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Abstract

Meta-analytical approaches have been extensively used to analyze medical data. In most
cases the data come from different studies or independent trials with similar characteristics.
However, these methods can be applied in a broader sense. In this paper, we show how existing
meta-analytic techniques can be used as well when dealing with parameters estimated from
individual hierarchical data. Specifically, we propose to apply statistical methods that account
for the variances (and possibly covariances) of such measures.

The estimated parameters together with their estimated variances can be incorporated into
a general linear mixed model framework. We illustrate the methodology by using data from a
first-in-man study and using a simulated dataset. The analysis was implemented with the SAS
procedure MIXED and example code is offered.

Some Keywords: Meta-analytical methods; linear mixed models; two-stages models; frac-
tional polynomial; SAS proc MIXED.

1 Introduction

In many areas of research, a topic of interest is how results from studies at previous stages can be

used or incorporated into statistical analysis at later stages.

Regression models can be used to estimate measures of interest at a first stage (individual level) to
summarize information that will be used next. A typical example is the so-called inverse regression.

In this setting, a model is fitted to individual data and a value is estimated together with its standard
error based on the inversed regression function. The estimated parameters can then be used for
further analysis at a second stage.

The estimated standard errors of the model parameters can easily be used to obtain estimated

standard errors of the individual summary measures via, for example, the delta method. The key
issue remains how to incorporate this uncertainty in a later modelling step.

The setting considered in this paper bears similarity with meta-analysis (Hedges et al., 1985), where

hierarchical structures are also encountered. Here, subjects play the role of trials (studies) in the
meta-analytic framework. We discuss existing meta-analytic modeling strategies to deal with this
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setting and illustrate them in a case study, introduced in Section 2. In Section 3, we describe the

statistical methodology used to estimate the parameters of interest from the first stage. The use of
fractional polynomials will be indicated. A description of the statistical models proposed to analyze

meta-analytical data will be discussed in Section 4. We then analyze the data of the case study in
Section 5 and conclude the paper by some discussion in Section 6.

2 Case Study

We consider a first-in-man single dose cross-over study with three periods. In this dose-escalation

trial 9 doses of an investigational compound were tested in 25 healthy volunteers, each subject
receiving two active doses and a matched placebo on three separate occasions (periods). One of

the objectives of this study was to investigate β1-adrenoceptor responsiveness by measuring the
chronotropic response (i.e., increased heart rate) to rapid bolus intravenous injections of isopro-

terenol, a β-adrenoceptor agonist. Starting with a dose of 0.25 µg, increasing (twofold) doses of
isoproterenol were administered every 5 to 10 minutes and the resulting rises in heart rate measured.

The test continued until an increase of 30-35 beats/min was observed or the maximum planned
dose of isoproterenol (64 µg) administered. The test was conducted for each studied subject after
oral administration of the investigational compound or placebo.

Since, for safety reasons, the isoproterenol dose-response relationship cannot typically be explored
to its full extent, the response to isoproterenol is usually assessed by means of the I25 (Arnold and
McDevitt, 1983). This quantity is defined as the isoproterenol dose required to induce a 25 bpm

increase in heart rate. In practice, a model must be chosen to provide an empirical description
of the isoproterenol dose-response curve over the range of doses administered. The I25 is then

determined by deriving the predicted isoproterenol dose level at 25 bpm using an inverse regression
approach.

Figure 1 provides an illustration for a particular subject in the study. The observed rises in heart

rate corresponding to the three treatment periods are represented by different symbols. Fitted
curves are also displayed for each period (see next section for details). The determination of the

I25 for one of the periods is also represented.

3 First Stage Analysis

The isoproterenol dose required to stimulate a 25 bpm increase in heart rate (I25) for each subject
was estimated by fitting fractional polynomials. Fractional polynomials were introduced by Royston

and Altman (1994) to extend the class of conventional polynomials as a flexible tool for parsimonious
parametric modeling. Fractional polynomials can be written as

δ0 +

m∑

k=1

δkX (pk),

where X denotes the isoproterenol dose, the power terms p1 ≤ . . . ≤ pm can take on real values

and

X (pk) =

{
Xpk if pk 6= 0,

log(X) if pk = 0.
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Figure 1: Observed changes in heart rate for a particular subject in the study, in response to

increasing isoproterenol doses. Symbols correspond to different occasions where the investigational

compound was administered: �=placebo, •=dose 1, and �=dose 2. Fitted curves based on fractional

polynomials are displayed. The reference line corresponds to a 25 bpm increase in heart rate.

