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Summary

One of multiple testing problems in drug finding experiments is the comparison of several treatments with
one control. In this paper we discuss a particular situation of such an experiment, i.e., a microarray setting,
where the many-to-one comparisons need to be addressed for thousands of genes simultaneously. For
a gene-specific analysis, Dunnett’s single step procedure is considered within gene tests, while the FDR
controlling procedures such as Significance Analysis of Microarrays (SAM) and Benjamini and Hochberg
(BH) False Discovery Rate (FDR) adjustment are applied to control the error rate across genes. The method
is applied to a microarray experiment with four treatment groups (three microarrays in each group) and
16,998 genes. Simulation studies are conducted to investigate the performance of the SAM method and the
BH-FDR procedure with regard to controlling the FDR, and to investigate the effect of small-variance genes
on the FDR in the SAM procedure.

Key words: Dunnett’s single step procedure; Benjamini and Hochberg procedure; False Discovery Rate
(FDR); microarray; multiple testing; SAM.

1 Introduction

Microarray technology allows for simultaneous monitoring of expression levels of a large number of
genes. Microarrays are used to determine changes in mRNA content of samples from different origins
(e.g., treated versus untreated cells). Statistical methods are then applied to analyze intensity levels of
each gene across conditions/treatments and to evaluate the statistical significance of differences between
conditions/treatments.

In a drug finding experiment, Dunnett’s test is frequently used to compare several treatments with one
control. In this paper, we discuss the situation of many-to-one comparisons in the context of a microarray
experiment for drug discovery. The aim of such an experiment is to find genes whose expression levels
differentiate between any of treatments and the control, and to find the treatments that regulate the expres-
sion levels for a set of targeted genes. This type of study is important for finding informative genes as well
as finding potential active compounds (treatments).

The prevalent issue related to gene expression profiling is the adjustment for the large number of com-
parisons that need to be made. Multiple testing procedures controlling for the Family-wise Error Rate
(FWER), that is the probability to reject erroneously at least one true null hypothesis, such as Bonfer-
roni (Hochberg, 1995) or Holm (Holm, 1979) procedure, are conservative and lead to a small number of
rejections (Hochberg and Tamhane, 1987). For a microarray experiment, the aim of the study is to find
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2 Lin et al.: An Investigation of the SAM in the Presence of Small-variance Genes

differentially expressed genes while controlling the number of false positive discoveries. Thus, recently
intensive research on False Discovery Rate (Benjamini and Hochberg, 1995) has been conducted, in which
the FDR is defined as the expected proportion of false rejections among all rejections. Controlling the FDR
has gained its popularity in the microarray setting (Tusher et al., 2001, Storey and Tibshirani, 2001, and
Reiner et al., 2003). Compared with multiple testing procedures that control the FWER, the FDR proce-
dures are less stringent and lead to a larger number of rejections. In this paper, Benjamini and Hochberg
(1995) step-up procedure for controlling the FDR is considered. Moreover, we discuss in detail the Signif-
icance Analysis of Microarrays (SAM), a resampling-based procedure (Tusher et al., 2001) which corrects
the test statistics by adding a constant (so-called a fudge factor) to the observed standard errors and con-
trols the FDR empirically. The advantage of the SAM is that it does not rely on assumptions about the
asymptotic distribution of the test statistic, which in microarray experiments is usually problematic due to
a small sample size.

For a single gene, Dunnett’s (1955) single step procedure tests for the many-to-one comparisons simul-
taneously. To address the combined two-dimensional testing problem comparing several treatments with
the control for each of thousands of genes, we consider the following four approaches: (1) single step Dun-
nett’s p-values adjusted by the Benjamini-Hochbergh procedure (BH-FDR), (2) resampling-based p-values
(obtained using permutations) adjusted by the BH-FDR, (3) the SAM procedure without the fudge factor,
and (4) the SAM procedure with the fudge factor.

As a case study, we consider a microarray experiment with four experimental conditions (three treat-
ments and one control) in triplicate biological samples that are hybridized to individual chips. This results
in a data set with 12 arrays and 16,998 probe sets on each array. For simplicity, we refer to probe sets as
genes throughout the paper.

The content of this paper is organized as follows. Section 2 describes the procedure followed to obtain
the data. Section 3 briefly discusses the methods used for normally distributed data and Dunnett’s proce-
dure for comparing several treatments with one control (Dunnett, 1995). Section 4 presents resampling-
based algorithms that control the FDR. In Section 5, the SAM procedure is briefly described. Section 6
presents the results of the application of the different analysis strategies to the data. In Section 7 we
conduct simulation studies in order to investigate the performance of the SAM when comparing between
several treatments with the control for thousands of genes simultaneously. The paper is completed with a
discussion in Section 8.

2 Data acquisition

The case study data used in this paper come from an experiment where the human epidermal squamous car-
cinoma cell line A431 was grown in Dulbecco’s modified Eagle’s medium, supplemented with L-glutamine
(20 mM), Gentamycin (5 mg/ml) and 10% fetal bovine serum. The cells were pretreated with three dif-
ferent compounds. RNA was harvested using RLT buffer (Qiagen). In total of 12 microarrays were used
under four conditions (three treatments and one control) with three arrays per group and 16,998 genes on
each array.

