Using Relations between Concepts during Interaction Modelling for
Virtual Environments

Lode Vanacken* Joan De Boeck

Chris Raymaekers* Karin Coninx®

Hasselt University
Expertise Centre for Digital Media
transnationale Universiteit Limburg
Wetenschapspark 2 B-3590 Diepenbeek (Belgium)

ABSTRACT

Using semantic information when interacting in a virtual environ-
ment is still not a commonly used practice. In the rare cases where
it is applied with success, the implementation however is mostly
in an ad-hoc manner, incorporating the semantic information in the
programming code so that it can be used in the interaction. In this
paper, we discuss a possible approach on how the relationships be-
tween concepts (such as interpositions of objects) can be applied in
a diagram describing the user interaction in an abstract way, with
a minimal of coding effort and a maximum of reuse. Therefore,
we use NiIMMIT as a starting point. From this attempt we discuss
the opportunities and the encountered problems of our approach in
order to generalise the use of semantic information.

Index Terms: D.2.2 [Software engineering]: Design Tools and
Techniques—User Interfaces; 1.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction Technique

1 INTRODUCTION

The creation of interactive virtual environments is a very technical
and challenging task both with regard to the virtual world as well
as the interaction available to the user. Usually, low-level program-
ming languages are used to define the virtual world, the objects’
behaviours and the interaction between the user and the environ-
ment. This is in particular true with 3D multimodal interfaces for
virtual environments. Recently, conceptual modelling techniques
have been proposed to design or prototype interactive virtual en-
vironments [5, 17]. This development process can be supported by
advanced interactive tools. With respect to the support of virtual en-
vironment realization through conceptual modelling, research has
been focusing on scene and interaction development [7, 13].

Through the usage of conceptual modelling for the construction
of the virtual world, semantic knowledge can become available.
This semantic knowledge is usually represented through ontolo-
gies and the information contained depends on the modelling ap-
proach [2, 9]. The usage of semantic knowledge is increasing in
popularity due to the semantic web. Although the semantic web
itself has not yet been fully realized, the supporting technologies
(RDF, OWL, SPARQL, ...) are mature enough to be used for other
applications. These technologies are nowadays finding their way to
other applications [15, 12].

In our previous work on conceptual modelling of VEs [5] we in-
vestigated how the use of high-level specifications may help to ease
the difficult process of interactive virtual environment creation: in-
stead of coding an interactive virtual environment using a low level
programming language, high-level models are used. Our model-
based process combines a series of models containing a mixture
of manual and automatic processes. We support our model-based

*e-mail: lode.vanacken @uhasselt.be
e-mail: joan.deboeck @uhasselt.be
fe-mail: chris.raymaekers @uhasselt.be
Se-mail: karin.coninx @uhasselt.be

Figure 1: Setup of the driving simulator case study.

process with tool support as it would not be very fertile without tool
support.

In order to specify the interaction within an interactive virtual en-
vironment NiMMIiT [6] has been developed. NIMMIT is a diagram
based notation, we will discuss NIMMIT in section 2. NiIMMIT has
been integrated inside the model-based process and our tool sup-
port for this process. Some extensions to NiMMiT haven been in-
troduced with regard to interaction evaluation [3] and contextual in-
formation [14]. We also introduced the usage of semantic informa-
tion, using only concept information, during interaction modelling
for virtual environments [16]. We will shortly discuss this in sec-
tion 3. In section 4 we will propose an approach to also introduce
the relationships between concepts during interaction modelling in
NiMMIiT. Afterwards we discuss several problems of this approach
and conclude with future work directions.

2 INTERACTION MODELLING: NIMMIT

In this section we will discuss NIMMIT (Notation for MultiModal
interaction Techniques), a diagram based notation intended to de-
scribe multimodal interaction between a human and a computer,
with the intention to automatically execute the designed diagrams.

Several other high level notations exist for designing interaction,
some of them are state driven (ICO [13]) while others use a data
flow architecture (InTml [7]).

In the remainder of this section, we shortly describe the primi-
tives of our notation and will discuss a simple abstract example. For
a more detailed description of the basic concepts of NIMMIiT, we
refer to [6].

2.1 NiMMiT Primitives

In NiMMIiT, interaction with the computer is considered event-
driven: users initiate an (inter)action by their behaviour, which in-
vokes events into the system. These events can be triggered by
different modalities, such as speech recognition, an action with a
pointing device, or a gesture. Interaction is also state-driven, which
means that not in all cases the system responds to all events. The

response to an event, can bring the interaction in another state, re-
sponding to other events. Being data-driven is another important
property of the notation. It is possible that data needs to be shared
between several states of the interaction. For example, a subtask
of the interaction can provide data, which has to be used in a later
phase of the interaction (e.g. touching an object to push it). Fi-
nally, an interaction technique can consist of several smaller build-
ing blocks, which can be considered as interaction techniques them-
selves. Therefore, hierarchical reuse should be possible within the
notation.