Determination of the I25 for one curve is also illustrated.

Unlike nonlinear regression models, power coefficients are not parameters to be estimated but
they are fixed beforehand. To determine the fractional polynomial of degree m that best fits the

data, Royston and Altman (1994) propose to restrict the power terms to a small predefined set of
(fractional) values. They suggest using P = {−2,−1,−0.5, 0, 0.5, 1, 2, . . . , max(3, m)} and to select

the power vector p = (p1, . . . , pm) associated to the model with lowest deviance. In this study, the
search was done over the set P = {0, 0.5, 1, 1.5, 2, 2.5, 3} for fractional polynomials of degree 1 of

the form δX (p). The choice of P guarantees that increasing functions of dose are chosen. The lack
of intercept is a natural restriction and it was deemed to provide a reasonable trade-off between
goodness-of-fit and robustness for prediction purposes. Second order fractional polynomials were

also explored but did not significantly improve the model’s fit. The predicted value of the I25 from
this model is

Î25 =

{
(25/δ̂)1/p if p 6= 0,

exp(25/δ̂) if p = 0.

The standard deviation of the Î25 can be approximated by the delta method:

ŝd(Î25) =






1

p

(
25

δ̂

)1−p

p 25

δ̂2
sd(δ̂) if p 6= 0,

exp(25/δ̂)
25

δ̂2
sd(δ̂) if p = 0.

As explained in Section 2, the number of administered isoproterenol doses could differ between test
sessions. With placebo or low doses of the investigational compound, a rise of more than 30 bpm in
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heart rate was reached very rapidly, typically with 3 or 4 doses of isoproterenol (this is illustrated

by the first curve in Figure 1). With higher doses of the compound, β-adrenergic receptors were
blocked and higher doses of isoproterenol were needed to induce the required increase in heart rate.

This, together with the fact that different subjects react differently under the same dose, makes
standard deviations of the estimated I25 vary considerably.

The model chosen in this study was based on fractional polynomials of first degree, but higher

degrees are possible and they were explored. It should be emphasized that our methodology is not
restricted to this kind of models. Other alternatives, possibly involving more complicated models,
could be applied in this first step. However, we want to keep this aspect as simple as possible in

order to focus on the second part of the strategy where the meta-analytical methodology will be
used.

In the next section, we introduce a class of models which allows us to test for dose effects on the

estimated I25 while incorporating uncertainty on these estimates explicitly into the model.

4 Second Stage Analysis

Let Yij denote the estimated log(I25) for subject i (i = 1, . . . , n) within period j (j = 1, . . . , q).
The log transformation is used to better approximate normality. The standard error of log(I25) is

approximated using the delta method. In addition, we indicate with nij the number of points used
to estimate I25ij for subject i within period j.

A basic model for Yij can be written as

Yij = x′

ijβ + αi + εij, (1)

where it is assumed that the random subject effects αi are N (0, σ2
α) and the residual errors εij are

N (0, σ2
ε). The random terms are assumed to be independent of each other. A fixed-effects vector β

is introduced into the model to account for covariates (e.g. dose of the investigational compound).
The corresponding design vector is xij.

We have restricted this analysis to a very simple model having only random intercept. However,

more elaborated models, including random slopes or random effects with general design, could be
used in this setting.

The parameters of interest are the vector β, enabling to explore the dose effects, the variance of

the random effects and the residual variance σ2
ε . We now briefly describe the methods we will use

later to analyze the case study.

Model (1) can be fitted using standard linear mixed model methodology, e.g., using maximum

likelihood or restricted maximum likelihood estimation. However, this approach suffers from the
fact that it completely ignores the uncertainty in estimating the I25’s.

