
Designing Context-Aware Multimodal Virtual Environments

Lode Vanacken Joan De Boeck Chris Raymaekers Karin Coninx
Hasselt University - tUL - IBBT

Expertise Centre for Digital Media
Wetenschapspark 2

B-3590 Diepenbeek (Belgium)

{lode.vanacken,joan.deboeck,chris.raymaekers,karin.coninx}@uhasselt.be

ABSTRACT
Despite of decades of research, creating intuitive and easy
to learn interfaces for 3D virtual environments (VE) is still
not obvious, requiring VE specialists to define, implement
and evaluate solutions in an iterative way, often using low-
level programming code. Moreover, quite frequently the in-
teraction with the virtual environment may also vary de-
pendent on the context in which it is applied, such as the
available hardware setup, user experience, or the pose of
the user (e.g. sitting or standing). Lacking other tools, the
context-awareness of an application is usually implemented
in an ad-hoc manner, using low-level programming, as well.
This may result in code that is difficult and expensive to
maintain. One possible approach to facilitate the process of
creating these highly interactive user interfaces is by adopt-
ing a model-based user interface design. This lifts the cre-
ation of a user interface to a higher level allowing the de-
signer to reason more in terms of high-level concepts, rather
than writing programming code. In this paper, we adopt a
model-based user interface design (MBUID) process for the
creation of VEs, and explain how a context system using an
Event-Condition-Action paradigm is added. We illustrate
our approach by means of a case study.

Categories and Subject Descriptors
D2.2 [Design Tools and Techniques]: User Interfaces;
I3.6 [Methodology and Techniques]: Interaction Tech-
niques

General Terms
Design, Human Factors

Keywords
Context-Awareness, Model-Based User Interface Design,
Multimodal Interaction Techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’08, October 20–22, 2008, Chania, Crete, Greece.
Copyright 2008 ACM 978-1-60558-198-9/08/10 ...$5.00.

Figure 1: The setup used in the case study.

1. INTRODUCTION
The design and implementation of an intuitive user inter-

face in a 3D interactive virtual environment (VE) is a time
consuming and hence expensive process. Especially the pro-
cess of finding and creating suitable interaction paradigms
is not straightforward. Interaction in an interactive VE is
often required to be multimodal by nature, supporting ges-
tures, direct manipulation, speech input, etc. More often
than not, the creation of such a rich user interface results
in an iterative process in which a solution is defined, imple-
mented and evaluated multiple times.

One possible approach to facilitate this process is adopt-
ing a model-based user interface design (MBUID). This lifts
the creation of a user interface to a more abstract level al-
lowing the designer to reason more in terms of high-level
concepts, rather than writing programming code. In most
MBUID processes different models are applied through grad-
ual progression, converting one model into the next one. For
instance a typical process may start at the level of a task
model, moving over several other models, towards the final
user interface.

Dependent on the domain in which the MBUID process
is applied, the used models may vary. Specifically for the
design of an interactive VE and the modelling of the rich
multimodal interaction, several high level notations exist,
defining the ‘Interaction Description Model’ [9, 15, 31]. In
the research presented in this paper, we will use NiMMiT
(Notation for Multimodal Interaction Techniques) [9] for de-
scribing the interaction.

129

In some situations, the interaction with an application
may vary depending on the context in which it is applied.
This is especially true for mobile applications that can be
used on different platforms or in a variety of situations caus-
ing some features that may or may not be available.

Although no consent definition of ‘Context’ exists [10],
in this work we consider context as an artefact influenced
by different factors [25] such as the user, the environment,
platform, etc.

A context is then a multidimensional vector of these factors
(sometimes also called observables [7]) (definition 1).

For convenience in the user interface of the proposed tool
support, we call these factors ‘Context Units’ and the values
available for each unit ‘Unit Values’.

In the domain of interactive VEs, different contexts may
also have an influence on the available interaction. The con-
text in a VE is often defined by the available input and
output devices, external parameters such as the experience
level of the user, whether or not there are collaborative part-
ners in the environment, or even the pose of the user (sitting
or standing). Without the support for different contexts di-
rectly from within the MBUID process, the integration may
often result in a lot of ad-hoc code, which is difficult and
expensive to maintain.

In this paper, we present an approach to integrate the use
of context-awareness in a MBUID process for the genera-
tion of an interactive VE using an ‘Event-Condition-Action’
paradigm [2, 13]. We will apply the VR-DeMo model-based
process [26] and the accompanying tool support CoGenIVE [8].

