
Made available by Hasselt University Library in https://documentserver.uhasselt.be

SchemaScope: a System for Inferring and Cleaning XML Schemas

Non Peer-reviewed author version

BEX, Geert Jan; NEVEN, Frank & VANSUMMEREN, Stijn (2008) SchemaScope: a

System for Inferring and Cleaning XML Schemas. In: Wang, Jason Tsong-Li (Ed.)

Proceedings of the ACM SIGMOD International Conference on Management of

Data. p. 1259-1262..

Handle: http://hdl.handle.net/1942/9104

SchemaScope: a System for Inferring and Cleaning XML
Schemas

Geert Jan Bex Frank Neven Stijn Vansummeren∗

Hasselt University and Transnational University of Limburg, Belgium
firstname.lastname@uhasselt.be

ABSTRACT
We present SchemaScope, a system to derive Document
Type Definitions and XML Schemas from corpora of sample
XML documents. Tools are provided to visualize, clean, and
refine existing or inferred schemas. A number of use cases
illustrates the versatility of the system, as well as various
types of applications.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration; F.4.3 [Mathematical Logic and Formal Lan-
guages]: Formal Languages; I.2.6 [Artificial Intelligence]:
Learning

General Terms
Algorithms, Languages, Theory

Keywords
XML, regular expressions, schema inference

1. INTRODUCTION
Although the presence of a schema enables many opti-

mizations for operations on XML documents, a recent study
of Barbaosa et al. [4] has shown that approximately only
half of the XML documents available on the World Wide
Web refer to a schema. Even worse, about two-third of
those schemas are syntactically or semantically incorrect, as
shown by Sahuguet [14] and Bex et al. [6, 12].

In this demo we present the tool SchemaScope to address
these issues. SchemaScope supports (1) the automatic in-
ference of Document Type Definitions (DTDs) and XML
Schema Definitions (XSDs) from corpora of sample XML
documents and (2) tools to visualize, clean, and refine exist-
ing or inferred schemas.

Schema inference. The automatic inference of schemas
from a corpus of XML documents is particularly useful in
those situations when no existing schema is available. Al-
though several command-line tools are available for this task

∗Postdoctoral Fellow of the Research Foundation - Flanders
(FWO).

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

[5, 7, 9, 10] the quality of the inferred schema is always heav-
ily dependent on the quality of the XML corpus: When the
corpus does not completely cover the intended schema the
inferred schema may be too specific; when the corpus con-
tains errors the inferred schema may be too general. For
this reason, SchemaScope not only allows automatic infer-
ence of DTDs and XSDs (using the algorithms developed
in our earlier work [5, 7]), but also provides appropriate vi-
sualization tools to allow a human expert to fine-tune the
inferred schema based on the actual corpus. Furthermore, as
more sample documents become available, the schema can
be evolved to capture the corpus more precisely.

Schema cleaning. A related, but distinct setting is the
one where one has a corpus of XML documents, as well as
an existing schema that is supposed to describe it, but for
which some documents fail to validate. In order to use the
schema to aid in further efficient processing or querying of
the corpus, it is then desirable to clean the schema based
on the corpus. SchemaScope supports such cleaning by al-
lowing users to interactively relax the content models of the
original schema, at each step showing the parts of the corpus
that become valid during this relaxation, and measuring how
many fragments in the corpus actually necessitate the relax-
ation. The latter helps in rejecting those schema changes
which are due to errors in the corpus.

Schema refinement. A final setting is where one has a
corpus of XML documents, as well as an existing schema
that describes the corpus, but where the schema is too gen-
eral in the sense that some parts of its content models are
never realized in a document. Since schemas that better
describe the true structure of the data provide more infor-
mation to be exploited with regard to storage and query
optimization, it is in this case preferable to refine the ex-
isting schema. SchemaScope supports such refinement by
visualizing the support each content model part has in the
corpus, and by indicating those XML document fragments
that become invalid when the user modifies the schema.

In short, SchemaScope is a tool intended to complement
existing high-quality schema editors like Stylus [1] and oXy-
gen [2]. In the following section we describe the working of
the system in more detail. We present an overview of the
demonstration in Section 3.

2. SYSTEM COMPONENTS
SchemaScope consists of a number of interacting mod-

ules that provide the required functionality. A schematic

overview of the application’s modules and their interactions
is shown in Figure 1.

XML

XML
import
export

XML DB

XML corpus schema

inference
engine

schema
import
export

DTD XSD

schema
comparator

schema
visualization

corpus
visualization

Figure 1: Schematic overview of the SchemaScope
system’s components. Figures 2 and 3 show details
of the schema visualization component.

