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Abstract. In this paper we study the nonparametric estimation of two impor-

tant functionals of the residual lifetime beyond some fixed or random timepoint:

the mean and any quantile. The observations are subject to random right censoring
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totic representations and asymptotic normality results for the proposed estimators.

Several results in the literature are thereby generalized to the regression context.
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1 Introduction

The mean and median of the residual lifetime have been studied extensively in the

reliability and survival analysis literature. They are defined as the mean and median

of the remaining lifetime after a given time t, conditional on survival upon that time

t. Several papers deal with the nonparametric estimation of these functionals, based

on a random sample of possibly right censored lifetimes. For example Yang (1977,

1978), Hall and Wellner (1981), Ghorai et al (1982), Gill (1983) studied the mean

residual lifetime estimator in the general right random censorship model. Ghorai

and Rejtő (1987) considered the situation where the censoring scheme follows a

Koziol-Green model (Koziol and Green (1976)). For the estimation of quantiles of

the residual lifetime under random censorship, we mention Csörgő (1987). Also the

situation where the value of t is unknown and has to be estimated from the data, is

important (see Ahmad (1999), Veraverbeke (2001)).

In the present paper, several of the results in the references above will be generalized

to a regression context. This situation often occurs in practice when together with

the (possibly censored) lifetime, also another variable (covariate) is measured for

each observation, e.g. the blood pressure in the case of a medical study. Our results

allow to estimate the mean or median of the residual lifetime, conditional on survival

upon a given time t and at a given value of the covariate. It is clear that our method

will involve smoothing in the covariate space: lifetimes with covariates close to the

given covariate value of interest should have a large contribution in the estimation

procedure.

After some preliminaries in Sections 2 and 3, we deal with quantiles in Sections 4

and 5 and with the mean in Sections 6 and 7.

2 Nonparametric regression with censored data

We will describe our regression results in the situation of fixed design points 0 ≤
x1 ≤ x2 ≤ . . . ≤ xn ≤ 1 at which we observe independent and nonnegative responses
Y1, . . . , Yn, respresenting lifetimes. Denote Fxi(t) = P (Yi ≤ t) for the distribution
function of the lifetime Yi at xi. It will often occur that the responses Y1, . . . , Yn

are subject to random right censoring, i.e. the observed random variables at design

points xi are in fact Ti and δi (i = 1, . . . , n) with Ti = min(Yi, Ci) are δi = I(Yi ≤
Ci), where C1, . . . , Cn are independent and nonnegative censoring variables with

distribution functions Gxi(t) = P (Ci ≤ t). We will assume independence of Yi and
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Ci for each i.

Consequently we have that the distribution function Hxi(t) = P (Ti ≤ t) satisfies the
relation 1−Hxi(t) = (1− Fxi(t))(1− Gxi(t)). At a given design value x ∈]0, 1[, we
put Fx, Gx, Hx for the distribution function of respectively the lifetime Yx at x, the

censoring variable Cx at x and Tx = min(Yx, Cx). We will also write δx = I(Yx ≤ Cx).
(Note that for the design variables xi we write Yi, Ci, Ti, δi instead of Txi , Cxi , Txi,

δxi).

The conditional residual lifetime distribution is defined as Fx(y | t) = P (Yx− t ≤ y |
Yx > t), i.e. the distribution function of the residual lifetime, conditional on survival

upon a given time t and at a given value of the covariate x. For any distribution

function F , we denote by TF the right endpoint of the support of F . Then for

0 < y < TFx we have that

Fx(y | t) = Fx(t+ y)− Fx(t)
1− Fx(t) .

The mean conditional residual lifetime is defined as

µx(t) = E(Yx − t | Yx > t) =
∞

t

y
dFx(y)

1− Fx(t) − t =
∞

t

1− Fx(y)
1− Fx(t) dy. (1)

An alternative to µx(t) is the median conditional residual lifetime. We define, more

generally, for 0 < p < 1, the p-th quantile of Fx(y | t):

Qx(t) = F
−1
x (p | t) = inf{y : Fx(y | t) ≥ p} = −t+ F−1x (p+ (1− p)Fx(t)) (2)

where, for any 0 < q < 1, we write F−1x (q) = inf{y : Fx(y) ≥ q} for the q-th quantile
of Fx.

