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ABSTRACT. A new characterization of the exponential distribution in a wide

class of new better than used in p-th quantile (NBUp) lifetime distributions is pre-

sented. This leads to new classes of scale-free goodness-of-fit tests for exponentiality

against NBUp alternatives. The limiting distributions of the test statistics under

the null and alternative hypotheses are derived and the tests are shown to be con-

sistent against NBUp alternatives. Pitman efficacies are calculated and a limited

Monte Carlo study is conducted to compare the tests with regard to power for small

and moderate sample sizes against a range of alternative distributions. On the ba-

sis of overall good performance and ease of computation, a member of the class of

test statistics which is based on the sample Winsorized mean, is recommended as a

scale-free goodness-of-fit test for the exponential distribution.

Key words: Characterization. Exponential distribution. Hazard rate function.

New better than used in p-th quantile. Testing. U-quantile. Winsorized mean.

MSC2000 Classification: Primary 62F03, Secondary 62E10, 62N03, 62N05

1



1. INTRODUCTION

To study stochastic ageing in reliability and survival applications various important

classes of distribution functions are defined in terms of monotonicity in t of some

functional of the residual lifetime, given survival upon time t. The most well known

examples of such functionals are the mean residual lifetime and the median (or some

other quantile) of the residual lifetime. See for example Lai and Xie (2006) for a

recent survey.

The present paper deals with distribution functions having the property ‘new better

than used in p-th quantile’ (NBUp). We develop a new test for the null hypothesis

of exponentiality against alternatives in a wide class of NBUp distributions. Let Y

denote a nonnegative lifetime variable with continuous distribution function F (t) =

P (Y ≤ t), supported on [0,∞[ and with F (0) = 0. Let S = 1 − F denote the

survival function of Y . For t ≥ 0 we define the residual lifetime distribution Ft(x) =
P (Y − t ≤ x | Y > t) = (F (t+ x)− F (t))/(1− F (t)). For 0 < p < 1 we define the
p-th quantile of the residual lifetime distribution:

ξp(t) = F−1t (p) = inf{x : Ft(x) ≥ p}
= −t+ F−1(p+ (1− p)F (t)). (1.1)

Note that ξp(0) = ξp = F−1(p), the p-th quantile of F . The quantity ξp(t) was

originally introduced by Haines and Singpurwalla (1974). From (1.1) it easily follows

that the relation between ξp(t) and F (t) is given by

S(t+ ξp(t)) = (1− p)S(t) (1.2)

which is a special case of Schröder’s functional equation ψ(φ(t)) = δψ(t).

Joe and Proschan (1984) showed the ξp(t) does not uniquely determine the distrib-

ution function F . This is in strong contrast with the more popular mean residual

lifetime m(t) = E(Y − t | Y > t), which characterizes the distribution function F
through an inversion formula S(t) = m(0)−1m(t) exp(− $ t

0
m(u)−1du).

Various ageing classes have been defined in the literature. A well known one is the

NBUE class, the new better than used in expectation, which is defined through the

condition m(t) ≤ m(0) = E(Y ), for all t ≥ 0.
Joe and Proschan (1983, 1984) introduced and studied the NBUp classes (0 < p <

1), the new better than used with respect to the p-th quantile. For a fixed 0 < p < 1,

a distribution function F is said to be NBUp if

ξp(t) ≤ ξp(0) = ξp, for all t ≥ 0. (1.3)
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Hence F is NBUp if for all t ≥ 0, the p-th quantile of the residual lifetime at t is
not greater than the p-th quantile of the lifetime of a new item.

It is easily seen that (1.3) is equivalent to S(t + ξp) ≤ S(t + ξp(t)), and because of

(1.2) also to S(t+ ξp) ≤ (1− p)S(t) = S(ξp)S(t).
Hence,

F is NBUp iff S(t+ ξp) ≤ S(t)S(ξp) for all t ≥ 0. (1.4)

We consider some examples.

Example 1. Weibull distribution.

