


Abstract

Background

Item Response Theory is the area of psychometry that deals with the problem of con-

structing and analyzing psychological and sociological tests. By applying a fully Bayesian

approach to this methodology, we analyze a data set obtained administering the Italian

translation of the well-known Peabody Picture Vocabulary Test - Revised (PPVT-R) to

a sample of Italian children. In the original English version the items are believed to be

in increasing difficulty order. One main aim of this thesis is to evaluate if and how much

the translation leads to violations of the increasing difficulty ordering. This aspect is im-

portant since, in the original version, basal and ceiling level of the test are determined

assuming items in increasing difficulty order.

Methods

Classical item response models, as 1PL and 2PL have been applied to PPVT-R data.

These models have been extended by including covariates.

Parameters estimation has been performed using a complete Bayesian approach that in

this case resulted more flexible than the classical approach. In particular, the flexibility of

the Bayesian approach has been underlined with respect to the analysis of an incomplete

data matrix, due to the nature of the stopping rule, and to the item difficulty comparisons.

Several decision rules for the comparison of item difficulties have been analyzed. We pro-

pose a further more general alternative method that allows to compare item characteristic

curves taking into account also the ability distribution.

Results and Conclusions

1PL, 2PL models and model with covariates have been estimated using MCMC method-

ology: the goodness of fit of the models has been analyzed using posterior predictive

p-values and the performance of the three models has been compared using AIC, BIC

and DIC indices. The model with covariates resulted to be the best in terms of informa-

tion criteria. Therefore the comparisons of the item difficulties were performed using this
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model.

The different decision rules for the item difficulty comparisons have been compared and

an ordering of the items for each criterion has been drawn. The criteria agree on conclud-

ing violation of the increasing difficulty order: from the analysis of the results, we can

conclude that the test can be improved by modifying the ordering and by translating the

English terms in Italian words of more common use.

Key Words: item response models, Bayesian approach, MCMC, latent variables,

posterior predictive p-values.
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1 Introduction

In recent years evaluating people using tests is very common: we have been tested since

the elementary school, in order to evaluate our abilities in mathematics, in reading, in

writing, till job interviews, in which the grade of aptitude for a particular job position is

measured.

Since tests are so widely used, there has been a considerable interest among psychologists

and statisticians in developing a theory that allows to improve educational and psycho-

logical tests. Item response theory (IRT), introduced by the mathematician George Rasch

(1901-1945), is the area of psychometry that deals with the problem of tests construction,

item calibration and with the evaluation of latent ability the test aims at measuring. Item

response models are latent trait models in which the probability of correct responses are

modeled as function of examinees’ ability and as function of items characteristics, such

as their difficulty levels and their discriminant powers.

The literature regarding item response models is developing but several problems are still

unsolved. In this thesis, using a real data set, the Peabody Picture Vocabulary Test - Re-

vised (PPVT-R) data, we will mainly focus on three aspects: the parameters estimation,

the comparison of the difficulty levels of two or more items and the problems concerning

the literal translation of a test.

We will explain the most widely used item response models and we will analyze the issue

of the parameters estimation: since classical methods, as the maximum likelihood method,

do not produce estimators that present desirable properties, the first point of this thesis

is to show how the estimation problem can be overcome applying a complete Bayesian ap-

proach. We apply classical item response models, as 1PL and 2PL, to the PPVT-R data,

estimating all the parameters using a Bayesian approach; the same estimation procedure

is used to fit a more complex model involving covariates. We underline the simplicity and

flexibility of this approach in terms of estimation and interpretation of the parameters.

After comparing the fit of these models and choosing the ”best” of them, we will discuss

the difficulties in translating a test by using the data obtained administering the Italian

translation of the Peabody Picture Vocabulary Test - Revised (PPVT-R).

The comparison of item difficulties is another crucial point of this thesis: taking advan-
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tages from the Bayesian approach, we will develop an alternative measure to compare

items that allows us to analyze how severe is violation of the increasing difficulty order.

This measure is based on the difference of the item characteristic curves averaged on the

ability distribution. Therefore it takes into account not only the difficulty parameters

but also the distribution of the ability. We will also analyze the problem of the presence

of missing data due to stopping rules, underlying the advantages and flexibility of the

Bayesian approach.

2 Methodology : Item Response Theory

Many people have been tested at least once in their lives. For example, in school, their

abilities in mathematics, reading and writing have been tested. The use of test is of great

importance when people are selected for a job on the basis of test results: these tests allow

to select the more qualified person not only in terms of knowledge but also in terms of

aptitude for a particular job.

Given such importance of tests, their construction must be done very carefully since a

lack of quality of tests can invalidate their usefulness.

Therefore the construction of a test involves mainly psychologists and sociologists, for

the definition of well formulated questions and answers, but it also involves statisticians

for different motivations. First of all, the analysis of the answers to the questions must

be done with appropriate statistical models; secondly, an accurate statistical analysis is

necessary to check whether the assumptions made in the use of the test are respected in

the data. The area of psychometry that deals with such problems is called Item Response

Theory (IRT): IRT investigates which assumptions are necessary when using a test in

a specific way, and develops statistical methods to check whether the assumptions are

plausible for the group of people which take the test.

2.1 Background

Item response theory is a modern area of psychometry; it started to be developed in

the last twenty years and it is nowadays in continuous evolution (see for example [2],
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[12],[27],[13]) . Most statisticians are turning towards IRT because classical testing meth-

ods and measurements procedures have a number of shortcomings.

The most important shortcoming is that examinee characteristics and test characteristics

cannot be separated. In fact, the examinee characteristics we are interested in are their

abilities measured by the test: in the classical test theory framework, the ability is ex-

pressed by the true score, which is defined as “ the expected value of observed performance

on the test of interest”. It implies that the true score is test-dependent: it means that if

a test is hard, the examinee’s ability will be evaluated as low, and if a test is easy, the

examinee’s ability will be evaluated as high.

The difficulty of a test item is defined as ”the proportion of examinees who answer the

item correctly”.

These two definitions imply that whether an item is hard or easy depends on the ability

of the examinees, and the ability of the examinees depends on whether the items are hard

or easy. Hence in this approach it is very difficult to have objective measures of the ability

and of the difficulty that allow comparisons between examinees who take different tests

and comparisons between items whose difficulties are measured using different groups of

examinees.

Two other shortcomings of the classical approach are the definition of reliability and the

standard error of measurements. The reliability, defined as the extent to which a test is

repeatable and yields consistent scores, can be calculated as ”the correlation between test

scores on parallel forms of a test” ([5]): since from a practical point of view the definition

of parallel test is impossible, the available reliability coefficients provide either a lower

bound estimates of reliability or reliability estimates with unknown biases.

The problem concerning the standard error is that it is a function of test score reliability

and it is assumed to be the same for all examinees.

Furthermore the classical theory is test-oriented rather than item-oriented: it means that

classical test theory does not enable us to make predictions about how an individual will

perform on a given item ([13]).

