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Abstract  

The main characteristics for the spatial variation of the photon and phonon wave fields 

at the band gap boundaries are derived for a one dimensional medium with periodic 

optical or acoustic parameters.  The derivations are based on symmetry considerations 

and on analytical results derived from the basic differential equation for the wave 

field.  A simple relation is derived between the band gap width and the derivative of 

the square modulus of the field at the interface between the regions of high and low 

wave velocity.  The features of the standing waves are derived for various gap 

numbers and continuously varying acoustic/optical parameters of the medium.  Using 

the results a remarkable asymmetric behaviour of the wave absorption near the 

Brillouin-zone boundaries could be explained in a straightforward way.   

 

 
  3  Author to whom any correspondence should be addressed.   
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1.  Introduction  

 

 In recent years a lot of research has been done on waves in media with periodic 

properties, both for scientific and technical reasons.  This can concern acoustic waves in so 

called phononic crystals (e.g. acoustic superlattices) or electromagnetic waves in photonic 

crystals, where the optical parameters have translational symmetry.  Because an electron 

moving in a periodic potential and an electromagnetic (or acoustic) wave in a periodic 

medium are related phenomena, it can be understood that the wave frequencies will show 

band structure, and that forbidden frequency intervals (frequency gaps) will occur [1-4].  This 

is the physical basis for a number of existing or possible applications such as antennas, lasers, 

optical filters, prisms, mirrors, wave guides etc. (See e.g. [5] and references given there).  

Near the band edges interesting phenomena occur, such as the suppression of the wave group 

velocity and the modification of the spontaneous emission rates of atoms and molecules [6-

10].   

In this paper special attention will be paid to the results of Kuzmiak et al. [11] where a 

periodic system was studied, consisting of thin metallic regions in combination with non 

dissipating regions.  These authors found a remarkable behaviour of the absorption 

coefficients and electromagnetic wave lifetimes for wave vectors near the zone boundaries.  

These physical parameters showed asymmetric behaviour according to the frequency value 

(larger or smaller values depending on the position of the frequency with respect to the band 

gap, see § 5).  In order to explain results like that of Kuzmiak et al. it is necessary not only to 

have a good knowledge of the photonic (phononic) band structure, but also to have a clear 

physical picture of the spatial variation of the (acoustic or electromagnetic) field for 

frequencies near the forbidden band.  One can expect indeed that absorption effects will be 

the most important in spatial regions with a large field amplitude.  The properties of periodic 

media can be studied in the most direct way in a one dimensional medium with alternate 

layers [12-21], in analogy with the Kronig - Penney treatment of an electron moving in a 

periodic potential [22,23].  The properties of the band frequency spectrum for such a one 

dimensional periodic medium were studied already by several authors [13,24].  In the present 

paper we concentrate rather on the properties of the field near the band edges (standing wave 

field), which are investigated systematically as a function of the parameters of the  periodic 

structure.  The explanation of the results of Kuzmiak et al. will be straightforward then.   

In § 2 the results for the dispersion relation and the field will be given, using 

dimensionless quantities as much as possible.  The band gap and field behaviour are studied 
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in a more general analytic way in § 3 and 4,  where also some numerical examples are given.  

Conclusions are drawn in § 5.   

 

 

2.  Dispersion relation and spatial variation of the field  

 

  In our study of the propagation of electromagnetic or elastic waves, we start with the 

one dimensional wave equation (Helmholtz eqn., see e.g. [1])  

 c 2 ( x )  
2xd

)x(U2d    +   ω 2 U ( x )   =   0          (1)  

The field  U(x)  represents the spatial dependence of e.g. an electric field component, or the 

deviation of an atomic coordinate from its equilibrium value.   c(x) is the local periodic wave 

velocity which is chosen as a piecewise constant function, and  ω  the frequency.  We adopt 

the following notation.  In regions  I  (layers of thickness  d1 ) the velocity equals  c1  ;  for 

regions  II  (thickness  d2 ) the velocity is  c2   with  c2 < c1 .  Near the origin  ( x = 0 )  region  

I  extends from  x = 0  to  d1   and  region  II  from  x = - d2  to  0 .  The period for the function  

c(x)  equals  d = d1 + d2.   