All microarray-related steps including the amplification of total RNAs, labeling, hybridization and
scanning were carried out as described in the GeneChip Expression Analysis Technical Manual, Rev.4
(Affymetrix, Santa Clara, CA, 2004). Biotin-labeled target samples were hybridized to human genome
arrays U133 A 2.0 containing probe sets interrogation approximately 22,000 transcripts from the Uni-
Gene database (Build 133). Hybridization was performed using 15 µg of cRNA for 16 h at 450C un-
der continuous rotation at 60 rpm. Arrays were stained in Affymetrix Fluidics stations using strepta-
vidin/phycoerythrin staining. Thereafter, arrays were scanned with the Affymetrix scanner 3000, and im-
ages were analyzed using the GeneChip Operating System v1.1 (GCOS, Affymetrix). The collected data
was quantile normalized in two steps: first within each sample group, and then across all sample groups.
(Bolstad et al., 2002)
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3 Comparing Several Treatments With the Control

Multiple comparisons in the considered case study arise from comparing several treatments with a con-
trol and from testing thousands of hypotheses (genes) simultaneously. To identify genes differentiating
between several treatment conditions and the control, an ANOVA type of model is a possible option. Kerr
et al., (2001) formulated a general ANOVA model for the log-transformed gene-expression measurements.
Wolfinger et al., (2001) discussed a ”gene by gene” modeling approach, in which gene-specific linear
mixed effects models are used to determine the significance and the magnitude of treatment effects in-
dependently for each gene. In this paper we follow the “gene by gene” modeling approach and specify
gene-specific linear model in the following way. Let Xijk be the ith gene expression (i=1,...m) on array j
(j=1,...n) in treatment group k (k=0,...3). The gene-specific linear model is given by

Xijk = µik + εijk; εijk ∼ N(0, σ2
i ), (1)

where µik is the mean expression level for treatment k for gene i, and µi0 is the mean expression level for
the control group for gene i. Inference is made by using the estimates of the means with their variabilities.

In particular, we focus on the comparison of the treatments versus the control group. Hence the alterna-
tive hypotheses of primary interests, as considered by Dunnett (1995), are:

H01i : µi0 − µi1 = 0, H11i : µi0 − µi1 6= 0,
H02i : µi0 − µi2 = 0, H12i : µi0 − µi2 6= 0,
H03i : µi0 − µi3 = 0, H13i : µi0 − µi3 6= 0.

(2)

The test statistics for the hypotheses can be written as

tik =
Xik −Xi0

si

√
1

nk
+ 1

n0

i = 1, . . . , m, k = 1, 2, 3. (3)

where si is the pooled variance for gene i, X̄ik is the estimated mean gene expression for the kth treatment
group for gene i, X̄i0 is the estimated mean gene expression for the control for gene i, nk is the number of
arrays for treatment k, and n0 is the number of arrays in the control group.

For comparing the treatment means with the control mean, Dunnett (1955, 1964) proposed the following
set of 1− α level simultaneous confidence intervals:

µik − µi0 ∈ Xik −Xi0 ± |d|Si

√
1/nk + 1/n0, i = 1, . . . ,m, k = 1, 2, 3, (4)

where |d| is the two-sided upper α point of the k-variate equicorrelated t-distribution with common
correlation and degrees of freedom (ν =

∑3
k=0 nk− 2). The values of |d| for the balanced one-way model

have been tabulated in Bechhofer and Dunnett (1988). For the unbalanced design in the general linear
model, the factor analytic method discussed by Hsu (1996) has been implemented in SAS to find the value
of |d|. From this set of confidence intervals, µik > µi0 (µik < µi0) can be concluded for treatment k
satisfying tik > |d| (tik < |d|). The probability of all such statements being correct is no less than the
confidence level 1− α.

The Dunnett’s procedure is more powerful as compared to the Bonferroni procedure which does not
take the correlation of the test statistics into account. Note that Dunnett’s (1955) procedure is a single
step procedure, in which the null hypotheses in (2) for gene i are tested simultaneously by considering the
multivariate setting of the test statistics.
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4 Resampling Based Multiple Testing

4.1 Multiplicity

The aim of the microarray analysis is to identify differentially expressed genes without too many false
positives. Hence, we expect more than one false positive, but we do not want too many in proportion to
true positives. In this section we briefly discuss the procedure that allows to control the number of false
positives by controlling the FDR (Benjamini and Hochberg, 1995).

Consider the case in which m hypotheses, from which m0 are true null hypotheses and m1 are false
null hypotheses, need to be tested. Let V be the number of true null hypotheses that we wrongly reject and
R be the total number of rejected hypotheses.

The FDR, introduced by Benjamini and Hochberg (1995), is defined as the expected proportion of false
rejection among the rejected hypotheses, FDR = E (Q) where Q = V/R when R > 0, and Q = 0
otherwise. Benjamini and Hochberg (1995) proposed the following multiple testing procedure to control
the FDR.

Let P(1) ≤ P(2) . . . ≤ P(m) be the ordered p-values and let H(1),H(2),. . . ,H(m) be the corresponding
hypotheses. The procedure rejects H(1),H(2),. . . ,H(`), where ` is the largest value of i, for which P(i) ≤
i
mα. The BH-FDR adjusted p-values (Ge et al. 2003) are given by

P̃i = mink=i,...,m

[
min(

m

i
P(i), 1)

]
. (5)

Thus, the null hypothesis H(i) is rejected if P̃(i) ≤ α.

4.2 Permutation p-values

In a microarray setting, resampling methods are often used (Kerr et al., 2001, Reiner et al., 2003, Tusher
et al., 2001, Westfall and Young, 1993, and Ge et al., 2003). The main motivation is to avoid inference
based on the asymptotic distribution of the test statistics, which, within the microarray setting, can be
problematic because of either typically small sample sizes or because of departure from the assumption
about the distribution of the response. Also, in some cases the asymptotic distribution of the test statistic
is unknown (Tusher et al., 2001). The resampling approach requires permutation of the sample labels and
calculation of the test statistic for each permutation. Matrix of the values of the test statistic for m genes,
obtained by using B permutations, is referred to as the permutation matrix T under the null distribution.

The permutation matrix T can be symbolically written as

T =




t11 t12 . . . t1B

t21 t22 . . . t2B

. . . .

. . . .

