
Deterministic Top-Down Tree Automata: Past,

Present, and Future

Wim Martens1

Frank Neven2

Thomas Schwentick1

1 University of Dortmund
Germany

2 Hasselt University and Transnational University of Limburg
School for Information Technology
Belgium

Abstract

In strong contrast to their non-deterministic counterparts, deter-

ministic top-down tree automata received little attention in the sci-

entific literature. The aim of this article is to survey recent and less

recent results and stipulate new research directions for top-down de-

terministic tree automata motivated by the advent of the XML data

exchange format. In particular, we survey different ranked and un-

ranked top-down tree automata models and discuss expressiveness,

closure properties and the complexity of static analysis problems.

1 Introduction

The goal of this article is to survey some results concerning deterministic
top-down tree automata motivated by purely formal language theoretic rea-
sons (past) and by the advent of the data exchange format XML (present).
Finally, we outline some new research directions (future).

The Past. Regular tree languages have been studied in depth ever since
their introduction in the late sixties [10]. Just as for regular string languages,
regular tree languages form a robust class admitting many closure properties
and many equivalent formulations, the most prominent one in the form of
tree automata. A striking difference with the string case where left-to-right
equals right-to-left processing, is that top-down is no longer equivalent to
bottom-up. In particular, top-down deterministic tree automata are strictly
less expressive than their bottom-up counterparts and consequently form a
strict subclass of the regular tree languages. Furthermore, deterministic top-
down tree automata do not enjoy many of the important closure properties.
For instance, they are neither closed under union nor under complement.

2 W. Martens, F. Neven, and T. Schwentick

Several variants of deterministic top-down tree automata models have
been introduced of which the one defined in [10, 7] is considered to be the
standard one: the states assigned to the children of a node depend solely
on the label and the state at the current node. We refer to these automata
as ‘blind’ because they cannot see the label of the children when assigning
states to them. A natural extension would therefore be to make automata
‘sensing’ by allowing them to see those labels. The latter model is more
expressive than the former and both can be characterized by closure under
a subtree exchange property. Using the latter property it becomes very
easy to show that the models are neither closed under union nor under
complement. The l-r-determinism for top-dowm tree automata introduced
by Nivat and Podelski [17] and defining the homogeneous tree languages
is strictly more expressive than blind automata and incomparable to sens-
ing ones. Both blind and sensing tree automata allow for tractable static
analysis: emptiness, containment and minimization are in PTIME.

The Present. XML, which stands for the eXtensible Markup Language,
is a standard defined by W3C [4] for data exchange over the internet. From
an abstract viewpoint, XML data or XML documents can be represented by
finite labeled unranked trees where unranked means that there is no a priori
bound on the number of child nodes a node can have. In a data exchange
scenario not every XML document is allowed and the structure of XML doc-
uments is usually restricted to adhere to a specified schema. Many schema
languages for XML exist of which the most prominent ones are DTD [4],
XML Schema [20], and Relax NG [6]. In formal language theoretic terms,
every schema defines an unranked tree language. This XML setting mo-
tivated Brüggemann-Klein, Murata, and Wood to develop a theory of un-
ranked tree automata, an endeavor already initiated in the late sixties by
Thatcher [21]. For deterministic top-down unranked tree automata there
is again the difference between the blind and the sensing variant. Further-
more, as nodes can have arbitrarily many children it is natural to consider
two variants of sensing automata. The first variant is an online one: given
the state and the label of its parent, the state of a child only depends on its
label and the labels of its left-siblings. The variant is called online as child
states are assigned when processing the child string in one pass from left to
right. In contrast, the offline variant first reads the complete child string
and only then assigns states to all children. All three models can again be
characterized in terms of closure under specific forms of subtree exchange.
These properties can be used to show that blind, online, and offline sensing
are increasingly more expressive and that neither of the models is closed
under union and complement. Interestingly, online sensing top-down tree
automata suffice to express all DTDs and XML Schema Definitions. Fur-
thermore, they correspond precisely to the unranked regular tree languages

Deterministic Top-Down Tree Automata: Past, Present, and Future 3

admitting one-pass preorder typing [14]. In this context, typing means the
assignment of the correct state to each node. So, online sensing determin-
istic top-down tree automata capture precisely the schemas which can be
validated and typed in a one-pass fashion. A difference with the binary case
is that minimization is NP-complete for offline sensing top-down automata,
while it is in PTIME for online sensing top-down automata. Minimization
for blind automata is in NP but the precise complexity is unknown.

The Future. From a theoretical point of view, there is a schema language
superior to XML Schema: Relax NG is more expressiveness than XML
Schema and it is closed under the Boolean operations. Nevertheless, XML
Schema is the language endorsed by W3C and therefore supported by the
major database vendors. It constitutes deterministic top-down processing
as its basic validation mechanism. As mentioned before, XML Schema lacks
the most basic closure properties. From the viewpoint of model manage-
ment [1] or schema integration, especially the inability to express the union
of two schemas is a serious defect. From a formal language theory perspec-
tive, Jurvanen, Potthof, and Thomas proposed regular frontier checks as a
general extension of deterministic top-down automata [12]. In particular,
the acceptance condition is determined by a regular string language F over
states added to the model. A tree is then accepted when the string formed
by the states assigned to the frontier of the tree is in F . Although this
formalism is expressive enough to define union and complement it is less
convenient as an addition for a schema language. It would therefore be in-
teresting to come up with a convenient top-down deterministic model closed
under the Boolean operations. We discuss this and other future directions
like optimization and automatic inference problems in the Conclusions.

Outline. The article is further organized as follows. In Section 2, we in-
troduce the necessary notation. In Section 3 and 4, we discuss ranked and
unranked deterministic top-down models, respectively. Finally, in Section
5, we consider regular frontier checks.

2 Preliminaries

2.1 An abstract notation for automata

We first explain the generic automata notation that we will use throughout
the paper. For a finite set S, we denote by |S| its number of elements. By
Σ we always denote a finite alphabet. We consider different types of data
structures built from Σ like strings, binary trees, or unranked trees. We
write DΣ for the set of all data structures of the given type that can be
built from Σ. For every d ∈ DΣ, we will define a set Nodes(d), a designated
element root(d) ∈ Nodes(d), and a designated set Frontier(d) ⊆ Nodes(d).
Here, root(d) will be the root of a tree or the first symbol of a string;
Frontier(d) will be the set of leaves in a tree or the last symbol of a string.

4 W. Martens, F. Neven, and T. Schwentick

To address automata in a uniform way for the different data structures,
we first define them in abstract terms to instantiate them later operating
on strings, trees, and unranked trees.

Definition 2.1. A finite automaton over Σ is a tuple

A = (States(A), Alphabet(A), Rules(A), Init(A), Final(A)),

where States(A) is a finite set of states, Alphabet(A) = Σ is the finite
alphabet, Rules(A) is a finite set of transition rules, Init(A) ⊆ States(A) is
the set of initial states, and Final(A) ⊆ States(A) is the set of final states.

