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Abstract

Longitudinal studies are permeating clinical trials in psychiatry. Addi-
tionally, in the same field, rating scales are frequently used to evaluate the
status of the patients and the efficacy of new therapeutic procedures. There-
fore, it is of utmost importance to study the psychometric properties of these
instruments within a longitudinal framework. In the area of depression, the
Hamilton Depression Rating Scale (HAMD) is regularly used for antidepres-
sant treatment evaluation. However, the use of HAMD has not been exempted
from criticism what has lead to the development of new scales that are ex-
pected to be more sensitive for change, such as the Montgomery-Åsberg De-
pression Rating Scale (MADRS). In general, the reliability of these scales has
been extensively studied by using classical methods for reliability estimation,
developed for specifically designed reliability studies. Unfortunately, the set-
tings customarily considered in these reliability studies are usually far from
the practical conditions in which these scales are applied in clinical trials and
practice. In the present paper we assess the reliability of these instruments in
a more realistic scenario thereby using longitudinal data coming from clinical
studies. Nowadays, newly developed methodology based on an extended con-
cept of reliability, allow us to use longitudinal data for reliability estimation.
This new approach not only enables to avoid bias by offering a better control
of disturbing factors but it also produces more precise estimates by taken ad-
vantage of the large samples sizes available in clinical trials. Further, it offers
practical guidelines for an optimal use of a rating scale in order to achieve a
particular level of reliability. The merits of this new approach are illustrated
by applying it on two clinical trials in depression to assess the reliability of
the three outcome scales, HAMD, MADRS, and the Hamilton Anxiety Rating
scale (HAMA).

Keywords: Clinical trials, Depression, Longitudinal data, Rating scales,

Reliability
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1 Introduction

The Hamilton Rating Scale for Depression (HAMD) was developed in the late 1950s

to assess the effectiveness of the first generations of antidepressants. The scale

quickly became the standard measure of depression severity for the evaluation of

new anti-depressive drugs and is hitherto the most commonly used measure for de-

pression. The original rating form included 21 items, although Hamilton (1960)

indicated that only 17 should contribute to the total scale score because 1 of the

last 4 items represented depressive type rather than depression severity, and three

others did not occur sufficiently frequently. Nine of the 17 items are rated from 0 to

4, whereas 8 items are rated 0 to 2. Concurrently, Hamilton (1959) developed one of

the first rating scales to quantify the severity of anxiety symptomatology (HAMA).

Several conceptual and psychometric problems with the HAMD have been described

in the literature. However, reliability studies have mostly indicated satisfactory re-

sults. Bagby et al (2004) selected 70 studies that examined the psychometric prop-

erties of HAMD and found test-retest reliabilities ranging from 0.81 to 0.98, based

on the Pearson correlation coefficient. An almost identical range of pearson cor-

relations was found for inter-rater reliability. The Montgomery-Åsberg Depression

Rating Scale (MADRS) was designed to address the limitations of the HAMD, and

was supposed to measure contemporary definitions of depression and to be more

sensitive to change (Montgomery and Åsberg 1979). Maier et al (1988) compared

inter-rater reliabilities for the two depression scales based on three different studies.

However no significant differences in the reliabilities of the HAMD and the MADRS

were found in any of them.

It is widely known that reliability is not a fixed property of a rating scale, but is

population dependent instead, with more homogeneous populations leading to lower

reliabilities. This is reflected in wide ranges that are often reported when different
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reliability studies on the same scale are compared. As a result, the reliability of

a rating scale should be checked every time it is applied in a different population.

Besides the heterogeneity of the population, other factors may have their influence

on the reliability of a measurement as well, such as the skills or the training of the

raters.

Several scholars, such as Fleiss (1987) and Lachin (2004), have stressed the fact

that measurement error or low reliability can affect the results found in clinical

trials. Ideally, the reliability of measurements should be checked every time a scale

is going to be used in a clinical study. However, the organization of a supplementary

investigation to assess reliability with additional data collection on top of the actual

clinical trial, may be practically unfeasible.

In recent years clinical trials in psychiatry have been dominated by longitudinal

study designs. Making several evaluations of the same patient at different time

points offers a more complete information about the evolution of the patient and

gives also the opportunity to evaluate the impact of the new therapeutic procedure

on this evolution. Research has clearly shown that longitudinal analytic methods,

including mixed-effects analyses, are well suited in this area (Gueorguieva and Krys-

tal 2004, Mallinckrodt et al 2004, Leon et al 2006, Verbeke and Molenberghs 2000,

Molenberghs and Kenward 2007). From this observation the question arises as to

what extent the repeated measurements in such a trial could be adopted to study

the test-retest reliability.

