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ABSTRACT

The drayage of containers in the service area of an in-
termodal barge terminal is modelled as a full truckload
pickup and delivery problem with time windows (FT-
PDPTW). Initial solutions are generated with an inser-
tion heuristic and improved with three local search oper-
ators. In a post-optimization phase the three search op-
erators are integrated in a deterministic annealing (DA)
framework. The mechanism of the heuristic procedures
is demonstrated with a numerical example. A sensitivity
analysis indicates that the DA algorithm is robust with
respect to variations in threshold value and quality of
the initial solution.

INTRODUCTION

Intermodal transport has grown into a dynamic trans-
portation research field. Many new intermodal research
projects have emerged. Intermodal transport integrates
at least two modes of transport in a single transport
chain, without a change of container for the goods, with
most of the route traveled by rail, inland waterway or
ocean-going vessel and with the shortest possible initial
and final journeys by road (Macharis and Bontekoning
(2004)). An overview of planning issues in intermodal
transport and solution methods proposed in scientific
literature is given by Caris et al. (2008). Intermodal
planning problems are more complex due to the in-
clusion of multiple transport modes, multiple decision
makers and multiple types of load units. Two strategic
planning problems, terminal design and infrastructure
network configuration, have received an increased
attention in recent years. Yet the number of scientific
publications on other intermodal planning problems,
especially at the operational decision level, remains
limited or non-existent. This paper discusses an
operational planning problem in intermodal transport.
Pre- and end-haulage of intermodal container terminals

involves the pickup or delivery of containers at customer
locations. Road transport constitutes a relatively large
share of intermodal transport costs. The attractiveness
of intermodal transport can be increased by organizing
the road segment in the intermodal transport chain
more efficiently.

The drayage of containers in the service area of an in-
termodal terminal may be modelled as a Full Truck-
load Pickup and Delivery Problem with Time Windows
(FTPDPTW). Savelsbergh and Sol (1995) review the
general Pickup and Delivery Problem (PDP). The PDP
is an extension to the classical Vehicle Routing Prob-
lem (VRP) where customers may both receive and send
goods. A fleet of vehicles is required to pickup and/or
deliver goods at customer locations. A delivery activity
to a consignee starts from the intermodal terminal with
a full container and a pickup activity returns a container
to the intermodal terminal for shipment by barge. In
the Full Truckload Pickup and Delivery Problem (FT-
PDPD) a vehicle carries a single load. In the operational
planning problem under investigation, a full truckload is
assumed to be a single container. A recent overview of
state-of-the-art research on pickup and delivery prob-
lems between customers and a depot is presented by
Parragh et al. (2008). Only less-than-truckload prob-
lems are covered by the authors. Gronalt et al. (2003)
study the problem of transporting full truckloads be-
tween distribution centres. In their Pickup and Deliv-
ery Problem with Time Windows (PDPTW) goods are
transported between customer locations, as opposed to
our problem definition where all containers either origi-
nate or return to the terminal. A full truckload PDPTW
is also considered by Currie and Salhi (2003) and Currie
and Salhi (2004). The problem studied in these papers
also differs from our setting with respect to the defi-
nition of customer requests. Goods have to be picked
up at works of a construction company and delivered to
customers. Wang and Regan (2002) propose a hybrid
approach to solve a PDP containing one or more inter-
modal facilities. Only pickup time windows are consid-
ered and the number of vehicles is fixed. The authors
apply time window discretization in combination with a



branch and bound method. The closest related article
to our research is written by Imai et al. (2007). The
authors present a heuristic based on Lagrangian relax-
ation for the drayage problem of intermodal container
terminals, without taking customer time windows into
account.
The remainder of this paper is organized as follows.
First, the problem formulation is given and a lower
bound is proposed. Next, a multi-start local search
heuristic is presented to generate an initial solution.
This solution is further optimized by a deterministic an-
nealing algorithm. A numerical example demonstrates
both heuristic methods. Finally, conclusions are drawn
and directions for future research are given.

