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Summary

A method is presented to describe the in vitro-in vivo correlation (IVIVC) of an
extended release drug formulation. This extended release drug product is overencap-
sulated with immediate release material. The heterogeneity of the capsule is modelled
using a combined model of an extended release and an immediate release pharma-
cokinetic profile. Whereas an IVIVC is conventionally performed using a two-stage
procedure, the model uses a one-stage convolution-based method. The method is ap-
plied to a Galantamine controlled release formulation, an acetylcholinesterase inhibitor
for the treatment of Alzheimer’s disease. The average percentage prediction error in-
dicated a good fit of the new model.

Keywords: controlled release; convolution; dissolution curve; IVIVC; one-stage model

fitting.
Running title: Mixture Distributions to Model IVIVC Experiments

1 Introduction

In Vitro-In Vivo Correlation (IVIVC) is commonly used in preclinical and clinical biophar-

maceutical research. It establishes a valuable link between the in-vitro dissolution and the
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in-vivo release of the investigational drug. Based on this link, the controlled release pharma-

cokinetic profile can be predicted from a subject’s immediate release plasma concentrations

profile and the in-vitro dissolution profile using the IVIVC model. If a controlled release

capsule dissolves differently, this change in in-vitro dissolution properties can be translated

into the corresponding altered in-vivo pharmacokinetic profile once an IVIVC is established.

IVIVC models are commonly used in a wide range of applications. One can use the

IVIVC to claim that the differences observed in-vitro between two batches do not affect the

drug exposure by predicting the in-vivo plasma concentration-time profile. Similarly, one

can state that manufacturing changes of the controlled release formulations do not affect

the drug exposure. Thus no expensive in-vivo bioequivalence testing is required for either

situation (Hayes et al. 2004). This technique can also be applied in formulation development.

The formulation can be modified such that the plasma concentrations remain within the

therapeutic window over a sufficient period of time.

The first methodological work on IVIVC was done two decades ago (Gillespie and

Veng-Pedersen 1985) with the introduction of the deconvolution method: deconvolution

extracts the in-vivo release based on the fact that controlled release plasma concentrations

equal the convolution of immediate release plasma concentrations and the in-vivo release.

The latter is then linked to the in-vitro dissolution results. Dunne et al. (2005), however,

proved that the deconvolution method might give biased results. Gillespie (1997) and O’Hara

et al. (2001) improved the method by directly modelling the convolution itself, without

explicitly calculating the in-vivo release, using a two-stage approach.

Our methodology presented in this paper also uses the convolution approach and

extends previous work in two respects. The two-stage approach is replaced by a one-stage

approach and contrary to other published results (Modi et al. 2000, Veng-Pedersen et al.

2000) a heterogeneous formulation is used in the IVIVC model. The formulation contains an

extended release part overencapsulated with immediate release material, and will be referred

to as controlled release capsule in the remainder of the paper.

The rest of the paper is organized as follows. The case study, motivating this research,
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is described in Section 2. The dissolution models applied in this paper are described in

Section 3.1. The convolution-based models described by O’Hara et al. (2001) used for IVIVC

can be found in Section 3.2.1. Extension of these models including a combination model is

described in Section 3.2.2. The results of applying the proposed methodology to the case

study are reported in Section 4.

2 The Case Study

The acetylcholinesterase inhibitor Galantamine is used for the treatment of Alzheimer’s

disease (Lilienfeld 2002). Galantamine formulations currently on the market are tablets, a

syrup and extended-release capsules.

Within the population of subjects with Alzheimer’s disease, the duration of drug

exposure can sometimes be too short to guarantee sufficient protection for a certain time

period due to poor compliance. Therefore, a controlled release formulation of Galantamine

was developed in an attempt to optimize drug exposure. Whereas an immediate release

formulation dissolves instantaneously and the drug product is immediately available, an

extended release formulation releases the drug product slowly over time allowing the body to

absorb the drug product gradually. The controlled release formulation under investigation

here consisted of the extended and immediate release components combined in the same

pellet as 2 layers (ratio CR/IR: 3/1) separated by a rate-controlling membrane containing 5-

12% ethylcellulose/hydroxypropyl-methylcellulose (EC/HPMC; ratio: 75/25). The relatively

high water solubility (3.3 g/100 mℓ water, pH=5.2) and absolute oral bioavailability (88.5%)

of Galantamine are pharmaceutical characteristics indicative of a drug whose controlled

release formulation is a good candidate for IVIVC exploration.