2. RELATED WORK
In this section, we discuss several relevant topics within

the scope of this paper. First, we discuss current frameworks
for the creation of multimodal user interfaces in general and
multimodal interfaces for virtual environments in particular.
We also briefly look into their support with regard to the
handling of context information. Next, we also will discuss
how context can be modelled in general. Finally, we discuss
some frameworks for virtual environments that, at least to
some extend, provide support for contextual information.

2.1 Multimodal User Interfaces
For the creation of general 2D multimodal user interfaces,

Flippo et al. [16] present a framework for the rapid develop-
ment of those interfaces. They focus on re-usable patterns
to implement their interfaces. With regard to the use of
context, the only aspect being present in this framework is
the ability to perform reference resolution for a fusion mech-
anism of the input modalities. According to our definition
of context, this type of context is not considered by our sys-
tem because modality fusion is achieved by the interaction
notation as described in section 3.1.

More applicable when creating virtual environments is
the COTERIE framework by MacIntyre et al. [21]. This
framework facilitates the design and separation of applica-
tion semantics from low-level input handling. Alternatively,
Irawati et al. [17] present the VARU framework, a rapid
prototyping framework for virtual reality, augmented reality
and ubiquitous computing integrated in one single platform
which gives the possibility to explore different types of col-
laboration across the different spaces. Three other toolkits

for the creation of tangible and multimodal interfaces were
proposed by Dumas et al. [12]. The SCS system they discuss
has several similarities with a MBUID process: it contains a
mix of a task model, dialog model and interaction model in a
single state machine. However, important within the scope
of this paper, the toolkits described above, have no genuine
support for context-awareness and the possible integration
of context is usually not discussed.

Guitiérrez et al. [22] present a system accompanied with a
tool which allows for real-time configuration of multimodal
virtual environments. Devices and interaction itself are pre-
sented using xml-based descriptors and coupled using tool
support. Here the designer has to define which device modal-
ity is activated by which interaction modality. An almost
similar system, focusing on both the application’s needs
and the devices’ capabilities was developed by Fernandes et
al. [14]. Alternatively, the ‘Input Configurator Toolkit’ [11]
is a toolkit which provides a visual programming interface
for modifying the mapping between input devices and func-
tionalities of an application. The system enables interactive
applications to adapt to special interaction devices as well as
user preferences and needs and thus defines the interaction
between the user and the system. A similar framework is the
OpenInterface framework [28], a component-based tool for
rapidly developing multimodal input interfaces using generic
or tailored components. Another way to abstract the device
from the application is to use an ‘Interaction Description
Model’. Several solutions exist, each with their own fea-
tures or design: Interaction Object Graphs [4], InTml [15],
ICO [23].

In the scope of this paper, we adopt the VR-DeMo pro-
cess [26], a model-based design process, which generates a
working VE application by creating high level models (task
model, dialog model, ‘Interaction Description Model’ (see
section 3.1) and a presentation model). The models are cre-
ated using the accompanying tool support CoGenIVE [8].

None of the above mentioned systems supports changes
depending on the context information, either.

2.2 Context Modelling
In order to be able to apply context-awareness, a context-

model is necessary to represent this kind of information.
Many different models exist [1, 7, 20, 24]. A complete dis-
cussion of all these models falls out of the scope of this pa-
per. Instead we will limit our discussion to some related
work focusing on modelling context and in which tool sup-
port is present or in which the modelling is embedded in the
model-based user interface design process.

ICap [29] supports rapid prototyping of context-aware ap-
plications. Their focus is to support end users in order
to quickly design prototypes of a context-aware application
without the production of source code.

Rousseau et al. [27] present a multimodal output specifica-
tion and simulation platform. Both platforms are supported
by tools to help the design of multimodal output. A design
process is described in which interaction context is taken into
account. This is implemented such that the designers know
the different contexts that can occur and how these contexts
might influence the multimodal output. The different con-
texts are described in a specification tool using election rules
evaluated to define which output has to be presented de-
pending on the context. MobiLife [18] aims at exploiting the
synergetic use of multimodal user interface technology and

130

contextual information processing. A ‘Device and Modality
Function’ provides functionalities to abstract the interaction
between the devices/modalities and the application. De-
pending on the context, other devices/modalities are chosen
or combined. A ‘Device Gateway Function’ makes it easier
to provide these functionalities.

In the domain of MBUID, the use of context also has
been studied thoroughly during the past years [5]. Cler-
ckx [5] presents DynaMo-AID which allows context-aware
application development for mobile applications. The pri-
mary focus of this work is on the integration of context at
the task level.