Psychometricians turn towards IRT since one of its cornerstone is the invariance prop-

erty and it is the major distinction from the classical test theory. This property implies

that the parameters that characterize the items do not depend on the ability distributions
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of the examinees and the parameters that characterize an examinee do not depend on

the set of test items. Moreover IRT aims at having the following characteristics:

• item characteristics are not group-dependent

• scores describing ability are not test-dependent

• the model is expressed at the item level rather than at the test level

• the model does not require parallel tests for assessing reliability

• the model provides measures of precision for the ability scores

.

2.2 IRT assumptions

Item response theory rests on two basic postulates:

1. The performance of examinees on a test item can be explained by a set of factors

called abilities or latent traits (latent because they are not directly observable)

2. The relationships between examinees’ item performance and their abilities can be

described by a monotonic increasing function called item characteristic function or

item characteristic curve (ICC).

The ICC is a mathematical function that relates the probability of success on an item to

the ability measured by the test. Many possible item response models exist, differing in

the mathematical form of the ICC or in the number of parameters in the model.

One of the main properties of the item response model is that item and ability parameters

are postulated as invariant : this property is obtained by incorporating information about

the items into the ability-estimation process and by incorporating information about the

examinees’ abilities into the item-estimation process.

Like all statistical models, also item response models are based on particular assumptions.

An assumption common to IRT models is the Unidimensionality : it states that only

one ability is measured by a set of items in a test. This assumption is very strict and cannot

be always respected since several cognitive, personality and test-taking factors can affect

the test performance. For example, tests designed to evaluate mathematical ability are,
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of course, influenced by reading ability: in fact, apart from an examinee’s mathematical

skills, if he/she is not able to read and understand the questions of the problems, he/she

will probability answer wrongly to most of questions.

What is required for the Unidimensionality assumption to be met is the presence of

a ”dominant” factor that influences the test performance: this ”dominant” factor should

be the ability measured by the test. In the example reported above, this assumption can

be met, for example, asking questions orally or writing very schematic questions.

The second assumption is the Local Independence : we assume that when the abilities

influencing test performance are held constant, examinees’ responses to any pair of items

are statistically independent, that is we are assuming exchangeability. It means that the

abilities specified in the model are the only factors influencing examinees’ response to

test items. Formally, the Local Independence assumption can be written as follows:

let Ui be the response to item i of a randomly chosen examinee. Let P (Ui|θ) denote the

probability of the response of a randomly chosen examinee with ability θ; P (Ui = 1|θ) is

the probability of a correct response and P (Ui = 0|θ) = 1−P (Ui = 1|θ) is the probability

of an incorrect response.

The property of Local Independence states that:

P (U1, U2, ..., Uk|θ) = P (U1|θ)P (U2|θ)...P (Uk|θ) =
k∏

i=1

P (Ui|θ) (1)

Intuitively this property states that the relationships among examinee’s responses to sev-

eral test items are due only to the abilities influencing performance on the items: after

conditioning on ability, the ability is ”partialled out” and the examinees’ response can be

considered as independent.

The third assumption related to the ICC: it states that the relationships between the ex-

aminees’ performance and latent traits are described by a monotonic increasing function,

called ICC. It is a monotonic increasing function such that the probability of a correct

response to an item increases as the ability increases.

A primary distinction among different latent trait models is in the mathematical form of

the corresponding item characteristic curves.

In the following section, we will analyze a particular class of these models in which the ICC
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is a logistic function. Furthermore other models, as the normal ogive item response model,

are available ([17] and [3]). The logistic function has the advantage to be more mathe-

matically tractable than other functions and it has also important statistical properties

(see for details [23]).

2.3 One, Two and Three parameter logistic model

2.3.1 One-parameter logistic model

The one-parameter logistic model (1PL) is one of the most widely used IRT models.The

ICC for this model is given by

logit(Pj(θi)) = θi − bj i = 1, 2, ..., n j = 1, ..., k (2)

where Pj(θi) is the probability that the examinee i with ability θi answers to the item j

correctly, bj is the item j difficulty parameter, k the number of items in the test and n

the number of examinees.

In this logistic model, Pj(θi) is an S-shaped curve with values between 0 and 1 over the

ability scale. For different values of the difficulty parameter, the curves vary only in their

location on the ability scale and they never cross each other as shown in the figure 1. This

is due to the fact that in 1PL model it is assumed that item difficulty is the only item

characteristic that influences examinees’ performances. Note also that the lower asymp-

tote of the ICC is zero: this specifies that examinees of very low ability have almost zero

probability to answer correctly.

The bj parameter is the value on the ability scale where the probability of a correct re-

sponse is 0.5. This parameter can be interpreted as a location parameter, indicating the

ICC position in relation to the ability. The greater the value of bj, the greater the ability

required for an examinee to have 50% probability to answer correctly.

The 1PL model is also called Rasch model, in honor of his developer, the Danish mathe-

matician George Rasch. The model was introduced in 1952 during his work in the Military

Psychology Group in Copenhagen: as reported in [19], the model was developed in order

to revise the intelligence test used by the military, the so-called IGP test (more details in

[1], pages 2-24).
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The main motivation for which the Rasch model is so famous is the following: it follows

directly from the assumption that the unweighted sum of right answers given by a person

will contain all the information needed to measure that person’s ability and to calibrate

items ([4]). It is the only latent trait model that is consistent with ”number right” scoring:

it means that in the Rasch model the number of correct score is the minimal sufficient

statistics for the ability parameter θ. All the other latent trait models lead to more com-

plex scoring rules that, in the estimation procedure, involve unknown parameters for which

such satisfactory estimators do not exist ([13],).

Anyway, the Rasch model may not be adequate for the solution of certain measurements

problems. The alternative, using more elaborate and more appropriate models, as two or

three-parameter models, introduces many problems with respect to parameters estima-

tion.

2.3.2 Two-parameter logistic model

Item characteristic curves for the two-parameter logistic model (2PL) are given by the

equation

logit(Pj(θi)) = aj(θi − bj) i = 1, 2, ..., n j = 1, ..., k (3)

where Pj(θi) and bj are defined as 2. The parameter aj is called discrimination parameter.

It is proportional to the slope of the ICC at the point bj on the ability scale. Items with

steeper slopes are more discriminant and then they are more useful for separating exam-

inees into different ability levels than items with less steep slopes. It must be underlined

that the discriminant parameter not only fixes the slope of the curve but it determines

the shape of the entire item characteristic curve. The item discrimination parameter can

assume values from −∞ to ∞: however negatively discriminating items are discarded

from ability tests because something is wrong with an item if the probability of answer-

ing correctly decreases as examinee ability increases. As for the Rasch model, the lower

asymptote of ICC is zero: it means that also 2PL makes no allowance for guessing be-

havior, that is it does not take into account the fact that examinees can guess. ICC for

different values of the difficulty and discriminant parameters are shown in the figure 1.
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Figure 1: ICC for 1PL and 2PL models

2.3.3 Three-parameter logistic model

The mathematical expression for the three-parameter logistic model is

Pj(θi) = cj + (1 + cj)
exp(aj(θi − bj))

1 + exp(aj(θi − bj))
i = 1, 2, ..., n j = 1, 2, .., k (4)

where Pj(θi), bj and aj are defined as in 3. The additional parameter in the model ci

is called guessing-parameter : it provides a nonzero lower asymptote for the ICC and

represents the probability of an examinee with low ability answering the item correctly.

