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Summary. The concept of reliability denotes one of the most important
psychometric properties of a measurement scale. Reliability refers to the ca-
pacity of the scale to discriminate between subjects in a given population. In
classical test theory, it is often estimated using the intraclass correlation coeffi-
cient based on two replicate measurements. However, the modelling framework
used in this theory is often too narrow when applied in practical situations.
Generalizability theory has extended reliability theory to a much broader a
framework, but is confronted with some limitations when applied in a longi-
tudinal setting. In this paper, we explore how the definition of reliability can
be generalized to a setting where subjects are measured repeatedly over time.
Based on four defining properties for the concept of reliability, we propose a
family of reliability measures, which circumscribes the area in which reliabil-
ity measures should be sought for. It is shown how different members assess
different aspects of the problem and that the reliability of the instrument can
depend on the way it is used. The methodology is motivated by and illus-
trated on data from a clinical study on schizophrenia. Based on this study, we
estimate and compare the reliabilities of two different rating scales to evaluate
the severity of the disorder.

Key words: Reliability, Longitudinal data, Clinical trials, Hierarchical mod-
els, Rating scales.
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1 Introduction

Rating scales are mainly used when the trait of interest cannot be observed directly, such

as in the measurement of depression, anxiety, and quality of life. They play an important

role in many scientific fields and are often used within a longitudinal framework to evaluate

a patient’s evolution over time. For instance, in psychiatry and psychology, longitudinal

measurements of rating scales are commonly used to obtain precise diagnostics and to

study the efficacy of new treatments or therapeutic procedures. In spite of their undoubted

advantages, longitudinal studies also bring some methodological challenges, especially

from a statistical modelling perspective. For example, in such studies, patients usually

exhibit a systematic change or evolution over time on top of which an individualized

evolution, characterized by correlated subject-specific effects, is present. Additionally,

serial correlation and heterogenous variance components are frequently encountered as

well (Verbeke and Molenberghs 2000).

Whenever a new rating scale is developed, its validity and reliability must be evaluated.

However, reliability is not an intrinsic property of an instrument but rather changes

depending on the population in which it is used. As a consequence, the reliability of a

measurement scale should be evaluated not only when the scale is created but also every

time it is introduced to a different population or translated into a new language.

The most widely used definition of reliability was given in classical test theory (CTT),

where it was defined as “the ratio of the true score variance to the observed score variance”

(Lord and Novick 1968). This concept of reliability was developed within a cross-sectional

setting and based on a rather restrictive modelling framework. As a result, it is difficult

to apply in longitudinal studies, with their peculiarities mentioned earlier. The simple

modelling framework of CTT does not allow for taking into account these characteristics,

a necessary feature though to avoid bias in the estimation of the parameters and in the
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inferential procedures. Basically, measures of reliability are model-based quantities and

their scope and applicability will never extend beyond the scope and applicability of the

model they are based on.

Perhaps the most important attempt to extend the concept of reliability to a longitudinal

scenario came from generalizability theory (G-theory), which was developed to explicitly

model the multiple sources of variation present in a measurement system (Cronbach et

al 1963, 1972, Brennan 2001). Undoubtedly, G-theory is one of the most relevant devel-

opments in the psychometric field and since its introduction it has been applied to many

areas of psychology and education.

G-theory is based on a much more solid modelling framework than CTT. Essentially, it

takes advantage of all flexibility given by the analysis-of-variance models with random

effects. Of course, the usefulness of G-theory in evaluating reliability in longitudinal set-

tings depends on the adequacy of these models to describe the specific characteristics of

this type of data structure. Unfortunately, the modelling framework used in G-theory can

be applied in a longitudinal setting only if strong and unrealistic assumptions are made.

Some of these assumptions are: stability of the true scores over time, uncorrelated error

structure, uncorrelated random effects, equal variance over time and, in its most classi-

cal formulation, it also requires a missing completely at random mechanism when data

are incomplete. Note that all of these assumptions are quite restrictive for longitudinal

studies, and they seriously limit the applicability of G-theory in longitudinal scenarios.

Applying G-theory models in a setting where these assumptions are violated will lead to

biased estimates of the variance components and, as a consequence, to biased estimates of

the reliability parameters, or G coefficients (Diggle, Liang, and Zeger 1994, Verbeke and

Molenberghs 2000, Smith and Luecht 1992, Bost 1995, Molenberghs and Kenward 2007).

In the present work, we extend the concept of reliability to a longitudinal framework
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using hierarchical linear models. This type of linear mixed models (LMM) were also

used by Vangeneugden et al. (2004) to extend the concept of reliability. Depending on

the complexity of the model, these authors defined reliability either as a single correla-

tion, a correlation that depends on the time lag between two measurements, or an entire

correlation matrix for any pair of measurements.

Laenen, Alonso, and Molenberghs (2007) also used hierarchical linear models to evaluate

reliability in a longitudinal setting. Unlike the earlier authors, they approach reliability

not from a correlation perspective but rather from an axiomatic point of view, and defined

reliability through a set of four simple properties. Further, they provide a single yet

meaningful measure of reliability, the so-called RT , which is independent of the structure

of the model used to fit the data and hence facilitates interpretation and applicability.

