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Abstract

Pervasive computing environments are complex to in-
teract with due to the dynamic assembly of interaction re-
sources and the need to adapt to sudden changes in the en-
vironment configuration. When the complexity of such an
environment is masked by the underlying computing system,
end-users are often left with limited or no control over their
interactive space. This brings up the need to make users
aware of their surroundings and to provide them with run-
time control over the environment configuration. We present
a semantic meta-layer that encapsulates a model, view and
controller to support the design of context-aware pervasive
applications that can be controlled and evaluated by the
end-users at runtime.

1. Introduction

The devices people carry around and the appliances em-
bedded in their surroundings give rise to a pervasive in-
teractive space that interconnects users, physical resources
and computational entities. The dynamic composition of
such a space poses various challenges to its designers, re-
lated to both the system and the end-user support. How-
ever, we witness pervasive frameworks primarily focus on
either the system support or the user support, leaving a gap
between the design of domain-specific applications and the
end-user interaction with the pervasive infrastructure. Many
pervasive systems serve as middleware frameworks to sim-
plify the development of context-aware applications [4, 1, 5]
while others focus on ambient interaction techniques on a
case-per-case basis [9, 7]. These ad-hoc approaches for as-
sembling interactive spaces suggest the need for runtime
control over the environment setup.

Coutaz introduced the concept of a meta-user interface
(meta-UI) to denote a kind of interactive system that allows

users to control, mould and understand interactive spaces
[2]. However, in current interactive infrastructures system
designers still tend to automate the adaptation of a perva-
sive application to the context of use. A mixed-initiative
approach could avoid confusion of the end-user when adap-
tation strategies are only suggested by the system and not
carried out automatically, instead handing over control to
the end-users to finetune their interaction spaces. Perva-
sive computing middleware should not only target interac-
tion with applications, but also focus on interaction with the
computing system itself, denoted as meta-interaction. From
a user’s point of view, a pervasive computing system can be
considered as an interactive application that allows to com-
municate with the environment.

In this paper, we present a dynamic meta-layer that in-
tegrates system and user support for context-aware perva-
sive applications. This layer is designed according to the
Model-View-Controller (MVC) pattern: the model captures
the execution context of the environment (section 3); the
view presents a meta-UI constructed from information in
the model (section 5); the controller processes user and sys-
tem actions that might invoke changes in the model which
are reflected in the view (section 4). This meta-layer is
heavily inspired by ontologies which are the driving force
behind our context-aware infrastructure. We illustrate how
ontologies help to provide runtime control over pervasive
applications by reducing the complexity to discover, ob-
serve, couple and manipulate the resources in a pervasive
world.

2. Related work

Grimm. et al. identify three requirements system sup-
port for pervasive systems must meet: embrace contextual
change, encourage ad-hoc compositions and recognize shar-
ing as the default [4]. These requirements are also relevant
at the meta-level, i.e. beyond the domain-dependent ser-
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vices that support human activities. Applications need to
adapt to a changing context, but should leave the option to
address the new situation to the end-user. Besides, manual
control should be provided to dynamically assemble phys-
ical resources and software services in the user’s vicinity.
This is for example illustrated in Huddle [9] where appli-
ances are connected using a content flow diagram supplied
by the user. Furthermore, as users collaborate, they should
be able to share information. We support collaboration at
the task-level: a task is a resource that can be shared by
multiple entities.

In [7] Hellenschmidt et al. propose ad-hoc device ensem-
bles that carry out execution strategies spontaneously and
behave like single devices the user can interact with. Our
meta-layer also supports the allocation of device ensembles
to enable pervasive applications, though these are not self-
organizing by default: the user is involved in the assembly
of the ensemble. Previous research on mixed-initiative user
interfaces suggests agent entities that ask users about their
goals and needs instead of guessing these [8].

We use ontologies to describe the context of use; an ap-
proach that has been researched extensively before. In [10],
[1] and [5] an architecture based on ontologies is proposed
to enable the development of context-aware pervasive appli-
cations. Chen et al. [1] designed a rich ontology for ubiqui-
tous and pervasive applications (SOUPA) that is exploited
in a broker-centric agent architecture to support knowledge
sharing and context reasoning. In [5] context discovery and
knowledge sharing are supported using an ontology-based
context model and an OSGi-based middleware infrastruc-
ture. Opposed to this work, we do not only use ontologies
to capture and query the execution context, but also to pro-
vide runtime control over a pervasive application. Coutaz
showed the importance of providing runtime control over
the user interface configuration by the end-user in [2]. The
complexity of these environments can confuse the end-user
and can benefit from additional tools to query and configure
the user interface at runtime. Related work by Demeure et
al. underlines the importance of using additional semantic
information to increase the plasticity of the user interface at
runtime [3].