. . . .
tm1 tm2 . . . tmB




(6)

where B is the number of permutations and each element tib in matrix T is the test statistic for the ith gene
in the bth permutation. Once the raw p-values are calculated from

Pi =
#(b : |tib| ≥ |ti|)

B
, (7)

where ti is the observed value of the test statistic for gene i, inference can be made based on the p-values
using the BH-FDR procedure described in (5) (Ge et al., 2003).
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5 Significance Analysis of Microarrays

5.1 Method

Dunnett’s single step tests, discussed in Section 3 can be based on either the distribution of the test statistics
under the null hypotheses or on the approximation of the distribution of the test statistic under the null
hypothesis using resampling methods (Kerr et al., 2001, Tusher et al., 2001, Reiner et al., 2003, and Ge et
al., 2002). In this section we briefly discuss an alternative resampling method, a procedure widely used in
the microarray setting, namely, Significance Analysis of Microarrays.

The SAM (Tusher et al., 2001, Storey and Tibshirani, 2001) is a testing procedure for microarray
analysis, which estimates the FDR using permutations under the assumption that all null hypotheses are
true. The procedure consists of three components: (1) the adjusted test statistic, (2) approximation of the
distribution of the test statistic based on permutations, and (3) the control of the FDR.

The t-test statistic is modified in the SAM procedure as follows:

tSAM
ik =

X̄ik − X̄i0

sik + s0
=

∆ik

sik + s0
(8)

where

X̄i0 =
Σn0

j=1xij0

n0
, X̄ik =

Σnk
j=1xijk

nk
,

and

sik =

√
(

1
nk

+
1
n0

)
Σnk

j=1(xijk − x̄ijk)2 + Σn0
j=1(xij0 − x̄ij0)2

nk + n0 − 2
.

The constant s0 in (8) is called the fudge factor. It is calculated as the percentile of the gene-wise
standard errors that minimizes the coefficient of variation of the SAM test statistics. This modification is
used to overcome bias for genes with expression difference ∆ik close to zero, which have a large value of
the test statistic due to a small sample variance. By using an inflated standard error of the test statistics, the
SAM addresses the problem of the dependence of the value of the test statistic on the variance of expression
levels for a particular gene.

The SAM is a resampling-based procedure, which uses permutations to approximate the null distribution
of the test statistics. Thus, the choice of the test statistic does not have an effect on the SAM procedure.
This distribution-free property in the SAM procedure allows to include in it any forms of test statistics.

The control of the FDR is performed once the permutation matrix T , as defined in (6), is obtained.
The SAM procedure requires the test statistics of each permutation to be sorted for all the genes such that
the first row of the sorted matrix is the minimum test statistic across permutations and the last row is the
maximum, i.e.,

T SAM =




t(1)1 t(1)2 . . . t(1)B
t(2)1 t(2)2 . . . t(2)B
. . . .
. . . .
. . . .
t(m)1 t(m)2 . . . t(m)B




.

In matrix T SAM each element t(i)b is the ordered test statistic in permutation b. The expected values
of the observed test statistics are approximated by the means of the rows of T SAM , t̄(1), t̄(2), . . . , t̄(m) that
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are constructed in the following way:

T SAM =




t(1)1 t(1)2 . . . t(1)B
t(2)1 t(2)2 . . . t(2)B
. . . .
. . . .
. . . .
t(m)1 t(m)2 . . . t(m)B



⇒




1
B

∑B
b=1 t(1)b

1
B

∑B
b=1 t(2)b

.

.

.
1
B

∑B
b=1 t(m)b




=




t̄(1)
t̄(2)
.
.
.
t̄(m)




.

To call a gene significant, the difference between the observed and expected values of the test statistic
needs to be larger than a certain cut-off value λ (Parmigiani et al., 2003). For a grid of λ values, the
corresponding number of significant genes can be listed; at the same time, the number of false positives
arising from any permutation matrix T SAM is estimated. Under the null hypotheses, we expect that no
differentially expressed genes are present for each permutation. Consequently the median or 90 percentile
number of false positives corresponding to λ can be obtained from permutation matrix. In this way, the
FDR can be calculated for each value of λ and an acceptable value of λ can be chosen to control the
FDR at the desired level. Note that the SAM procedure estimates the proportion of true null hypotheses
in obtaining the FDR (π0E(V/R) = (m0/m)E(V/R), where m0 is the number of non-differentially
expressed genes and estimated from permutations).

In the microarray setting, complications arise not only from the multiple comparisons per gene, but
also from the multiple testing for all the genes at the same time. A strength of the SAM is that the null
distribution is generated for all the genes at once by permuting the group labels, so that the correlation
between test statistics of all the genes is preserved. One can borrow strength across the genes and derive
more powerful rejection regions in testing by assuming a statistic from a mixture of the null and alternative
distributions, as well as from the pure null distribution (Efron et al., 2001). In our testing strategy, three
sets of t-test statistics are considered simultaneously. On one hand, the SAM procedure preserves the
structural correlation of the three t-test statistics per gene. This is an analogue to Dunnett’s single step
procedure, in which a joint multivariate distribution is estimated to test the order statistics of many-to-
one comparisons. On the other hand, the SAM deals with the multiplicity problem due to testing of
thousands of genes by estimating the FDR. Within the SAM framework, we rely on the joint distribution
estimated from permutations to address these two dimensions of multiple testing simultaneously. Note that
the resampling-based methods such as SAM implicitly assume if the marginal distributions of expression
levels of the genes are identical across different treatments, then the joint distributions are identical across
the treatments as well (Huang et al., 2006, Xu and Hsu, 2007). Whether this assumption is valid in the
microarray setting is not known at present.

Adding the fudge factor to the denominator of the test statistics in (8) provides a protection against the
false discovery for genes with a relative small expression difference ∆ik and with a very small variance.
However, adding the fudge factor to the denominator of the test statistic leads to the following question:
what is the influence of the fudge factor on the other genes, can the SAM test statistics (tSAM

k ) become too
small and as a result, can the truly differentially expressed genes not be detected any more? Moreover, for
genes that are not differentially expressed but share the problem of small variance, what is the influence of
the fudge factor on those genes, i.e., how is the FDR controlled? In what follows we illustrate this issue
graphically.