In this paper, we show that the RT can be framed in a much broader setting. Actually, this

measure is just a special case of a more general family of reliability measures. Interestingly,

different members of this family seem to capture different sides of the reliability problem

and have different interpretations.

In Section 2, the case study is introduced. Section 3 discusses the modelling framework

used in the present work, as well as other approaches used in the psychometric literature.

Additionally, a family of reliability measures is proposed and its properties are analyzed.

Section 4 investigates the properties of some such measures, based on simulations and

explores the relationship between the new proposals and the G coefficients. Finally,

Section 5 applies the methodology to the case study.
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2 Case Study

Schizophrenia is one of the most disabling and emotionally devastating illnesses known

to man. It is characterized by a constellation of distinctive and predictable symptoms.

The symptoms that are most commonly associated with the disease are called positive

symptoms, that denote the presence of grossly abnormal behavior. These include thought

disorder, delusions, and hallucinations. Less obvious than the positive symptoms but

equally serious are the deficit or negative symptoms that represent the absence of normal

behavior. These include flat or blunted affect (i.e. lack of emotional expression), apathy,

and social withdrawal.

Several instruments can be considered to assess a patient’s condition. The Brief Psy-

chiatric Rating Scale (BPRS) is an 18-item scale that has been successfully used since

1967 to evaluate schizophrenic patients and to demonstrate the efficacy of antidepressant,

antianxiety and antipsychotic drugs. It has also been used in epidemiological studies,

gero-psychiatric research, and to compare diagnostic concepts between countries (Overall

and Gorham 1988).

Another highly useful scale in the assessment of schizophrenia is the Positive and Neg-

ative Syndrome Scale (PANSS) (Kay, Fizbein, and Opler 1987). PANSS is a 30-item

rating instrument evaluating the presence and severity of positive, negative and general

psychopathology of schizophrenia. The scale was developed based on the BPRS and the

Psychopathology Rating Scale and was conceived as an operationalized, drug-sensitive

instrument that provides a balanced representation of positive and negative symptoms

and gauges their relationship to one another and to global psychopathology. PANSS was

designed as an advance on BPRS, addressing broader psychopathology and therefore it is

expected to achieve greater reliability.

The case study is a randomized clinical trial, investigating the effect of risperidone as
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compared to an active control for the treatment of chronic schizophrenia. A total of 453

patients were evaluated using both rating scales, PANSS and BPRS, at baseline and after

1, 2, 4, 6, and 8 weeks, respectively. The upper part of Figure 1 shows the evolution of the

individual profiles for both instruments over time. Note that in this study the instruments

were used longitudinally to evaluate the efficacy of a new drug. The main objective of

the present work is to developed tools that could allow us to study the reliability of these

or other scales in such a longitudinal scenario, likely the most frequently encountered

scenario in practice.

3 Methodology

In general, each data structure presents unique problems for the estimation of reliability,

but longitudinal data, with their different sources of variation and correlation, present

some of the most challenging problems for defining and estimating reliability. In Section 1,

we described some of the limitations of the modelling framework used in CTT and G-

theory when applied within a longitudinal setting.

Many proposals have appeared over the last decades to solve some of these modelling

limitations. They are frequently based on path analysis or structural equations, and have

been developed to estimate reliability in a longitudinal setting dropping the assumption

of stability for the true scores (Heise 1969, Jagodzinski and Kühnel 1987, Werts et al

1980, Wiley and Wiley 1970). In any event, to dodge the requirement of true score

stability when estimating reliability, these models often impose additional assumptions

that may also have questionable validity in a longitudinal setting. For example, it is

usually assumed that the changes in the true scores across time follow a simplex pattern

(Heise 1969, Wiley and Wiley 1970, Werts, Linn, and Joreskøg 1977).
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Some of these approaches also make strong assumptions regarding the pattern of mea-

surement errors across time, for instance, they assume equal reliabilities over time (Heise

1969), equal error variances over time (Wiley and Wiley 1970) or uncorrelated error struc-

tures (Tisak and Tisak 1996). Raykov (2000) criticizes the equal-reliability assumption

of Heise (1969) and proposed a model that circumvents this limitation. However, his

model still assumed uncorrelated error terms, another doubtful assumption in several lon-

gitudinal studies. Many other authors have discussed the merits and disadvantages of

using a first-order autoregressive structure to describe within-subject evolution over time

(Kenny and Zautra 1995, Hertzog and Nesselroade 1987, Cole, Martin and Steiger 2005).

The model discussed by Kenny and Zautra (1995) decomposes the observed scores as an

overall constant that is allowed to change over time but does not depend on any covari-

ate, a trait, or subject-specific parameter (equivalent to a random intercept in the LMM

formulation), a term representing the state which is equivalent to the serial correlation

component in LMM and a random error equivalent to the random error also present in

LMM. Unlike the LMM, the model assumes that the variance explained by each source

is the same for all time points. Another important difference with the LMM is that the

so-called trait-state-error model (TSE) imposes a first-order autoregressive structure for

the state factor. Hertzog and Nesselroade (1987) criticized the first-order autoregressive

assumption and claim it is not flexible enough to be applied to some data structures.

