
Made available by Hasselt University Library in https://documentserver.uhasselt.be

An Event-Condition-Action Approach for Contextual Interaction in Virtual Environments

Non Peer-reviewed author version

VANACKEN, Lode; DE BOECK, Joan; RAYMAEKERS, Chris & CONINX, Karin

(2008) An Event-Condition-Action Approach for Contextual Interaction in Virtual

Environments. In: Forbrig, P; Paterno, F (Ed.) ENGINEERING INTERACTIVE

SYSTEMS 2008, PROCEEDINGS. p. 126-133..

DOI: 10.1007/978-3-540-85992-5_11

Handle: http://hdl.handle.net/1942/9004

An Event-Condition-Action approach for Contextual

Interaction in Virtual Environments

Lode Vanacken1, Joan De Boeck1, Chris Raymaekers1, and Karin Coninx1

1Hasselt University - tUL - IBBT, Expertise Centre for Digital Media (EDM),

Wetenschapspark 2, B-3590 Diepenbeek, Belgium

lode.vanacken,joan.deboeck,chris.raymaekers,karin.coninx@uhasselt.be

Abstract. In order to support context-dependency in model-based development,

three components need to be realised: Context Detection, Context Switching

and Context Handling. Context detection is the process for detecting changes in

context, while context switching brings the system in the new state that needs to

be supported. Finally, context handling adapts the interaction possibilities to the

current context. In this paper we discuss an approach for context detection and

switching for virtual environments that is based on the Event-Condition-Action

paradigm. Both context detection and switching are split-up and supported by

our graphical notation for the design of multimodal interaction techniques. The

main advantage of this approach is that we provide the designer with a flexible

context system, supported by scalable diagrams.

Keywords: Multimodal Interaction Techniques, Model-Based User Interface

Design, Context-Awareness.

1 Introduction and Related Work

The development of interactive computer applications takes much time, especially

for the design and implementation of the user interface. This is in particular true for

3D multimodal interfaces for Virtual Environments (VEs). The process of creating or

selecting interaction techniques for such interfaces is not straightforward. A large

amount of possibilities exist with regard to input and output devices and the

combination of these with respect to the interaction techniques being designed. One

possible approach that can be applied in order to simplify the development process is

using model-based user interface design as described in [4, 10].

In model-based user interface design (MBUID) different models are used through

gradual progression. Typically, such a process starts at the level of a task model,

moves over several other models, such as the dialog model up to the final user

interface. Models can be transformed from one model into another or can be

combined. Specifically for the design of a VE, it is necessary to model the multimodal

interaction techniques, such as ‘object manipulation’. Several high level notations

exist, which can be used for this purpose [5, 7, 10]. In our research we use NiMMiT

(Notation for Multimodal Interaction Techniques) [5] for describing the interaction.

An Event-Condition-Action approach for Contextual Interaction in VEs

The use of context information in a MBUID process when developing mobile or

hand-held interfaces, already has been studied thoroughly [2, 8]. Indeed, a mobile

application can have different locations, platforms or services which allow other

features or actions to be available, resulting in interfaces that must adapt to each

context. The same can be true in a VE application where the context is often defined

by the available devices (and input/output modalities), external parameters such as the

experience level of the user, or whether the user is seated or standing. All those

parameters may have their influence on the interaction with the system.

Without special facilities for context in the diagrams, these features have to be

supported in an ad-hoc manner. Clerckx [3] distinguishes several levels at which

context may have its influence. A context system can be represented at the task or the

dialog level, but in this work we focus on the dialog level. Such a context system

consists of three components. Firstly, changes in context need to be sensed through a

context detection system. Next, the system needs to react upon this change. The

context switching makes sure that only parts of the system that react on the new

context are active, while interaction techniques can act upon the current context

through the context handling system.