Borrowing ideas from the meta-analytical framework, in a meta analysis, means and standard errors

are collected for a set of studies together with covariates such as the dose group at the study level.
In our case, we can apply those ideas by considering each subject a study or unit. Therefore,

the estimated means and standard errors of the log(I25)’s can be considered as coming from a
meta-analytic summary. Now, (1) and its distributional assumptions but acknowledge differential

variability in the residual error, i.e. replacing εij ∼ N
(
0, σ2

ε

)
by εij ∼ N

(
0, σ2

εij

)
. This is equivalent

to a weighted approach, where we use as weights the inverse of the variability of each measurement.

In other words, if we know ŝd(Î25), there is no need to estimate the residual variance as long as
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we supply this information in the model or if we constrain the variability to be fixed at this value

while estimating other parameters. We will show in what follows how this can be effectuated using
SAS in the case study.

The weighted approach corrects for some but not all of the heterogeneity. Other approaches, like

the method of Van Houwelingen et al. (2002) allow for a more detailed and flexible modelling of the
different sources of variability. For example, to exploit these features, this approach was applied in

a surrogate marker evaluation context by Tibaldi et al. (2003).

Following the ideas of Houwelingen et al., we introduce a model for the estimated subject-specific

effects ( ̂log(I25i1
), . . . , ̂log(I25iq

))′, given the true subject-specific means (log(I25i1
), . . . , log(I25iq

))′:





̂log(I25i1
)

...

̂log(I25iq
)



 ∼ N









log(I25i1
)

...

log(I25iq
)



 , Si



 . (2)

Here, Si is the variance-covariance matrix of the estimated treatment effects. In case we assume

estimates to be independent, Si would be diagonal, but the method applies to general covariance
structures.

Furthermore, we assume a normal model for the true subject-specific effects around true overall

means: 



log(I25i1
)

...

log(I25iq
)



 ∼ N









log(I251
)

...

log(I25q)



 , Σ



 . (3)

The resulting marginal model, combining (2) and (3), is:





̂log(I25i1
)

...

̂log(I25iq
)



 ∼ N









log(I251
)

...

log(I25q)



 , Σ + Si



 . (4)

Maximum likelihood estimation for this model can be quite easily carried out by using mixed model

software, provided the values for Si can be input and held fixed, as is the case in the SAS procedure
MIXED. Let us now apply this methodology to the case study.

5 Analysis of the Case Study

Table 2 contains all numerical results of the estimated fixed effects and variance components. We
also display the Akaike Information Criteria (AIC) corresponding to each model in order to have

an informal basis for comparison.

The first column displays the estimated values of the standard mixed model. This strategy ignores
the estimated standard deviations of the response variable coming from the first stage. However,

this model gives an estimation of the residual variance σ2
ε and the random intercept variance σ2

α.
The SAS code to fit this model is shown in Appendix 7.1.

Column 2 presents the results for the weighted approach. This was obtained with a WEIGHT

statement in the MIXED procedure, using the inversed variance of the ̂log(I25)’s as weight. The
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SAS code to fit this model is shown in Appendix 7.2. Columns 3, 4, and 5 contain the results of the

fully corrected models, using different covariance structure Si. In column 3 a variance component
structure (VC) was used for Si, that is, Si = σ2

ε I (the corresponding SAS code is shown in Appendix

7.3). As expected, this coincides with the weighted approach shown in column 2. In column 4, the
within-subject dependence was ignored and Si was taken to be




σ2

11 0 0

0 σ2
22 0

0 0 σ2
33



 ,

while in column 5 the fully parameterized covariance matrix Si was considered (the corresponding
SAS code is shown in Appendix 7.4):




σ2

11 σ2
12 σ2

13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33



 .

In practice, this is achieved by considering indicator variables for treatment periods. These effects
are included only in the random structure of the model, through the RANDOM statement in the

SAS procedure MIXED, to obtain an estimation of the above covariance matrix. In our case, we
have used the option ‘type=un’ that corresponds to an unstructured variance-covariance matrix.

The model ignoring dependence showed a marked deterioration in model fit as judged by the

AIC criterion, while the full model was penalized for the large number of parameters. Therefore,
simpler models seem preferable. It can be noted, however, that the AIC criterion does not allow
discriminating between the linear mixed model analysis and the corrected method with VC structure

in this example.