2.3 Context in Virtual Environments
Applying contextual knowledge to the domain of virtual

environments, Lee et al. [19] present a framework to converge
context-awareness and augmented reality, it is separated in
three layers in which a context layer is used to communicate
between augmented reality and the ubiquitous services us-
ing a broker system. The universal data model is used, in
which nodes, representing a person, place, task or service,
are associated with each other and events are fired to notify
which tasks need to be executed when a context change oc-
curs. In these frameworks, no tool support is present to aid
developers or designers to use this framework, they mostly
aid users during low level programming development.

In this paper, we describe the definition of a context sys-
tem, detecting and switching contexts at run-time. The pro-
posed solution is built upon the existing VR-DeMo MBUID
process [26]. The contexts can be defined from within Co-
GenIVE, the accompanying tool support, and can have their
influence on the ‘Interaction Description Model’. In sec-
tion 4, we will motivate our approach by means of a case
study.

3. DEFINING A CONTEXT SYSTEM
Before discussing in detail the ‘Event-Condition-Action’

paradigm that has been adopted for this solution, we shortly
describe the NiMMiT notation (Notation For MultiModal
Interaction Techniques), which is applied for the definition
of the ‘Interaction Description’, and which is also useful to
describe the context detection and switching diagrams. In
section 3.4, we finally show how our approach is suitable for
the automatic generation of template diagrams for the run-
time support of the context-awareness diagrams, and how
this all is integrated in the existing tool CoGenIVE.

3.1 The Interaction Description Model
The ‘Interaction Description Model’ is a high level de-

scription that is specifically necessary for the description of
the rich interaction within a 3D virtual environment. Most
tasks in a VE are described as interaction techniques, com-
plex ensembles of direct manipulation and multimodal infor-
mation that carry out a task, possibly consisting of several
sub-tasks. Examples of interaction techniques in interactive
VEs include selection techniques such as ray casting, but
also navigation techniques such as a walking metaphor.

Keeping in mind the requirements of an easy to learn, easy
to read high level notation for the description of an interac-
tion technique, but also providing automatic execution of the
generated models, we have developed NiMMiT. Basically, a

Figure 2: An Example of a NiMMiT diagram.

NiMMiT diagram can be seen as a state transition diagram,
from which the following features can be recognised in fig-
ure 2: at a certain time t, the interaction technique resides
in a certain state S, responding to a certain set of events E.
These events can be multimodal by nature: gesture recogni-
tion, speech recognition, button clicks, etc. The recognition
of an event triggers an activity, a linear set of tasks called a
task chain. After a task chain has been completed success-
fully, a state transition to a new state is performed, such
that the interaction responds to another set of events E’.
NiMMiT also offers data flow between subsequent tasks and
between tasks in different task chains by means of labels,
which can be seen as high level variables.

NiMMiT allows defining the user’s interaction by combin-
ing tasks that logically belong together. A number of prede-
fined tasks such as collision detection, are already available,
but designers can also define their own custom tasks for an
application. For a more in depth discussion on NiMMiT, we
refer the interested reader to [9] and [6].

3.2 Context Detection and Switching
A possible approach to define a context system is by adopt-

ing ‘Event-Condition-Action’ rules [2, 13]. A certain event
or combination of events can signal a context switch. After
the event has been recognised, certain conditions have to
be met before switching the context. When these conditions
are fulfilled, next it might be necessary to first perform some
actions before finalising the context switch. For instance,
a user may stand up from his chair (event). Before exe-
cuting a context switch, we must ensure that he wears the
tracked gloves (condition). If this condition is met, we dis-
able the toolbars that are needed in the desktop setup and
connect the cursor to make the glove visible (action). Note
that the designer has the freedom to decide which actions
are defined as events and which parameters are checked as a
condition. In the example above, we assumed that ‘standing
up’ is recognised as an event, but if this should appear tech-
nically difficult to implement, it is also possible to listen to a
more general event, e.g. the movement of a tracker mounted
to the user’s head (event), and assert for the tracker’s posi-

131

tion in order to decide whether the user is seated or standing
(condition).

Beer et al. [2] suggested that it is advisable to have a vi-
sual builder tool supporting the creation of context rules,
or even the creation of whole interaction scenarios without
programming. This approach of visually modelling context
through ‘Event-Condition-Action’ rules allows non-technical
people to control smart environments and devices without
the knowledge of the entire complexity of a system. In the
next section, we propose to use NiMMiT as a graphical no-
tation and CoGenIVE as the accompanying tool support to
model context using ‘Event-Condition-Action’ rules.

