

Meta GUI Builders: Towards A Model
for Generating Domain Specific
Interface Builders

Abstract
We present a new generation of graphical user interface
builder tools (GUI-Builder) that allow for the creation of
flexible GUI designs and use the vocabulary of the
domain for which the GUIs are created. This domain
vocabulary contains a set of abstractions that are
commonly used in such a domain and a corresponding
presentation for each abstraction. This vocabulary is
used to generate a GUI builder, so for each different
domain the GUI Builder tool encapsulates the domain
specific elements in the designer's tool palette. Over
time, a vocabulary can be extended or changed when
the designer evolves and becomes more familiar with a
particular domain.

Keywords

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
The design of user interfaces is tedious work and
involves many stakeholders. To ensure the interface
that results from a [vul aan]. A consistent mapping of

Copyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

Kris Luyten, Jo Vermeulen, Karin Coninx

Hasselt University - Transnationale Universiteit Limburg

Expertise Centre for Digital Media - IBBT

Wetenschapspark 2

3590 Diepenbeek, Belgium

{kris.luyten,jo.vermeulen,karin.coninx}@uhasselt.be

domain-specific elements on a graphical representation
is important to increase the recognizability for the
designer, and by consequence the consistency and
usability of the graphical interface w.r.t. the usage
domain.

In this work, we present a meta graphical user interface
builder that is generated for a specific domain: a visual
builder tool is presented to the designer according to
the domain objects that are to be found in the problem
domain.

The User Interface Markup Language
The user interface markup language (UIML, [1]) is the
cornerstone of our approach. UIML is a canonical XML-
based user interface description language that allows a
custom naming scheme according to the problem
domain. A UIML document expresses the structure,
style, content and behavior of a interactive user
interface independent of platform, widget set or even
programming language. For this purpose a mapping
vocabulary containing mapping rules from domain
objects onto concrete representations is defined.

We provide a highly dynamic rendering engine,
UIML.net [2], that transforms a UIML document into a
concrete working user interface. This rendering engine
will query the mapping vocabulary and instantiate the
appropriate widgets from the selected widget set at
runtime. This means that a change in the vocabulary
does not render the user interface specification
unusable: the user interface will be automatically
adapted according to the changed mapping rule and
presented with the altered concrete widgets.

The same technique as described above to generate
concrete user interfaces is also used to generate a
Graphical User Interface Builder (GUIBuilder) tool.

[Stuk toevoegen over flexibiliteit, multi-device en
patterns/parametrized templates: later nog nodig om
goed te motiveren]
Mapping Vocabularies
The mapping vocabulary is the part of UIML that allows
to use a custom naming scheme while creating the user
interface description. Some changes needed to be
made to the OASIS UIML standard to have better
support for UIML-based design tools. Since the
mapping vocabulary already contains a concrete
representation for each domain object, they can be
presented directly in the GUI Builder. However, the
standard vocabulary only allows to map one domain
object onto one widget class but does not allow
mapping a domain object onto a set of widget classes.

There are two approaches to overcome this limitation:
(1) extend the mapping vocabulary with more
semantics; or (2) add the required information in a
separate file. An iconic representation for each mapping
rule is required to serve as a candidate representation
in the designer tool [gebruik RDF hiervoor]. We choose
the first option and allow the mapping vocabulary to be
extended while the designer gains more knowledge in
the problem domain, thus discovers a set of patterns
that she or he considers candidates for reuse. The
benefit of having an iconic representation is the
flexibility with which we can represent the mapping in
an “abstract” way, such as the Canonical Abstract
Prototypes [3], while still enabling the designer to
generate a high-level prototype.

figure 1. The Vocabulary Space: as the vocabulary includes

more abstract mappings it becomes more specific to a certain

domain and evolves into a body of domain-specific interface

patterns.