The comparison of the different models was done through the AIC criterion, which is a popular
choice among modelers, but of course other criteria (BIC, AICC, etc.) are also possible.

Table 1, About Here.

We complete this section by adding another example illustrating the advantages of the proposed

method. We generated a dataset under the characteristics of the case study but using only placebo
and two active doses of the investigational compound. A total number of 27 subjects were considered
in the analysis. Each individual had estimated I25 values and corresponding standard deviations

in three periods. No difference between placebo and dose 1 was assumed, and a difference of 0.25
in log(I25) scale between placebo and dose 2 was used to generate this dataset. Random subjects

effects and random errors were added both assuming normal distributions.

The analysis was done in accordance with the methods previously described. A simple linear mixed
model was used followed by a weighted analysis. The fully corrected approach using a diagonal

matrix and an unstructured version were fitted to the data. To complement this analysis, placebo
was compared to each of the two active doses of the compound and the p-values to support the

conclusions were obtained as well.

Table 2, About Here.
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The results are presented in Table 2. It can be seen that the simpler approaches do not show

any statistically significant differences between doses 1 and 2 and placebo. The fully corrected
approaches, however, allow us to settle for a difference between dose 2 and placebo, which is

consistent with the way the data was generated. In addition, the AIC coefficients indicate that the
fully corrected approach with diagonal structure seems the most appropriate.

6 Conclusions

Meta-analytical approaches have been extensively used to analyze medical data. In most cases the
data come from different studies or independent trials with similar characteristics. In this paper, we

have shown how existing meta-analytic techniques can be used when dealing with parameters esti-
mated from individual hierarchical data. Standard modeling approaches ignoring the uncertainty

in the estimates from the first stage might be inappropriate under such circumstances.

The techniques proposed follow the lines of meta-analytical methods where each individual is con-
sidered a unit on its own. We take uncertainty into account using a simple weighting procedure,

as well as a more elaborate scheme due to Van Houwelingen et al. (2002). In principle, a fully
hierarchical analysis may be considered too. However, Tibaldi et al. (2003) have shown that

the sometimes prohibitive computational burden can elegantly be avoided using the approaches
advocated here. We showed that these approaches are easily implemented with standard software.

In the case study used to illustrate the approach, fractional polynomials were used to estimate the
isoproterenol dose required to induce a 25 bpm rise in heart rate. It is important to point out that

the methodology we proposed here is not restricted to this parametric case and it can be applied
to any broad class of similar settings, including where nonlinear models would be used. Another

important issue is the fact that curves within the same subject can be correlated. Therefore, one
might denote attention to modelling the variance-covariance matrix in different ways. We used a

few for illustration.

Some extensions of the proposed method can easily be entertained such as, for example, models
with more elaborate covariance structures, including data stemming from designs with a higher

number of stages. For other types of data, such as binary or count data, a generalized linear mixed
model approach can be implemented using the SAS procedures GLIMMIX and NLMIXED. In

cases where not only the standard deviations are known, but also the covariance between responses
within the same subject, such numerical values can be incorporated into the model by keeping the

variance-covariance matrix fixed during the iterative fitting algorithm. Finally, these methods can
be applied using a hierarchical Bayesian modelling approach. We refer to Van Houwelingen et al.
(2002) for further details.

7 Appendix: SAS code

In the example code below, the dataset META contains the following variables: VOL = subject

number, ID = observation number, LOGI25 = log I25, DOSE = dose of the investigational com-
pound, PER1-PER3 = indicator variables for treatment periods, EST = variance of LOGI25, and

INVVAR = 1/EST.
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7.1 Standard Linear Mixed Model

proc mixed covtest data=meta;

class id dose;

model logI25 = dose / noint s;

random int / type=un sub=id;

run;

7.2 Meta-analytic Weighted Approach

proc mixed covtest data=meta ic;

class id vol dose;

weight invvar;

model logI25 = dose / noint s df=1000;

random int / type=un sub=vol;

random int / type=un sub=id;

repeated / sub=id;

parms (0.1) (0.1) (1)/ hold=(3);

run;

