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Abstract

Yutsis graphs are connected simple graphs which can be partitioned into two
vertex-induced trees. Cubic Yutsis graphs were introduced by Jaeger as cubic dual
Hamiltonian graphs, and these are our main focus.

Cubic Yutsis graphs also appear in the context of the quantum theory of angular
momenta, where they are used to generate summation formulae for general recou-
pling coefficients. Large Yutsis graphs are of interest for benchmarking algorithms
which generate these formulae.

In an earlier paper we showed that the decision problem of whether a given cubic
graph is Yutsis is NP-complete. We also described a heuristic that was tested on
graphs with up to 300,000 vertices and found Yutsis decompositions for all large
Yutsis graphs very quickly.

In contrast, no fast technique was known by which a significant fraction of bridge-
less non-Yutsis cubic graphs could be shown to be non-Yutsis. One of the contri-
butions of this article is to describe some structural impediments to Yutsisness and
to provide experimental evidence that almost all non-Yutsis cubic graphs can be
rapidly shown to be non-Yutsis by their application. Combined with the algorithm
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described in the earlier paper this gives an algorithm that, according to experimen-
tal evidence, runs efficiently on practically every large random cubic graph and can
decide on whether the graph is Yutsis or not.

The second contribution of this article is a set of construction techniques for non-
Yutsis graphs implying, for example, the existence of 3-connected non-Yutsis cubic
graphs of arbitrary girth and with few non-trivial 3-cuts.

Key words: Yutsis graph; dual Hamiltonian graph; decision problem; general
recoupling coefficient

1 Introduction

A Yutsis graph is a multigraph in which the vertex set can be partitioned in
two parts such that each part induces a tree. Cubic Yutsis graphs appear in the
quantum theory of angular momenta as a graphical representation of general
recoupling coefficients. They can be manipulated following certain rules in
order to generate so-called summation formulae for the general recoupling
coefficient. Details can be found in [1–3].

Consider a multigraph G = (V, E) and a subgraph H ⊆ G. We will use V (H)
to denote the vertex set of H and E(H) to refer to the (multi-)set of edges
of H . In case V1 and V2 are disjoint subsets of V , E(V1, V2) denotes the multiset
of edges with one endpoint in V1 and one in V2. For disjoint subgraphs G1, G2

of G we also write E(G1, G2) for E(V (G1), V (G2)). By 〈S〉 we denote the
subgraph induced by S ⊆ V .

A graph is cyclic if it contains a cycle. A graph with two vertex-disjoint cycles
is cyclically k-edge-connected if any edge-cut E(S, V −S) such that 〈S〉 and
〈V −S〉 are cyclic contains at least k edges.

Due to the applications in physics and the conjecture by Jaeger [4] that all
cyclically 4-edge-connected cubic graphs are Yutsis (which he proves for the
planar case), the Yutsis property is especially interesting for simple cubic
graphs and results about these are also the main aim of this paper. Neverthe-
less during some of our constructions, non-cubic graphs and also multigraphs
occur and therefore we will define it in a more general context.

Email addresses: raldred@maths.otago.ac.nz (Robert E. L. Aldred),
Dries.VanDyck@UHasselt.be (Dries Van Dyck), Gunnar.Brinkmann@UGent.be
(Gunnar Brinkmann,), Veerle.Fack@UGent.be (Veerle Fack),
bdm@cs.anu.edu.au (Brendan D. McKay).
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Let Y be a Yutsis graph for which the vertex set can be partitioned into
two parts which induce trees B and R. We call such a tree pair (B, R) a
defining tree pair and each tree of such a pair a defining tree for Y . The
edge-cut E(B, R) is called a defining edge-cut for Y . Note that in general
the partitioning of a Yutsis graph into two defining trees is not unique. An
example of a Yutsis graph and two defining trees is given in Figure 1. If there
are defining trees B, R of the same size, we call the graph strongly Yutsis. A
simple counting argument shows that regular graphs of degree at least three
which are Yutsis are in fact strongly Yutsis.

B

R

Fig. 1. A Yutsis graph with defining tree pair (B,R) and the corresponding
edge-cut E(B,R).

For convenience, we use colours to classify the vertices and edges with respect
to a defining tree pair (B, R): we refer to the vertices and edges of B as blue,
to those of R as red, and to the edges in the defining edge-cut E(B, R) as
white.

In the mathematical literature, simple cubic Yutsis graphs are also known as
cubic dual Hamiltonian graphs [4,5].

2 Preliminaries

Let G = (V, E) be a multigraph and {V1, V2, . . . , Vk} a partition of V . Then
we call {〈V1〉, 〈V2〉, . . . , 〈Vk〉} a decomposition of G into k induced subgraphs
(induced by the partition {V1, V2, . . . , Vk}). We call it a cyclic decomposition
of G if each 〈Vi〉, 1 ≤ i ≤ k, contains a cycle.

