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Abstract Many models to analyze incomplete data that allow the missingness to be

non-random have been developed. Since such models necessarily rely on unverifiable

assumptions, considerable research nowadays is devoted to assess the sensitivity of

resulting inferences. A popular sensitivity route, next to local influence (Cook, 1986;

Jansen et al., 2003) and so-called intervals of ignorance (Molenberghs, Kenward, and

Goetghebeur, 2001), is based on contrasting more conventional selection models with

members from the pattern-mixture model family. In the first family, the outcome of

interest is modeled directly, while in the second family the natural parameter describes

the measurement process, conditional on the missingness pattern. This implies that a

direct comparison ought not to be done in terms of parameter estimates, but rather

should pass by marginalizing the pattern-mixture model over the patterns. While this is

relatively straightforward for linear models, the picture is less clear for the nevertheless

important setting of categorical outcomes, since models ordinarily exhibit a certain

amount of non-linearity. Following ideas laid out in Jansen and Molenberghs (2007),

we offer ways to marginalize pattern-mixture-model-based parameter estimates, and

supplement these with asymptotic variance formulas. The modeling context is provided

by the multivariate Dale model. The performance of the method and its usefulness for

sensitivity analysis is scrutinized using simulations.
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1 Introduction

Clinical studies are oftentimes of a longitudinal nature, and as such, have a tendency

to be incomplete. The nature of such incompleteness can have implications on the

conclusions arising, making it thus essential that appropriate techniques be used in

the analysis of data with missing values. Historically, missing data were ignored and

the analyses carried out on the completers only. With the recent developments in the

area of missing data, however, it has been shown that such an approach would only

be valid under the most restrictive of assumptions (Rubin, 1976). A more realistic

approach takes into account the mechanism driving the missingness, in addition to the

process governing the outcomes, rather than ignore it. Models for incomplete data,

therefore, simultaneously consider both the outcome and non-response processes, Y

and R, respectively, thereby entailing working on the joint distribution, f(y, r|θ,ψ).

For the non-response process, R, one can speak of monotone missingness (or

dropout), in which the unobserved measurements within a longitudinal series all occur

after a particular measurement occasion, and non-monotone missingness , for which

missing values arise intermittently within the series. In general, the missingness pro-

cess, be it monotone or not, can be classified using the taxonomy introduced by Ru-

bin (1976). A mechanism is said to be missing completely at random (MCAR) if the

processes governing the missingness and the outcomes are independent, possibly con-

ditionally on covariates. Under such a case, any analysis ignoring the missing data

would be valid. However, such an assumption is unrealistic and often not applicable

in real-life contexts. A more relaxed assumption would be one of missing at random

(MAR), for which the missingness may depend on the observed outcomes and on co-

variates but, given these, not further on the unobserved outcomes. When, in addition to

such dependencies, the unobserved data provide further information about the missing

data mechanism, then the mechanism is referred to as being missing not at random

(MNAR).

Various routes can be taken in modeling incomplete data, and these depend on

the chosen factorization of the joint distribution, f(y, r|θ,ψ), of the response and

missingness processes. Selection models (Rubin, 1976; Little and Rubin, 2002) use the

factorization f(y|θ)f(r|y,ψ), while the reverse factorization f(y|r, θ)f(r|ψ) is the

basis of pattern-mixture models (Little, 1993, 1994). Alternatively, if Y and R are

taken to be independent, conditional on a common set of latent variables or random

effects, via the factorization f(y|b, θ)f(r|b,ψ), one may use shared-parameter models

(Wu and Carrol, 1988; Wu and Bailey, 1989). An obvious consequence of these different

factorizations is a disparity in the interpretations of the parameters therein, making

it difficult to allow comparison across the three model frameworks. Whereas θ in a

selection model would represent the marginal effects of the dependent variables on the

response, it would denote pattern-specific effects in a pattern-mixture model; when

turning to the shared-parameter model family, θ would denote conditional effects,

conditional on the missingness patterns and on the random effects.

References to pattern-mixture models include Rubin (1977); Glynn, Laird, and

Rubin (1986); Little and Rubin (2002); Hogan and Laird (1997); Molenberghs and

Kenward (2007). Several authors have contrasted selection models and pattern-mixture

models, to either compare the answer to the same scientific question, such as a marginal

treatment effect or time evolution, as a form of sensitivity analysis, or to gain addi-

tional insight by supplementing the results from a selection model with those of a

pattern-mixture approach. Examples can be found in Verbeke, Lesaffre and Spiessens



3

(2001) and Michiels et al. (2002) for continuous outcomes, while categorical outcomes

have been treated by Michiels, Molenberghs, and Lipsitz (1999a); Michiels, Molen-

berghs and Lipsitz (1999b). On a more directed slant, i.e., not necessarily vis a vis the

selection modeling approach, Thijs et al. (2002) discussed various strategies in fitting

pattern-mixture models for continuous outcomes via model simplification, while Jansen

and Molenberghs (2007) explored strategies for the categorical case using identifying

restrictions.

In this paper, we focus on pattern-mixture models (PMM) as applied to categorical

data with monotone missingness using the approach described by Jansen and Molen-

berghs (2007). Our contribution here is to apply the procedure over simulated settings,

so as to be able to assess the performance of the method. Moreover, while Jansen

and Molenberghs (2007) restricted their formulae to marginalized point estimates, we

additionally introduce asymptotic variance expressions. In Section 2, we start with a

brief overview on pattern-mixture models, followed by a description of various identi-

fication schemes. The method for fitting a PMM to categorical data with monotone

missingness is described in Section 2.2. Section 3 describes the design and the results

of the simulation study, and finally, some points of discussion and concluding remarks

are given in Section 4.

2 Pattern-Mixture Models

Pattern-mixture models (PMM) (Little, 1993, 1994, 1995; Molenberghs and Verbeke,

2005; Molenberghs and Kenward, 2007) employ a different response model for each

pattern of the missing values, the observed data being a mixture of these, weighted by

the probability of each missing value or dropout pattern. Thus, the family of pattern-

mixture models is based on the factorization

f(y, r|θ,ψ) = f(y|r, θ)f(r|ψ), (1)

where dependence on covariates is suppressed from notation. The conditional density

of the measurements given the missingness process is therefore combined with the

marginal density describing the missingness mechanism. Note that the second factor

can depend on covariates, but not on the random outcomes. In addition, it is possible

to have different covariate dependencies in either component of the factorization.

A key issue in this modeling framework is that pattern-mixture models, by con-

struction, are under-identified, that is, over-specified. Little (1993, 1994) addresses this

problem with the use of so-called identifying restrictions, whereby inestimable parame-

ters of the incomplete patterns are set equal to (functions of) the parameters describing

the distribution of the completers. Under complete case missing values (CCMV), in-

formation that is unavailable is always borrowed from the completers. Alternatively,

the nearest identified pattern can be used as a donor (neighboring case missing values ,

NCMV). Using such identification schemes, within a specific pattern, the conditional

distribution of the unobserved measurements, given the observed ones becomes iden-

tified. Yet a third possibility is to borrow information for an unidentified distribution

from all patterns for which it is identified (available case missing values , ACMV). A

further set of restrictions is presented in Kenward, Molenberghs, and Thijs (2003). The

concept of restrictions will be elaborated on in what follows.