Here we have S(t) = exp(−λtρ), ρ > 0. A simple calculation shows the F is NBUp
iff ρ ≥ 1.

Example 2. Linear hazard rate distribution.

This distribution function is characterized by the hazard rate function λ(t) = λ+2αt

or equivalently by its survival function S(t) = exp(−λt − αt2). It easily follows: F

is NBUp iff α ≥ 0.

Example 3. Makeham distribution.

Here the hazard rate function is λ(t) = λ + β(1− e−t) and the survival function is
S(t) = exp(−(λ+ β)t+ β − βe−t). We have: F is NBUp iff β ≥ 0.

In each of the above examples we have the exponential distribution (λ(t) = λ, S(t) =

exp(−λt)) as a special case: ρ = 1 or α = 0 or β = 0. The exponential distribu-

tion satisfies (1.3) and (1.4) with equality. However the exponential is not the only

distribution in this boundary class. For example, take S(t) = e−t(1 + ε sin t) with

|ε| < 1/√2 and take p = 1− e−2kπ. Then ξp = 2kπ and S(t+ ξp) = S(t)S(ξp) for all

t ≥ 0 (Song and Cho (1995)).
In this paper we define a wide class C of NBUp distributions (Section 2) and develop
a new characterization of the exponential distribution within that class (Section 3).

The new tests for exponentiality are defined in Section 4 and their asymptotic dis-

tributions are derived. In Section 5 we obtain Pitman efficacies and in Section 6 we

present the result of a small Monte Carlo study on the power of the tests for small

and moderate sample sizes.
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2. A class of NBUp distributions

We define a large class C of distribution functions with the NBUp property and
having the exponential as the only distribution in the boundary class. The class C
consists of the distribution functions with hazard rate functions given by

λ(t) = λρtρ−1 + 2αt+ β(1− e−t), t ≥ 0

where λ > 0, ρ ≥ 1, α ≥ 0, β ≥ 0. The corresponding survival function is given by

S(t) = exp(−λtρ − αt2 − βt− β(e−t − 1)), t ≥ 0.

Theorem 1 The following statements are equivalent:

(a) F is exponential

(b) F ∈ C and ξp(t) = ξp for all t ≥ 0 (or equivalently: S(t + ξp) = S(t)S(ξp) for

all t ≥ 0)

Proof.

Statement (b) can be reformulated as

λ[(t+ ξp)
ρ − tρ − ξρp ] + 2αtξp + β(e−ξp − 1)(e−t − 1) = 0 (1.5)

for all t ≥ 0. We will now show that (1.5) is equivalent to

ρ = 1, and α = 0, and β = 0 (1.6)

that is, F is exponential.

The implication (1.6) ⇒ (1.5) is obvious. For the implication (1.5) ⇒ (1.6) we

consider the first derivative of (1.5):

λρ[(t+ ξp)
ρ−1 − tρ−1] + 2αξp + β(1− e−ξp)e−t = 0 for all t ≥ 0.

In particular for t = 1 it follows that λρ[(1+ ξp)
ρ−1−1]+2αξp+β(1− e−ξp)e−1 = 0.

Given the constraints on the parameters, this is only possible if ρ = 1 and α = 0

and β = 0.
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3. New characterizations of the NBUp property

Since the exponential distribution satisfies (1.4) with equality, it follows that a

natural discrepancy measure from exponentiality is given by

∆(F ) =

∞8
0

[S(x)S(ξp)− S(x+ ξp)]dW (x) (1.7)

where W (x) is a positive weight function over the support of F (x). If F is exponen-

tial, then ∆(F ) = 0. On the other hand, if F ∈ C and ∆(F ) = 0, then the integrand
in (1.7) is zero because F ∈ C implies that F is NBUp and hence that the integrand
is nonnegative.

Combining this with Theorem 1 leads to the following characterization of the expo-

nential distribution.