Four different controlled release formulations were studied (slow, fast, between and

medium), however for the sake of simplicity the focus is only on one controlled release

formulation (the slow one). For each controlled release formulation, twelve dissolution curves

were assessed in-vitro. The dissolution data were generated using an USP apparatus 2 -

paddle with 50 rpm (s.e. 2 rpm) speed of shaft rotation. The dissolution medium used was
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a volume of 900 mℓ of 0.050 M phosphate buffer at pH 6.5. The percentage dissolution was

registered between 0.5 and 18 hours, as shown in Figure 1 for a controlled release formulation.

Seventeen subjects were first assigned to the immediate release formulation and then

randomized according to a four period latin square design. Treatments were four controlled

release formulations (slow, fast, between and medium) of Galantamine. One subject dropped

out after the immediate release period. He did not receive the controlled release formula-

tions and was included as such in the analysis. To demonstrate our methodology, only one

of the four controlled release formulation, the slow one, is included in this analysis. A ve-

nous blood sample was taken for the measurement of Galantamine plasma concentrations at

specified time points during the study, from pre-dose (0 hour) until 60 hours post-dose for

the immediate release formulation, and up to 72 hours post-dose for the controlled release

formulations.

The immediate release plasma concentration-time data are shown in Figure 2, while

the plasma concentration-time data for the controlled release formulation are presented in

Figure 3. In the former, maximal plasma concentrations were reached faster and were higher,

but they decreased rapidly. In the latter, a bimodal profile was present: one steep peak was

present after 30 minutes followed by a second smoother peak 6 hours after intake. In addition,

the decrease of plasma concentration is slower after the second peak.

The advantage of combining the extended and immediate release formulation lies in

this bimodal profile. The goal of the extended release part is to ensure that patients remain

in the effective plasma concentration range from 3-4 until 24 hours, and therefore it is hoped

that the patients remain protected for the full 24 hours. The extended release fraction on

it own would not reach the therapeutic window quickly enough; levels would remain too

low during the first 3 hours post-dose. Therefore, a loading dose consisting of an immediate

release fraction, is added. Hence, patients remain protected for the full 24 hours.
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3 Methodology

First, four types of models used for describing the in-vitro dissolution curves are introduced

in Section 3.1. Then the in-vivo convolution-based IVIVC methodology described by O’Hara

et al. (2001) is described in Section 3.2.1, followed by the newly proposed convolution model

in Section 3.2.2, the model fitting in Section 3.3 and the goodness-of-fit in Section 3.4.

The following notation will be used. The index 1 denotes the in-vitro data, while 2 will

be used for in-vivo, i is the statistical unit representing the capsule for in-vitro and subject for

the in-vivo data; k denotes the formulation; The immediate release formulation however will

be denoted with δ instead of k due to its special status in IVIVC modelling and to emphasize

that the underlying probability density function of the release mechanism follows in this case

the Dirac Delta distribution. F will denote the actual dissolution/release fraction; c stands

for the actual plasma concentration profile, and more specific, ci2δ is the actual immediate

release plasma concentration profile, also referred to as the unit impulse response. This

is traditionally but not necessarily, based on a compartmental model. Y1 stands for the

measured dissolution for the in-vitro data, Y2 for measured plasma concentration in-vivo.

For example, Yi2k denotes the measured controlled release plasma concentration of subject i

for formulation k.

3.1 In-Vitro Dissolution Models

The in-vitro dissolution profile is often described by a Weibull function (Comets and Mentré,

2001). Besides the Weibull function, also a simpler exponential function and a more complex

Gompertz in-vitro dissolution model will be evaluated.