3.3 Context Detection and Switching
Using NiMMiT

For the implementation of the ‘Event-Condition-Action’
rules using NiMMiT, we have chosen to split the context
system in two separate parts. This must keep the design
as modular as possible. One part, driven by one NiMMiT
diagram is responsible for the Context Detection while an-
other diagram handles the Context Switch. According to the
‘Event-Condition-Action’ paradigm, the context detection
part identifies the events that may cause a context switch,
checks whether or not the conditions are fulfilled and finally
triggers a ‘context switch event’. This event is at its turn
recognised by the ‘Context Switching’ part.

3.3.1 Context Detection Diagram
In the ‘Context Detection’ diagram (figure 6) a given con-

text is typically represented by a state. Hence, the relevant
events that can evoke a context switch are available for each
context. In general, these events activate a task chain, which
checks the condition using one or more tasks. When the
condition is not met, the original state must be restored.
Otherwise, before moving on to a new state reflecting the
new context, the task chain has to fire a ‘context switch
event’, which is handled in the ‘Context Switching’ diagram
(see section 3.3.2).

The implementation of the condition check can be achieved
in different ways, using different structures in NiMMiT, such
as conditional state transitions. However, we prefer to ex-
ploit NiMMiT’s exception handling primitives in order to
break a task chain and return to the original state. We be-
lieve that this approach will result in the most easy to read
diagrams.

The tasks that are responsible for checking the condition,
must collect their result in a single boolean label. This la-
bel is passed on to a predefined task ‘ContinueTaskChain’,
which checks whether or not the condition is fulfilled. When
the boolean contains the value ‘true’, nothing happens and
the task chain is continued. When the value is ‘false’ how-
ever, this tasks throws an exception and activates the excep-
tion handling mechanism of the NiMMiT task chain. In this
particular situation, the simplest form of error handling, in-
terrupting the current task chain and restoring the previous
state, suits the needs. This means that when the condi-
tion is not met, the original state is restored and no context
switching event is generated.

We want to stress that, although the designer may de-
cide to adopt other patterns in order to interrupt the state
transition, the proposed approach exploiting NiMMiT’s ex-
ception handling, keeps the diagrams simple with no super-
fluous structures. The approach results in patterns that are

uniform across different projects, which is a requirement for
the tool support generating template diagrams.

3.3.2 Context Switching Diagram
A second NiMMiT diagram, responsible for the action

(figure 8), consists of only one state which contains the ‘con-
text events’ representing the possible context switches. The
occurrence of a ‘context event’ activates a task chain that
contains the code that has to be executed before the con-
text switch can effectively be performed. This code may
include altering objects or controls in the world, enabling or
disabling certain devices, etc. The last action in this task
chain must explicitly change the context, in order to notify
other running NiMMiT diagrams defining the actual user
interaction to adapt to the new context (see section 3.3.3).

Independent of the nature or the number of contexts, the
NiMMiT diagrams for context switching share a similar pat-
tern, as well, which makes the approach suitable for the gen-
eration of template diagrams. Obviously, for specific pur-
poses the designer is free to alter the generated diagrams,
e.g. if he wants to restrict possible context switches.

3.3.3 Context Handling
Besides being able to define the context system using NiM-

MiT diagrams, we also need to be able to create context-
aware NiMMiT diagrams that represent the interaction tech-
niques. Therefore, we use the earlier introduced concept of a
context arrow which represents a certain context while tying
events to that context [30].

(a) Events active in two different contexts.

(b) Events were attached to context arrows.

Figure 3: Context Handling

In figure 3, an example of this approach is depicted. In
figure 3(a) we see that in the ‘Start’-state several different
events (modalities) could trigger the execution of the task
chains. Using context information, there is the ability to
attach a context to a certain event or modality in such a way

132

Figure 4: Dialog in CoGenIVE to indicate the pos-
sible contexts and generate template diagrams.

that, depending on the context only the according events
are active. If for example ‘GLOVE.MOVE’ is intended to be
used in the immersive setup, one can attach the ‘immersive’-
context to the event-arrow ‘GLOVE.MOVE’. Similarly, the
event ‘KEYBOARD.MOVE’ can be used in the ‘desktop’-
context.

Note that if there was no support to couple events to a
context the same diagram should be created twice with dif-
ferent events (as in figure 3(a)) which obviously would make
maintenance much harder.

Adding this contextual knowledge to NiMMiT, transforms
the view of the diagram according to the context. A part of
the resulting diagram containing context arrows is shown in
figure 3(b).