On the other hand, model simplification can be considered as an alternative to the

use of identifying restrictions in addressing the under-identification in pattern-mixture
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models. This approach might, for instance, restrict trends to functional forms sup-

ported by the observed data within a pattern, e.g., linear or quadratic time trend. One

can also take the route of allowing the parameters to vary in a controlled parametric

way, and, for example, assume that the time evolution within each pattern is unstruc-

tured but parallel across patterns. Thijs et al. (2002) discussed these sub-strategies in

detail, in the context of continuous longitudinal outcomes. Examples can be found in

Molenberghs and Kenward (2007).

2.1 Identification Schemes

Restricting attention to the case of monotone missingness or dropout, let us assume

that we have n patterns (t = 1, 2, . . . , n), for which the complete data density is given

by

ft(y1, y2, . . . , yn) = ft(y1, y2, . . . , yt)ft(yt+1, yt+2, . . . , yn|y1, y2, . . . , yt). (2)

Owing to the monotone nature of incompleteness, the number of repeated measure-

ments is equal to the number of potential patterns, even though some of the latter may

turn out to be empty. Density (2) describes all n outcomes, conditional on pattern t

being observed. Although the first factor on the r.h.s. is clearly identified from the

observed data, and can hence be modeled using the observed data, the second is not,

necessitating the application of identifying restrictions.

While, in principle, completely arbitrary restrictions can be used by means of any

valid density function over the appropriate support, strategies which relate back to the

observed data deserve privileged interest. One can base identification on all patterns

for which a given component ys is identified. A general expression for this is

ft(ys|y1, y2, . . . , ys−1) =

nX

j=s

ωsjfj(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (3)

Let ωs = (ωss, ωs,s+1, . . . , ωsn)′. Every ωs with components summing to one provides

a valid identification scheme. Three special and important cases are considered. Lit-

tle (1993) proposed complete case missing values (CCMV), which uses the following

identification:

ft(ys|y1, y2, . . . , ys−1) = fn(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (4)

In other words, the conditional distribution beyond time t is always borrowed from the

corresponding conditional distribution of the completers, i.e., ωsn = 1 and all other

ωsj ’s set to zero. This identification scheme is perhaps most reasonable and applicable

when a large bulk of the subjects have complete data and only small proportions

fall within the various dropout patterns. Extension of this approach to non-monotone

patterns is also particularly easy. Alternatively, the nearest identified pattern can be

used to identify missing components:

ft(ys|y1, y2, . . . , ys−1) = fs(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (5)

Such restrictions are referred to as neighboring case missing values (NCMV), with

ωss = 1 and the other ωsj ’s set to zero. The third special case of (3) is available case



5

missing values (ACMV), under which derivation of the corresponding ωs vectors is

straightforward and results in

ωsj =
πjfj(y1, y2, . . . , ys−1)Pn

`=s π`f`(y1, y2, . . . , ys−1)
, (6)

where πj is the fraction of observations in pattern j (Molenberghs et al., 1998). Clearly,

ωs defined by (6) consists of components which are nonnegative and sum to one, i.e., a

valid density function is obtained. Molenberghs et al. (1998) showed that, for monotone

missing data, ACMV in the pattern-mixture framework is the natural counterpart of

MAR in the selection model framework.

Note that identifying restrictions are unverifiable assumptions, which also follows

from the unidentified nature of the ω parameters, affording sensitivity analysis rather

than providing an unambiguous answer to the incompleteness issue. One might, for

example, prefer CCMV in cases where the bulk of the data is complete, or perhaps

ACMV since, in the monotone case, it is the counterpart of MAR (Molenberghs et

al., 1998). However, it is wise not to put too much emphasis on one particular set

of restrictions and to consider several. Note that family (3) is termed “interior” by

Kenward, Molenberghs, and Thijs (2003) since identification is done based on distribu-

tions following from the data itself. One could, of course, envisage restrictions coming

from external sources, such as expert opinions, historical studies, etc. These authors

also consider identifying restrictions that ensure dropout does not depend on future,

unobserved values, termed missing not future dependent (MNFD).

2.2 PMM for Categorical Outcomes in the Monotone Case

In this section, we present a procedure for fitting PMM to categorical data with mono-

tone missingness. Jansen and Molenberghs (2007) describe this procedure in detail,

with an application to actual data. In general, the method can be broken down into

three stages. In the first stage, initial models are fitted to the observed data: a uni-

variate model for subjects with one measurement; a bivariate model for subjects with

two measurements; and so on. Identification occurs at the second stage, in which a

particular identifying restriction is chosen. Using the initial models obtained in stage

1, the required probabilities for the chosen identifying restriction are computed and

subsequently used to perform multiple imputation (Molenberghs and Kenward, 2007)

of the missing data to complete each of the patterns. At the last stage, analysis is

conducted by fitting full-vector (n-variate) models to the completed data of each pat-

tern and pooling these analyses over the multiple imputations. The mixture of these

pattern-specific models comprises the final pattern-mixture model.

In line with Jansen and Molenberghs (2007), we zoom in on the case of three binary

outcomes and outline the procedure in detail. Extension to more outcomes and/or to

more than two outcome categories is straightforward. The multivariate Dale model

(Molenberghs and Lesaffre, 1994) will be used to estimate the parameters of the iden-

tified densities. For completers (pattern 3), a trivariate Dale model will be used, for

pattern 2, a bivariate Dale model, and for pattern 1, a univariate Dale model, which

is equivalent to conventional logistic regression. This is referred to as the minimal ap-

proach (Jansen and Molenberghs, 2007). The multivariate Dale model combines logistic

regression for each of the measurements with marginal global odds ratios to describe

the association between outcomes. For three observed measurements, i.e., for the group
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of completers in our case, this results in the following logistic-regression and odds-ratio

formulations (subject-specific indices i are removed for ease of notation, as is an index

to pattern 3 that should be present, strictly speaking, in the p and X functions):

ln

„
p0++

1 − p0++

«
= X1θ, (7a)

ln

„
p+0+

1 − p+0+

«
= X2θ, (7b)

ln

„
p++0

1 − p++0

«
= X3θ, (7c)

lnψ12 = ln

„
p00+(1 − p0++ − p+0+ + p00+)

(p0++ − p00+)(p+0+ − p00+)

«
=X4θ, (7d)

lnψ13 = ln

„
p0+0(1 − p0++ − p++0 + p0+0)

(p0++ − p0+0)(p++0 − p0+0)

«
=X5θ, (7e)

lnψ23 = ln

„
p+00(1 − p+0+ − p++0 + p+00)

(p+0+ − p+00)(p++0 − p+00)

«
=X6θ, (7f)

lnψ123 = ln

„
p000p011p101p110

p001p010p100p111

«
= X7θ,

(7g)

with pijk = P (Y1 = i, Y2 = j, Y3 = k), i, j, k = 0, 1, and a + in lieu of a subscript indi-

cating that the marginal probability over this index needs to be used. It is worthwhile

to note that, using the above formulations, the incomplete patterns provide informa-

tion neither about the unobserved outcomes nor about the associations involving those

unobserved outcomes. Thus, for pattern 2, only an analogous model involving (7a),

(7b) and (7d) can be obtained from the data, while for pattern 1 only (7a) will be

available. Of course, the functions (7a)-(7g) defined above are specific to a particular

pattern and therefore also the design matrices may change from pattern to pattern.

This is necessary, among others, when different patterns correspond to different sets of

parameters.