Import and export. XML documents or fragments of such
documents can be imported (depicted by “XML import” in
Figure 1) from a range of data sources including files, URLs,
and XML database query results. XML schemas in DTD or
XSD syntax can be imported (“schema import” in Figure 1)
and are converted to an internal representation, simply de-
noted by the term “schema”. A derived or modified schema
can be saved as a DTD or XSD (in the former case with
potential loss of precision).

Schema inference engine. The inference module gener-
ates a DTD or XSD from the imported XML corpus using
the algorithms presented in previous work [5, 7]. Although
these algorithms cannot infer every possible target DTD or
XSD (a classical result of Gold [11] states that no such al-
gorithm exists), they can infer those subclasses of DTDs
and XSDs that are used in practice [5, 7]. Furthermore,
the inferred content models are always concise and human-
readable.

The user actually has a choice between several algorithms
for the inference of complex type content models. Some
algorithms work well when only a small number of sample
documents are available, while others yield better content
models, but require more data. Simple type content models
(like int, base64, string, . . .) and types of attributes are
inferred based on a number of heuristics.

Schema visualization. Imported or inferred schemas can
be visualized by the schema representation module. A tex-
tual, outline, or graph view (cf. Figure 2) is provided to
inspect the ancestor relationship between the elements in
the schema, while content models can be viewed as text,
e.g.,

annotation? (attribute | attributeGroup)∗
anyAttribute?

or as hierarchical graphs (cf. Figure 3). All views are anno-
tated and color coded with frequency information calculated
from the imported XML corpus. Parts of content models
that are realized by only few members of the corpus are
brightly rendered, so as to call attention to opportunities
for schema cleaning or refinement. Using these views the

schema attributeGroup
0.37 annotation

attribute

0.05

simpleType0.63

0.03

0.89

attributeGroup

0.08

anyAttribute

0.00

0.04

0.00

Figure 2: Schema view centered on the XML
Schema for XSD’s attributeGroup element, show-
ing its parent (schema) and children (annotation, at-
tribute, attributeGroup, and anyAttribute). Rectan-
gular elements are fully expanded, upward point-
ing elements are partially expanded, and downward
pointing elements are not expanded. Numbers and
colors indicate the elements’ support in the corpus.

annotation? (attribute | attributeGroup)* anyAttribute?

annotation?

(attribute | attributeGroup)+

anyAttribute?

annotation
0.03

attribute

0.89

attributeGroup

0.08

anyAttribute

0.00

0.02

0.01

0.01

0.00

0.69

0.05

0.01

0.88

0.04
0.01

0.00

0.10

0.02

Figure 3: Content model view of the XML Schema
for XSD’s attributeGroup element, shown here as a
fully expanded deterministic finite automaton. As
in Figure 2, numbers and colors show the support
for the syntactic structure of the model.

schema can be edited, while the impact of the changes on
the frequency information can be used as feedback and guid-
ance. An additional view provides a number of metrics of
the schema [8, 6, 13].

XML data visualization. Individual imported documents
or fragments can be viewed using the corpus visualization
module. More importantly, the corpus as a whole can be vi-
sualized in a list layout based on its properties with respect
to the current schema. One can view the data that realizes a
particular content model part in the schema or one can view
and inspect those XML documents or fragments that are no
longer valid after the user has modified the schema. The
XML documents can also be ranked in the list according to
one of several measures that quantify the degree of confor-
mance to the schema. In this view a cut-off can be set so that
one obtains subsets of the corpus. Those can subsequently
be used to attempt to infer more appropriate schema for the
individual subsets. An additional view provides metrics and
statistics of the corpus.

Schema comparator. During schema refinement or cor-
rection, it is important to be able to compare the obtained
schema with its previous versions. This module allows se-
mantic containment tests of individual content models and
even whole schemas. An example is given in Figure 4 where
two content models are compared; differences are shown us-

ing colors.

annotation

(attribute | attributeGroup)+

anyAttribute

attibute

Figure 4: Schema comparator focussed on two con-
tent models for attributeGroup, syntactic structures
present in both models are shown in black, those
only present in either one in red or blue.

XML generation. Finally, we come full circle with the
XML generator module that can synthesize a collection of
XML documents valid to the specified schema. Such a cor-
pus can be used, e.g., to test external applications that use
the schema. The generation process is parametrized in or-
der to allow fine-tuning to many requirements. It should be
noted that the generator’s expressive power complements
that of ToxGene, the current state of the art [3]. Whereas
ToxGene strictly respects the metrics specified by the user,
thus potentially generating invalid documents, our imple-
mentation yields documents that are guaranteed to be valid.