As stated before, in the present work we will outline our proposals for quantifying re-

liability within a linear mixed models framework. This modelling paradigm will allow

us to incorporate many of the previously discussed features, such as varying true scores,

correlated error terms, including different types of serial correlation, heteroscedastic error

components, and correlated random effects, in a very natural way. Accounting for all of

these complexities within the same modeling paradigm is of the utmost importance to

guarantee unbiased results when estimating reliability. For instance, we can incorporate

the systematic variability of the true scores into the fixed-effects structure of the model
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in a very flexible manner using, for example, fractional polynomials (Royston and Alt-

man 1994) or non-parametric approaches such as splines (Verbyla et al 1999). Unlike in

the model of Kenny and Zautra (1995), we could incorporate many different structures

to account for serial correlation like Gaussian, first-order autoregressive, exponential, m-

dependent structures, among others. The assumption of equal error variance over time

can also be dropped and fully general variance functions can be considered. A linear

mixed-effects model can generally be written as

Yi = Xiβ + Zibi + ε(1)i + ε(2)i, (1)

bi ∼ N(0, D), ε(1)i ∼ N(0, ΣRi), ε(2)i ∼ N(0, τ 2Hi),

b1, . . . , bN , ε(1)1, . . . , ε(1)N , ε(2)1, . . . , ε(2)N independent,

where Y i is the pi dimensional vector of responses for subject i, 1 ≤ i ≤ n, n denotes the

number of subjects, and pi the number of measurements for subject i. Xi and Zi are fixed

(pi × q) and (pi × r) dimensional matrices of known covariates, β is the q-dimensional

vector of fixed effects, bi is the r-dimensional vector containing the random effects, ε(2)i

is a pi-dimensional vector of components of serial correlation, and ε(1)i is a pi-dimensional

vector of residual errors. Additionally, D is a general (r×r) covariance matrix, associated

with the subject-specific random effects, Hi is a (pi×pi) correlation matrix, τ 2 is a variance

parameter, and ΣRi is a (pi × pi) covariance matrix. Furthermore, Hi and ΣRi depend on

i only through their dimension pi.

Model (1) implies the marginal model Yi ∼ N(Xiβ, Vi), where Vi = ΣDi
+ Σi with

ΣDi
= ZiDZ ′

i and Σi = τ 2Hi + ΣRi. Note that the total variability is decomposed into a

component stemming from the subject-specific random effects and a residual variability

component. The remaining variability is the sum of a serial correlation part and an error

part, but we will generically refer to it as the error variability.

In what follows, we will discuss a proposal by Laenen, Alonso, and Molenberghs (2007)
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to quantify reliability in this very general scenario. Further, we will introduce a general

family of reliability measures that contained this proposal as a special case.

3.1 Properties of a Reliability Measure

Laenen, Alonso, and Molenberghs (2007) extended the concept of reliability to a longi-

tudinal scenario using a simple set of four defining properties. Essentially, these authors

asserted that any meaningful measure of reliability R should satisfy: (i) 0 ≤ R ≤ 1,

(ii) R = 0 if and only if there is only measurement error: Vi = Σi, (iii) R = 1 if and

only if there is no measurement error: Σi = 0, and (iv) in the cross-sectional setting

the true-score variance to observed variance ratio, used in classical test theory, should

be recovered. This type of axiomatic definitions have been successfully applied in many

different areas, so as to extend concepts, originally defined in a simple setting, to more

general scenarios. For instance, the same approach was used in mathematics to define the

concept of distance or in probability and statistics to define the concept of a probability

density function.

Further, these authors proposed the so-called RT , a parameter that satisfies the previous

set of properties, to quantify reliability. Assuming a balanced design where Σi = Σ and

Vi = V for all i, the RT takes the form:

RT = 1 −
tr(Σ)

tr(V )
. (2)

Note that, in the previous expression, the variability of the repeated measurements on the

scale is summarized by the trace of its variance-covariance matrix. In a similar way, the

error variabilities are summarized by the trace of the variance-covariance matrix associated

with the error vectors ε(1)i and ε(2)i.

In the next section, we elaborate on the reliability concept in this general setting, and

9



propose a family of which all members satisfy the four properties introduced above. In

doing so, we embed the measure RT in a broader framework. Importantly, it will be

shown that RT is merely a special member of this general family.

3.2 A Family of Parameters for Reliability

Alonso et al. (2004) introduced a family of parameters to evaluate criterion validity of

psychiatric symptom scales, based on canonical correlations. In the evaluation of criterion

validity, a new scale is compared to a criterion scale, with known performance. In this set-

ting, canonical correlations are a useful tool to quantify the amount of information shared

between both instruments. In the context of reliability, we study the reproducibility of a

single scale, which implies that canonical correlations are no longer applicable. Neverthe-

less, we will show that the role played by canonical correlations in the validity research, is

in the reliability context assumed by the generalized eigenvalues associated with specific

variance-covariance matrices. Let us start by introducing the following result.

Theorem 1 Given the function q(λ) = |Σ− λV |, if model (1) holds then: (i) all roots of

q(λ) = 0, the so-called generalized eigenvalues, are real, and (ii) if λj is a root of q(λ) = 0

then 0 ≤ λj ≤ 1.