Also in this setting, one is interested in model parameters for the full set of repeated

outcomes, and thus identifying restrictions are necessary to determine the unknown

probabilities by equating them to functions of known probabilities. In the normal case,

restrictions are very natural to apply, because marginal as well as conditional distri-

butions can be expressed as simple functions of the mean vector and the covariance

matrix components. For categorical data in general and for the Dale model in partic-

ular, there is no easy transition from marginal to conditional distributions in terms of

the model parameters.

First, the minimal approach is followed in the sense that a trivariate Dale model

for the complete pattern is combined with a bivariate and univariate Dale model for

the incomplete patterns. This results in densities f3(y1, y2, y3), f2(y1, y2), and f1(y1),

respectively. From this approach, the following underlying probabilities can be esti-

mated:

py1,y2,y3|3 = P (Y1 = y1, Y2 = y2, Y3 = y3|t = 3),

py1,y2|2 = P (Y1 = y1, Y2 = y2|t = 2),

py1|1 = P (Y1 = y1|t = 1).
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For pattern 2, there is only one possibility to impute the missing cell counts, since

information on the third measurement can only be borrowed from pattern 3. So, the

partial counts Zy1,y2|2 and the conditional probabilities py3|y1,y2,3 = P (Y3 = y3|Y1 =

y1, Y2 = y2, t = 3) have to be used to identify Z∗
y1,y2,y3|2

as Zy1,y2|2 × py3|y1,y2,3. The

asterisk refers to a completed count. The corresponding counts are indicated by the

symbol Z. For pattern 1, we have several possibilities to impute the missing cell counts,

since information on the second measurement can be borrowed from pattern 2 as well

as from pattern 3. Using (3), the joint probability of y1, y2, and y3 in pattern 1 can

be written as:

py1,y2,y3|1 = py1|1

h
ωpy2|y1,2 + (1 − ω)py2|y1,3

i
py3|y1,y2,3,

where specific choices of ω lead to the previously defined identifying restrictions, i.e.,

CCMV, NCMV, and ACMV:

CCMV : py1|1 · py2|y1,3 · py3|y1,y2,3,

NCMV : py1|1 · py2|y1,2 · py3|y1,y2,3,

ACMV : ω =
π2py1|2

π2py1|2 + π3py1|3
,

such that the missing cell counts can be identified as follows:

CCMV : bZ∗
y1,y2,y3|1 = Zy1|1 · bpy2|y1,3 · bpy3|y1,y2,3, (8)

NCMV : bZ∗
y1,y2,y3|1 = Zy1|1 · bpy2|y1,2 · bpy3|y1,y2,3, (9)

ACMV : bZ∗
y1,y2,y3|1 = Zy1|1

"
bπ2bpy1,y2|2 + bπ3bpy1,y2|3

bπ2bpy1|2 + bπ3bpy1|3

#
bpy3|y1,y2,3. (10)

Multiple imputations are then generated by drawing uniformly from Bernoulli variables

with the probabilities embedded in (8)–(10). As stated earlier, once the imputations

have been generated, the so-called analysis task model, i.e., the final model, can be fitted

and multiple-imputation inference conducted. Using conventional multiple-imputation

machinery, obtaining parameter and precision estimates is straightforward. In partic-

ular, suppose M imputations are performed to obtain M completed datasets, each

of which are analyzed, yielding M sets of analyses on some parameter φ of interest.

Letting bφm and bSm, for m = 1, . . . ,M , denote, respectively, the parameter estimate

and corresponding variance estimate for the mth completed dataset, analyses for the

M imputed datasets can be pooled into a single inference by

bφ =
1

M

MX

m=1

bφm and bV = cW +

„
M + 1

M

«
bB,

where

cW =

PM
m=1

bSm

M
and bB =

PM
m=1(bφm − bφ)(bφm − bφ)′

M − 1
,

with cW denoting the estimate of the average within-imputation variance and bB the

estimated between-imputation variance (Rubin, 1987).

Although Jansen and Molenberghs (2007) described an extension of the above

procedure to the case of non-monotone missingness, their analyses were confined to the

monotone case, owing to an almost negligible proportion of intermittent missingness in



8

the data they considered. They further mention that generalization of the procedure

to the non-monotone case would result in a proliferation of parameters, leading to a

trade-off between clarity and parsimony.

2.3 Marginalized Effects Across Patterns

By way of its factorization of the joint distribution of Y and R, as specified in (1), a

PMM gives rise to pattern-specific estimates. In cases where the scientific interest is on

such, a PMM would, of course, be a natural choice. If, however, interest lies on marginal

effects, one might opt for a selection model instead. It is also possible though that one

wants to obtain, from a fitted PMM, so-called “marginalized” effects, i.e., which are

the pattern-specific effects marginalized across all patterns. This might be the case,

for example, when one wants to compare PMM results with their selection model

counterparts. In the case of continuous data, the overall (or marginalized) effect is

simply a weighted average of the pattern-specific effects. For categorical data, however,

the marginalization is less straightforward. Jansen and Molenberghs (2007) propose

an approximation for the marginalized effects of a PMM for a logistic model. While

they presented expressions for marginalized point estimates, we additionally establish

asymptotic variance expressions.

Suppose that to model the data from pattern t, we consider a logistic regression of

a binary response Yij on some treatment of interest, Xi, of the form

P (Yij = 1|t) =
eαt+βtXi

1 + eαt+βtXi
, (11)

where the subscript i refers to the subject and j to the measurement occasion. In

general, t = 1, 2, . . . ,K , where K = n for the monotone case (as in Section 2.1), while

K = 2n for non-monotone missingness, in which case, for instance, the multivariate

Dale model might be used to model the non-response. The parameters αt and βt can

depend on j, but we suppress this index from notation. Assuming that interest is on

one particular treatment effect X , e.g., treatment effect at the last occasion, and that

πt denote the pattern probabilities as defined before, the marginal success probability

over all patterns, is then equal to

P (Yij = 1) =

KX

t=1

πt
eαt+βtX

1 + eαt+βtX
. (12)

From this formulation, there are three ways to calculate the marginal effects (e.g., the

intercept A and treatment effect B) at the last occasion. First, using a direct linear

approach (Park and Lee, 1999), where a weighted average over all patterns is taken,

i.e.,

APL :=
X

t

πtαt and BPL :=
X

t

πtβt. (13)

Though seemingly logical, this marginalization may not be entirely appropriate for

binary responses, as we will show shortly. Second, the marginal probability can be

approximated via a logistic regression, a probit model, or by fully using the longitudinal

nature of the design, through a Dale model, a generalized linear mixed model, etc.

Third, classical averaging can be performed. To this effect, function (12) is kept as

is and then computed, graphed, or sampled from. Note that averaging in this last
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way will be similar to the marginalization of generalized linear mixed-effects model

(Molenberghs and Verbeke, 2005). Here, the marginalization is over pattern, rather

than over random effects. When a GLMM is used in each pattern, then a double

marginalization is necessary, one over the random effects and another over the patterns.

In this paper, although we shall focus on the second approach, using a Dale model,

comparison will also be made with the less appropriate but sometimes used direct

linear approach.