Theorem 2 The following statements are equivalent:

(a) F is exponential

(b) F ∈ C and ∆(F ) = 0
Some interesting choices for the weight function are

(i) W (x) = 2F (x). This then gives

∆(F ) = 2

∞8
0

[S(x)S(ξp)− S(x+ ξp)]dF (x)

= 2

∞8
0

[S(x)− S(x+ ξp)]dF (x)− p

= HF (ξp)− p
where

HF (t) = P (|Y1 − Y2| ≤ t)
with Y1 and Y2 independent random variables with distribution function F .

(ii) W (x) = x. This gives

∆(F ) =

∞8
0

[S(x)S(ξp)− S(x+ ξp)]dx

= (1− p)µ−
∞8
ξp

S(x)dx =

ξp8
0

S(x)dx− pµ
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where µ = E(Y ).

4. New tests for exponentiality

Suppose we wish to test the null hypothesis

H0 : F is exponential

versus

H1 : F ∈ C, but F is not exponential.
It follows that, under the alternative hypothesis, ∆(F ) in (1.7) is strictly positive.

That is, HF (ξp) > p or equivalently H
−1
F (p) < ξp and also

ξp$
0

S(x)dx > pµ. There-

fore, appropriate test statistics will be given by empirical versions Tn1 and Tn2 of,

respectively,

τ1 =
H−1F (p)
ξp

or

τ2 =

ξp$
0

S(x)dx

pµ
=

p$
0

F−1(t)dt+ (1− p)ξp
pµ

The null hypothesis H0 will be rejected in favor of H1 for small values of Tn1 or for

large values of Tn2.

Suppose that Y1, . . . , Yn is a random sample from the lifetime Y and that Fn denotes

the empirical distribution function

Fn(t) =
1

n

n3
i=1

I(Yi ≤ t).

A simple estimator for ξp is the p-th empirical quantile

ξpn = F
−1
n (p) = inf{t : Fn(t) ≥ p}.

To estimate H−1F (p), we note that HF (t) can be written as

HF (t) =

∞8
0

∞8
0

I(|y1 − y2| ≤ t)dF (y1)dF (y2).
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This functional can be estimated by the U-statistic

Hn(t) =

X
n

2

~−1 3
1≤i<j≤n

I(|Yi − Yj| ≤ t)

and the quantile Qp = H
−1
F (p) (0 < p < 1) can be estimated by the U -quantile

Qpn = H
−1
n (p) = inf{t : Hn(t) ≥ p}.

See Choudhury and Serfling (1988) and Helmers, Janssen and Veraverbeke (1992).

Therefore, a natural test statistic based on τ1 is given by

Tn1 =
Qpn
ξpn

. (1.8)

A natural estimator for the numerator in τ2 is given by the sample Winsorized mean

Wpn =

8 p

0

F−1n (t)dt+ (1− p)ξpn

and hence, the empirical version of τ2 is given by

Tn2 =
Wpn

pY n
, (1.9)

where Y n is the sample mean.

Remark. For the numerator in the expression for τ2 we note that

ξp8
0

S(x)dx = E(min(Y, ξp))

and hence the estimator for this quantity is also obtainable as

1

n

n3
i=1

min(Yi, ξpn)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n

l
s3
i=1

Y(i) + (n− s)Y(s)
M

if np is integer

1

n

l
s3
i=1

Y(i) + (n− s)Y(s+1)
M

if np is not integer

where s = [np] and Y(1) ≤ . . . ≤ Y(n) are the order statistics.
This gives an alternative expression for Wpn.
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Note that both test statistics Tn1 and Tn2 are scale invariant. Their asymptotic

distributions are given in Theorems 3 and 4 respectively.

Theorem 3.

Assume that F has a density f and that f(ξp) > 0.

Assume that H IF (Qp) = hF (Qp) > 0.
Then, an n→∞,

n1/2(Tn1 − τ1)
d→ N(0; σ21)

where

σ21 =
4ζ1

h2F (Qp)ξ
2
p

+
p(1− p)Q2p
f 2(ξp)ξ4p

− 4Qpζ2
hF (Qp)ξ3pf(ξp)

,

ζ1 =

∞8
0

[F (x+Qp)− F (max(0, x−Qp))]2dF (x)− p2,

and

ζ2 =

ξp8
0

[F (x+Qp)− F (max(0, x−Qp))]dF (x)− p2.