A detailed proof of the previous result can be obtained from the authors. Based on this

theorem, we can now define the family:

Ω =

{
θ : θ =

p∑

j=1

wjρ
2
j with wj > 0

p∑

j=1

wj = 1

}
. (3)

The elements wj are weights assigned to the parameters ρ2
j , where ρ2

j = 1 − λj with λj

the roots of the equation q(λ) = 0, or equivalently, the eigenvalues of the matrix ΣV −1.

Further, it is easy to prove, using Theorem 1, that all elements of Ω satisfy the properties

(i)–(iv), given in Section 3.1.
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This family is structurally similar to the family introduced by Alonso et al. (2004) in

the validity framework. The main difference is that here the ρ2
j are not the canonical

correlations associated with the new and criterion scales, but rather a function of the

generalized eigenvalues associated with the total and error variance covariance matrices.

Note also that, even though the Ω family is uncountable, it clearly delineates our search

for reliability measures. In general this is not a new situation. In other fields, concepts like

the mathematical concept of distance, are defined through a minimum set of properties

that lead to many specific instances. Having many elements to quantify a concept is not

always undesirable. Indeed, it could allow us to approach a wide variety of problems in

a very flexible way. For example, the Mahalanobis distance has been successfully used in

cluster analysis and classification analysis in multivariate statistics, whereas the distance

based on the uniform norm is the basic concept underlying the Kolmogorov-Smirnov test.

In what follows, we will study some specific, important members of the Ω family in more

detail and we will try to shed light on their specific meaning and interpretation.

3.2.1 RT as Member of the Ω Family

It is possible to show, using the results of Graybill (1983, chapter 12), that there exists

a non-singular matrix Q so that Σ = (Q′)−1D0Q
−1 and V = (Q′)−1Q−1, where D0 is

a diagonal matrix whose diagonal elements are the roots of the polynomial equation

q(λ) = 0. Plugging the previous expression into (2), we obtain

RT = 1 −
tr[(Q′)−1D0Q

−1]

tr[(Q′)−1Q−1]
= 1 −

tr[Q−1(Q′)−1D0]

tr[Q−1(Q′)−1]
.

Further, if we call S = Q−1(Q′)−1 = (Q−1)(Q−1)′, we have:

RT = 1 −
tr(SD0)

tr(S)
= 1 − tr

(
S

tr(S)
D0

)
= 1 −

p∑

j=1

wjλj,
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with wj = sjj/tr(S) and sjj the jth element in the diagonal of S. Note that sjj ≥ 0 for

all j and that
p∑

j=1

wj =

p∑

i=j

sjj

tr(S)
=

1

tr(S)

p∑

j=1

sjj = 1.

The rationale of these derivations is that RT is an element of Ω, since

RT =

p∑

j=1

wj(1 − λj) =

p∑

j=1

wjρ
2
j with wj > 0 and

p∑

j=1

wj = 1.

3.2.2 Other Members of the Ω Family

The uncountable nature of the Ω family implies that the choice of some special members

to be scrutinized further must be based on pragmatic considerations. Retaining RT is

evident. Another intuitive choice is to set all weights equal to wj = 1/p. We then have

that

Rp =

p∑

j=1

1

p
ρ2

j =

p∑

j=1

1

p
(1 − λj) = 1 −

1

p

p∑

j=1

λj = 1 −
1

p
tr(ΣV −1).

It would also be appealing to consider the elements of Ω corresponding to the largest and

smallest eigenvalue of ΣV −1, i.e., θ̃max = ρ2
(p) and θ̃min = ρ2

(1), where ρ2
(j) is the jth largest

eigenvalue. However, the restrictions placed on the weights (wj > 0) make θ̃max and θ̃min

invalid choices. Nevertheless, we could define θmax and θmin in the following alternative

way:

θmax =

p∑

j=1

wjρ
2
j with wp >> wj for j 6= p,

θmin =

p∑

j=1

wjρ
2
j with w1 >> wj for j 6= 1.

Note that, if the weights wj are carefully chosen, we can be rather confident that for any

arbitrary element of Ω: θmin ≤ θ ≤ θmax. Indeed, for any given scale and independently

of the element of Ω that one may use in the analysis, the reliability of the instrument

will lie always in the interval [θmin, θmax]. In the following section, we will investigate
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the performance of the asymptotic confidence intervals constructed for the elements of Ω

via simulation. We also try to explore whether the different members lead to intuitively

plausible results in some special settings and try to clarify their interpretation.

4 Simulation Study

4.1 Design of the Simulation Study

We consider 12 different simulation settings. In a first stage, data are generated based on

the following linear mixed model with random intercept:

Yij = β0 + β1tj + β2Zi + bi + εij,

where Yij refers to an observation for subject i at time tj , and Zi is the treatment indicator

variable. Further, bi ∼ N(0, σ2
b ), εij ∼ N(0, σ2), with σ2

b = 300. The error variability

takes values σ2 = 30, 300, or 3000, and the sample size was set to either n = 50 or 150.

These choices for σ2
b and σ2 allow us to study the performance of the elements of the Ω

family when the error variance is 9%, 50%, and 90% of the total variance, respectively.