Taking the aforementioned considerations into account, NiM-
MiT defines the following basic primitives: states, events, task
chains, tasks, labels and state transitions. All these primitives are
present in figure 2.

State: A state is depicted as a circle. The interaction technique
starts in the start-state, and ends with the end-state. A state
defines a set of events to which the system responds.

Event: An event is generated by the framework, based upon the
user’s input. A combination of events can be multimodal, con-
taining actions such as speech recognition, gestures, pointing
device events and button clicks. A single event or a specific
combination always triggers the execution of a task chain.

Task Chain: A task chain is a linear succession of tasks, which
will be executed one after the other. For example in figure 2
‘Taskchainl’ will execute ‘Task1’ and ‘Task3’.

Task: A task is a basic building block of the actual execution of the
interaction technique. Typically, tasks access or alter the in-
ternal state of the application. E.g. when running in a typical
3D environment, a task can be ‘collision detection’, ‘moving
objects’, ‘playing audio feedback’, etc. Tasks can be prede-
fined by the system, but designers can define their own custom
tasks, as well. All tasks can have input and output ports, on
which they receive or send parameters or result values. Input
ports are required or optional, indicated by a square or circle
input port respectively.

Labels: As data can be shared throughout a diagram, NiMMiT
needs a system to (temporarily) store values. This is done in
‘labels’, which can be seen as high level variables (In figure 2
‘OutputT3’).

State Transitions: Finally, when a task chain has been executed
completely, a state transition moves the diagram into the next
state. A choice between multiple state transitions is also pos-
sible, based upon the value of a certain label.

2.2 Example

By means of figure 2 we will give an brief overview of how the
NiMMIiT notation should be interpreted. We have chosen an ab-
stract example for illustrative purpose. The start-state of this dia-
gram responds to 4 different events (called EVENT1 to EVENT4).
When ‘EVENT1’ or ‘EVENT?3’ is fired, ‘Taskchainl’ will be in-
voked. ‘Taskchain2’ however will only be invoked if ‘EVENT?2’
and ‘EVENT4’ occur at the same time, which is defined by the
melting pot principle [4].

When a task chain is invoked, all tasks within the chain are ex-
ecuted one after the other (from top to bottom) using each others
output when necessary. The output of a task can be stored in a label
in order to be used by a task in an other task chain. In the example
the evaluation of ‘Taskchainl’ will trigger the execution of ‘Task1’
and ‘Task3’ of which the last task, ‘Task3’, results in a boolean
value that will be stored in the label ‘OutputT3’

When all tasks in the chain are successfully executed, the next
state is determined based on the exitlabel of the task chain. In

. .
H NiMMiT '
. .
'l -- -
"
. EVENT1)
' '
H 1 EVENT3 '
1 ™ H
: \ 4 1
'
H Taskchain1 H
' '
PN : N
H A EVENT2 i Task1 '
' EVENT4] : H
' e '
' e H
' 3 '
H Task3 Es i
: s | i
'
: L :
'
H none :
'] 1
. OutputT3 o
: OutputT3 :
: v :
H Taskchain2 H
') '
H a — H
' g £} '
H false £ Task2 g .
' 3 H
E | 1
'
H OutputT2 OutputT2 H
: :
' '
' '
' '
'
' pf End 1
) .
. .
' '
' '
' '
beeeeeeceeceesceceeeeeeeeeeeeeseeeeeesssesssssssssssssssssssssees -
v H
' '
1] .
. ;

Figure 2: An abstract NIMMIT diagram.

‘Taskchain1’ no exitlabel is defined so we return to the ‘Start’-state
waiting for new events to be fired.

As indicated, ‘Taskchain2’ will only be executed if ‘EVENT2’
and ‘EVENT4’ are fired simultaneously. During the execution of
‘Taskchain2’, the output of ‘Task3’ (stored in the label ‘OutputT3’)
is used as input for ‘Task2’, which again results is a boolean value
(stored in label ‘OutputT?2’). Since ‘OuputT2’ is used as exitlabel
for this task chain, the result of ‘Task2’ will determine the next
state of execution: if the value in ‘OutputT?2’ is false, the next state
will again be the ‘Start’-state; if however, the result of ‘Task2’ is
true, the ‘End’-state is reached and the execution of the interaction
finishes.