Proof.

A simple calculation yields

Tn1 − τ1 = (Qpn −Qp) 1
ξp
− (ξpn − ξp)

Qp
ξ2p

−(Qpn −Qp)(ξpn − ξp)
1

ξpξpn
+ (ξpn − ξp)

2 Qp
ξpnξ2p

.

From the results on U -quantiles in Choudhurry and Serfling (1988) and Helmers,

Janssen and Veraverbeke (1992) we obtain

Tn1 − τ1 = (Qpn −Qp) 1
ξp
− (ξpn − ξp)

Qp
ξ2p
+ op(n

−1/2)

=
p−Hn(Qp)
hF (Qp)

1

ξp
− p− Fn(ξp)

f(ξp)

Qp
ξ2p
+ op(n

−1/2)

=
1

n

n3
i=1

F
− 2gp(Yi)

hF (Qp)ξp
− p− I(Yi ≤ ξp)

f(ξp)

Qp
ξ2p

k
+ op(n

−1/2)

where

gp(Y1) = E[I(|Y1 − Y2| ≤ Qp)|Y1]− p
= F (Y1 +Qp)− F (max(0, Y1 −Qp))− p
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is the conditional expectation of the kernel of the U-statistic Hn(Qp). From this as-

ymptotic representation the asymptotic normality follows and the limiting variance

σ21 can be calculated using ζ1 = E[g
2
p(Y1)] and ζ2 = E[gp(Y1)I(Y1 ≤ ξp)].

If F is exponential with parameter λ > 0, then is can easily be checked that

HF (t) = 1 − e−λt and hence Qp = ξp = −1
λ
ln(1 − p). Also, ζ1 = 1

3
p2(1 − p)

and ζ2 =
1

2
p2(1− p).

Corollary 1. If F is exponential with parameter λ > 0, then, as n→∞,

n1/2(Tn1 − 1) d→ N(0; σ210)

where

σ210 =
1

3

1

ln2(1− p)
p(3− 2p)
1− p .

Theorem 4

Assume that F has a density f and that f(ξp) > 0.

Then, as n→∞,

n1/2(Tn2 − τ2)
d→ N(0; σ22)

where

σ22 =
1

p2µ2

⎡⎣− p8
0

t8
0

F−1(s)dsdF−1(t) + ξp

p8
0

tdF−1(t)−
⎛⎝ p8
0

tdF−1(t)

⎞⎠2⎤⎦
+
1

µ2
1

f2(ξp)

(1− p)3
p

+
1

p2µ2
τ 22σ

2 +
2

p2µ2
(1− p)2
f(ξp)

p8
0

tdF−1(t)

+
2

p2µ2
τ2

p8
0

E(Y I(Y ≤ F−1(t))dF−1(t) + 2τ2
p2µ

p8
0

tdF−1(t)

+
2

µ2
1

f(ξp)

(1− p)
p

τ2E(Y I(Y ≤ ξp))− 2

µ2
1

f(ξp)
τ2
(1− p)
p

with µ = E(Y ) and σ2 = Var(Y ).

9



Proof.

From the asymptotic results on quantiles (see e.g. Serfling (1980)) it follows that

Tn2 − τ2 =
1

n

n3
i=1

⎧⎨⎩ 1

pµ

p8
0

t− I(Yi ≤ F−1(t))
f(F−1(t))

dt

+
1− p
pµ

p− I(Yi ≤ ξp)

f(ξp)
− τ2
pµ
(Yi − µ)

k
+ op(n

−1/2)

This representation provides the asymptotic normality result and the limiting vari-

ance σ22 is obtained by straightforward calculation.