These settings intuitively correspond to high, medium, and low reliability.

In a second stage, data are generated based on a linear mixed model with random intercept

and random slope for time:

Yij = β0 + β1tj + β2Zi + b1i + b2itj + εij,

where (b1i, b2i)
′ ∼ N(0, D), εij ∼ N(0, σ2), and

D =

(
300 −1
−1 5

)
.

The same choices for σ2 and n are made.
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In both stages, the mean parameters are fixed at β0 = 85, β1 = 2.5, β2 = 3 to generate

the data. These values are based on the results obtained when the previous models were

fitted using the case study data. We consider p = 5 time points in all scenarios and, for

each setting, 250 data sets are simulated.

The parameters θmin and θmax are specified in the following way:

• θmin =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = 1 and wj =

0.001

p − 1
otherwise, and

• θmax =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = p and wj =

0.001

p − 1
otherwise.

Using restricted maximum likelihood (Verbeke and Molenberghs 2000), we calculate the

point estimates, the confidence intervals, and the coverage percentage (CP) of the confi-

dence intervals. A confidence interval, based on the delta method, can be derived for all

members of the Ω family, assuming the weights are known constants. This assumption

is not fulfilled for RT . Confidence intervals for RT are calculated as described in Laenen,

Alonso, and Molenberghs (2007). To avoid that confidence limits take values beyond the

[0, 1] range, a logit transformation is applied.

4.2 Results of the Simulation Study

Point estimates, true values, average confidence intervals, and coverage percentages are

given in Tables 1–3 for RT , Rp, and θmax, respectively, showing that accurate point esti-

mates for all parameters can be obtained with a relative small sample size of 50 patients.

A larger sample size, as expected, produces narrower confidence intervals. Furthermore,

the coverage probabilities for all the asymptotic confidence intervals are generally around

the pre-specified 95% level. Only when a large amount of measurement error is present

and a limited number of patients is available, the asymptotic confidence intervals fail
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to reach the pre-specified level of confidence. However, the problem is solved when the

sample size increases.

Considering the values of the point estimates, the measure RT produces results in line

with intuition. We obtain values close to 1 when the error variance is small compared

to the model variance, we settle for values in the neighborhood of 0.50 in case the error

variance and model variance are of a similar magnitude, and values are close to 0 when

error variances are large.

Interestingly, θmax takes higher values in all settings. With 50% of the variability origi-

nating from error, it takes values above 0.80. To gain intuition about this behavior, let

us recall that θmax ≈ ρ2
(p) and consider the random intercept model, where Σ = σ2I and

V = σ2
bJ + σ2I. It can be shown that in this scenario:

ρ2
(p) =

pσ2
b

pσ2
b + σ2

. (4)

From (4), it can be seen that this measure increases with the number of time points.

Note that (4) fully resembles the Spearman-Brown prediction formula, where the role of

the number of items is now played by the number of measurements. Actually, θmax seems

to quantify the reliability of the entire series of measurements, in contrast to RT , which

gives an average reliability. Note that, from this perspective, θmax is in total agreement

with clinical intuition: the longer a patient is followed, the more reliable our conclusions

about that patient will be. Indeed, increasing the numbers of time points, we also increase

the amount of useful information about the patient, even if it comes contaminated with

measurement error. Another important implication of (4) is that we can obtain reliable

information from an instrument that produces a lot of measurement error, as long as we

take a sufficiently high number of measurements. This is a very encouraging result. Given

the subjective nature of psychiatric and psychological research we should expect that in

many situations rating scales will be affected by considerable measurement error. The

previous finding hints on the fact that such an instrument can still be very valuable if it
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is used in a proper way. We could also calculate the necessary number of time points to

reach a specified level of reliability θmax. Indeed, in general

p ≈
σ2

σ2
b

θmax

1 − θmax

.

Note that if we aim at a reliability of 1, p will go to infinity. The equation further shows

that, as long as σ2
b 6= 0, it will always be possible to achieve convergence: there always

will be a certain number of measurements p that results in a pre-specified value for θmax.

Turning to the third measure, Rp, we observe again a totally different pattern. This

measure generally gives low values. Even when the error variance is small compared

to the model variance, Rp reaches values far below 1. Studying Rp under the random

intercept model, it can easily be shown that, if σ2 6= 0, Rp = σ2
b/(pσ2

b + σ2). Note that,

unlike θmax, Rp is a decreasing function of the number of time points. The expression

further shows that, even when the error variance is very small, the measure Rp can never

exceed 1/p. Additionally, Rp is not a continuous function of σ2 for σ2 = 0. Indeed,

lim
σ2

→0
Rp =

1

p
6= 1 = Rp(σ

2 = 0).

In spite of their differences, Rp and θmax are functionally related. It can be shown that

Rp =
ρ2

(p)

p
≈

θmax

p
. Rp can therefore be interpreted as the average contribution per

measurement to the total reliability of the whole sequence. Where large values of θmax

can, in principle, always be obtained by increasing the number of repeated measurements,

Rp is more a measure of efficiency. It shows us at what ‘cost’ we obtain a large global

reliability θmax.

The parameter θmin gives the lowest estimates of all members of the Ω family. The

simulation study shows that the measure takes values close to 0 under all circumstances

considered. The informative value of this measure is therefore very limited.