3. DEMO OVERVIEW
In the demonstration, we focus on a number of real-world

use cases that serve as motivating examples for the features
implemented in SchemaScope and illustrate its versatility.

Schema inference. For the purpose of demonstrating the
automatic inference of schemas, we use a corpus of XSD
documents; infer a schema from it; and compare this in-
ferred schema with the actual XSD for XML Schema Defini-
tions [15]. Aided by the various schema visualization views,
we refine the inferred schema based on the semantics im-
plied by the corpus’ ontology and frequency information.
Figure 5, for instance, shows the content model for the at-

tributeGroup element inferred from incomplete and noisy
data. Using this view of the content model, it is immediately
clear to a human expert that the element attibute (versus
attribute) is due to noise. Finally, we save the resulting
schema as an XSD using the schema export component to
illustrate that the result is concise and human readable.

Schema cleaning. To demonstrate schema cleaning, we
have harvested a corpus of real-world XHTML documents
from the World Wide Web (all on a specific topic) that—
although well-formed—are not all valid according to the
specified XHTML DTD. Starting from this real-world cor-
pus and the W3C XHTML DTD specification, we derive a
more relaxed DTD that validates a larger fraction of the
corpus, while still rejecting those documents that deviate
too much from the specification. Crucial in this relaxation
is the XML data visualization component that allows us to
determine the balance between the number of valid docu-
ments and the precision of the schema. Furthermore, the
XML schema visualization component (cf. Figure 5) helps
in identifying noisy data.

annotation? (((attribute | attributeGroup)+ | anyAttribute | attibute+)

annotation?

(((attribute | attributeGroup)+ | anyAttribute | attibute+)

(attribute | attributeGroup)*+

anyAttribute?

annotation

0.05

attribute
0.88

attributeGroup
0.07

0.02

0.01

anyAttribute
0.01

attibute+
0.01

0.69
0.05

0.87

0.04

0.01 0.11

0.01

0.01

Figure 5: Content model for attributeGroup derived
from incomplete and noisy data.

Schema refinement. For the purpose of demonstrating
schema refinement, we consider Microsoft’s WordML doc-
ument format. WordML specifies the syntax of Microsoft
Word documents in XML form. While developing a con-
verter from some arcane and obsolete document format to
WordML, we noted that some documents that were valid
according to WordML’s XSD were nevertheless incorrectly
processed by Microsoft Word. The WordML XSD is in fact
too general since a number of syntactic constraints are coded
in the application’s logic, rather than in the documents’
specification. In this part of the demonstration, we there-
fore import a corpus of WordML documents and the XSD
provided by Microsoft and gradually refine the schema to
capture some of the logic that is imposed by the applica-
tion, but that is not integrated into the original schema.
The schema comparator is used to visualize the differences
between the refined and the original content models.

4. REFERENCES
[1] Stylus Studio. http://www.stylusstudio.com/.

[2] <oXygen/> XML editor and XSLT debugger.
http://www.oxygenxml.com/.

[3] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and
K. A. Lyons. ToXgene: an extensible template-based
data generator for XML. In WebDB 2002, pages
49–54, 2002.

[4] D. Barbosa, L. Mignet, and P. Veltri. Studying the
XML Web: gathering statistics from an XML sample.
World Wide Web, 8(4):413–438, 2005.

[5] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls.
Inference of concise DTDs from XML data. In VLDB
2006, pages 115–126, 2006.

[6] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs
versus XML Schema: a practical study. In WebDB
2004, pages 79–84, 2004.

[7] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML Schema Definitions from XML data. In VLDB
2007, pages 998–1009, 2007.

[8] B. Choi. What are real DTDs like? In WebDB 2002,
pages 43–48, 2002.

[9] J. Clark. Trang: Multi-format schema converter based
on RELAX NG.
http://www.thaiopensource.com/relaxng/trang.html,
June 2003.

[10] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
and K. Shim. XTRACT: learning document type
descriptors from XML document collections. Data
mining and knowledge discovery, 7:23–56, 2003.

[11] E. Gold. Language identification in the limit.
Information and Control, 10(5):447–474, May 1967.

[12] W. Martens, F. Neven, T. Schwentick, and G. J. Bex.
Expressiveness and Complexity of XML Schema.
ACM TODS, 31(3):770–813, 2006.

[13] A. McDowell, C. Schmidt, and K. bun Yue. Analysis
and metrics of XML Schema. In Software Engineering
Research and Practice, pages 538–544, 2004.

[14] A. Sahuguet. Everything you ever wanted to know
about DTDs, but were afraid to ask. In WebDB 2000,
pages 69–74, 2000.

[15] H. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema part 1: structures.
W3C, May 2001.