The size of A, denoted by |A|, is a natural number, which by default
will be the number of states of A unless explicitly stated otherwise. A
run of an automaton A on a data structure d ∈ DAlphabet(A) will always be
defined as some function of type r : Nodes(d)→ States(A). For each kind of
automaton, we will define when a run is accepting. Then, the language L(A)
of an automaton is the set of data structures d that permit an accepting
run.We call a finite automaton unambiguous if, for every d, there exists at
most one accepting run of A on d.

We consider the following static analysis problems:

• Emptiness: Given a finite automaton A, is L(A) = ∅?

• Containment: Given two finite automata A and B, is L(A) ⊆ L(B)?

• Minimization: Given a finite automaton A and integer k, does there
exist an automaton B (of the same class as A) such that L(A) = L(B)
and |B| ≤ k?

In the remainder of the paper, we will use the letters a, b, c, . . . to range
over alphabet symbols and we will use p, q, . . . to range over states.

2.2 Strings and Trees

By N0 we denote the set of nonnegative integers and by N the set of positive
integers. We call a ∈ Σ a Σ-symbol. A Σ-string (or simply string) w ∈ Σ∗

is a finite sequence a1 · · ·an of Σ-symbols. We denote the empty string by
ε.

The set of positions, or nodes, of a Σ-string w is Nodes(w) = {1, . . . , n}.
The root of w is root(w) = 1 and the frontier of w is Frontier(w) = {n}.
The length of w, denoted by |w|, is n. The label ai of node i in w is denoted
by labw(i).

A tree domain N is a non-empty, prefix-closed subset of N
∗ satisfying

the following condition: if ui ∈ N for u ∈ N
∗ and i ∈ N, then uj ∈ N

for all j with 1 ≤ j ≤ i. An unranked Σ-tree t (which we simply call

Deterministic Top-Down Tree Automata: Past, Present, and Future 5

tree in the following) is a mapping t : Nodes(t) → Σ where Nodes(t) is
a finite tree domain. The elements of Nodes(t) are called the nodes of t.
For u ∈ Nodes(t), we call nodes of the form ui ∈ Nodes(t) with i ∈ N the
children of u (where ui is the ith child). The root of a tree is root(t) =
ε and the frontier of a tree is its set of nodes with no children, that is,
Frontier(t) = {u | u1 6∈ Nodes(t)}. For a tree t and a node u ∈ Nodes(t),
we denote the label t(u) by labt(u). If the root of t is labeled by a, that is,
labt(ε) = a, and if the root has k children at which the subtrees t1, . . . , tk
are rooted from left to right, then we denote this by t = a(t1 · · · tk). In
the sequel, we adopt the following convention: when we write a tree as
a(t1 · · · tn), we tacitly assume that all ti’s are trees. The depth of a node
i1 · · · in ∈ N

∗ in a tree is n + 1. The depth of a tree is the maximum of
the depths of its nodes. We denote the set of unranked Σ-trees by TΣ. By
subtreet(u) we denote the subtree of t rooted at u. For two Σ-trees t1 and
t2, and a node u ∈ Nodes(t1), we denote by t1[u ← t2] the tree obtained
from t1 by replacing its subtree rooted at u by t2. A tree language is a set
of trees.

A binary alphabet or binary signature is a pair (Σ, rankΣ), where rankΣ

is a function from Σ to {0, 2}. The set of binary Σ-trees is the set of Σ-
trees inductively defined as follows. When rankΣ(a) = 0, then a is a binary
Σ-tree. When rankΣ(a) = 2 and t1, t2 are binary Σ-trees, then a(t1t2) is a
binary Σ-tree.

2.3 Finite String Automata

We instantiate our abstract notion of finite automata over strings:

Definition 2.2. A finite string automaton (FSA) over Σ is a finite automa-

ton over Σ where Rules(A) is a finite set of rules of the form q1
a
→ q2 with

q1, q2 ∈ States(A) and a ∈ Alphabet(A).

A run of A on a string w ∈ Alphabet(A)∗ is a mapping r : Nodes(w)→
States(A) such that

(i) there exists q0 ∈ Init(A) with q0
a
→ r(1) in Rules(A) for labw(1) = a;

and,

(ii) for every i = 1, . . . , |w| − 1, it holds that r(i)
a
→ r(i + 1) in Rules(A)

where labw(i + 1) = a.

A run r is accepting if r(|w|) ∈ Final(A). An FSA A is deterministic if it
satisfies the following two conditions, implying that no string permits more
than one run by A:

(i) Init(A) is a singleton; and,

6 W. Martens, F. Neven, and T. Schwentick

(ii) for every q1 ∈ States(A) and a ∈ Alphabet(A), there exists at most

one rule q2 ∈ States(A) such that q1
a
→ q2 is in Rules(A).

We denote by DFSA be the class of deterministic finite string automata.

2.4 Exchange Properties for Tree Languages

We define several of the exchange properties for tree languages that we
use in the following sections to characterize the expressive power of tree
automata.

2.4.1 Path-Closed Languages

A well-known characterization of tree languages recognizable by a class of
top-down deterministic tree automata is the one of path closed languages
by Virágh [23]. The path language of a tree t, denoted Path(t), is the set of
strings

lab(ε)i1lab(i1) · · · inlab(i1 · · · in),

for nodes i1, i1i2, . . . i1 · · · in in Nodes(t).1 The path langauge of a tree lan-
guage L, denoted Path(L), then is the union of the path languages of its
trees, that is, Path(L) =

⋃

t∈L Path(t). The path closure of a tree language
L is defined as P-Closure(L) = {t | Path(t) ⊆ Path(L)}. Finally, a tree
language L is path-closed when P-Closure(L) ⊆ Path(L).

Nivat and Podelski argued that path-closed languages can also be char-
acterized using the following subtree exchange property [17].2 A regular
tree language L is path-closed if and only if, for every t ∈ L and every node
u ∈ Nodes(t),

if t[u← a(t1, . . . , tn)] ∈ L and t[u← a(s1, . . . , sn)] ∈ L, then

t[u← a(t1, . . . , si, . . . , tn)] ∈ L for each i = 1, . . . , n.

This subtree exchange closure for path-closed languages is illustrated in
Figure 1. In the remainder of the article, when we say that a language is
path-closed, we will always refer to this closure under the just mentioned
exchange property.

2.4.2 Guarded Subtree Exchange

For a node v = uk in a tree t with k ∈ N, we denote by l-sib-strt(v) the
string formed by the label of the v and the labels of its left siblings, that
is, labt(u1) · · · labt(uk). By r-sib-strt(v) we denote the string formed by
v and its right siblings, that is, labt(uk) · · · labt(un), if u has n children.
We define l-sib-strt(ε) = r-sib-strt(ε) = labt(ε). Let v = i1i2 · · · iℓ with

1 We tacitly assume here that Σ ∩ N = ∅.
2 Actually, Nivat and Podelski only considered path-closedness on ranked trees, but it

is easy to see that the properties are also equivalent on unranked trees.