By Vi we denote the set of vertices V − Vi. For a subgraph X of a graph
G = (V, E) we define X = 〈V −V (X)〉. An edge in E(Vi, Vj) is called a cross-
edge from Vi to Vj , 1 ≤ i < j ≤ k.

An edge-cut E(S, S) is called cyclic if {〈S〉, 〈S〉} is a cyclic decomposition of
G. Hence, for k ≥ 2 and 1 ≤ i ≤ k, each E(Vi, Vi) of a cyclic decomposition
{〈V1〉, . . . , 〈Vk〉} is a cyclic edge-cut.

Let G = (V, E) be a multigraph and W = {W1, . . . , Wk} be a decomposition
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of G. The contraction graph GW = (VW , EW ) is a multigraph with vertices
W1, . . . , Wk and |E(Wi, Wj)| edges connecting Wi with Wj , 1 ≤ i < j ≤ k.
(There are no loops.) We always assume a bijection between the |E(Wi, Wj)|
edges {Wi, Wj} and the edges in E(Wi, Wj) to be given, so that, by abuse of
language, we can speak for example of the colour of an edge in the contraction
graph if the edges in the original graph are coloured.

3 Sufficient criteria for being non-Yutsis

The following properties follow directly from the definition of a Yutsis graph
and will be used in proofs later on.

Remark 1 For any defining tree pair (B, R) of a Yutsis graph G = (V, E), it
holds that:

(1) a white edge has endvertices of different colour,
(2) a cycle contains at least two white edges, and thus vertices of both colours,
(3) every cyclic edge-cut E(S, S) contains at least one blue and one red edge.

We will repeatedly use the fact that every 2-edge-cut in a cubic multigraph is
a cyclic edge-cut.

In the following we will present some sufficient criteria for non-Yutsisness.

Lemma 2 Let G = (V, E) be a multigraph and W = {W1, . . . , Wk} a cyclic
decomposition of G. If G is Yutsis then the contraction graph GW must contain
two connected edge-disjoint spanning subgraphs.

PROOF. Assume that G is Yutsis with defining tree pair (B, R).

By Remark 1 each cyclic edge-cut E(Wi, Wi) contains a blue and a red edge.
Consequently, every vertex of GW is incident with at least one blue edge and
one red edge in G, so the red and blue subgraphs are spanning and of course
edge-disjoint. Moreover, the red and blue subgraphs of GW are contractions
of trees and therefore connected.

The fact that connected spanning subgraphs with k vertices have at least k−1
edges gives us a criterion for a graph to be non-Yutsis.

Corollary 3 Given a multigraph G = (V, E). If there is a cyclic decomposi-
tion W = {W1, . . . , Wk} of G so that the contraction graph GW contains less
than 2k − 2 edges, then G is not Yutsis.
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Fig. 2. The smallest simple 2-connected cubic non-Yutsis graph and the
smallest simple 3-connected cubic non-Yutsis graphs. The graph on the
right is also the smallest simple nonplanar cubic non-Yutsis graph.

Remark 4 Whenever Lemma 2 is applicable to show non-Yutsisness of a
graph G using a decomposition W , Corollary 3 can be applied to show non-
Yutsisness using a cyclic decomposition coarser than or equal to W .

PROOF. This is an easy consequence of a theorem by Tutte and Nash-
Williams [6] that a multigraph contains two edge-disjoint spanning trees if
and only if every decomposition into k subgraphs contains 2k− 2 cross-edges.

Figure 2 shows the smallest bridgeless simple cubic non-Yutsis graph and the
smallest 3-connected cubic non-Yutsis graphs, which are all non-Yutsis by
Corollary 3 with k = 3 and k = 6 respectively. The graph on the right is also
the smallest non-planar simple cubic non-Yutsis graph.

The smallest contraction graphs of cubic non-Yutsis graphs described by Corol-
lary 3 are illustrated in Figure 3, for k = 2, . . . , 5. Contraction graphs which
can be further contracted to a smaller graph to which the lemma applies are
not listed. For example, the 4-cycle is not present in the figure because it can
be further contracted to a triangle.

It is possible to relax the upper bound on the number of edges a bit by
strengthening the requirement on the elements of the decomposition.

Lemma 5 Let G = (V, E) be a multigraph, W = {W1, . . . , Wk−1, Wk = X} a
cyclic decomposition of G and X non-Yutsis.

If the contraction graph GW has no two connected edge-disjoint spanning sub-
graphs, with at least one of them having a cycle through X, then G is non-
Yutsis.

PROOF. Assume that G is Yutsis with defining tree pair (B, R). As in
Lemma 2, the edges corresponding to E(B) and E(R) form two connected
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Fig. 3. The possible decomposition structures making graphs non-Yutsis
on basis of Corollary 3, for k = 2, . . . , 5. Each ellipse stands for a cyclic
subgraph and corresponds to a vertex of the contraction graph.

spanning subgraphs of GW .

