 = 0 iff (xi, yi) ∈ RLij;
C3 = + iff else;
C4 = − iff (xj , yj) lies on the right of −→uij;
C4 = 0 iff (xj , yj) ∈ RLij; and
C4 = + iff else.

For
−→
`i ,
−→
`j with (xi−1, yi−1) = (xj−1, yj−1), we define, for

reasons of continuity [9], DC(
−→
`i ,
−→
`j ) = (0 0 0 0).

For example, the 4-tuple DC(
−→
`i ,
−→
`j ) for the vectors

−→
`i

and
−→
`j , shown in Figure 1, is (+−−−).

We repeat the following property from [13], because it

gives the algebraic expression to calculate the valueDC(
−→
`i ,
−→
`j ),

which will be used extensively to prove some properties fur-
ther on. By sign : R → {−, 0,+} we denote the function
that maps strictly negative numbers to −, 0 to 0 and strictly
positive numbers to +.

Property 1. Let
−→
`i and

−→
`j have coordinates as described

in Figure 1. Then we have
C1 = −sign((xj−1 − xi−1) · (xi − xi−1)

+(yj−1 − yi−1) · (yi − yi−1));
C2 = sign((xj−1 − xi−1) · (xj − xj−1)

+(yj−1 − yi−1) · (yj − yj−1));
C3 = −sign((xj−1 − xi−1) · (yi − yi−1)

−(yj−1 − yi−1) · (xi − xi−1));
and
C4 = sign((xj−1 − xi−1) · (yj − yj−1)

−(yj−1 − yi−1) · (xj − xj−1)).

We remark that for any
−→
`i and

−→
`j , arbitrary changing

their lengths, does not influence the value of DC(
−→
`i ,
−→
`j ).

Definition 3. A double-cross matrix (DC-matrix)
of a polyline P = 〈(x0, y0), . . . , (xN , yN )〉, denoted DCM(P ),

is a N × N matrix with DCM(P )[i, j] = DC(
−→
`i ,
−→
`j ). Two

polylines P and Q are called DC-similar if DCM(P )
= DCM(Q).

We remark that it suffices to consider only the upper tri-
angle of the matrix DCM(P ), i.e., the (N2−N)/2 elements

DC(
−→
`i ,
−→
`j ), with i < j. The other elements do not give any

extra information [13].
We also remark that for a polyline P = 〈(x0, y0), . . . ,

(xN , yN )〉, changing the length of the last vector
−→
`N will not

change DCM(P ). Changing the length of any other vector
can change DCM(P ), as can be seen in Figure 2. Indeed,

increasing the length of
−−→
`j−1 changes DC(

−→
`i ,
−→
`j ).

The double-cross matrix is invariant under a number of
transformations of the plane [13].

Property 2. Let P be a polyline and let α be a transla-
tion, an isometry or a point-scaling (homotecy) of R2, then
DCM(P ) = DCM(α(P )).

−→
`j

−−→
`j−1

RLij PLi

PLj−→
`i

(a)

PLj

−→
`i

−→
`j

−−→
`j−1

RLij

PLi

(b)

Figure 2: An example of the influence on the DC-
matrix of a polyline on a grid when changing the
length of one of its vectors.

(x0, y0)

(x1, y1)

(x2, y2) (x7, y7)

P

G

(x6, y6)

(x4, y4) (x5, y5)(x3, y3)

Figure 3: An example of a polyline on a grid.

If we compare vectors only with the next k vectors in a
polyline, we get the following definition.

Definition 4. The k-partial double-cross matrix of
P is denoted and defined as DCMk(P ) = {DCM(P )[i, j]|i <
j ≤ max((i+ k), N)}. Two polylines P and Q are called k-
similar if DCMk(P ) = DCMk(Q).

Clearly, for polylines consisting of N line segments, DC-
similarity and N -similarity coincide.

3. POLYLINES ON A GRID
We study polylines that are on a grid. First, we define

some types of grid. Let Z denote the set of the integers.

Definition 5. The complete infinite grid is defined to
be the set (Z×R) ∪ (R× Z). We call the elements of Z× Z
its crossings. A grid is a subset of the complete infinite
grid of the form (A×R) ∪ (R×B), with A,B finite subsets
of Z.