In the present work we argue that using clinical trial data for the appraisal of

reliability can bring many advantages. However, some methodological challenges

need to be taken into account. In the next section we will expand this idea when

describing in more detail the main objectives of the present work.
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2 Aims of the paper

Two longitudinal drug efficacy trials in depression applied the HAMD as the primary

outcome measure, whereas the HAMA and the MADRS were secondary outcomes.

The clinical results of these studies have been published by Mallinckrodt et al (2003).

This paper however focusses on the reliability of the three outcome scales, and how

this can be estimated based on the clinical trial data. We will give a brief overview

of the specific aims of this work.

Obtaining unbiased reliability estimates for HAMD, MADRS and HAMA

In this paper a new methodology will be used that has important advantages com-

pared to the classical methods. Indeed, classical methods to estimate reliability are

based on strong assumptions. For instance, it is typically assumed that the status

of the patient does not change during the study period. Note that this assumption

would be extremely unrealistic in a clinical trial setting where the the drugs under

study are expected to provoke a change in the patient’s condition. Other strong

assumptions are also necessary within the classical framework and we remit the

reader to DeShon et al (1998) for a more detail account of some of them. When

these assumptions are not met, biased reliability estimates may follow. Using more

advanced methods, many of these assumptions can be relaxed, resulting in unbiased

reliability estimates.

Comparing the reliability of HAMD and MADRS in a longitudinal setting

Since reliability depends on the population being measured as well as on study-

specific aspects, it is important to base oneself on a single study when two different

rating scales are to be compared. This procedure was followed by Maier et al (1988)

to compare the HAMD and the MADRS on inter-rater reliability. However, since

one of the aims of the MADRS is to be more sensitive to change, we perform the



7

comparison of the two scales in a longitudinal setting.

Studying reliability in different clinical populations

The methods used in the paper allow to study reliability based on the clinical out-

come data, implying a large study sample. The advantage of this is twofold: first it

allows us to estimate reliability with a higher level of precision. Second, it permits

to study reliability in different clinical populations. For instance, in the present

work we evaluate reliability in less and more severely depressed patients as well as

between responders and non-responders.

Optimizing the use of the rating scales

In the paper we apply a method that implies a new way of looking at the concept

of reliability. Interestingly, this new methodology shows that the reliability of the

conclusions obtained through the use of a rating scale can depend on the way the

scale is applied. Essentially, it depends on the number of evaluations carried out

with the instrument. The practical implications of this finding are considerable.

For instance, we can calculate the number of measurements necessary to achieve a

minimum level of reliability.

Illustrating the advantages of more advanced analysis methods for relia-

bility

Besides the specific results found for the HAMD, MADRS and HAMA, the paper

illustrates the use of new techniques that can cope with several shortcomings in

classical methods. At the cost of a more complex data analysis, these techniques

could imply saving expenses and an increased precision in future clinical trials.

Remarkably, in spite of its more complicated methodological background this new

approach leads to simple yet meaningful quantifications of reliability. Further, the

results obtained have a clear clinical interpretation what can greatly increase their
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appeal to the experts in the concrete field where they are used.

3 Data and Methods

3.1 Case Study

The case study data come from two clinical trials evaluating the efficacy of two an-

tidepressants. The first study (Study 5 in Mallinckrodt et al 2003) is a randomized

double-blind trial investigating the efficacy of duloxetine in the treatment of major

depressive disorders. The primary endpoint was the HAMD17 total score, whereas

the HAMA (14 items) and the MADRS (10 items) total scores were used as sec-

ondary endpoints. Measurements were taken at baseline and after 1, 2, 4, 6, 8 and 10

weeks. The study contained a total of 354 patients of which 90 were assigned to the

placebo group, 91 received Duloxetine (40 mg/d), 84 received Duloxetine (80 mg/d)

and 89 received Paroxetine (20 mg/d). The design of the second study (Study 6 in

Mallinckrodt et al 2003) is identical to the design of the first one, with 89 patients

assigned to the placebo group, 86 received Duloxetine (40 mg/d), 91 received Du-

loxetine (80 mg/d) and 87 received Paroxetine (20 mg/d). The first three panels of

Figure 1 show the individual patient profiles for the three different scales in trial 1.