By construction B′ = 〈V (B) ∩ V (X)〉 and R′ = 〈V (R) ∩ V (X)〉 are induced,
cycle-free, and together span X. Since X is non-Yutsis, they cannot be defin-
ing trees of a Yutsis decomposition, so at least one of them, say B′, is not
connected. Let x and y be two vertices from different components of B′. Be-
cause B is connected, there is a path P from x to y in B and it must use edges
not in B′ since x and y are from different components. But these edges must
form at least one blue cycle in GW , in contradiction to the assumption.

Corollary 6 Let G = (V, E) be a multigraph, W = {W1, . . . , Wk−1, Wk = X}
a cyclic decomposition of G and X non-Yutsis.

If the contraction graph GW has less than 2k− 1 edges, then G is non-Yutsis.

Lemma 5 can be used to construct 3-connected cubic non-Yutsis graphs that
have a cyclic decomposition as in the lemma such that the role of X is played
by a smaller known non-Yutsis graph that need not be 3-connected.

This lemma can also be used to understand the graph structures given in
Figure 3: Assuming the first one with a bridge to be non-Yutsis, we get the
second one by choosing X as 〈V (W1)∪ V (W2)〉 and analogously for the other
structures in that figure. Table 1 in [7] shows that the vast majority of small
non-Yutsis graphs are non-Yutsis because they contain a bridge. Lemma 5
implies that a large number of 2-connected and even 3-connected non-Yutsis
graphs are non-Yutsis because of a subgraph with a bridge and the rest of the
graph not being sufficiently highly connected to repair this deficit.

Remark 7 A multigraph G = (V, E) can be detected by Lemma 2 as being
non-Yutsis if and only if it can be detected by Lemma 5 with an induced non-
Yutsis subgraph X that can be divided into two disjoint cyclic subgraphs with
a single edge between them.

6



PROOF.

First assume a cyclic decomposition W = {W1, . . . , Wk−1, Wk} of G is given
such that GW has at most 2k − 3 edges. Because GW is connected, there
is a spanning tree with k − 1 edges and because there are at most 2k − 3
edges, there are two vertices of GW , say Wk−1 and Wk, which are joined by
exactly one edge. Now choose X = 〈V (Wk−1) ∪ V (Wk)〉. Obviously X is non-
Yutsis due to a bridge joining two cyclic parts. Looking at the decomposition
W ′ = {W1, . . . , Wk−2, X}, the contraction graph GW ′ has k′ = k − 1 vertices
and exactly one edge less than GW , so at most 2k−4 = 2k′−2 edges, fulfilling
the requirements of Corollary 6 and therefore of Lemma 5.

Now assume that Lemma 5 demonstrates non-Yutsisness with a decomposition
W = {W1, . . . , Wk−1, Wk = X} such that V (X) = V (W ′

k) ∪ V (W ′

k+1), where
W ′

k and W ′

k+1 are disjoint cyclic subgraphs and there is a single cross-edge e
between W ′

k and W ′

k+1. Let W ′ = {W1, . . . , Wk−1, W
′

k, W
′

k+1}. We will show
that Lemma 2 demonstrates non-Yutsisness with decomposition W ′. For, if
not, consider two connected edge-disjoint spanning subgraphs T1, T2 in GW ′.
At least one of them, say T1, does not use e, so it contains a path from W ′

k

to W ′

k+1 that avoids e. This means that T1, T2, with e contracted, provide
connected edge-disjoint spanning subgraphs in GW , with T1 having a cycle
through X. This contradicts our assumption that Lemma 5 applies.

If Lemma 5 can be applied to show non-Yutsisness, then Corollary 6 can not
necessarily be applied with a non-trivial partition. However, such exceptions
are covered by Corollary 3:

Remark 8 If Lemma 5 can be applied to show non-Yutsisness of a multigraph
G with X an induced subgraph of G, X 6= G, then there is a non-trivial
decomposition of G with which Corollary 3 or Corollary 6 can be applied to
show non-Yutsisness.

PROOF.

Assume a decomposition W = {W1, . . . , Wk−1, Wk = X} with k > 1 given so
that GW has no two connected edge-disjoint spanning subgraphs with at least
one of them having a cycle through the non-Yutsis part X, but Corollary 3
cannot be applied.

Remove an arbitrary edge e from GW incident with X. If GW −e had two edge-
disjoint spanning trees, then, together with e, one of them would form a cycle
in GW . So GW −e does not have two edge-disjoint spanning trees and therefore
there is a coarser nontrivial decomposition W ′ = {W ′

1, . . . , W
′

l−1, W
′

l } with less
than 2l − 2 crossing edges. Without loss of generality X ⊂ W ′

l . Reinserting e
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gives rise to a decomposition of G with at most 2l− 2 crossing edges to which
Corollary 6 can be applied, unless W ′

l is Yutsis.