Comparing the different parameters in the present simulation study has made clear that

16



different measures can lead to rather divergent messages. While the RT should be in-

terpreted as the average reliability, θmax gives the reliability of the entire sequence of

measurements. Further, Rp gives the average contribution to θmax at each time point, and

can be seen as a measure of efficiency.

Which measure is preferred will depend on the circumstances of the research and the

scientific question one wants to address. The RT is closest to the intuition behind the

classical concept of reliability and might therefore be preferred in some settings. However,

other members of Ω might bring valuable information as well. Arguably, in some cases, it

will be of interest to consider a few measures simultaneously. SAS-macros to obtain the

different measures can be obtained from the authors.

As stated in the introduction, one of the most important attempts to estimate reliability

in a longitudinal framework was based on G-theory and the use of the G coefficients. In

the next section, we will study the relationship between some members of the Ω family

and these G coefficients.

4.3 Relationship between the new proposals and the G coeffi-

cients

In order to quantify reliability in a longitudinal setting using the G coefficients we will

assume that the following model, used in generalizability theory, holds:

Yij = µ + bi + τj + εij, (5)

where Yij denotes the score for subject i (i = 1 . . . n) at time point j (j = 1 . . . p), µ

denotes a constant general mean, bi ∼ N(0, σ2
b ) is a subject-specific effect, τj ∼ N(0, σ2

τ )

denotes the time effect and the error terms are assumed independent with εij ∼ N(0, σ2).

It is further assumed that bi, τj , and εij are independent. Under these assumptions
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Var(yij) = σ2
b +σ2

τ +σ2 and the following G-theory coefficients, the so-called rho absolute

error and rho relative error, are typically used to quantify reliability:

ρae =
σ2

b

σ2
b + σ2

τ + σ2
,

ρre =
σ2

b

σ2
b + σ2

τ

p
+ σ2

p

.

Note that, using vector notation, Model (5) can be rewritten as:

Y i = 1pµ + 1pbi + τ + εi, (6)

where Y i = (yi1, yi2, . . . , yip)
′ denotes a column vector with all observations originating

from subject i, 1p = (1, 1, . . . , 1)′ denotes a p-dimensional column vector, τ = (τ1, τ2, . . . , τp)
′

denotes a column vector with the time effects, and finally εi = (εi1, εi2, . . . , εip)
′ denotes

the column vector with all the error terms associated with subject i. Note that this model

can be seen as a special case of the linear mixed model we considered. Indeed, Model (6) is

a linear mixed model with only one subject-specific random effect and the error structure

decomposed into a time component (which can be seen as a special type of serial correla-

tion where the Hi matrix reduces to the identity), and a component that captures extra

residual variability. Note further that in this scenario we have only one subject-specific

random effect bi and therefore for this model the variance-covariance matrix associated

with the subject-specific random effects D = σ2
b is scalar. Using matrix notation, we can

now write

V = Var(Y i) = Jpσ
2
b + Ip(σ

2
τ + σ2), (7)

where Jp = 1p1
′

p and Ip is a p × p identity matrix. Employing notation previously intro-

duced, we have V = ΣD + Σ with ΣD = Jpσ
2
b accounting for the variability coming from

the subject-specific effect and Σ = Ip(σ
2
τ + σ2) accounting for the remaining variability.

It now follows that

RT = 1 −
tr(Σ)

tr(V )
= 1 −

p(σ2
τ + σ2)

p(σ2
b + σ2

τ + σ2)
=

σ2
b

σ2
b + σ2

τ + σ2
= ρae.
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In addition from (4) we can easily obtain

θmax ≈ ρ2
(p) =

σ2
b

σ2
b + σ2

τ

p
+ σ2

p

= ρre.

The previous results illustrate that, when the assumptions underlying Model (5) are met,

the G-theory coefficients ρae and ρar can also be seen as special members of the Ω family.

Similarly, it is possible to illustrate that, after integrating out the time effect, the average

versions of ρae and ρar are also members of the Ω family.

This is a very appealing finding because the previous derivations show that both G-theory

coefficients also satisfy our defining properties and can be seen as special cases of the Ω

family. Given the seminal success of G-theory in many applications, these results increase

our confidence in the newly proposed reliability definition and family.

5 Analysis of the Case Study

In this section, we will apply the previously introduced tools to the schizophrenia data

described in Section 2. The idea is to evaluate the reliability of PANSS and BPRS when

both scales are repeatedly measured over time. Notice that longitudinal measurements

of both rating scales are frequently encountered in clinical trials as well as in common

clinical practice.

As stated in Section 1, all reliability measures are based on a model that attempts to

describe the data generating mechanism. Hence, a model building step is crucial to find

the best fitting model for the data at hand. To this effect, model building guidelines, as

laid out in, for example, Verbeke and Molenberghs (2000, Ch. 9) ought to be followed. We

considered 15 different models. In all the cases a saturated fixed mean structure was used

with one parameter for each treatment by time combination. Eventually, such a general

structure for the fixed effects should help to guarantee unbiased estimates for the parame-
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ters of the variance components, which are the building blocks of the reliability coefficients.