3.2 Methodology

In the classical test theory (CTT; Lord and Novick 1968), the outcome of a test for

subjects i = 1, . . . , n is modeled as

Yi = Ti + εi,

where Yi denotes the observed score, Ti is the true score and εi the corresponding

measurement error. Assuming that the measurement errors are mutually uncorre-

lated as well as uncorrelated with the true scores, it follows that the total variability

in the observed data can be decomposed as the variability emanating from the
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differences between the subjects in the population plus the variability induced by

measurement error, i.e., Var(Yi) = Var(Ti) + Var(εi). The reliability of a measuring

instrument is then defined as the ratio of the true score variance to the observed

score variance, i.e., the proportion of the total variance that is not attributed to

measurement error

R =
Var(Ti)

Var(Yi)
= 1 −

Var(εi)

Var(Yi)
. (1)

Essentially, R expresses the extent to which a difference in the observed scores re-

flects a real difference between the subjects or can be explained by just measurement

error. This expression cannot be directly applied since the true score Ti is unob-

served, however, under a strict set of assumptions (1) equals the correlation between

two consecutive measurements. The main limitation of CTT is that it operates

within a very narrow modeling framework which implies that its methods and defi-

nitions, though appealing, are based on very strong assumptions that are unrealistic

in many practical situations. One of the most important attempts to extend relia-

bility theory to more general settings came with the development of Generalizability

theory (G-theory; Cronbach et al 1963, 1972), which is based on analysis-of-variance

models with random effects, and was developed to model the multiple sources of vari-

ation present in a measurement system. Even though G-theory is based on a much

more flexible modeling framework, when applied to longitudinal settings it still relies

on strong and unrealistic assumptions (DeShon et al 1998, Laenen et al 2008). Let

us illustrate this by explicitly stating two of the main assumptions that lie at the

basis of CTT as well as G-theory and that may be problematic in test-retest relia-

bility studies. The first assumption concerns the ‘steady-state’ of the patient, i.e.,

the assumption that the patient’s condition does not evolve over time. The second

assumption is related to the absence of correlated errors. Such a correlation may

emanate, for instance, from intrinsic factors related to the phenomenon under study
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or from extrinsic factors as the presence of a memory-effect of the rater. Violation of

both assumptions will lead to an overestimation of the reliability coefficient (Smith

and Luecht 1992, Bost 1995). Both problems are however related; by increasing the

time period between two measurements one decreases the probability of a memory

effect but the chance that a patient has changed increases, and vice versa. These

issues are very difficult to control within the classical framework, even in a controlled

reliability study.

In contrast, the family of linear mixed models (LMM) is especially suitable for mod-

eling longitudinal measurements without requiring unrealistic assumptions (Laird

and Ware 1982; Verbeke and Molenberghs 2000). This makes them the perfect tool

to extend the concept of reliability to a longitudinal scenario (Vangeneugden et al

2004; Laenen et al 2007, 2008). The LMM can be written as

Yi = Xiβ + Zibi + ε
i
, (2)

where Y i is the vector of repeated observed scores for subject i, for instance, the

different HAMD scores for a subject taken at the six visits. The element Xiβ sum-

marizes the systematic changes. Using this part of the model one can account for

systematic changes over time, the effect of a treatment or therapeutic procedure, the

effect of other important factors as hospital, socioeconomic status, among others.

The second part, Zibi, is called the random effect structure and allows to account

for subject-specific elements that can explain the subject-specific characteristics at

baseline as well as the individualized evolution of the patients over time. For ex-

ample, one can model the fact that patients differ on their general initial HAMD

score even after taking into account the effect of other factors, or one can model the

fact that different patients have different evolutions over time even when they share

common characteristics like treatment, gender or socioeconomic status. Finally, the
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element ε
i
indicates a vector of measurement errors, one for each measurement taken

for patient i.

The above discussion shows that, unlike in CTT and G-theory, the evolution of

the outcome measurements (e.g. HAMD scores) of a patient over time can now

be incorporated into the model, making the steady-state assumption unnecessary

(Vangeneugden et al 2004).