So assume that W ′

l is Yutsis. Because W ′ is a coarser decomposition than
W , for every S ∈ W we have S ∩ W ′

l = ∅ or S ⊆ W ′

l . Without loss of
generality assume that those S with an empty intersection come first, so for
some m ∈ N, W ′′ = {W1, . . . , Wm, W ′

l } is a cyclic decomposition of G, which
by assumption leads to two edge-disjoint spanning trees in GW ′′. Now look at
the decomposition W̄ = {Wm+1, . . . , Wk = X} of W ′

l . Because W ′

l is Yutsis,
this must give rise to two edge disjoint spanning subgraphs of (W ′

l )W̄ one of
which has a cycle through X. But together with the two edge-disjoint spanning
trees in GW ′′ these give two edge disjoint spanning subgraphs of GW one of
which has a cycle through X, a contradiction.

Another sufficient criterion for a regular multigraph to be non-Yutsis can be
obtained by relaxing the conditions for the subgraph X but strengthening
them for the remaining Wi:

Lemma 9

(i) Let G = (V, E) be an r-regular multigraph, X ⊂ G an induced subgraph
that is not strongly Yutsis. If there exists a decomposition {W1, . . . , Wk, X}
of G such that, for 1 ≤ i ≤ k, Wi is cyclic, and |E(Wi, Wi)| = |E(Wi, X)| =
2, then G is not Yutsis.

(ii) If a 2-connected r-regular non-Yutsis graph G has a 2-edge-cut K, then
at least one of the components of G−K is not strongly Yutsis. Thus (i) can
be applied to demonstrate the non-Yutsisness in this case.

PROOF.

(i): Assume that G is Yutsis with a defining tree pair (B, R). By Remark 1,
there must be two vertices with degree r − 1 in each of the Wi and they must
belong to different trees. By counting outgoing edges it can be easily seen that
for each Wi there must be equally many vertices in Wi ∩ B and Wi ∩ R, so
there must also be equally many vertices in X ∩ B and X ∩ R.

Due to B, R being defining trees, X ∩ B and X ∩ R are also induced and
they are connected, because there can be no path between two vertices in X
through any of the Wi that uses just edges of one colour (because the outgoing
edges have different colours).

So X ∩ B and X ∩ R are defining trees of equal size for X, in contradiction
to X not being strongly Yutsis.
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Fig. 4. The smallest non-Yutsis graph for which Lemmas 2 and 5 are not
applicable.

(ii): Suppose that a 2-edge-cut K = {e1, e2} is given and both components
{C1, C2} of G−K are strongly Yutsis. Let B, R be trees that form a strongly
Yutsis decomposition of C1. Counting the number w of white edges leaving
B we get (with DB the number of edges of K incident with vertices of B):
w = r|B| − 2(|B|−1) − DB = (r−2)|B| + 2 − DB and analogously for the
red tree R: w = (r−2)|R| + 2 − DR. Since |B| = |R| and DB + DR = 2, this
implies that DB = DR = 1. Of course the same can be done for C2, so in both
parts the endpoints of the cut belong to different trees and therefore the two
strongly Yutsis decompositions of the parts can be extended to form a Yutsis
decomposition of G, a contradiction.

Useful applications of this lemma occur in cases where X is pretty small and
has a simple structure, so that it is easy to show that it is not strongly Yutsis.
So, in contrast to part (ii) of Lemma 9, in general the decomposition will
have much more than just two parts. The smallest simple cubic graph where
Lemmas 2 and 5 cannot be applied is given in Figure 4. With X the graph
induced by its centre vertex together with its neighbours, Lemma 9 proves
that this graph is non-Yutsis.

Lemma 9 can also be used for the construction of cubic non-Yutsis graphs:
Define a tree T = (V, E) to be edge central if it contains an edge e so that
T − e has two components of equal size. A tree with at least two vertices is
strongly Yutsis if and only if it is edge-central. Now take a tree that is not
edge-central and has maximum degree 3 and an even number n of vertices.
Furthermore take (n+2)/2 simple cubic graphs, split an edge in each of them
and iteratively connect the two half-edges to vertices of the tree that still have
a degree less than 3. The result is a simple cubic non-Yutsis graph. The graph
in Figure 4 can be constructed this way by taking the graph K1,3 as the tree
and the cubic graphs as disjoint copies of K4.
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Constructive Results

We will use Lemma 2 to define what we call a blow-up construction. This
construction can be defined in a more general way, but we will describe it for
the most important case of cubic graphs only, in order to allow simpler proofs.