If F is exponential, we can restrict to the standard exponential due to the scale

invariance. For the standard exponential it is easily checked that ξp = − ln(1− p),
τ2 = 1,

p$
0

tdF−1(t) = −p − ln(1 − p), E(Y I(Y ≤ F−1(t)) = t + (1 − t) ln(1 − t).
Straightforward calculation gives the following corollary.

Corollary 2. If F is exponential with parameter λ > 0, then as n→∞,

n1/2(Tn2 − 1) d→ N(0; σ220)

where

σ220 =
1− p
p
.

As a consequence, an approximate level-α test based on Tn1 of H0: F is exponential,

will have a rejection region given by

4Tn1 := n1/2Tn1 − 1
σ10

≤ zα

where zα = Φ−1(α) and Φ is the standard normal distribution function. Under the
alternative hypothesis H1 : F ∈ C, but not exponential, we have that

P

w
n1/2

Tn1 − 1
σ10

≤ zα
W
= P

w
n1/2

Tn1 − τ1
σ1

≤ −(τ1 − 1)n
1/2

σ1
+
σ10
σ1
zα

W

and this tends to 1 as n→∞ since, under H1, n
1/2Tn1 − τ1

σ1

d→ N(0; 1) and τ1 < 1.

Hence, the test is consistent against F ∈ C, but not exponential.
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The same conclusion holds for the test based on Tn2. In this case, an approximate

level-α test will reject H0 if

4Tn2 := n1/2Tn2 − 1
σ20

≥ z1−α.

5. Pitman efficacies

For testing the hypothesis that Y is exponential (with parameter 1, without loss of

generality), we consider the following alternative distributions:

Fθ(x) = 1− exp(−xθ), θ ≥ 1 (Weibull)

Fθ(x) = 1− exp(−x− 1
2
θx2), θ ≥ 0 (linear failure rate)

Fθ(x) = 1− exp(−x− θx− θ(e−x − 1), θ ≥ 0 (Makeham).

They are particular members of the class C. The null hypothesis of exponentiality
corresponds to the choice θ = θ0 = 1 for Weibull and θ = θ0 = 0 for Linear Failure

rate and Makeham. Define

τ1(θ) =
H−1Fθ (p)

F−1θ (p)

τ2(θ) =

F−1θ (p)$
0

(1− Fθ(x))dx
pµθ

.

Then Pitman efficacies of the tests based on Tn1 and Tn2 are calculated as

e1 =
(τ I1(θ0))

2

σ210
and e2 =

(τ I2(θ0))
2

σ220

where derivative is with respect to the parameter θ and σ210 and σ220 are given in

Corollaries 1 and 2. For comparison we also (re)calculated the efficacy of the test

based on W ∗2n as proposed in Joe and Proschan (1983). It rejects H0 if

�W ∗2n := n1/2W ∗2nσ00
≥ z1−α

where

σ200 =
p(3− 2p)
12(1− p) .

The efficacy is given by

e0 =
(τ I0(θ0))

2

σ200
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where

τ0(θ) =

1
2
F−1θ (p)−

1$
0

F−1θ (t)J2(t)dt

µθ

and

J2(t) =

l
−(1− t) if 0 ≤ t ≤ p
((1− p)−2 − 1)(1− t) if p < t ≤ 1.

In Figures 1-3 we calculated e0, e1 and e2 as functions of p (0 < p < 1), for the three

alternative distributions.

Figures 1—3

Figures 1-3 clearly show the superior performance of Tn2 with respect to Pitman

efficacy. A remarkable fact is also that the efficacies e0 and e1 completely coincide,

although the statistics Tn1 and W
∗
2n are different.

6. Simulations

In this section we present the results of a limited Monte Carlo study in order to

compare the power of the tests based on 4Tn1, 4Tn2 and �W ∗2n for small and moderate
sample sizes (n = 20, 40, 60, 80) and for choices p = 0.3, 0.5, 0.8. We use the same

alternative distributions as in the previous section: Weibull with θ = 1.3, 1.4, 1.5;

linear failure rate with θ = 0.5, 1.0, 1.5; Makeham with θ = 1.0, 1.5, 2.0.