Deterministic Top-Down Tree Automata: Past, Present, and Future 7

∈ L

t

∈ L

a

t

∈ L ⇒
t

s1 t1tn
sn si tn

· · · · · · · · ·

t1

· · ·

a a

(a) Path-closed.

t
′
1

∈ L ∈ L ⇒t1 t2 ∈ L

t
′
1 t

′
2

t2

(b) Ancestor-left-sibling-closed.

t
′
1

∈ L ∈ L ⇒t1 t2 ∈ L

t
′
1 t

′
2

t2

(c) Spine-closed.

Figure 1. Various kinds of subtree exchange properties for tree languages.

i1, i2, . . . , iℓ ∈ N. Let # and ▽ be two symbols not in Σ. By anc-l-sib-strt(v)
we denote the ancestor-left-sibling-string

l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · iℓ),

formed by concatenating the left-sibling-strings of all ancestors of v, starting
from the root. By spinet(v) we denote the ancestor-sibling-string

l-sib-strt(ε)▽r-sib-strt(ε)#l-sib-strt(i1)▽r-sib-strt(i1)# · · ·

· · ·#l-sib-strt(i1i2 · · · iℓ)▽r-sib-strt(i1i2 · · · iℓ)

formed by concatenating the left-sibling-strings and right-sibling strings of
all ancestors of v, starting from the root.

We say that a tree language L is ancestor-left-sibling-closed3 if whenever
for two trees t1, t2 ∈ L with nodes u1 ∈ Nodes(t1) and u2 ∈ Nodes(t2),

3 This property was called “closure under ancestor-sibling-guarded subtree exchange”
in [14].

8 W. Martens, F. Neven, and T. Schwentick

anc-l-sib-strt1(u1) = anc-l-sib-strt2(u2) implies t1[u1 ← subtreet2(u2)] ∈ L.
We say that L is spine-closed if spinet1(u1) = spinet2(u2) implies t1[u1 ←
subtreet2(u2)] ∈ L. The latter notions are illustrated in Figure 1.

3 Top-Down Automata on Binary Trees

As we consider in this section automata over binary trees, we take Σ as
a binary alphabet. We define two flavors of top-down determinism. The
first is the traditional one, such as defined, for example, by Gecseg and
Steinby [9] and in the on-line textbook TATA [7]. In brief, the label of the
current symbol and the current state uniquely determine the states assigned
to the children of the current symbol (Definition 3.1). The second notion of
top-down determinism is slightly more expressive. Here, the states assigned
to the children of the current node are determined by the current node’s
label, the state assigned to the current node, and the labels of the children
(Definition 3.2). The latter notion of top-down determinism is reminiscent
to the notion of “l-r-determinism” studied by Nivat and Podelski [17], and
similar notions of top-down determinism on unranked trees have been stud-
ied by Cristau, Löding, and Thomas [8] and by Martens [13]. We refer to
the first kind of automata as blind and to the second as sensing.

Definition 3.1. A blind top-down finite tree automaton (BTA) is a finite
automaton A such that Rules(A) is a set of rules

(q, a)→ (q1, q2) or (q, a)→ ε.

A run of A on a binary Σ-tree t is a mapping r : Nodes(t)→ States(A) such
that

(i) r(ε) ∈ Init(A);

(ii) for each leaf node u with label a, (r(u), a)→ ε is in Rules(A); and

(iii) for each non-leaf node u with label a, (r(u), a) → (r(u1), r(u2)) is in
Rules(A).

If a run exists, it is accepting. We say that a BTA is (top-down) deterministic
if Init(A) is a singleton and no two of its rules have the same left-hand sides.

Definition 3.2. A sensing top-down finite tree automaton (STA) is a finite
automaton A such that Rules(A) is a set rules of the form

a→ q or q(a1, a2)→ (q1, q2).

For an STA A, we have that Init(A) = {q | a→ q ∈ Rules(A)}. A run of A

on a binary Σ-tree t is a mapping r : Nodes(t)→ States(A) such that

Deterministic Top-Down Tree Automata: Past, Present, and Future 9

⇒
t

a

∈ L

s2s1

t

∈ L

a

t1 t2

t

∈ L

a

t

∈ L

a

s2t1 s1 t2

Figure 2. Closure property for homogeneous tree languages.

(i) if r(ε) = q and lab(ε) = a then there is a rule a→ q ∈ Rules(A), and

(ii) for each non-frontier node u, if r(u) = q, lab(u1) = a1, and lab(u2) =
a2, then there is a rule q(a1, a2)→ (r(u1), r(u2)) in Rules(A).

The run is accepting if, for each leaf node u, r(u) ∈ Final(A). We say that
an STA is deterministic if no two of its rules have the same left-hand sides.

3.1 Relative Expressive Power

It is well-known that top-down automata cannot recognize all regular tree
languages. In this section, we compare several forms of top-down determin-
ism that have been investigated with respect to their expressive power.

3.1.1 Homogeneous Languages

Nivat and Podelski defined a notion of top-down determinism that they
called l-r-determinism. This form of determinism will not be treated very
deeply in this article, as it does not correspond to the order in which one
would like to process trees in an XML context. We use their characterization
in terms of closure under subtree exchange to formally argue this. Nivat and
Podelski define a BTA A to be l-r-deterministic if whenever (q, a)→ (q1, q2)
and (q, a)→ (q′1, q

′

2) is in Rules(A) then

• q1 6= q′1 implies that L(A[q2]) ∪ L(A[q′2]) = ∅ and

• q2 6= q′2 implies that L(A[q1]) ∪ L(A[q′1]) = ∅.

Here, for q = q1, q2, q
′

1, q
′

2, A[q] denotes automaton A in which Init(A) = {q}.
We will, however, focus on a characterization of the languages accepted by
l-r-deterministic tree automata which is, for our purpose, more workable.

A regular tree language L is homogeneous if, whenever t[u← a(t1, t2)] ∈
L, t[u← a(s1, t2)] ∈ L, and t[u← a(t1, s2)] ∈ L, then also t[u← a(s1, s2)] ∈
L. This closure under subtree exchange is illustrated in Figure 2.

3.1.2 The Characterization

We characterize the expressiveness of the tree automata models by the clo-
sure properties introduced in Section 2.4.

10 W. Martens, F. Neven, and T. Schwentick

a

a

b b

a

c c

a

a

c c

a

b b

Figure 3. A homogeneous language that is not spine-closed.

Theorem 3.3 (Characterization Theorem). A regular tree language L

is recognizable by

(1) a deterministic BTA if and only if L is path-closed.

(2) an l-r-deterministic tree automaton if and only if L is homogeneous.

(3) a deterministic STA if and only if L is spine-closed.

Theorem 3.3(1) is known from, e.g., Virágh [23] and from Gecseg and
Steinby [10]. Theorem 3.3(2) is Theorem 2 in the work by Nivat and
Podelski [17]. Finally, Theorem 3.3(3) is proved by Cristau, Löding, and
Thomas [8] and by Martens [13] for more general unranked tree automata
with this form of top-down determinism. It should be noted that Cristau et
al. did not explicitly use a subtree exchange property for spine-closedness
but an equivalent closure property that considers the spine language of a
tree (as in the original definition of path-closedness).