A polyline P is on a grid G, if sem(P ) ⊂ G.

In Figure 3, a grid G and polyline P on G are shown. In
this example, not all vertices of P are located on crossings
of G. For the case where all the vertices are crossings, we
have the following definition.

Definition 6. Let G be a grid and let P = 〈(x0, y0), . . . ,
(xN , yN )〉 be a polyline on G. We say that P is snapped to
G if all vertices of P are crossings of G. Furthermore, if all
crossings of G that belong to sem(P ) are vertices of P , we
say that P is completely snapped to G.



(x0, y0)

V4

V5

V2

V3

(x1, y1)

H7

V7

(x2, y2)

(x5, y5)

V6

V1

V0

(x3, y3)

(x6, y6)

(x7, y7)

H3

H4

H0
H5
H6

H1

H2

(x4, y4)

Figure 4: A polyline and its horizontal and vertical
carriers.

We remark that (completely) snapped polylines have ver-
tices with integer-valued coordinates. But, since we as-
sume rational coordinates, we can always find a suitable
point-scaling that maps an arbitrary polyline on a grid to a
snapped polyline on a sufficiently large grid, such that the re-
sulting polyline has vertices with integer-valued coordinates.
We refer to Property 7 for details.

Later on, for an arbitrary polyline P on a grid, we define
a canonical polyline can(P ), which has the same DC-matrix
as P , that is snapped to the complete infinite grid and that
is minimal in some sense. To prove the existence of can(P ),
we will first introduce some definitions.

Definition 7. Given a polyline P = 〈(x0, y0), . . . , (xN ,
yN )〉 on a grid, the lines Vi, given by the equation x =
xi, and Hi, given by the equation y = yi (i = 0, . . . , N),
are called the vertical, respectively horizontal carriers of
P .

Figure 4 shows a polyline P = 〈(x0, y0), . . . , (x7, y7)〉 on
a grid (not shown) and its vertical and horizontal carriers.
We remark that some of these carriers may coincide.

We now define two lists of lists that capture the order of
the carriers of a polyline on a grid.

Definition 8. Let P = 〈(x0, y0), . . . , (xN , yN )〉 be a poly-
line on a grid. The V-order of P , denoted as V (P ), is a
list (A1, . . . , AK) of lists Ai = (ai1, . . . , aiki) such that each
aij is an element of {0, 1, . . . , N} and appears exactly once
in V (P ). Within each Ai, the elements appear in increasing
order, and for a, a′ ∈ Ai, we have xa = xa′ . For a ∈ Ai and
a′ ∈ Aj, with i < j, we have xa < xa′ .

The H-order of P , denoted as H(P ), is a list (B1, . . . ,
BL) of lists Bi = (bi1, . . . , bili) such that each bij is an el-
ement of {0, 1, . . . , N} and appears exactly once in H(P ).
Within each Bi, the elements appear in increasing order,
and for b, b′ ∈ Bi, we have yb = yb′ . For b ∈ Bi and b′ ∈ Bj,
with i < j, we have yb < yb′ .

For the polyline P in Figure 4, V (P ) = ((0, 1), (4, 5),
(2, 3), (6, 7)) and H(P ) = ((0, 5, 6), (3, 4, 7), (1, 2)). We re-
mark that V (P ) and H(P ) are invariant under translations
and scalings but not under rotations of the plane R2. For
instance, if ρ is a rotation over 180◦, then V (ρ(P )) = ((6, 7),
(2, 3), (4, 5), (0, 1)) and H(ρ(P )) = ((1, 2), (3, 4, 7), (0, 5, 6)).

(1, 3)

(2, 2)

(4, 2)

(4, 1)(2, 1)

(3, 2)

(3, 3)

(1, 1)

Figure 5: The canonical polyline of the polyline of
Figure 4.

The following property follows immediately from the def-
inition.

Property 3. Let P = 〈(x0, y0), . . . , (xN , yN )〉 be a poly-
line on a grid. Given only V (P ), we can decide whether
xi < xj, xi = xj or xj < xi for any 1 ≤ i < j ≤ N .
Given only H(P ), we can decide whether yi < yj, yi = yj

or yj < yi for any 1 ≤ i < j ≤ N .

We now define equivalence of polylines on a grid in terms
of V - and H-order.

