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Abstract

In this paper we consider the conditional Koziol-Green model of Braekers and Veraverbeke (2007) in which they

generalized the Koziol-Green model of Veraverbeke and Cadarso Suarez (2000) by assuming that the association

between a censoring time and a time until an event is described by a known Archimedean copula function. They

got in this way, an informative censoring model with two different types of informative censoring. Braekers and

Veraverbeke (2007) derived in this model a nonparametric Koziol-Green estimator for the conditional distribution

function of the time until an event, for which they showed the uniform consistency and the asymptotic normality.

In this paper we extend their results and prove the weak convergence of the process associated to this estimator.

Furthermore we show that the conditional Koziol-Green estimator is asymptotically more efficient in this model

than the general copula-graphic estimator of Braekers and Veraverbeke (2005). As last result, we construct

an asymptotic confidence band for the conditional Koziol-Green estimator. Through a simulation study, we

investigate the small sample properties of this asymptotic confidence band. Afterwards we apply this estimator

and its confidence band on a practical data set.

Keywords: censored data, dependent censoring, nonparametric statistics, informative censoring

1 Introduction

In a fixed design regression model, we have at the design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, nonnegative

responses Y1, . . . , Yn which describe the time until an event, a lifetime or a failure time. These responses

are independent random variables and the distribution function of the response Yi at xi will be denoted

by Fxi
(t) = P (Yi ≤ t). In many clinical or industrial trials, the responses Y1, . . . , Yn are subject to

random right censoring. For each response, there is a censoring variable Ci with conditional distribution

function Gxi
(t) = P (Ci ≤ t). The observed random variables at a design point xi are the minimum Zi

and the indicator δi (i = 1, . . . , n), with

Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci).

For a given fixed design value x ∈ [0, 1], we write Fx, Gx,Hx for the distribution function of respectively

the response Yx, the censoring variable Cx and the observed variable Zx = min(Yx, Cx) at x. Also we

will write δx = I(Yx ≤ Cx). Note that for the design variables xi, we write Yi, Ci, Zi, Fi, . . . instead of

Yxi
, Cxi

, Zxi
, Fxi

, . . ..
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To estimate uniquely the conditional distribution function Fx from the observed data, we have to make

an assumption about the dependence between the Yi and Ci for each i (Tsiatis (1975)). It is very

common in survival analysis to assume independence between these random variables (conditional on

the covariate). However we see that in some practical situations this assumption clearly does not hold.

For example in industrial testing, it may occur that some piece of equipment is taken away (is censored)

because it shows some sign of future failure. In medicine, we are often interested in the time until dying

from a disease. This time may be related to the time until dying from another disease. Therefore we

have to model the association between the time until an event and the censoring time. In general, we

assume that the joint conditional survival function is given by

Sx(t1, t2) = P (Yx > t1, Cx > t2) = Cx(F̄x(t1), Ḡx(t2))

where Cx is a known copula function, depending on x and F̄x(t1) = P (Yx > t1) and Ḡx(t2) = P (Cx > t2)

are the survival functions of Yx and Cx.

Zheng and Klein (1995) introduced this assumption in the case without covariates and derived a copula-

graphic estimator for the distribution function of the time until an event. Rivest and Wells (2001) later

improved this estimator by considering only the class of Archimedean copulas and found a closed form

for the copula-graphic estimator. Braekers and Veraverbeke (2005) generalized this estimator to a fixed

design regression.

Therefore we assume, as in Braekers and Veraverbeke (2005), that at a fixed design value x ∈ [0, 1], the

joint survival function is given by

Sx(t1, t2) = ϕ[−1]
x (ϕx(F̄x(t1)) + ϕx(Ḡx(t2))) (1)

where, for each x, ϕx : [0, 1] → [0,+∞] is a known continuous, convex, strictly decreasing function with

ϕx(1) = 0. ϕ
[−1]
x is the pseudo-inverse of ϕx, as defined in Nelsen (1999) and given by

ϕ[−1]
x (s) =

{

ϕ−1
x (s) 0 ≤ s ≤ ϕx(0)

0 ϕx(0) ≤ s ≤ +∞
.

From (1), we note that the conditional distribution function of the observed variable Zx is given by

1 − Hx(t) = H̄x(t) = Sx(t, t) = ϕ[−1]
x (ϕx(F̄x(t)) + ϕx(Ḡx(t))). (2)

In the design of some clinical trials, we see another type of informative censoring in which the distribution

function of the time until an event and the censoring time are related. Koziol and Green (1976) considered

a sub-model for the Kaplan-Meier estimator where they assumed that the survival function of the

censoring variable is a power of the survival function of the time until event. This sub-model has the

advantage that the estimator for the distribution function of the time until event has a simpler form.

Veraverbeke and Cadarso Suárez (2000) extended this model to the fixed design regression situation.

In this paper we will further investigate the Koziol-Green type model given by Braekers and Veraverbeke

(2007) in which they extended the conditional Koziol-Green model of Veraverbeke and Cadarso Suárez

(2000) to the case where the time until an event Yx depends on the censoring variable Cx. They used the

fact that the classical Koziol-Green model is characterized by the conditional independence of Zx and

δx. Translating the latter property into model (1) leads to the following assumption: for each covariate

value x ∈ [0, 1],

Ḡx(t) = ϕ[−1]
x (βxϕx(F̄x(t))), ∀t > 0 (3)
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where βx > 0 is a constant depending only on x. We show this derivation in a few lines. Considering

Lemma 1 of Braekers and Veraverbeke (2005), we have in model (1) that

F̄x(t) = ϕ[−1]
x



−

t
∫

0

ϕ′
x(H̄x(s))dHu

x (s)



 and Ḡx(t) = ϕ[−1]
x



−

t
∫

0

ϕ′
x(H̄x(s))dH0

x(s)





where Hu
x (t) = P (Zx ≤ t, δx = 1) and H0

x(t) = P (Zx ≤ t, δx = 0). Using the conditional independence

of Zx and δx, we get that

F̄x(t) = ϕ[−1]
x

(

P (δx = 1)ϕx(H̄x(t))
)

and Ḡx(t) = ϕ[−1]
x

(

P (δx = 0)ϕx(H̄x(t))
)

.

After eliminating ϕx(H̄(t)) from both equations and introducing βx = P (δx=1)
P (δx=0) = px1

px0

, we find the

assumption (3).