2.4 Parameter Estimation

2.4.1 Classical estimation methods

One of the most important step in applying IRT is the estimation of the parameters.

In IRT, the probability of a correct response depends on the examinee’s ability, θ, and on

the parameters that characterize the items. A complication for the estimation procedure

is that θs are latent variables, that is unobservable variables: if θ were observable, the

problem of the estimation would simplify and reduce to a problem similar to the regression

models. Similarly, if the item parameters were known, the estimation of ability would be
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straightforward.

The classical estimation procedure is based on the maximization of the likelihood, defined

as:

f(U1, U2, ..., Uk) =
N∏

i=1

k∏
j=1

P
Uij

ij (1− Pij)
1−Uij (5)

where Ui is the response pattern of examinee i to n items. The values of the item and

ability parameters that maximize this function are called joint maximum likelihood es-

timates (JML). The determination of these estimates can be done in two steps: in the

first step, initial values for the ability parameter are chosen. These values are then stan-

dardized and, treating the ability values as known, the item parameters are estimated.

In the second step, we treat the item parameters as known and we estimate the ability

parameters. This procedure is repeated until convergence.

The joint maximum likelihood procedure is quite appealing, but it has several drawbacks.

First, the ability estimates with perfect and zero scores do not exist. It means that item

parameter estimates for items that are answered correctly (or incorrectly) by all exami-

nees do not exist (see [13]). Furthermore, this procedure gives consistent results for 1PL

model but, since we want to estimate item and ability parameters simultaneously, it is

proved that it does not yield consistent estimates of item and ability parameters in the

2PL and 3PL ([21],[13]).

An alternative approach to overcome this problem is to apply the marginal maximum

likelihood method (MML). In this method, we consider the examinees as having been

selected randomly from a population; then, by specifying a distribution for the ability

parameters, we can integrate them out of the likelihood function. The resulting marginal

maximum likelihood estimates have asymptotic properties: the item parameter estimates

are consistent as the number of examinees increases. Once the item parameters have been

estimated, they are treated as known and the ability parameters can be estimated. Numer-

ical procedure, as EM algorithm, are used to marginalize, by integration, the likelihood

(see details in [5]).

However in some situations, these numerical approximation procedures may fail. It is

proved that failures of the methods are quite common in 1PL and 3PL models. The

main motivation for this problem is that the number of unknown parameters under these
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models increases with the number of examinees. As underlined in [7], EM algorithm has

several drawbacks: it may fail to converge, it sometimes converges to local maximum and

it does not produce estimates of the standard error of the maximum likelihood estima-

tors. Furthermore another important drawback is the fact that MML treats the ability

parameter as a nuisance parameter, while in most of the case the ability parameters are

the ability of interest.

An alternative approach to MML is the conditional maximum likelihood method in which

the likelihood is conditioned on a sufficient statistics for the parameter θ: this method is

applicable only to the 1PL in which the sum of the correct score is the sufficient statistics

for θ ([21]). Since such sufficient statistics do not exist for more complex models, this

method is not applicable to 2PL and 3PL models.

2.5 Bayesian approach to IRT

As written in the previous section, maximum likelihood estimators, in general, in the la-

tent trait models do not present desirable properties. This is mainly due to the presence

in such models of ”structural” and ”incidental” parameters. The ”structural” parameters

are the item parameters and the ”incidental” parameters are the ability parameters. As

suggested in [31], [32] and [33], when several parameters have to be estimated simulta-

neously, and when both structural and incidental parameters are involved, a Bayesian

solution to the estimation problem may be appropriate. This is particularly true when

prior information about the parameters is available.

2.5.1 Hierarchical IRT models

In the Bayesian approach the basic idea is to consider θ and the item parameters ξ = (a, b)

as random variables with their own prior distributions that summarize the prior informa-

tion.

Hierarchical models help in understanding such multiparameter problems since observable

outcomes are modeled conditionally on certain parameters, which themselves are given by

a probabilistic specification in terms of further parameters, known as hyperparameters.
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1PL, 2PL and 3PL models can be written as hierarchical models: the first level of the

hierarchy is specified by the relationships between the probability of correct response with

item and ability parameters; the second level is specified by the prior distributions of the

ability, difficulty and guessing parameters. The third level is defined by the prior distri-

butions of the hyperparameters specified in the second level.

It is possible to represent such hierarchical models graphically, by using the so-called

directed acyclic graphs (DAG): for example, under 2PL model, the responses Uij are in-

dependent, conditional on the parameters Pij. For examinee i and item j, each Pij is

function of θi, of the location parameter bj and of the slope parameter aj. θi are indepen-

dently drawn from a normal distribution, with mean µ and variance σ2.

aj bj

θi

Pij

Uij
Examinee i

Item j

Figure 2: A directed acyclic graph (DAG) for the 2PL model

Figure 2 shows a directed acyclic graph based on the following assumptions: each vari-
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able in the model appears as a node in the graph. Directed links correspond to direct

dependencies. The solid arrow indicates probabilistic dependency; dashed arrows indicate

functional relationships. The model is directed because links between nodes are repre-

sented by arrows. It is defined acyclic for the following motivations: let v be a node of the

graph and V the set of all nodes. A ”parent” of v is defined as any node with an arrow

extending from it an pointing toward v. A ”child” of v is defined as any node on a direct

path beginning from v. The directed acyclic graph is equivalent to assume that the joint

distribution of all random quantities is fully specifies in terms of each node’s conditional

distribution, given its parents, that is:

P (V ) = Πv∈V P [v|parents(v)] (6)

where P (·) denotes a probability distribution. This factorization not only allows extremely

complex models to be built from local components, but it also provides an efficient basis

for implementation of MCMC method ([11]).

2.5.2 The problem of the identification

An problem concerning latent trait models is their identification: consider 2PL model

logit(Pj(θi)) = aj(θi − bj) i = 1, 2, ..., n j = 1, ..., k (7)

We assume a normal prior distribution for the ability parameters, θ ∼ N(µ, σ2); for the

difficulty parameter bi we assume a normal prior, bi ∼ N(0, δ) and for the discriminant

parameter ai we assume a truncated normal prior, ai ∼ N(0, ν)I(ai > 0) where I(·) is the

indicator function for ai.

For the ability parameters we assume θ normally distributed with mean µ and variance

σ2: it means that we believe that the distribution of the examinees ability population

is bell shaped and we also assume that the n students taking the test are a random

sample from this population. The model has n + 2k + 2 unknown parameters. From the

equation 7 we note that this model is overparametrized: in fact, one can multiply the

ability parameter by a constant and divide the discrimination parameter by the same
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constant and preserve the model. The usual way of removing this identifiability problem

is to impose some restrictions on the item parameters, say
∏k

j=1 aj = 1 and
∑k

j=1 bj = 0.