5.2 Graphical Interpretation of the SAM

In order to investigate the effect of the SAM fudge factor on the protection against genes with small vari-
ance, we decompose the true null hypotheses into two types (see Figure 1): m0

0 truly non-differentially
expressed genes with a moderate to large variance and m1

0 truly non-differentially expressed genes with a
relatively small variance (i.e., ≤ 5% percentile of variance in the data). Accordingly, the falsely rejected
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true hypotheses V are divided into sets of V 0 and V 1 for these two types of genes, respectively. Conse-
quently, the FDR can be decomposed as FDR=FDR0+FDR1=E(V 0/R) + E(V 1/R), where R is the total
number of genes declared significant.

Fig. 1 Decision in multiple testing (Benjamini and Hochberg 1995).

Note that it is expected that, without the fudge factor, the small-variance genes will be declared signifi-
cant and the FDR will increase.

To show the effect of the SAM test statistic, we compare the values of the usual t-test statistics and
the SAM test statistics and investigate how the SAM test statistic values are affected by the fudge factor.
Figure 2 shows the effect size (numerator of t-test statistics) versus the absolute values of the SAM t-test
statistics without (Figure 2a) and with the fudge factor (Figure 2b). We observe that a large number of
genes have large test statistic values with small effect sizes, which are represented by points lying along
the zero vertical line (Figure 2a). With the introduction of the fudge factor, the points are gathering more
around the zero crossing point (Figure 2b). However, the values of test statistics for all the genes decrease
simultaneously. Figure 3 illustrates how the fudge factor affects genes with different variances.

Fig. 2 Comparison of the SAM test statistics (absolute values) without the fudge factor (a : SAM − s0) and with the
fudge factor (b : SAM + s0) using the case study data. s0=0.2422 (60% quantile of the standard errors in the data.)
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8 Lin et al.: An Investigation of the SAM in the Presence of Small-variance Genes
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t
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Fig. 3 Graphical Interpretation of the SAM test statistic: a. the SAM test statistics; b. the cotangent function.

The two axes of Figure 3a represent the numerator (absolute value of effect size) and denominator
(standard error) of the t-test statistics. The angle α (between the y-axis and the solid line) for the three
genes with using small, median and large standard errors (s1 < s2 < s3) and corresponding effect sizes
(∆1 < ∆2 < ∆3), constitutes the same value of the t-test statistic, i.e., t1 = ∆1/s1 = t2 = ∆2/s2 =
t3 = ∆3/s3. Note that the test statistic value for these three genes is equal to cot(α). When the fudge
factor s0 is added in the denominator (extending the standard errors, s1, s2, and s3 by s0, respectively),
the new angles are formed by increasing β1, β2, and β3 on the basis of α, respectively. The three newly
formed angles are provided between the y-axis and the dotted line (α + β1), short dashed line (α + β2),
and the long dashed line (α + β3), respectively. Thus, the SAM test statistics for the three genes become
cot(α+β1), cot(α+β2), and cot(α+β3), respectively. The values of the SAM test statistics are illustrated
by the cotangent function in Figure 3b. The left penal of b shows the same t-test statistic value of the three
genes with angle α. However, the introduction of the SAM fudge factor decreases the values of the SAM
test statistics for three genes simultaneously, in particular, tSAM

1 < tSAM
2 < tSAM

3 (see the right panel of
Figure 3b) due to s1 < s2 < s3.

Let s(1), s(2), . . . , s(m) be the order statistics of the standard error in the microarray experiment with
m genes. Let s(0), s(1), s(l), . . . , s(100) be the lth% quantile of s(1), s(2), . . . , s(m). Let the fudge factor
s0 = s(q), it is easy to see that for gene i, the SAM test statistic with the fudge factor (tSAM

i ) and the t-test
statistic (ti) have the following relationship:





tSAM
i < 1/2ti s(i) < s(q),

tSAM
i = 1/2ti s(i) = s(q),

tSAM
i > 1/2ti s(i) > s(q).

Hence, the SAM test statistic with the fudge factor is smaller than 1/2 of the t-test statistics for genes with
their standard errors smaller than the fudge factor. Moreover, the ratio between the SAM with and without
the fudge factor is si/(si + s0) since |t|SAM

i = |∆|/si× si/(si + s0). Depending on si, the standard error
of gene i, the SAM test statistic becomes smaller by ratio of si/(si + s0).

For illustration, let us focus on genes with unadjusted test statistics with values of 8.5 ≤ ti ≤ 9.5
and 15.5 ≤ ti ≤ 16.5. The value of the fudge factor s0 is equal to 0.2422 (i.e., the 60% quantile of
s(0), s(1), . . . , s(100)). We will elaborate on the choice of s0 in Section 6.

Figure 4a shows the SAM test statistics with and without the fudge factor. For each set, genes with
si < s0 lying below the line of t’=1/2t reduce the values in test statistics by more than half of the t-test
statistic; while genes with si > s0 lying above the line reduce the values in test statistics by less than half
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of the t-test statistic. Note that there are 149 genes with 8.5 ≤ ti ≤ 9.5, among which 145 genes (97.3%)
have standard error smaller than s0; while there are 24 genes with 15.5 ≤ ti ≤ 16.5, among which 22
genes (91.6%) have standard error smaller than s0. Figure 4b plots the ti values without the fudge factor
versus standard error, where most of genes have their standard error smaller than the fudge factor (at the
left side of the vertical line). From Figure 4c, we can see that, the relationship between the treatment effect
and the standard error. To achieve similar test statistics for each set of genes (either within [8.5,9.5] or
[15.5,16.5]), genes with small treatment effects have small standard errors.
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Fig. 4 Plots of the SAM test statistics with and without the fudge factor, for two sets of genes whose test statistics
(without s0) are in the range of [8.5, 9.5] (in stars) and [15.5,16.5] (in pluses). panel a. t stat (SAM-s0) vs. t stat
(SAM+s0); panel b. sigma vs. t stat (SAM-s0); panel c. sigma vs. delta.