3. A distributed context model

Pervasive applications rely on the ability to query, store
and exchange contextual information. Ontologies have
proven to be valuable for describing context and making
context information accessible to software components. As
context information is provided by different computing re-
sources, we need to decide whether the context information
is managed by a central instance or remains distributed over
the environment. When all available context information
is stored in a central datastore, a trade-off has to be made

between the amount of information that is modelled and
the extra overhead caused by contextual change. A knowl-
edge base can provide powerful querying facilities, but also
results in lots of update operations when the environment
context emerges. Resources often produce more context
information than the active pervasive applications actually
consume, rendering the propagation of context inefficient
in a centralized approach. In our approach, we choose for
a distributed model that delivers context on demand while
maintaining a shared view on the environment topology.

Figure 1. The environment model.

As depicted in figure 1, our context model spans a cen-
tral environment repository and a set of heterogeneous com-
puting nodes. The environment repository stores informa-
tion about the structure of resources, captured by OWL DL
ontologies. An upper environment ontology defines a base
structure upon which ontologies for specific domains are
constructed. These domain ontologies are aggregated at
runtime and shared amongst the software components that
depend on their knowledge base. Furthermore, the envi-
ronment repository includes a registry with references to
instances of resources whose execution context resides on
distributed computing nodes. The registry facilitates the
discovery of resources: software entities can interrogate the
meta-information stored in references (e.g. type and loca-
tion of a resource) and use this information to acquire the
full context of the resource.

The separation of structural information and instance
data demands for distributed data management and query
processing across federated devices, which is discussed in
the next sections.

3.1. Resource management

Devices that enter a pervasive computing environment
can serve multiple purposes: some are used as interaction
device while others are better suited to visualize informa-
tion. A device’s specific role is dynamically assigned by an
application after the device is integrated in the environment
as a heterogeneous computing node that offers a platform
to publish resources (e.g. the device itself, the services that
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run on the device, etc). A resource is identified by a URI
and published as a data object on a computing node where
it manages its own state. A resource can for instance store
its context in a chip, main memory, a database on the in-
ternet, etc. It is important to note that a resource’s context
is not continuously replicated in a semantic datastore, but
serialized on demand into a semantic representation. This
ensures its state can be queried against an ontology, regard-
less of where and how it is stored internally. Additionally,
software entities can subscribe to sensors associated with a
resource to get notified of specific context changes that oc-
cur in the resource. These sensors and the data they produce
are also described in an ontology so that interested entities
know how to consume the information. The combination of
pull (query for context changes) and push (propagate con-
text changes through sensors) allows us to develop respon-
sive context-aware applications.

Published resources are advertised with a reference in
the registry that represents the resource during its lifetime.
To avoid the registry becoming polluted with deprecated
references, e.g. because a service fails or when a de-
vice and its local resources leave the environment with-
out proper announcement, resources are regularly probed
to verify whether they are still available.

3.2. Query answering over distributed data

Federated query solutions such as DARQ [11] and
KAONp2p [6] rely on distributed query processing and
aggregation of query results. These solutions scale well
in environments where large server-side datastores are ad-
dressed, but they are costly to integrate in a dynamic hetero-
geneous environment. Embedded computing nodes are con-
strained in processing power and hence are less suited for
query processing. Since the context of individual resources
is expected to be limited in size, the benefit of distributed
query processing will be minimal after all. Besides, when
computing nodes are part of the environment configuration,
their relations with other resources still require query an-
swering over distributed instances. In our approach, queries
are directed to a query manager layered on top of the envi-
ronment repository which processes a query in two steps:

1. Data aggregation: a temporary model is prepared
prior to query evaluation. This model shares domain
knowledge from the environment repository and in-
cludes context information fetched from distributed
nodes. A dedicated query that is derived from the fi-
nal query selects references to resources whose context
should be resolved and included in the model.

2. Query evaluation: with all relevant context data ag-
gregated in a temporary model the query can be evalu-
ated against this model.

Q : SELECT ?dWHERE{?d :usedBy <:PersonX>}
Qr : SELECT ?r WHERE{?r :refType ?t . ?t rfds:subClassOf :Device}

Listing 1. SPARQL queries to interrogate dis-
tributed resources in the context model.

Listing 1 shows a query Q that asks for the devices that are
used by ‘PersonX’. Since the registry only contains refer-
ences to resources, the environment repository does not in-
clude the required context information (i.e. instance data)
to evaluate the query. By analyzing the domain of the
‘usedBy’ predicate in the ontology, information can be de-
rived to determine what type of resources need to be deref-
erenced and included in the virtual model in order to guar-
antee the final query results are complete. As the domain of
the ‘usedBy’ relation defines device resources, references
will be selected using a query Qr (listing 1) which returns
a reference to all device resources in the environment. The
query Qr can also be specified manually to avoid the rea-
soning step over the final query and thus increase the exe-
cution speed.