3.4 Tool Support
The aforementioned approach has been integrated in Co-

GenIVE, the tool supporting the adopted VR-DeMo MBUID
process. The integration starts with a dialog that defines
the different contexts (figure 4). In definition 1, we defined
‘Context’ as a multidimensional vector of observables, called
‘Context Units’. In figure 4, it can be seen how context units
and values for each unit can be defined. The combination
of a particular value for each context unit then defines the
context. Hence the maximum number of available contexts
is the cross product of all unit values, grouped per context
unit.

As the ‘Context Switching’ diagram is triggered by con-
text events, for each context, a matching event is created
and made available in the ‘events’-pane in the interface (Fig-
ure 5). Here the events can be picked by the user in order
to be used in a NiMMiT diagram.

From within the ‘add/remove context’ dialog, a template
‘Context Detection’ and ‘Context Switching’ diagram can
be generated. The template for the ‘Context Detection’ dia-
gram defines a state for each context. Each destination con-
text (state) also gets a task chain already containing a task
throwing the according context event (this is the last task in
each task chain). Finally, each context has an (empty) event
arrow to each task chain (excluding a transition to itself).
The designer now only has to add the desired events to the
event arrows and eventually add extra conditions into the
task chains, resulting in a diagram similar to figure 6 and
figure 7.

The template for the ‘Context Switching’ diagram is fairly
simple. There is only one state. Next, for each context
switch, there is an event arrow pointing to a task chain.
This task chain already contains a task to explicitly switch

the context (typically the last task). Finally a state transi-
tion to the (only) state is performed. In this diagram, the
designer only has to add the custom actions that have to
be performed before the context switch takes place. This
results in a diagram similar to figure 8.

In summary, for a situation with n different contexts, a
typical context detection template contains n states, n task
chains with n state transitions and finally (n − 1) · n event
arrows. The ‘Context Switching’ template contains only one
state with n context events and n task chains. It may be
clear that, with regard of the generation of these templates,
the automatic layout management is a substantial problem
which currently falls out of the scope of this paper.

Regarding the context handling, CoGenIVE provides the
possibility for the designer to indicate in a NiMMiT diagram,
defining the user interaction, when certain events explicitly
belong to a given context. To simplify the visual represen-
tation, the events are collapsed in a ‘context arrow’, as can
be seen in figure 3(b). The tool support allows the designer
to view the resulting diagram for each particular context.

4. CASE STUDY
In order to evaluate and motivate our approach, we elabo-

rated upon a practical case study, which is described in this
section. The result is a virtual environment application,
represented by a 3D stereo projection. A user can interact
either seated using a 3D mouse and a Phantom haptic de-
vice, or standing using two pinch-gloves which are tracked
with a Nest of Birds magnetic tracker. The first alternative
setup offers the user the experience of having force feedback,
but in a very limited workspace. The other alternative offers
an intuitive two-handed interaction paradigm with a much
larger workspace, but without force feedback. A couple of
possible interaction techniques have been implemented using
the NiMMiT notation: Two Handed Scale, Flying Vehicle
Navigation and Virtual Hand Object Selection and Manip-
ulation [3]. In this case study, we consider changing from
either seated to standing or vice versa as a context switch,
enabling or disabling the appropriate devices. Figure 1 gives
an impression of the described setup.

4.1 Context Detection
The ‘Context Detection’ diagram is illustrated in figure 6.

In a first step the initial context is queried and an initial
switch to that context is executed (‘GetContext’ and ‘Fire-

Figure 5: Events Pane in CoGenIVE, including con-
text events

133

Figure 6: The ‘Context Detection’ diagram from the
case study with the ‘GESTURE’ interface.

ContextEvent’). This additional state and task chain is used
only to perform some kind of a ‘virtual context switch’ in
order to execute the context switching tasks (action) in the
initialisation phase. Next, the diagram performs a state
transition to the state of the initial context.

The events that indicate the possible context switches are
‘GESTURE.SITTING’ and ‘GESTURE.STANDING’. When-
ever these events occur the necessary conditions are checked
using the respective task chains (‘Condition Standing’ and
‘Condition Sitting’). For instance, in figure 6 it is checked
whether the user is wearing the gloves (‘CheckGlovesOn’).
Note that this task is a custom task, defined and imple-
mented by the designer. For this particular implementation,
we detect if there has been any motion in the gloves over the
past 2 seconds. If there has been a movement, we can assume
that the user has put on the gloves. Finally, when the con-
dition is not met, the ‘ContinueTaskChain’ task interrupts
the task chain, breaking the context switch. Otherwise, the
appropriate context switching event is fired. Finally, a state
transition to the other context-state is performed.