The SAM procedure introduces the following dilemma. Assuming that m1
0 > 0 (the number of non-

differentially expressed genes, for which the variance is relatively small), an analysis without correcting
the test statistic using the fudge factor s0 is expected to lead to significant findings of non-differentially
expressed genes with small variances. This implies that the FDR will not be controlled. On the other hand,
analysis in which the test statistics are corrected using the fudge factor s0 is expected to solve the problem
of declaring significant the genes with a small variance, but at the same time the power is reduced. Thus,
we need to answer the question how the FDR is controlled for genes with small variances when the SAM
procedure is used.

6 Application to the Data

In this section, we present results of the application of four procedures, namely, (1) the Dunnett’s p-values
adjusted by using the BH-FDR procedure, (2) the permutation p-values adjusted by using the BH-FDR
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procedure, and (3) the SAM procedure with the fudge factor, and (4) the SAM without the fudge factor,
described in Section 4 and Section 5, to the case study.

6.1 Multiple Testing Using Dunnett’s p-values

First we present the results obtained by using the Dunnett’s p-values. The single step testing scheme
consists of testing all 3 × 16, 998 tests simultaneously. The gene-wise Dunnett’s p-values for the three
comparisons are obtained using the factor analytic method discussed by Hsu (1996) in SAS, and the BH-
FDR procedure is used to control for overall error rate for 3× 16, 998 tests. Table 1 (column (1)) presents
the results using this approach.

Table 1 Number of significant genes identified by using (1) the Dunnett’s adjusted p-values adjusted by the BH-FDR
procedure, (2) the permutation p-values adjusted by the BH-FDR procedure, (3) the SAM procedure without the fudge
factor, and (4) the SAM procedure with the fudge factor.

Approach (1) (2) (3) (4)
# sign genes 2319 3586 5223 613
# Comp 1∗ 958 1555 2262 262
# Comp 2∗ 749 1244 1514 232
# Comp 3∗ 612 787 1447 119

1*: # of genes declared significant for one treatment compared with the control
2*:# of genes declared significant for two treatments compared with the control
3*:# of genes declared significant for all the three treatments compared with the control

Among the 3 × 16, 998 tests, the null hypothesis is rejected for 4292 (=958 + 2 × 749 + 3 × 612)
tests, identifying 2319 genes to be significant for at least one comparison between the treatments and
the control. The number of genes with one significant comparison is 958; there are 749 genes with two
significant comparisons, and 612 genes with all three significant comparisons.

6.2 Resampling-based Multiple Testing

In the permutation approach, we use 1000 random permutations of the 12 sample labels and calculate the
test statistics for the newly formed treatment groups. The gene-wise permutation p-values for each of the
three comparisons are obtained using (7). Adjusting the so-obtained p-values (3×16, 998) by the BH-FDR
procedure leads to 3586 significant genes, with 1555 genes with one significant comparison, 1244 genes
with two significant comparisons, and 787 genes with all three significant comparisons (see column (2) in
Table 1).

In the third and fourth approach (i.e., the SAM procedure with and without the fudge factor), the mul-
tiplicity issue of the 3 × 16, 998 tests is adjusted simultaneously in the SAM procedure. The choice of
the fudge factor is made based on the algorithm provided in the SAM manual (Tusher et al., 2001). The
method chooses the quantile of the standard error which minimizes the CV (coefficient of variation) of the
SAM test statistics. Figure 5 plots the CVs versus the quantiles of standard error. Based on the graph,
the 60th percentile is chosen. Figure 6 illustrates the selection of threshold λ to control the FDR. Panel a
shows the relationship between the FDR and λ, which allows to choose the λ corresponding to the desired
level of the FDR. For instance, to control the FDR at 0.05, the required λ is 0.98. Panels b and c display the
number of significant findings and false positives in function of λ. The last panel shows the observed and
expected t-test statistics, where the genes lying outside the λ band (i.e., the absolute difference between
the expected and the observed test statistics larger than a certain λ) are considered to be significant. With
λ equal to 0.98, the number of significant genes is 613 and the median number of false positives is 35.
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The analysis without the fudge factor s0 leads to 5224 genes declared to be significant (see column (3)
in Table 1), while the analysis with the fudge factor s0 reduces the number of significant findings to 613
genes (see column (4) in Table 1).

Figure 7 shows a plot of t-test statistics against the gene-specific standard error. Grey points in the
middle zone indicate the tests for which the null hypothesis is not rejected. Grey points in the outer zone
represent test, for which the null hypothesis is rejected by the SAM with the fudge factor. These significant
tests, together with the tests represented by black points are rejected by the SAM without the fudge factor.
Note that the use of fudge factor influences the significance of all test statistics simultaneously.
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Fig. 5 Plot of quantiles of the fudge factor vs. the CV (coefficient of variation) of the test statistics: selection of the
fudge factor in the SAM.
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Fig. 6 SAM(+s0) plots: a. FDR vs. λ; b. # of significant gene vs. λ; c. # of false positives vs. λ; d. observed vs.
expected test statistics.

Note that the number of significant genes found by the Dunnett’s p-values adjusted by the BH-FDR
procedure and the permutation p-values adjusted by the BH-FDR procedure lies in-between the numbers
for the SAM without and with the fudge factor.
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Fig. 7 t-test statistics vs. their standard errors. The grey zone in the middle is non-significant tests; grey points in
the outer zone are tests declared significantly by the SAM with and without the fudge factor; black points are tests
declared significantly by the SAM without the fudge factor.

7 Simulation Study

In this section, we present the results of several simulation studies. The first simulation study investigates
the performance of the four testing approaches discussed in Section 6. In the second simulation, we inves-
tigate the performance of the automatic choice of the SAM fudge factor, and in particular the effect of the
fudge factor on both the FDR0 and FDR1. In the third simulation study, we investigate the influence of un-
equal sample sizes on the FDR0 and FDR1. In the fourth simulation study, we investigate the performance
of the proposed procedures for the case of non-Gaussian distribution.