Jansen and Molenberghs (2007) approximate (12) by a logistic regression, i.e., let-

ting AJM and BJM denote the marginalized effects,

f(X) =
X

t

πt
eαt+βtX

1 + eαt+βtX
∼=

eAJM+BJM X

1 + eAJM+BJM X
, (14)

and derived the following expressions for AJM and BJM :

AJM := logit

 X

t

πt
eαt

1 + eαt

!
and

(15)

BJM :=

X

t

πtβt
eαt

1 + eαt

1

1 + eαt

 X

t

πt
eαt

1 + eαt

! X

t

πt
1

1 + eαt

! .

They further showed that when the treatment effects are equal across patterns, the

marginalized treatment effect at the last occasion obtained through approximation

(14), will not be larger in absolute value than that obtained using the direct linear

approach (13). Moreover, marginalization may both increase or decrease the effect in

absolute value when the treatment effects differ across patterns.

Considering now the direct linear approach, Park and Lee (1999) assume that the

pattern-specific success probability (11) is approximately linear, i.e.,

P (Yij = 1|t) =
eαt+βtXi

1 + eαt+βtXi

∼= αt + βtXi, (16)

whereby averaging over all patterns yields the following expression for the marginal

success probability (12):

f(X) =
X

t

πt
eαt+βtX

1 + eαt+βtX
∼= APL +BPLX, (17)

with APL and BPL as defined in (13). Clearly, the assumption that the pattern-specific

success probability is linear, though probable in certain cases, is generally not realistic

for most scenarios. Moreover, approximation (16) essentially ignores the presence of

the link function in modeling the binary response. Though this approach to obtain

marginal effects is entirely appropriate for Gaussian outcomes, for which the response

is modeled directly, i.e., with linear link function, such an approximation can easily fail

when modeling is done via a link, especially when the link entails a highly non-linear

transformation of the response.

Let us now denote the maximum likelihood estimates of the pattern-specific pa-

rameters, αt and βt, of the trivariate Dale model for pattern t, for t = 1, 2, 3, by bαt
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and bβt, respectively. Further, we let bπt denote the sample proportion for pattern t, for

t = 1, 2, 3. Note that the sample proportions are also the maximum likelihood estimates

for the true pattern proportions πt in a multinomial model. Substituting bαt, bβt, and bπt

into expressions (13) and (15), the estimates for the marginalized effects are given by

bAPL =
X

t

bπtbαt and bBPL =
X

t

bπt
bβt (18)

bAJM = logit

 X

t

bπt
ebαt

1 + ebαt

!
and bBJM =

X

t

bπt
bβt

ebαt

1 + ebαt

1

1 + ebαt

 
X

t

bπt
ebαt

1 + ebαt

! 
X

t

bπt
1

1 + ebαt

! .(19)

The asymptotic variances of these estimators can be obtained using the delta

method, for which we assume independence of the pattern-specific estimates across

patterns. Precisely, the variances are defined by

U ≡ f1(θ) =
3X

k=1

πk
eαk

1 + eαk
,

V ≡ f2(θ) =

3X

k=1

πk
1

1 + eαk
, and

W ≡ f3(θ) =

3X

k=1

πkβk
eαk

1 + eαk

1

1 + eαk
,

with corresponding estimators given by:

bU ≡ f1(bθ) =

3X

k=1

bπk
ebαk

1 + ebαk
,

bV ≡ f2(bθ) =

3X

k=1

bπk
1

1 + ebαk
, and

cW ≡ f3(bθ) =
3X

k=1

bπk
bβk

ebαk

1 + ebαk

1

1 + ebαk
.

Such an assumption is entirely justified in a PMM since, by (1), the outcome vector

is modeled conditionally on a given dropout pattern and thus, the pattern-specific pa-

rameters for one particular pattern can be viewed as being estimated independently

of those in other patterns. In fact, the model for the outcomes given a pattern can

differ across patterns. Note that we need to be concerned, a priori, with potential

dependencies between observations after the imputation process has taken place, be-

cause, for example, information on the completers is used to impute sequences that

are incomplete. However, our application of multiple imputation follows the general

theory (Little and Rubin, 2002), where the observed data are used to estimate the

parameters from the imputation distribution. Observations would definitely become

dependent if this parameter were used as if it were known. To alleviate this problem,

first, draws are made from the parameter’s posterior distribution, separately for each

of the multiple imputations, and only thereafter are imputations generated. While not
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straightforward to establish independence in a particular situation like ours, general

theory (Rubin, 1987) states that this procedure removes or at least alleviates this prob-

lem. Moreover, it is sensible to assume that the correlations are mild to begin with. In

our case, this rests on the following assumptions:

– Independence of pattern-specific estimates across patterns implies, ∀k 6= `,

Cov(bαk, bα`) = 0, Cov(bβk, bβ`) = 0 and Cov(bαk, bβ`) = 0.

– Independence of estimates for pattern probabilities and (measurement model) pattern-

specific estimates further implies:

Cov(bαk, bπk) = 0 and Cov(bβk, bπk) = 0, ∀k = 1, 2, 3,

Cov(bαk, bπ`) = 0 and Cov(bβk, bπ`) = 0, ∀k 6= `.

We further assume that the pattern probabilities and the pattern-specific parame-

ters are estimated independently of each other. Again, this is plausible in a PMM since,

by way of factorization (1), the dropout process, from which the pattern probabilities

arise, is modeled independently of the outcomes, thereby rendering the estimates of

the former independent of the pattern-specific estimates that characterize the latter.

Finally, because we substitute the maximum likelihood estimates of αt, βt, and πt, the

above estimates (18) and (19) are consistent for (13) and (15), respectively, and this fol-

lows directly from standard maximum likelihood principles, under the usual regularity

conditions (Welsh, 1996).

For our specific case of 3 outcomes, these aysmptotic variances are given by:

Var( bAPL) =

3X

t=1

πt
2Var(bαt) +

3X

t=1

αt
2Var(bπt) + 2

X

t<`

αtα`Cov(bπt, bπ`)

(20)

Var( bBPL) =

3X

t=1

πt
2Var(bβt) +

3X

t=1

βt
2Var(bπt) + 2

X

t<`

βtβ`Cov(bπt, bπ`)

Var( bAJM ) =
1

U2(1 − U)2
Var(bU)

(21)

Var( bBJM ) =
W2

U4V 2
Var(bU ) +

W2

U2V 4
Var(bV ) +

1

U2V 2
Var(cW ) +

2W2

U3V 3
Cov(bU, bV ) −

2W

U3V 2
Cov(bU,cW ) −

2W

U2V 3
Cov(bV ,cW )
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where:

Var(bU) =

3X

t=1

πt
2 (eαt)2

(1 + eαt)4
Var(bαt) +

3X

t=1

(eαt)2

(1 + eαt)2
Var(bπt) +

2
X

t<`

eαteα`

(1 + eαt)(1 + eα`)
Cov(bπt, bπ`)

Var(bV ) =

3X

t=1

πt
2 (−eαt)2

(1 + eαt)4
Var(bαt) +

3X

t=1

(eαt)2

(1 + eαt)2
Var(bπt) +

2
X

t<`

1

(1 + eαt)(1 + eα`)
Cov(bπt, bπ`)

Var(cW ) =
3X

t=1

πt
2βt

2 (eαt)2(1 − eαt)2

(1 + eαt)6
Var(bαt) +

3X

t=1

πt
2 (eαt)2

(1 + eαt)4
Var(bβt) +

3X

t=1

βt
2 (eαt)2

(1 + eαt)4
Var(bπt) + 2

3X

t=1

πt
2βt

(eαt)2(1− eαt)