Due to the periodicity of  c 2  in eqn. (1) the field  U(x) is a Bloch type function :   

 U ( x + d )   =   exp ( i k d )  U ( x )         (2)  

where  k  is the quasi-wave number.  In principle  k  can be any number, but often it is chosen 

in the interval  [- π /d , π /d ]  (first Brillouin zone).  In every region  U(x)  can be written as a 

linear combination of exponentials  exp ( ± i k x ) .  By taking into account  1) the continuity 

of   U(x)  and  dU/dx  at the interface points and  2) the Bloch condition,  one finds a set of 

linear and homogeneous eqns. in the coefficients of the exponentials in each region.  The zero 

determinant condition for this set of eqns. leads in a straightforward way to the dispersion 

relation  

cos k d   =   ( cos k1 d1 ) ( cos k2 d2 )  -  
2
1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

1

2

2

1
k
k

k
k

( sin k1 d1 ) ( sin k2 d2 )      (3) 

where  

 k j  =  
jc

ω   ( j = 1 , 2 )        (4) 
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are local wave numbers.  For a given  ω  the function  U(x)  can be determined from the 

homogeneous equations for the coefficients of the exponentials.  In the regions  I  and  II  near 

the origin  U(x)  is respectively proportional to :   

 U I (x)   ~   Q 1  cos ( ω x / c1 )  -  ( c1 / c2 )  Q 2  sin ( ω x / c1 )     

 U II (x)   ~   Q 1  cos ( ω x / c2 )  -  Q 2  sin ( ω x / c2 )      (5a,b) 

where the constants  Q j   will be given further.    

 

 In order to study the dependence of the dispersion relation and the field  U(x)  on the 

various parameters ( ω , c1 , c2 , d1 , d2 ) in a transparent way, dimensionless parameters will 

be used  as much as possible.  We introduce the following dimensionless parameters :  

 α  =  c1 / c2   β  =  d1 / d2        (6a,b) 

 ω*  =  
><

ω
c
d    x*  =  

d
x   k*  =  k d               (7a,b,c) 

The quantity  < c >  in eqn. (7a) is a weighted mean wave velocity in the regions  I  and  II  

[25]  defined by   < c > - 1  =  ( d1 / d ) ( c1 ) – 1  +  ( d2 / d ) ( c2 ) – 1  .  Together with               

the introduction of dimensionless parameters, we transform the dispersion relation (3) in a 

more transparent equation.  The product of the 2 cosines in this eqn. can be written as   

cos ( k1 d1 +  k2 d2 )  augmented with a correction, where the latter can be combined with the 

second contribution in eqn. (3).  After these manipulations and the introduction of the 

dimensionless quantities of eqn. (6,7), one obtains for the dispersion relation  

 cos k*   =   cos ω*   -   
2
1  

α
α− 2)1(  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β+α

ωβ *sin  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+α

ωα *sin    (8)  

 The dimensionless parameters can as well be substituted in the expression for  U  

(eqns. (5)).  This leads to  

 U I (x*)   ~   Q 1  cos 
β+α

ωβ+ *x*)1(    -   α  Q 2  sin 
β+α

ωβ+ *x*)1(         

 U II (x*)   ~   Q 1  cos 
β+α
ωβ+α *x*)1(    -   Q 2  sin 

β+α
ωβ+α *x*)1(              (9a,b) 

where detailed study turns out that  

     Q1(ω*)   =   - cos k*  +  ½  [ (1 – α ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α+β

ωα−β *)(cos  +  ( 1 + α ) ( cos ω* ) ]   

     Q2(ω*)   =   - sin k*  -  
α2
1  [ (1 – α ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α+β

ωα−β *)(sin  +  ( 1 + α ) ( sin ω* ) ]         (10a,b) 
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For zero contrast between the media  (α_= 1)  dispersion relation (8) reduces to   

cos ω*  =  cos k*  .  Hence in the extended zone scheme the dispersion relation becomes the 

straight line  ω*  =  k* .   In the reduced zone scheme this corresponds to a number of straight 

lines intersecting at  k*  = 0  or  ± π  (the centre and boundaries of the first Brillouin zone).  