Definition 9. Let P and Q be two polylines of the same
size on a grid. We say that P and Q are VH-equivalent,
denoted P ≡V H Q, if V (P ) = V (Q) and H(P ) = H(Q).

Given a polyline on a grid, we now associate a canonical
polyline on the complete infinite grid to it.

Definition 10. Given a polyline P = 〈(x0, y0), . . . , (xN ,
yN )〉 on a grid, with V (P ) = (A1, . . . , AK) and H(P ) =
(B1, . . . , BL), we define the canonical polyline of P , de-
noted can(P ), to be the polyline 〈(x′0, y′0), . . . , (x′N , y

′
N )〉, that

is snapped to the complete infinite grid, such that for all
i = 0, ..., N , we have i ∈ Ax′

i
and i ∈ By′

i
.

For the polyline P of Figure 4, can(P ) = 〈(1, 1), (1, 3),
(3, 3), (3, 2), (2, 2), (2, 1), (4, 1), (4, 2)〉 is shown in Figure 5.
We remark that if P is a polyline on a grid, its canonical
polyline, can(P ) is a snapped polyline on the complete infi-
nite grid. In fact, can(P ) can be viewed as a polyline on the
“small” grid ({1, . . . ,K} × R) ∪ (R× {1, . . . , L}).

The following property is straightforward.

Property 4. Let P and Q be of the same size on a grid.
We have P ≡V H Q if and only if can(P ) = can(Q).

3.1 Properties of DC-matrices of polylines on
a grid

In this section, we discuss some properties of the DC-
matrix of polylines on a grid. First, we remark that only 33
4-tuples of −, 0 and + can appear in the DC-matrix of a
polyline on a grid, namely, those of the form (C1 C2 C3 C4),
(C1 C2 0 0), (C1 0 0 C4), (0 0 C3 C4), (0 C2 C3 0) and
(0 0 0 0), with C1, C2, C3, C4 ∈ {+,−}.

Property 5. Let k ≥ 1. For polylines on a grid, the
(k + 1)-partial double-cross matrix DCMk+1(P ) cannot be
derived from the k-partial double-cross matrix DCMk(P ).



`k+1
`1

`2

`3

`k

(a)

`k+1

`1

`2

`3

`k

(b)

Figure 6: Example polylines for the proof of Prop. 5.

Proof. The polylines in (a) and (b) of Figure 6 have the
same DCMk but they do not have the same DCMk+1. A
polyline like in Figure 6 can be generated for each k ≥ 2.
For the case k = 1, just consider P1 = 〈(0, 0), (0, 2), (0, 1),
(1, 1)〉 and P2 = 〈(0, 0), (0, 2), (0,−1), (1,−1)〉. We have
DCM1(P1) = DCM1(P2) but DCM2(P1) 6= DCM2(P2).
Since polyline on a grid are a subset of polylines on the real
plane, this also proves the general case.

This property implies that, given a DC-matrixM , we need
to look at all cells (above the diagonal) of M to be able to
reconstruct a polyline P such that DCM(P ) = M .

Property 6. If P is a polyline on a grid, then DCM(P )
= DCM(can(P )).

Proof. Let P = 〈(x0, y0), . . . , (xN , yN )〉 and can(P ) =

〈(x′0, y′0), . . . , (x′N , y
′
N )〉. Suppose DCM(P )[i, j] = DC(

−→
`i ,−→

`j ) = (C1 C2 C3 C4) and DCM(can(P ))[i, j] = (D1 D2 D3

D4), with i, j ∈ {1, . . . , N}. We have to show that C` = D`,
for ` = 1, 2, 3, 4. If we look at the algebraic expression for
C1, C2, C3 and C4 in Property 1, we can see they are all of
the form ±sign((t11− t12).(t21− t22)± (t31− t32).(t41− t42))
and that tk1 and tk2 are x-coordinates or y-coordinates of
vertices, with k ∈ {1, 2, 3, 4}. Let us focus on C1 and D1:
C1 = −sign((xj−1 − xi−1).(xi − xi−1)− (yj−1 − yi−1).(yi −
yi−1)) and D1 = −sign((x′j−1 − x′i−1).(x′i − x′i−1)− (y′j−1 −
y′i−1).(y′i − y′i−1)). Since P is a polyline on a grid, we have
that (xi = xi−1 and yi 6= yi−1) or (xi 6= xi−1 and yi = yi−1).
Assume xi = xi−1 and yi 6= yi−1 (the other case is similar).
By definition of V (P ) and can(P ) we know when xi = xi−1