4. Tasks: controllers of a pervasive application

Users think in terms of the goals they want to achieve in
the world surrounding them [7, 8]. The environment should
be sensitive to the user’s goals and adapt its configuration to
support these goals. We consider a task as a concept that can
be understood by either the user and the system. A task is
approached from both a system perspective and an end-user
perspective.

A system task orchestrates a number of resources in the
environment. The component that defines a system task
consists of glue that combines the functionality of various
services with the interaction capabilities of different devices
in order to reach a user’s goal. The ensemble of devices al-
located by a system task forms an heterogeneous interaction
space on which user tasks, presented by a user interface, can
be deployed. A system task process acts as the controller of
a pervasive application: it reconfigures an application when
changes in the environment setup could improve or com-
promise the application’s workflow. The task process moni-
tors the environment to detect the presence of new resources
suited for its goal and deals with resources involved in the
task that leave the environment, e.g. by redistributing a user
task from a lost device to another suited device.

A user task corresponds to an activity for which a user
interface is available, e.g. playing music, navigating slides,
etc. It provides an extra abstraction over a user interface to
stimulate context-awareness: a suitable representation for a
user task is selected at runtime based on the context of use,
e.g. a graphical user interface or a speech user interface.
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4.1. From user to user task

The available resources support different user activities
which are either presented by a user or a system task. Fig-
ure 2 illustrates user interaction with either of these tasks.
Interaction with a user task relies on the initiative of the

Figure 2. The user directly interacts with a re-
source through a user task or participates in
a pervasive application through a user task
that is assigned after meta-interaction with
the application’s system task.

user: a user interface is migrated to the user’s interaction
device and interaction is carried out. This enables the user
to directly observe and manipulate the state of a resource.
Interaction with a system task is more complicated because
it relies on a mixed-initiative of user and system. A system
task has its own dynamic execution context, composed by
the ensemble of resources involved in the task process. In
order to involve the user in the configuration of the ensem-
ble and to decide on distribution strategies of user tasks in
the interaction space, we propose a set of operators to inter-
act with a system task, outlined in table 1.

start A new system task process is initiated.
stop A system task process is terminated.

setup A user interface to configure the system task
is migrated to the end-user’s device.

suspend
The full context of the application, managed
by its system task process, is serialized into a
task profile and the application is suspended.

resume A previously stored application context is re-
stored from a task profile.

share A system task is shared and can be joined.
invite A user is invited to join a collaborative task.
join A user participates in an application.

leave A user stops interacting with an application.

Table 1. Meta-operators help to configure per-
vasive applications.

A system task corresponds to a process that coordinates

a pervasive application. Such a process is respectively initi-
ated and terminated using start and stop operators. A setup
operator maps on an application-dependent user task that
allows the end-user to configure the application context.
Hence the user is in control of her interaction space whilst
the task process can still develop and propose adaptation
strategies when change occurs. We believe the balance be-
tween user and system initiative should be evaluated on a
per application basis.

Tasks can be dispersed over time when users decide to
temporarily interrupt their activities. In order to guarantee
the continuity of the task, its execution context should be
suspended and resumed (using suspend and resume opera-
tors). We use task profiles as a medium to store and traverse
an application’s execution context. If an application is sus-
pended by its initiator, its related user tasks are dismissed
and allocated resources are released. When resuming the
task (i.e. feeding the task profile to a new task process), the
environment context might have changed and the services
and interaction devices that were previously allocated might
not be available anymore. In this case, the system task will
need to reconfigure itself and adapt to the new environment
context, for instance by suggesting new interaction possi-
bilities to the end-user(s).

The operators share, invite, join and leave target collabo-
rative interactions at the task-level. The meta-layer acts as a
platform to setup collaborations between users independent
of the application domain. Concrete roles (i.e. user tasks)
are assigned at runtime; joining and leaving a task is consid-
ered as contextual change and is also handled by the system
and/or user.

4.2. From user task to user interface

When a user task is assigned to a device, the bootstrap
software installed on the target device will lookup a suit-
able user interface (UI) in the model to present the task.
The upper environment ontology defines a ‘UserTask’ and
a ‘UI’ concept which are interconnected through a ‘present-
edBy’ relation, as shown in figure 4.2. Since a user task can

be presented by various UIs (SwingUI, WebUI, . . . ), we do
not enforce a single ‘generic’ UI format (e.g. a markup lan-
guage that can be renderered on a wide range of devices),
but rather leave the option to provide different types of UIs
to accommodate a broader range of applications. When
a device chooses to render a UI, it should understand the
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grounding specifics for this type of UI which are also de-
scribed in the ontology. The grounding concept is adopted
from OWL-S, where a grounding dictates how to access a
(Web) service. Likewise, software services are grounded
so they can be accessed remotely. For example, when a UI
is rendered to enable a user task, proxies to interact with
the task’s related services are automatically constructed and
passed to the UI component. For more information on the
technical details of the grounding process, we refer to [12].