For non zero contrast  (α_≠_1)  band gaps for  ω*  will open at the centre and boundaries of 

the Brillouin zone, because the term containing  α  in eqn. (8) brings the r.h.s. of the equation 

out of the interval [ - 1 , + 1 ].  Each gap can be characterized by two boundary frequencies 

which we will denote as  ω n -
*  and  ω n +

* .   n  is the number of the gap, and  ω n -
*  and  ω n +

*  

are respectively the low and high  ω*  value at the boundaries of the nth gap.  The fields 

corresponding to these  ω*  values will be denoted as  U n -   and  U n +   respectively.  The 

successive gaps (n = 1 , 2 , ...) are attained for  k = n π  and the frequency gaps are situated 

near  ω*  ≈  n π .   

 

 

3.  Behaviour of  ω*  and the band gaps  

 

 The band gap will disappear when the second term in the r.h.s. of eqn. (8) equals zero.  

This can occur in the trivial case  α_= 1 ,  but also if one of the sinus functions is zero.  So the 

condition  β ω* / (α + β) = n' π   (integer n' ) leads to a zero gap situation.  Because ω*  will 

then approximate  n π  within a very narrow interval, one easily obtains the condition for zero 

gap  

 (β/α) z.g.   =   
'nn

'n
−

           (11) 

where  n'  is any integer for which  0  ≤�n'  ≤�n .   For  n' = 0 or  n  one has the limiting 

situation where  β/α  →  0  or  ∞   (one material has an extreme thickness or  c  value).  The 

gap disappears for  β/α   equal to  1  (for n = 2 ) ,  ½  and  2  (for  n = 3 ) , 1/3 , 1 and 3 (for  

n = 4 ) etc.  The  n = 1  gap can not really disappear because there exists no appropriate  n'  

value.   

The values of  ω n ±
*  to be determined from dispersion eqn. (8) with the l.h.s. equal to  

± 1,  are functions of  α  and the ratio  β/α  .  For a given  α ,  the two real and positive 

numbers  p  and  1/p  for the ratio  β/α  lead to the same values of  ω n ±
*  .  Hence the gap 

boundaries and the frequency gaps are functions of  the quantity  | ln β/α | .    
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In fig. 1 the behaviour of the gap width is illustrated for  n = 3 .  The width  Δω 3 
*   =  

ω 3 +
*  - ω 3 -

*  is shown as a function of  β/α  for  α = 1.5 .  As mentioned above the gap 

disappears for  β/α  =  0, ½ , 2 and  ∞ .  Because of the dependence on  | ln β/α | ,  it shows a 

maximum for  β/α = 1, in between the zero gap situations.  Other maxima appear for  β/α  near  

0.25  and  4 .  Some results on the behaviour of  U n -   and  U n +  will be discussed in relation 

to fig. 1.   

 

 

4.  Analysis of the behaviour of the fields  U n -   and  U n +   

 

4.1.  Periodicity, number of oscillations and parity    

 Although  U(x)  is known exactly by eqns. (9a,b) and (10a,b), it is difficult to infer its 

main features from it in a simple way.  Therefore we will study various properties of  U n ± (x),  

which will lead finally to an overall picture of the behaviour of these functions.   

 Because  k* = n π  (modulo 2π )  at the gap boundaries, the Bloch condition (2) and 

eqn. (7c) lead to  

 U n ± ( x + d )  =  ( - 1 ) n  U n ± ( x )         (12)  

This implies that for gaps with even  n ,  U n ±  has the same periodicity as  c(x) ,  while for 

odd  n  it has a redoubled period.  Both for  n  even or odd, the squared function (intensity)   

U n ±
 2

 (x)  is periodic with period  d .  Furthermore, because  ω n 
*  ≈  n π   for the various gaps, 

the number of oscillations increases with  n .  Detailed considerations lead to the result that   

U n ±
 2

 (x)  contains  n  oscillations over one period  d .   