then x′i = x′i−1, thus we can rewrite the expression for C1

and D1 as follows: C1 = sign((yj−1 − yi−1).(yi − yi−1))
and D1 = sign((y′j−1 − y′i−1).(y′i − y′i−1)). By definition of
can(P ), we can see that if yi < yj , then also y′i < y′j and
thus C1 = D1. We can show in a similar way that C2 = D2,
C3 = D3 and C4 = D4.

In the next theorem, we use the following notation. If
P = 〈(x0, y0), ..., (xN , yN )〉 is a polyline, then we denote by
Pi the polyline 〈(x0, y0), ..., (xi, yi)〉 (0 ≤ i ≤ N). So, in
particular P = PN .

Theorem 1. Let P and Q be two polylines of size N on
a grid. Then P and Q are DC-similar if and only if

αPQ(PN−1) ≡V H QN−1

and the last vector of αPQ(P ) and Q have the same direction

with respect to their one but last vector, i.e., DC(
−−−→
`N−1(P ),

−→
`N (P )) = DC(

−−−→
`N−1(Q),

−→
`N (Q)).

Proof. From Property 6, we know that DCM(P ) =
DCM(Q) if and only if DCM(can(P )) = DCM(can(Q))
and from Property 4 that αPQ(PN−1) ≡V H QN−1 if and
only if can(αPQ(PN−1)) = can(QN−1). Therefore, it is
enough to prove that DCM(can(P )) = DCM(can(Q)) if
and only if can(αPQ(PN−1)) = can(QN−1) and the last
vector of can(αPQ(PN )) and can(QN ) have the same di-
rection with respect to their one but last vector. Since
can(αPQ(PN−1)) = can(QN−1) = αcan(P )can(Q)(can(PN−1))
(with αcan(P )can(Q) basically a rotation over 0, 90, 180, or
270 degrees), it suffices to prove the theorem, with VH-
equivalence replaced by equality, for canonical polylines. So,
from now, we simplify the notation and assume that P and
Q are canonical.

For N = 2, we have to show that DCM(can(P2)) =
DCM(can(Q2)) if and only if can(αPQ(P1)) = can(Q1) and
the last vector of can(αPQ(P2)) and can(Q2) have the same
direction with respect to their one but last vector (in this
case the first vector). This is trivial since αPQ maps the first
segment of P , which is given by P1, on the first segment of
Q which is given by Q1 and since the direction of the sec-
ond segment with respect to the first is uniquely determined
by the right upper element in the DC-matrix. Let us now
assume N > 2.

For the if direction, let us assume thatQN−1 = αPQ(PN−1)

andDC(
−−−→
`N−1(P ),

−→
`N (P )) = DC(

−−−→
`N−1(Q),

−→
`N (Q)). The lat-

ter implies that DCM(P )[N − 1, N ] = DCM(Q)[N − 1, N ].
The former certainly implies that DCM(P )[1..N−1, 1..N−
1] = DCM(Q)[1..N − 1, 1..N − 1]. But since the end vertex
of QN−1 is equal to the end vertex of αPQ(PN−1), we also
have DCM(P )[i,N ] = DCM(Q)[i,N ] for i = 1, ..., N − 2.

For the only-if direction, let us assume that DCM(P ) =
DCM(Q). From this assumption DCM(P )[N − 1, N ] =
DCM(Q)[N−1, N ] follows and therefore the the last vector
of αPQ(P ) and Q have the same direction with respect to
their one but last vector. Let P = 〈(x0, y0), ..., (xN , yN )〉 For
each pair of vertices (xi, yi) and (xj , yj), with 1 ≤ i < j < N ,
it can be determined, from DCM(P ), whether xi < xj ,
xi = xj or xi > xj and also yi < yj , yi = yj or yi > yj . In-
deed, suppose DCM(P )[i, j] = (C1 C2 C3 C4). By looking
at Property 1 one can see that if C3 = 0 that (xj−1, yj−1)

is located on
−→
`i (P ). If C3 = −, (xj−1, yj−1) is located right

of
−→
`i (P ), otherwise (xj−1, yj−1) is located left of

−→
`i (P ). In

other words, the V - and H-order of PN−1 can be derived
from DCM(P ). Since DCM(P ) = DCM(Q), thee canoni-
cal polylines of PN−1 and QN−1 are therefore equal.