An alternative solution, proposed in [3], is to choose specific values for the parameter of

the ability distribution. Following [3] and [32] , we set µ = 0 and σ2 = 1.

2.6 Bayesian estimation in the IRT models

Consider 2PL model. In the Bayesian approach the basic idea is to consider θ and the

item parameters ξ = (a, b) as random variables with their own prior distributions that

summarize the prior information. The joint posterior distribution f(θ, ξ|U) for these pa-

rameters is obtained by combining, through the Bayes’ theorem the information from the

data, represented by the likelihood f(U|θ, ξ), and the prior information as follows:

f(θ, ξ|U) ∝ f(u|θ, ξ)f(θ, ξ) (8)

where f(θ, ξ) is the joint prior distribution for the parameters θ and ξ. The marginal

posterior distributions of θ and ξ can be obtained by integration of the joint posterior

distribution: in fact, the posterior distribution for the parameter θ,f(θ|ξ,U), is defined as

f(θ|ξ,U) =

∫
f(θ, ξ|U)dξ (9)

and the posterior distribution for the parameter ξ,f(ξ|θ,U), is defined as

f(ξ|θ,U) =

∫
f(θ, ξ|U)dθ (10)

The integration procedure, as usual, is not straightforward and several numerical meth-

ods have been developed.

In this thesis MCMC method will be applied. MCMC methods are a class of algorithms

for sampling from probability distributions based on constructing a Markov chain that

has the desired distribution as its stationary distribution. The state of the chain after a

large number of steps is then used as a sample from the desired distribution. The quality

of the sample improves, of course, as a function of the number of steps. The samples can

then be used to estimate functional of the distribution, typically mean, variance, standard

error, HPD intervals and so on.
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In particular, we will apply a powerful MCMC method, the Gibbs sampler (see [9]). In

this thesis we implement the Gibbs sampler using the WinBUGS software (Medical Re-

search Council Biostatistics Unit, Cambridge, www.mrc-bsu.cam.ac.uk/bugs). WinBUGS

applies Gibbs sampling iteratively, drawing samples from the full conditional distributions

of the model parameters through the adaptive rejection sampling algorithm ([10],[11]).

To check the convergence of the chains several diagnostic methods have been proposed

(see [11]). In this thesis, we check the chains convergence looking at their trace plots and

at the autocorrelation plots; we also calculate Geweke and Gelman-Rubin statistics and

plot the results.

3 Peabody Picture Vocabulary Test - Revised Data

In this section we analyze a data set obtained administering the Italian translation of

the well-known Peabody Picture Vocabulary Test - Revised (PPVT-R) to a sample of

Italian children. Our main aim is to apply IRT model to the PPVT-R data focusing,

in particular, on the analysis of the item difficulties. In particular we are interested in

controlling if the items are in order of increasing difficulty because, as we can see, this

aspect is very important for the reliability of the test results.

3.1 Introduction

Peabody Picture Vocabulary Test - Revised (PPVT-R) is an individually administered,

norm-referenced test of hearing vocabulary: it is the leading measure of receptive vocab-

ulary for standard English and it is a screening test of verbal ability.

In the original version, each form contains 175 test items arranged in order of increasing

difficulty. Each item has four simple, black-and-white illustrations arranged in a multiple-

choice format. The examiner provides a stimulus word orally: the subject’s task is to

indicate the picture which best illustrates the meaning of the stimulus word. The words

included in the tests are relative to several categories: animals, man-made objects, human

actions (gerunds), nature scenes, plants, inanimate objects, adverbs ...

The English version of the PPVT-R test is designed for persons of an age between 2.5
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and 40 years who can see and hear reasonably well, and understand English to some de-

gree. When used with native speakers of English, it can be used as a scholastic aptitude

test, since vocabulary is a strong predictor of school success. It can be used as an initial

screening device for pre-school children who may have high ability, low ability, or a lan-

guage disorder. Furthermore it is also helpful in screening foreign-speaking students who

planned to attend English-speaking universities.

Since the items are arranged in ascending order of difficulty, it is proved that in order

to evaluate in a reliable way the testers’ abilities, it is not necessary to ask all the ques-

tions, but only some of them: in PPVT-R test, subjects are tested from a basal 1 of eight

consecutive correct responses to a ceiling 2 of six errors in eight consecutive questions.

This stopping rule assumes that the subjects would not answer additional items correctly

if the test were to be continued beyond the ceiling item. Furthermore, the presence of a

well-calibrated stopping rule is quite important especially in test with a large number of

items: in fact, the same budget can be used to administer the test to a larger amount of

people since we suppose that most of them will not answer to all questions.

However, it must be noted that the actuality of the stopping rule is extremely relevant in

determining the degree of confidence that can be placed in the results of the test: in fact, a

wrong calibrated stopping rule can compromise the results of the entire test. Furthermore,

as we will analyze in the next section, although the stopping rule is well calibrated, the

results of the test will be anyway compromised if the items are not in order of increasing

difficulty.

1Basal Level: for individually administered test, it is defined as the point on test, associated with a

given level of skill, for which the examiner is confident that all the items prior to that item would be

answered correctly (considered too easy).
2The upper limit of ability that a test can effectively measure or for which reliable discriminations can

be made. For individually administered tests, the ceiling refers to the point during the administration,

after which, all other items will no longer be answered correctly (considered too difficult)
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3.2 The Italian translation of the PPVT-R

In this Chapter, we analyze the results obtained by a pilot study of a group of researchers

of the university of Rome “La Sapienza”. The test was administered to a sample of 2857

children keeping the items’ ordering of the original version and using the same illustrations.

The main aim of this study is to apply IRT models, focusing on the evaluation and the

comparison item difficulties; in particular, we are interested in analyzing if the translated

items are in order of increasing difficulty.

The problem of the translation of the PPVT-R test has been largely discussed in [26], in

which it is translated in Mexican language: the authors underlined a series of factors that

must be considered in translating a test. First of all the fact that a translated word and

an original word, although expressing identical concepts, may be of different degrees of

difficulty in the new and in the original languages. Secondly, a concept may be not present

in the new culture; thirdly, a word may possess a single meaning in one culture but possess

multiple meanings in the other. Therefore, according to [20], the literal translation must be

done very carefully in the sense that the experts should translate by replacing the intended

concept with one which judged to be similar. They also suggest that a re-ordering of the

items would be attempted based on an analysis of the item difficulty.

In our case, we will focus on the problem of the order of the items in terms of increasing

difficulty and we will try evaluate the degree of violation of this order. We focus our

attention on this problem because the increasing order of the items is very influent on the

stopping rule.

3.2.1 Data Description

The data set we analyze is a 2696× 180 matrix: the first 175 columns are relative to the

answers to the 175 items (0 for a wrong answer and 1 for a correct answer) and the last

5 columns contain personal information as age, school class, gender, the zone of Italy in

which they live (North, Center, South and Isles). The age is registered in months and it

ranges between 1 year and 13 years.