In what follows we assume a balanced study design, meaning that the measurements

are taken at the same time points for all the patients. This does however not mean

that we assume absence of missing data. Actually, one of the advantages of the new

method is its more founded way of handling missing observations. Both, CTT as well

as G-theory, assume that the missing generating mechanism is Missing Completely

at Random (MCAR). On the other hand the new methodology assumes a much

weaker condition: Missing at Random (MAR). The field of missing data is highly

technical and complex. It is not the purpose of the present work to give a deep

account of all the issues involved in the analysis of missing data. Let us just state

that unlike the MCAR, the MAR assumption can be considered reasonable on many

clinical trials and, therefore, our conclusions will usually be valid when missing data

are present (Rubin 1976, Molenberghs and Kenward 2007).

As is obvious from the classical approach, quantifying reliability implies to account

for the different sources of variability in the data. Unfortunately, one can not account

for the variability of a set of longitudinal measurements Yi using a single number

but using a p × p variance-covariance matrix denoted by V , where p denotes the

number of repeated measurements per patient. On the matrix diagonal one finds

the variances of the measurements at the 1 to p time points, the off-diagonal elements

describe the association between measurements at different time points. However,
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in spite of this additional complexity, the variance-covariance matrix V of Yi can be

written similarly to the CTT setting, as:

V = ΣD + Σ (3)

with ΣD the variance-covariance matrix related to the random effects or subject-

specific characteristics and Σ the variance-covariance matrix of the measurement

errors.

The LMM’s ability to distinguish between different sources of variability makes

it especially suitable for estimating reliability. Indeed, from (1) it follows that a

distinction needs to be made between variability coming from the true scores of

the subjects on the one hand, and the error variability, on the other hand. Based

on this idea Laenen et al (2007, 2008) introduced two reliability measures, the so-

called RT and RΛ coefficients. The two measures mainly differ with respect to the

way they use to summarizing the variability captured by the variance-covariance

matrices into a single number, which is the trace (denoted by the symbol tr) for RT

and the determinant (denoted by the symbol ||) for RΛ. The coefficients are defined

as

RT = 1 −
tr(Σ)

tr(V )
(4)

RΛ = 1 − |ΣV −1|. (5)

Both measures take values between zero and one. They both reach the lower bound

zero when the scale contains nothing but measurement error and the upper bound

one when the instrument fully reflects the variability between the subjects. Note

further that both proposals quantify the proportion of the total variability (V ) not

owing to measurement error (Σ), exactly as in the classical definition of reliabil-

ity (1). Actually, when applied in a setting where the assumptions of CTT are met,
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both measures reduce to the classical expression of reliability. Furthermore, when

applied in a setting where G-theory assumptions are met, the two measures reduce

to the index of dependability Φ and can be converted into the coefficient Eρ2, two

G-theory coefficients typically used to quantify reliability (Brennan 2001, Laenen et

al 2008).

However similar, the two measures of reliability have different interpretations, and

thus provide different information. The RT coefficient is, regarding interpretation,

closest to the coefficients based on the classical methods (e.g. Pearson correlation or

intraclass correlation). In a longitudinal context it quantifies the average reliability

over the repeated measurements, however, separate values per time point can also

be obtained. The RΛ coefficient, on the other hand, involves a new way of looking

at reliability in a longitudinal context. This measure expresses the reliability of

the entire sequence of observations. It captures the idea that every new measure-

ment brings additional information about the patients, fully corresponding with the

clinical believe that, the longer a patient is followed, the more reliable will be the

conclusions about this patient. A logical result is then that the value of RΛ increases

with the number of measurements.

3.3 Data Analysis

We will estimate both reliability coefficients, RT and RΛ, for the three scales HAMD,

MADRS, and HAMA, based on the clinical trial data introduced in Section 3.1.

As explained in Section 3.2, the methodology rests upon the estimated variance-

covariance parameters (V̂ and Σ̂), which result from fitting a linear mixed model.

In order to obtain unbiased reliability estimates it is of utmost importance to find

a statistical model that describes the data reasonably well. To this effect, model

building guidelines, as laid out in, for example, Verbeke and Molenberghs (2000,
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Ch. 9) ought to be followed.

For the data at hand an ample model building exercise was carried out. An elaborate

mean model (Xiβ) was adopted, taking time as a categorical variable, and further

including investigator, treatment, and treatment by time interaction. Such a general

mean model minimizes the risk of bias in the estimates of the variance parameters

(Diggle, Liang, and Zeger 1994) and allows to model, for example, quadratic trends

that are typically observed in this type of data. To optimally model the random

effects (bi) and the measurement error (ε
i
), many different potential models were

considered and the data were used to select the best one. The Akaike’s information

criterion (AIC) was applied for selecting the best fitting model and parameter esti-

mation was based on the so-called restricted maximum likelihood method (REML),

a bias-reducing version of maximum likelihood (Verbeke & Molenberghs 2000).