3 Nonparametric estimation of the conditonal dis-

tribution function and quantile fucntion

Estimation of µx(t) and Qx(t) on the basis of the observations (Ti, δi) (i = 1, . . . , n)

will be done by replacing Fx and F
−1
x in (1) and (2) by corresponding empirical

versions Fxh and F
−1
xh , where Fxh is the Beran estimator (Beran (1981)). This

estimator for Fx(t) is a generalization of the Kaplan-Meier estimator (Kaplan and

Meier (1958)) and is sometimes called the conditional Kaplan-Meier estimator. The
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Beran estimator Fxh involves smoothing weights wni(x;hn), which we take of the

Gasser-Müller type:

wni(x;hn) =

xi

xi−1

1

hn
K

x− z
hn

dz

xn

0

1

hn
K

x− z
hn

dz (i = 1, . . . , n),

x0 = 0, K is a known probability density function, called the kernel, and {hn} is
a sequence of positive constants, tending to 0 as n → ∞, called the bandwidth
sequence. The Beran estimator is now given as

Fxh(t) = 1−

⎧⎪⎪⎪⎨⎪⎪⎪⎩T(i)≤t
⎛⎜⎜⎜⎝1− wn(i)(x;hn)

1−
i−1

j=1

wn(j)(x;hn)

⎞⎟⎟⎟⎠
δ(i)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ I(t < T(n)) (3)

where T(1) ≤ . . . ≤ T(n) are the ordered Ti and δ(1), . . . , δ(n) and wn(1)(x;hn), . . . ,
wn(n)(x;hn) are the corresponding δi and wni(x;hn). Note that this estimator re-

duces to the Kaplan-Meier estimator if we take the weights all equal to n−1. Also
note that in the case of no censoring (all Ti = Yi, all δi = 1), the formula (3) reduces

to Fxh(t) =
n

i=1

wni(x;hn)I(Yi ≤ t), which is the nonparametric estimator for Fx(t)
based on an uncensored sample Y1, . . . , Yn in the fixed design regression case (Stone

(1977)).

First some notations: for the design points x1, . . . , xn we write ∆n = min
1≤i≤n

(xi−xi−1)
and ∆n = max

1≤i≤n
(xi − xi−1) and for the kernel K we write K ∞ = sup

u∈IR
K(u),

K 2
2 =

∞

−∞
K2(u)du, µK1 =

∞

−∞
uK(u)du and µK2 =

∞

−∞
u2K(u)du.

On the design and on the kernel, we will assume the following regularity condi-

tions:

(C1) xn → 1, ∆n = O(n
−1), ∆n −∆n = o(n

−1)

(C2) K is a probability density function with finite support [−L0, L0] for some
L0 > 0, µ

K
1 = 0, and K is Lipschitz of order 1.

The results will also require typical smoothness conditions on the underlying dis-

tribution functions of the model. We formulate them on the distribution function

Hx(t) = P (Tx ≤ t) and on the subdistribution function Hu
x (t) = P (Tx ≤ t, δx = 1):
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(C3) Hx(t) and H
u
x (t) have second order partial derivatives with respect to t and

with respect to x, which are continuous in (x, t) ∈ [0, 1] × [0, T ], for some
T > 0.

Partial derivatives with respect to t will be denoted as Hx(t), Hx (t), ... and partial

derivatives with respect to x as Ḣx(t), Ḧx(t), . . .

Below we will use asymptotic representations for the Beran estimator Fxh and the

corresponding quantile estimator F−1xh . The representation for Fxh in Lemma 1 is
taken over from Theorem 2.1 in Van Keilegom and Veraverbeke (1997). The repre-

sentation for F−1xh (pn) in Lemma 2 is formulated here for random pn, tending to p at
a certain rate. The proof of Lemma 2 is not given since it parallels that of a similar

result in Gijbels and Veraverbeke (1988, Theorem 2.1).

Lemma 1. Assume (C1), (C2), (C3) in [0, T ] with T < THx , hn → 0,
logn

nhn
→ 0,

nh5n
log n

= O(1). Then, for t < THx ,

Fxh(t) = Fx(t) +
n

i=1

wni(x;hn)ψx(Ti, δi, t) + rn(x, t)

where

ψx(Ti, δi, t) = (1− Fx(t))
⎧⎨⎩

t

0

I(Ti ≤ s)−Hx(s)
(1−Hx(s))2 dHu

x (s)

+
I(Ti ≤ t, δi = 1)−Hu

x (t)

1−Hx(t) −
t

0

I(Ti ≤ s, δi = 1)−Hu
x (s)

(1−Hx(s))2 dHx(s)

⎫⎬⎭
and where sup

0≤t≤T
|rn(x, t)| = O (nhn)

−3/4(log n)3/4 a.s..