Classical models as 1PL and 2PL models will be applied to this data set; the heterogeneity

of the data will be taken into account appropriately extending 2PL model including age
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and the geographic zone as covariates in the model.

As written in the previous section, the children do not answer all the 175 questions:

examiners must respect a stopping rule in the sense that they stop to convey questions

when the examinee totals 6 wrong answers in 8 consecutive questions. It implies that the

matrix of data we consider is an incomplete matrix, because we do not have the same

number of answers for each examinee. In particular, the figure 3 shows, on the left side,

the proportion of children that answer respectively to 1,2,...,175 questions and in the right

panel the proportion of correct responses for each item.
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Figure 3: Left panel: proportion of answer for each item.Right panel: proportion of correct

answers for each item.

As we can see, only the 11% of the children answer to all the 175 questions and about

50% of them answer to at least half of the questions. Focusing on the plot on the right, we

can notice that if the items were in increasing order, we should see a decreasing trend in

the proportion of the correct answers. At first glance, as we can see from the plots in figure

3, it seems that violations of the order of difficulty of the items are clear: in particular,

items as 50, 58 and 96 have a proportion of correct responses smaller than 1%. Item 11

also seems not to be in the right position: in fact with respect to its position, it should

be one of the easiest items, but the proportion of correct answers to this item is only

50%. On the contrary, for some items, for example 168, 167, 172 we have a proportion of

correct answers larger than 90%.
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In the next sections, we apply item response models and investigate their performance in

the PPVT-R data in order to gain some insights on the ordering of items’ difficulty. In the

following section we focus on this problem highlighting the simplicity and the flexibility

of the Bayesian solution.

3.3 Incomplete data matrix problem

The matrix of data we have to analyze is an incomplete matrix: as shown in the figure 4,

we do not have the same number of observations for each subject, but we have missing

responses.
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Figure 4: Proportion of answers for each subject

The problem of missing data has been widely treated in literature: Little and Rubin

in [15] and [22] established the well-known taxonomy for the three types of the missing

data processes:

MCAR (Missing Completely At Random) The missingness is independent of both

observed and unobserved data

MAR (Missing At Random) Conditional on the observed data, the missingness is

independent of the unobserved measurements
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MNAR (Missing Not At Random) The missingness depends on observed and unob-

served data

In the context of IRT, the analysis of the missingness process is quite difficult to

catalogue in one of these three categories. In fact, in this framework, the missingness

mechanism depends on the latent traits: it means that the probability of non response

depends on the latent ability of the responder.

An interesting traditional approach to missing data problem in IRT is reported in [12].

They consider three possible answers: a correct answer, a wrong answer and a missing

answer. The probabilities of correct or wrong answers are modeled using classical item

response models (as 1PL or 2PL) while the probability of non-responses, depending only

on the ability, is modeled using a multinomial regression model. Furthermore this approach

is not completely adequate to our data set: in fact in PPVT-R data, the non-response

can be ascribed mainly to the stopping rule which is, of course, strictly connected to the

ability of the responders.

Therefore the missingness mechanism involved in our data set cannot be treated as MAR

because the missingness mechanism depends on the ability by means the stopping rule; it

should be treated as MNAR where the not random mechanism incorporates the stopping

rule.

Bayesian and classical approaches propose different methods to solve this problem: the

difference is mainly based on the fact that the two approaches consider the stopping rules

in different way.

3.3.1 Stopping Rule Influence

The problem of the relevance of the stopping rules in a Bayesian and not-Bayesian ap-

proach is one of the main issues between researchers involved in these two main streams.

In a Bayesian approach, inferences should depend only on the observed data, not on the

reason why these data are collected. It implies that any difference in the data that makes

no difference in the posterior probability distribution is irrelevant for the inference. It

directly follows from the likelihood principle.

On the other hand, in the classical approach stopping rules influence inferences in a sig-
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nificant way.

The following example could help us to understand the problem: consider an experiment

consisting of a sequence of independent and identically distributed binary observations,

as tossing a coin, in which the outcomes are labeled as 1 for a success or 0 for a failure.

One stopping rule specifies that the researcher stops after one hundred observations are

made, while another stopping rule specifies that the researcher stops after observing 50

successes. In a Bayesian prospective the two stopping rules do not influence the inference:

in fact, since the two likelihood functions that we obtain from the two experiments differs

only for a constant, then according with the likelihood principle, the posterior distribu-

tions of the involved parameters we obtain are the same.

In a classical approach the consequences of these two different designs are relevant: the

main problem is that in the first design, the number of trials is fixed and the number of

successes treated as a random variable. On the contrary in the second design, the num-

ber of successes is fixed and the number of trials is treated as random variable. These

differences might have consequences in terms of inference and ignoring stopping rules can

mislead the inferential conclusions.

Involving the stopping rule in this framework is not an easy task: in fact, in our case we

can model the probability of non-response to an item as function of the stopping rule

which is function of all possible responses to the previous eight questions and function

of the ability. Modeling this non-response functioning seems to be quite difficult and the

implementation would not be straightforward.

On the other hand, the Bayesian approach allows to solve easily the problem considering

only the observed data, that is using the only available proportion of the incomplete data

matrix.

3.3.2 1PL Model, 2PL Model and Model with Covariates

We apply the models described in the previous chapters to this data set, in particular

1PL and 2PL.

We also consider an extension of IRT models that consists of the inclusion of covariates

that seems to be related to the ability of the children. The most straightforward extension
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of IRT models to covariates inclusion is discussed in [2]: they argue that IRT models can

be seen as multilevel models, where the first level of the model describes the relation-

ships between the observed item scores and the ability parameters and the second level

describes the relationships between the latent traits and several covariates.

In this section, we apply a hierarchical model whose first level consists of 2PL model

and the second level consists of a regression model between the latent traits and some

predictors. Taking into account the fact that the design is unbalanced with respect the

distribution of the age in the geographic zone, we choose to include only the variables

age and gender and not to include the variable geographic zone because of a possible

confounding effects with the variable age.

Therefore the first and the second level of the model are specified by the following equa-

tions:

logit(Pj(θi)) = aj(θi − bj) j = 1, 2, ..., k i = 1, ..., N (11)

θi = βAge ∗ Agei + βGender ∗Genderi j = 1, 2, ..., N (12)

that is equivalent to write

θi ∼ N(βAge ∗ Agei + βGender ∗Genderi, 1) (13)

In the third level, we specify all the prior distributions. For the 2PL model specified in

the first level, we consider the same prior distributions reported in the previous chapters;

for the regression parameters βAge and βGender we assume flat normal distributions.

3.4 Results

In the figure 5, we report some convergence diagnostics for the parameter b1 in the 2PL

model. Since similar plots are obtained for the other models and for all parameters, we

can conclude that the chains converge and we can use the estimated parameters to make

inference.
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Figure 5: Convergence diagnostics for the parameter b1 for the 2PL model: trace plots,

density plot, BGR (Brooks,Gelman and Rubin) plots, Geweke and autocorrelation plot

In the figure 6, we report the plot of the estimated posterior means for the difficulty

parameter of the 2PL model for each item: points with suspicious positions in terms of

difficulty order are highlighted in red.