PROBLEM FORMULATION

The FTPDPTW can be formulated in terms of a
Vehicle Routing Problem with full container load.
Assuming a homogeneous container type and size, the
problem is to find an assignment of delivery and pickup
customers to a fleet of vehicles, in order to minimize the
total cost of serving all customers, which includes fixed
vehicle costs and travelling costs. In accordance with
Dumas et al. (1991), a fixed vehicle cost is introduced
to minimize the fleet size. Each vehicle used incurs a
fixed cost, which may vary with the vehicle. Fixed costs
include depreciation of own vehicles or leasing costs
if the vehicle is hired, insurance payments and fixed
costs for hiring an extra truck driver. Travelling costs
are proportional to the total time necessary to serve
all customers, which implies travelling time and truck
waiting time at customer sites. All orders are assumed
to be known in advance, so the problem is studied in
a static environment. An intermodal terminal is open
during a pre-specified daily time window. All trucks k
have to return to the terminal before the end of their
depot window (0, Tk). Hard time windows at customer
locations are assumed.

The FTPDPTW is defined on a graph G = (V0, A),
where V0 represents the node set. V is the set of all
customers, V D is the set of delivery customers, V P is
the set of pick-up customers and {0} is the singleton
representing the depot.

V0 = V ∪ {0}
V = V D ∪ V P

V D ∩ V P = ∅

The set of arcs A consists of two types of connections.
Arcs either connect the depot with a customer location
or provide a connection between two customer locations.
Feasible vehicle routes then correspond to paths starting
at the depot 0, travelling through arcs connecting cus-
tomer locations and returning to the depot 0. Only at
the beginning and at the end of a route an arc is used to

connect a customer location with the depot. The logic of
pickup and delivery customers is incorporated in the def-
inition of travel times dij of arcs between customer loca-
tions. The travel time dij of arcs between two customer
locations depends on the type of customers served. Four
combinations of customers are possible: first a delivery
then a pickup customer, two delivery customers con-
secutively, two pickup customers consecutively or first
a pickup and then a delivery customer. Only when a
pickup customer is served after a delivery customer a
truck can drive directly from one customer location to
the other. The travel time dij equals the time neces-
sary to move directly from the delivery customer to the
pickup customer tij .

dij = tij

In the other three customer combinations the truck first
has to return to the depot before serving the second
customer. In this case the travel time dij is set equal
to the time necessary to travel from the first customer
to the depot and then from the depot to the second
customer.

dij = ti0 + t0j

In this way, the problem can be modelled as a vehicle
routing problem with time windows, as described by
Cordeau et al. (2007). To formulate the problem the
following notation is used:

K = set of trucks
xijk = 1 if customer i and customer j are served
consecutively by truck k, else 0
yk = 1 if truck k is used, else 0
Cijk = travelling cost of arc (i, j) by truck k
FCk = fixed cost of truck k for a single route
Ei = earliest start time of customer i
Li = latest start time of customer i
bi = actual time service at customer i begins
si = service time of delivery i
dij = travel time from customer i to customer j
Tk = time capacity of truck k
t0j = travel time from terminal 0 to customer j
tij = travel time directly from delivery i to pickup j
ti0 = travel time from customer i to terminal 0

Min
∑

i∈V0

∑

j∈V0
i 6=j

∑

k∈K

Cijkxijk +
∑

k∈K

FCkyk

subject to



∑

j∈V0

∑

k∈K

xijk = 1 ∀i ∈ V (1)

xijk ≤ yk ∀i, j ∈ V0,

i 6= j, k ∈ K (2)
∑

i∈V0

xijk −
∑

i∈V0

xjik = 0 ∀j ∈ V, k ∈ K (3)

Ei ≤ bi ≤ Li ∀i ∈ V (4)

∑

k∈K

xijk · (bi + si + dij − bj) ≤ 0 ∀i, j ∈ V (5)

∑

k∈K

x0jk · d0j ≤ bj ∀j ∈ V (6)

xi0k · (bi + si + di0 − Tk) ≤ 0 ∀i ∈ V, k ∈ K (7)
∑

j∈V

x0jk ≤ 1 ∀k ∈ K (8)

xijk ∈ {0, 1} ∀i, j ∈ (V0),
i 6= j, k ∈ K (9)

yk ∈ {0, 1} ∀k ∈ K (10)
bi ≥ 0 ∀i ∈ V (11)