Lemma 2. Assume (C1), (C2), (C3) in [0, T ] with T < THx , hn → 0,
logn

nhn
→ 0,

nh5n
log n

= O(1). Assume that F−1x (p) < T and that fx(F
−1
x (p)) > 0 (where fx = Fx).

If {pn} is a sequence of random variables (0 < pn < 1) with pn−p = OP ((nhn)−1/2),
then, as n→∞,

F−1xh (pn) = F
−1
x (p) +

1

fx(F−1x (p))
pn − Fxh(F−1x (p)) + op((nhn)

−1/2).
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4 Estimation of quantiles of the conditional resid-

ual lifetime

From (2) it follows that the obvious estimator for Qx(t) is given by

Qxh(t) = −t+ F−1xh (p+ (1− p)Fxh(t)) (4)

where Fxh is the Beran estimator given in (3).

Denote qx = p + (1 − p)Fx(t) and qxh = p(1 − p)Fxh(t). Using Lemma 2 first and
then Lemma 1, we have that

Qxh(t)−Qx(t) = 1

fx(F−1x (qx))
(qxh − Fxh(F−1x (qx)) + op((nhn)

−1/2)

=
1

fx(F−1x (qx))
{qxh − qx − [Fxh(F−1x (qx))− Fx(F−1x (qx))]}+ op((nhn)−1/2

=
1

fx(F−1x (qx))

n

i=1

wni(x;hn (1− p)ψx(Ti, δi, t)− ψx(Ti, δi, F
−1
x (qx)) + op((nhn)

−1/2).

The mean and variance of the main term in this representation can be calculated

and the following result can be derived from this asymptotic representation (very

similar as in Van Keilegom and Veraverbeke (1997)).

Theorem 1. Assume (C1), (C2), (C3) in [0, T ] with T < THx . Assume that

F−1x (qx) < T and that fx(F
−1
x (qx)) > 0.

(a) If nh5n → 0 and (logn)3/(nhn)→ 0:

(nhn)
1/2(Qxh(t)−Qx(t)) d→ N(0;σ2x(t))

(b) If hn = Cn
−1/5 for some C > 0:

(nhn)
1/2(Qxh(t)−Qx(t)) d→ N(βx(t); σ

2
x(t)).

Here,

σ2x(t) = K 2
2

(1− p)2(1− Fx(t))2
f 2x(t+Qx(t))

t+Qx(t)

t

dHu
x (s)

(1−Hx(s))2

βx(t) = (1− p)bx(t)− bx(t+Qx(t))
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with

bx(t) =
1

2
C5/2µK2 (1− Fx(t))

t

0

Ḧx(s)dH
u
x (s)

(1−Hx(s))2 +
dḦu

x (s)

1−Hx(s) .

This theorem generalizes the result of Csörgő (1987) to the regression case.

5 Estimation of quantiles of the duration of old

age

In many studies like sociology, insurance, ... it is sometimes necessary to replace

t in Qx(t) by some estimator t. The variable t is then considered as an unknown

parameter, usually the starting point of ‘old age’. For example, t could be defined

through the proportion of retired people in the population, that is t = F−1x (p0) for

some known p0. This unknown t could then be estimated by t = F
−1
xh (p0).

Let t be some general estimator for t and consider the estimator (4) with t replaced

by t:

Qxh(t) = −t+ F−1xh (p+ (1− p)Fxh(t)).

Denote qxh = p + (1 − p)Fxh(t). Then, qxh − qx = (1 − p)(Fxh(t) − Fx(t)), and
Qxh(t)−Qx(t) = −(t− t) + (F−1xh (qxh)− F−1x (qx)). Now write

Fxh(t)− Fx(t) = {[Fxh(t)− Fxh(t)]− [Fx(t)− Fx(t)]}
+{Fxh(t)− Fx(t)}+ {Fx(t)− Fx(t)}.

To the first term on the right hand side we can apply the modulus of continuity

result in Van Keilegom and Veraverbeke (1997). To the second term we apply our

Lemma 1 and to the third term we apply a first order Taylor expansion. This gives

that

qxh − qx = (1− p){fx(t)(t− t) +
n

i=1

wni(x;hn)ψx(Ti, δi, t)}+ op((nhn)−1/2)

This, together with Lemma 2, leads to the following asymptotic representation for

Qxh(t)−Qx(t).