Because  c2(x)  in eqn. (1) is invariant under reflection with respect to the points  x =  

d1 / 2  and  - d2 / 2 ,   U(x) will be symmetric or antisymmetric.  This implies that  U ( - x' ) =  

± U ( x' )  where  x'  is the coordinate with respect to the reflection point.  U 2(x)  will then be 

even with respect to  x = d1 / 2  and  - d2 / 2 ,  and this implies that the derivatives  dU 2 / dx   

at  x = - d2   and  x = 0  have opposite signs but the same absolute value.  Further the 

derivatives at  x = - d2   and  x = d1  are equal, in agreement with the periodicity of  U 2(x) .   

 

4.2.  Particular behaviour of  U n -  versus  U n +   

 We now concentrate in detail on the spatial variation of  U n –   versus that of  U n + .  

The various functions  U(x)  will be normalized according to the condition  

 U∫ =
d

0x
 2(x) dx   =   1           (13)  
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In order to obtain further information on the behaviour of  U n ± (x) ,  we will prove some 

relations derived from the basic wave equation (1) and the properties of  U  considered above.  

We start by multiplying eqn. (1) (with  U(x)  substituted by  U n ± (x) )  with  U n ± (x) ,  and by 

integrating over one period for  U n ± (x) .  This period is  2d  for  n  odd, and  d  for  n  even.  

Using the Bloch property and the normalization condition (13) one arrives at (both for  n  

even and odd)   

    =  -  ∫  c2
n ±ω =

d
0x

2(x)  U n ± (x)  ( d 2 U n ± / d x 2 )  dx       (14)  

We want to transform this equation using partial integration.  But in this respect the behaviour 

of  c(x)  is important, because this function shows discontinuities.  In the present paper we 

only consider the case of a piecewise constant function  c(x) , with discontinuities in the 

points  x = x j .  Using partial integration in the intervals where  c(x)  is constant, the Bloch 

property and the continuity of  U(x)  and  dU/dx ,  eqn. (14) can be transformed into  

2
n ±ω    =   

2
1

j
j xd

2Ud n
∑

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
± (   -   )   +   2c j+

2c j − ∫ =
d

0x

2

xd

Ud n
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ±  c2(x)  dx         (15) 

In the case where  c(x)  varies between the discontinuity points,  supplementary terms have to 

be added in the r.h.s. of this equation.  The parameters  c j +   and  c j –  in eqn. (15) are the 

values of  c(x)  at respectively  x = x j + ε   and  x = x j - ε   where  ε  is an infinite small 

number.  The sum in eqn. (15) runs over the various discontinuities for  c(x).   

 In the present study we have 2 discontinuities for  c(x), at  x = 0 and  - d2 .  

Application of eqn. (15) leads then to  

2
n ±ω  = 

2
1 (  -  )2c1

2c2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
±±

2

nn

dx
xd

2Ud

0x
xd

2Ud
+ ∫ =

d
0x

2

xd

Ud n
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ± c2(x) dx 

            (16)  

As argued in § 4.1 the derivatives  dU n ±
 2 / dx  for  x = 0  and  - d2  have opposite values.  

Therefore eqn. (16) becomes  

     =  (  -  ) 2
n ±ω 2c1

2c2

0x
xd

2Ud n

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
±  +  ∫ =

d
0x

2

xd

Ud n
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ± c2(x) dx    (17)  

After subtracting the 2 equations applied for the cases  +  and  -  one obtains :  
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   -     =   MC  +  SC        (18)  2
n +ω 2

n −ω

Here the main contribution (MC) and secondary contribution (SC) to the positive difference  

ω n + 2  -  ω n - 2  are given by  

 MC   =   (  -  )  2c1
2c2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

0x
xd

2Ud

0x
xd

2Ud nn    (19a) 

 SC   =   xdd
0x

2

xd

Ud2

xd

Ud
)x(2c nn

∫ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+              (19b) 

 

One of the most striking characteristics of the functions  U n ± (x)   follows from the 

previous equations.  Because   c1
 2  - c2

 2  > 0   and  ω n +  >  ω n -   eqns. (17), (18) and (19a) 

suggest that  ( dU n
 2  / dx ) x = 0  will be  positive for  U n = U n +   and negative for  U n = U n -  .  

