

13th International Fall Workshop VISION, MODELING, AND VISUALIZATION 2008 October 8-10, 2008 Konstanz, Germany

Strike a Pose Image-Based Pose Synthesis

Cedric Vanaken, Chris Hermans, Tom Mertens, Fabian Di Fiore, Philippe Bekaert, Frank Van Reeth

Hasselt University - Belgium

Image-Based Pose Synthesis

• Create novel poses from input images

Related Work

- As-Rigid-As-Possible Shape Manipulation [Igarashi et al.]
- Character Animation from 2D Pictures and 3D Motion Data [Hornung et al.]
- Video-Based Character Animation [Starck et al.]

Related Work

- ←→ standard image-based deformation:
 - Multiple input images (2 4)
 - Straightforward user-interaction
 - Assign approximate skeleton
 - Higher realism in local regions
 - e.g. creases in fabrics
 - Large variety of target poses
 - If similar pose available in input

Algorithm Overview

Skeleton Matching - Segmentation

Algorithm Overview

Skeleton Matching - Segmentation - Bodypart selection - Bodypart fusing

2D Skeleton Matching

- 'Articulated Video Sprites' [Vanaken et al, 2006]
- (Absolute) positions of skeleton joints
- Angles
 2D posture
 Limb Length Ratios
 Implicit 3D information

Segmentation

- Background images available
 Background subtraction
- Manual segmentation
- Semi-automatic

 Grabcut [Rother et. al]

. . .

Body Part Selection

- Divide 'body'
- Formersch body part

 2Dgskeleton matching
 Keesobest match
- If meanique best match
 - Keep all 'good' options
 - Combine in later stage

Mesh Creation

- Link skeleton with pixels
- Outer vertices \rightarrow silhouette
- Inner vertices

→Skeleton + edge image

Mesh deformation

 \rightarrow Larger variety for target poses

Pixel selection

- Link body parts with triangles
- Every triangle
 - 'confidently' belongs to body part if
 - Vertex on skeleton bone
 - 2 closest skeleton bones belong to same body part
 - Otherwise 'uncertain'
- For each matching body part
 - Save 'confident' triangles to result
 - Fuse with 'uncertain' triangles

Fusing Body parts

• What we have until now :

Fusing Body parts

- Subdivide final image
 Lattice of square patches
- For each patch

- Find input patches matching 'confident' regions

- == Labeling problem
 - For each patch, *n* input patches available (n == #overlapping 'uncertain' regions)

Fusing Body parts

- Cost function
- Data term
 - Patch overlap with 'confident' regions
- Smoothness term
 - Patch overlap with adjacent patches
- SSD
- Minimize function \rightarrow Belief Propagation

Average of input 1 & input 2

Starpulse Supermodels image gallery. http://www.starpulse.com/supermodels/

Overview

- Pose synthesis from set of photographs
- Merging body parts into desired pose
- User input : 2D skeletons

Future Work

- Automatic skeleton extraction
- Combine with animation/retargeting
- Occluding body parts
- Sideways capture
- 3D skeletons / multi-camera
- Color correction

Questions?