Table 1 summarizes the covariance structure of the final models obtained for the

three scales in each trial. Models selected for the first trial indicate a subject-specific

linear evolution over time whereas the models for the second trial indicate a subject-

specific quadratic evolution over time. Note that these evolutions indicate individual

deviations from the average time evolutions. This obviously illustrates that the clas-

sical steady-state assumption is unrealistic in this scenario. Additionally, all models

indicate the presence of correlated error terms captured by the ‘heterogeneous au-

toregressive’ and ‘banded unstructured’ variance-covariance matrix Σ. This finding

clearly hints on a violation of the classical assumption of uncorrelated errors. Fi-

nally, all but one of the selected models indicate that the variability changes over

time, once again showing a disagreement with the classical assumptions.

The previous analysis manifestly reveals the limitations of the classical methods to

approach the reliability problem in a longitudinal framework. Most of the fundamen-
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Table 1: Selected models for the three scales.

Scale Random effects structure Structure of Σ

Trial 1 HAMD linear slope heterogeneous autoregressive

MADRS linear slope heterogeneous autoregressive

HAMA linear slope banded unstructured

Trial 2 HAMD quadratic slope heterogeneous autoregressive

MADRS quadratic slope heterogeneous autoregressive

HAMA quadratic slope autoregressive

tal assumptions needed in the classical setting are violated in the present studies.

Carrying out the estimation of reliability in this scenario using classical methods like

CTT or G-theory will almost certainly lead to biased estimates. Probably giving an

overoptimistic appraisal of the reliability coefficients.

The lower half of Figure 1 shows the residual patient profiles for the three scales, re-

sulting from the best fitting models in trial 1. These are the observed patient scores

after substraction of the model predictions. If the models successfully capture the

general features of the data generating mechanism, then these graphs should not

show any systematic pattern over time. Clearly, no systematic pattern emerges

from the graphs, indicating that the models capture the most important data fea-

tures reasonably well. Further, Figure 2 plots the observed score values for three

randomly chosen patients in trial 1 together with the scores predicted by the model.

Here again, a reasonable agreement between the models and the data is observed,

reinforcing our confidence in the results of the model building step. Similar results

(not shown) were found for trial 2.

Eventually, we want to point at the fact that incomplete observations are found

for some patients, as can be seen also in Figure 1. However, as indicated before,

the model fitting has a likelihood basis, and therefore the methodology remains
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Table 2: Reliability results for the three scales.

Scale RT CIRT
RΛ CIRΛ

Trial 1 HAMD 0.493 [0.405; 0.581] 0.829 [0.734; 0.895]

MADRS 0.474 [0.378; 0.571] 0.812 [0.704; 0.886]

HAMA 0.612 [0.545; 0.676] 0.955 [0.897; 0.980]

Trial 2 HAMD 0.629 [0.513; 0.731] 0.932 [0.872; 0.966]

MADRS 0.692 [0.603; 0.769] 0.977 [0.957; 0.988]

HAMA 0.675 [0.601; 0.741] 0.964 [0.930; 0.986]

statistically valid if the missing data mechanism is missing at random (Rubin 1976),

in the sense that missingness is allowed to depend on observed data but, given these,

not further on unobserved data.

Once sufficiently adequate models have been selected, reliability can be estimated

using the variance components estimates emanating from these models. SAS macros

to carry out all the necessary computations can be obtained from the authors.

4 Results

Reliability estimates are obtained separately for both clinical trials. The general

results are presented in Table 2, with important details highlighted in Figure 3.

Let us first compare the HAMD and MADRS depression scales. The two graphs at

the top of Figure 3 show the RT values for both scales at each time point. These

graphs illustrate that both scales perform rather poorly at the beginning of the

trials. However, we can see that in both studies, the RT values increase with time.