This means that  U n +
 2

 (x)  will increase and  U n -
 2

 (x)  decrease when entering a region of 

larger  c(x).  But this will only be true if the MC term dominates the SC term in eqn. (18).  

That this is true can be shown as follows.  By introducing second derivatives of the functions  

U n ±
 2  ,  the MC  (eqn. (19a)) can be transformed into   

 MC   =   xdd
0x 2xd

)2U(2d
2xd

)2U(2d

2
1)x(2c nn

∫ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

+−       (20)  

By comparison of eqns. (20) and (19b) we thus have to show that the value of the square 

bracket in the integral of eqn. (20) is larger than that in eqn. (19b).  This is done as follows.  

The functions  U n ± (x)  are approximately proportional to the oscillating function   

cos ( nk x + θ n ± )  with  nk   a mean wave number.   U n ±
 2

 (x)  is then proportional to   

1 + cos (2 nk x  + 2 θ n ± ) .  When the phase difference equals  θ n -  -  θ n +  =  π/2 ,   U n +  and   

U n -  are orthogonal functions, leading to intensities  U n +
 2

 (x)  and  U n -
 2

 (x)  with opposite 

derivatives.  When  - π   ≤�2θ n +   ≤�0   (and hence  0  ≤�2θ n -  ≤�π )  the derivative   

( d U n ±
 2 / dx ) x = 0   is positive for  U n +

 2   and negative for  U n -
 2 .  Starting with the  

cos ( nk x  + θ n ± )  approximation for  U n ± (x) ,  straightforward calculation shows that the 

square brackets in the integral for MC (eqn. (20)) and for SC (eqn.(19b)) are proportional 

respectively to  2 cos (2 nk x  + 2 θ n ± )   and  - cos (2 nk x  + 2 θ n ± ) .  This means that the SC 
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term in eqn. (18) has the opposite sign of the MC term, but its absolute value is only half the 

MC value.  The above relations are confirmed by numerical calculations.   

 Because of eqn. (19a) and the previous considerations, eqn. (18) becomes  

    -     ≈    2
n +ω 2

n −ω
2
1  (  -  )  2c1

2c2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

0x
xd

2Ud

0x
xd

2Ud nn  (21a) 

       =   (  -  )  2c1
2c2

0x
xd

2Ud n

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+      (21b) 

The difference  ω n +  -  ω n -   is usually small in comparison with  ω n ± = < c > ω n ±
* / d  ≈   

n π < c > / d  and therefore eqns. (21a,b) lead to the following relations between the gap width 

and the derivative of  U 2 at the interface :  

    ≈   −+ ω−ω nn ><π

−

cn4
)2c2c(d 21  .

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

0x
xd

2Ud

0x
xd

2Ud nn  (22a) 

                 =   
><π

−

cn2
)2c2c(d 21  .

0x
xd

2Ud n

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+        (22b) 

 Substitution of the  cos ( nk x  + θ n ± )  approximation for  U n ± (x)  in eqn. (21b) learns 

that  ( ω n + 2  -  ω n - 2 )  ~  ( dU n +
 2 / dx ) x = 0   ~  - sin ( 2 θ n + ) .   Thus if the gap width 

approximates zero,  θ n +  equals  0  or  - π/2 .  Simple inspection turns out that under zero gap 

condition, both functions  U n ±
 2

 (x)  show an extremum at  x = 0, and are proportional to   

sin 2 nk x   or  cos 2 nk x .  Hence in that case  U n + (x)  and  U n - (x)  show an extremum 

(antinode), or pass through  0 (node)  at  x = 0 .  We will point out in § 4.4 which is the 

relevant case in specific circumstances.   
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4.3.  Amplitude of  U  in the two regions   

 We finally look for the exact ratio of the amplitudes of the oscillating function  U(x)  

in the regions  I  and  II .  In region  I  near the origin, U(x)  can exactly be written as   

U I (x)  =  A I  cos (ω x / c1  + φ I )   and analogous for region II.  These expressions are 

alternatives for eqns. (5a,b).  In order to find the ratio  A I  / A II   we exploit the continuity of  