Property 7. If P is a polyline on a grid G and G′ =
(A × R) ∪ (R × B) is a grid with |A| ≥ |V (P )| and |B| ≥
|H(P )|, then there exists a snapped polyline Q on G′ such
that DCM(P ) = DCM(Q).

Proof. We construct Q on G′ as we constructed the
canonical polyline of P on the complete infinite grid (see
Definition 10). Then by construction P ≡V H Q and the last
vector from P and Q have the same direction with respect
to the one but last vector. By Theorem 1, it follows that
DCM(P ) = DCM(Q).

Using the previous properties, we can see that two DC-
similar polylines differ in horizontal and vertical compres-
sions and dilatations from the canonical polyline (apart from
their last vector, whose length is arbitrary).



(a) (b)

Figure 7: (a) A polyline on a grid, the circle (resp.
square) is the begin (resp. end) vertex. (b) The
reconstructed snapped polyline from the DC-matrix
in Table 1.

Table 1: The DCM of the snapped polyline in Fig-
ure 7(a).
−00+−−++−−+−−+−+−−−+−−−−+ +−++−−++−−−+ + +++−++

−00+ −−+++−++ +− 00 +00− + + +++−+++−+−−+ ++−−++
−00+ −−++ 0−+0 00 +− −+ ++−−++−−+− −+ 00 −00+

−00+ −−++−−+−−+−+−−−+−−−− 0 +−0 00−+
−00+ −−+++−++ +− 00 +00− + + +++−++

−00+ −−++ 0−+0 00 +− −+ ++−−++
−00+ −−++−−+−−+−+−−−+

−00+ −−+++−++ +− 00
−00+ −−++ 0−+0

−00+ −−++
−00+

Corollary 1. Let P and Q be two polylines on a grid
(not necessarily the same grid) of size N . If P and Q are
DC-similar, there exists a transformation, preserving the V-
and H-order, that maps PN−1 onto QN−1 and that preserves
the direction of the last vector of P with respect to the one
but last vector of P .

3.2 Constructing example polylines on a grid
given a DC-matrix

We now give an algorithm Reconstruct DCM that, given
a DC-matrix M of a polyline on a grid of size N ×N , gen-
erates a snapped polyline P on an exponentially large grid
with M = DCM(P ) in time O(N2). As will be explained
later on, the algorithm Reconstruct DCM can be modified
to discover if the input is a matrix that is not realizable by
a polyline on a grid.

From the output of Reconstruct DCM, it is straightfor-
ward to produce the V- and H-order of the generated poly-
line. These orders can be used to generate many more exam-
ple polylines that satisfy the given DC-matrix, in particular
the canonical polyline.

Listing 1: Algorithm Reconstruct DCM

input : DCM M ;

N2 := s i z e (M) ;

L1 . s t a r t := ( 0 , 0 ) ;
lastX := 2N ;
lastY := 0 ;
L1 . end := ( lastX , lastY ) ;
P := L1 ;

for ( i :=2; i<N−1; i ++){
Li . s t a r t := Li−1 . end ;

compute d i r e c t i o n d o f
−→
`i

us ing d i r e c t i o n o f
−−→
`i−1 and M [i− 1, i] ;

switch (d){
case Hor i zonta l Right :

newY := lastY ;
based on V (P ) , f i n d the i n t e r v a l I

such that ∀x ∈ I and
−→
` =

−−−−−−−−−−−−−−−−−−−−→
{(lastX, lastY ), (x, newY )} , and

∀j ∈ [1, i− 1] : DC(
−→
`j ,
−→
` ) = M [j, i]

newX := min (x ∈ I)+ 2N−i ;
break ;

case . . .
/∗ do s i m i l a r c o n s t r u c t i o n s
∗ f o r the o the r t h r e e d i r e c t i o n s ∗/

}//end s w i t c h
Li . end := (newX, newY ) ;
lastX := newX ;
lastY := newY ;