The critical values used for the simulations are given in Table 1 for a significance

level α = 0.05. Recall that the tests 4Tn2 and �W ∗2n reject H0 for values to the right
of the critical value. For the test 4Tn1, rejection of H0 is for values to the left of the
critical point. For the tests 4Tn2 and�W ∗2n, the critical values were obtained as the 95th
percentiles of 1 000 000 simulated test statistics from the exponential distribution.

For the test 4Tn1, the simulated 5th percentile was obtained. All standard errors of
the estimated critical values were found to be negligibly small and are therefore not

reported in Table 1.

Tables 1—2

From Table 1 it is clear the the critical values of 4Tn2 for p = 0.3 and p = 0.5 converge
rather fast to the normal critical value 1.65, which seems not to be the case with 4Tn1.
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Further evidence of the rapid convergence of the critical values of 4Tn2 can also be
seen from Table 2, which contains the estimated sizes of 4Tn2 when using the normal
critical values 2.33, 1.65 and 1.28, corresponding to the nominal significance levels

α = 1%, α = 5% and α = 10%, respectively. These estimated sizes were calculated

as the proportion of 1 000 000 Monte Carlo samples that resulted in rejection of

H0 using the above mentioned normal critical values. The standard errors of the

estimated sizes are less than or equal to
0
0.25/1 000 000 = 0.0005. The close cor-

respondence between the estimated sizes of 4Tn2 using normal critical values and the
α-values is quite remarkable.

Power estimates were calculated as the proportion of 20 000 Monte Carlo sam-

ples that resulted in rejection of H0 at significance level α = 5% for the alternative

distributions considered. In Tables 3-5 we present power comparisons for sample

sizes n = 20, 40, 60, 80. The standard errors of the estimated probabilities are less

than or equal to
0
0.25/20 000 = 0.0035.

Tables 3—5

Tables 3-5 also provide the powers of 4Tn2 (displayed in parentheses) for different
sample sizes and the various alternatives when normal critical values are used. The

close correspondence between the powers using the exact critical values and the

normal critical values (for p = 0.3 and p = 0.5) also provides evidence of the corre-

spondence between these two types of critical values.

From Tables 3—5 we can conclude the following:

(1) For all alternatives at p = 0.3 the powers of �W ∗2n and 4Tn1 are almost identical
(2) For all alternatives at p = 0.5 the powers of 4Tn1 are slightly better than those

of �W ∗2n
(3) For all alternatives at p = 0.8 the powers of 4Tn1 are considerably larger than

those of �W ∗2n
(4) For all alternatives at p = 0.3 the powers of 4Tn2 are considerably larger than

those of 4Tn1
(5) For p = 0.5 at the Weibull alternative the powers of 4Tn1 and 4Tn2 are approxi-

mately the same, but for the linear failure rate and Makeham alternatives the

powers of 4Tn2 are considerably larger than those of 4Tn1
13



(6) For all alternatives at p = 0.8, the powers of 4Tn1 are considerably larger than
those of 4Tn2

Based on the overall good performance with regard to the Pitman efficacies and

based on good power performance for p ≤ 0.5, we recommend 4Tn2 for p ≤ 0.5 (espe-
cially a choice around p = 0.3) as an effective procedure for testing exponentiality

against NBUp alternatives in the class C.

From the discussions above, it is clear that from a practical point of view, the use of

normal critical values when using 4Tn2 for p = 0.3 and p = 0.5 can be recommended
even for small sample sizes. If, however, one would prefer to make use of the exact

critical values (calculated from 1 000 000 independent Monte carlo trials), these are

provided in Table 6 for small samples and different significance levels.

Table 6

The calculations were done using double precision arithmetic in FORTRAN and

routines from the IMSL library.