The simplest model for the in-vitro dissolution profile is given by the exponential

model:

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ1{1 − exp[−(t − φ3)φ2i]}, (3.1)

with 0 < φ1 ≤ 1, φ2i ∼ logN(φ2, σ
2
φ2

), and φ2i the capsule-specific scale parameter and φ3
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a lag time. This model has a steep increase in the beginning and converges slowly to the

asymptotic maximal dissolution, φ1.

The following extension of the exponential model copes with the heterogeneity of the

formulation via the φ4-parameter.

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ4 + (φ1 − φ4){1 − exp[−(t − φ3)φ2i]}, (3.2)

where φ4 captures an initial jump followed by the previous version of the exponential model.

The previous models, however, lack the capability to fit a sigmoidal curvature. There-

fore, the traditional Weibull function with the initial jump φ4 is proposed to check for the

improvement under these conditions, see model 3.3. The parameter φ2 has the same inter-

pretation as for the exponential model, whereas φ3 determines the shape.

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ4 + (φ1 − φ4){1 − exp[−(tφ2)
φ3i ]}. (3.3)

The dissolution profiles in Figure 1 contain both an asymmetrical S-shaped curvature

and an initial jump. The Gompertz curve has the first property, but it has its short curvature

at the end. The following modification of the Gompertz function (Lindsey 1997) will serve

to model this feature and to challenge the performance of the Weibull model:

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1)

Fi1k(t) = φ4 + [φ1i − φ4] exp{− exp[−φ2(t − φ3i)]}, (3.4)

where φ4 represents the initial jump. The coefficient φ1i ∼ N(φ1, σ
2
φ1

) corresponds to the

asymptotic maximum dissolution. φ3i represents a capsule specific lag-time, φ2 is the scale

parameter and is related to the inverse half-life of the curve.
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3.2 In-Vivo Models

3.2.1 Convolution-based Models (O’Hara et al. 2001)

Gillespie and Veng-Pedersen (1985), Gillespie (1997), Dunne et al. (1999), O’Hara et al.

(2001), and Hayes et al. (2004) showed, based on in-vitro dissolution data and in-vivo im-

mediate release plasma concentrations, that the slow release formulation concentrations can

be predicted and an IVIVC established using a convolution-based method. This method is

more robust than the deconvolution method (Dunne et al. 2005), and it jointly fits a set of

models.

The controlled release plasma concentrations at time t, denoted by Yi2k(t), for the ith

subject taking treatment k, can be derived as the convolution of the unit impulse response

ci2δ and the in-vivo release curve Fi2k (Gillespie and Veng-Pedersen 1985):

Yi2k(t) =

∫ t

0

ci2δ(t − τ)F ′

i2k(τ)dτ + ε2,

ε2 ∼ LN(0, σ2
2).

The in-vivo release curve Fi2k can be considered as the cumulative distribution func-

tion of the stochastic process representing the release of the molecule into solution. Hence,

F ′

i2k represents the corresponding density function of the release of the molecule into solu-

tion. The unobserved in-vivo release cumulative distribution function can be linked to the

in-vitro one using the following IVIVC model:

Fi2k(t) = g−1(θ0 + θ1t + sik + g(F1k(t))),

sik ∼ N(0, σ2
s).

The parameters θ0 and θ1 cope with dissolution changes in the gastrointestinal tract, whereas

the random effect sik represents inter-subject differences of the intestines. The link function

g(·) was set equal to the logit functions.

The method of O’Hara (O’Hara et al. 2001, Hayes et al. 2004) first estimates the

subject-specific parameters of the immediate release profile using a compartmental analysis
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and in a second stage simultaneously models the in-vitro dissolution curves as well as the

convolution using the empirical Bayes estimates from the first stage.

3.2.2 Combination Models

All published models are limited to homogeneous formulations. A naive approach would

be to ignore the heterogeneity of the formulation and fit the traditional model mentioned

above for a homogenous formulation. However, in case of a heterogenous formulation of both

immediate and extended release material, the cumulative distribution function does not start

at 0 but rather at a quantity approximately similar to the proportion of immediate release

material within the mixture. The inclusion of this initial jump alters the density function

F ′

i2k(τ). Therefore, we propose in this section a new model that takes this heterogeneity into

account.