In the table 1, we report posterior summary statistics for the parameters beta.age

and beta.sex : as we can see, the ability does not seem to be influenced by sex since

the credibility interval is almost centered in 0. Furthermore, the variable age, that was

centered in order to improve convergence of the chain, influences the ability: this is a

quite expected conclusion since we can suppose that, for a normally intelligent person,

the language skills increase with the age.
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Figure 6: 2PL model (left panel) and model with covariates (right panel): posterior means

of the difficulty parameters for each items

Parameter Mean Sd MC Error 25% Median 97.5%

beta.age 0.04518 0.001072 0.000234 0.03813 0.04411 0.05259

beta.sex 0.009189 0.0306 0.004109 -0.05239 0.007566 0.0757

Table 1: Model with covariates: posterior means, standard deviations, MC errors, first

quartiles, medians and third quartiles for the posterior distributions of the parameters

beta.age and beta.sex
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3.5 Goodness of fit and model comparison

3.5.1 Goodness of fit measures

Assessing the fit of the item response models is not a straightforward task. The main dif-

ficulty is that the possible number of response patterns (2I for a test with I binary items)

is large even for moderately long assessments, leading to sparse contingency tables, so the

standard chi-square tests do not apply directly ([27]).

The situation is hardly better for IRT modeling under the Bayesian framework.

In this thesis we will apply the posterior predictive model-checking (PPMC), a popular

Bayesian model diagnostic tool ([9]): it has an intuitive appeal since it is simple and can

provide graphical and numerical evaluation of the model misfit. The method compares

the observed data with the data predicted by the model with a number of diagnostic

measures that are sensitive to model misfit. Any systematic differences between observed

and predicted data indicate a possible failure of the model.

A posterior predictive distribution is defined as

p(yrep|y) =

∫
p(yrep|ω)p(ω|y)dω (14)

In practice, test quantities or discrepancy measures D(y, ω) are defined and the posterior

distribution of D(y, ω) is compared to the posterior predictive distribution of D(yrep, ω);

substantial differences between them indicate model misfit.

A quantitative measure of lack of fit is the tail-area probability also known as the PPP-

value:

P (D(yrep, ω) ≥ D(y, ω)|y) =

∫
D(yrep,ω)≥D(y,ω)

p(yrep|ω)p(ω|y)dyrepdω (15)

Because of the difficulty in dealing with the equation 14 and 15 analytically, [9] suggested

simulating replicated (or posterior predictive) data sets from the PPD.

Several discrepancy measures have been proposed in literature ([9] and [10]); [27] and

[28] analyzed the performance of different discrepancy measures in their application to

item response models.

In this thesis, we choose to evaluate the fit of the models using two of the diagnostic

measures proposed in [27]: we will compare the observed and fitted scores and the observed

28
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Figure 7: Observed and Predicted Scores for 1PL and 2PL model

and fitted odds ratio.

In figure 7, we report the plot of observed and predicted scores: as we can see, there is a

good correspondence between them since the points are well aligned on the red straight

line for both 1PL and 2PL models.

Furthermore, as observed by [27], the total scores for the items are sufficient statistics for

the difficulty parameters in the simplest possible IRT model, i.e. the Rasch model. Because

almost all parametric IRT models build on the Rasch model, the model-predicted scores

are expected to match the observed scores, especially because each item is usually given to

a large number of individuals. Therefore this measure will probably not be very powerful

since it is possible that any IRT model, even one not adequate for the data, will predict

these scores well. Practically, examining this measure can help to check the computations:

if the computations show that the model cannot predict the scores for the item well, than

will be a strong indication of some problems in the computer program used to implement

the model.

Another largely used measure of fit for IRT models is the biserial correlation (see [27]):

since it is proved in [27] that the biserial correlation is a powerful measure for detecting

misfit of the Rasch model but it may not provide much insight about any misfit for more
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complex models, we decide not to apply this measure to our data.

A widely used measure for the evaluation of the fit are the sample odds ratios: since there

are no parameters in any IRT models that directly address how items interact/associate

with each other, odds ratios are discrepancy measures that capture the associations among

items and will probabily be effective in detecting possible model misfit.

They are defined as follows: let nkk
′ denote the number of the individuals scoring k on

the first item and k
′
on the second item, k, k

′
= 0, 1. The sample odds ratio is defined as

ORij =
n11n00

n10n01

(16)

The quantity on the right side in the above definition is the sample odds ratio correspond-

ing to the population odds ratio defined as

P (item i correct|item j correct)/P (item i wrong|item j correct)

P (item i correct|item j correct)/P (item i wrong|item j correct)
(17)

Since odds ratios are measures of association, their examination should help researchers

to detect if the model can adequately explain the association among test items.
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Figure 8: 2PL model : observed and predicted odds ratios between items 1, 2 and the first

20 items
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Figure 9: Model with covariates: observed and predicted odds ratios between items 1, 2 and

the first 20 items

Figures 8 and 9 show box plots of the predicted odds ratios between items 1, 2 and

the first 20 items. The red dots denote the observed odds ratios. As we can see, most

of the dots lie within the 95% credible intervals for all items: the model with covariates

seems to fit better than 2PL model since more than 90% of the observed values fall in

the credibility interval. The same happens for the other items.

3.5.2 Model selection criteria

In this thesis we will mainly focus on three model selection criteria, AIC, BIC and DIC;

they are alternatives to the Bayes Factors that in the Bayesian framework represents the

dominant method for model testing. Bayes Factors are defined as follows: suppose that

we observe data X and we want to compare two model M1 and M2 defined by f(x|θ1 and

f(x|θ2). The Bayes factor is defined as:

B(x) =
π(M1|x)/p(M1)

π(M2|x)/p(M2)
(18)
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Unfortunately, while the Bayes Factors are rather intuitive, as a practical matter they are

often quite difficult to calculate ([9]).

AIC, Akaike Information Criterion, is defined as

AIC = −2logL(θ∗|y) + 2p (19)

where θ∗ the estimates of the parameters means (or medians or modes) in the model and

p the number of parameters in the model.

Smaller AIC values are better. It does not need models to be nested; its main drawback is

that it tends to be biased in favor of more complicated models, because the log-likelihood

tends to increase faster than the number of parameters.

BIC, Bayesian Information Criterion, is defined as:

BIC = −2logL(θ∗|y) + 2p ∗ log(n) (20)

where p is the number of parameters and n the sample size.

This statistic can also be used for non-nested models. Given any two estimated models,

the model with the lower value of BIC is the one to be preferred. The main drawback is

that BIC tends to choose models that are too simple due to heavy penalty on complexity.