Acknowledgement

The authors are very grateful to Mr. James Allison, North-West University for his

valuable help with the numerical and simulation work. The first and third author

acknowledge support from IUAP Research Network P6/03 of the Belgian govern-

ment (Belgian Science Policy). The second author thanks the National Research

Foundation of South Africa for financial support. All authors acknowledge financial

support from project BOF05B01 of Hasselt University.

References

Choudhury, J. and Serfling, R. (1988). Generalized order statistics, Bahadur repre-

sentations and sequential nonparametric fixed-width confidence intervals. J. Statist.

Planning Inf., 19, 269-282.

Haines, A.L. and Singpurwalla, N.D. (1974). Some contributions to the stochas-

tic characterization of wear. Reliability and Biometry (eds. F. Proschan and R.J.

Serfling), Siam, Philadelphia, 47-80.

Helmers, R., Janssen, P. and Veraverbeke, N. (1992). Bootstrapping U-quantiles.

14



Exploring the limits of bootstrap (eds. E. Le Page and L. Billard), Wiley, New

York, 145-155.

Joe, H. and Proschan, F. (1983). Tests for properties of the percentile residual

life function. Communications in Statistics-Theory and Methods, 12, 1087-1119.

Joe, H. and Proschan, F. (1984). Percentile residual life functions. Operations

Research, 32, 668-678.

Lai, C.-D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliabil-

ity. Springer Verlag.

Serfling, R.J. (1980), Approximation Theorems of Mathematical Statistics. Wi-

ley, New York.

Song, J.-K. and Cho, G.-Y. (1995). A note on percentile residual life. Sankhya,

Series A, 57, 333-335.

15



Figure 1. Pitman efficacies for the LFR alternative
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Figure 2. Pitman efficacies for the Makeham alternative
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Figure 3. Pitman efficacies for the Weibull alternative
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Table 1. Estimated critical values for α = 5%

p = 0.3 p = 0.5 p = 0.8

n �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2
10 1.702 -0.975 1.712 1.504 -0.999 1.573 1.141 -0.956 1.257

20 1.674 -1.070 1.710 1.521 -1.093 1.610 1.227 -0.985 1.395

30 1.657 -1.115 1.706 1.537 -1.133 1.622 1.277 -1.036 1.447

40 1.647 -1.161 1.699 1.542 -1.179 1.627 1.312 -1.080 1.481

50 1.649 -1.185 1.698 1.551 -1.203 1.635 1.347 -1.111 1.499

60 1.646 -1.219 1.695 1.556 -1.237 1.636 1.365 -1.140 1.517

70 1.658 -1.239 1.693 1.568 -1.253 1.638 1.379 -1.161 1.527

80 1.652 -1.255 1.690 1.565 -1.274 1.640 1.395 -1.185 1.534

Table 2. Estimated size of 4Tn2 using normal critical values
Nominal significance level α

α = 1% α = 5% α = 10%

n p = 0.3 p = 0.5 p = 0.3 p = 0.5 p = 0.3 p = 0.5

10 .014 .004 .058 .042 .104 .096

20 .014 .007 .057 .046 .104 .098

30 .014 .008 .056 .048 .103 .098

40 .014 .008 .055 .048 .103 .099

50 .013 .009 .055 .049 .102 .099

60 .013 .009 .055 .049 .102 .099

70 .013 .009 .054 .049 .102 .099

80 .012 .009 .053 .050 .101 .100
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Table 3. Estimated power functions for the Weibull alternative

p = 0.3 p = 0.5 p = 0.8

θ n �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2
20 .25 .24 .28(.30) .25 .27 .25(.24) .20 .27 .15(.05)

1.3 40 .41 .40 .47(.49) .41 .43 .41(.42) .34 .42 .26(.17)

60 .54 .54 .62(.63) .54 .57 .57(.57) .44 .55 .35(.29)

80 .65 .65 .74(.75) .65 .68 .70(.69) .55 .64 .46(.39)

20 .35 .34 .39(.42) .35 .37 .35(.33) .29 .37 .19(.07)