We considered three different random effects, intercept, time, and time2, allowing to flex-

ibly model the individual evolutions over time. Furthermore, we analyzed five different

structures for the error variance covariance matrix (Σ): three serial correlation structures

including Gaussian, exponential, and power correlation matrices, a diagonal matrix with

heterogeneous variances and a diagonal matrix with common variance.

The model selection was based on the Akaike information criterion (AIC) and restricted

maximum likelihood was used for parameter estimation (Verbeke and Molenberghs 2000).

For the two scales, the final model takes the general form:

Yij = µij + bi0 + bi1tj + bi2t
2
j + εij,

where Yij denotes the score (either PANSS or BPRS) for subject i at time point tj , µij

denotes the fixed-effects structure, encompassing a parameter for each treatment by time

combination. For both scales the three random effects remained in the final model, so

that bi ∼ N(0, D) with D a 3 × 3 unstructured variance-covariance matrix. Further,

ε
i
∼ N(0, Σ), where for PANSS the best fitting covariance structure was a diagonal

matrix with heterogeneous variances, Σ = diag(σ2
j ), and for BPRS, a simple structure

was selected Σ = (σ2I). The lower part of Figure 1 shows the evolution over time of the

individual residuals coming from the final models. No pattern can be detected in these

plots what hints on the appropriateness of chosen the models. Additionally, Figure 2

displays the observed and fitted values for five randomly selected subjects for both scales.

These plots also show a reasonable level of agreement between the final models and the

data.

Figure 1 shows incomplete observations for some patients. Because the model fitting has

a likelihood basis, the ensuing inferences are valid for both balanced as well as unbalanced

data. Also, when the data are incompletely observed, the methodology remains statisti-

cally valid if the missing data mechanism is missing at random (Rubin 1976), in the sense
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that missingness is allowed to depend on observed data but, given these, not further on

unobserved data.

Having found suitable models, the next step is to calculate the different measures of

reliability. Table 4 presents the estimated values of RT , Rp, and θmax for both scales,

together with the corresponding 95% confidence intervals. Clearly, both scales have very

high average reliabilities, characterized by estimates of RT that largely exceed 80%. This

is not a surprising result. As stated in Section 2, these scales have been successfully used

in clinical practice and research for many years and the large values of the RT are in total

agreement with that fact. Moreover, the estimates of θmax are larger than 96% for both

scales. Note that these large estimates may be partially explained by the large values

obtained for RT . Now, θmax being a quantification of the reliability of the entire sequence,

the previous results clearly illustrate that highly reliable results can be achieved when six

measurements per subject are taken.

As expected, we observe that PANSS scores higher on all three reliability measures.

PANSS, with 30 items, is conceived as an extension of BPRS, a scale with only 18 items.

However, the differences are generally small. The left hand graph of Figure 3 plots RT

values per time point, which are calculated as RTj =
zjDz′j

zjDz′j + σ2
j

for time point j and

express the reliability at each of the measurement occasions separately. It can be observed

that BPRS is performing a little better in the beginning of the study, but is outperformed

by PANSS at later observations. This scale exhibits a clear increase of reliability over

time. Also, BPRS finds its reliability growing over time, but much less pronounced. We

speculate that this increasing reliability over time could be the result of a learning effect

of the rater. Such a learning effect could also explain the relative performance of both

scales at the beginning of the study. Indeed, BPRS is not only simpler than PANSS, but

generally more frequently used and therefore better known by clinicians. It is therefore

not surprising that it leads to more reliable results than PANSS at the beginning of the
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study. This effect is reversed once the rater gets more experience in the use of PANSS

somewhere after the second measurement. It is important to point out that these are just

plausible interpretations of the patterns we observed but of course they are speculative.

The right hand graph of Figure 3 presents the θmax values cumulatively over time. At

the first time point the values are given for the first observation only, at the second time

point the values express the reliability of the joint observations at the first and the second

measurement, and so on. The graph shows that around 10% of information is gained

by taking a second measurement. It also indicates that reliabilities above 90% can be

obtained with both instruments when three measurements are taken. Additional gain in

information becomes smaller as more measurements are considered.

Essentially, these results illustrate that the additional complexity of PANSS over BPRS

does not bring a considerable gain in reliability. This may suggest that in some practical

situations the use of a simple scale like the BPRS could be more advisable. Similar results

have been found by Alonso et al. (2002) when studying criterion validity. Indeed, these

authors obtained very similar values of trial-level validity and individual-level validity for

BPRS and PANSS. Nevertheless, we should point out that the choice between different

instruments usually is not only based on statistical aspects and clinical considerations

must be taken into account as well.

6 Discussion

The reliability of a measurement is not only relevant from a clinical point of view but

directly affects the results of a statistical analysis that is based thereupon (Fleiss 1986,

Lachin 2004). Therefore, reliability is a key concept in the evaluation of a rating scale to

be used in clinical trials.
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A test-retest reliability study essentially consists of taking two replicate measurements.