7.1 Performance of the Four Testing Approaches

7.1.1 Simulation Setting

Data are generated with 16,998 genes per microarray using the gene-specific variances as in the case
study. We assume that about 10% of the total genes (i.e., 1700 genes) are truly differentially expressed.
Gene expression levels are generated according to the model xijk ∼ N(µik, σ̂2

i ), i = 1, . . . , 16, 998,
j = 1, . . . , nk, k = 0, 1, 2, 3, where σ̂2

i is the estimated gene-specific variance from the data. The means
for the treatment groups are specified in the following way:

µik =





δik × σ̂i, i ≤ 1700 and k = 1,
δik × σ̂i, i ≤ 1309 and k = 1, 2,
δik × σ̂i, i ≤ 714 and k = 1, 2, 3,
0, otherwise.

(9)

Here δijk × σ̂i represents the mean of the treatment group for the differentially expressed genes. It is
assumed that δik ∼ U(2.8, 4.5). Among the 1700 truly differentially expressed genes, 319 genes are
assumed to be differentially expressed for only one treatment; 595 genes are assumed to be differentially
expressed for two treatments; and 714 genes are assumed to be differentially expressed for all the three
treatments. In total, four settings with the sample size of three, four, five, and six arrays per treatment
group are considered. For each setting 100 data sets are generated.

The uniform distribution δik ∼ U(2.8, 4.5) for the differentially expressed genes was chosen since we
expect that the t-test statistics will be in the range of 2.8×

√
3/2 and 4.5×

√
3/2. A t-test statistic value
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in that range is declared significant (without multiple testing) and is expected to be large enough to be
declared significant with multiplicity adjustment. The range of the test statistic value above is obtained
since tik = µ̂ik/(σ̂i×

√
2/3) = δik× σ̂i/(σ̂ik×

√
2/3) = δik×

√
3/2 and the pooled variance σ̂i = σ̂ik

is applied in accordance with Dunnett’s procedure.

7.1.2 Simulation Results

Using the simulated data, we compare the number of significant genes identified by the Dunnett’s p-values,
the permutation p-values adjusted by the BH-FDR procedure, and the SAM approach with and without the
fudge factor. The two columns of Figure 8 show the boxplot of the FDR and power for 100 simulated
datasets. For both the SAM procedure (with and without the fudge factor), the FDR is well controlled at
around 5%. For each simulated dataset, the fudge factor selection is based on the automatic calculation
described in the SAM manual.

With three arrays per group, the power obtained for the Dunnett’s and permutation p-values using the
BH-FDR for multiplicity adjustment (32% and 34%, respectively) is much lower than for the SAM ap-
proach with the fudge factor (54%) and without the fudge factor (72%). Note that for the setting with three
arrays per group the permutation inference using the BH-FDR adjustment yields a slightly higher FDR
than 0.05. Increasing the sample size to four, five, or six arrays per group substantially improves the power
of the four approaches. It also improves the control of the FDR for the permutation approach. For the
SAM with the fudge factor, for example, the power increases to 85% for sample size of 16 arrays, to 96%
for 20 arrays, and to almost 99% for 24 arrays.
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Fig. 8 Simulation with equal sample sizes. The boxplots in each panel of the figure present the results for the
Dunnett’s approach (Dun), the permutation approach (BH-FDR), the SAM without the fudge factor (−s0), and the
SAM with the fudge factor (+s0). Plots in the left panel show the FDR achieved for three, four, five, and six arrays
per group. Plots in the right panel show the power.

In Table 2 we present the number of genes with significant comparisons between the treatments and
the control. As expected, the same ordering of the number of significant findings for each procedure can
be observed. The number of genes with one, two, and three significant comparisons increases in a similar
way as compared to the true number used for simulation. For example, for the SAM procedure with the
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fudge factor, and three arrays per group, the mean number of genes with one significant comparison is
large, i.e., 560.5 genes, among which on average only 205 genes have a true difference in expression for
one treatment; among 368.5 genes with two significant comparisons, on average 209 genes have a true
difference in expression for two treatments; and among 271.5 genes with three significant comparisons,
on average 269 genes have a true difference in expression for three treatments. We can conclude from the
table that, although the number of significant findings decreases as the sample size increases, the average
number of truly significant findings corresponds to the number simulated in the setting. Note that results
for genes with three significant comparisons contain almost no false positives.

For the first setting (three arrays per group) the SAM procedure controls the FDR empirically at 5%
significance level as well. The SAM without the fudge factor seems to outperform the SAM with the fudge
factor with respect to power. This is because non-differentially expressed genes with a small variance are
not generated in this simulation. In this case there is no need to introduce the fudge factor, as it diminishes
the power of the procedure.

Table 2 Simulation results. Number of significant comparisons using (1) Dunnett’s adjusted p-values adjusted by
BH-FDR , (2) permutation p-values adjusted by BH-FDR, (3) SAM procedures without the fudge factor, and (4) SAM
with the fudge factor. The number of true significant comparisons are given in parentheses.

(1) (2) (3) (4)
391 1 334(120) 442(111) 619.5(280) 560.5(205)
595 N=12 2 197.5(127) 254.5(136) 529.5(357) 368.5(209)
714 3 166.5(165) 120(117) 387.5(382) 271.5(269)
391 1 523(296) 623(321) 581(360) 605(334.5)
595 N=16 2 495(394) 610(445) 628(519) 564.5(443)
714 3 495(492.5) 477(473) 603.5(598) 534(529.5)
391 1 484(357) 569(369) 552.5(380) 562(378)
595 N=20 2 573(516) 632(544) 624(570) 620(560)
714 3 639.5(635) 632(629) 683(677) 670(666)
391 1 457.5(377.5) 546.5(383) 541.5(385) 544.5(385)
595 N=24 2 592(564.5) 622(575) 616(585) 616(581)
714 3 690(687) 683(679) 708(703) 701(698)

1: # of genes with one significant comparison
2:# of genes with two significant comparisons

3:# of genes with three significant comparisons

7.2 The Effect of the Fudge Factor on the FDR and Power

In this simulation study, we focus on the SAM procedure, and in particular we focus on the automatic
selection of fudge factor and the influence of the fudge factor on the FDR. As discussed in Section 5,
the fudge factor makes it more difficult to declare significant for genes with a small standard error while
ensuring the control of the FDR. Here, the question of primary interest is to what degree the fudge factor
can cope with the increasing number of genes with a small standard error. The questions of secondary
interest are what are the effect of unequal sample sizes and of distributional assumption on the FDR and
power?