A possible problem with the proposed solution is the ges-
ture interface which is supposed to be present in order to
recognise the ‘sitting’ or ‘standing’ event. This approach as-
sumes either an advanced gesture recognition engine, or it
requires again a lot of ad-hoc code, implementing the ges-
ture.

If, however, we do not have the convenience of a de-
cent gesture interface, this same functionality can be im-
plemented in the ‘Context Detection’ diagram, by using a
more ‘low level’ event. Figure 7 shows an alternative version
of the same ‘Context Detection’ diagram, but now listening
to the raw movements of a head tracker, instead of the de-
tection of an event. The position of the head can reveal
very easy if a user is either sitting or standing by looking at

Figure 7: The ‘Context Detection’ diagram from the
case study using a head tracker.

the height (Y-axis). Therefore, an extra condition has to be
added in the ‘condition’ part, checking for the head position.

4.2 Context Switching
The context event generated in the ‘Context Detection’

diagram is detected by the ‘Context Switching’ diagram.
The diagram, shown in figure 8, contains one state, listen-
ing to all available context events. When the user stands
up, the ‘CONTEXT.STANDING’ event is recognised (gen-
erated by the ‘Context Detection’ diagram), and the left task
chain is executed. In this case study, the required actions
are relatively straightforward: showing and hiding respec-
tive pointers for the new context. For instance, while the
user is standing and wearing the gloves, the gloves have to
be visible while the spacemouse and PHANToM have to be
invisible and inactive.

Finally, the last task in the ‘Context Switching’ diagram
explicitly changes the current context, so that the interac-
tion description diagrams can handle the newly activated
context.

4.3 Context Handling
The actual handling of the context, such as listening to

other events, activating other task chains, etc., is defined in
the ‘Interaction Description diagram’. In this case study,
the interaction diagrams listen to the appropriate events,
according to the devices that are enabled in the current
context. For instance, for the virtual hand selection tech-
nique, the move-events of the Phantom haptic device are
disabled when the user is standing, avoiding unwanted re-
sponse from this device. Alternatively, when the user is
sitting, the move-events from the right glove are disabled.
Disable, here, means that those events, with regard to the

134

Figure 8: The ‘Context Switching’ diagram from the
case study.

virtual hand selection technique, are not attached to the
current active context.

5. DISCUSSION
The aforementioned approach describes a well-structured

solution in order to support context detection, switching and
handling using a single graphical notation, NiMMiT. Since
we defined context as a n-dimensional vector of observables,
called ‘Context Units’, very complex context systems, with
several orthogonal units can be built. As the maximum num-
ber of context is the result of the cross product of all unit
values, grouped per context unit, the number of contexts
may grow rapidly with the number of units and values. This
implies a possible explosion of the number of states in the
diagrams, inevitably resulting in complex diagrams, even in
spite of the proposed separation of the diagrams. We be-
lieve, however, that the amount of different context units
and their values will remain limited in practical situations
with regard to virtual environments, such that the complex-
ity of the diagrams won’t be catastrophical.

Alternatively, the other extremum can occur as well. One
could argue that for very simple context systems, in which
two contexts exist, where no specific conditions have to be
checked, and no additional actions before the actual switch
have to be taken, the discussed approach may be ‘overkill’.
In those very simple cases, however, both the ‘Context De-
tection’ and the ‘Context Switching’ diagram can be merged
into a single diagram, containing both the basic events (com-
ing from the devices), as well as the conditions and the ac-
tions.

Finally, a last point of discussion, is the fact that the pro-
posed approach can be used to define quite powerful context
handling. Indeed, in the example, we showed how the ‘Con-
text Switching’ diagram has been used to perform simple
visible actions inside the virtual environment such as en-
abling or disabling devices. Alternatively, it is also possible
to assign values to a label (variable) in the ‘Context Switch-
ing’ diagram. Using input and output labels of the NiMMiT
diagrams, these values can be exchanged between the differ-

ent diagrams running in parallel. Imagine for instance an
interaction diagram that has to use the position values for
both the dominant and non-dominant hand. According to
the handedness of the user, the function of both devices may
be altered. An easy solution then is to use a label indicating
which device is assigned to what hand. The mechanism of
changing label values in the context handling diagram de-
pending on the context, can be very useful for many types
of contexts such as user preferences (e.g. strong or soft force
feedback).