Let G be a connected cubic multigraph with vertices g1, . . . , gn, and let G1,
. . . , Gn be cubic graphs, with each Gi having a distinguished vertex vi. For
each i, label the neighbours of vi as wi,1, wi,2, wi,3 in any order. Now take
the disjoint union H of the graphs G1, . . . , Gn with the vertices v1, . . . , vn re-
moved. For each edge {gi, gj} of G, add an edge of the form {wi,k, wj,l} to H ,
in such a way that the final graph H is cubic. We denote such a graph by
B(G, G1, . . . , Gn) and say that {gi, gj} corresponds to {wi,k, wj,l}. Note that
G is the contraction graph of B(G, G1, . . . , Gn) associated with the decompo-
sition W = {G1−v1, . . . , Gn−vn}.

Remark 10 Given 3-edge-connected cubic multigraphs G, G1, . . . , Gn.

(i) The girth of B(G, G1, . . . , Gn) is at least as large as the minimum of the
girths of G1, . . . , Gn.

(ii) If all the graphs Gi are cyclically 4-edge-connected then B(G, G1, . . . , Gn)
is 3-connected. Moreover, the non-trivial 3-edge-cuts of B(G, G1, . . . , Gn)
are precisely the sets of edges which correspond to the 3-edge-cuts of G,
trivial or not.

(iii) If |V (G)| ≥ 6 and G1−v1, . . . , Gn−vn are cyclic, then B(G, G1, . . . , Gn)
is non-Yutsis.

PROOF.

(i): Cycles that do not use newly inserted edges are already present in one of
the Gi while cycles C using new edges must use two edges leaving each Gi−vi

that contain vertices of C. But the path between the endpoints of these edges
in Gi together with two edges leading to vi form a cycle in Gi that is at least
as short as C.

(ii): Let C be a minimal non-trivial edge-cut of B(G, G1, . . . , Gn). Since
B(G, G1, . . . , Gn) is cubic, the minimality implies that C consists of at most 3
mutually non-adjacent edges. The structure of B(G, G1, . . . , Gn) implies either
that G−C is disconnected (so C is a cut of G), or that one of the subgraphs
Gi − vi − C is disconnected. In the latter case we must have that |C| = 3
and C ⊂ E(Gi − vi), since a cyclically 4-edge-connected cubic graph cannot
be disconnected by deleting a vertex and two non-adjacent edges. Moreover,
each component of Gi−vi−C contains one of the vertices wi,k since otherwise
it would be a component of Gi − C (violating the cyclic 4-edge-connectivity
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of Gi). This, together with the fact that G − gi is connected, implies that
B(G, G1, . . . , Gn) − C is connected, contradicting that C is a cut.

Finally, the edges corresponding to a 3-edge-cut of G form a non-trival 3-edge-
cut of B(G, G1, . . . , Gn).

(iii): A cubic multigraph G with n ≥ 6 vertices has 3n/2 < 2n − 2 edges.
Therefore Corollary 3 shows that B(G, G1, . . . , Gn) is non-Yutsis due to the
cyclic decomposition {(G1−v1), . . . , (Gn−vn)}.

The fact that K3,3 does not have nontrivial 3-edge-cuts gives us:

Theorem 11 For every g ≥ 3, there exist cubic 3-connected non-Yutsis graphs
with girth at least g. In fact the graphs can even be constructed in a way that
they contain only 6 nontrivial 3-cuts.

PROOF.

This follows from Remark 10 applied with G = K3,3 and G1, . . . , G6 arbitrary
cubic graphs with girth and cyclic connectivity g. Such cubic graphs exist due
to results by Wormald, Nedela and Skoviera, see [8] and [9].

For cubic polyhedra, that is, planar cubic 3-connected graphs, every possible
girth can also be achieved by a non-Yutsis graph.

Theorem 12 For every g ∈ {3, 4, 5} there exist cubic non-Yutsis polyhedra
with girth at least g. In fact the graphs can even be constructed in a way that
they contain only 7 nontrivial 3-cuts.

PROOF.

In this case we can choose the planar cubic graph with 6 vertices (the trigonal
prism) as G and the tetrahedron, the cube or the dodecahedron as the Gi. We
only have to make sure that the new edges are chosen in such a way that the
new graph is still planar.

4 A fast heuristic for bridgeless cubic non-Yutsis graphs

Deciding whether a given cubic graph is Yutsis is an NP-complete problem [7].
In [7] we developed a fast randomized heuristic algorithm able to recognize
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simple cubic Yutsis graphs by finding a Yutsis decomposition with some prob-
ability. By repeated applications (which we will call “runs”) of the heuristic,
the probability that a Yutsis graph is recognised as Yutsis is improved. Each
run requires time O(n2) for general cubic graphs and O(n) for plane graphs.

This heuristic recognized more than 99.9% of the small Yutsis cubic graphs
(up to 30 vertices) in less than 10 runs, and all of the tested large random cubic
Yutsis graphs in very few runs on average. For 300,000 vertices the average
number of runs required to find a decomposition was 1.16.