7.2.1 Simulation Setting

Similar to the simulations discussed in Section 7.1, 100 data sets, each with 16,998 genes, among which
10% of genes (1700) are truly differentially expressed, are generated. However, in order to study the effect
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of the fudge factor on the genes with a small treatment effect and small variance, we simulate four settings
with different proportions of these genes: (1) none, (2) 5% (850), (3) 10% (1700), and (4) 20% (3400) of
total gene number. The aim of the simulation study is to investigate how the SAM procedure deals with
the proportionally increasing number of small-variance genes in terms of controlling the FDR.

The means of treatment groups for genes with a small variance are generated from normal distribution
N(0, 0.3). As a result, E(µ1) = E(µ2) = E(µ3) = E(µ4), what ensures the homogeneity of expected
means for the four treatment groups, but what generates the possibility of small mean differences. The
variance of these genes is set equal to 0.0036, which is the 5% quantile of the standard errors observed in
the case study data. In total 12 arrays (three arrays per groups) are generated for four treatments.

7.2.2 Simulation Results Using Equal Sample Sizes

Figure 9 compares the results for the four settings described above. Figure 9a shows the relationship
between the power and the FDR, where the power is estimated as the mean true discovery proportion
and the FDR is estimated as the mean false discovery proportion across 100 simulated datasets. The four
lines (representing four settings) show the power and the FDR obtained using no fudge factor, and 1%,
. . . , 100% centile of the standard error distribution as the fudge factor. The result of automatic choice of
SAM is indicated using the capital letter (A, B, C, D) for the four settings, respectively. For the last three
settings, where the number of non-differentially expressed genes with small variances increases, the FDR
is no longer controlled at the desired level. Also, the power of the procedure decreases, because a larger
quantile of standard error is used as the fudge factor.

Let us decompose the FDR into two parts, i.e., FDR=FDR0+FDR1, where FDR0 is estimated as
the mean proportion of false positives among m0

0 non-differentially expressed genes with moderate to
large variances, while FDR1 can be estimated as the mean proportion of false positives among m1

0 non-
differentially expressed genes with small variances. From Figure 9b, we can see that the FDR0 for the
SAM procedure is maintained around 5% regardless of the setting. However, the FDR1 in Figure 9c is
not controlled at the desired level, implying that the SAM procedure fails to remove genes with a small
variance from the significant comparison list. The problem of not controlling the FDR remains unless a
much higher quantile of standard error is used as the fudge factor. However, that results in a great loss of
power.
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Fig. 9 Simulation with equal sample sizes. a: Power vs. FDR; b: Power vs. FDR0 (small-variance genes); c: Power
vs. FDR1.
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On the other hand, the approach based on the permutation p-values adjusted by the BH-FDR procedure
(indicated by 1, 2, 3, and 4 in Figure 9) seems to yield lower power as compared to the SAM without the
fudge factor. From Figure 9c, we can see that the FDR1 is slightly higher than 0.05 for the first two settings
(indicated by 1 and 2), while it is getting close to 0.05 for the last two settings (indicated by 3 and 4). When
the proportion of small-variance genes increases, the problem with controlling the FDR1 becomes more
severe. Since the permutation approach adjusted by the BH-FDR procedure is not intended to protect
against the small-variance genes, it yields high value of the FDR1, similarly to the SAM approach without
the fudge factor.

In order to examine the variability in the estimated FDR and power, Figure 10 shows the boxplots of
the FDR (panel a), FDR0 (panel b), and FDR1 (panel c) obtained for the SAM with and without the fudge
factor and for permutation p-values with the BH-FDR adjustment. Figure 11 shows the boxplots of the
power of the three approaches. The same conclusion can be drawn from these figures as from Figure 9, but
additionally the distribution of the FDR can be examined. Note that the variability of the FDR and power
for the SAM procedure with the fudge factor seems to be larger than for the other two procedures.
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Fig. 10 Simulation with equal sample sizes. a: Boxplots of the FDR using the SAM without the fudge factor (-s0)
and with the fudge factor (+s0), and permutation approach (BH); b: boxplots of the FDR0 (small-variance genes); c:
boxplots of the FDR1.
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Fig. 11 Simulation with equal sample sizes. Boxplots of power using the SAM without the fudge factor (-s0) and
with the fudge factor (+s0), and permutation approach (BH).

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 17

7.2.3 Results of Simulation Study Using Unequal Sample Sizes per Group

In order to investigate the influence of unequal sample sizes per group, the simulation study discussed in
Section 7.2.2 is repeated with three arrays for the control, and four, five, and six arrays for each of the three
treatment groups, respectively.
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Fig. 12 Simulation with unequal sample sizes. a: Power vs. FDR; b: Power vs. FDR0 (small-variance genes); c:
Power vs. FDR1.
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Fig. 13 Simulation with unequal sample sizes. a: Boxplots of the FDR using the SAM without the fudge factor (-s0)
and with the fudge factor (+s0), and permutation approach (BH); b: boxplots of the FDR0 (small-variance genes); c:
boxplots of the FDR1; d: boxplots of the power.