The objective function minimizes total costs of serving
all customers. A fixed vehicle cost FCk is incurred for
each truck k used. The variable cost Cijk represents the
cost of serving customer j immediately after customer
i, depending on the travel time and possibly waiting
time in case a pickup customer is served directly after
a delivery customer. Constraints (1) ensure that each
customer is visited exactly once. Constraints (2) avoid
to assign customers to unused vehicles. Flow conser-
vation is enforced by constraints (3). Time windows
at customer locations are stated in the fourth set of
constraints (4). Expressions (5) and (6) enforce the
consistency of time variables bi. Hard time windows
are also imposed on the total service time of a route k
by constraints (7). Finally, constraints (8) guarantee
that each vehicle is used at most once.

LOWER BOUND

The VRP belongs to the class of NP-hard problems.
Since exact models are only able to solve relatively
small problems, heuristics are used in practice to
solve problems of realistic size. A lower bound is
proposed to analyze the performance of the heuristics
presented next. According to Cordeau et al. (2007)
the LP relaxation of the VRPTW provides a weak
lower bound. An alternative formulation is given in
this section to be able to calculate a better lower
bound for the optimal solution. In this formulation
delivery customers are always indicated with index

i and pickup customers with index j. Each route k
consists of a number of trips executed by a single
truck k within the time window (0,Tk). Let a trip
be represented as a pair (i, j) where i represents a
delivery customer and j a pickup customer. Pickup
and delivery customers can be combined or can be
served separately. In the case only a delivery customer
belongs to a trip, the pair is written as (i, 0). If only a
pickup customer belongs to the trip, the pair is written
as (0, j). In the latter two cases either the delivery
point or the pickup point is represented by the depot
0. This leads to the following alternative notation. All
other symbols used, maintain the same interpretation as
in the exact problem formulation (formulation (1)-(11)).

V D
0 = set of delivery points including the depot 0

V P
0 = set of pickup points including the depot 0

xijk = 1 if delivery i and pickup j are served in one trip
by truck k, else 0
CRijk = cost of serving pair (i, j) by truck k
RSij = time necessary to serve pair (i, j)
Ei = earliest start time of delivery i
Li = latest start time of delivery i
Ej = earliest start time of pickup j
Lj = latest start time of pickup j
bi = actual time delivery i begins
bj = actual time pickup j begins
t0i = travel time from terminal 0 to delivery i
tij = travel time from delivery i to pickup j
tj0 = travel time from pickup j to terminal 0
si = service time of delivery i
sj = service time of pickup j

Min
∑

i∈V D
0

∑

j∈V P
0

i+j 6=0

∑

k∈K

CRijkxijk +
∑

k∈K

FCkyk

subject to

∑

i∈V D
0

∑

k∈K

xijk = 1 ∀j ∈ V P (12)

∑

j∈V P
0

∑

k∈K

xijk = 1 ∀i ∈ V D (13)

xijk ≤ yk ∀i ∈ V D
0 , j ∈ V P

0 ,

i + j 6= 0, k ∈ K (14)

Ei ≤ bi ≤ Li ∀i ∈ V D (15)

Ej ≤ bj ≤ Lj ∀j ∈ V P (16)

∑

k∈K

xijk · (bi + si + tij − bj) ≤ 0 ∀i ∈ V D,

j ∈ V P (17)
∑

i∈V D
0

∑

j∈V P
0

RSij · xijk ≤ Tk ∀k ∈ K (18)



xijk ∈ {0, 1} ∀i ∈ V D
0 , j ∈ V P

0 , k ∈ K (19)
yk ∈ {0, 1} ∀k ∈ K (20)

bi, bj ≥ 0 ∀i ∈ V D, j ∈ V P (21)

In the objective function the variable cost CRijk rep-
resents the cost of performing the complete trip (i, j)
by truck k, including the costs incurred by truck k to
leave and return to the depot. Equations (12) and (13)
guarantee that all pickups and deliveries are visited only
once. Constraints (14), (15), (16) and (17) are similar
to constraints (2), (4) and (5) in the exact formulation.
Time windows for the availability of trucks are expressed
by constraints (18). The time necessary to perform trip
(i, j) is given by the expression:

RSij = t0i + tij + tj0 + si + sj + MINWAITij .