Except in trivial cases, the heuristic in [7] cannot certify that a graph is non-
Yutsis. This is the deficiency which we aim to correct in the present paper. Of
course non-Yutsis graphs with bridges can be recognized in linear time, but
no polynomial time method was known to recognize a significant fraction of
the cubic 2-connected non-Yutsis graphs.

The concept of a cyclic decomposition used in the previous section was just a
means of guaranteeing that the subgraph induced by each part of the compo-
sition must contain vertices of both trees of any Yutsis decomposition. Since
the algorithm we will describe includes other means of making this guarantee,
we adopt the following definition.

Definition 13 During the execution of the algorithm, a subgraph of a cubic
graph is called validated if it has been determined to contain vertices from
both parts of every Yutsis decomposition of the cubic graph (if such exist).
Subgraphs which are not validated may or may not have this property.

We will also say that an edge-cut C of a cubic graph G is validated if all the
components of G − C are validated.

Initially all cyclic subgraphs are implicitly validated, on account of Remark 1(2).
The rationale for validation is that Corollary 3 is true in greater generality,
with the same proof:

Lemma 14 Given a multigraph G = (V, E). If there is a decomposition W =
{W1, . . . , Wk} of G into validated subgraphs so that the contraction graph GW

contains less than 2k − 2 edges, then G is not Yutsis.

The principal idea of the algorithm is as described in the following pseudocode
for the function test which is initially applied to the cubic graph being tested.
The algorithm constructs decompositions by dividing the graph into validated
parts until Lemma 14 can be applied.

There are two global variables components and edges that keep track of the
number of parts and cross-edges for the current decomposition.
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Global variable initialization:
components = 1
edges = 0

Function test(C : connected graph)

a: If edges < 2 × components − 2, return non-Yutsis.
b: If C has no validated 1- 2- or 3-edge cut that splits the graph into two

connected components, return undecided.
c: Choose a random smallest validated 1- 2- or 3-edge cut K that splits C into

two connected components and let C1, C2 be the two validated connected
components of C − K.

d: Increase components by one and edges by the number of edges in K.
e: Run test(C1). If the result is non-Yutsis return non-Yutsis.
f: Run test(C2). If the result is non-Yutsis return non-Yutsis.
g: Return undecided.

Due to Lemma 14, whenever the heuristic returns non-Yutsis, this is in fact
the case, because a decomposition has been found that proves it.

A first obvious improvement is to remember the values of the global variables
edges and components before testing C1 and to restore them if the recursive
call increased edges− 2× components; this corresponds to considering C1 as
not split. Similarly for C2.

A much more important improvement in performance of the algorithm can be
achieved by accumulating knowledge about colour relations between vertices.
In many cases we can compute that some edges or vertices must have the
same colour in any possible Yutsis decomposition. Clearly, colour relations
between edges can be expressed by colour relations between their endvertices.
We can express these local colour relations by using a family ai, a−i, i ∈ N

of variables to label the vertices. The possible values for the variables are B
which stands for blue tree and R for red tree. The relation between ai and a−i

is that {ai, a−i} = {R, B}, so ai 6= a−i, but we never know which variable
is R and which is B. All vertices marked ai must be in the same tree and
all vertices marked a−i must be in the other tree. Colour relations which are
disjoint from each other are expressed by variables with a different index.
On the other hand, colour relations may be found to overlap, in which case
they either contradict each other (proving that the graph is not Yutsis) or are
compatible and can be merged into a single colour relation.

Colour relations give us an additional criterion for validating a subgraph,
namely that it contains vertices labelled both ai and a−i for some i. The
algorithm develops the colour relations using the following observations.

Lemma 15 Suppose that procedure test is being applied to a subgraph C, and
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let K be the validated edge cut chosen by test.

(i) If edges = 2 × components − 2, then
(a) if K is a 2-edge-cut, then the two edges in K are in different defining

trees for every Yutsis partition;
(b) if K is a bridge for which one component of C − K is validated and

the other not, then all vertices in the non-validated component of C − K
and the endpoints of the bridge belong to the same tree for every Yutsis
partition.

(ii) If edges = 2 × components − 1 and K is a bridge, then K is in one of
the trees for every pair of defining trees.

PROOF. Edge counting arguments give in (i) that the contraction graph
cannot have two edge-disjoint connected spanning subgraphs so that one has
a cycle through any of the components (especially not through C). So for
every defining tree pair (B, R), B ∩ C and R ∩ C must be connected. In case
(a) each tree must contain vertices from both components of C − K, which
gives the result. In case (b) there must be a path with vertices from just one
tree inside C from the non-validated component to the validated one. So the
whole bridge must belong to this tree and also all vertices in the non-validated
component due to the connectedness of the other tree.

Note that in case (i,b), the bridge is not used to refine the decomposition, but
only to derive colour relations. If a validated bridge is found under the same
conditions, the algorithm will stop and return non-Yutsis.