When we consider both types of informative censoring, we rewrite (2) as

H̄x(t) = ϕ[−1]
x

(

ϕx(F̄x(t)) + βxϕx(F̄x(t))
)

= ϕ[−1]
x

(

(βx + 1)ϕx(F̄x(t))
)

. (4)

The remaining part of this paper is as follows. In Section 2, we give the conditional Koziol-Green

estimator as it was developed by Braekers and Veraverbeke (2007). After some regularity conditions

in Section 3, we prove the weak convergence of this estimator in Section 4. In Section 5, we derive

some results for the conditional Koziol-Green estimator such as the efficiency of this estimator over

the general copula-graphic estimator of Braekers and Veraverbeke (2005). Furthermore we develop in

the same section an asymptotic confidence band for this estimator. We investigate the finite sample

properties of this confidence band through a simulation study in Section 6. In Section 7, we apply the

conditional Koziol-Green estimator and its asymptotic confidence band on a real data set on the duration

of the hospital stay after acute myocardial infarction.

2 The conditional Koziol-Green model

In this section, we describe the conditional Koziol-Green estimator of Braekers and Veraverbeke (2007).

For this estimator, it was assumed that the time until an event Yx was on the one hand associated with

the censoring time Cx via the joint conditional survival function, as given in (1). On the other hand

the conditional distribution function of the censoring time was assumed to be related to the conditional

distribution of the time until an event via the relation (3).

At a fixed design point x ∈ ]0, 1[, Braekers and Veraverbeke (2007) found an estimator Fxh for the

conditional distribution function Fx by rewriting the equation (4) as

F̄x(t) = ϕ[−1]
x

(

γxϕx(H̄x(t))
)

(5)

with

γx =
1

βx + 1
= P (δx = 1)

and where the last equality results from the definition of βx above.
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To find an estimator for the conditional distribution function Fx(t), Braekers and Veraverbeke (2007)

replaced in (5) the different quantities Hx(t) and γx by estimators. As in other work with non-parametric

regression (Veraverbeke and Cadarso Suárez (2000), Braekers and Veraverbeke (2005)), we consider esti-

mators which involve a sequence of smoothing weights {wni(x, hn)}, depending on a positive bandwidth

sequence {hn}, tending to zero, as n → +∞. In the present situation of fixed design points, it is

customary to take the Gasser-Müller type weights, given by,

wni(x, hn) =
1

cn(x, hn)

xi
∫

xi−1

1

hn
K

(

x − z

hn

)

dz, i = 1, . . . , n

cn(x, hn) =

xn
∫

0

1

hn
K

(

x − z

hn

)

dz. (6)

Here x0 = 0 and K is a known probability density function (kernel).

For the conditional distribution function Hx(t), we take a Stone type estimator (Stone (1977)) given by

Hxh(t) =
n
∑

i=1

wni(x, hn)I(Zi ≤ t).

A similar estimator is taken for the exponent γx and is given by

γxh =

n
∑

i=1

wni(x, hn)I(δi = 1).

Combining these estimators in (5), we find an estimator for the conditional distribution function Fx(t)

by

F̄xh(t) = ϕ[−1]
x

(

γxhϕx(H̄xh(t))
)

.

Note that the estimator F̄xh(t) has a simpler structure than the copula-graphic estimator of Braekers

and Veraverbeke (2005) for the more general fixed design regression model under dependent censoring.

Furthermore we see that the estimators for γx and Hx(t) only depend on the δi and on the Zi respectively.

This result follows from assumption (3), which is equivalent to the assumption that Zx and δx are

conditionally independent.

If we take ϕx(t) = − log(t), we see that this estimator equals that of Veraverbeke and Cadarso Suárez

(2000) as we expected.

3 Regularity conditions

For the design points x1, . . . , xn we write ∆n = min
1≤i≤n

(xi − xi−1) and ∆̄n = max
1≤i≤n

(xi − xi−1). The

notations ‖K‖∞ = sup
u∈IR

K(u), ‖K‖2
2 =

+∞
∫

−∞

K2(u)du, µK
1 =

+∞
∫

−∞

uK(u)du, µK
2 =

+∞
∫

−∞

u2K(u)du will be

used for the kernel K.

We use the following assumptions on the design and on the kernel.
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(C1) xn → 1, ∆̄n = O(n−1), ∆̄n − ∆n = o(n−1).

(C2) K is a probability density function with finite support [−M,M ] for some M > 0, µK
1 = 0 and K

is Lipschitz of order 1.

The assumption (C1) expresses that the chosen design points are asymptotically equidistant points,

selected uniformly over the whole interval [0, 1]. This implies that, for cn(x, hn) defined in (6), cn(x, hn) =

1 for n sufficiently large. Therefore we may take cn(x, hn) = 1 in all proofs of the asymptotic results.

If L is any distribution, then TL denotes the right endpoint of its support (TL = inf{t : L(t) = L(+∞)}).

We note that THx
= TFx

= TGx
. To obtain our results, we need some smoothness conditions. For a

fixed 0 < T < TFx
,

(C3) Ḟx(t) = ∂
∂xFx(t), F̈x(t) = ∂2

∂x2 Fx(t) exist and are continuous in (x, t) ∈ [0, 1] × [0, T ]

(C4) β̇x = ∂
∂xβx, β̈x = ∂2

∂x2 βx exist and are continuous in x ∈ [0, 1]

The generator ϕx(v) of the Archimedean copula needs to satisfy the following properties.

(C5) ϕ′
x(v) = ∂

∂v ϕx(v) and ϕ′′
x(v) = ∂2

∂v2 ϕx(v) are Lipschitz in the x-direction with a bounded Lipschitz

constant, and ϕ′′′
x (v) = ∂3

∂v3 ϕx(v) ≤ 0 exists and is continuous in (x, v) ∈ [0, 1]×]0, 1].

These assumptions and the fact that ϕx is a generator for an Archimedean copula, give that ϕ′
x(v) is

monotone increasing with ϕ′
x(v) < 0 and ϕ′′

x(v) is monotone decreasing with ϕ′′
x(v) ≥ 0.

4 Weak convergence result

In this section, we prove the weak convergence of the process (nhn)1/2(Fxh(·)−Fx(·)) associated with the

Koziol-Green estimator Fxh(t) for the conditional distribution function Fx(t). This extends the work of

Braekers and Veraverbeke (2007) in which they showed the asymptotic normality in a fixed time point.