7.3 Meta-analytic Univariate Approach

data add;

est=0; output;

est=0; output;

run;

data covvar;

set add meta;

run;

proc mixed data=meta ic;

class id vol dose;

model logI25 = dose / noint s df=1000;

random int / sub=vol;

random int / sub=id;

repeated / group=id type=vc;

parms / parmsdata=covvar eqcons=3 to 81;

run;

7.4 Meta-analytic Multivariate Approach

data add;

do j=1 to 6;

est=0;

output;

end;

run;

data covvar;

set add meta;
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run;

proc mixed data=meta ic;

class id vol dose;

model logI25 = dose / noint cl df= 1000;

random per1 per2 per3 / sub=vol type=un;

repeated / group=id type=un(1);

parms / parmsdata=covvar eqcons=7 to 81;

run;
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Table 1: Results of the fit of the different models

Parameter† Standard Linear Weighted Fully corrected

Mixed Model by 1/sd2 VC UN(1) UN

β0 0.8060 (0.1726) 0.8031 (0.1727) 0.8031 (0.1727) 0.8014 (0.1698) 0.7576 (0.1703)

β1 1.1241 (0.3144) 1.1345 (0.3165) 1.1345 (0.3165) 1.4473 (0.3286) 1.1913 (0.3050)

β2 1.8903 (0.3418) 1.8872 (0.3418) 1.8872 (0.3418) 1.9408 (0.3578) 1.8983 (0.3289)

β3 2.1737 (0.3144) 2.1791 (0.3129) 2.1791 (0.3129) 2.3367 (0.3529) 2.0289 (0.2883)

β4 2.6000 (0.3418) 2.6161 (0.3405) 2.6161 (0.3405) 2.1825 (0.3871) 2.9506 (0.3119)

β5 2.2061 (0.3418) 2.1906 (0.3459) 2.1906 (0.3459) 1.9831 (0.3616) 2.1579 (0.3333)

β6 2.5850 (0.3144) 2.5857 (0.3134) 2.5857 (0.3134) 2.6566 (0.3662) 2.4305 (0.2811)

β7 2.7654 (0.3159) 2.7706 (0.3150) 2.7706 (0.3150) 2.6406 (0.3662) 2.8549 (0.2843)

β8 3.4410 (0.3418) 3.4380 (0.3435) 3.4380 (0.3435) 3.4579 (0.3894) 3.4812 (0.3161)

β9 3.6269 (0.3159) 3.6248 (0.3138) 3.6248 (0.3138) 3.6751 (0.3651) 3.7357 (0.2838)

σ2
α

0.3512 0.3519 0.3519 - -

σ2
11 - - - 0.6205 0.6337

σ2
21 - - - 0∗ 0.3450

σ2

22
- - - 0.7341 0.8438

σ2
31 - - - 0∗ 0.2094

σ2
32 - - - 0∗ 0.6045

σ2
33 - - 0.7890 0.7740

σ2

ε
0.3934 0.3742 0.3742

AIC 175.6 175.6 175.6 188.7 177.8

† β0-β9 = estimated effects of doses of the investigational compound (placebo for subscript 0).
∗ The value was fixed due to the assumption of the covariance matrix.

− The value is not present in the model.

VC : variance component

UN(1) : banded

UN : unstructured
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Table 2: Results of the fit of the different models to the generated data.

Parameter† Standard Linear Weighted Fully corrected

Mixed Model by 1/sd2 UN(1) UN

β0 1.0726 (0.1527) 1.0696 (0.1366) 1.0919 (0.1227) 1.1082 (0.1187)

β1 1.2693 (0.1527) 1.2540 (0.1413) 1.2493 (0.1239) 1.2427 (0.1196)

β2 1.2511 (0.1527) 1.3224 (0.1436) 1.4798 (0.1295) 1.5173 (0.1254)

AIC 198.21 191.62 188.29 191.64

p1.0 0.333 0.321 0.366 0.414

p2.0 0.379 0.177 0.029 0.015

† β0, β1 and β2 are the estimated effects of doses of the investigational compound

(β0 corresponds to placebo).

p1.0 p-value for the comparison of dose 1 to placebo.

p2.0 p-value for the comparison of dose 2 to placebo.

UN(1) : diagonal

UN : unstructured