For the convolution model a similar derivation is possible. Recall from Section 2 that

the capsules represent a heterogeneous formulation, consisting in part of immediate release

and in part of extended release. As a result, two different underlying dissolution processes

can be expected to be present.

The principle of superposition within pharmacokinetics, i.e., the assumption that

each mechanism acts independently of each other and there is linear kinetics, means that

the pharmacokinetic (PK) concentration-time profile of the controlled release formulation can

be described as a weighted combination of each of the drug product PK-concentration-time

profiles. This is a valid assumption (Piotrovsky et al. 2003). Based on this principle, one part

of the profile corresponds to the immediate release drug product within the formulation, the

other one corresponds to the extended release drug product. Clearly, these considerations

imply a specific form for the model to be considered. The PK-profile corresponding to the

immediate release drug product can be considered as identical to the one observed whereas

the latter follows the convolution model as described in Section 3.2.1. Therefore, the following
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new model is proposed:

Yi2k(t) = φ4Dci2δ(t) + [φ1 − φ4] D

∫ t

0

ci2δ(t − τ)F ′

i2k(τ)dτ + ε2, (3.5)

ε2 ∼ LN(0, σ2
2),

where φ4 is the weight corresponding to the quantity of immediate release drug product

within the formulation and D represents the dose. This corresponds to the initial jump

observed in the in-vitro models.

Furthermore, the in-vivo release Fi2k(t) model is slightly modified compared to the

proposal of O’Hara et al. (2001):

Fi2k(t) = g−1(θ0 + θ1t + g(Fi1k(t))), (3.6)

where the index i stands for the capsule i dependent variability of the in-vitro dissolution

Fi1k. As this is unobserved for the capsule administered to the subject i, this is indirectly

included via the subject level. Thus, the random effects are included at the in-vitro level

of the model rather than as a random intercept. This corresponds to the underlying source

of variation. Further, the gastro-intestinal subject level sik was removed from the IVIVC,

because the inclusion of an additional random intercept, next to the presence of the random

effect in the in-vitro part of the equation, could jeopardize convergence or lead to very

long run-times. Additionally, one can only estimate these inter-subject gastro-intestinal

differences when multiple formulations per subject are analyzed to enable the dissociation

between subject- and vessel-driven variability.

Although it is not in the traditional sense, but this newly proposed combination

model can be considered as a mixture distribution at two levels. A first mixture is situated

in the in-vitro dissolution: it represents a mixture cumulative distribution function of a step

function for the immediate release material of the formulation on one hand and a second

cumulative distribution function such as the weibull distribution for the slow release product

on the other hand. The mixture is also present at a second level: it is a combination of

two log-normally distributed processes for the immediate release plasma concentration time-

profile on one hand and the convolution based profile for the slow release product on the other
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hand. Again, the weight φ4 comes in to attribute the ratio of the two distinct underlying

release processes.

3.3 Model Fitting

The models for the immediate release plasma levels and the in-vitro dissolution were initially

fitted separately to obtain good starting values for fitting the IVIVC model. The immediate

release pharmacokinetics of Galantamine are known to follow a two-compartmental model

(Piotrovsky et al. 2003). This was based on population modelling of several studies in elderly

patients:

Yi2δ(t) = ci2δ(t) + εiδk,

ci2δ(t) =
ka

VF

(

(k21 − αi)e
−αi(t−tlag)

(ka − αi)(βi − αi)
+

(k21 − βi)e
−βi(t−tlag)

(ka − βi)(αi − βi)

+
(k21 − ka)e

−ka(t−tlag)

(αi − ka)(βi − ka)

)

,

εiδk ∼ LN(0, σ2
δ ), (3.7)

[

αi

βi

]

∼ N

([

α

β

]

,

[

σ2
α cαβσασβ

cαβσασβ σ2
β

])

.