U(x)  and its derivative at the interface between  I  and  II .  For simplicity we denote the 

values of  U  and  dU/dx  at the interface point  x = 0  respectively as    and   .  Then 

the requirements that  U

0U 'U0

 I (x)  must have this specific function and derivative leads to the 

conditions  A I  cos φ I =     and   A 0U I  sin φ I = - ( c1 / ω ) .  Combination of these 

conditions leads to  

'U0

( A I ) 2  =  ( )0U  2   +  ( c1 / ω ) 2  ( )'U0
 2         (23) 

After dividing this eqn. by its analogue for region  II, one obtains  

 ( A I / A II ) 2  =  
2)'U(2)/c(2)U(

2)'U(2)/c(2)U(

020

010

ω+

ω+
        (24a) 

   =  
2)U/'U(2)/c(1

2)U/'U(2)/c(1

002

001

ω+

ω+
      (24b) 

 Because  c1 > c2  eqn. (24b) tells us that  

 A I   ≥   A II           (25) 

When for particular input parameters one has  = 0  and   ≠_0 ,  the r.h.s. of eqn. (24a) 

becomes  ( c

0U 'U0

1 / c2  ) 2 .  Hence we can write   

 ( A I / A II ) U0 = 0   =   c1 / c2          (26a) 

In the complementary case  ≠_0  and   = 0  eqn. (24b) leads to  0U 'U0

 ( A I / A II ) U ' 0  = 0   =   1          (26b) 

 

4.4.  Behaviour of  U n ± (x)  in specific cases    

 Using the results of the previous sections, we investigate now the features of  the field 

for a few situations.  First we examine the case where  n ≥_3.  From § 3 we know that there 

are at least 2 real  β/α  values giving zero gap.  For  β/α  in between the  (β/α) z. g.  values the 

gap width will attain a maximum and, because of eqn. (22b), the slope  dU n
 2 / dx  on the 
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boundary between regions  I  and  II  will attain an extremum.  For  n = 3  for instance the 

maximum gap will arise for  β/α  ≈_1, situated between  (β/α) z. g.  =  ½  and  2.   

 The previous situation changes thoroughly when  β/α  approaches a  (β/α) z. g.  value.  

We first investigate the behaviour of  U n ± (x)  when  β/α  is slightly larger than a certain  

(β/α) z. g.  value.  This can be done using the following arguments.  When the zero gap 

condition is exactly fulfilled, the derivative  ( dU 2 / dx ) x = 0   is zero (see end of § 4.2), and 

therefore  U n ±
 2

 (x)  attains an extremum at  x = 0 (zero value or maximum).  But when (for a 

certain  α )   β = d1 / d2  becomes somewhat larger than  β z.g. ,  zone  I  becomes wider and the 

boundary between zone  I  and  II  shifts to the left.  Hence  U 2  will become zero or attains a 

maximum for small positive  x .  In the first case  ( dU 2 / dx ) x = 0   will be slightly negative, 

and (because of § 4.2) this depicts the behaviour of  U n -
 2

 (x) .  In the second case   

( dU 2 / dx ) x = 0  is slightly positive, and this behaviour describes the function  U n +
 2

 (x)   .  In 

the first case  ( U - (x)  shows a node for small positive x)  ≈_0  and   ≠_0  in the 

notation of § 4.3,  and because of eqn. (26a) one has  A 

0U 'U0

I / A II  ≈_c1 / c2  .  In the second case  

( U + (x)  shows an antinode for small positive x)  one has   ≠_0  and   ≈_0 ,  so that 

eqn. (26b) results in  A 

0U 'U0

I / A II  ≈  1 .   

 The situation in which β/α  is slightly smaller than a certain  (β/α) z. g.  value, can be 

analysed in an analogous way.  Now the boundary between zone  I  and  II  (for x = 0) will be 

situated to the right hand side of the points where  U 2(x)  is extremum.  This time the function  

U - (x)  has an antinode for small negative  x ,  and for this field  A I / A II   ≈_1 .  In contrast 

with this  U + (x)  will show a node for small negative  x ,  while  A I / A II  ≈_c1 / c2 .   