(1 + eαt)5
Cov(bαt, bβt) +

2
X

t<`

βtβ`
eαteα`

(1 + eαt)2(1 + eα`)2
Cov(bπt, bπ`)

Cov(bU, bV ) =

3X

t=1

πt
2(−1)

(eαt)2

(1 + eαt)4
Var(bαt) +

3X

t=1

eαt

(1 + eαt)2
Var(bπt) +

X

t<`

eαt + eα`

(1 + eαt)(1 + eα`)
Cov(bπt, bπ`)

Cov(bU,cW ) =

3X

t=1

πt
2βt

(eαt)2(1 − eαt)

(1 + eαt)5
Var(bαt) +

3X

t=1

βt
(eαt)2

(1 + eαt)3
Var(bπt) +

3X

t=1

πt
2 (eαt)2

(1 + eαt)4
Cov(bαt, bβt) +

X

t<`

eαteα`
βt(1 + eα`) + β`(1 + eαt)

(1 + eαt)2(1 + eα`)2
Cov(bπt, bπ`)

Cov(bV ,cW ) =

3X

t=1

πt
2(−1)βt

(eαt)2(1 − eαt)

(1 + eαt)5
Var(bαt) +

3X

t=1

βt
eαt

(1 + eαt)3
Var(bπt) +

3X

t=1

πt
2(−1)

(eαt)2

(1 + eαt)4
Cov(bαt, bβt) +

X

t<`

(1 + eαt)β`e
α` + (1 + eα`)βte

αt

(1 + eαt)2(1 + eα`)2
Cov(bπt, bπ`)

From (14) and (17) it is easy to see that (AJM , BJM ) and (APL, BPL) are two ap-

proximations for some true underlying marginal effects, say (A,B), which are unknown

but might be estimated by fitting a selection model. The estimators ( bAJM , bBJM ) and

( bAPL, bBPL) can thus be used to estimate these underlying marginal effects. For our
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simulation study, the marginal effects were obtained by factoring the underlying data

generating mechanism in a selection model (SEM) formulation. The procedure is de-

scribed in what follows. In Section 3.2.3, we look at how these two approximations fare

in estimating the true SEM-type marginal parameters.

We now describe how one might obtain the underlying marginal parameters from

a PMM, with which the above-defined marginalized effects estimates, ( bAPL, bBPL) and

( bAJM , bBJM ), can be subsequently compared. Though we illustrate the procedure for

the specific case of 3 time points, generalization to more time points is straightforward.

Recall that the general formulation of a PMM given in (1) allows us to compute the

joint distribution of the binary responses, Y , and the dropout pattern, t, conditional

on the treatment indicator, X , as

P (Y = y, t|X) = P (Y = y|t,X)P (t|X)

= P (Y1 = y1, Y2 = y2, Y3 = y3|t,X)P (t|X)

= P (Y1 = y1, Y2 = y2, Y3 = y3|t,X)πt|X,

where πt|X denote the pattern proportions conditional on the treatment indicator. The

marginal success probability, say, at the last time point, given treatment X , can then

be obtained by summing over all response values at all other time points and over all

patterns, i.e.,

P (Y3 = 1|X) =
X

∀y1,y2,t

P (Y = y, t|X)

=

1X

y1=0

1X

y2=0

3X

t=1

P (Y1 = y1, Y2 = y2, Y3 = 1|t,X)πt|X

=

3X

t=1

πt|XP (Y3 = 1|t,X). (22)

Assuming now a logistic regression of Y3 on the treatment indicator, X, we have

logit P (Y3 = 1|X) = A3 +B3X,

which implies

logit P (Y3 = 1|X = 0) = A3 and logit P (Y3 = 1|X = 1) = A3 +B3,

which can then be solved for the true underlying parameters, A3 and B3, as

A3 = logit P (Y3 = 1|X = 0) and

B3 = logit P (Y3 = 1|X = 1) − logit P (Y3 = 1|X = 0).

Though interest is usually on the effects at the last time point, effects at intermediate

time points can also be obtained analogously.

Note that P (Y3 = 1|t,X) in (22) is modeled logistically as specified by (7c) in the

Dale model, i.e.,

logit P (Y3 = 1|t,X) = αt,3 + βt,3X,

which is equivalent to

P (Y3 = 1|t,X) =
eαt,3+βt,3X

1 + eαt,3+βt,3X
,
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which, upon substitution into (22) leads to

P (Y3 = 1|X) =

3X

t=1

πt|X
eαt,3+βt,3X

1 + eαt,3+βt,3X
. (23)

Clearly, this is not equivalent to (12), which uses the unconditional pattern proportions,

πt, as weights. Since bAJM and bBJM , as well as bAPL and bBPL, are both based on (12),

it would be natural to expect bias for these when estimating the underlying SEM-type

marginal effects. Thus, in our presentation of results, we look at MSE, rather than

variances to assess the precision of the said estimates. Of course in the case that the

conditional pattern proportions, πt|X , are equal to the unconditional ones, πt, e.g.,

under an MCAR mechanism, then the estimates of Jansen and Molenberghs (2007)

are unbiased for the SEM-type marginal parameters.

3 Simulation Study

We first present the design and then the results of our primary simulation study.

The last subsection presents results of additional simulations conducted to investigate

convergence properties, as well as to gain more insight into the performance of the

different identifying restrictions.

3.1 Design

For the simulation study, we considered 3 binary outcomes, (Y1, Y2, Y3), and a single

two-level covariate, X , possibly denoting a treatment indicator. To formulate an un-

derlying PMM for the outcomes, we define, for each pattern, a distinct trivariate Dale

model of the general form (7). For our case, we specify a simple logistic model for each

outcome, consisting of an intercept and treatment effect, respectively denoted as αt

and βt, t = 1, 2, 3. Further, we set the association parameters ψ’s to be constant. This

implies a 10-dimensional full parameter vector, i.e.,

θ = (α1, β1, α2, β2, α3, β3, lnψ12, lnψ13, lnψ23, lnψ123)
′.

Letting C =

„
1 0

1 1

«
, the design matrices in (7) can be defined as:

X1 =

„
C 208

802 808

«
, X2 =

0
@

202 202 206

202 C 206

602 602 606

1
A , X3 =

0
@

404 402 404

204 C 204

404 402 404

1
A ,

while for i = 4, 5, 6, 7, we have

X4 = [x4]ij , where x4 =


1 , for i = 7 and j = 7

0 , otherwise
,

X5 = [x5]ij , where x5 =


1 , for i = 8 and j = 8

0 , otherwise
,

X6 = [x6]ij , where x6 =


1 , for i = 9 and j = 9

0 , otherwise
, and

X7 = [x7]ij , where x7 =


1 , for i = 10 and j = 10

0 , otherwise
,
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Table 1 Trivariate Dale model parameter values specified for the three dropout patterns.

Pattern α1 β1 α2 β2 α3 β3 ψ12 ψ13 ψ23 ψ123

1 0.214 0.096 0.182 0.067 0.142 0.090 1.4 1.1 1.6 1.2
2 0.155 0.135 0.130 0.084 0.100 0.083 1.6 1.2 1.5 1.7
3 0.109 0.033 0.155 0.028 0.142 0.056 2.2 1.8 2.3 1.5

which further implies

X1θ = Cθ1 = C(α1, β1)
′ = (α1, α1 + β1)′, X4θ = 1θ4 = lnψ12,

X2θ = Cθ2 = C(α2, β2)
′ = (α2, α2 + β2)′, X5θ = 1θ5 = lnψ13,

X3θ = Cθ3 = C(α3, β3)
′ = (α3, α3 + β3)′, X6θ = 1θ6 = lnψ23 and

X7θ = 1θ7 = lnψ123.