In this model, VF is the apparent volume of distribution, tlag is a lag-time, ka is the absorption

coefficient, k21, α, and β are transfer rate constants. The best fit to the data was attained

by choosing random effects on α and β, with associated variabilities σ2
α and σ2

β. This was

based on visual inspection of the fit of the individual profiles as well as by comparison of

the likelihood functions. The absorption rate constant ka could not be estimated by fitting

the immediate release formulation alone because too few samples were taken during the

absorption phase shortly after drug intake and ka had to be fixed in the immediate release

model.

A fundamental change to the convolution method of O’Hara (O’Hara et al. 2001) is

that all models are fitted simultaneously, whereas O’Hara’s method first fits the immediate

release profile per subject and then in a second stage fits the convolution and the IVIVC using

the empirical Bayes estimates of the immediate release PK-profile. A possible drawback of
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such a two-stage modelling approach is that this might lead to biased results (Verbeke and

Molenberghs 2000). By using a one-stage model, this source of possible bias is eliminated.

The possible impact is discussed further in Section 5.

Traditionally in pharmacokinetic modelling, the model fit is verified at the individual

subject level, i.e., the question is asked whether the model can fit each subject’s plasma

concentration profile. Thus a hierarchical model is used. In IVIVC modelling, one is not

interested in the behavior of the individual capsules or subjects, but rather in the formulation

itself, at the population level. In particular, the link between the in-vitro dissolution and

in-vivo release process of the formulation is very important. Unlike in the linear setting, the

marginal and hierarchical models do not coincide when the random effects are significant.

Therefore, the random effects have to be integrated out to obtain the marginalized model.

The marginalization of the hierarchical model was performed as follows: 10000 capsules

were simulated and then averaged over. As such, the random effects were integrated out

(Molenberghs and Verbeke 2005) and the model plotted.

The set of models was implemented in the SAS procedure NLMIXED (version 9.1).

Model convergence was obtained using the first-order integration method of Beal and Sheiner

(1982). The convolution integral itself was approximated with the trapezoid rule. An exam-

ple of the SAS code can be found in the web appendix.

3.4 Goodness-of-Fit

Following the regulatory guidances (FIP 1996, CDER 1997) the adequacy of the proposed

models was assessed using the average absolute percent prediction error (%PE). This was

defined as the mean of
∣

∣

∣

∣

xobs,i − xpred,i

xobs,i

∣

∣

∣

∣

× 100, (3.8)

where x.,i is the Area Under the Curve to the last measurable observation (AUClast) or the

maximal concentration (Cmax) of the empirical Bayes estimates and the observed concentra-

tions for subject i. Thus, for each observed and predicted profile per subject, the AUClast

and Cmax were calculated and the above ratios were obtained. Given its skewed distribu-
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tion, all ratios were log-transformed to better approximate normality, the mean and its 90%

confidence interval was calculated and backtransformed.

%PE is known to be an optimistic goodness-of-fit metric. However, goodness-of-fit

metrics are not the main topic of this paper. Therefore, the %PE criterion is applied so

as to not detract attention from the modeling of an IVIVC in the case of a heterogenous

formulation.

4 Results

As mentioned in Section 3.1, the modified Gompertz function fitted the data well. Random

effects were added to φ1 and φ3 since, as seen in Figure 1, the asymptotic maximum disso-

lution was capsule dependent. The random effect on the lag time improved the fit further.

Conventional model selection tools, such as the likelihood ratio or the Akaike Information

Criterion, were used.