As in the work of Veraverbeke and Cadarso Suárez (2000) and Braekers and Veraverbeke (2005, 2007),

we first need to derive an almost sure representation for the conditional Koziol-Green estimator Fxh(t).

This result has already been found by Braekers and Veraverbeke (2007). For convenience we formulate

their result as a lemma to clarify the following part of the proof.

Lemma 1. Assume the conditions (C1) - (C5), hn → 0, log n
nhn

→ 0,
nh5

n

log n = O(1), T < TFx
. Then, for

t < TFx
,

Fxh(t) − Fx(t) =

n
∑

i=1

wni(x, hn)gtx(Zi, δi) + Rn(x, t)

where

gtx(Zi, δi) = −
ϕx(H̄x(t))

ϕ′
x(F̄x(t))

(I(δi = 1) − γx) +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

(I(Zi ≤ t) − Hx(t))

and as n → +∞,

sup
0≤t≤T

|Rn(x, t)| = O((nhn)−1 log n) a.s.
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From this asymptotic representation, we show the weak convergence of (nhn)1/2(Fxh(·) − Fx(·)) in the

space l∞[0, T ] of all bounded functions on [0, T ] equipped with the supremum-norm. Therefore we prove

the weak convergence of the main term in this representation which is a weighted sum of independent

functions of the observed quantities. We postpone the proof of the following theorem to the Appendix.

Theorem 1. Assume the conditions (C1) -(C5), T < TFx
,

(a) if nh5
n → 0 and (nhn)−1/2 log n → 0, then as n → ∞,

(nhn)1/2(Fxh(·) − Fx(·)) → W (·|x) in l∞[0, T ]

(b) If hn = Cn−1/5 for some C > 0, then, as n → ∞,

(nhn)1/2(Fxh(·) − Fx(·)) → W̃ (·|x) in l∞[0, T ]

where W (·|x) and W̃ (·|x) are Gaussian processes with covariance function given by

Γx(t, s) = ||K||22

{

ϕx(H̄x(t))ϕx(H̄x(s))

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))
γx(1 − γx)

+
γ2

xϕ′
x(H̄x(t))ϕ′

x(H̄x(s))

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))
(Hx(s ∧ t) − Hx(t)Hx(s))

}

. (7)

W (·|x) has a zero mean function while for W̃ (·|x) this is given by

btx =
1

2
µK

2 C5/2

{

−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

}

.

5 Some applications

The weak convergence result formulated in the previous section, can be used as a starting point to derive

some practical applications. In this section, we first show that the conditional Koziol-Green estimator

is asymptotically more efficient in the Koziol-Green model under dependent censoring than the copula-

graphic estimator of Braekers and Veraverbeke (2005). A second application is an asymptotic confidence

band for the conditional Koziol-Green estimator.

5.1 Efficiency

At any fixed time point t, we note that the asymptotic variance of the copula-graphic estimator of

Braekers and Veraverbeke (2005) has, after some lengthy but straightforward calculations the following

expression when the Koziol-Green model is satisfied.

δx(t, t) =
||K||22

ϕ′
x(F̄x(t))2







γx(1 − γx)

t
∫

0

ϕ′
x(H̄x(s))2dHx(s) + γ2

xϕ′
x(H̄x(t))2Hx(t)(1 − Hx(t))







To show the efficiency of the conditional Koziol-Green estimator over the copula-graphic estimator, we

compare both asymptotic variances and get that

Γx(t, t)

δx(t, t)
=

γx(1 − γx)ϕx(H̄x(t))2 + γ2
xϕ′

x(H̄x(t))2Hx(t)(1 − Hx(t))

γx(1 − γx)
t
∫

0

ϕ′
x(H̄x(s))2dHx(s) + γ2

xϕ′
x(H̄x(t))2Hx(t)(1 − Hx(t))
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Figure 1: The upperbound for the ratio of variances, given for the independent (a.), Fréchet - Hoeffding

lower bound (b.) and Clayton family copula (θ = 1) (c.). Each curve presents a different percentage of

uncensored observations (bottom till top: px1 = 0.01, 0.2, 0.4, 0.6, 0.8).

=

γx(1 − γx)

(

1
∫

H̄x(t)

|ϕ′
x(w)|dw

)2

+ γ2
xϕ′

x(H̄x(t))2Hx(t)(1 − Hx(t))

γx(1 − γx)
t
∫

0

ϕ′
x(H̄x(s))2dHx(s) + γ2

xϕ′
x(H̄x(t))2Hx(t)(1 − Hx(t))

≤

γx(1 − γx)Hx(t)
t
∫

0

ϕ′
x(H̄x(s))2dHx(s) + γ2

xϕ′
x(H̄x(t))2Hx(t)(1 − Hx(t))

γx(1 − γx)
t
∫

0

ϕ′
x(H̄x(s))2dHx(s) + γ2

xϕ′
x(H̄x(t))2Hx(t)(1 − Hx(t))

≤ 1

where the inequality follows from the Cauchy-Schwartz inequality. We note that the upper bound goes

to 1 if γx → 1. This was expected since the estimators in both models become a conditional empirical

distribution function when there is no censoring. Furthermore we see that this upper bound is 1 when

t → +∞ and is Hx(t) when γx → 0. In Figure 1 we present the upper bound for three Archimedean

copulas, the independent copula (ϕx = − log(t)), the Fréchet-Hoeffding lower bound (ϕx(t) = 1− t) and

the Clayton family copula with θ = 1 (ϕx(t) = 1
t −1). We use in this picture the conditional distribution

function Hx(t) to transform the time-axis to [0, 1].

For the independent copula, we see in Figure 1 straight lines for each level of censoring. The Fréchet-
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Hoeffding lower bound which expresses a discordant association gives convex lines while the concordant

Clayton copula shows concave lines. In each plot, we have that the lines converge to 1 at the right end

and all curves are lying between the diagonal and the horizontal line at 1.

5.2 An asymptotic confidence band

From the weak convergence result in Theorem 1, we derive an asymptotic confidence band for the

conditional Koziol-Green estimator Fxh(t). Like in the work of Hollander and Peña (1989), we introduce

an extra parameter λ such that we have a family of bands and which gives some flexibility in the

construction of the confidence band. For example, by selecting certain values for λ we can find a more

narrow asymptotic confidence band when the sample size is small or moderate, or a more conservative

band when we are interested in a time t near the end of the support. The proof of this result is given in

the Appendix.