6. CONCLUSION AND FUTURE WORK
In this paper we presented an approach to design context-

aware multimodal virtual environments using a model-based
user interface design process. We applied NiMMiT, a graph-
ical notation for the description of the user interaction in a
VE to create a context system based on an ‘Event-Condition-
Action’ paradigm. For the context system, two NiMMiT
diagrams are used, one for detecting the context and check-
ing the conditions, and a second diagram for performing the
context switch. Using this approach, both diagrams remain
simpler, more modular and better maintainable. In order to
validate our approach we described a case study illustrat-
ing the proposed context modelling system. We believe that
the proposed context system provides the designer with a
powerful tool to create context-aware virtual environments
while applying a model-based approach.

In the near future, our approach will be further explored
using several other scenarios where user experience or pref-
erence can be modelled using context. Another interesting
venue to investigate, is to make the NiMMiT diagrams self-
evolving: instead of having a closed world assumption with
regard to context this would allow for new context states to
become available with the creation of new context detection
and switching rules.

7. ACKNOWLEDGMENTS
Part of the research at EDM is funded by the ERDF (Eu-

ropean Regional Development Fund) and the Flemish gov-
ernment. The VR-DeMo project (IWT 030248) is directly
funded by the IWT, a Flemish subsidy organisation.

8. REFERENCES
[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing, 2(4):263–277, 2007.

[2] W. Beer, V. Christian, A. Ferscha, and L. Mehrmann.
Modeling Context-aware Behavior by Interpreted ECA
Rules. volume 2790, pages 1064–1073. Springer.

[3] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev.
3D User Interfaces, Theory and Practice. Addison-Wesley,
2005.

[4] D. Carr. Interaction object graphs: An executable
graphical notation for specifying user interfaces. In Formal
Methods for Computer-Human Interaction, pages 141–156.
Springer-Verlag, 1997.

[5] T. Clerckx. Model-Based Development of Context-Aware
Interactive Applications in Ambient Intelligence
Environments. PhD thesis, transnationale Universiteit
Limburg, June 2007.

[6] K. Coninx, E. Cuppens, J. De Boeck, and C. Raymaekers.
Integrating support for usability evaluation into high level
interaction descriptions with NiMMiT. In Proceedings of
13th International Workshop on Design, Specification and

135

Verification of Interactive Systems (DSVIS’06), volume
4385, Dublin, Ireland, July 26–28 2006.

[7] J. Coutaz and G. Rey. Foundations for a Theory of
Contextors. In C. Kolski and J. Vanderdonckt, editors,
Computer-Aided Design of User Interfaces III, volume 3,
pages 13–33. Kluwer Academic, 2002. Invited talk.

[8] J. De Boeck, C. Raymaekers, and K. Coninx. A tool
supporting model based user interface design in 3d virtual
environments. In Proceedings of the International
Conference on Computer Graphics Theory and
Applications (GRAPP08), Funchal, Portugal, January
22–25 2008.

[9] J. De Boeck, D. Vanacken, C. Raymaekers, and K. Coninx.
High-level modeling of multimodal interaction techniques
using nimmit. Journal of Virtual Reality and Broadcasting,
4(2), September 2007. urn:nbn:de:0009-6-11615.

[10] A. K. Dey. Providing Architectural Support for Building
Context-Aware Applications. PhD thesis, College of
Computing, Georgia Institute of Technology, Dec. 2000.

[11] P. Dragicevic and J.-D. Fekete. Support for input
adaptability in the ICON toolkit. In Proceedings of the 6th
international conference on multimodal interfaces
(ICMI04), pages 212–219, State College, PA, USA, 2004.

[12] B. Dumas, D. Lalanne, D. Guinard, R. Koenig, and
R. Ingold. Strengths and weaknesses of software
architectures for the rapid creation of tangible and
multimodal interfaces. In TEI ’08: Proceedings of the 2nd
international conference on Tangible and embedded
interaction, pages 47–54, 2008.

[13] R. Etter, P. Costa, and T. Broens. A Rule-Based Approach
Towards Context-Aware User Notification Services. pages
281–284, 2006.

[14] V. Fernandes, T. Guerreiro, B. Araújo, J. Jorge, and a. P.
Jo˙Extensible middleware framework for multimodal
interfaces in distributed environments. In ICMI ’07:
Proceedings of the 9th international conference on
Multimodal interfaces, pages 216–219, 2007.