This also implies the level of abstraction that is
supported by the tool can differ. Figure XXX shows a
GUI Builder tool that is generated by a vocabulary
intended for a designer that is used to work with
“regular” design tools such as Glade, Visual Studio
Forms Editor,... Alternatively, a vocabulary that contains
a naming scheme for a “car navigation system”
designer can be created that maps objects from the
source domain onto a suitable user interface patterns.

The most powerful property of this approach is that a
vocabulary that only provides a low degree of
abstraction can evolve into a vocabulary of a high
degree of abstraction as the designer gains more
knowledge of the a domain. Figure 1 depicts this

abstraction dimension: a vocabulary evolves from the
bottom left region of the vocabulary space towards the
upper right region.

Generation of a GUI Builder tool from
domain objects
A GUI Builder tool typically allows the designer to
compose a user interface by using drag-and-drop
operations that move objects from a toolbox into a
graphical canvas. The most common dialogs (be it
integrated in a single view or a multi-window view) are
the toolbox, the canvas, the property dialog and the
treeview. The toolbox contains a set of representations
of domain objects that can be dragged onto the canvas.
The canvas represents the graphical representation of
how the user interface should look like. The property
dialog shows the properties of the domain objects:
editing these properties will result in the corresponding
change in representation in the canvas as defined by
the vocabulary. The treeview gives a hierarchical view
on the design: the leaf nodes are the actual widgets,
and non-leaf nodes serve as different types of
containers for the widgets.

The above description of the different dialogs is
identical to the traditional structure of a GUI Builder
tool. The toolbox and properties dialog are generated
from the vocabulary however, and the information
contained in the other windows is contained in a UIML
document.

Extending the GUI Builder “by practice”
The main difference is the way the designer can “save”
patterns and add them to the toolbox. This can be done
as follows: the treeview will be expanded while the
designer adds objects to the canvas. If there is a part

of the design that can be reused later on (e.g. a “speed
control ahead dialog”) in other designs the designer can
create a new pattern by selecting that part of the user
interface and naming it. The selection can be done in
the treeview (a subtree can be selected) or on the
canvas (a set of widgets can be selected) and a name
for this pattern must be provided by the designer. This
information is saved into the mapping vocabulary as a
template and, if the designer wishes to do so, an iconic
representation can be added for this pattern. The
properties of the different subparts of this pattern are
merged so it is considered as a new domain object with
its own specific identity now.

Tools and Processes
The tool framework presented in this paper is part of a
process we gradually implement to support user-
centered engineering of interactive systems. This
process is depicted in figure [].
Our approach should bring designers, end-users and
domain experts closer together by combining three

important aspects that support more efficient and
unambiguous communication:
− a naming scheme that is known to the end-users

and domain experts
− a high-level prototype that can be consulted early

during the design process
− smooth integration with the application logic and

target platform(s)

Future Work
This paper presented the first proof-of-concept we
created of a GUI Builder generation tool, or a meta-GUI
Builder model.

Conclusions
We have currently a first proof-of-concept
implementation of a meta-GUI-builder.

Acknowledgements
The authors would like to thank Jan Meskens who
implemented an initial version of the system described
in this paper as part of his MSc thesis.

Example citations
☯�D Abrams, M. and Helms, J.,

☯�D Luyten, K. and Coninx, K., Uiml.net: an Open
Uiml Renderer for the .Net Framework, CADUI 2004,
Funchal, Madeira, 2004

☯�D Constantine, L. L., Canonical abstract
prototypes for abstract visual and interaction design,
DSV-IS 2003, Funchal, Madeira, 2003

☯�D Myers, B. A., User Interface Software Tools,
ACM Transactions on Computer-Human Interaction. vol.
2, no. 1, March, 1995. pp. 64-103

	Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	The User Interface Markup Language
	Mapping Vocabularies
	Generation of a GUI Builder tool from domain objects
	Extending the GUI Builder “by practice”
	Tools and Processes
	Future Work
	Conclusions
	Acknowledgements
	Example citations