The minimum waiting time between delivery customer
i and pickup customer j equals:

MINWAITij =
{

0 if Ej ≤ Li + si + tij
Ej − (Li + si + tij) else.

In this formulation the feasibility of the routes is re-
laxed. If two trips share the same resource (the same
vehicle), it is not ensured that the time intervals over
which both trips require the resource do not overlap
in time. Consequently the lower bound represents the
variable costs of optimally combining delivery customers
with pickup customers, but underestimates the number
of vehicles necessary to perform the selected trips. The
lower bound formulation leads to fewer constraints and
variables and thus converges more quickly to an integer
solution.

MULTI-START LOCAL SEARCH HEURISTIC

In the pre- and end-haulage of intermodal containers
substantial cost and time savings may be realized by
merging pickup and delivery customers in a single trip,
as presented in figure 1. A heuristic procedure based on
merging pickup and delivery customers is used to con-
struct initial solutions. The insertion heuristic is briefly
presented here to better understand the deterministic
annealing algorithm. A detailed description and numer-
ical example can be found in Caris and Janssens (2007).
Three local search neighbourhoods are defined to im-
prove initial solutions.

Insertion heuristic

In this section a two-phase insertion heuristic is de-
scribed to create initial solutions. In a first phase,
pickup and delivery customers are combined into pairs of
customers. Due to the existence of hard time windows,
not every pickup customer and delivery customer can be
combined into a feasible pair. A limit is also imposed on
the waiting time between delivery i and pickup j. This

(3)

Individual trips Merged trip

: Depot

: Pickup point

: Delivery point

: loaded run

: empty run

(1) (2)

Figure 1: Merging trips

eliminates pairs of customers that are too far away from
each other in time. A very large waiting time between
the delivery location and pickup location will typically
be cost inefficient in road haulage. In forming pairs of
pickups and deliveries, both spatial and temporal as-
pects are to be taken into account. The pairs of pickup
and delivery customers are ranked according to four cri-
teria. The time window slack between customers i and
j should be as small as possible (criterion 1). Savings in
travel time obtained from serving delivery i and pickup
j together should be as large as possible (criterion 2).
An opportunity cost for not choosing the best combina-
tion for a delivery i or pickup j can also be taken into
account. Gronalt et al. (2003) argue that this regret ap-
proach leads to significant improvements in the best so-
lution. The opportunity cost OC1i (respectively OC1j)
can be defined as the difference in savings in travel time
achieved by the best pair for delivery i (pickup j) and
the currently selected pair (criterion 3). Finally, the
opportunity cost related to the time window slack is in-
corporated in the selection criterion. This opportunity
cost OC2i (respectively OC2j) is defined as the differ-
ence between the time window slack of the current com-
bination and the smallest time window slack of delivery
i (pickup j) in any combination (criterion 4). These four
criteria are aggregated by making use of weights. The
pair of pickup and delivery customers with the lowest
value for the following criterion is selected first:

w1 · (Lj − Ei − si − tij) + w2 · (tij − ti0 − t0j)
+ w3 · (OC1i + OC1j) + w4 · (OC2i + OC2j). (22)

The weights w1, w2, w3 and w4 reflect the importance
given to each criterion and serve as parameters of the
insertion heuristic. The domain of the weights is not
fixed. The ratio between the weights influences the
importance of each criterion. Depending on the nature
of the problem, more weight should be given to savings



in waiting time or savings in travel time. The weights
in the insertion heuristic are only used to construct an
initial solution, which will be further improved by the
local search procedure described below. The process
of pairing customers is repeated until no more feasible
combinations exist with respect to the remaining pickup
customers and delivery customers. The remaining cus-
tomers are inserted into individual trips and form an
imaginary pair with a dummy customer.