Theorem 2. Assume (C1), (C2), (C3) on [0, T ] with T < THx . Assume that t ≤ T ,
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F−1x (qx) < T and that fx(F
−1
x (qx)) > 0. Assume hn → 0, (logn)3/(nhn) → 0,

nh5n/ logn = O(1). Also assume that t− t = OP ((nhn)−1/2). Then, as n→∞,

Qxh(t)−Qx(t) = −1 + (1− p) fx(t)

fx(F−1x (qx))
(t− t)

+
1

fx(F−1x (qx))

n

i=1

wni(x;hn)[(1− p)ψx(Ti, δi, t)− ψx(Ti, δi, F
−1
x (qx))] + op((nhn)

1/2).

Example. If t = F−1x (p0) and t = F−1xh (p0), for some known p0, we can apply
Lemma 2 to t− t and from Theorem 2 we obtain that

Qxh(t)−Qx(t) =
n

i=1

wni(x;hn)
ψx(Ti, δi, F

−1
x (p0))

fx(F−1x (p0))
− ψx(Ti, δi, F

−1
x (qx)

fx(F−1x (qx))
+ op(nhn)

−1/2).

Bias and variance of the main term can be calculated and we obtain by standard

asymptotics the following limiting result.

Corollary. Let t = F−1x (p0), t = F
−1
xh (p0), q = p + (1 − p)p0. Assume (C1), (C2),

(C3) in [0, T ] with T < THx , hn → 0, F−1x (q) < T , fx(F
−1
x (q)) > 0, fx(F

−1
x (p0)) > 0.

(a) If nh5n → 0 and (logn)3/(nhn)→ 0:

(nhn)
1/2(Qxh(t)−Qx(t)) d→ N(0;σ2x(t))

(b) If hn = Cn
−1/5 for some C > 0:

(nhn)
1/2(Qxh(t)−Qx(t)) d→ N(βx(t), σ

2
x(t)).

Here,

σ2x(t) = K 2
2(1− p0)2

1

fx(F−1x (p0))
− 1

fx(F−1x (q)

2

γx(F
−1
x (p0))

+
(1− p)2

f 2x(F
−1
x (qx))

γx(F
−1
x (q))− γx(F

−1
x (p0))

2

with

γx(t) =

t

0

dHu
x (s)

(1−Hx(s))2 ; (5)

βx(t) =
bx(F

−1
x (p0))

fx(F−1x (p0))
− bx(F

−1
x (q))

fx(F−1x (q))

with bx(t) as in Theorem 1.
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6 Estimation of the mean conditional residual life-

time

If we want to estimate µx(t) by plugging in Fxh(t) for Fx(t) in (1), we encounter

serious problems due to the right censoring and µx(t) cannot be estimated without

additional conditions. A typical way out is to estimate truncated versions

µTx (t) =

T

t

1− Fx(s)
1− Fx(t)ds (6)

where T < TFx . We will only consider fixed T , but we note that it would also be

possible to take T = Tn, some numerical sequence converging to TFx at a certain

rate. This rate would depend heavily on Fx and Gx and would therefore never be

known in practice.

Replacing Fx in (6) by the Beran estimator Fxh (see (3)) we obtain the following

estimator

µTxh(t) =

T

t

1− Fxh(s)
1− Fxh(t) ds.

The following asymptotic normality result generalizes that of Ghorai et al. (1980).

Theorem 3. Assume (C1), (C2), (C3) in [0, T ] with T < THx . Assume that

t ≤ T .
(a) If nh5n → 0 and (logn)3/(nhn)→ 0:

(nhn)
1/2(µTxh(t)− µTx (t))→ N(0; σ

2

x(t)).

(b) If hn = Cn
−1/5 for some C > 0:

(nhn)
1/2(µTxh(t)− µTx (t))→ N(βx(t); σ

2

x(t)).

Here,

σ
2

x(t) = K 2
2

1

(1− Fx(t))2
T

t

⎛⎝ T

u

(1− Fx(v))dv
⎞⎠2 dγx(u)

βx(t) =
1

2
C5/2µK2

1

1− Fx(t)

⎧⎨⎩
T

t

bx(u)du− bx(t)
T

t

(1− Fx(u))du
⎫⎬⎭
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with γx(t) as in (5) and bx(t) as in Theorem 1.