Corollary 3.4. (1) l-r-deterministic tree automata are strictly more ex-
pressive than deterministic BTAs.

(2) Deterministic STAs are strictly more expressive than deterministic BTAs.

(3) Deterministic STAs and l-r-deterministic tree automata are incompara-
ble w.r.t. expressive power.

Proof. (1) It is easy to see that every path-closed language is homogeneous.
Furthermore, the language {a(b, b), a(c, c)} is homogeneous but not path-
closed.

(2) It is easy to see that every path-closed language is also spine-closed.
Furthermore, the language {a(b, b), a(c, c)} is spine-closed but is not path-
closed.

(3) The language {a
(

a(b, b), a(c, c)
)

, a
(

a(c, c), a(b, b)
)

} is homogeneous but
not spine-closed (see also Figure 3). The language {a(b, b), a(b, c), a(c, b)} is
spine-closed but not homogeneous. q.e.d.

Deterministic Top-Down Tree Automata: Past, Present, and Future 11

3.1.3 L-R-Determinism Versus Top-Down State Assignment

Figure 3 depicts a finite language L which is homogeneous but not spine-
closed. So, L can be recognized by an l-r-deterministic tree automaton but
not by a deterministic STA.

One easily obtains infinite languages with this property. Indeed, let Lb

and Lc be the set of trees in which every internal node is labeled a and
every leaf is labeled b and c, respectively. The language Lbc now consists of
all trees a(tb, tc) and a(tc, tb) for which tb ∈ Lb and tc ∈ Lc. Clearly, Lbc is
homogeneous.

We now want to argue informally that, for any tree automaton A rec-
ognizing Lbc, the state that A assigns to each of the two children of the
root in an accepting run cannot be determined without looking arbitrarily
deep into at least one subtree of the root. In other words, this means that
there is at least one child u of the root such that A needs to investigate the
subtree rooted at u before assigning a state to u. This is something what
is not commonly associated with “top-down determinism”.

Let A be a tree automaton that recognizes the language Lbc. Let n be
an arbitrarily large natural number and let a(tb, tc) be a tree in Lbc such
that every path from root to leaf in tb and tc has length at least n + 1.
This way, tb and tc are identical up to depth n. Towards a contradiction,
suppose that A does not investigate tb or tc arbitrarily deep, i.e., not up to
depth n, before assigning a state to the root of tb (the argument for tc is
the same). More formally, assume that the state A assigns to the root of
tb is functionally determined by the structure of tb and tc up to depth at
most n − 1. Let r1 be an accepting run of A on a(tb, tc) and let r2 be an
accepting run of A on a(tc, tb). As A does not investigate tb or tc arbitrarily
deep, r1 assigns the sames state to the root of tb in a(tb, tc) as r2 assigns to
the root of tc in a(tc, tb). As A is a tree automaton, it is now easy to see
that a(tc, tc) is also in L(A), with the accepting run that behaves as r2 on
the left copy of tc and as r1 on the right copy of tc. This contradicts that
A accepts Lbc.

Therefore, our focus in the remainder of the article will be on deter-
ministic BTAs and deterministic STAs, rather than l-r-deterministic tree
automata.

3.2 Closure Properties

The characterization theorem can easily be used to show that deterministic
top-down tree automata are not closed under complement and union.

Theorem 3.5. (1) Deterministic BTAs and deterministic STAs are closed
under intersection.

(2) Deterministic BTAs and deterministic STAs are not closed under com-
plement or union.

12 W. Martens, F. Neven, and T. Schwentick

Proof. (1) This follows immediately from the standard product construc-
tion for tree automata. One merely has to observe that the intersection
construction preserves the determinism constraint for BTAs and STAs.
(2) These results can be proved quite directly from the characterizations in
Theorem 3.3. Indeed, let Lb (resp., Lc) be the tree language over alphabet
{a, b, c} in which every internal node (i.e., with two children) is labeled a

and every leaf is labeled b (resp., c). The languages Lb and Lc are easily
seen to be recognizable by deterministic BTAs.

On the other hand, the union Lb ∪Lc, the set of all trees in which every
internal node is labeled a and either all leaves are labeled b or all leaves
are labeled c is not spine-closed. Hence, Lb ∪ Lc is not recognizable by a
deterministic STA, which means that deterministic BTAs and deterministic
STAs are not closed under union. From closure under intersection and non-
closure under union we can readily conclude non-closure under complement.

q.e.d.

3.3 Static Analysis

In this section, we will prove the following Theorem:

Theorem 3.6. (1) Emptiness is in PTIME for BTAs and STAs.

(2) Containment is in PTIME for deterministic BTAs and deterministic
STAs.

(3) Minimization is in PTIME for deterministic BTAs and deterministic
STAs.

Proof. (1) It is well-known that emptiness is in PTIME for (non-deterministic
bottom-up) tree automata in general [7]. Therefore, emptiness is also in
PTIME for deterministic BTAs and deterministic STAs.
(2) It is easy to see that deterministic BTAs and deterministic STAs and
intersections thereof are in fact unambiguous tree automata. The result now
follows from the work by Seidl, who proved that equivalence of unambiguous
tree automata is in PTIME [18].
(3) For deterministic BTAs, this follows from the work by Gecseg and
Steinby [9]. Although their work does not explicitly concern complexity,
they prove that minimization for deterministic BTAs can be polynomially
reduced to equivalence/containment for deterministic BTAs. As contain-
ment for deterministic BTAs is in PTIME by part (2), we also have that
minimization is in PTIME.

To explain their algorithm, we start by discussing a minor optimization
matter for tree automata. For an automaton A and q ∈ States(A) we denote
by A[q] the language accepted by A when Init(A) = {q}.4 We say that q is
reachable in A if one of the following holds:

4 If A is an STA, we require in addition that every rule a → p is replaced by a → q.

Deterministic Top-Down Tree Automata: Past, Present, and Future 13

(1) Reduce A, that is,

(a) remove all states q from A for which L(A[q]) = ∅; and then

(b) remove all states q from A which are not reachable from Init(A).

(2) Test, for each p 6= q in States(A), whether L(A[p]) = L(A[q]).
If L(A[p]) = L(A[q]), then

(a) replace all occurrences of p in the definition of A by q and

(b) remove p from A.

Figure 4. The Minimization Algorithm.

• q ∈ Init(A) or

• p is reachable and there is a rule of the form (p, a) → (q1, q2) or
p(a1, a2)→ (q1, q2) in Rules(A), where q = q1 or q = q2.

We now say that A is reduced if, every state q is useful, that is, q is reachable
and L(A[q]) 6= ∅. Algorithmically, one would convert a tree automaton
into a reduced tree automaton by first removing all the states q for which
L(A[q]) = ∅ and then removing all the states that are not reachable. The
order in which these two steps are performed is important, as the other
order does not necessarily produce a reduced automaton.

The following observation states that a state is useful if and only if it
can be used in some accepting run of the automaton.