A system of sub-models is proposed for the IVIVC modelling consisting of the com-

bining models 3.4, 3.5, 3.6, and 3.7. All four models are fitted simultaneously. This allows

exchange of information between models. Whereas the absorption rate constant ka could

not be estimated for the immediate release model alone, owing to insufficient early sampling

points, the pooling of information about common parameters from different data sources

did allow for estimation of ka for model 4. In models 1–3, log(ka) = −3 had to be fixed

to allow convergence. Additionally, log(VF ) = −4.64 had to be fixed in models 1–2. Some

simplifications were done for the system of sub-models compared to the separate models: (i)

No random effect was used on the α-component of the two-compartmental model because

inclusion of this random effect made the model diverge (non-positive hessian matrix). While

this seems a disadvantage, one ought not to forget that the models are highly non-linear

and rather complex. Therefore, one should keep the complexity of the random effects struc-

ture within reasonable limits; (ii) The dissolution random effects φi1 and φ3i were forced

to be independent otherwise estimation of the correlation could not be established: many

observations are needed to accurately estimate correlations between random effects.
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The following models were fitted: Model (1)–(2) using the exponential dissolution

and logit link as a convolution and a combination model, Model (3) as a combination model

with a Weibull dissolution and logit link function, and Model (4) as a combination model

with a Gompertz dissolution and logit link. Model (2)–(4) are the newly proposed models

to cope with the heterogeneity of the data. Estimates of the model parameters can be found

in Table 1 for the four different dissolution curves.

The fit based on the different dissolution models was formally compared by Akaike’s

Information Criterion (AIC): 937.8, 880.3, 668.3, and 502.4 for model 1–4, respectively.

The model prediction of the controlled release plasma concentration of a randomly chosen

subject for the different models is depicted in Figure 4. The fit of the Gompertz odds

model was judged based on visual inspection of the empirical Bayes estimates versus the

observed controlled release profiles on the one hand (Figure 5) and the average absolute

percent prediction error on the other hand. Figure 5 contains the observed as well as the

model predictions for both the controlled and immediate release plasma concentrations as

well as of the in-vitro dissolution of a randomly chosen subject and capsule.

The %PE of the different models can be found in Table 2. The first two columns

correspond to the Cmax and AUClast as requested in the regulatory guidelines (FIP 1996,

CDER 1997), the last represents AUC0−4 and is an indication of the model fit for the data

up to 4 hours. The model with the exponential dissolution does not fit the data well. The

addition of the combination model to the exponential dissolution does not improve the model.

The in-vitro exponential mixture dissolution model however misses the S-shape as observed

in the data, see Figure 1. Therefore, the model is extended to the Weibull model and the

Gompertz model as a combination model. The %PE indicate a significant improvement of

the model fit for models 3 and 4.

The parameter estimates for the immediate release part of the model show a permu-

tation: values for α in models 1 and 2 have the same magnitude, and hence physiological

meaning as β for models 3 and 4. The residual variance is lower for the latter models

(standard deviation of 19 instead of 29). Some of the inadequacy of the first model is
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demonstrated in the asymptotic maximal dissolution parameter φ1. In theory, all material

should dissolve. Even though dissolution is not fully complete after 18 hours, the in-vitro

release profile contradicts this. The half-life of the dissolution φ2 is estimated to be 0.1 for

models 1 and 3 whereas models 2 and 4 produce an estimate of 0.3. This 3-fold difference

might indicate that also model 3 is not free of issues. The estimated proportion immediate

release formulation φ4 is close to the known formulation heterogeneity ratio of 0.25 for all 3

models. The parameters θ0 and θ1 have no physiological meaning and differences between

the models are difficult to interpret.

5 Discussion

A model with clear improvements over the standard IVIVC models at two levels is presented:

It allows the fitting of formulations containing both extended and immediate release material

and it is a true one-stage analysis method. We employed the SAS procedure Nlmixed rather

than the standardly used NONMEM package.

All publications up to now have been limited to homogeneous formulations. In this

paper, the convolution based method is extended for a heterogeneous formulation of both

an immediate and an extended release drug product by a combination model. Four different

models were evaluated during the model building: The first model used the convolution with

the Exponential dissolution model and the logit link function. The average percent error

%PE of both Cmax and AUClast remained well above the 10% criterion from the guidelines

(FIP 1996, CDER 1997), see Table 2, indicating an inadequate model fit.

The model was therefore extended to the combination model with the logit link

function because this used the underlying heterogeneous structure of the capsules and fitted

a bimodal profile. The use of this combination imposes, however, no restriction on the model.