Figure 12 shows the relationship between the power and the FDR. For the permutation approach, the
power of the test increases because the number of arrays increases from 12 (three arrays per group) in the
study described in Section 7.2.1 to 18 (3+4+5+6) in the current simulation. Despite that, similar findings
can be reported as in the previous simulation study. The overall FDR (in panel a) can not be controlled
as the proportion of small-variance genes increases. The FDR0 (in panel b) retains its mean value around
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0.05 and the FDR1 (in panel c) shows the proportion of false positives from non-differentially expressed
genes with small variances around 0.15.

Figure 13 shows the boxplots of the FDR, FDR0, FDR1, and power. The conclusions are similar as
those in the studies described in the previous sections.

7.2.4 Results of Simulation Study Using a Non-Gaussian Distribution

The simulation studies discussed above assume a Gaussian distribution for the expression levels. In order
to study the effect of non-Gaussian distribution of microarray data, the Gaussian distribution is replaced by
the t-distribution with n − 1 degrees of freedom in the simulation setting, where n is the total number of
arrays. We consider both equal sample sizes (i.e., three arrays per groups) and unequal sample sizes (i.e.,
and three, four, five, and six for the four treatments, respectively).
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Fig. 14 Simulation with t-distribution and equal sample sizes. a: Power vs. FDR; b: Power vs. FDR0 (small-variance
genes); c: Power vs. FDR1.

−s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  

0.0
0.6

setting 1 setting2 setting 3 setting 4FDR

−s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  

0.0
0

0.2
0

FDR0

−s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  

0.0
0.6

FDR1

−s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  −s0 +s0 BH  

0.0
0.6

Power

Fig. 15 Simulation with t-distribution and equal sample sizes. a: Boxplots of the FDR using the SAM without the
fudge factor (-s0) and with the fudge factor (+s0), and permutation approach (BH); b: boxplots of the FDR0 (small-
variance genes); c: boxplots of the FDR1; d: boxplots of the power.
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Figure 14 plots the power vs. the FDR (including the FDR0 and FDR1). Compared with Figure 9, an
increase of the FDR and FDR0 can be observed. The increase of the overall FDR is due to the increase
of FDR0, which is no longer controlled at 0.05 as in the previous simulation studies. With the simulated
t-distributed data, the FDR0 increases and ranges between 0.1 and 0.23 (the largest value obtained for the
setting in which there are no small variance genes).

Figure 15 shows the distribution of the estimated FDR, FDR0, FDR1 and power, respectively. The
variability of the distribution is comparable to that reported in Sections 7.2.2 and 7.2.3.
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Fig. 16 Simulation with t-distribution and unequal sample sizes. a: Power vs. FDR; b: Power vs. FDR0 (small-
variance genes); c: Power vs. FDR1.
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Fig. 17 Simulation with t-distribution and unequal sample sizes. a: Boxplots of the FDR using the SAM without
the fudge factor (-s0) and with the fudge factor (+s0), and permutation approach (BH); b: boxplots of the FDR0

(small-variance genes); c: boxplots of the FDR1; d: boxplots of the power.

Similar results are observed (Figure 16 and 17) for the setting with the unequal sample sizes (i.e., three,
four, five, and six arrays per treatment group).
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8 Discussion

The aim of the microarray experiment presented in this paper was to find genes whose expression levels
differentiated between any of treatments and the control. Such genes were useful as indicators for the
active treatment effect. In terms of the multiplicity adjustment, such an experiment required an adjustment
for comparisons within a gene (treatment versus control) and an adjustment for testing of thousands of
genes. In this paper, we considered four approaches, which addressed the two dimensional testing problem
simultaneously. The analysis of the case study revealed substantial differences between the different meth-
ods used for the multiplicity adjustment. The SAM procedure with the fudge factor led to the least number
of significant findings as compared to the other three procedures, while the SAM without the fudge factor
resulted in the largest number of significant discoveries. This difference motivated the simulation studies
discussed in Section 7.

The performance of the Dunnett’s approach, permutation approach, and the SAM method with and
without the fudge factor were compared in the first simulation study (for the case where genes with small
variance were not present). We showed that with a small sample size (three arrays per treatment group)
the SAM approach without the fudge factor preformed better with respect to power and identification of a
larger number of truly significant comparisons between several treatments with the control. When sample
size increased, the FDR obtained for the four approaches was well controlled and the power obtained by
all approaches was comparable.

The second question of interest was the capability of the SAM procedure to control the FDR for the non-
differentially expressed genes with small variances. We showed in the simulation study that the overall
FDR cannot be controlled even when the proportion of such genes was relatively small. Moreover, we
showed that when the FDR was decomposed to the FDR0 and FDR1, there was no problem to control
the FDR0 (regardless of the proportion of non-differentially expressed genes with a small variance), but
the FDR1, associated with the small-variance genes, was not well controlled. When the proportion of
the small-variance genes increased, the SAM with the fudge factor was either no longer having the same
power as the SAM without the fudge factor or was not controlling the FDR at the desired level. Thus, the
automatic selection of the fudge factor did not guarantee the power and the FDR of the SAM procedure at
the desired level.

Moreover, we investigated the effect of unequal sample sizes on the FDR and the power of the con-
sidered approaches. For the permutation approach, the power of the test increased due to the increased
number of simulated arrays (three, four, five and six arrays for four treatment groups, respectively). Simi-
lar conclusion can be drawn based on the simulation results.

Finally, we investigated the influence of non-Gaussian distribution of expression levels on the FDR and
the power of the considered approaches. The expression levels were generated using the t-distribution. We
noted that the FDR0 increased from 0.05 to the range between 0.1 and 0.23 (depending on the setting),
while the FDR1 remained between 0.15 and 0.19, which was comparable in all the simulation studies. This
pattern is a topic for further investigation.

Different ways of selecting the fudge factor are discussed by Wu (2005), Broberg (2003), Efron et al.
(2001), and Efron and Tibshirani (2002). In addition, a mixture model for the variance can be used to detect
genes with small variance and to estimate the proportion m1

0/m. A comparison between the methods for
selecting the fudge factor is currently under investigation and will be presented in a separate paper.
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