Theorem 2. Assume the conditions (C1) - (C5) with T < TFx
, nh5

n → 0, (nhn)−1/2 log n → 0 and

λ > 0. For each 0 < α < 1, let cαxh be such that, as n → +∞,

P

(

sup
0≤t≤T

∣

∣

∣

∣

B1(Lxh(t)) +
λ1/2ϕx(H̄xh(t))

γxhϕ′
x(H̄xh(t))(H̄xh(t) + λHxh(t))

B2(γxh)

∣

∣

∣

∣

≤ cαxh

)

→ 1 − α, (8)

Then, as n → +∞,

P (Fxh(t) − cαxhDxh(t) ≤ Fx(t) ≤ Fxh(t) + cαxhDxh(t), for all 0 ≤ t ≤ T ) → 1 − α

where B1(s) and B2(s) are independent Brownian bridges and

Lxh(t) =
λHxh(t)

H̄xh(t) + λHxh(t)

Dxh(t) = (nhnλ)−1/2‖K‖2
γxhϕ′

x(H̄xh(t))(H̄xh(t) + λHxh(t))

ϕ′
x(F̄xh(t))

.

6 A simulation study

In this section we perform a simulation study to investigate the finite sample coverage probability of the

asymptotic confidence band of Theorem 2. The covariance structure of the limiting process W (.|x) in

Theorem 1 precludes the possibility to readily find values of cαxh to satisfy (8). As a consequence, exact

confidence bands for Fx(t) cannot be obtained. To circumvent this problem, we develop in this section,

an asymptotically conservative confidence band. Therefore we start with the fact that the left-hand side

of (8) satisfies the inequality

P

(

sup
0≤t≤T

|B1(Lxh(t))| + sup
0≤t≤T

∣

∣

∣

∣

λ1/2ϕx(H̄xh(t))

γxhϕ′
x(H̄xh(t))(H̄xh(t) + λHxh(t))

B2(γxh)

∣

∣

∣

∣

≤ cαxh

)

≤ P

(

sup
0≤t≤T

∣

∣

∣

∣

B1(Lxh(t)) +
λ1/2ϕx(H̄xh(t))

γxhϕ′
x(H̄xh(t))(H̄xh(t) + λHxh(t))

B2(γxh)

∣

∣

∣

∣

≤ cαxh

)

(9)

Using the independence of B1(Lxh(t)) and B2(γxh), we convolve and rewrite the left-hand side of (9) as

∫ cαxh

0

P

(

sup
0≤t≤T

|B1(Lxh(t))| ≤ cαxh − y

)

dP

(

sup
0≤t≤T

∣

∣

∣

∣

∣

λ1/2ϕ
(

H̄xh(t)
)

γxhϕ′
(

H̄xh(t)
) (

H̄xh(t) + λHxh(t)
)B2(γxh)

∣

∣

∣

∣

∣

≤ y

)
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=

∫ cαxh

0

Qdxh(T ) (cαxh − y) dP

(

|N | ≤
y

Mxh (γxh, Lxh(T ), λ)

)

(10)

where dxh(T ) = Lxh(T )
1−Lxh(T ) , Mxh (γxh, Lxh(T ), λ) = (λβxh)

(1/2)
sup

0≤t≤T

∣

∣

∣

∣

ϕ(H̄xh(t))(1−Lxh(t,λ))

ϕx′(Hxh(t))H̄xh(t)

∣

∣

∣

∣

, βxh = 1−γxh

γxh

and N denotes a standard normal random variable.

Mimicking Hollander and Peña (1989), we define a distribution function

Q⋆ (cαx, γx, Lx(T ), λ) =

√

2

π

1

Mx (cαx, γx, Lx(T ), λ)
×

∫ cαx

0

Qdx(T ) (cαx − y) exp

(

−
1

2

(

y

Mx (γx, Lx(T ), λ)

)2
)

dy

where dx(T ) = Lx(T )
1−Lx(T ) and Qdx(T ) is defined as

Qdx(T )(cx) = 1 − 2Φ

(

−cx
1 + dx(T )

dx(T )1/2

)

+ 2

∞
∑

k=1

(−1)k exp
(

−2c2
xk2
)

×

{

Φ

(

cx
dx(T ) + 2k + 1

dx(T )1/2

)

− Φ

(

−cx
dx(T ) − 2k + 1

dx(T )1/2

)}

with Φ(.) being the standard normal cumulative distribution function. By choosing cαx to satisfy

Q⋆ (cαx, γx, Lx(T ), λ) = 1 − α, we obtain an asymptotically conservative confidence band

P [Fxh(t) − cαxhDxh(t) ≤ Fx(t) ≤ Fxh(t) + cαxhDxh(t)] ≥ 1 − α (11)

To investigate the coverage probabilities of (11), we generate data by taking fixed and equidistant

design points xi = i
n (i = 1, 2, 3, . . . , n). Also, we assume that the survival times Yi (i = 1, 2, 3, ..., n)

are independent random variables with Yi ∼ Weibull(a1 + a2xi, b) such that for each design point the

conditional survival function F̄i(t) is given as

F̄i(t) = exp

(

−

(

t

b

)(a1+a2xi)
)

for some constants a1, a2 such that a1 > ∧(0,−a2) and b > 0. Note that a1 + a2xi characterizes the

shape of the survival distribution of the i-th subject whereas b is the scale parameter.

Furthermore, we assume that the censoring intensity parameter βxi
= exp(a3 + a4xi) (i = 1, 2, 3, . . . n)

for some constants a3 and a4. Using the relation

Ḡi(t) = ϕ[−1]
x

(

βxi
ϕx

(

F̄i(t)
))

,

we obtain informative censoring times Ci based on the Clayton and Frank copula generator functions

ϕx(.) at a pre-specified covariate level x with dependence parameter θ as follows:

1. we generate two independent uniform (0,1) random variables u and t.

9



2. we set v = c−1
u (t), where cu(v) = ∂

∂u

{

ϕ
(−1)
x (ϕx(u) + ϕx(v))

}

and c−1
u is the inverse or quasi-inverse

of cu depending on whether ϕx is a strict or non-strict generator function.

3. we set Ci = Ḡ
(−1)
i (v) and Yi = F̄

(−1)
i (u).