3 SEMANTIC INFORMATION DURING INTERACTION MOD-
ELLING OF VES

Semantic information in Virtual Environments has already been
used by several researchers [10, 8, 1]. They primarily focused on
integrating this semantic information within a framework for virtual
environment development while we focus on integrating semantic
information inside our conceptual modelling phase.

In the remainder of this section we will shortly discuss our intro-
duction of conceptual information into NIMMIiT [16].

3.1 Concepts as Semantic Information

In order to make use of conceptual data available in the ontology,
describing the virtual scene, NIMMIT can represent this data as a
datatype (Concept). This data can be used during interaction mod-
elling in tasks. For example the ‘GetObjects’ task filters object(s)
with regard to concept(s) and the ‘IsOfConcept’ task checks if ob-
ject(s) are of certain concept(s).

In order to show the flexibility of introducing concepts into NiM-
MiT we will shortly elaborate on two examples in the remainder of
this section.

3.1.1 Example: Selecting Objects

In most virtual environment applications not all objects are dynamic
and interactive. To make only a certain subset of all objects inter-
active, a lot of ad-hoc, hard-coded solutions exist in which code

selectable

selectable

POINTINGDEVICE.BUTTON_PRESSED. 1

Selecting highlight

SelectObjects

POINTINGDEVICE.MOVE

Update highlight

o
& "
2 UnhighlightObjects 8
S =
3
PP - |
oo

objects

pointername

CollisionWithPointer

pointerame

objects

P g .

28
g5 GetObjects
§3

objects

HighlightObjects

none N highlighted

selection \

L 1

D L L L L L L L L L L L T T T T L L LT T T TR

selection ﬂ
.
1)

Figure 3: The selection tasks which only selects objects of certain concept(s).

is written such that the application knows which objects are inter-
active. In most situations the user first needs to select objects to
interact with, therefore the easiest solution for the designer is to
make only the interactive objects selectable.

In figure 3, a NIMMIiT schema is presented which makes it only
possible to select objects which are of concept(s) represented by
the ‘selectable’-label which receives its values from the input port
of the interaction technique. Independent of the design, it is easy to
allow all objects to be selected by attributing the root concept value
(e.g. ‘Thing’) to the input port of the interaction technique. Re-
mark that concepts are organized in a hierarchical manner, which
makes it possible to pick a parent-concept instead of all children
concepts individually. Also, note that this allows for the ontology
to not be specifically designed for interaction, Irawati et al. [8] in-
troduce concepts as ‘Interactive_Object’ from which all other inter-
active concepts are derived which would allow the system to search
for only objects of the concept ‘Interactive_Object’. Our approach
gives more flexibility as any concept(s) can be selected at runtime
without having to belong to a certain type of objects which has been
decided upon during the coding of the system. This also means that
the semantic selection technique can be used in all applications and
thus is application independent.

It is important to remark that when multiple objects are high-
lighted this interaction technique highlights those that belong to the
correct concept(s). If we would like the interaction technique to
be more exclusive and only let it allow to complete successfully
when all objects being collided with the pointing device belong to
the concept(s) indicated in the ‘selectable’-label, then only mini-
mal changes are necessary such as using the ‘IsOfConcept’ task
and adding a new state and task chain.

3.1.2 Driving Simulator

Another example study, that is more close to a realistic application,
is a driving simulator in which a steering wheel (Logitech G25) is
integrated. In this application (see figure 1), we need to know the
surface which we are driving on such that realistic force feedback
can be given through the steering wheel. The original designer of
the driving interaction at first hard-coded the objects to collide with
and to check which object, such as a road or grass, we are driving
on.

Concepts are used here to define on which surface the car is
driving and which feedback has to be returned to the driver, more
information on this case study can be found in [16].

4 USING SEMANTIC RELATIONS BETWEEN CONCEPTS

During the conceptual modelling phase of interactive virtual en-
vironments it is also interesting to use relationships between con-
cepts. For example in a certain virtual environment application a
user wants to place lampposts alongside a road, one could try to use
the fact that there exists a relationship between the concepts lamp-
post and road (namely ‘alongside’). This relationship indicates that
a lamppost resides alongside a road (wrt. the current application)
and we could help the user in placing a lamppost alongside a road
by giving multimodal feedback (e.g. force enabled snapping loca-
tions). Note that this might not be the only possible relationship,
the lamppost could also have a relation, ‘on’, with the ground.

It is not straightforward to introduce relations during the interac-
tion modelling such that the solution is generic. We will first intro-
duce a possible approach and afterwards discuss problems which
have to be solved to achieve a generic solution.