For trial 1 we observe a gradual increase, whereas in trial 2 the increase is more

abrupt. Arguably, such an increase could have been induced by a learning effect of

the raters, stemming from gaining experience and/or enhanced familiarity with a

patient during follow-up.
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To compare the two scales, it is also useful to look at the general RT values (Table 2)

that give the average reliability over the different time points. First of all, let us

note that moderate values of reliability were obtained for all the scales in both tri-

als. These values are clearly lower than the ones frequently reported in the previous

literature. Many reasons could explain this discrepancy. First, reliability is a pop-

ulation depending concept and therefore, different studies can in principle lead to

different results. Second, the setting studied here significantly differs from the ones

considered in classical reliability studies. Therefore, extrapolating the results ob-

tained in these classical studies to more complex scenarios, like the one encountered

here, can be misleading. This, once again, emphasizes the importance of studying

reliability within a longitudinal setting and using longitudinal data.

Interestingly, regarding the point estimates in the first trial, HAMD performs slightly

better than MADRS, whereas in trial 2 the opposite behavior is observed. Irre-

spective of these small differences in the point estimates, Table 2 reveals that the

confidence intervals for RT of the two scales largely overlap in both trials. Clearly,

based on the present data, we encounter no evidence that MADRS is a more reliable

scale than HAMD. This finding is somehow unexpected, taking into account that

MADRS was created to address some of the limitations of HAMD.

Further, note that the reliability estimates for the two scales are clearly higher in

the second trial than in the first one. Reliability is known to be a population-

dependent concept, and will generally be estimated higher in more heterogenous

groups. However, it is highly unlikely that this can explain the observed difference

between the two trials since both studies were developed from one protocol and they

were identical in every way. Other factors might have had an influence as well, such

as training, experience, and quality of the raters. Also on this matter, equality of

the two trials was aimed for. At a single start up meeting, all sites in both studies
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were present to be trained on the protocol and to qualify raters. Investigative sites

were randomly selected to be part of either trial. But there is no guarantee that

this random assignment truly equalized quality of sites and raters.

Even though it is difficult to identify the reasons for the differences in reliability

between the two trials, it is very interesting to relate this finding to the clinical

outcomes of the studies. Both studies tested 3 arms of what are now proven to

be effective doses of anti-depressants. Trial 1, however, had worse separation from

placebo than trial 2 (Mallinckrodt et al 2003). The finding that the reliability of

the measurements was also lower in the first trial might explain why the clinical

effects were stronger in the second trial. This finding illustrates that measurement

error or low reliability can have an effect on the results found in clinical studies, as

emphasized by Fleiss (1987) and Lachin (2004).

Let us now turn to the second reliability measure, RΛ, quantifying the reliability

of the accumulated observations. When we measure the patients once, we obtain a

certain amount of information. By measuring a second time, we can only increase the

amount of information on the patient even if it comes contaminated by measurement

error. This fact is nicely captured by the RΛ. The lower half of Figure 3 shows the

cumulative RΛ values, over the different time points. At the first time point, RΛ

expresses the reliability of the first measurement, which is equal to RT at the first

time point. At the second time point, RΛ captures the reliability of the information

contained in the first and the second measurement combined, and so on. The values

shown in Table 2 present the results for the entire study, expressing the situation at

the last time point. RΛ illustrates that, whenever a scale has low reliability, reliable

results can still be obtained when the scale is applied repeatedly over time and the

repeated outcomes are considered together. Of course, the lower the reliability of

the scale at each time point, the more measurements will be needed to obtain a
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pre-specified degree of cumulative reliability. The practical implications of these

findings are considerable. Most of the rating scales used in psychiatry, and in many

other areas, have a strong subjective component. It is therefore expectable that

only moderate values of reliability are going to be achieved for several of these

instruments. However, the RΛ illustrates that reliable results can be obtained even

with quite “imperfect” instruments as far as a sufficient number of assessment are

carried out. It also gives us the possibility of estimating the number of observations

needed to achieve a pre-specified level of reliability with a given scale in a given

population. For instance, Figure 3 shows that, in the first trial, a value of 0.80 was

reached only at the last measurement. In the second trial, 5 and 4 measurements,

respectively, were needed to reach the same level of reliability for both HAMD and

MADRS.

While in the first trial, the cumulative evolutions of RΛ are very similar for both

depression scales, a better performance is observed for MADRS compared to HAMD

at the beginning of the second trial. The relatively high reliability for MADRS at

the first time point gives this scale a head start. Towards the end of the trial, HAMD

has caught up with MADRS, leading to a small difference in the final RΛ values, as

shown in Table 2.