In particular, we use generators ϕx(t) = 1
θ

(

t−θ − 1
)

and ϕx(t) = − log
(

exp(−θt)−1
exp(−θ)−1

)

for the Clayton

and Frank copulas respectively. We investigate the effect of the association structure on the coverage

probabilities by considering different choices of θ. Note that each choice of θ will lead to a different

dependence structure for the Clayton and Frank copulas. Therefore, we use Kendall’s τ as a measure of

dependence structure so as to compare results under the two copula families. This dependence measure

is defined as

τ(x) = 1 + 4

∫ 1

0

ϕx(t)

ϕ′
x(t)

dt

in Nelsen (1999) such that −1 ≤ τ(x) ≤ 1, where the dependence gets stronger as τ(x) goes away from

zero. Also, we investigate the effect of the censoring intensity on the coverage probabilities. That is,

for each value of τ(x), we study three different sets of parameters a1, a2, a3 and a4. In the first set

(a1 = 1, a2 = 0.5, a3 = −2.2, a4 = 2), we chose the parameters such that the percentage of censored

observations is always smaller than 45% (i.e. light censoring). In the second set (a1 = 1, a2 = 0.5, a3 =

−0.2, a4 = 0.4), the percentage of censored observations is inclusively between 45 and 55% (i.e. medium

censoring); whereas in the third set (a1 = 1, a2 = 0.5, a3 = 0.2, a4 = 0.5), the parameters are such

that the percentage of censored observations is always greater than 55% (i.e. heavy censoring). At each

combination of parameters, we generate 2000 samples, each of a size n. For each of these samples, we

estimate the conditional Koziol-Green survival distribution at a pre-specified covariate level x together

with the corresponding 95% confidence band. We use the Gasser-Müller weights given in (6) with the

biquadratic kernel K(z) = (15/16)
(

1 − z2
)

I (|z| ≤ 1), since it is the most used type of weights in fixed

design settings. Also, we use bandwidth hn =
(

log n/n3/2
)2/11

so that as n → +∞, nhn → 0 and

(nhn)−1/2 log n → 0 . Note that this bandwidth is based on the assumption made in Theorem 2 whereas

the optimum bandwidth choice is still a topic of future research.

Next, we compute the coverage probability as the percentage of samples for which the confidence band

at x covers its corresponding true survival distribution. In particular, we consider estimation at x = 0.97

and x = 0.65 as extreme and non-extreme covariate levels respectively in order to get some insight into

the effect of x on the coverage probabilities. Also, we consider the cases λ = 1 and λ = γ2
x so as to obtain

less and more conservative confidence bands respectively. In addition, we repeat the above process for

different values of n (i.e. n = 20, 30, 50, 100, 200, 300) so as to examine also, the influence of n on the

coverage probabilities. Nevertheless, we report only results corresponding to the minimum sample size

(i.e. n = 50) for which the coverage probabilities (at extreme or non-extreme covariate level) are at least

their corresponding nominal confidence level. Note that the results for τ = 0 are only given in Table 1

since it represents the independent copula which is a special case for both the Clayton and Frank copula

when θ → 0.

In Tables 1 and 2 we observe that use of Clayton and Frank copulas results in similar coverage probabil-

ities at equivalent censoring intensities and dependence structures. This implies that the choice of the

copula function (i.e. Clayton or Frank) does not have a significant influence on the coverage probabilities.

However, assuming λ = γ2
x, leads to a non-decreasing trend in the coverage probability with increasing

censoring intensity. This can be explained (at least in part) by the fact that as censoring increases,

10



Covariate level

= 0.65 Coverage (%)

Clayton (λ = 1) Clayton (λ = γ2
x)

Dependence Nominal (%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

90.0 97.9 99.5 99.5 99.8 99.9 99.9

τ = −0.99 95.0 99.0 99.9 99.9 99.9 99.9 99.9

99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 98.1 98.7 99.5 99.8 99.9 99.9

τ = 0.00 95.0 99.4 99.1 99.9 99.9 99.9 99.9

99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 94.9 94.3 94.2 99.7 99.9 99.9

τ = 0.99 95.0 98.2 97.5 96.4 99.9 99.9 99.9

99.0 99.6 99.6 99.2 99.9 99.9 99.9

Covariate level

= 0.97 Coverage (%)

Clayton (λ = 1) Clayton (λ = γ2
x)

Dependence Nominal (%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

90.0 87.9 94.4 94.7 98.7 99.7 99.8

τ = −0.99 95.0 91.8 98.5 96.8 99.5 99.9 99.9

99.0 97.9 99.5 99.3 99.8 99.9 99.9

90.0 87.5 93.5 93.5 98.4 99.5 99.9

τ = 0.00 95.0 93.2 96.5 97.6 99.7 99.8 99.9

99.0 96.4 99.1 99.5 99.8 99.9 99.9

90.0 82.6 78.5 74.6 98.4 99.7 99.8

τ = 0.99 95.0 86.3 85.6 82.1 98.8 99.8 99.9

99.0 94.8 94.8 92.5 99.8 99.9 99.9

Table 1: Coverage probabilities of the asymptotic confidence band at covariate levels of 0.65 and 0.97

using the Clayton copula
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Covariate level

= 0.65 Coverage (%)

Frank (λ = 1) Frank (λ = γ2
x)

Dependence Nominal (%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

90.0 99.1 99.6 99.7 99.9 99.9 99.9

τ = −0.99 95.0 99.4 99.8 99.8 99.9 99.9 99.9

99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 96.1 94.8 92.9 99.6 99.9 99.9

τ = 0.99 95.0 97.8 98.1 96.5 99.9 99.9 99.9

99.0 99.8 99.5 99.4 99.9 99.9 99.9

Covariate level

= 0.97 Coverage (%)

Frank (λ = 1) Frank (λ = γ2
x)

Dependence Nominal (%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

90.0 89.6 96.3 94.1 98.6 99.6 99.9

τ = −0.99 95.0 93.0 98.1 98.5 99.6 99.9 99.9

99.0 97.1 99.4 99.4 99.8 99.9 99.9

90.0 80.6 77.2 75.2 98.3 99.4 99.9

τ = 0.99 95.0 88.1 84.9 82.8 98.9 99.7 99.9

99.0 95.8 94.5 92.7 99.9 99.9 99.9

Table 2: Coverage probabilities of the asymptotic confidence band at covariate levels of 0.65 and 0.97

using the Frank copula

the rate of deviation of the conditional Koziol-Green survival function estimate from the true survival

function is negligible compared to the rate at which the bands increase with increasing censoring.