DIC, Deviance Information Criterion, is a new statistics introduced by the developers of

WinBUGS ([29]); it is defined as

DIC = Mean(−2logL(θt|y))−Mean(−2logL(θt|y)− 2logL(θ∗|y)) (21)

−2logL(θt|y) is the deviance calculated as the average of the log-likelihoods calculated

at the end of an iteration of the Gibbs Sampler and 2logL(θ∗|y)) is the log-likelihood calcu-

lated using the posterior means of θ. The second expression, (−2logL(θt|y)−2logL(θ∗|y))

is the penalty for the over-parameterizing the model. It is important to note that DIC

assumes the posterior mean to be a good estimate of the stochastic parameters. If this is

not so, because of extreme skewness or even bimodality, then DIC may not be appropriate

(see [11]).

In the table 2, we report AIC, BIC and DIC values for the three models.
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Model DIC AIC BIC

1PL 5816980 75007179 15938552

2PL 180983 178016.9 188941.4

Covariates 179865 177205 186561.6

Table 2: DIC, AIC and BIC for 1PL, 2PL and Covariates model

As we can see all criteria agree on the fact that the model with covariates presents a

better fit of the data. Therefore in the following sections, item difficulty comparisons will

be done using this model.

3.6 Item difficulty comparison

As written in the previous sections, the aim of this thesis is to analyze the difficulty levels

of the items and verify whether possible violations of the increasing difficulty ordering

occur.

Several methodologies have been proposed in order to compare item difficulties: in the

classical approach (see e.g [13]) the comparison of the difficulty levels of two or more

items is based on the comparison of the difficulty parameter estimations. An important

shortcoming of this procedure is that the comparison of the difficulty of two items is

based only on the comparison of the difficulty parameters estimates: it implies that the

decision rule that compares item difficulties does not take into account the uncertainty of

the estimates.

This problem is overcome in the Bayesian approach: in fact, the comparison of the diffi-

culty of two items is based on the comparison of the entire posterior distributions of these

two items. It means that we can obtain a comparison of the difficulty levels in terms of

probability: in fact, the probability the item j is more difficult than item j + 1 is defined

as:

Pr(π(aj|U) >= π(aj+1|U)) = E(Ij,j+1) (22)

where π(aj|y) and π(aj+1|y) are the posterior distributions of the parameters aj and
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aj+1, y the data and Ij,j+1 an indicator function that is equal to 1 if aj|U is larger than

aj+1|U and 0 viceversa for each value of the posterior distributions.

It implies that the expression 22 compares item difficulties taking into account the uncer-

tainty of the estimates.

The main drawback of this method is that it involves only the difficulty parameters, that

is it takes into account only the location of the item characteristic curves but not their

entire shapes. To better understand the problem, consider the following example: suppose

to have item characteristic curves as those represented in the figure 10: for the curves

in the left panel, the difficulty parameters for the item 1 and 2 are respectively a = 1

and a = 2, while for the curves in the right panel the parameters of the two curves are

respectively a = 1 and b = 1 for item 3 and a = 0.3 and b = 0.3 for item 4.
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Figure 10: Example of two item characteristic curves

As we can see, for the item 1 and item 2 the criterion 22 let us to conclude that

item 1 is easier than the item 2: in fact, as highlighted in figure 10, in which we plot the

ability necessary to answer correctly to the item 1 and the item 2 with probabilities 80%

and 50%, since the two curves do not cross each other, the ability one needs to answer

correctly to the item 1 is always smaller than the ability one needs to answer correctly to

the item 2.
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When the curves cross each other, as shown in the right panel of the figure 10, applying

the criterion 22 that compares the values of the difficulty parameters, we can conclude

that item 2 is easier than item 1: in fact, looking at the plot in the figure 10, we can note

that the ability that we need to have a 50% probability to answer correctly to item 2

is smaller than that we need for item 1. Furthermore, this conclusion does not take into

account the fact, that, for example, the ability that we need to have a 70% probability to

answer correctly to item 1 is larger than those that we need for item 2. We can conclude

that this criterion allows us to have a partial evaluation of the item difficulty, since it is

based only on the comparison of the difficulty parameters.

A possible solution of this problem has been proposed by [25], in which they compare the

areas under the item characteristic curves of the two items we want to compare: from the

definition of item characteristic curve, it follows that the larger it is, the easier the item is.

In fact, for a very easy item, the probability of correct response is high for all the ability

levels and therefore the area under the ICC is large.

Following [25], the area under the curve is calculated by integrating the expression of

the ICC over the ability scale: assuming that the ability ranges in an interval (A, B), the

difference between the area under the ICC of the item j and k is calculated as follows:

∫ B

A

exp(aj(θ − bj)

1 + exp(aj(θ − bj)
− exp(ak(θ − bk)

1 + exp(ak(θ − bk))
dθ = (23)

[log(1 + exp(aj(θ − bj)))− log(1 + exp(ak(θ − bk)))]
B
A (24)

As noticed in [18], the problem concerning this approach is the choice of an appropriate

interval for the ability, that is an opportune choice of the values A and B; in [25], according

to their experience, they integrate on the interval (−3, +3), but this choice is, of course,

arbitrary. In fact, consider the right panel of the plot in the figure 10: if we choose to

integrate on the interval [−6, 0], then the item 2 is easier than the item 1. On the other

hand, if we choose to integrate on the interval [2, 6], we then conclude that the item 1 is

easier than the item 2.

To avoid this problem, [18] suggested to integrate on the entire theta scale range, that is
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on (−∞, +∞): they proved that, under the 1PL and 2PL models the expression 23 is

reduced to the difference between the difficulty parameters,that is∫ +∞

−∞

exp(aj(θ − bj)

1 + exp(aj(θ − bj)
− exp(aj+1(θ − bj+1)

1 + exp(aj+1(θ − bj+1))
dθ = bj − bk (25)

It must be underlined that this equality is not true in the case of the 3PL model, for

which more complex expressions need [18].

We note that the problems discussed make sense when we have item characteristic curves

that cross each other; in fact, when two curves do not cross each other, there is stochastic

dominance of one item with respect to the other, that is

Pj(θ) < Pj′ (θ) (26)

then

Efθ
[Pj(θ)] < Efθ

[Pj′ (θ)] (27)

for all possible fθ.

Therefore when the ICC curves do not cross each other, the inequality in 27 is true for

all possible distribution of f(θ) and the criteria 25 and 23 lead to the same conclusions.

On the other hand, when the curves cross each other, the inequality in 27 depends on the

probability distribution of θ.

For the criterion 25 we observe that it assumes the ability uniformly distributed on the

entire interval, that is the density function of θ is uniform. This assumption is in contrast

with the assumptions of the item response models: in fact, item response models assume

that the ability are distributed as a standard normal distribution. Therefore, the criterion

25 assumes distributions for the ability parameters which are not the same assumed by the

item response model used to estimate the difficulty parameters that 25 wants to compare.