1.4 40 .58 .57 .65(.67) .58 .61 .60(.59) .48 .60 .36(.26)

60 .74 .74 .81(.82) .74 .77 .78(.77) .62 .75 .53(.43)

80 .84 .84 .91(.91) .84 .87 .88(.88) .74 .83 .65(.58)

20 .45 .44 .50(.53) .45 .47 .46(.43) .37 .48 .24(.10)

1.5 40 .72 .73 .79(.81) .71 .76 .75(.74) .61 .74 .43(.35)

60 .87 .88 .93(.93) .87 .90 .90(.90) .77 .87 .67(.58)

80 .93 .95 .98(.98) .94 .96 .96(.96) .87 .94 .80(.75)

Table 4. Estimated power functions for the LFR alternative

p = 0.3 p = 0.5 p = 0.8

θ n �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2
20 .12 .11 .15(.17) .14 .14 .16(.15) .14 .15 .12(.04)

0.5 40 .18 .16 .23(.23) .21 .21 .26(.25) .23 .25 .21(.14)

60 .22 .21 .29(.30) .27 .27 .35(.34) .29 .34 .30(.23)

80 .25 .24 .36(.36) .32 .33 .43(.42) .35 .41 .37(.31)

20 .18 .17 .23(.24) .21 .21 .24(.22) .21 .22 .16(.06)

1.0 40 .28 .27 .37(.37) .34 .35 .41(.39) .35 .40 .31(.21)

60 .35 .35 .48(.49) .44 .46 .55(.55) .47 .54 .46(.38)

80 .42 .42 .58(.58) .53 .55 .67(.66) .56 .65 .58(.51)

20 .22 .21 .28(.30) .26 .26 .30(.28) .25 .29 .20(.08)

1.5 40 .36 .35 .47(.49) .43 .45 .52(.51) .43 .51 .39(.28)

60 .46 .47 .61(.62) .56 .59 .68(.67) .58 .66 .57(.47)

80 .56 .56 .72(.73) .67 .69 .79(.79) .70 .77 .69(.64)
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Table 5. Estimated power functions for the Makeham alternative

p = 0.3 p = 0.5 p = 0.8

θ n �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2 �W ∗2n 4Tn1 4Tn2
20 .13 .12 .15(.16) .13 .13 .15(.14) .12 .14 .10(.04)

1.0 40 .19 .18 .22(.24) .21 .21 .23(.22) .19 .22 .15(.10)

60 .23 .24 .29(.30) .26 .27 .30(.30) .23 .28 .21(.16)

80 .28 .28 .35(.37) .32 .32 .37(.37) .30 .33 .26(.21)

20 .16 .15 .19(.20) .17 .18 .18(.17) .15 .18 .12(.04)

1.5 40 .26 .24 .31(.32) .28 .29 .31(.30) .25 .30 .20(.14)

60 .32 .32 .42(.42) .36 .39 .42(.42) .32 .38 .28(.22)

80 .40 .39 .50(.52) .45 .46 .52(.52) .40 .47 .35(.29)

20 .20 .19 .23(.24) .21 .22 .22(.22) .18 .22 .15(.05)

2.0 40 .32 .30 .38(.39) .34 .36 .39(.37) .30 .37 .25(.17)

60 .41 .40 .50(.52) .45 .47 .52(.51) .41 .48 .34(.28)

80 .49 .49 .61(.62) .55 .57 .63(.63) .49 .58 .44(.38)

Table 6. Estimated critical values for 4Tn2
Nominal significance level α

α = 1% α = 5% α = 10%

n p = 0.3 p = 0.5 p = 0.3 p = 0.5 p = 0.3 p = 0.5

10 2.456 2.085 1.712 1.573 1.314 1.257

20 2.478 2.200 1.710 1.610 1.309 1.269

30 2.477 2.241 1.706 1.622 1.305 1.272

40 2.464 2.266 1.699 1.627 1.302 1.275

50 2.448 2.273 1.698 1.635 1.297 1.278
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