Furthermore, we observe at the extreme covariate level that, the coverage probabilities are at least their

corresponding nominal only when we assume λ = γ2
x. In contrast, the coverage probabilities at the

non-extreme covariate level are always at least their corresponding nominal irrespective of whether we

assume λ = γ2
x or λ = 1. Also for the non-extreme covariate level, assuming λ = 1 results in coverage

probabilities which are at most those under the assumption that λ = γ2
x. As already mentioned, assuming

λ = 1 yields less (relative to λ = γ2
x) conservative confidence bands. As such, the particular choice of λ

depends on whether one wants a less conservative confidence band.

7 A real data example: Worcester heart attack study

In this section, we illustrate the asymptotic conditional Koziol-Green confidence band on a real data

set. The data set comes from the Worcester Heart Attack Study (WHAS) which has information on

more than 8000 admissions. The main objective of this study was to describe trends over time in the

incident and survival rates following hospital admission of Acute Myocardial Infarction (AMI) patients.

However, we will only consider the 10% random sample of the original data set presented by Hosmer and

Lemeshow (1999) (described on pages 24 and 25). Only a small subset of variables as well as patients

12
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Figure 2: Scatter plot of time spent in hospital (LenStay) versus Age.

with no missing values are included in this subsample. As a result, the data set we utilize in the section

has information on only 481 patients. Of these patients, 82 (17%) died while in admission (censored)

whereas 399 (83%) were discharged (uncensored). Also, we will mainly be concerned about the time until

discharge from hospital of such patients. Note that, the results of this section are only for illustrative

purpose, and not to be compared with the analysis of the complete data set. See Hosmer and Lemeshow

(1999) for more details and pointers towards the findings from the complete WHAS data set.

In this study, we observe that a patient with severe health condition is likely to die within the first few

days of admission. However, if such patient does not die, then he/she is most likely to spend many days

in hospital bed. Not only severe health conditions would increase the days that a patient spends in the

hospital, but also, for example, an infection from the hospital can increase his/her days in the hospital

bed. As such, we allege that time until discharge from hospital Yi of a patient depends on the time until

death in the hospital Ci (i.e. time until discharge has a negative influence on the time until death in the

hospital).

Figure 2 is a scatter plot of the observed time spent in hospital (LenStay) verses age of the patient

at admission (Age) with a distinction between censored and uncensored patients. From the figure, we

observe that most of the censored observations occurred among patients whose age is in the neighborhood

13



Age (years) 50 75

Statistic P-Value Statistic P-Value

Kolmogorov-Smirnov 0.5536 0.9191 1.0033 0.2664

Cramer-von Mises 0.0735 0.7213 0.2934 0.1396

Anderson-Darling 0.8386 0.4531 2.4294 0.0689

Table 3: Conditional Koziol-Green goodness-of-fit test at ages 50 and 75 years

of 80 years. This suggests possible association between censoring time and age of patients at admission.

To formally investigate the applicability of the conditional Koziol-Green model, we adapt the partial

Koziol-Green goodness-of-fit test of Braekers and Veraverbeke (2003) and calculate the Kolmogorov-

Smirnov, the Cramer-von Mises and the Anderson-Darling types of test statistics given respectively

as

Knx =

(

nhn

||K||22γxh(1 − γxh)

)1/2

max
1≤i≤n−1

|V 1
n,i − Vn,i|

W 2
nx =

nhn

||K||22γxh(1 − γxh)

n−1
∑

i=1

(V 1
n,i − γxhVn,i)

2wn(i)(x;hn)

A2
nx =

nhn

||K||22γxh(1 − γxh)

n−1
∑

i=1

(V 1
n,i − γxhVn,i)

2

Vn,i(1 − Vn,i)
wn(i)(x;hn)

with ||K||22 = 5
7 , V 1

n,i =
i
∑

k=1

wn(k)(x;hn)I(δ(k) = 1) and Vn,i =
i
∑

k=1

wn(k)(x;hn), (i = 1, 2, ...n = 481)

where δ(k) and wn(k)(x;hn) denotes respectively, the censoring indicator and Gasser-Müller weights

(with the biquadratic kernel) corresponding to the ordered observed time spent in the hospital. We test

at ages 50 and 75 years (i.e. x = 50 and 75). Hereby we take as bandwidth, hn = 43. This choice is

only to illustrate our method. We considered other choices hn = 33 and hn = 53 (not shown) but they

gave similar results. A formal method to find the optimal bandwidth is a research area which we do not

enter at this moment.

From Table 3, we observe that the p-values associated with the three goodness-of-fit test statistics are

larger than 5% (critical level). Thus, we fail to reject the conditional independence of the Zx and the

δx. Therefore, we allege that the conditional Koziol-Green model may be appropriate for the data set

at 50 and 75 years.

Using the Clayton and Frank copulas on this data set, we construct and compare confidence bands

around the conditional Koziol-Green estimate of the survival (length of stay in hospital) function at ages

50 (middle aged patients) and 75 years (elderly patients). In the sequel, we assume λ = 1 so as to obtain

less conservative (relative to λ = γ2
x) confidence bands. In addition, we again use the Gasser-Müller

weights with the biquadratic kernel and bandwidth hn = 43. Figure 3 is a graphical representation of

the conditional Koziol-Green survival distribution at ages 50 and 75 years for the AMI patients together

with their corresponding 95% confidence band. In the figure, we consider two different association

structures between the survival time (i.e time until discharge) and the censoring time (i.e. time until

death in the hospital). Firstly, we assume that the survival time and censoring time are discordant (i.e.

τ = −0.99) since we expect that small death times in the hospital are related to large discharge times

and vice versa; See Nelsen (1999) for a formal definition of discordance. Secondly, we assume that the
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Figure 3: The conditional Koziol-Green survival function estimates (Surv Function) and associated 95%

confidence bands (Conf Band) for middle aged (age = 50 years) and elderly (age = 75 years) patients

under the Clayton (a and b) and Frank (c and d) copulas.

discharge time and time until death in the hospital are independent (i.e. τ = 0). Note that the later

assumption may be wrong for this data set. However, it is commonly used in other real data analyses.

Therefore, we consider this choice only as reference for comparison with the result under the discordant

association.