However, in clinical research and practice it is common to measure a patient’s condition

repeatedly over time. It is therefore important to take advantage of the available longitu-

dinal data when estimating reliability. Laenen, Alonso, and Molenberghs (2007) extended

the concept of reliability to a more general longitudinal scenario using a basic set of four

properties. Further, they introduced the parameter RT which is based on a very general

class of hierarchical linear models. Notice that using such a general modelling framework

is of utmost important to avoid bias when dealing with such a complex data structure.

In this paper, we have discussed the relative advantages of the modelling paradigm used by

Laenen, Alonso, and Molenberghs (2007) with respect to some of the proposals available in

the psychometric literature to evaluate reliability in a longitudinal setting, like G-theory.

We have also shown that, within this general modelling paradigm, the RT introduced

by these authors can be seen as a special case of a more general framework defined by

an entire family of reliability measures, of which all members satisfy the four defining

properties. In doing so, we have established that any measure of reliability should be

built from the generalized eigenvalues related to the error and total variance-covariance

matrices. Different weights assigned to these eigenvalues lead to different members of the

family. A few key members of this family were scrutinized further, the RT being one of

them.

A simulation study demonstrates that there are clear and important differences in the

meaning of the different members. Since different measures answer different scientific

questions, they cannot be compared on objective criteria when selecting one as the ‘best’

measure. The measure to be used will depend on the circumstances of the study. It might

be of interest to consider more than one measure simultaneously.

Interestingly, under some modelling assumptions, it is possible to show that the classically
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used G coefficients to evaluate reliability in a longitudinal setting are also members of

the Ω family. Therefore, they can also be seen as special cases of the general scenario

introduced in the present work. This is a very relevant finding and the outstanding success

of G-theory in many application in psychometric and education adds an extra value to it.

Finally, all the measures considered lead to the same conclusions about the two scales

under study. Both PANSS and BPRS are very reliable scales. Using these instruments in

a longitudinal fashion can increase the reliability to values close to 100% as the estimates of

the θmax illustrate. This clearly hints on the advantages of using this type of instruments

repeatedly over time. Indeed, many rating scales in related areas perform much less

spectacularly than the two scales we have considered, and provide less reliable results at

one measurement occasion. Such scales might profit most of the information gain that is

obtained by taking additional measurements. Another interesting conclusion that emerged

from the analysis is the similar performance of both scales in spite of the additional

complexity present in PANSS. It is important to point out that even though such a result

may lead to the advise of using a simpler equally reliable scale like BPRS over PANSS,

clinical considerations are also of vital importance when taking such a decision.
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Table 1: Simulation Results for RT : true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ
2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.91 0.90 [0.86; 0.93] 93 0.93 0.93 [0.90; 0.95] 94

30 150 0.91 0.91 [0.89; 0.93] 96 0.93 0.93 [0.92; 0.94] 91

300 50 0.50 0.50 [0.38; 0.61] 94 0.58 0.57 [0.47; 0.68] 95

300 150 0.50 0.50 [0.43; 0.57] 96 0.58 0.58 [0.51; 0.64] 93

3000 50 0.09 0.09 [0.04; 0.34] 90 0.12 0.14 [0.06; 0.33] 86

3000 150 0.09 0.09 [0.05; 0.18] 97 0.12 0.13 [0.07; 0.22] 94

Table 2: Simulation Results for Rp: true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ
2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.20 0.20 [0.19; 0.20] 95 0.36 0.36 [0.35; 0.38] 95

30 150 0.20 0.20 [0.20; 0.20] 97 0.36 0.36 [0.36; 0.37] 95

300 50 0.17 0.17 [0.15; 0.18] 96 0.24 0.23 [0.17; 0.30] 92

300 150 0.17 0.17 [0.16; 0.18] 98 0.24 0.24 [0.20; 0.28] 96

3000 50 0.07 0.06 [0.03; 0.22] 88 0.09 0.09 [0.04; 0.24] 92

3000 150 0.07 0.07 [0.04; 0.12] 96 0.09 0.09 [0.05; 0.16] 95
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Table 3: Simulation Results for θmax: true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ
2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.98 0.98 [0.97; 0.99] 96 0.98 0.98 [0.97; 0.99] 97

30 150 0.98 0.98 [0.97; 0.98] 98 0.98 0.98 [0.98; 0.99] 96

300 50 0.83 0.83 [0.74; 0.89] 96 0.86 0.86 [0.78; 0.91] 97

300 150 0.83 0.83 [0.78; 0.87] 97 0.86 0.86 [0.82; 0.89] 97

3000 50 0.33 0.32 [0.14; 0.70] 91 0.39 0.41 [0.21; 0.69] 93

3000 150 0.33 0.33 [0.19; 0.53] 98 0.39 0.40 [0.26; 0.56] 97

Table 4: Schizophrenia Study: Three reliability parameters, applied to two scales: esti-

mates and 95% confidence intervals.

parameter PANSS BPRS

RT 0.890 [0.871; 0.907] 0.856 [0.839; 0.871]

Rp 0.414 [0.381; 0.448] 0.366 [0.347; 0.385]

θmax 0.985 [0.968; 0.993] 0.968 [0.960; 0.975]
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Figure 1: Individual profiles (top) and residual profiles (bottom) for PANSS and BPRS.
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Figure 2: Observed and fitted profiles for 5 randomly selected patients for PANSS (top)

and BPRS (bottom).
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