We will first briefly discuss our approach to handle contextual knowledge at the

dialog level as earlier proposed in [9]. In section 3 we elaborate on how this approach

can be improved to dynamically support context switches using the Event-Condition-

Action (ECA) [1, 6] paradigm. Using this paradigm we achieve a scalable approach

which can be supported by (semi-)automatic generation. As we will be using

NiMMiT as a high level notation for interaction techniques, we can reuse the existing

run time system, and as we can assume that designers may already know this notation

from the design of their user interaction, they do not need to learn a new notation to

model context information.

2 Runtime Context

In earlier work [9], we introduced handling context knowledge using NiMMiT.

The graphical notation NiMMiT, inherits the formalism of a state-chart in order to de-

scribe the (multimodal) interaction within the virtual environment. Furthermore, it

also supports data flow which occurs during the interaction, as well. A more detailed

description of NiMMiT can be found in [5].

Our approach to integrate contextual information was inspired from earlier results

of research in the area of model-based design [3]: (1) incorporating context in task

and dialog modelling and (2) adding modality constraints to tasks. We discuss a

combination of these two approaches, enabling context-aware selection of modalities.

Consider for instance a VE application that has two setups (external contexts),

which differ in devices/modalities to be used. An application, that can be used in

either an immersive setup using stereo vision and gloves or in a desktop setup with a

keyboard and a mouse, illustrates this idea.

 Lode Vanacken, Joan De Boeck, Chris Raymaekers, Karin Coninx

One way to incorporate this, is to introduce the contexts at the task level [3], this

means that according to the contextual constraint (m1 and m2), a different task is

selected, as is illustrated in figure 1(a). Task t2 is divided into two distinct tasks t2a and

t2b. This approach expands into two different dialog models, one for each context.

Both models contain two states, containing one task each, in this example. According

to the context m1 or m2, the appropriate dialog model is selected.

This solution is suitable when a context switch enables other tasks or requires other

interaction techniques and thus affects the task model. The drawback is the

duplication of the dialog model for each context. Alternatively, in a typical VE sit-

uation as in our example, the tasks may remain the same for each context. In this

situation defining ‘context’ at the dialog level is considered as a more efficient

approach.

Moreover, to overcome the problem of duplication both approaches may be com-

bined: instead of having two distinct dialog models, we simply merge them together

and make a distinction only where a difference is made by a context status. This is

illustrated in figure 1(b). The two states containing t1 are merged into one state in one

and the same dialog model, but a choice is made to the appropriate state transition

depending on the context. In this way the decision at the task level is modelled at the

dialog level.

In our former work [9], we implemented this approach at the dialog level using our

interaction description model: NiMMiT. In figure 2 an example of our approach is

depicted. In figure 2(a) we can see that in the ‘Start’-state several different events

(modalities) could trigger the execution of the task chains. Using ‘context’

information, we are able to attach a certain context to a certain event or modality,

such that, depending on this context, only those events belonging to that context are

active. If for example ‘GLOVE.MOVE’ is intended to be used in the immersive

setup, one can attach the ‘immersive’-context to the event-arrow ‘GLOVE.MOVE’.

Similarly the event ‘KEYBOARD.MOVE’ can be used in the ‘desktop’-context. Note

that if there was no support to couple events to a context the same diagram should be

created twice with different events (as in figure 2(a)) which would make maintenance

much harder.

Adding this contextual knowledge to events transforms the view of the diagram

depending onto which context of the diagram we are viewing. A part of the resulting

diagram containing context arrows is shown in figure 2(b).

Fig 1. (a) Combining modality constraints with the decision task notation (task model and

dialog model). (b) Merged dialog models.

 (a) (b)

An Event-Condition-Action approach for Contextual Interaction in VEs

3 Defining a Context System

3.1 Context Detection and Switching

Our previous work concentrated on context handling. The detection and switching

was handled through explicit user interaction. In order to realise a context-dependent

interaction, it is also necessary to automate this detection and handling of the context.

The following section therefore discusses how this has been integrated into our

existing system.

The process of context detection and switching can be seen as an Event-Condition-

Action process. A certain event or combination of events can signal a change in

(a) Events active in two different contexts.

(b) Events were attached to context arrows.

Fig 2. Our approach to contextual knowledge at the dialog level.