The values chosen for θ, for each pattern, are given in Table 1. The mixture of the 3

trivariate Dale models defined by these sets of parameters gives rise to our underlying

PMM.

To produce monotone missingness, we first need to define a dropout indicator, D,

denoting the occasion at which dropout occurs, and make the convention that D = n+1

for a complete sequence. Letting X denote the covariate, in our case, the treatment

indicator, missingness is then generated by formulating a dropout type mechanism

using a logistic model of the form:

logit P (D = j|D ≥ j,X) = ν0 + ν1X,

where:

P (D = j|X) =

8
>><
>>:

P (D = 2|D ≥ 2, X), j = 2,

P (D = 3|D ≥ 3, X)[1− P (D = 2|D ≥ 2,X)], j = 3,

[1− P (D = 3|D ≥ 3,X)] [1− P (D = 2|D ≥ 2, X)] , j = 4.

Two dropout settings were considered for the above model, using the following

sets of parameters: (ν0, ν1) = (−2.2, 0.8) and (ν0, ν1) = (−1.5, 0.8). The resulting

percentages of subjects per pattern, as well as per covariate (treatment) level, are

given in Table 2. Combining these mixing weights from each of these dropout models

with the three trivariate Dale models defines two underlying PMMs.

Table 2 Percentages of subjects per pattern for the two dropout settings.

Pattern
Setting 1 Setting 2

x = 0 x = 1 Total x = 0 x = 1 Total
1 4.99 9.89 14.88 9.12 16.59 25.71
2 4.49 7.93 12.42 7.46 11.09 18.54
3 40.52 32.17 72.70 33.42 22.32 55.75

The underlying SEM-type marginal parameters corresponding to the two PMMs

were computed using the approach described at the end of Section 2.3 and are shown

in Table 3.
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Table 3 True marginal parameter values for the two underlying pattern-mixture models. (The
marginal intercept and marginal treatment effect for the jth outcome, j = 1,2,3, are denoted
Aj and Bj, respectively.)

PMM
Y1 Y2 Y3

A1 B1 A2 B2 A3 B3

1 0.1236 0.0746 0.1551 0.0457 0.1381 0.0640
2 0.1350 0.0950 0.1559 0.0558 0.1356 0.0700

On each of the two defined underlying PMMs, we generated S = 500 samples, each

of size N = 1000 and applied the procedure described in Section 2.2. Marginalized

parameter estimates using both (15) and the direct linear method (13) were also com-

puted. Our choice of parameter values (Table 1), as well as the choice of sample size

N = 1000, was dictated by limitations in fitting both the initial, as well as the final,

analysis models. Fitting a trivariate or a bivariate Dale model, or even an ordinary

logistic model for that matter, requires that all combinations of the outcome vector

are present per level of the covariate. In generating each of the S = 500 samples, it

was therefore necessary to ensure that all combinations were “observed” within each

pattern. The values for θ in Table 1 were thus chosen so that the probabilities for the

trivariate Dale models (per pattern), when combined with the dropout probabilities,

would result in joint probabilities that are still large enough to generate all combina-

tions within one pattern for a sample of N = 1000.

Given the amount of replication, we believe the simulation error does not adversely

interfere in important ways with our findings.

3.2 Primary Simulation Results

We organize the discussion of the results into those pertaining to the initial estimates,

the pattern-specific estimates, and the marginalized effects estimates, respectively.

3.2.1 Initial Estimates

For the first stage, on the observed data of each sample, we fitted a trivariate Dale model

for cases in pattern 3, a bivariate Dale model for the second pattern, and a logistic

model for pattern 1. At this stage, no attempt is made to address the missingness

yet; appropriate models are simply fit to the observed data. The resulting estimates,

averaged over the S = 500 samples, were then compared with the true parameter

values from the underlying trivariate Dale models, so as to obtain the bias. MSEs of

the estimates were also computed. Both bias and MSE are presented in Table 4.

In both settings, parameter estimates exhibit very small bias and reasonably small

MSEs. The results for pattern 3 under setting 1 are the most precise, as might be

expected, since it is under this particular setting and within this particular pattern

that a large proportion of the subjects fall. For the same pattern, but under setting 2,

bias and MSEs are slightly larger, since setting 2 consists of more missingness and thus

fewer subjects within pattern 3 (see Table 2). For patterns 1 and 2, under setting 1,

although biases are quite acceptable, the treatment effects, as well as the association,

seem to be less precisely estimated than the intercepts, but this improves in setting 2.



17

Table 4 Bias and MSE of the parameter estimates for the initial models fitted, under each
dropout setting, to the observed data: trivariate Dale model for pattern 3, bivariate Dale model
for pattern 2 and logistic model for pattern 1.

Setting Parameter
Pattern 1 Pattern 2 Pattern 3

Bias MSE Bias MSE Bias MSE

1 α1 0.0044 0.0913 0.0099 0.0908 0.0045 0.0112
β1 0.0151 0.1284 -0.0302 0.1413 -0.0014 0.0236
α2 —— —— 0.0030 0.0917 0.0049 0.0101
β2 —— —— -0.0123 0.1386 0.0001 0.0205
α3 —— —— —— —— 0.0012 0.0104
β3 —— —— —— —— -0.0025 0.0223

lnψ12 —— —— 0.0121 0.1354 -0.0042 0.0252
lnψ13 —— —— —— —— -0.0057 0.0222
lnψ23 —— —— —— —— 0.0039 0.0217
lnψ123 —— —— —— —— 0.0008 0.0994

2 α1 0.0021 0.0476 0.0054 0.0543 0.0122 0.0139
β1 0.0005 0.0745 0.0006 0.0840 -0.0115 0.0345
α2 —— —— -0.0014 0.0570 -0.0005 0.0125
β2 —— —— 0.0039 0.0858 -0.0027 0.0298
α3 —— —— —— —— 0.0070 0.0128
β3 —— —— —— —— -0.0110 0.0311

lnψ12 —— —— 0.0286 0.0976 0.0006 0.0310
lnψ13 —— —— —— —— -0.0034 0.0298
lnψ23 —— —— —— —— 0.0047 0.0326
lnψ123 —— —— —— —— -0.0126 0.1166

Finally, in contrast with the results for pattern 3, the incomplete patterns 1 and 2 yield

better results under setting 2, since there are more subjects within these patterns than

there are under setting 1.

3.2.2 Pattern-Specific Estimates

The results from the initial models fitted to the observed data were then used to apply

various identifying restrictions, under which multiple imputations (M = 5) were ob-

tained to fill in the missing data. Under each setting and for each identifying restriction

considered, three trivariate Dale models were then fitted to the completed data – one

for each pattern. The bias and MSE of the pattern-specific parameter estimates under

dropout settings 1 and 2 are given in Tables 5 and 6, respectively. Only the results for

patterns 1 and 2 are presented, since the results for pattern 3 remain the same as in

Table 4.