[15] P. Figueroa, M. Green, and H. J. Hoover. InTml: A
description language for VR applications. In Proceedings of
Web3D’02, pages 53–58, Arizona, USA, Februari 2002.

[16] F. Flippo, A. Krebs, and I. Marsic. A framework for rapid
development of multimodal interfaces. In ICMI ’03:
Proceedings of the 5th international conference on
Multimodal interfaces, pages 109–116, 2003.

[17] S. Irawati, S. Ahn, J. Kim, and H. Ko. VARU Framework:
Enabling Rapid Prototyping of VR, AR and Ubiquitous
Applications. In Virtual Reality Conference, 2008. VR’08.
IEEE, pages 201–208, 2008.

[18] R. Kernchen, P. Boda, K. Moessner, B. Mrohs,
M. Boussard, and G. Giuliani. Multimodal user interfaces
for context-aware mobile applications. In 16th Annual
IEEE International Symposium on Personal Indoor and
Mobile Radio Communications (PIMRC), pages 2268–
2273, 2005.

[19] J. Lee, G. Rhee, H. Kim, K. Lee, Y. Suh, and K. Kim.
Convergence of Context-Awareness and Augmented Reality
for Ubiquitous Services and Immersive Interactions. In
Computational Science and Its Applications - ICCSA 2006,
pages 466–474. Springer, 2006.

[20] C. Li and K. Willis. Modeling context aware interaction for
wayfinding using mobile devices. In MobileHCI ’06:
Proceedings of the 8th conference on Human-computer
interaction with mobile devices and services, pages 97–100,
2006.

[21] B. MacIntyre and S. Feiner. Language-level support for
exploratory programming of distributed virtual
environments. In UIST ’96: Proceedings of the 9th annual
ACM symposium on User interface software and
technology, pages 83–94, 1996.

[22] F. V. Mario Gutiérrez, Daniel Thalmann. Semantic virtual
environments with adaptive multimodal interfaces. In 11th
International Conference on Multimedia Modelling,

MMM2005, pages 277–283, 2005.
[23] D. Navarre, P. Palanque, R. Bastide, A. Schyn,

M. Winckler, L. Nedel, and C. Freitas. A formal description
of multimodal interaction techniques for immersive virtual
reality applications. In Proceedings of Tenth IFIP TC13
International Conference on Human-Computer Interaction,
Rome, IT, September 12–16 2005.

[24] J. M. S. O., J. Serrat, K. Yang, and E. S. C. Modelling
context information for managing pervasive network
services. In Proc. of the International Conference on
Modelling and Simulation (ICMSŠ05), pages 35–39, 2005.

[25] D. Preuveneers, J. Van den Bergh, D. Wagelaar,
A. Georges, P. Rigole, T. Clerckx, Y. Berbers, K. Coninx,
V. Jonckers, and K. D. Bosschere. Towards an Extensible
Context Ontology for Ambient Intelligence. In
P. Markopoulos, B. Eggen, E. Aarts, and J. L. Crowley,
editors, Second European Symposium on Ambient
Intelligence, volume 3295 of LNCS, pages 148 – 159,
Eindhoven, The Netherlands, Nov 8 – 11 2004. Springer.

[26] C. Raymaekers, K. Coninx, J. D. Boeck, E. Cuppens, and
E. Flerackers. High-level interaction modelling to facilitate
the development of virtual environments. 2004 May 12–14.
Proceedings of Virtual Reality International Conference,
Laval, FR.

[27] C. Rousseau, Y. Bellik, and F. Vernier. Multimodal output
specification / simulation platform. In ICMI ’05:
Proceedings of the 7th international conference on
Multimodal interfaces, pages 84–91, 2005.

[28] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay,
R. Murray-Smith, and S. Denef. The openinterface
framework: a tool for multimodal interaction. In CHI ’08:
CHI ’08 extended abstracts on Human factors in computing
systems, pages 3501–3506, 2008.

[29] T. Sohn and A. K. Dey. icap: an informal tool for
interactive prototyping of context-aware applications. In
CHI Extended Abstracts, pages 974–975, 2003.

[30] L. Vanacken, E. Cuppens, T. Clerckx, and K. Coninx.
Extending a dialog model with contextual knowledge. In
M. Winckler, H. Johnson, and P. A. Palanque, editors,
TAMODIA, volume 4849 of Lecture Notes in Computer
Science, pages 28–41. Springer, 2007.

[31] J. Willans and M. Harrison. A toolset supported approach
for designing and testing virtual environment interaction
techniques. International Journal of Human-Computer
Studies, 55(2):145–165, August 2001.

136