Observation 3.7. Let A be a tree automaton and q ∈ States(A). Then, q

is useful if and only if there exists a tree t ∈ L(A), an accepting run r of A

on t, and a node u ∈ Nodes(t) such that r(u) = q.

The algorithm of Gecseg and Steinby is now informally presented in
Figure 4.

Interestingly, for deterministic STAs, it seems that one can likewise use
the algorithm of Figure 4 for minimization. It only has to be shown that,
given a deterministic STA, the algorithm returns a minimal deterministic
STA. Thereto, let Amin be the automaton obtained by applying the above
minimization algorithm on a deterministic STA A. Formally, we need to
prove that

(a) Amin is a deterministic STA;

(b) L(Amin) = L(A); and that

14 W. Martens, F. Neven, and T. Schwentick

(c) the number of states of Amin is indeed minimal.

To show (a), observe that, in step (1) of the algorithm, we only remove
states. Hence, no non-determinism is introduced in step (1). In step (2),
non-determinism can be introduced by overwriting occurrences of p with q.
However, the following observation, which is easy to show by contraposition,
proves that this non-determinism is removed further on in the algorithm.

Observation 3.8. Let p and q be two states such that L(A[p]) = L(A[q])
and let p(a1, a2)→ (p1, p2) and q(a1, a2) → (q1, q2) be two transition rules
of A. Then L(A[p1]) = L(A[q1]) and L(A[p2]) = L(A[q2]).

To show (b), observe that, in step (1), we only remove states that cannot
be used in a successful run of A (Observation 3.7). Hence, this does not
alter the language accepted by A. In step (2), we replace states p in A with
states q that define the same language. The following observation is easy
to prove:

Observation 3.9. Let p and q be two states such that L(A[p]) = L(A[q]).
Let A′ be obtained from A by replacing all occurrences of p in the definition
of A by q, and by removing q. Then L(A) = L(A′).

It remains to show (c), which is a bit more involved. First, we introduce
the following concept. We say that a finite tree automaton A over Σ has
spine-based runs if there is a (partial) function

f : (Σ ∪ {#, ▽})∗ → States(A)

such that, for each tree t ∈ L(A), for each node v ∈ Nodes(t), and for each
accepting run r of A on t, we have that

r(v) = f(spinet(v)).

Observation 3.10. Every deterministic STA has spine-based runs.

Proof. Let A be a deterministic STA. We assume w.l.o.g. that A is reduced.
We define the function f : (Σ∪{#, ▽})∗ → States(A) inductively as follows:
for each a ∈ Σ, f(a▽a) = q, for the unique q such that a→ q is a rule in A.
Further, for every string w0#w1a▽aw2 with w0 ∈ (Σ ∪ {#, ▽})∗, w1, w2 ∈
Σ∪ {ε}, and a ∈ Σ, we define f(w0#w1a▽aw2) = q where f(w0) = p and q

is the unique state such that the following holds. If w1 = ε, q is the unique
state such that p(a, w2) → (q, q′) ∈ Rules(A), and if w2 = ε, then q is the
unique state such that p(w1, a) → (q′, q) ∈ Rules(A). As A is a reduced
deterministic STA, f is well-defined and induces a spine-based run. q.e.d.

Observation 3.11. Let A1 and A2 be equivalent deterministic STAs and
let t ∈ L(A1) = L(A2). Let r1 and r2 be the unique runs of A1 and A2 on
t, respectively, and let u be a node in t. Then L(A1[r1(u)]) = L(A2[r2(u)]).

Deterministic Top-Down Tree Automata: Past, Present, and Future 15

Proof. Let p and q be r1(u) and r2(u), respectively. If |L(A1[p])| = |L(A2[q])| =
1, the proof is trivial. We show that L(A1[p]) ⊆ L(A2[q]). The other inclu-
sion follows by symmetry.

Towards a contradiction, assume that there exists a tree t0 ∈ L(A1[p])−
L(A2[q]). As A1 is reduced, there exists a tree T0 in L(A1), such that

• t0 is a subtree of T0 at some node v; and,

• r′1(v) = p, where r′1 is the unique run of A1 on T0.

As r1(u) = p = r′1(v), the tree t3 = t[u ← t0] is also in L(A1). As A1 and
A2 are equivalent, t3 is also in L(A2). Notice that u has the same spine
in t and in t3 = t[u ← t0]. By Observation 3.10, A2 has spine-based runs,
which implies that r′2(u) = q for the unique run r′2 of A2 on t3. Therefore,
t0 ∈ L(A2[q]), which leads to the desired contradiction. q.e.d.

The next observation states that every equivalent minimal deterministic
STA is equally large as Amin.

Observation 3.12. If A0 is a minimal deterministic STA for L(Amin), then
|A0| = |Amin|.

Proof. As A0 is minimal, we know that A0 is reduced and that |A0| ≤ |Amin|.
As Amin is the output of the minimization algorithm, Amin is reduced as
well.

We only have to prove that |Amin| ≤ |A0|. Towards a contradiction, as-
sume that |States(Amin))| > |States(A0)|. For every state q ∈ States(Amin),
let t

q
min ∈ L(Amin) be a tree and u

q
min ∈ Nodes(tqmin) such that r

q
min(uq

min) =
q for the unique accepting run r

q
min of Amin on t

q
min. Moreover, let, for every

such t
q
min, r

q
0 be the unique accepting run r

q
0 of A0 on t

q
min.

According to the Pigeon Hole Principle, there exist two states p 6= q ∈
States(Amin) such that r

p
0(up

min) = r
q
0(u

q
min) = p0, for some p0 ∈ States(A0).

From Observation 3.11, it now follows that L(Amin[p]) = L(A0[p0]) =
L(Amin[q]). This contradicts that Amin is the output of the minimization
algorithm, as there still exist two states for which step (2) must be per-
formed. q.e.d.

This concludes the proof of Theorem 3.6(3). q.e.d.

4 Top-Down Automata on Unranked Trees

The definition of unranked tree automata dates back to the work of Thatcher [21].
Unranked tree automata use TΣ (that is, unranked Σ-trees) as their data
structure. For convenience, we sometimes abbreviate “unranked tree au-
tomaton” by UTA in this section. We start by defining blind top-down
deterministic unranked tree automata, which generalize the determinism in

16 W. Martens, F. Neven, and T. Schwentick

BTAs to unranked trees. Blind top-down deterministic unranked automata
are, e.g., defined in [5] under the name of top-down deterministic automata.

Definition 4.1. A blind top-down deterministic unranked tree automaton
(BUTA) over Σ is a finite automaton A over Σ in which Rules(A) is a set
of rules of the form

a→ p or (q, a)→ B

such that Init(A) = {p | a → p ∈ Rules(A)} is a singleton and B is a
deterministic FSA over States(A) with the property that, for each i ∈ N,
L(B) contains at most one string of length i. Furthermore, for each q ∈
States(A) and a ∈ Alphabet(A), Rules(A) contains at most one rule of the
form (q, a)→ B.