 Lode Vanacken, Joan De Boeck, Chris Raymaekers, Karin Coninx

context, possibly depending on certain conditions. Finally if the conditions are met, it

might be necessary to perform an action such that the context switch is finalised. For

instance, a user may stand up from his chair (event). Before executing a context

switch, we must ensure that he wears tracked gloves (condition). If the condition is

met, we disable the toolbars that are needed in the desktop setup and connect the

cursor to make the glove visible (action). Note that we assume that ‘standing up’ can

be recognised as an event. If this would not be possible, it is also possible to listen to

a more general event, e.g. the movement of a tracker mounted to the user’s head

event, and assert for the tracker’s position in order to decide whether the user is seated

or standing (condition).

In order to keep the design as modular as possible, this Event-Condition-Action

process is split up in two parts. One part is the context detection, the other handles the

context switch. According to Event-Condition-Action, the context detection should

identify what events to listen for, checks whether or not the conditions are fulfilled

and it eventually triggers a ‘context switch’ event. This event is recognised by the

Context Switching part.

The Context Switching part captures the ‘context switch’ event and executes the

actions that are necessary before switching to the target context.

Dividing the process in two distinct parts, connected through the ‘context switch’

event, has the advantage that the code necessary for checking the conditions is sep-

arated from the action code. In the next section we will explain why this will lead to

smaller and well-organised diagrams.

3.2 Implementation through NiMMiT Diagrams

In our research, interaction techniques are defined using NiMMiT diagrams. As

NiMMiT offers a convenient way to describe systems in which events fire a set of

tasks, we propose that both the context detection and switch can be implemented

using NiMMiT diagrams, as well. Besides this reason, designers already know

NiMMiT from the design of the interaction itself, which allows them to model context

without having to learn a new modelling notation. Finally, the run time system to

execute NiMMiT diagrams is already realised.

The Context Detection NiMMiT diagram defines a state for each ‘context’ where

the relevant events that can evoke a context switch are available. The events activate a

task chain, which checks the condition by a more complex set of tasks. When the

condition is not met, nothing happens. Otherwise, before moving on to a new state,

reflecting the new context, the task chain has to fire a ‘context switch’ event. A

template of such a diagram can be seen in figure 3. Two contexts, SITTING and

STANDING are represented using the two states ‘Context-SITTING’ and ‘Context-

STANDING’.

A second NiMMiT diagram, responsible for the action, contains a state for each

context. In each state, the respective ‘context events’ are awaited. Upon occurrence of

such an event a task chain is fired, containing the code that has to be executed before

the context switch. This code might be enabling or disabling certain devices, showing

or hiding objects or controls in the world, etc. The last action in this task chain, before

moving to the new context state, is explicitly setting the context, so that the running

An Event-Condition-Action approach for Contextual Interaction in VEs

NiMMiT diagrams that define the user interaction can adapt to the context switch, and

handle the new context.

The NiMMiT diagrams defining the context system, will share a similar pattern

among different projects. Independent of the nature or the number of contexts, each

context will be represented as a state in both diagrams. Each context transition will

then be represented by an event arrow in the context detection diagram and a ‘context

event’ arrow in the context switching diagram, invoking a task chain.

The similar patterns of these ‘context’ diagrams open the opportunity for an editor to

generate a template diagram that can be completed by the designer. Obviously, for

specific purposes the designer is free to alter the generated diagrams, e.g. if he wants

to restrict possible context switches.

3.3 Implications at the dialog level and task level

The proposed context detection and switching system is a process which is active

during the entire execution of the application. This obviously has its implications on

the task level and dialog level of the model-based process. For the dialog model,

every state contains two new tasks which are performed concurrently with the normal

tasks, these tasks include the context detection and the context switching diagrams.

Fig 3. Implication of the proposed context system at the task level.

 Lode Vanacken, Joan De Boeck, Chris Raymaekers, Karin Coninx

Considering the task level, this means that a new subtree concurrent with all other

subtrees is part of the task hierarchy, as can be seen in figure 4. The ContextSystem

tasks perform the detection and switching of the context, while the VE tasks may

change their execution based upon this context switch, as discussed in figure 2.