Proof. We have that µTxh(t)− µTx (t) =
T

t

1− Fxh(s)
1− Fxh(t) −

1− Fx(s)
1− Fx(t) ds. Write

1− Fxh(s)
1− Fxh(t) −

1− Fx(s)
1− Fx(t) = −

Fxh(s)− Fx(s)
1− Fx(t) +

1− Fx(s)
(1− Fx(t))2 (Fxh(t)− Fx(t))

−(Fxh(t)− Fx(t))(Fxh(s)− Fx(s))
(1− Fx(t))2 +

(Fxh(t)− Fx(t))2(1− Fxh(s))
(1− Fxh(t))(1− Fx(t))2

and use the asymptotic representation of Lemma 1 on the factors Fxh(s) − Fx(s)
and Fxh(t)− Fx(t) in the first terms of the right hand side. This gives
µTxh(t)− µTx (t) =

n

i=1

wni(x;hn)

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
1

1− Fx(t)

T

t

ψx(Ti, δi, s)ds+

T

t

(1− Fx(s))ds
(1− Fx(t))2 ψx(Ti, δi, t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Rn1(x, t) +Rn2(x, t) + Rn3(x, t) +Rn4(x, t)

(7)

where

Rn1(x, t) = − 1

1− Fx(t)

T

t

rn(x, s)ds,

Rn2(x, t) =

T

t
(1− Fx(s))ds
(1− Fx(t)2 rn(x, t),

Rn3(x, t) =
Fxh(t)− Fx(t)
(1− Fx(t))2

T

t

(Fxh(s)− Fx(s))ds,

Rn4(x, t) =
(Fxh(t)− Fx(t))2

(1− Fxh(t))(1− Fx(t))2
T

t

(1− Fxh(s))ds.

We have that Rn1(x, t) and Rn2(x, t) are O((nhn)
−3/4(log n)3/4) a.s. and that both

Rn3(x, t) and Rn4(x, t) are OP ((nhn)
−1). Hence the sum of the four remainder terms

in (7) is op((nhn)
−1/2) if (log n)3/(nhn)→ 0. Using standard methods on the main
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term in the asymptotic representation (7) leads to the asymptotic normality result.

Remark. If there is no censoring, we have that dγx(t) = dFx(t)/(1 − Fx(t))2 =
d(1/(1− Fx(t))) and σ

2

x(t) becomes equal to

K 2
2

1

(1− Fx(t))2

⎧⎪⎪⎪⎨⎪⎪⎪⎩(1− Fx(T ))(T − t)
2 +

T

t

(v − t)2dFx(v)−

T

t

(1− Fx(v))dv
2

1− Fx(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and if we could let T tend to +∞:

K 2
2

∞
t
(v − t)2dFx(v)
(1− Fx(t))2 − µ2x(t)

1− Fx(t) = K 2
2

Var(Yx − t | Yx > t)
1− Fx(t) .

7 Estimation of the mean conditonal residual life-

time beyond some random timepoint

As explained in Section 5, it makes also sense to consider the estimator µTxh(t) where

t is some estimator for t. We only sketch how to proceed. The starting point is the

following decomposition.

µTxh(t)− µTx (t) = µTxh(t)− µTxh(t) − µTx (t)− µTx (t)
+ µTxh(t)− µTx (t) + µTx (t)− µTx (t) .

For the second term in the right hand side we use the representation (7) in the proof

of Theorem 3 and for the last term we use a one term Taylor expansion. Some easy

algebra and Taylor expansion also shows that the first term equals

1

1− Fx(t)

t

t

(Fx(s)− Fxh(s))ds+ op((nhn)−1/2)

and using again the modulus of continuity result in Van Keilegom and Veraverbeke

(1997) we obtain that this is op((nhn)
−1/2). Therefore we can obtain the following

asymptotic representation

µTxh(t)− µTx (t) =
n

i=1

wni(x;hn) −
T

t
ψx(Ti, δi, s)ds

1− Fx(t) +

T

t
(1− Fx(s))ds
(1− Fx(t))2 ψx(Ti, δi, t)

+µTx (t)(t− t) + op((nhn)−1/2).
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Example. If t = F−1x (p0) and t = F
−1
xh (p0), then we obtain that (nhn)

1/2(µTxh(t) −
µTx (t)) is asymptotically normal with asymptotic variance

K 2
2 σ2x(F

−1
x (p0)) + µ

T
x (t)

2 p0(1− p0)
f2x(F

−1
x (p0))

.

This is a generalization (and correction) of a result of Ahmad (1999) in the situation

without censoring and without regression.
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