 We now consider the situation for  n = 1 ,  which deviates in several aspects from the 

higher  n  cases.  For  n = 1  the gap can only disappear if  β/α = 0 or ∞ .  As indicated in § 4.1 

the functions  U 1 ±
 2

 (x)  show only one oscillation in an interval  d .  Also here  A I > A II  as 

shown in § 4.3.  However this does not imply that  < U 2(x) > I  (the mean value of  U 2(x)  in 

zone  I )  will be larger than  < U 2(x) > II .  One has to distinguish between the functions   

U 1 – (x)  and  U 1 + (x)  for the following reasons.  From § 4.2 we know that   

( dU 1 -
 2 / dx ) x = 0  < 0  and  ( dU 1 +

 2 / dx ) x = 0  > 0 .  But because  U 1 -
 2

 (x)  shows only one 

oscillation per interval  d ,  this function will become zero in one point in zone  I ,  and will 

attain one maximum in zone  II .  Hence  U 1 – (x)   shows one node in region  I  and one 

antinode in region  II .  So  < U 1 -
 2

 (x) > II  will be larger than  < U 1 -
 2

 (x) > I   although  A II  is 

smaller than  A I .  In an analogous way it can be shown that the function  U 1 + (x)  shows one 
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node in region  II  and one antinode in  I .  Here, in contrast with the situation for  U 1 - ,  the 

mean value  < U 1 +
 2

 (x) > I   will be larger than  < U 1 +
 2

 (x) > II .   

 

4.5.  Numerical examples  

 Figs. 2 and 3 illustrate some of the characteristics of the field derived in the previous 

sections.  The numerical calculations were obtained using the eqns. in § 2.  In fig. 2 the fields  

U 1 ± (x)  and their squares are shown in the interval  - d2 < x < d1   (hence  - 0.4 < x* < 0.6 )  

in the case  α = β = 1.5 .  Because  β/α   is well distinct from the zero gap values, the 

frequency gap is relatively large, and so are the derivatives of  U 2  at the boundary between 

the two regions ( x = x* = 0 ).   Like for arbitrary  n ,   U 1 -
 2  decreases when entering regions 

of higher  c  (e.g. going from negative to positive x ), while  U 1 +
 2  increases there.  Further 

the functions behave as described at the end of § 4.4.   

In figs. 3a and 3b the fields  U 3 ± (x)  and their squares are shown for  α = 1.5  and   

β = 3.1.  For this parameters the ratio  β/α ≈_2.07  just surpasses the zero gap value 2.0 (see 

fig. 1).  As argued above  U 3 -
   will show a node for very small and positive  x , while the 

amplitude of the oscillations is largest in the high  c  regions.  On the contrary  U 3 +
   shows an 

antinode for very small x , and the oscillations show the same amplitude everywhere.  The 

fields in the case that  β/α  is somewhat smaller than 2.0 (not shown) behave in just the 

opposite way as in the previous case.  Then  U 3 -  behaves like  U 3 +  in fig. 3b, and  U 3 +  

behaves like  U 3 -  in fig. 3a, except that the node and antinode occur then for very small but 

negative  x .   

 

 

5.  Concluding remarks  

 

The behaviour of the standing waves  U n - (x)  and  U n + (x)  in the periodic medium 

could be inferred from its periodicity and parity properties (§ 4.1), and from analytical 

considerations starting from the basic wave equation (§ 4.2 and 4.3).  This leads to eqns. 

(21a,b) and (22a,b), simple relations between the gap width  ω n +  -  ω n -  and the derivative   

( dU n
 2 / dx ) x = 0  at the interface between the regions of different wave velocity.  Using this 

result it was derived that the function  U n +
 2

 (x)  will increase and  U n -
 2

 (x)  decrease when 

entering a region of larger  c(x).  This implies that the field  U n + (x)  will show at least one 

node in the low  c  region and one antinode in the high  c  region.  The reverse is true for   

U n - (x)  (one antinode in the low  c  region and one node in the high  c  region).   
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The slope of the function  U n 
 2

 (x)  at the interface will largely be determined by the 

dimensionless parameter  β/α  =  ( d1 / d2 ) ( c2 / c1 )  for the medium.  When  β/α  is well 

distinct from the zero gap values  (β/α) z.g.  (given by eqn. (11)), this slope will have a  relative 

large absolute value.  For  β/α  in the neighbourhood of the  (β/α) z.g  values, detailed analysis 

gives the following results.  When  β/α  is slightly larger than a  (β/α) z.g  value, the function  

U n +  shows an antinode and  U n -  a node near the interface, in the region of the highest  c .  