Let us set out by considering first the results for pattern 2. In general, under

both dropout settings, substantial bias can be observed for the intercept of the third

outcome, α3, as well as the two-way association parameters involving this outcome,

i.e., lnψ13 and lnψ23. This seems reasonable to expect since, for pattern 2, it is this

outcome that is imputed, and thus more susceptible to bias. All other parameters

for this pattern exhibit small bias. The MSEs, on the other hand, indicate that the

intercepts α1 and α2 for outcomes 1 and 2, respectively, are slightly more precisely

estimated than the treatment effects β1 and β2. For the association parameters, larger

MSEs are obtained for those involving the third outcome, especially so for the three-way

association lnψ123. Finally, it seems that the treatment effect for the third outcome,
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Table 5 Bias and MSE of the pattern-specific parameter estimates for the trivariate Dale
models fitted to the completed data using various identifying restrictions (dropout setting 1).

Pattern Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

1 α1 0.0037 0.0911 0.0049 0.0906 0.0047 0.0909
β1 0.0161 0.1279 0.0144 0.1270 0.0147 0.1281
α2 0.3139 0.1190 0.2645 0.0946 -0.0464 0.1190
β2 -0.0423 0.0311 -0.0454 0.0392 0.0162 0.1713
α3 0.4004 0.1830 0.3514 0.1421 0.2940 0.1087
β3 -0.0676 0.0387 -0.0739 0.0334 -0.0583 0.0354

lnψ12 0.4387 0.2346 0.4116 0.2115 0.1578 0.1899
lnψ13 0.4085 0.2268 0.4752 0.2733 0.4193 0.2286
lnψ23 0.2775 0.1349 0.3634 0.1818 0.3350 0.1642
lnψ123 0.3877 0.4634 0.2283 0.3062 0.2464 0.3099

2 α1 0.0105 0.0901 0.0099 0.0907 0.0098 0.0903
β1 -0.0310 0.1397 -0.0302 0.1412 -0.0299 0.1406
α2 0.0030 0.0921 0.0037 0.0915 0.0030 0.0914
β2 -0.0123 0.1392 -0.0133 0.1375 -0.0124 0.1375
α3 0.3241 0.1288 0.3312 0.1350 0.3269 0.1318
β3 -0.0436 0.0416 -0.0578 0.0430 -0.0513 0.0394

lnψ12 0.0132 0.1355 0.0132 0.1355 0.0131 0.1352
lnψ13 0.3225 0.1626 0.3308 0.1716 0.3236 0.1631
lnψ23 0.4009 0.2148 0.3986 0.2167 0.3963 0.2110
lnψ123 -0.1062 0.2881 -0.0678 0.2934 -0.0876 0.2828

β3, is the most precisely estimated of all parameters, as indicated by the smaller MSE

for this parameter under both settings.

For pattern 1, in general, under both settings, we observe that the intercept pa-

rameters for the second and third outcomes, α2 and α3, respectively, as well as all

association parameters, have fairly large bias. A particular exception can be seen for

the NCMV case, under which α2, exhibits much smaller bias compared to the CCMV

and ACMV cases. On the other hand, the corresponding treatment effects for the last

two outcomes, β2 and β3, have small bias. With respect to precision, all association

parameters have relatively high MSE. In addition, the MSEs for the intercepts α2 and

α3 are similar in magnitude, whereas those for the treatment effects β2 and β3 are

considerably smaller. Finally, as was observed for pattern 2, the treatment effect for

the third outcome, β3, is also the most precisely estimated parameter in pattern 1.

Comparing now the results across the various identifying restrictions, for a par-

ticular parameter, all three identification schemes yield very similar values for bias

and MSE for pattern 2, under both settings, as might be expected, since the three

restrictions are in fact equivalent for this pattern. That is, information about the last

outcome can only be borrowed from the completers’ pattern 3, which is the neighboring

pattern, as well as the only pattern for which such information is available. For pat-

tern 1, however, the situation is quite different. Discrepancies in bias can be seen across

the various identification schemes for a particular parameter, and these are larger in

value than those observed under pattern 2. Looking further into the parameters re-

lated to the missing outcomes, under both settings, the smallest bias is observed under

the NCMV case for α2, β2, α3, β3 and lnψ12, while for lnψ13 and lnψ23, the CCMV

restriction yields the smallest bias. For lnψ123, it is the ACMV (NCMV) case that

results in the least bias for setting 1 (2). In terms of precision, on the other hand, the
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Table 6 Bias and MSE of the pattern-specific parameter estimates for the trivariate Dale
models fitted to the completed data using various identifying restrictions (dropout setting 2).

Pattern Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

1 α1 0.0023 0.0472 0.0025 0.0474 0.0025 0.0475
β1 0.0002 0.0740 -0.0001 0.0741 -0.0001 0.0744
α2 0.3107 0.1081 0.2072 0.0574 -0.0436 0.0731
β2 -0.0360 0.0195 -0.0225 0.0228 0.0103 0.1073
α3 0.3978 0.1719 0.3409 0.1272 0.2918 0.0983
β3 -0.0628 0.0228 -0.0619 0.0210 -0.0593 0.0259

lnψ12 0.4298 0.2166 0.4070 0.2025 0.1617 0.1381
lnψ13 0.3973 0.2196 0.5010 0.2942 0.4192 0.2242
lnψ23 0.2726 0.1412 0.3469 0.1681 0.3282 0.1560
lnψ123 0.3557 0.3809 0.2063 0.2328 0.2059 0.2291

2 α1 0.0054 0.0542 0.0051 0.0545 0.0054 0.0542
β1 0.0006 0.0839 0.0010 0.0843 0.0006 0.0837
α2 -0.0019 0.0566 -0.0011 0.0569 -0.0017 0.0569
β2 0.0048 0.0847 0.0034 0.0857 0.0044 0.0857
α3 0.3239 0.1182 0.3228 0.1174 0.3223 0.1181
β3 -0.0405 0.0262 -0.0391 0.0250 -0.0459 0.0256

lnψ12 0.0284 0.0977 0.0286 0.0976 0.0287 0.0976
lnψ13 0.3360 0.1665 0.3354 0.1694 0.3390 0.1657
lnψ23 0.4087 0.2208 0.3986 0.2159 0.3969 0.2095
lnψ123 -0.1231 0.2246 -0.1334 0.2282 -0.1467 0.2555

parameters α2, β3, lnψ13 and lnψ23 seem to be estimated fairly comparably across the

identifying restrictions in both settings. The parameter β2 is most precisely estimated

under CCMV in setting 1, and under NCMV in setting 2, while α3 is most precise

under NCMV (both settings). Finally, lnψ123 is most precise under ACMV (setting 1)

and NCMV (setting 2).

To evaluate the effect of the amount of missingness on the fitting procedure, we

now compare the results for the two dropout settings within a particular pattern. For

pattern 1, the bias and MSEs of the estimates are generally smaller under setting 2,

with more missingness, i.e., more subjects within this pattern. For pattern 2, the setting

with more missingness shows smaller bias for the α and β parameters, but higher values

for the association parameters, and generally smaller MSEs are obtained under this

setting.

These results require careful qualification. Let us first weigh in on the results and

how they relate to the identifying restrictions. It is clear from the previous observations

that no particular identifying restriction consistently led to the most precise estimates.

This is understandable as the underlying parameters (Table 1) do not reflect any par-

ticular identification scheme. In Section 3.3, we investigate further the performance of

the various identifying restrictions by specifically choosing underlying parameters that

represent an NCMV setting. Whereas it is entirely possible to explore this situation

within the context of a simulation study, the choice of which restriction leads to supe-

rior results is more difficult when dealing with actual data, since the true underlying

identification pattern is usually unverifiable.