In a first approach we try to create a manipulation technique, that

similarly as the selection technique from section 3.1.1 is an applica-
tion independent manipulation technique. There are currently two
possible strategies used to create a manipulation technique. One
possibility is to create a manipulation technique per sets of concepts
that need different handling of the manipulation. Another possibil-
ity is to create one manipulation technique that on its own checks
which concept it is manipulating and depending on that changes
its way of manipulating. The first possibility makes the designer
move the enabling of the manipulation technique to a higher level
(the dialog model of the model-based design approach) and might
overcomplicate this. The second one does not contaminate the di-
alog model but might become unmanageable to design or main-
tain. We believe that different types of manipulation can be directly
linked to the different relations, so therefore using these relations
inside NiMMiT and the manipulation technique could form a more
generic solution.

In figure 4, an application independent manipulation technique
is depicted. The input port ‘selected’ contains the object which
is currently selected and thus will be manipulated. This data is
stored in the ‘selected’-label and will be used during manipulation.
If the user moves the pointing device an event ‘MOVE’ will be
fired and the corresponding task chain (‘Manipulate’) will be ex-
ecuted. The first tasks, ‘GetPointerPosOriDelta’ returns the delta
movement which will be used in a new predefined task ‘MoveUsin-
gRelations’. This tasks will check the semantic world for possible
relations between the currently selected object and other objects
and execute the according relations. These relations can be defined
through programming code or LUA scripting. Using this new task
‘MoveUsingRelations’ it is possible to use one manipulation task
which autonomously implements the manipulation by moving the
possible manipulation to the relations. With good tool support this
will help the designer not to forget about certain possible relation-
ships between concepts which are important for the application. Fi-
nally, if the user decides to stop manipulating the object, a button
press will fire another task chain (‘Drop Object’) which drops (de-
selects) the object and ends the manipulation technique.

During the design of the relations the designer can use the hierar-
chical representation of an ontology. The designer can first imple-
ment a certain relation, which can hold between all the concepts in
the hierarchy, for a parent concept and if a specialisation is needed
implement it for a certain child concept. For example, the following
hierarchy: Object - Furniture - Table - (RegularTable, DesignTable,
etc.). The designer can first implement the relation ‘on’ for Furni-
ture and use that design for a Table and if necessary further specify
it for other types of tables, such as DesignTable which might have
a completely different structure than a general table represented by
the parent concept. Note that a general table will be represented by
a RegularTable because of the fact that we can not specify this in a
property of Table as RegularTable or DesignTable could also have
children.

We have not yet formalized completely how we will define rela-
tions to use them during manipulations, in the following section we
will give an overview of problems we currently encounter.

4.1 Discussion

In previous work, as discussed in section 3, we successfully in-
troduced concepts during interaction modelling inside our model-
based design approach. But the introduction of relations, during
interaction modelling, brings out some points for discussion.

An ideal relation definition would be generic to such a level that
it is application independent and can be used in any newly designed
application. For example defining the relation ‘onTopOf’ might
seem simple at first, constrain an object such that it remains on
top of another object. But what is the top of an object, how do
we define this? Do we always want that ‘onTopOf” means that an
object remains on top of another object? Is it also possible that this

selected

selected
POINTING_DEVICE.MOVE POINTING_DEVICE.BUTTON_PRESSED.2
Move
Ee . A\
§ ; !
; GelPomlerF'osOnDeEsg % 4 secied Drop Object
selected ’ 0 —
a5 g DeselectObjects

[objects

MoveUsingRelations

eeepeseeesseseseceescecssecesesses-ees-esesesses-eqe-ee

]
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
"
.

Figure 4: A semantic manipulation technique

relation can end and thus the object is not on top of another object
anymore, this also brings us to the problem when do we want a
relationship to exist? All these questions seem to not have one such
answer that makes it possible to implement a relationship in such a
way that it becomes application independent.

Imagine that we would succeed in defining a mechanism to de-
fine a relation application independent, we also have to take into
account several other relationships which might exist at the same
time, how would they work together, could we end up in a local
minima where one constraint cannot be completely satisfied, be-
cause another limitation strives for another optimal value.

A problem with not being able to define relations application in-
dependent might induce a complex web of relation definitions. If
a certain relation can be used several times between different con-
cepts which have a different meaning inside the same application,
that would oblige the designer to define the relation on a concept-
relation-concept level instead of only the relation level. Off course
without extensive testing in the form of case studies this is hard to
foresee.

Besides using relations for manipulation techniques they could
also be used for behaviour modelling such that objects can behave
autonomously according to the existing relations similarly as in the
work of Lugrin et al. [11] in which action representations, ground-
ing and common sense are used to make knowledge based system
work together with computer graphics systems.