4 Discussion

A possible problem related to describing context in a state chart, is the fact that

these diagrams can suffer from a state explosion if the number of different contexts

becomes too high. This especially is true if we consider a context as an n-dimensional

vector of observed values. If these observed values are orthogonal to each other, this

will result in an exponential explosion of contexts, and hence will make the diagrams

hard to manage, even despite the division in two separate diagrams.

However, in some cases the contexts which are applied in a VE are rather simple,

which means that either the condition or the action is not present. In that case it may

be overkill to design two diagrams: one translating ‘(device) events’ into ‘context

events’, and another responding to those ‘context events’. In this situation, the

designer may decide to combine both diagrams and hence either add context switch-

ing code to the context detection diagram, or adding ‘(device) events’ to the context

switching diagram.

5 Conclusion

Context detection and context switching are necessary components of an overall

approach for context-dependency in model-based development. In this paper, we

presented our approach for context detection and switching.

Fig 4. Implication of the proposed context system at the task level.

An Event-Condition-Action approach for Contextual Interaction in VEs

Event-Condition-Action rules are used as a basis for the context system. Both context

detection and switching are split up and supported by NiMMiT diagrams, this results

in a scalable approach. The run time system for NiMMiT is already present and the

designer also uses NiMMiT to design interaction techniques, therefore the usage of

NiMMiT eliminates the overload of having to learn a new notation for context

modelling or adding a new module to the run time system. As the general pattern of

the context detection and switching diagrams is similar among different projects, the

approach also opens the opportunity for a

(semi-)automatic generation of the diagrams by an editor. In the future, we would like

to further investigate how our approach compares to other approaches and validate it

using case studies.

Acknowledgments. Part of the research at EDM is funded by the ERDF (European

Regional Development Fund) and the Flemish government. The VR-DeMo project

(IWT 030248) is directly funded by the IWT, a Flemish subsidy organisation.

References

1. Beer, W., Christian, V., Ferscha, A., Mehrmann, L.: Modeling Context-aware Behavior by

Interpreted ECA Rules. Proceedings of EUROPAR03. LNCS 2790, 1064–1073

2. Capra, L., Emmerich,W., Mascolo, C.: Carisma: Context-aware reflective middleware

system for mobile applications. IEEE Trans. Software Eng. 29(10), 929–945 (2003)

3. Clerckx, T.: Model-based development of context-aware interactive applications in ambient

intelligence environments. Ph.D. thesis, transnationale Universiteit Limburg (2007)

4. De Boeck, J., Gonzalez Calleros, J.M., Coninx, K., Vanderdonckt, J.: Open issues for the

development of 3d multimodal applications from an MDE perspective. In: MDDAUI 2006.

5. De Boeck, J., Vanacken, D., Raymaekers, C., Coninx, K.: High-level modeling of

multimodal interaction techniques using nimmit. Journal of Virtual Reality and

Broadcasting 4(2) (2007)

6. Etter, R., Costa, P., Broens, T.: A Rule-Based Approach Towards Context-Aware User

Notification Services. Proceedings of the IEEE ICPS’06 pp. 281–284 (2006)

7. Figueroa, P., Green, M., Hoover, H.J.: InTml: A description language for VR applications.

In:Proceedings of Web3D’02, pp. 53–58. Arizona, USA (2002)

8. Sohn, T., Dey, A.K.: icap: an informal tool for interactive prototyping of context-aware

applications.In: CHI Extended Abstracts, pp. 974–975 (2003)

9. Vanacken, L., Cuppens, E., Clerckx, T., Coninx, K.: Extending a dialog model with

contextual knowledge. In: TAMODIA, LNCS, vol. 4849, pp. 28–41. Springer (2007)

10. Willans, J., Harrison, M.: A toolset supported approach for designing and testing virtual

environment interaction techniques. International Journal of HCS 55(2), 145–165 (2001)