P. addLast (Li ) ;
}// endfor

LN . s t a r t := LN−1 . end ;

compute d i r e c t i o n d o f
−→
`N

us ing d i r e c t i o n o f
−−−→
`N−1 and M [N − 1, N ] ;

switch (d){
case Hor i zonta l Right :

newY := lastY ;
newX := lastX + 1 ;
break ;

case . . .
/∗ do s i m i l a r c o n s t r u c t i o n s
∗ f o r the o the r t h r e e d i r e c t i o n s ∗/
}//end s w i t c h

LN . t a i l := (newX, newY ) ;
P. addLast (LN ) ;

Return P;

Property 8. The algorithm Reconstruct DCM, on input
a DC-matrix M of size N ×N of a polyline on a grid, cor-
rectly generates, in O(N2) time, a snapped polyline P of size
N with DCM(P ) = M . This algorithm can also be used to
check (again in O(N2) time) if a matrix of size N × N is
realizable with a polyline on a grid.

Proof. The length of the interval I in algorithm is in the
i-th step maximally 2N−i+1. Therefore, the new vertex can
always be located in I. The correctness of the rest of the
algorithm can be proven using Theorem 1 and Property 7.
For what concerns checking, if the algorithm cannot find an
interval I, then the matrix is not realizable.

The algorithm Reconstruct DCM produces a snapped poly-
line on a grid of exponential size. However, we remark that
the algorithm only outputs the (vertices of the) polyline,
which can be described in linear size space (using the bit
representation of integers).

In Figure 7(a), we can see a polyline on a grid. Its DC-
matrix is given in Table 1. In Figure 7(b), we see the



snapped polyline generated using the algorithm Reconstruct DCM
with as input the DC-matrix in Table 1.

3.3 Properties of DC matrices of completely
snapped polylines

Now, we prove a property of the DC-matrix of a com-
pletely snapped polyline, that does not hold for arbitrary
polylines on a grid.

Property 9. Given the 1-partial double-cross matrix M =
DCM1(P ) of a completely snapped polyline P , we can re-
construct DCM(P ).

Proof. Suppose M = DCM1(P ) has N − 2 elements,
that is, P has N vertices. Let [−N,N ] denote the set of
integers {−N,−N + 1, ..., 0, 1, ..., N}. Take G = ([−N,N ]×
R)∪ (R× [−N,N ]) as grid. We now show how we can recon-
struct a polyline Q that satisfies M . We start with setting
Q = 〈(0, 0), (0, 1)〉. Then Q is a completely snapped polyline
and G is big enough to reconstruct any polyline with N line
segments that has as start vertex (0, 0). If we want to add
a vertex (x2, y2) ∈ G to Q such that Q is still a completely

snapped polyline and M [1, 2] = DC(
−−−→
`1(Q),

−−−→
`2(Q)), we only

have one possibility for the position of (x2, y2). Based on
the fact that Q has to a be completely snapped polyline
and (x2, y2) ∈ G there are only four possible coordinates

for (x2, y2). The condition M [1, 2] = DC(
−−−→
`1(Q),

−−−→
`2(Q))

will only be true for one of these four points and so we
have a unique solution. For the same reasons we can see
that if we want to extend Q to N line segments such that

M [i, i + 1] = DC(
−−−→
`i(Q),

−−−−−→
`i+1(Q)) for all 1 ≤ i ≤ N − 1, all

(xj , yj), for 2 ≤ j ≤ N are uniquely predefined by
−→
`1 (Q),

G and M . Once we have obtained Q = 〈(x0, y0), . . . , (xN ,
yN )〉 this way, we can calculate DCM(Q). From Prop-
erty 7 we know that the choice of G has no influence on
DCM(Q). Because a DC-matrix is invariant under a com-
position of a rotation, translation and point-scaling, tak-
ing another begin line segment for Q would also not change
DCM(Q) therefore for every Q constructed as described
above DCM(Q) = DCM(P ).

The last proof actually describes an algorithm that given
a (partial) DC-matrix M of a completely snapped polyline,
generates a completely snapped polyline P withDCM(P ) =
M . The following corollary tells something about the time
complexity.