At 50 years, we observe under the Clayton and Frank copulas (Figure 3) that the survival distribution

under the independent and discordant associations are close to each other. As a result, the confidence

band constructed under the independent association clearly covers the survival distribution under the

discordant association, and vice versa. This means that, ignoring the possibility of a dependence between

the time until discharge from the hospital and the time until death in the hospital may not have any

significant influence on the estimates based on the conditional Koziol-Green survival function and its

associated 95% confidence band for middle aged patients. However, the same cannot be said about

elderly patients since Figure 3 (i.e. (b) and (d)) indicate that the estimated survival distributions under

independent and discordant associations at 75 years are clearly separated from each other; and that the

confidence band under one form of association does not consistently cover the survival function under

the other form of association.
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Appendix

Before we prove the weak convergence result in Theorem 1, we give two lemmas about the asymptotic

bias and variance of the conditional Koziol-Green estimator.

Lemma 2. Assume (C1), (C2), Fx(t) and βx satisfy (C3) and (C4) in [0, T ] with T < TFx
and ϕx

satisfies (C5), hn → 0. Then, as n → +∞

sup
0≤t≤T

∣

∣

∣

∣

∣

n
∑

i=1

wni(x, hn)Egtx(Zi, δi) +
µK

2 h2
n

2

(

ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x −
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

)

∣

∣

∣

∣

∣

= o(h2
n) + O(n−1).

Proof. For fixed t ≤ T ,

n
∑

i=1

wni(x, hn)Egtx(Zi, δi) =
−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

(Eγxh − γx) +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

(EHxh(t) − Hx(t))

By Lemma A.1.b of Van Keilegom and Veraverbeke (1997a), we get the result.

Lemma 3. Assume (C1), (C2), (C3) and (C4) in [0, T ] with T < THx
and ϕx satisfies (C5), hn → 0,

nhn → +∞. Then, as n → +∞

sup
0≤t≤T

∣

∣

∣

∣

∣

n
∑

i=1

w2
ni(x, hn)Cov(gtx(Zi, δi), gsx(Zi, δi)) −

1

nhn
Γx(t, s)

∣

∣

∣

∣

∣

= o((nhn)−1)

where Γx(t, s) is given by (7).

Proof. Some straightforward calculations show that

Cov(gtx(Zi, δi), gsx(Zi, δi)) =

ϕx(H̄x(t))ϕx(H̄x(s))

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))
γxi

(1 − γxi
) +

γ2
xϕ′

x(H̄x(t))ϕ′
x(H̄x(s))

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))
(Hxi

(t ∧ s) − Hxi
(t)Hxi

(s))

from which the result follows via standard calculations of asymptotic variances in a fixed design regression

situation.

Proof of Theorem 1. From Lemma 1 and 2, we find

Fxh(t) − Fx(t) =

n
∑

i=1

wni(x, hn)ξtx(Zi, δi) + h2
nb̄tx + R̄n(t)

where

ξtx(Zi, δi) = gtx(Zi, δi) − Egtx(Zi, δi)

sup
0≤t≤T

|R̄n(t)| = O((nhn)−3/4(log n)3/4) + o(h2
n) a.s.

and

b̄tx =
µK

2 h2
n

2

(

−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

)

.
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The bias (nhn)1/2h2
nb̄tx is o(1) under conditions (a) and equals btx under conditions (b). Hence it suf-

fices to prove the weak convergence of Whx(·) = (nhn)1/2
n
∑

i=1

wni(x, hn)ξ·x(Zi, δi) to the Gaussian process

W (·|x) with mean zero and covariance function Γx(t, s).

This will be done in two steps. First we show the convergence of the finite dimensional distributions.

Next we verify the asymptotic tightness by Theorem 2.11.9 (Bracketing central limit theorem) of van

der Vaart and Wellner (1996).

Convergence of the finite dimensional distributions is that for any q = 1, 2, . . . and any 0 ≤ t1 ≤

. . . ≤ tq ≤ T : (Whx(t1),Whx(t2), . . . ,Whx(tq))
D
→ N(0,Γx(ti, tj)). Since Whx(ti) =

n
∑

k=1

Wnki where

Wnki = (nhn)1/2wnk(x, hn)ξtix(Zk, δk), it suffices to check that (see e.g. Araujo and Giné (1980)),

lim
n→+∞

n
∑

k=1

E(WnkiWnkj) = Γx(ti, tj) (1 ≤ i, j ≤ q)

lim
n→+∞

n
∑

k=1

∫

{|Wnk|>ε}

|Wnk|
2dP = 0

for every ε > 0, where |Wnk|
2 =

q
∑

i=1

W 2
nki. Now, applying Lemma 3,

n
∑

k=1

E(WnkiWnkj) = (nhn)
n
∑

k=1

w2
nk(x, hn)Cov(gtix(Zk, δk), gtjx(Zk, δk)) = Γx(ti, tj) + o(1).

Since the functions ξtix(Zk, δk) are uniformly bounded, it follows that max
1≤k≤n

|Wnk| = O((nhn)−1/2) a.s.

and
n
∑

k=1

|Wnk|
2 = O(1) a.s., and hence,

n
∑

k=1

∫

{|Wnk|>ε}

|Wnk|
2dP ≤ O(1)P ( max

1≤k≤n
|Wnk| > ε) = o(1).

To prove the asymptotic tightness, we denote the process Whx(t) as Whx(t) =
n
∑

i=1

Zni(t) where Zni(t) =

(nhn)1/2wni(x, hn)ξtx(Zi, δi).

To verify the three conditions of Theorem 2.11.9 of van der Vaart and Wellner (1996), we put on

F = [0, T ], the semimetric

ρ(t, t′) = max

{∣

∣

∣

∣

−1

ϕ′
x(F̄x(t))

+
1

ϕ′
x(F̄x(t′))

∣

∣

∣

∣

, |ϕ′
x(H̄x(t)) − ϕ′

x(H̄x(t′))|,

|ϕx(H̄x(t)) − ϕx(H̄x(t′))|, sup
x′∈[0,1]

√

|Hx′(t) − Hx′(t′)|

}

.