A run of A on a tree t is a labeling r : Nodes(t)→ States(A) such that

• if lab(ε) = a and r(ε) = q then a→ q ∈ Rules(A) and,

• for every node u ∈ Nodes(t) such that lab(u) = a, r(u) = q, and
u has n children, there is a rule (q, a) → B such that B accepts
r(u1) · · · r(un).

Notice that, in the second bullet, the criterion that u is a leaf reduces
to ε ∈ L(B). Therefore, each run that satisfies the above conditions is
accepting.

Notice that the regular languages defined by the above Bs are very
restricted. Indeed, as pointed out in [16], Shallit [19] has shown that such
regular languages are finite unions of regular expressions of the form xy∗z

where x, y, z ∈ Σ∗.
Just as in the ranked case, blind top-down determinism is the most

widely accepted form of top-down determinism. However, in a context such
as XML, blind top-down determinism is not very useful as its expressiveness
is very limited. We therefore also investigate ‘sensing’ extensions that can
read labels of child nodes before assigning them states.

The following definition is the generalization of determinism for STAs.
In a similar effort to generalize determinism for STAs to unranked trees,
Cristau et al. [8] and Martens [13] define models with the same expressive
power as this one.

Definition 4.2. An offline sensing top-down deterministic unranked tree
automaton (offline SUTA) is a finite automaton A in which Rules(A) is a
set of rules of the form

a→ p or q → Bq,

Deterministic Top-Down Tree Automata: Past, Present, and Future 17

where the automata Bq are FSAs over Σ and use the states of A as their state
set. That is, States(Bq) = States(A). Furthermore, all the Bq have same the
final states and the same transition rules, that is, for all q1, q2 ∈ States(A),
Final(Bq1

) = Final((Bq2
) and Rules(Bq1

) = Rules(Bq2
). In short, the only

difference between the automata Bq is their choice in initial states.5 Fur-
thermore,

• for each a ∈ Alphabet(A) there is at most one rule of the form a→ p,

• for each q ∈ States(A), there is at most one rule q → Bq, and

• for each rule q → Bq, Bq is an unambiguous FSA.

We define Init(A) to be {p | a → p ∈ Rules(A)} and we require that
Init(A) ⊆ Final(Bq), for each state q.

A run r of A on a tree t is a labeling r : Nodes(t)→ States(A) such that

• if lab(ε) = a and r(ε) = q then a→ q ∈ Rules(A) and,

• for every node u ∈ Nodes(t) such that lab(u) = a, r(u) = q, and u

has n children, there is a rule q → Bq such that r(u1) · · · r(un) is an
accepting run of Bq on lab(u1) · · · lab(un).

As with BUTAs, the criterion that u is a leaf reduces to ε ∈ L(B) in the
second bullet. Therefore, each run that satisfies the above conditions is
accepting.

The restriction to unambiguous FSAs actually ensures that the complete
child string can be read prior to the assignment of states. We note that the
above mentioned work [8, 13], where “sensing top-down determinism” is
simply called “top-down determinism”, employs slightly more involved but
equivalent definitions in terms of expressive power.

In Section 4.2, we will see that, in contrast to the ranked case, offline
sensing top-down determinism is in fact too powerful for efficient static
analysis. In particular, minimization will turn out to be NP-hard for offline
sensing deterministic automata. We therefore discuss online sensing, an
intermediate form of top-down determinism which is also known under the
name of restrained competition for extended DTDs.6 This restriction will
turn out to be more expressive than blind top-down determinism, while
retaining the desirable complexities for static analysis.

5 A similar sharing of states is used in stepwise tree automata, which were used for
defining a clean notion of bottom-up determinism for unranked tree automata [15].

6 Extended DTDs or EDTDs are a grammar-based alternative to tree automata which
have been investigated in the context of XML schema languages [13, 14].

18 W. Martens, F. Neven, and T. Schwentick

Definition 4.3. An online sensing top-down deterministic unranked tree
automaton (online SUTA) is an offline SUTA with the difference that, for
each rule q → Bq, Bq is a deterministic FSA.

The restriction to deterministic FSAs ensures that states have to be
assigned to child nodes when processing them from left to right.

4.1 Relative Expressive Power

Again, we characterize the expressiveness of the formalisms in terms of
subtree exchange properties.

Theorem 4.4. An (unranked) regular tree language L is recognizable by

1. a BUTA if and only if L is path-closed.

2. an online SUTA if and only if L is ancestor-sibling-closed.

3. an offline SUTA if and only if L is spine-closed.

The proof of Theorem 4.4(1) is analogous to the ranked case. Theo-
rem 4.4(2) and Theorem 4.4(3) are proved by Martens et al. [13, 14].

The next corollary then immediately follows:

Corollary 4.5. 1. BUTAs are strictly less expressive than online SU-
TAs.

2. Online SUTAs are strictly less expressive than offline SUTAs.

4.2 Static Analysis

Theorem 4.6. 1. Emptiness is in PTIME for BUTAs, online SUTAs
and offline SUTAs.

2. Containment is in PTIME for BUTAs, online SUTAs and offline SU-
TAs.

3. Minimization is in PTIME for online SUTAs.

4. Minimization is NP-complete for offline SUTAs.

Proof. (1) This follows from the result that emptiness is in PTIME for
non-deterministic unranked tree automata. (See, e.g., [13].)
(2) This follows from PTIME containment for unambiguous (ranked) tree
automata [18]. For example, when translating an offline SUTA to a ranked
tree automaton through the well-known first-child next-sibling encoding, one
obtains an unambiguous ranked tree automaton. Containment of the un-
ranked tree automata can then be decided by testing containment for the
unambiguous ranked automata.

Deterministic Top-Down Tree Automata: Past, Present, and Future 19

Init(A) = {q0}

a→ q0

q1 q2 q3 q4 q5

q9

q6 q7 q8

q10

q0 b c d e

q8 h

q3 f g

q2, q4, q5, q7

(a) Automaton A accepting the tree in Figure 5(b).

a

b c

f g

h

d e

q0

q1 q2 q3 q4 q5

q6 q7 q8

q9 q5

⇒
⇐

a

▽

b

c

▽

f

g

▽

h

#

#

d

e

#

#

(b) An unranked tree and its ranked encoding.

q0

q▽

1
q10

q2q10

q10 q3

q▽

6
q4

q10 q5

q10 q10

q7q10

q10 q8

q▽

9
q10

q5q10

q10 q10

Figure 5. Encoding of unranked to binary trees (and back) that links
deterministic STAs to online SUTAs. Letters a, . . . , h represent alphabet
symbols and {q0, . . . , q10} represent states of an accepting run.

20 W. Martens, F. Neven, and T. Schwentick

(3) We can reduce to Theorem 3.6(3) by means of the unranked-versus-
ranked encoding enc and decoding dec illustrated in Figure 5. We explain
intuitively how a run of an online SUTA A for L translates to a run of a
deterministic STA enc(A) for enc(L). We assume w.l.o.g. that A is reduced.
Assignment of initial states to the root of the trees is the same for both
automata. Furthermore, the transition rules translate as follows. For each
q ∈ States(A) and a ∈ Alphabet(A), Rules(enc(A)) contains

• a→ q if a→ q in Rules(A);

• q(▽, #)→ (p▽, qleaf) if Init(Bq) = {p} and q ∈ Final(Bq);

• q(▽, a)→ (p▽, q′) if Init(Bq) = {p} and q
a
→ q′ ∈ Rules(Bq);

• q(#, a)→ (qleaf, q
′) if Bq accepts ε and q

a
→ q′ ∈ Rules(Bq);

• q▽(#, a)→ (qleaf, q
′) if q

a
→ q′ ∈ Rules(Bq); and

• q(#, #)→ (qleaf, qleaf) if Bq accepts ε and q is a final state in Bq.