Corollary 2. Given a DC-matrix M of size N × N of
a completely snapped polyline, a completely snapped polyline
P of size N with M = DCM(P ) can be generated in O(N)
time. Checking wether a DC-matrix of size N by N , can be
of a completely snapped polyline takes O(N2) time.

4. RECONSTRUCT POLYLINES WITH
EQUAL LENGTH LINE SEGMENTS IN
THE TWO-DIMENSIONAL PLANE

From the previous section, we have gained geometric in-
sight into what DC-similarity means for polylines on a grid.
Although there are situations where traces of moving object
are polylines on a grid (e.g., traffic in Manhattan), there are
even more situations where traces are in the two-dimensional
plane (e.g., football players on a field). Here, a geometric
characterization of DC-similarity is still failing.

(a) (b)

(c) (d)

Figure 8: (a)The original polyline. (b)The output
after the second step of the algorithm using the DC-
matrix in Table 2. (c)The considered solutions in
step 4 of the algorithm. (d)A set of complete possi-
ble solutions.

Table 2: The DC-matrix of the polyline in Fig-
ure 8(a).
−+ 0+−+ ++−+ +−−−++−−++ −−+- −−+++ + ++

−+ 0+−+ +−−−++−−++−−++−+ +++ + +−
−− 0−−−−+−+−+−−++−+ ++−+ +−

−− 0+−−+++−+++ +−−+ +−−
−+ 0+−−++−+ +−−+ +−

−− 0+−+ +−−+ +−
−− 0−−−−−

−+ 0−

By algebraically interpreting the entries in a DC-matrix,
as given in Property 1, algorithms from computational alge-
bra, such as cylindrical algebraic decomposition (CAD) [4],
can produce in exponential time example polylines satis-
fying a given DC-matrix (and can also be used to verify
their realizability). In particular, for a polyline of size N ,

we have 4 N(N−1)
2

equalities and inequalities, each of which
involves at most 8 variables. In total there are 2(N + 1)
variables. The CAD algorithm spends exponential (in N)
time on producing a sample polyline. Experiments in sys-
tems like QEPCAD, Redlog and Mathematica [1, 2, 3], show
that only polylines of up to 5 segments can be reconstructed
this way.

In this section, we simplify the reconstruction task by
looking for polylines with segments of equal length. This
is not a big constraint, given an arbitrary polyline P , the
present authors [13], describe a generalization algorithm that

generate a polyline P 2N

with sem(P ) ≈ sem(P 2N

) and where
the standard deviation of the lengths of the line segments of

P 2N

tends to 0.



For a given DC-matrix M of size N by N ; the desired
lengths of the line segments L; and the granularity (the
number of iteration steps) s, the reconstruction algorithm
goes as follows. In the first step, the algorithm creates a line
of length L with as start vertex (0, 0) and end vertex (L, 0).

In the second step, the algorithm creates a set of candi-
date second line segments. By looking at M [1, 2], we know
what the minimum and maximum angle is between the first
and the second line segment. There are two possibilities, the
minimum angle is equal to maximum angle or not. In the
first case, this means that the second line is on the reference
line RL12 or the perpendicular line PL2 and thus there is
a unique solution to position the second line segment. In
the other case, we create s candidate solutions, equally dis-
tributed between the minimum and maximum angle. Given
the DC-matrix in Table 2, which is the DC-matrix of the
polyline in Figure 8(a), the output of the algorithm with
L = 3 and s = 10, in the second step looks like the polyline
in Figure 8(b).

In the i-th step of the algorithm (i ≤ N), we take one by
one the polylines created in the (i − 1)-th step, and create
new polylines as we did in the second step. The only differ-
ence now is that when we have a candidate polyline Pnew we
first check if DCM(Pnew) = M [1..i, 1..i]. Only when this is
the case Pnew is further considered as possible solution for
M . Given the DC-matrix in Table 2, the output of the al-
gorithm after the fourth step of the algorithm looks like the
polyline in Figure 8(c). Figure 8(d) gives polylines that all
have the DC-matrix of Table 2. We remark that Figure 8(d)
contains not all polylines that were considered as solution in
Figure 8(c), especially the polylines of which the end ver-
tex was below the X-axis. In this experiment, 632 polylines
satisfying the DC-matrix of Table 2 were created in approx-
imately 3 seconds on a Apple Macbook with 2.16 GHz Intel
Core 2 Duo processor and 1 GB RAM.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have looked for a geometric interpreta-

tion of DC-similarity. Since it is difficult to find an inter-
pretation for arbitrary polylines in the plane (e.g., given an
arbitrary DC-matrix M of size N by N , exponential time (in
N) is needed to generate a polyline P with DCM(P ) = M),
we studied two easier cases.