In a second phase routes are constructed sequentially.
Vehicles are used in increasing order of their fixed costs
FCk. Pairs of customers are eligible to be inserted into
routes in increasing order of their latest start time. A
pair of customers can be inserted into an existing route
k if it can start later than the time necessary to serve
the customers already assigned to the vehicle k and if
the vehicle is able to return to the terminal within its
depot window. In case insertion into multiple existing
routes is feasible, the pair of customers is added to the
existing route with the smallest waiting time between
the previous pair. If no insertions into existing routes
are feasible, the pair of customers is assigned to an un-
used vehicle to create a new route.

Improvement heuristic

A local search procedure is applied to improve a feasi-
ble solution obtained by the insertion heuristic. Three
neighborhoods are defined, as presented in figure 2.
First, the CROSS operator recombines pairs of cus-
tomers of different routes. This operator improves the
result of the pairing phase in the insertion heuristic. A
second operator, COMBINE, joins two routes into one.
Finally, customers are removed from a route and in-
serted into another route by the INSERT operator. The
latter two search neighbourhoods affect the result of the
route construction phase of the insertion heuristic.

INSERT operator

CROSS operator

COMBINE operator

Figure 2: Improvement heuristic

The CROSS operator selects two pairs of pickup and
delivery customers, for example (g, h) and (i, j) from
two different routes. These pairs are recombined into
new pairs of pickup and delivery customers, (g, j) and

(i, h). First, all feasible CROSS moves are listed. A
CROSS move is feasible if the pickup customers and
delivery customers can be combined into new pairs,
taking into account their time windows. Second, it is
checked whether the new pairs of customers can be
reinserted into the routes. Either (g, j) is inserted into
the first route and (i, h) into the second or the other
way round. In the local search heuristic the CROSS
move with the largest improvement is selected. If a
resulting route only contains dummy customers, this
route is removed from the solution and the number of
trucks necessary is reduced by one. The COMBINE
operator checks whether two routes served by different
trucks can be combined into a single route. Whereas
the first operator reduces the travelling costs in the
objective function, the COMBINE operator is able
to reduce the number of trucks. Two routes can be
combined if the last pair of the first route can be served
before the latest starting time of the second route. The
third operator, INSERT, removes pairs of pickup and
delivery customers from their routes and reinserts them
into another route. The INSERT operator attempts
to eliminate routes, by inserting their customers into
other routes. Pairs of customers can be inserted in the
beginning of a route, between pairs of customers or at
the end of a route. Similar to the COMBINE operator,
this operator also impacts the number of trucks used
and consequently the fixed vehicle costs in the objective
function. These neighbourhood mechanisms are subsets
of the general λ-interchange mechanism, described by
Osman and Wassan (2002). The CROSS operator
is an example of a 1-interchange mechanism, which
involves only a single customer of each route. Due
to the CROSS operator, two routes may exchange
either pickup customers or delivery customers of two
pairs simultaneously. The INSERT operator represents
a 2-consecutive-node interchange mechanism. Two
consecutive customers which constitute a pair in a
single route are shifted to another route. Similarly, the
COMBINE operator may be seen a n-consecutive-node
interchange mechanism.

A multistart approach using different values for the
weights in selection criterion (22) of the insertion heuris-
tic may be applied to obtain the best overall solution.

DETERMINISTIC ANNEALING

A deterministic annealing algorithm is applied in a
post-optimization phase to further improve on solutions
found by the multistart local search heuristic. Deter-
ministic annealing (DA), also referred to as ’threshold
accepting’, is introduced by Dueck and Scheuer (1990)
as a deterministic variant of simulated annealing (SA).
In each step of an SA algorithm a new solution S′ is
generated in the neighbourhood of the current solution
S. If the new solution has a better objective value, it