Here, qleaf is a new state not occurring in States(A). The states q▽ are
copies of states q in A that can only be assigned to the ▽-labeled nodes in
the encoding. The encoded automaton always assigns qleaf to leaf symbols.
Hence, Final(enc(A)) = qleaf. Figure 5 illustrates an automaton A, an
accepting run of A on a tree t, and an accepting run of enc(A) on enc(t).

It is easy to see that this encoding preserves determinism. The de-
coding, however, would not preserve determinism in general, as the initial
states Init(Bq) might not be unique. It can be shown, however, that if L

is ancestor-sibling closed, the decoding of a minimal deterministic STA for
enc(L) is always deterministic.

In order to give the relation between the minimal sizes of A and enc(A),
we need a few parameters. We call a state q of A a sink state, when no rules
of the form q → B occur in A and no B has a rule q

a
→ q′ for some a. For

example, the state q10 in Figure 5 is such a sink state. We define sink(A) = 0
if A has such a sink state and sink(A) = 1 otherwise. Furthermore, let
trans-init(A) be the number of states p such that {p} = Init(Bq) for some
q and p has an incoming transition.

Observation 4.7. There exists an online SUTA of size k for L(A) if and
only if there exists a deterministic STA of size k + sink(A) + trans-init(A)
for L(enc(A)).

The reasons for the difference in sizes concerning the sink state and the
trans-init states are as follows. If A contains a sink state q, then enc(A)
could use this sink state instead of qleaf to label all the #-leaves in the

Deterministic Top-Down Tree Automata: Past, Present, and Future 21

encoding. Furthermore, in the encoding, each ▽ node is labeled by a copy
q▽ of a state q, which introduces extra states for enc(A). However, if q

contains an incoming transition in A (and A is reduced), then both q and
q▽ appear in the minimal automaton for L(enc(A)).
(4) We first argue that minimization for offline SUTAs is in NP. To this end,
observe that, given an offline SUTA A and an integer k, an NP algorithm
can guess an offline SUTA B of size at most k and test in PTIME (according
to Theorem 4.6(2)) whether A and B define the same language.

For the NP lower bound, we reduce from the minimization problem
for unambiguous FSAs, which is shown to be NP-complete by Jiang and
Ravikumar [11]. Observe that, in the proof of Jiang and Ravikumar (The-
orem 3.1 in [11]), it is shown that minimization is already NP-hard for
unambiguous FSAs that only accept strings of length two. As FSAs that
only accept strings of length two have a sink state, i.e., a state with no
outgoing transitions, this simplifies our reduction.

Thereto, let U be an unambiguous FSA that only accepts strings of
length two and let k be an integer. We construct an offline SUTA A and an
integer ℓ such that there exists an equivalent unambiguous FSA for L(U)
of size at most k if and only if there exists an offline SUTA for L(A) of size
at most ℓ.

Let r be a symbol not occurring in Alphabet(U). Intuitively, A will ac-
cept the trees r(w) such that w ∈ L(U). We define States(A) = States(U)⊎
{q0}, Alphabet(A) = Alphabet(U) ⊎ {r}, and the rules of A are defined as

• r → q0,

• (q0, r)→ U , and

• (q, a)→ E, for every q ∈ States(U) and a ∈ Alphabet(U),

where E is the UFA with States(E) = {qf} and L(E) = {ε}. Here, qf is a
state in Final(U) which is reachable in U from an initial state of U . Finally,
ℓ = k + 1.

We need to argue that the reduction is correct. It is easy to see that A

accepts {r(w) | w ∈ L(U)}.
We need to prove that there is an unambiguous FSA for L(U) of size at

most k if and only if there is an offline SUTA for L(A) of size at most ℓ.
From left to right, let U ′ be an unambiguous FSA of size at most k for L(U).
Then, A′, constructed from U ′ in the same way as A is constructed from U

is an offline SUTA for L(A) of size at most ℓ. From right to left, let A′ be
an offline SUTA for L(A) of size at most ℓ. W.l.o.g., we can assume that A′

is reduced. As A′ is an offline SUTA, A′ has a unique state q0 which is used
in the rule r → q0. Now consider the transition rule of q0, i.e., q0 → U ′′ in
Rules(A). Clearly, U ′′ accepts L(U). As A′ only accepts trees of depth two,

22 W. Martens, F. Neven, and T. Schwentick

we have that q0 has no incoming or outgoing transitions in the definition of
U ′′. (Otherwise, as A′ is reduced, trees can be constructed that are also in
L(A′) and have depth larger than two, contradicting that L(A′) = L(A).)
Therefore, the unambiguous FSA U ′, obtained from U ′′ by removing state
q0 also recognizes L(U) and has size at most k. q.e.d.

A similar result as Theorem 4.6(3) was also proved in the context of
extended DTDs in [15]. To the best of our knowledge, the precise com-
plexity of minimization for BUTAs is still unknown. It is in NP, as testing
equivalence between BUTAs is in PTIME.

4.3 Closure Properties

The same closure properties hold for the deterministic unranked tree au-
tomata as for the ranked tree automata we defined. The witness languages
for non-closure are analogous to the ones in Section 3.2.

5 Regular Frontier Checks

In this section, we revisit the notion of regular frontier checks as a theoretical
tool to close top-down deterministic languages under Boolean operations.
We apply regular frontier checks to unranked automata.

To this end, we assume that the frontier of a tree is no longer an un-
ordered set, but ordered from left to right. That is, we assume the lexico-
graphical ordering < on Frontier(t).

Definition 5.1. A top-down deterministic unranked tree automaton with
regular frontier check (FC-UTA) over alphabet Σ is a (blind, online sensing,
or offline sensing) top-down deterministic unranked tree automaton A over
alphabet Σ, together with a regular language F over alphabet Σ×States(A).

A run of A on a tree t is defined precisely the same for blind, online
sensing, or offline sensing unranked automata, respectively. A run r is
accepting if (lab(u1), r(u1)) · · · (lab(un), r(un)) ∈ F , where Frontier(t) =
{u1, . . . , un} with u1 < · · · < un.

On ranked trees, top-down tree automata with frontier checks are known
to be closed under union, intersection, and complement [12]. On unranked
trees, these results can be obtained analogously. Moreover, in order to
obtain this closure, one does not even need arbitrary regular languages.
Indeed, it is sufficient to consider locally threshold testable languages [22]
with diameter k = 1.

Hence, FC-UTAs could be one candidate for closing schema languages
for XML under the Boolean operations, thereby resolving the issues in model
management or schema integration.