For  U n +  the amplitudes of the oscillations are equal in the two regions, and for U n -  the 

amplitude is the largest in the region with the highest  c.   (The ratio of the amplitudes is then 

c1 / c2 .) When  β/α  is slightly smaller than some  (β/α) z.g  the complementary situation arises.  

U n +  and  U n -  have now respectively a node and an antinode near the interface, at the low  c  

side.  This time the amplitude of the oscillations is constant everywhere for  U n - ,  and the 

amplitude for  U n +  is larger in the large  c  region.   

 The above analysis can be used in order to interpret remarkable results found by 

Kuzmiak et al. [11].  These authors have studied the photonic band structure in periodic 

systems consisting of  metallic components (thin regions showing dissipation) in combination 

with vacuum or a dielectric.  They find a remarkable asymmetric behaviour of the absorption 

coefficients and electromagnetic wave lifetimes for wave vectors near the Brillouin zone 

boundaries.  This asymmetry is represented by a decreasing absorption coefficient for waves 

with frequencies near the lower band edge at the Brillouin zone boundary, and a significant 

increase for waves with frequencies in the neighbourhood of the upper band edge at the zone 

boundary.  In terms of the above results this can be understood as follows.  Because of the 

large electronic density the relative dielectric constant for metals is smaller than 1 (plasma 

model), and the metallic regions thus have the highest  c  value.  For the low frequency 

standing wave the field amplitude will then decrease when entering the metallic regions.  

Because the latter are thin, the field will show a node in the metallic region, and little 

dissipation will occur, indeed leading to small absorption and a long wave lifetime.  At the 

high frequency side, the field amplitude will increase when entering both sides of the thin 

metallic layers, and the field amplitude will show a local maximum.  This indeed leads to a 

large absorption and a short wave lifetime.   

 The previous explanation of the asymmetric absorption behaviour can also be given in 

terms of the parameter  β/α .  For  β = 0  the zero gap situation occurs (only one medium 

present).  In the described situation  β  is small but not zero, so that we are in the case  where  

β/α   is slightly larger than  (β/α) z.g .  As argued above this leads to a node in the high  c  
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region for the small frequencies (hence small absorption) and to an antinode for the high 

frequencies (large absorption).   

 The above example of the asymmetric absorption behaviour is an illustration of the 

influence of the characteristics of the photon or phonon field on the physical properties of a 

periodic layer system.  It was shown that very small variations for instance of the ratio  β/α  

can thoroughly change the spatial variation of the field and hence of the physical properties.             

Recently it was shown by a number of authors (see [26-29] and references given there) that it 

is possible indeed to vary the characteristics of a periodic medium, even in a continuous way.   
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Figure captions :  

 

Figure 1.   

Dimensionless band gap width as a function of the parameter  β/α  = ( d1 / d2 ) ( c1 / c2 ) – 1 for 

the 3th band gap.  Zero gap width occurs at  β/α  =  (β/α) z. g.  = 0 , ½ , 2  and  ∞ .   

 

Figure 2.   

Dependence of  U1 -
 2  and  U1 +

 2  (resp. (a) and (b)) on  x* = x / d  for  α = β = 1.5 .  Only the 

interval  - d2 < x < d1  (- 0.4 < x* < 0.6)  is shown.  The features of the curves are described in 

detail in § 4.4 and 4.5.   

 

Figure 3.   

Dependence of  U3 -
 2  and  U3 +

 2  (resp. (a) and (b)) on  x* = x / d   for  α = 1.5 , β = 3.1 .  The  

β/α  value just surpasses the zero gap value  2.0 .  The features of the curves are described in 

detail in § 4.4 and 4.5.   
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Fig. (2a) & (2b) :  
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Fig. (3a) & (3b) :  
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