is accepted automatically. If it is worse, it is accepted
only with a certain probability. The probability of
acceptance e−∆/T depends on the change in objective
value ∆ = C(S′) − C(S) and a parameter T , called
temperature. The temperature T is updated according
to a certain annealing schedule. In the beginning of
the search T is set at a level with a high probability
of accepting worse solutions. Gradually, the prob-
ability of accepting deteriorations is lowered, until
only improvements are accepted. A great variety of
annealing schedules exist in literature. However, Dueck
and Scheuer (1990) state that in most applications
the success of SA is very sensitive against the choice
of annealing schedule. Deterministic annealing offers
a greater simplicity. The difference between SA and
DA lies in the different acceptance rules. In DA a
neighbouring solution with a worse objective value than
the current solution is accepted if the deterioration
∆ = C(S′)−C(S) is less than a deterministic threshold
value T .

Applications of DA to vehicle routing problems can be
found amongst others in Tarantilis et al. (2004) and
Bräysy et al. (2008). DA is applied to the problem
formulation described in this paper based on the im-
plementation strategy of Bräysy et al. (2008). The final
solution of the multistart local search heuristic serves
as initial solution for the DA algorithm, presented in
Algorithm 1.

Algorithm 1 Deterministic annealing for FTPDPTW
Set best solution of multistart local search heuristic
as current best solution Sbest of DA
Set T = Tmax and ilast = 0
for i=1 to nimprove do

Choose two random starting routes
for All route pair combinations do

Apply CROSS
Apply COMBINE
Apply INSERT

end for
if C(S′) < C(Sbest) then

Set Sbest = S′ and ilast = i
else

if T ≤ 0 and i− ilast ≥ n̄ then
Restart from Sbest:
Set S′ = Sbest, ilast = i and T = r · Tmax

else
if T ≤ 0 then

Set T = r · Tmax

else
Set T = T −∆T

end if
end if

end if
end for

The three local search neighbourhoods CROSS, COM-
BINE and INSERT are integrated in a deterministic an-
nealing framework. Routes are searched in a fixed order,
but at the beginning of each iteration the starting point
of the search is randomly chosen. Neighbouring solu-
tions with a worse objective value are accepted when
∆ = C(S′) − C(S) is less than the threshold value T .
For each pair of routes at most one move for each lo-
cal search operator is accepted in each iteration. In the
DA algorithm a first-accept strategy is applied, whereas
in the local search heuristic in the previous section the
best move was chosen. The threshold value is initially
set at a maximum value Tmax. In each iteration with-
out any improvement in objective function value T is
lowered with ∆T units. The threshold value is reset to
r ·Tmax whenever it reaches zero, with r a random num-
ber between 0 and 1. When after a predefined number
of iterations n̄ no improvements have been found and T
reaches 0 again, the algorithm restarts from the current
best solution Sbest found. The process is repeated for
nimprove number of iterations.

NUMERICAL EXAMPLE

A numerical example is discussed to demonstrate
the mechanism of the heuristic procedures. In this
example an intermodal terminal has to pickup or deliver
containers to a hundred customer sites. The terminal
is open during eight hours per day. Service at customer
sites takes eight minutes. The problem is studied in a
deterministic environment. Travel times, waiting times
and service times are therefore assumed to be constant.
Customer locations are randomly selected with x- and
y-coordinates between zero and 25. Time windows at
customer locations are randomly chosen between 60
and 120 minutes. The terminal cooperates with a single
haulier for performing the road segment of intermodal
transport requests. Therefore, travelling costs and fixed
vehicle costs are assumed equal for all vehicles. A fixed
vehicle cost of 10 is charged per vehicle in use.

In the insertion heuristic a maximum waiting time be-
tween delivery customers and pickup customers of 30
minutes is allowed. A multistart approach is applied,
varying the weights in selection criterion (22). The
weights are altered from zero to 100 with increases of
five units. The weights always sum up to 100. The best
overal solution is obtained with the weights reported in
table 1. A large weight is given to the opportunity costs
of savings in travel time. No weight is allocated to the
time window slack between customers or opportunity
costs of time window slack.
Table 2 presents the variable cost (VC) or travelling
cost, fixed vehicle cost (FC) and total cost (TC) of the
best overall solution after applying the insertion heuris-
tic and the three local search neighbourhoods. The
insertion heuristic serves to provide an initial solution



w1 w2 w3 w4

0 20 80 0

Table 1: Weights best overall solution multistart local
search heuristic

quickly. This initial solution is strongly improved by
the three local search operators. The CROSS operator
reduces the variable cost, whereas the two other oper-
ators are aimed to decrease the fixed vehicle cost. The
final total cost differs only 1.94% from the lower bound.
In the lower bound solution less vehicles are required,
due to the relaxation of route feasibility with respect to
the customer time windows.