To find out whether, in the second trial, the RΛs for MADRS and HAMD differ

significantly at the beginning of the study, we plot the 95% confidence bands for the

cumulative RΛ values for both scales, as shown in Figure 4. The figure shows wide

confidence intervals for the earlier time points, while they get narrower towards the

end of the study, when more information becomes available. The intervals for the

two scales overlap at any of the time points, thereby failing to show evidence of

MADRS performing better than HAMD.
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Let us now look at the results for HAMA. This particular scale measures anxiety and

should therefore not be compared directly to the two depression scales. Table 2 shows

somewhat better reliabilities in the second trial, which is in agreement with earlier

findings. However, the differences are not too large. The average reliabilities, RT ,

are 0.61 and 0.68, respectively, indicating a decent, however not excellent, reliability.

The results for trial 1 clearly illustrate that, even when the RT values are stable over

time, the total information, as expressed by RΛ, still increases. When a level of 0.80

is aimed at, four measurements are needed in case of the first trial and three in case

of the second trial.

We further analyze the differences in reliability estimates between different clinical

populations. A dichotomization of the CGI Severity divided the group of patients

into a group of less severely depressed patients (from “not ill” to “moderate”) and

more severely depressed patients (from “marked” to “extremely severe”), based on

measurements taken two weeks before baseline. Table 3 shows that the group of less

severely depressed patients gives rise to lower reliability estimates in all the cases,

when compared to more severely depressed patients. This may hint on a better ca-

pacity of the scale to differentiate between severely depressed patients than between

less severely depressed patients. However, when we look at the 95% confidence in-

tervals, we see that for any of the comparisons there is partial overlap between the

two intervals. The results thus should be interpreted with extreme care. Interest-

ing though, is to know that in both trials almost two thirds of the patients suffer

from mild depression at the beginning of the study. This might partly explain the

relatively low reliability estimates that were obtained in the two trials.

Further, we distinguish between non-responders and responders. A patient is con-

sidered as a responder in case of 50% change from baseline at the endpoint visit.

Note that the latter is based on HAMD measurements. Table 4 shows that higher
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Table 3: RT estimates and 95% confidence intervals for less and more severely
depressed patients.

Scale less severely depressed more severely depressed

Trial 1 HAMD 0.453 [0.356; 0.554] 0.579 [0.466; 0.686]

MADRS 0.448 [0.347; 0.555] 0.535 [0.410; 0.656]

HAMA 0.602 [0.526; 0.674] 0.632 [0.541; 0.715]

Trial 2 HAMD 0.599 [0.469; 0.716] 0.674 [0.552; 0.776]

MADRS 0.667 [0.568; 0.753] 0.735 [0.638; 0.813]

HAMA 0.649 [0.564; 0.726] 0.707 [0.621; 0.780]

Table 4: RT estimates and 95% confidence intervals for non-responders and respon-
ders.

Scale non-responders responders

Trial 1 HAMD 0.523 [0.387; 0.656] 0.492 [0.366; 0.619]

MADRS 0.528 [0.398; 0.653] 0.452 [0.324; 0.586]

HAMA 0.625 [0.535; 0.707] 0.608 [0.522; 0.687]

Trial 2 HAMD 0.765 [0.669; 0.839] 0.497 [0.355; 0.639]

MADRS 0.827 [0.758; 0.880] 0.573 [0.455; 0.683]

HAMA 0.713 [0.614; 0.795] 0.655 [0.568; 0.733]

reliability estimates are found for non-responders compared to responders. In two

of the six comparisons the 95% confidence intervals are completely separated, indi-

cating significant differences. This is true for the HAMD and MADRS in the second

trial. These results are consistent with the ones previously found. Indeed, here

again the scales seem to be more capable to differentiate between subjects in the

population defined by the “problematic” cases, i.e., patient with no response.
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5 Discussion

We will recapitulate the key messages of the paper based on the aims that were

outlined in Section 2.

Obtaining unbiased reliability estimates for HAMD, MADRS and HAMA

Despite numerous psychometric flaws of the HAMD (Zimmerman et al 2005), the

inter-rater and test-retest reliabilities reported in the literature are mostly good.

Bagby et al (2004) analyzed 70 studies and reported a range between 0.81 and 0.98

for both reliability types, based on Pearson correlation coefficients. In the present

analysis, we obtained average reliabilities, based on the RT coefficient, around 0.50

and 0.60 respectively, for two different studies. The fact that these numbers are

lower than the reliabilities mentioned in the literature can have different reasons.