In case (ii) one connected spanning subgraph of the contraction graph can have
a cycle through C, but not both of them, so the bridge must be contained in
one of the trees for every defining tree pair.

We use this result as follows. Whenever (i,a) is applicable, we mark the two
endpoints of one of the edges ai and of the other a−i with a new value of i.
In case (i,b) is applicable we mark the endpoints of the bridge and the ver-
tices inside the non-validated component ai. In case of (ii) we mark both the
endpoints of the bridge ai. As mentioned above, the labelling may cause a con-
tradiction between two colour relations, or may lead to compatible overlapping
colour relations being merged together.

In Figure 5 we give an example of how the algorithm works. The example
chosen is the graph from Figure 4. The graph in the figure cannot be proved to
be non-Yutsis using Lemma 2. In fact it is not difficult to show that all graphs
that can be constructed by the method described after Lemma 9, using trees
that are not edge central, can be detected.
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It should be noted that whether or not a graph is detected can depend on the
(random) order in which the cuts are chosen. An example of an order that
leads to the detection of non-Yutsisness and another order that does not, is
given in Figure 6.

An important observation is that the computed colour relations are intrinsic
properties of the graph that hold regardless of the sequence of cuts that led
to finding them. This means that we can keep the labels between successive
runs of the algorithm on the same graph, so later runs can take advantage of
the knowledge developed by earlier inconclusive runs.

Furthermore it happens during the labelling process that the two ends of an
edge e are labelled aj and a−j for the same j. This means that in no possible
Yutsis decomposition of G, the edge e can belong to one of the trees. So if
G−e has no Yutsis decomposition, G also has none. In fact we can even require
strong Yutsis decompositions because the initial graph is 3-regular. So after
each run we remove such edges and start the next run on the smaller graph,
which is likely to have new small edge-cuts, thus enlarging the probability of
finding new colour relations and/or a validated decomposition proving non-
Yutsisness. Removing such edges during a run would allow an earlier detection
of labelling possibilities but would result in a more difficult and error sensitive
implementation, so we did not choose that option.

Having removed these edges, some easy checks can be performed on the graphs.
For each label x, let Vx be the set of vertices labelled x and assume without
losing generality that x represents B. Then G is non-Yutsis if any one of the
following cases occurs:

(1) 〈Vx〉 is cyclic.
(2) G − Vx has two validated components: this would mean that the red

vertices induce a disconnected subgraph.
(3) G−Vx has a validated component C, with |C| ≤ |V |/2: this would imply

that R must be completely contained in C together with at least one
vertex of B. This is only possible if the graph is not strongly Yutsis and
thus non-Yutsis because we started with a cubic graph.

(4) G − Vx contains a component C, with |C| < |V |/2 but |C ∪ Vx| > |V |/2:
because both trees are connected, C must either be completely blue or
completely red which always implies that the graph is not strongly Yutsis
and thus non-Yutsis.

These tests detected some graphs that were otherwise not detected, but the
number of such graphs was very small relative to the number detected by the
main routines.

The labelling routine is not only important in increasing the number of recog-
nizable graphs, it also decreases the number of runs necessary to prove a graph
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non-Yutsis. For 24 vertices we ran the algorithm on all bridgeless non-Yutsis
graphs 1 and applied the heuristic up to 800 times. The final version of the
algorithm using labels detected more than 99.989% of the non-Yutsis graphs
with an average of 1.0016 runs for the graphs that were detected. Without la-
belling only 97.42% of the graphs were detected and on average 1.36 runs were
necessary. For further results on the performance of the algorithm, see Table
1 and Table 2. There are additional techniques that can improve the perfor-
mance still further, but because the amount of improvement is very small we
will not describe them. The numbers in the tables were computed by programs
that implement the methods we have described.

Our implementation was intended as a proof of concept and not as realising an
asymptotically optimal algorithm. It uses straightforward methods to detect
validated cuts and has a theoretical upper bound of O(n5) for the running time.
It nevertheless ran very quickly even on large graphs. The reason is that, for
all the large graphs tested (unlike for the complete lists of small graphs), no
3-cuts and only a small number of 2-cuts plus one final 1-cut were required in
order to establish that the graphs were not Yutsis. For 150 vertices, 95% of
the 2-connected non-Yutsis graphs were detected after removing a single 2-cut
(so the contraction graph was a triangle) and no more than four 2-cuts were
ever used. For 250 vertices this improved further to 97% being detected after
removing a single 2-cut and at most three 2-cuts were required.