In order to take into account the ability distribution in comparing item complexities, we

propose the following alternative: we calculate the differences written in 25 weighted with

the ability distribution, that is we calculate the following expression:∫ +∞

−∞

[
exp(aj(θ − bj)

1 + exp(aj(θ − bj)
− exp(aj+1(θ − bj+1)

1 + exp(aj+1(θ − bj+1))
f(θ)

]
dθ = EN(0,1)[Pj(θ)]− EN(0,1)[Pj

′ (θ)]

where f(θ) is the density function of the ability distribution. In our model, we suppose

that the ability is distributed as a standard normal: therefore we assume f(θ) ∼ N(0, 1).
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Easy Items Word Difficult Items Word

Item 172 Presuntuoso Item 147 Cassare

Item 143 Pescatore Item 166 Ingegnoso

Item 167 Fratellanza Item 174 Costernazione

Item 139 Illuminazione Item 141 Laminato

Item 150 Svuotato Item 160 Compulsare

Item 31 Ligneo Item 96 Sassofono

Item 4 Scopa Item 157 Timpano

Item 2 Palla Item 169 Deciduo

Item 115 Medico Item 170 Telaio

Item 30 Balena Item 58 Frullare

Table 3: List of the first ten easier and more difficult items and their correspondent words

for the criterion 25

The expression in 28 solves the problem of the arbitrariness of integration range choice,

that is the choice of the interval (A, B), and it also takes into account a distribution for

the ability parameter coherent with the model assumptions.

As we can see, a closed form solution for the expression in 28 does not exist; that’s why

we approximate this expression using the MC method.

3.6.1 Results item comparison

Tables 3 and 4 show the results in terms of item difficulties obtained by applying the

criteria reported respectively in 25 and 28.

We compare the posterior probabilities that the item i is more difficult than the item j,

for i, j = 1, 2, ..., 175 using both criteria.

As we can see, the two criteria give similar results. Furthermore some conclusions of

the criterion in 25 seem to be not plausible with respect the objective difficulty of the

correspondent word. For example, the easiest item for this criterion is 172, that corre-

sponds to the word ”presuntuoso” (in English ”conceited”): looking at the correspondent
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Easy Items Word Difficult Items Word

Item 4 Scopa Item 58 Frullare

Item 139 Illuminazione Item 96 Sassofono

Item 143 Pescatore Item 108 Balaustra

Item 2 Palla Item 141 Laminato

Item 8 Candela Item 155 Ellisse

Item 5 Ape Item 124 Cingere

Item 9 Pianta Item 128 Lubrificare

Item 1 Automobile Item 145 Allettare

Item 10 Leggere Item 174 Costernazione

Item 16 Collo Item 146 Stame

Table 4: List of the first ten easier and more difficult items and their correspondent words

for the criterion 28

picture, this term cannot be considered the easiest one since only the 10% of the indi-

viduals answered correctly. The same can be said for the terms ”fratellanza” (in English

”brotherhood”) or ”svuotato” (in English ”empty”).

Therefore we can say that some conclusions drawn with this criterion may be misleading.

For the criterion 28 one of the most difficult item is the item 58 that corresponds to the

word ”frullare”, in English ”to whip”: this term does not seem to be so difficult and it is

widely used in the common slang, but its picture represents a whisker, which is used not to

whip but to whisk. The same for the item 96, that corresponds to the word ”sassofono”, in

English ”saxophone”: the picture shows four wind instruments, that is a trumpet, trans-

verse flute, saxophone and an horn. Therefore it is difficult for the children to distinguish

the different instruments.

Particular items are also item 11, ”scala a pioli” (in English ”ladder”), and item 48, ”mo-

bile” (in English ”furniture”). For the item 11, it is considered quite easy in the English

scale, but for Italian children it seems to be quite difficult: in fact, in order of difficulty it

is in the 80th position. This is mainly due to the fact that in English they have different
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words to indicate the different type of stairs: they have ladder, perron, staircase ... In

Italian we have only one word, ”scala”, and several adjectives to distinguish the different

types of stairs. Furthermore, the term ”scala a pioli” is not largely used.

The item 48 corresponds to the word ”mobile”: this item resulted quite difficult for Italian

children because the word ”mobile” can have several meanings: it can mean furniture but

also, an more commonly, movable. The correspondent picture shows a stair, a balcony, a

candelabrum and a sofa: one of the possible meaning of the term ”mobile” is referred to

sofa, but it is not the more common meaning.

Another difficult question is the item 160: the correspondent word is ”compulsare”, an

Italian translation of the English term ”perusing”: the Italian translation of the term is,

of course, right but the term ”compulsare” is not of the usual language.

On the other hand, items 139 and 143 resulted too easy to stay in those positions: in fact,

the word correspondent to item 139 is ”illuminazione” (in English ”lighting”) and for the

item 143 it is ”pescatore” (in English ”fisherman”). Both words are of common use and

the correspondent pictures quite clear.

Therefore, we can conclude that, with respect our decision rule 28, there are some viola-

tions of the increasing difficulty order of the items. This violations can be due to several

motivations: first of all we notice that some words are not completely opportunely trans-

lated, in the sense that they translated literally without taking into account the use of

the word in the common slang. Furthermore some pictures do not represent appropriately

the correspondent word.

As stated in [26], a translated word and an original word, although expressing identical

concepts, may be of different degrees of difficulty in the new and in the original languages.

Therefore, according to [20], the literal translation must be done very carefully in the sense

that the experts should translate by replacing the intended concept with one which judged

to be similar. In this case, this study can be used as a pilot study: these results can help

psychologists to modify the test in terms of term translations and item ordering.
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4 Conclusion

In this thesis we mainly focused on the application of the Bayesian approach to the item

response theory: we highlight the advantages of this approach in terms of flexibility and

applicability. In particular, we applied the classical item response models, as 1PL and

2PL to the PPVT-R data; the classical models have been extended to take into account

and evaluate the influence of important covariates on the ability parameters.

The goodness of fit of the three models, 1PL, 2PL and model with covariates, have been

checked using the posterior predictive p-value approach, using as discrepancy measures the

observed and predicted scores and the observed and predicted odds ratios. It results that

the model with covariates fits the data better than the other models, as also confirmed

by the AIC, BIC and DIC indices.

Once we selected a model that fits the data in a plausible way, we focused on the problem

of the item difficulty comparison: we reported several criterion proposed in the literature

and we highlighted their limitations. Then we proposed an alternative method expressed

by the equation 28, in which the difficulty levels of two items are compared using the

entire item characteristic curves and taking into account the ability distribution.

The different criteria have been compared using the PPVT-R data and the advantages of

the proposed criterion have been underlined. The difficulty of the translation of the test

have been highlighted: in particular, we noticed that some words resulted more difficult

for the Italian children than for the English children because of the translation was not

completely adequate. Furthermore we also noticed that the ordering of the items should

be adapted taking into account the degree of use of the term in the common slang.

In this thesis we chose to apply a Bayesian approach to classical item response theory:

in particular, we chose to use a standard normal distribution for the ability parameters.

Further extension of this work may include the analysis of possible alternative for the

ability distributions and alternative decision rules to evaluate the difficulty of the items.
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