VC FC TC
Insertion heuristic 2903 90 2993
CROSS 2768 90 2858
COMBINE 2768 90 2858
INSERT 2768 70 2838
Lower bound 2734 50 2784

Table 2: Multistart local search heuristic

Deterministic annealing is applied as a post-optimizer
to further reduce the total cost of this solution. In the
DA algorithm the number of iterations nimprove is fixed
at 200. The algorithm is restarted from the current best
solution Sbest after 10 iterations without any improve-
ments n̄ with the threshold value at zero. The maxi-
mum threshold value Tmax equals two, with a change
in threshold value ∆T of 0.025. Results of three inde-
pendent runs of the DA algorithm are given in table 3.
The DA algorithm finds further reductions in travelling
costs. The three runs show similar results with a gap of
around 1% between the heuristic solution and the lower
bound.

Run 1 Run 2 Run 3
VC 2737 2740 2748
FC 70 70 70
TC 2807 2810 2818
Gap 0.82% 0.93% 1.22%

Table 3: Deterministic annealing algorithm

Figure 3 presents a sensitivity analysis to determine
the maximum threshold value Tmax. The maximum
threshold value is varied from zero to five with intervals
of size 0.2. Three independent test runs are performed
for each value. The vertical axis shows the percentage
deviation of the median objective function value with
respect to the lowest total cost over all threshold
values and test runs. A maximum threshold value
of at least 1.4 is appropriate to obtain the lowest

percentage deviation. Maximum threshold values less
than one do not allow enough diversity in the search
process. Only minor deviations are found over all
threshold values, which indicates that the DA algo-
rithm is robust for changes in maximum threshold value.

 0
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Figure 3: Sensitivity analysis of Tmax

In figure 4 the influence of parameter ∆T on the
solution quality is investigated in a similar way. The
maximum threshold value is held constant at Tmax = 2.
Only small deviations from the lowest objective func-
tion value are measured, showing the robustness of the
DA algorithm for changes in ∆T .
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Figure 4: Sensitivity analysis of ∆T

In table 4 multiple initial solutions are tested for the de-
terministic annealing algorithm. Ten different initial so-
lutions are generated by assigning the values in columns
one to four to the weights in selection criterion (22).
For each initial solution three independent test runs are
performed. The fifth column (TC) mentions the me-
dian objective function value. The percentage deviation



from the minimum value is reported in column six (%
dev). The total costs differ only slightly. A comparison
of table 4 with table 3 shows that the lowest overall cost
results from the best solution generated by the multi-
start local search heuristic.

w1 w2 w3 w4 TC % dev
1 0 4 5 2845 0.23
1 0 8 1 2838 0.00
3 2 1 4 2842 0.14
3 3 2 2 2839 0.05
2 6 3 0 2839 0.05
0 0 6 4 2850 0.42
1 4 4 1 2845 0.23
3 1 3 3 2838 0.00
5 0 1 4 2850 0.42
3 1 4 2 2849 0.38

Table 4: Sensitivity analysis of initial solution

CONCLUSIONS AND FUTURE WORK

In this paper a deterministic annealing algorithm is pre-
sented to find near optimal solutions for the drayage of
containers in the service area of intermodal terminals.
The DA algorithm is based on three local search oper-
ators, CROSS, COMBINE and INSERT. A preliminary
analysis is performed with a numerical example. The
DA algorithm generates good quality solutions indepen-
dent of the quality of the initial solution. In the future
computational experiments will be set up to confirm the
robustness of the algorithm with respect to variations in
problem characteristics.
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