In the third condition, we need the bracketing number N[ ](ε,F , Ln
2 ). This number is defined as the

minimal number of sets in a partition of F = [0, T ] =
⋃

j Fεj such that for every set Fεj :

n
∑

i=1

E

[

sup
t,t′∈Fεj

|Zni(t) − Zni(t
′)|2

]

≤ ε2.
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Let us divide F = [0, T ] into subintervals 0 = t0 ≤ t1 ≤ . . . ≤ tq = T where ρ(t, t′) ≤ Cε for all

t, t′ ∈ [tj−1, tj ], j = 1, . . . , q with C some constant which we will determine further on. For the partition

F = [0, t1]
⋃

q
⋃

j=2

]tj−1, tj ], we find after some tedious calculations that

|Zni(t) − Zni(t
′)| ≤ (nhn)1/2wni(x, hn)

(

−1

ϕ′
x(1)

|ϕx(H̄x(t)) − ϕx(H̄x(t′))|

+(2ϕx(H̄x(T )) + 2ϕ′
x(H̄x(T )))

∣

∣

∣

∣

−1

ϕ′
x(F̄x(t))

+
1

ϕ′
x(F̄x(t′))

∣

∣

∣

∣

−
2

ϕ′
x(1)

|ϕ′
x(H̄x(t)) − ϕ′

x(H̄x(t′))|

+
ϕ′

x(H̄x(T ))

ϕ′
x(1)

(|I(Zi ≤ t) − I(Zi ≤ t′)| + |Hxi
(t) − Hxi

(t′)|)

)

(12)

So

sup
t,t′∈Fεj

|Zni(t) − Zni(t
′)|2 ≤ (nhn)w2

ni(x, hn){C1(Cε)2

+

(

ϕ′
x(H̄x(T ))

ϕ′
x(1)

)2

|I(Zi ≤ tj) − I(Zi ≤ tj−1)|
2}

where C1 is a constant, uniquely determined by the right hand side of (12). For the appropriate choice

of C, this leads to
n
∑

i=1

E

[

sup
t,t′∈Fεj

|Zni(t) − Zni(t
′)|2

]

≤ ε2.

Hence the bracketing number N[ ](ε,F , Ln
2 ) is equal to O(ε−1) and we get

δn
∫

0

√

log N[ ](ε,F , Ln
2 )dε =

δn
∫

0

√

log O(ε−1)dε → 0

when δn → 0. We do not need to verify the second condition of Theorem 2.11.9 in van der Vaart and

Wellner (1996), since our partition of F = [0, T ] is independent of n. As last condition we have to check

whether for all η > 0,

n
∑

i=1

E

[

sup
0≤t≤T

|Zni(t)|I

(

sup
0≤t≤T

|Zni(t)| > η

)]

→ 0 as n → +∞.

Since ξtx(Zi, δi) is bounded uniformly and max
1≤i≤n

wni(x, hn) = O((nhn)−1) a.s., we get that sup
0≤t≤T

|Zni(t)| =

O((nhn)−1/2) a.s., which is always smaller than η for n sufficiently large. So the first condition is also

satisfied. By Theorem 2.11.9 of van der Vaart and Wellner (1996), we have that Whx(·) → W (·|x) in

l∞[0, T ].

Proof of Theorem 2: We note that we can rewrite in Theorem 1 the Gaussian process W (·|x) as, for

a given λ > 0,

λ−1/2‖K‖2
γxϕ′

x(H̄x(t))(H̄x(t) + λHx(t))

ϕ′
x(F̄x(t))

B1(Lx(t)) + ‖K‖2
ϕx(H̄x(t))

ϕ′
x(F̄x(t))

B2(γx)

where {B1(s)|0 ≤ s ≤ 1} and {B2(s)|0 ≤ s ≤ 1} are independent Brownian bridges and

Lx(t) =
λHx(t)

H̄x(t) + λHx(t)
. (13)
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Using Theorem 1 together with Theorem 1 of Braekers and Veraverbeke (2007), Lemma A.2 of Van

Keilegom and Veraverbeke (1997a), lemma A.1. of Braekers and Veraverbeke (2001) and Slutsky’s

Theorem, we have that

(Fxh(·) − Fx(·))D−1
xh (·) → B1(Lx(·)) +

λ1/2ϕx(H̄x(·))

γxϕ′
x(H̄x(·))(H̄x(·) + λHx(·))

B2(γx) in l∞[0, T ].

Analogously, we find that

B1(Lxh(·))+
λ1/2ϕx(H̄xh(·))

γxhϕ′
x(H̄xh(·))(H̄xh(·) + λHxh(·))

B2(γxh) → B1(Lx(·))+
λ1/2ϕx(H̄x(·))

γxϕ′
x(H̄x(·))(H̄x(·) + λHx(·))

B2(γx)

in l∞[0, T ].

Let

ηx(c) = P

(

sup
0≤t≤T

∣

∣

∣

∣

B1(Lx(t)) +
λ1/2ϕx(H̄x(t))

γxϕ′
x(H̄x(t))(H̄x(t) + λHx(t))

B2(γx)

∣

∣

∣

∣

≤ c

)

ηxh(c) = P

(

sup
0≤t≤T

∣

∣

∣

∣

B1(Lxh(t)) +
λ1/2ϕx(H̄xh(t))

γxhϕ′
x(H̄xh(t))(H̄xh(t) + λHxh(t))

B2(γxh)

∣

∣

∣

∣

≤ c

)

.

Since sup0≤t≤T | · | is a continuous functional, we have that as n → +∞, ηxh(c) → ηx(c) for all c. By

Lemma 4 below, we have that ηx(·) is a continuous function, and hence supc>0 |ηxh(c) − ηx(c)| → 0 by

Pólya’s Theorem (see e.g. Serfling (1980)). In particular, we see that ηxh(cxαh) − ηx(cxαh) → 0 and by

the definition of cxαh we get that ηx(cxαh) → 1 − α which finishes our proof.

Lemma 4. Let {B1(s)|0 ≤ s ≤ 1} and {B2(s)|0 ≤ s ≤ 1} be independent Brownian bridges. Let

Lx(t), (0 ≤ t ≤ T ) be as in (13), λ > 0. Then

sup
0≤t≤T

∣

∣

∣

∣

B1(Lx(t)) +
λ1/2ϕx(H̄x(t))

γxϕ′
x(H̄x(t))(H̄x(t) + λHx(t))

B2(γx)

∣

∣

∣

∣

has a continuous distribution.

The proof of this lemma will not be given since it has the same structure as that of Lemma A4 of Van

Keilegom and Veraverbeke (1997b) if we take Yx = B1(Lx(t)) + λ1/2ϕx(H̄x(t))
γxϕ′

x(H̄x(t))(H̄x(t)+λHx(t))
B2(γx).
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