As indicated before, reliability is a population-dependent concept and tends to be

lower in more homogeneous populations. The studies on which the present estimates

are based were conducted in a patient segment suffering from a major depressive

disorder, likely reducing variability between the patients. It is not always clear on

which populations the reliability estimates in the literature are based. A second

plausible reason for the observed difference might be due to the analysis method.

Studies mentioned in the literature mostly use the Pearson correlation coefficient as

reliability measure. If however, in a test-retest design, patients have evolved during

the time period between the two measurements, or, if a memory-effect is into play,

the correlation coefficient overestimates the reliability. The methods used in this

paper allow to correct for such features and provide unbiased reliability estimates

for the HAMD. The same is, of course, true for the MADRS and the HAMA.

Optimizing the use of the rating scales

In this paper we applied two different measures for reliability. The RT coefficient



23

is most closely related to the classical measures. Values obtained for the RT can

easily be compared to values obtained by classical methods, such as the Pearson or

intraclass correlation. The second coefficient, RΛ, involves a relatively new way of

thinking about reliability in the context of repeated measurements. This coefficient

captures the reliability of the entire sequence of measurements. Increasing the num-

ber of time points then leads to an increase of the total information and therefore an

increase of reliability. This implies that, even if the only available rating scale has

a rather low reliability in a single administration, the same scale can still provide

reliable information when it is applied repeatedly. Applying this concept to the case

study data, we found that between 3 and 4 measurements were needed to achieve a

reliability of 80% for all the scales in the second clinical trial. In the first trial more

measurements were needed to obtain the same level of reliability. However, at the

end of both trials, i.e. after 6 measurements, all scales arrived above this level of

reliability. This lets us conclude that a scheme of 6 evaluations per patient should

be enough to obtain reliable results with any of these instruments in the population

of patients suffering from a major depressive disorder.

Comparing the reliability of HAMD and MADRS in a longitudinal setting

The many psychometric problems reported on the HAMD (Zimmerman et al 2005,

Bagby et al 2004) has led to the concern that flawed outcome measures might hide

treatment effects of the newer generation of antidepressant medications. This, in

turn, has led to the conclusion that the HAMD should be replaced by an alternative

scale that solves these problems. One scale proposed to this end has been the

MADRS. Because in both clinical trials the two rating scales were applied, we had

the chance of comparing these scales with respect to their reliabilities. We did not

find any evidence, however, of one scale outperforming the other. Our study thus

confirms the findings of Maier et al (1988) on inter-rater reliabilities.
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Studying reliability in different clinical populations

The data indicate that the HAMD as well as MADRS are more reliable in a pop-

ulation of non-responders than in a population of responders. For the HAMA the

results are less obvious; in the first trial reliability estimates are practically identi-

cal. Furthermore the data suggest that all three scales are somewhat more reliable

in a group of more severely depressed patients compared to less severely depressed

patients. However, this conclusion needs to be taken with care.

Illustrating the advantages of more advanced analysis methods for relia-

bility

The methods for reliability estimation used in this paper are clearly much more

complex than the usual methods based on classical test theory. Nevertheless, they

imply important advantages. In the first point we have mentioned the advantages of

the linear mixed models to obtain unbiased reliability estimates in situations where

the classical approach might lead to an overestimation. A direct consequence of the

fact that linear mixed models can adopt and therefore correct for several disturbing

factors is that reliability estimates can be derived from the longitudinal clinical trial

data. This in contrast to the usual practice of organizing an additional reliability

study on a subgroup of the sample to evaluate a scale’s reliability in a new popu-

lation. Apart from this cost-saving option, this approach will also lead to a gain in

precision. When the clinical data can be used for reliability estimation, it follows

that all the patients are involved in the reliability analysis. Reliability estimates

will logically be estimated with a much larger precision, compared to estimations

based on subsamples of 20 or 30 patients. Finally, this new methodology allows to

avoid dangerous extrapolations from studies with a different design and based on

restrictive assumptions.

Furthermore the RΛ coefficient might be very useful in evaluating past trials as well
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as in planning new trials. The power to detect treatment effects increases with

sample size as well as with reliability (Fleiss 1986). We have seen that the number

of repeated measurements per patient increases the reliability of the accumulated

measurements within a trial. When estimates of RΛ are known for a scale, a trade

off can be made between the sample size on one hand and the number of repeated

measurements on the other hand.
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Figure 1: Individual patient profiles for three rating scales: observed (top) and resid-
ual (bottom) profiles.
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Figure 2: Individual observed profiles (dots) and fitted profile (solid line) for three
randomly selected patients.
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