For planar graphs combining the duality between hamiltonian triangulations
and Yutsis polyhedra observed by Jaeger [4] and results about the asymptotic
ratio of hamiltonian triangulations by Richmond, Robinson and Wormald
[10,11] proves that asymptotically all cubic polyhedra are non-Yutsis, the
computational results suggest that for all cubic graphs the ratio of Yutsis
graphs quickly converges towards 1. This made it difficult to find many ran-
dom non-Yutsis graphs for large vertex numbers. Already for 250 vertices the
ratio was only 0.0015% and among them 99.4% had a bridge, so that out of
27,499,965,781 randomly generated connected cubic graphs only 2,381 were 2-
connected and non-Yutsis. For more than 250 vertices these statistics become
even worse, so it presently appears very difficult to test our heuristic properly
for such sizes.

The programs were once implemented in C and once in C++ and all the re-
sults given were checked independently by both programs. In fact it was even
checked whether the set of non-detectable graphs was the same after a suf-
ficiently large number of iterations. Furthermore we tested the programs by
checking whether no Yutsis graphs with up to 26 vertices were erroneously

1 We determined the non-Yutsis graphs by an exhaustive search method with in-
tensive pruning described in [7], which is much slower on non-Yutsis graphs than
the heuristic described here.

16



a1
a−1

a−1

a−1a−1

a1

a1

a1
a−1

a1 a−1

a1
a−1

a−1

a−1a−1

a1

K
a1

1

K 2 K 3

=
contradiction

K K
a1

1

K 2

1

Fig. 5. An illustration of the algorithm

number of non-Yutsis with bridge ratio of 2-conn. ratio of 2-conn.

vertices graphs (ratio of non-Yutsis graphs n-Y graphs rec.

non-Yutsis recognized after 1 after at most 800 applic.

graphs) application and avg. number of applic.

10 1 1 (100%)

12 5 4 (80.0%) 100% 100%, 1

14 34 29 (85.3%) 100% 100%, 1

16 224 186 (83.0%) 100% 100%, 1

18 1746 1435 (82.2%) 100% 100%, 1

20 15444 12671 (82.0%) >99.96% 100%, 1.0004

22 159751 131820 (82.5%) >99.92% >99.99%, 1.0012

24 1900079 1590900 (83.7%) >99.90% >99.98%, 1.0016

26 25698855 21940512 (85.4%) >99.85% >99.98%, 1.0028

28 389715827 339723835 (87.1%) >99.82% >99.97%, 1.0037

30 6549111460 5821548438 (88.9%) >99.79% >99.97%, 1.0045

Table 1
The ratios of small non-Yutsis graphs recognized by one and by up to 800 appli-

cations of the heuristic with a reset of the labels after every 50 applications and a
reinsertion of the deleted edges after 250 iterations. The tests were run on complete
lists of cubic graphs generated by minibaum; see [12].

number of number of non-Yutsis with bridge ratio of 2-conn ratio of 2-conn.

vertices graphs tested graphs (ratio of non-Yutsis graphs n-Y graphs rec.

non-Yutsis graphs) recognized after 1 after at most 800 applic.

application and avg. number of applic.

50 27499003875 13877865 (0.05%) 13310579 (96%) >99.95% >99.99%, <1,0013

100 27499776389 2862811 (0.01%) 2817068 (98.4%) >99.99% 100%, <1,0001

150 27499903748 1203722(0.004%) 1191899 (99%) 100% 100%, 1

200 27499946319 659402 (0.0024%) 654532 (99.3%) 100% 100%, 1

250 27499965781 415559 (0.0015%) 413178 (99.4%) 100% 100%, 1

Table 2
The ratios of random large non-Yutsis graphs recognized by one and by up to 800
applications of the heuristic with a reset of the labels after every 50 applications.
The tests were run on lists of random cubic graphs generated with equal probability
for every labelled graph by genrang; see [13].

detected as being non-Yutsis. Because of the large number of graphs to be
tested, for up to 20 vertices the heuristic was applied 50 times and from 22 to
26 vertices only 5 times per graph. For 24 and 26 vertices this last test was
done for only one of the two implementations.
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Fig. 6. An example where one sequence of choices of cuts leads to detecting
non-Yutsisness and the other does not.

5 Conclusions

Although the problem of deciding whether a cubic graph is Yutsis is NP-
complete, fast heuristics exist for recognizing the vast majority of both Yut-
sis [7] and non-Yutsis graphs. The algorithm described in this article together
with the one described in [7] give a heuristic that is practically sure to be able
to give a decisive answer if applied to large random cubic graphs. The key to
the fast heuristic algorithm developed in this article is the application of the
simple Lemma 14 combined with the detection of contradictory label relations
between vertices.

Furthermore the lemmas given can be used to construct simple cubic non-
Yutsis graphs and cubic non-Yutsis graphs with arbitrarily large girth and
to make 3-connected cubic non-Yutsis graphs out of smaller 1- or 2-edge-
connected examples.

All our constructions imply the existence of at least a few nontrivial 1- 2- or
3-edge cuts, so they do not provide counterexamples to Jaeger’s interesting
conjecture. However, we have shown that the conjecture cannot be significantly
strengthened.
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