5. A view on the environment

Users immersed in a pervasive environment should be-
come aware of the tasks they can execute using the re-
sources present in the environment. Therefore they should
also discover the resources that can be used to accomplish
the task. Moreover, users should be able to manage the
tasks they are involved in, i.e. (re)configure them or switch
between tasks. Pervasive environments also demand for
collaborative interactions between users in order to reach
common goals. Figure 3 presents a meta-UI, layered on the
environment’s context model, that accommodates these re-
quirements. The meta-UI provides a view on the resources

Figure 3. A meta-UI provides a view on the
environment and allows end-users to explore
the available resources and to execute their
supported tasks.

the user can interact with. This view is rendered from in-
formation in the underlying model and can be displayed on
devices carried by the end-user. As a resource can range
from a software service (e.g. weather service) to a physical
resource (e.g. digital fridge), the meta-UI provides uniform
access to various task-supporting entities. The resources
present in the environment are structured into domains that

correspond to the ontologies in which they are defined. For
example, a domain-specific ontology that models a light re-
source along with services to operate a light gives rise to
a ‘Light’ domain that provides access to all available light
resources (see figure 3).

5.1. Location-based view

As the number of resources in a computer-augmented en-
vironment could grow large, it can be hard to navigate to a
specific resource. Besides, some resources will only sup-
port certain tasks when the user is near the resource, e.g.
switching stations on a television device or playing a collab-
orative game on a shared screen. By tracking the location
of the user and the resources present in the environment,
the system can discover the resources in the user’s vicinity
and present those in a personal, location-based view. For
example, when resources are labeled with RFID tags they
can be sensed when approached by the user’s device, trig-
gering the meta-UI to navigate to the resource and present
its supported tasks.

5.2. Task management

While navigating through the meta-UI, the user is pre-
sented with the tasks that are supported by a resource or a
domain in general. These are user tasks or tasks coordinated
by the system that are linked with resources in the model
and that can be accessed through the meta-UI. For example,
a task to operate a light can be attached to a light resource.
When a user task is selected, a user interface is migrated to
the user’s interaction device as outlined in section 4.2. Se-
lecting a system task initiates a new task process to which
the meta-operators introduced in table 1 can be applied. A
task process could for instance coordinate a number of re-
sources in order to support the goal of giving a presentation.
In this case, a specific user task can be to navigate the slides
of the presentation which is assigned after meta-interaction
with the system task (see figure 2).

All tasks being executed are listed in a task manager
component, allowing the end-user to switch between tasks
and manage them at runtime. When a task is suspended, its
context is automatically stored on the requesting interaction
device and the task is marked as idle. Besides, users can
share the system tasks they initiate which can then be joined
by other participants through the meta-UI. When a task is
shared, it is made available to all users in the meta-UI. Users
can also choose to setup a private interaction space by send-
ing an invite to join a task to a number of selected users.
Hence the meta-UI supports collaborative interaction at the
task level.
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6. Conclusions

In this work we address the gap between system and end-
user support for pervasive computing environments. We
have presented an ontology-based distributed environment
model that captures the context of use along with a meta-UI
layered on this model that maintains a view on the avail-
able resources and their related tasks. The meta-UI fulfils
the role of a traditional application menu and task manager
found on single-user workstations, yet reshaped towards a
pervasive environment to provide end-users with runtime
control over the environment configuration. Moreover, we
explained how tasks act as a controller between model and
view and as a mediator between user and user interface. The
model, view and controller are encapsulated in a meta-layer
that enables the development of pervasive context-aware ap-
plications that can be monitored and operated by the end-
users at runtime. The proposed approach was successfully
applied in several practical cases, e.g. a pervasive paint ap-
plication and an arcade game [12].

Directions for future work include support for personal-
ized behaviors and improved window management of mi-
grated user interfaces on heterogeneous devices. Informa-
tion in a user profile could be exploited to personalize the
behavior of a pervasive application and to apply a personal
look and feel to its migrated interfaces. A difficulty we cur-
rently experience is the proper positioning of these UIs on
the screens of the end-user devices. It might be useful to in-
tegrate a layout manager in the meta-UI and/or define meta-
information in the ontology to specify how a UI should be
presented (e.g. fullscreen). Further research is also needed
to find an optimal balance between the initiative of the sys-
tem and the end-user to deal with changes in the environ-
ment configuration, i.e. to minimize the cognitive load of
the user. The meta-UI could learn from the user’s inputs
and become predictive in the future.
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