It relies on the principle of superposition within pharmacokinetics, i.e., the assumption that

each mechanism acts independently of each other and there is linear kinetics. The metabolism

of the drug remains unchanged during the drug product release and only depends on the
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amount of drug product released. The standard convolution model itself assumes already

the superposition principle and linear kinetics. The %PE for Cmax of this model remained

in the same order of magnitude. The fit of the in-vitro dissolution data indicated however

that further refining was required: the exponential model has a steep incline for the first

hours and converges to its asymptotic limit, whereas the in-vitro dissolution data showed

an asymmetric S-shaped curve. The model was finetuned with the use of the Weibull and

the Gompertz model for the in-vitro dissolution in combination with the logit link function.

This lead to a substantial decrease in %PE. Although the %PE was well below 10% for all

parameters, only the Gompertz model had the upper limit of the 90% confidence interval

below 10% for AUClast. The Gompertz model can be considered as the superior model

given this better prediction of the overall exposure AUClast and the ability to estimate all

parameters of the model without fixing any of them.

This illustrates that traditional models should not be used in case of formulations

consisting of both immediate release and slow release drug product. The risk of overfitting

is limited given that the construction of the model is based on the formulation properties

and the clearly bimodal profiles.

Models 3 and 4 meet the regulatory specifications on the point estimate, see Table 2.

Whereas the guidelines (FIP 1996, CDER 1997) focus only on the mean %PE being less than

10% to conclude IVIVC predictability, this does not take into account the possible variability

of the prediction. Even though the average might be less than 10%, a large variability of

the individual %PE might indicate that some subject’s controlled release profile is poorly

estimated. Therefore, one should rather use the non-inferiority philosophy and look at the

upper limit of the 90% confidence interval.

A second, more fundamental change to the convolution method of O’Hara (O’Hara

et al. 2001) is that all models are fitted simultaneously, whereas O’Hara’s method first fits

the immediate release profile per subject and then fits in a second stage the convolution

and the IVIVC using the empirical Bayes estimates of the immediate release PK-profile. A

possible drawback of such a two-stage modelling approach is that this might lead to biased

15



results (Verbeke and Molenberghs, 2000). In the first stage, the immediate release PK-

profile is reduced to a couple of summary statistics and residual error is ignored. In the

second stage, these estimates are used as if they are error-free. Hence, the possible error

of these coefficients will be reallocated to the remaining coefficients and as such introduce

possibly bias. Fitting everything at once however does not ignore the error in the individual

compartmental PK-parameters. On the contrary, it allows a pooling of information about

common parameters of the immediate and the extended release model. This might lead to

more accurate parameter estimation like for example the ka in the case study. However, no

formal comparison of the two approaches was performed yet. The advantage of the two-stage

approach is that the parameter space is split. As a result, the two-stage approach is more

flexible, in the sense of adding random effect, and model convergence is easier and faster.

It is not clear, based on these data, whether a modified sampling would have allowed

for better estimation. Intuitively, additional early sampling might enhance estimation of

the parameter ka, but this was not formally established. On the other hand, only a limited

number of blood samples can be taken for ethical and practical reasons. Therefore, the

current sampling scheme is arguably the best feasible one: additional early samples might

jeopardize later sampling.

In conclusion, a novel one-stage methodology was proposed as well as a combination

model to cope with heterogeneous formulations in IVIVC testing. Based on the case study

it was shown superior to the traditional model.
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Table 1: Parameter estimates (95% confidence interval)
for Models 1–4 using a one-stage convolution-based ap-
proach.