5 CONCLUSION

In this paper we discussed our attempt at introducing relationships
defined in the semantic information of the interactive virtual envi-
ronment application. This work has been inspired by previous work
on introducing semantic information during conceptual modelling
of virtual environments. We presented concepts in NiMMIiT using
a new datatype and predefined tasks. We introduced a generic ma-
nipulation technique using relationships and discussed remaining
problems we currently encounter. In the future we planned to fur-
ther investigate these problems and try to design our system into a
fully flexible framework using all semantic information available.

ACKNOWLEDGEMENTS

Part of the research at EDM is funded by ERDF (European Re-
gional Development Fund), the Flemish Government and the Flem-
ish Interdisciplinary institute for BroadBand technology (IBBT).

The VR-DeMo project IWT 030248) is directly funded by the
IWT, a Flemish subsidy organization.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

T. Abacy, J. Cyger, and D. Thalmann. Action semantics in smart
objects. In Workshop towards Semantic Virtual Environments (SVE
2005), pages 1-7, 2005.

W. Bille, B. Pellens, F. Kleinermann, and O. De Troyer. Intelligent
modelling of virtual worlds using domain ontologies. In Proceedings
of WIC, pages 272 — 279, Mexico City, Mexico, 2004.

K. Coninx, E. Cuppens, J. De Boeck, and C. Raymaekers. Integrating
support for usability evaluation into high level interaction descriptions
with NIMMIT. In Proceedings of DSVIS’06, volume 4385, Dublin,
Ireland, July 26-28 2006.

J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. M. Young.
Four easy pieces for assessing the usability of multimodal interaction:
The CARE properties. In Proceedings of INTERACTYS, pages 115-
120, Lillehammer, June 1995.

J. De Boeck, C. Raymaekers, and K. Coninx. A tool supporting model
based user interface design in 3d virtual environments. In Proceedings
of GRAPPOS, Funchal, Portugal, January 22-25 2008.

J. De Boeck, D. Vanacken, C. Raymaekers, and K. Coninx. High-
level modeling of multimodal interaction techniques using nimmit.
Journal of Virtual Reality and Broadcasting, 4(2), September 2007.
urn:nbn:de:0009-6-11615.

P. Figueroa, M. Green, and H. J. Hoover. InTml: A description lan-
guage for VR applications. In Proceedings of Web3D’02, pages 53—
58, Arizona, USA, Februari 2002.

S. Irawati, D. Calder6n, and H. Ko. Spatial ontology for semantic
integration in 3d multimodal interaction framework. In ACM Int. Conf.
on VRCIA, pages 129-135, 2006.

E. Kalogerakis, S. Christodoulakis, and N. Moumoutzis. Coupling
ontologies with graphics content for knowledge driven visualization.
In Proceedings of the IEEE VR 2006, pages 43-50, 2006.

M. E. Latoschik and C. Frohlich. Towards intelligent vr - multi-
layered semantic reflection for intelligent virtual environments. In
Proceedings of GRAPPO7, pages 249-260, 2007.

J.-L. Lugrin and M. Cavazza. Making sense of virtual environments:
action representation, grounding and common sense. In Proceedings
of IUI’07, pages 225-234, 2007.

D. S. McCorkle and K. M. Bryden. Using the semantic web technolo-
gies in virtual engineering tools to create extensible interfaces. Virtual
Reality, 11(4):253-260, 2007.

D. Navarre, P. Palanque, R. Bastide, A. Schyn, M. Winckler, L. Nedel,
and C. Freitas. A formal description of multimodal interaction tech-
niques for immersive virtual reality applications. In Proceedings of
IFIP TC13 Int. Conf. on HCI, 2005.

L. Vanacken, E. Cuppens, T. Clerckx, and K. Coninx. Extending a
dialog model with contextual knowledge. In TAMODIA, volume 4849
of LNCS, pages 28—41, 2007.

L. Vanacken, C. Raymaekers, and K. Coninx. Automatic speech gram-
mar generation during conceptual modelling of virtual environments.
In Intuition 2007, Athens, Greece, Octobre 2007.

L. Vanacken, C. Raymaekers, and K. Coninx. Introducing semantic
information during conceptual modelling of interaction for virtual en-
vironments. In Proceedings of WMISI’07, pages 17-24, 2007.

J. Willans and M. Harrison. A toolset supported approach for design-
ing and testing virtual environment interaction techniques. Interna-
tional Journal of Human-Computer Studies, 55(2):145-165, August
2001.