As a first case, we considered polylines on a grid. here,
we have characterized geometrically DC-similarity of poly-
lines on a grid. As a second case, where we limit the full
difficulty of the problem by assuming polylines with equal-
length line segments, we still lack a geometric interpretation,
but we give a heuristic algorithm that produces for a given
DC-matrix, example polylines with equal length line seg-
ments. In the future, we hope to find a general and effective
geometric interpretation of DC-similarity.

Acknowledgments
This research has been partially funded by the European
Union under the FP6-IST-FET programme, Project n. FP6-
14915, GeoPKDD: Geographic Privacy-Aware Knowledge
Discovery and Delivery”, (www.geopkdd.eu) and by the Re-
search Foundation Flanders (FWO-Vlaanderen), Research
Project G.0344.05.

6. REFERENCES
[1] Mathematica 6. http://www.wolfram.com.

[2] Qepcad. http://www.cs.usna.edu/∼qepcad.

[3] Redlog. http://www.fmi.uni-passau.de/∼redlog.

[4] B. Caviness and J. Johnson, editors. Quantifier
Elimination and Cylindrical Algebraic Decomposition.
Springer, 1998.

[5] A. G. Cohn and J. Renz. Qualitative spatial
representation and reasoning. In Handbook of
Knowledge Representation, chapter 13, pages 551–596.
Elsevier, 2007.

[6] N. V. de Weghe. Representing and Reasoning about
Moving Objects: A Qualitative Approach. PhD thesis,
Ghent University, Faculty of Sciences, Department of
Geography, 2004.

[7] N. V. de Weghe, B. Kuijpers, P. Bogaert, and P. D.
Maeyer. A qualitative trajectory calculus and the
composition of its relations. In GeoS, volume 3799 of
Lecture Notes in Computer Science, pages 60–76.
Springer, 2005.

[8] M. J. Egenhofer and D. M. Mark. Naive geography. In
COSIT, pages 1–15, 1995.

[9] K. D. Forbus. Qualitative physics: Past, present, and
future. In Readings in Qualitative Reasoning about
Physical Systems, pages 11–39. Kaufmann, 1990.

[10] C. Freksa. Using orientation information for
qualitative spatial reasoning. In A. F. et al., editor,
Spatio-Temporal Reasoning, volume 639 of Lecture
Notes in Computer Science, pages 162–178. Springer,
1992.

[11] F. Giannotti and D. Pedreschi, editors. Mobility, Data
Mining and Privacy - Geographic Knowledge
Discovery. Springer, 2008.

[12] R. H. Güting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, 2005.

[13] B. Kuijpers, B. Moelans, and N. V. de Weghe.
Qualitative polyline similarity testing with
applications to query-by-sketch, indexing and
classification. In Proceedings ACM-GIS ’06, pages
11–18, 2006.

[14] M. Nanni, B. Kuijpers, C. Körner, M. May, and
D. Pedreschi. Spatiotemporal data mining. In
Mobility, Data Mining and Privacy, chapter 10, pages
267–296. Springer, 2008.

[15] G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia,
and D. Vaccaro. Dynamics-aware similarity of moving
objects trajectories. In Proceedings ACM-GIS’07,
pages 75–82, 2007.

[16] M. J. van Kreveld and J. Luo. The definition and
computation of trajectory and subtrajectory
similarity. In Proceedings ACM-GIS, 2007.

[17] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. J. Keogh. Indexing multi-dimensional time-series
with support for multiple distance measures. In
Proceedings ACM SIGKDD, pages 216–225, 2003.

[18] O. Wolfson. Moving objects information management:
The database challenge. In Proceedings of NGITS,
pages 75–89, 2002.

[19] K. Zimmermann and C. Freksa. Qualitative spatial
reasoning using orientation, distance, and path
knowledge. Appl. Intell., 6(1):49–58, 1996.