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

Immediate Release

ka (hr−1) 0.026

(0.004 ; 0.163)

VF (L) 0.00356 0.0018

(0.00305 ; 0.00417) (0.0003 ; 0.0121)

k21 (hr−1) 0.43 0.48 0.067 0.033

(0.26 ; 0.73) (0.28 ; 0.83) (0.063 ; 0.071) (0.005 ; 0.205)

α (hr−1) 0.37 0.41 2.54 2.57

(0.23 ; 0.62) (0.25 ; 0.69) (2.13 ; 3.03) (2.12 ; 3.11)

β (hr−1) 11.5 11.5 0.14 0.14

(10.9 ; 12.1) (10.9 ; 12.1) (0.123 ; 0.16) (0.12 ; 0.16)

σβ 0.06 0.05 0.24 0.21

(0.04 ; 0.09) (0.03 ; 0.08) (0.14 ; 0.33) (0.13 ; 0.29)

σδ 0.29 0.29 0.19 0.19

(0.26 ; 0.32) (0.27 ; 0.32) (0.18 ; 0.21) (0.17 ; 0.21)

In Vitro Dissolution

φ1 1.02 0.91 0.91 0.88

(0.98 ; 1.05) (0.88 ; 0.94) (0.89 ; 0.93) (0.86 ; 0.90)

φ2 0.12 0.31 0.14 0.29
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Table 1: Parameter estimates (95% confidence interval)
for Models 1–4. (continued)

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

(0.10 ; 0.13) (0.28 ; 0.34) (0.13 ; 0.15) (0.28 ; 0.31)

φ3 -1.74 0.72 1.39 4.07

(-1.98 ; -1.50) (0.46 ; 0.97) (1.28 ; 1.50) (3.83 ; 4.30)

φ4 0.27 0.23 0.22

(0.26 ; 0.28) (0.21 ; 0.25) (0.20 ; 0.24)

σ1 2.95 2.33 3.26 1.33

(2.54 ; 3.37) (1.99 ; 2.66) (2.82 ; 3.71) (1.13 ; 1.53)

σφ1
0.03

(0.019 ; 0.04)

σφ2
0.012 0.23

(0.004 ; 0.020) (0.16 ; 0.31)

σφ3
0.001 0.21

(0.001 ; 0.100) (0.10 ; 0.33

ρφ1φ3
0.74

(0.32 ; 1.00)

Controlled Release

θ0 4.37 2.41 0.01 1.43

(4.19 ; 4.56) (2.19 ; 2.63) (-0.22 ; 0.25) (1.23 ; 1.63)

θ1 -0.78 -0.17 -0.08 0.09

(-0.93 ; -0.63) (-0.33 ; -0.01) (-0.10 ; -0.06) (0.06 ; 0.12)
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Table 1: Parameter estimates (95% confidence interval)
for Models 1–4. (continued)

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

σ2 0.56 0.53 0.68 0.66

(0.54 ; 0.59) (0.50 ; 0.55) (0.64 ; 0.71) (0.63 ; 0.70)
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Table 2: Model Fit Based on the Criterion of Average Absolute Percent Prediction Error
and its 90% confidence interval for Models 1–4.

Model Cmax AUClast AUC0−4

1 82.95 (81.70 ; 84.22) 75.27 (73.19 ; 77.40) 76.92 (75.68 ; 78.18)

2 82.94 (81.83 ; 84.06) 74.06 (73.01 ; 75.13) 77.09 (75.82 ; 78.39)

3 8.06 ( 5.24 ; 12.40) 7.32 ( 5.13 ; 10.45) 8.46 ( 5.93 ; 12.08)

4 9.21 ( 5.54 ; 15.31) 4.67 ( 3.20 ; 6.83) 7.08 ( 4.34 ; 11.56)
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Figure 1: In-Vitro Dissolution Curves of Twelve Individual Capsules of the Controlled Re-
lease Formulation
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Figure 2: Individual In-Vivo Plasma Concentrations of 16 Patients for the Immediate Release
Formulation of Galantamine.
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Figure 3: Individual In-Vivo Plasma Concentrations of 16 Patients for the Controlled Release
Formulation of Galantamine.
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Figure 4: Observed and Predicted Controlled Release Galantamine Concentrations of one
Randomly Chosen Subject for the Different Models.
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Figure 5: Observed and Predicted In-Vitro as well as In-Vivo Controlled and Immediate Re-
lease Galantamine Concentrations Time Profile for a Randomly Chosen Subject and Capsule.
Predictions are Based on the Gompertz Odds Model.
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