Deterministic Top-Down Tree Automata: Past, Present, and Future 23

6 Conclusions and Discussion

We presented an overview of top-down determinism in ranked and unranked
tree automata, and explored several connections between them. As many
connections were to be expected, we start the conclusions with a discrep-
ancy. This discrepancy is observed between the (ranked) deterministic sens-
ing tree automata (STAs) and the (unranked) deterministic offline sensing
tree automata (offline SUTAs). Although they are closely related — they
have, e.g., the same expressive power on binary trees and their way of assign-
ing states to nodes in a top-down fashion is quite similar — we have shown
that optimization, i.e., state minimization, is easy for one class but hard
for the other.7 Indeed, whereas state minimization is in PTIME for STAs,
it is NP-complete for offline SUTAs. When inspecting the NP-hardness
proof, the difference becomes even more striking: it already holds for offline
SUTAs recognizing binary trees.

It thus follows that the determinism in offline SUTAs is actually not a
very suitable notion for “top-down determinism” on unranked trees. Simi-
larly as has been argued for the “standard” notion of bottom-up determin-
ism on unranked trees [15], determinism in offline SUTAs corresponds more
closely to unambiguousness rather than true determinism.8

On the positive side, the determinism in online SUTAs seems to be
more suitable. Online SUTAs have been investigated in the context of XML
schema languages under the name of restrained competition EDTDs and are
already attributed to have desirable static analysis properties, while being
more expressive than the core of XML Schema [14]. It is even decidable
(EXPTIME-complete) for a bottom-up (non)-deterministic unranked tree
automaton, whether there exists an equivalent deterministic online SUTA.
The latter is referred to as the simplification problem.

In conclusion, only the determinism notion in online SUTAs is known to
be truly top-down deterministic on unranked trees. Determinism in BUTAs,
as defined by Brüggemann-Klein et al. [5] as the straightforward extension of
the “standard” top-down determinism for ranked trees [7], is a bit different.
In spite of the close connection to the well-behaved top-down determinism
on ranked trees, minimizing deterministic BUTAs is not completely trivial
and the precise complexity is still unknown. From an XML point of view,
however, this notion of determinism might be less interesting. It assigns
states to nodes, only based on the number of their siblings, which makes
them rather poor in expressive power. When one would, for instance, want
to allow an automaton to read the label of a node before assigning it a state,

7 If PTIME 6= NP.
8 Of course, this is because our definition of determinism in offline SUTAs use unambigu-

ous automata. However, we feel that similar problems will arise when investigating
minimization for the equally expressive models presented in [8, 13].

24 W. Martens, F. Neven, and T. Schwentick

which seems to be the case in XML schema languages for example, the
determinism in online SUTAs would be the obvious candidate.

W.r.t. future research several natural directions emerge:

1. Top-down determinism and closure properties. As previously men-
tioned, the lack of closure under union is quite unnatural for an XML
schema language. This leads to the following natural questions: (1)
What are the possible additions to the deterministic top-down au-
tomaton model that closes them under the Boolean operations?; (2)
What is the best way to approximate a Boolean combination of deter-
ministic top-down tree automata?; and, (3) What are the properties of
the class consisting of the Boolean closure of deterministic top-down
tree automata (BC-TA)?

2. Optimization problems. Minimization is of course a very important
problem. Can FC-UTAs or BC-TAs be efficiently minimized? Fur-
thermore, what is the complexity of the simplification problem (as
defined above) for the various models?

3. In practice not many XML schemas are available and some of those are
syntactically incorrect, which leads to the problem of automatically
inferring them from a set of XML documents. As the latter reduces to
learning in the limit from positive data of deterministic top-down tree
automata, it would be interesting to pinpoint classes which can be
learned in this manner. Bex et al. addressed the problem of inferring
subclasses of DTDs and XSDs [2, 3].

References

[1] P..A. Bernstein and S. Melnik. Model management 2.0: manipulat-
ing richer mappings. In ACM SIGMOD International Conference on
Management of Data, pages 1–12, 2007.

[2] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise
DTDs from XML data. In VLDB, pages 115–126, 2006.

[3] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema
Definitions from XML data.. In VLDB, 2007.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible markup language (XML) 1.0 (fourth edi-
tion). Technical report, World Wide Web Consortium, 2006.
http://www.w3.org/TR/xml.

Deterministic Top-Down Tree Automata: Past, Present, and Future 25

[5] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and reg-
ular hedge languages over unranked alphabets: Version 1, april 3, 2001.
Technical Report HKUST-TCSC-2001-0, The Hongkong University of
Science and Technology, 2001.

[6] J. Clark and M. Murata. Relax NG specification. Technical report,
OASIS, 2001. http://relaxng.org/spec-20011203.html.

[7] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications,
2001. http://www.grappa.univ-lille3.fr/tata.

[8] J. Cristau, C. Löding, and W. Thomas. Deterministic automata on
unranked trees. In 15th International Symposium on Fundamentals of
Computation Theory, pages 68–79, 2005.

[9] F. Gécseg and M. Steinby. Minimal ascending tree automata. Acta
Cybernetica, 4(1):37–44, 1978.

[10] F. Gécseg and M. Steinby. Tree Automata. Akademia Kiadó, Budapest,
1984.

[11] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM
Journal on Computing, 22(6):1117–1141, 1993.

[12] E. Jurvanen, A. Potthoff, and W. Thomas. Tree languages recognizable
by regular frontier check. In Developments in Language Theory, pages
3–17, 1993.

[13] W. Martens. Static Analysis of XML Transformation- and Schema
Languages. PhD thesis, Hasselt University, 2006.

[14] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressive-
ness and complexity of XML Schema. ACM Transactions on Database
Systems, 31(3):770–813, 2006.

[15] W. Martens and J. Niehren. On the minimization of XML schemas and
tree automata for unranked trees. Journal of Computer and System
Sciences, 73(4):550–583, 2007.

[16] Frank Neven and Thomas Schwentick. Query automata over finite
trees. Theor. Comput. Sci., 275(1-2):633–674, 2002.

[17] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, 1997.

[18] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal
on Computing, 19(3):424–437, 1990.

26 W. Martens, F. Neven, and T. Schwentick

[19] Jeffrey Shallit. Numeration systems, linear recurrences, and regular
sets (extended abstract). In Werner Kuich, editor, ICALP, volume 623
of Lecture Notes in Computer Science, pages 89–100. Springer, 1992.

[20] C.M. Sperberg-McQueen and H. Thompson. XML Schema.
Technical report, World Wide Web Consortium, 2007.
http://www.w3.org/XML/Schema.

[21] J. W. Thatcher. Characterizing derivation trees of context-free gram-
mars through a generalization of automata theory. Journal of Computer
and System Sciences, 1:317–322, 1967.

[22] W. Thomas. Classifying regular events in symbolic logic. Journal of
Computer and System Sciences, 25(3):360–376, 1982.

[23] J. Virágh. Deterministic ascending tree automata I. Acta Cybernetica,
5:33–44, 1980.