Secondly, let us pay particular attention to the results with respect to the degree of

incompleteness in the data. Our observations seem to indicate that, within reason, the

amount of missingness does not really pose additional difficulty in applying the pro-
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Table 7 Bias and MSE of the marginalized parameter estimates using approximation (15)
of Jansen and Molenberghs (2007) for the pattern-mixture model fitted to the completed data
using various identifying restrictions for both dropout settings. (The marginalized intercept and
treatment effect for the jth outcome, j = 1, 2,3, are denoted AJMj

and BJMj
, respectively.)

Setting Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

1 AJM1
0.0109 0.0088 0.0110 0.0088 0.0110 0.0088

BJM1
-0.0209 0.0163 -0.0211 0.0164 -0.0210 0.0164

AJM2
0.0486 0.0099 0.0414 0.0096 -0.0039 0.0122

BJM2
-0.0096 0.0143 -0.0101 0.0154 -0.0023 0.0209

AJM3
0.0950 0.0164 0.0891 0.0149 0.0806 0.0141

BJM3
-0.0119 0.0156 -0.0150 0.0150 -0.0123 0.0153

2 AJM1
0.0170 0.0091 0.0170 0.0091 0.0170 0.0091

BJM1
-0.0322 0.0182 -0.0322 0.0181 -0.0323 0.0182

AJM2
0.0773 0.0128 0.0519 0.0113 -0.0117 0.0154

BJM2
-0.0150 0.0147 -0.0121 0.0177 -0.0045 0.0269

AJM3
0.1603 0.0325 0.1462 0.0281 0.1338 0.0247

BJM3
-0.0261 0.0164 -0.0259 0.0158 -0.0265 0.0171

posed method, at least up to cases with moderate incompleteness (e.g., around 50%).

Results showed that better precision is obtained when the data contains more miss-

ingness. Initially, this may seem contrary to what might be expected, since dropout

setting 2 consists of more missing data, and we would therefore expect worse results

under this case. However, it is also necessary to consider the proportions of subjects

within each pattern. It is useful to recall that the conditional probabilities used for the

imputations are initially estimated from the observed data. When a pattern has very

few subjects, as would be the case when there are few dropouts and most subjects are

completers, the conditional probabilities for the incomplete patterns may be poorly

determined, thus yielding imputations that are probably less reliable. Hogan and Laird

(1997) suggested that each pattern needs to be sufficiently “filled,” requiring large

numbers of dropouts. This is further validated by inspection of the results for the com-

pleters (Table 4), which indicate better precision for setting 1, under which pattern 3

has more subjects. Hence, in assessing the effects of the amount of missingness on the

pattern-specific estimates, it is essential that the particular pattern is considered, since

more missingness in the data may imply less subjects in one pattern (e.g., completers),

but more subjects in the other (incomplete) patterns.

3.2.3 Marginalized Effects Estimates

The estimates for the marginalized effects (15) proposed by Jansen and Molenberghs

(2007) were also computed from the pattern-specific parameter estimates and these

were compared with the true marginalized parameter values of the underlying PMM

(Table 3). The results for each identifying restriction and for the two dropout settings

are summarized in Table 7. Although scientifically speaking, interest might really be

placed on the marginalized effects estimates for the last outcome, i.e., at the end of

the series, at which point the treatment presumably does or does not take its desired

effect, values for the other outcomes are nevertheless presented here for a more concise

evaluation of the marginalization procedure. In general, the magnitudes of the bias are
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Table 8 Bias and MSE of the marginalized parameter estimates using the direct linear ap-
proach (13) of Park and Lee (1999) for the pattern-mixture model fitted to the completed data
using various identifying restrictions for both dropout settings.(The marginalized intercept and
treatment effect for the jth outcome, j = 1, 2,3, are denoted APLj

and BPLj
, respectively.)

Setting Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

1 APL1
0.0122 0.0090 0.0123 0.0090 0.0122 0.0090

BPL1
-0.0225 0.0168 -0.0227 0.0169 -0.0226 0.0169

APL2
0.0513 0.0102 0.0438 0.0100 -0.0029 0.0126

BPL2
-0.0127 0.0147 -0.0131 0.0159 -0.0035 0.0222

APL3
0.0995 0.0174 0.0930 0.0157 0.0840 0.0148

BPL3
-0.0169 0.0160 -0.0197 0.0153 -0.0167 0.0156

2 APL1
0.0180 0.0092 0.0180 0.0092 0.0180 0.0092

BPL1
-0.0333 0.0186 -0.0334 0.0185 -0.0334 0.0185

APL2
0.0803 0.0134 0.0538 0.0116 -0.0110 0.0158

BPL2
-0.0173 0.0151 -0.0139 0.0182 -0.0052 0.0285

APL3
0.1650 0.0341 0.1499 0.0293 0.1372 0.0257

BPL3
-0.0302 0.0168 -0.0296 0.0161 -0.0302 0.0175

small, and MSE values seem to indicate that the procedure for marginalization works

pleasingly stably.

Comparing across identifying restrictions, under both settings, the bias and MSE

are very similar for the marginalized parameters AJM1
and BJM1

, which is reasonable

since this parameter relates to the first outcome, which is always observed and never

imputed. For AJM2
and BJM2

, within both settings, although NCMV exhibits the

least bias for these two parameters, their MSEs are largest under this restriction. For

AJM3
and BJM3

, bias and MSE values are comparable across the identifying restric-

tions and no particular identifying restriction seems to show superiority. In addition,

for setting 2, it can be observed that MSE values for AJM3
are somewhat larger than

those of the other parameters, implying that this parameter seems to be the least

precisely estimated one. With respect to the direction of bias of a particular param-

eter, although generally consistent across the two settings within a given identifying

restriction, the NCMV case differs from CCMV and ACMV for the parameter AJM2
.

Finally, it generally seems that the intercept parameters are overestimated, while the

treatment effect parameters are underestimated.

Looking now across the two dropout settings, within a particular identifying re-

striction, bias and MSE values are smaller under setting 1, which has less missingness.

Whereas the amount of missingness affects the pattern-specific estimates differently

across patterns, its effects on the marginalized estimates are in line with what we

would normally expect – that situations with less missing data will tend to show more

accurate results.

Table 8 shows the bias and MSE for the marginalized effects estimates using the

direct linear approach (13). Magnitudes of bias for almost all parameters are larger

for this approach compared to those using the approximation proposed by Jansen and

Molenberghs (2007) (in Table 7), as might be predicted, since the former is probably a

less appropriate way of marginalizing the pattern-specific estimates. However, for the

parameters APL2
and BPL2

, under the NCMV case in both settings, the direct linear

approach actually gives slightly smaller magnitudes of bias. For MSE, on the other
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hand, in all cases, Jansen and Molenberghs (2007)’s approximation (15) gives more

precise estimates.

3.3 Additional Simulation Results

In order to get deeper insight into the performance of the proposed method, we con-

sidered additional simulations. We defined a new underlying PMM which is clearly

of an NCMV type. It can be recalled that for the case of 3 outcomes, the identify-

ing restrictions are equivalent for pattern 2, and therefore, the choice of parameters

is dictated primarily with reference to pattern 1. Hence, in order to reflect an NCMV

setting, we choose for pattern 1 parameters that are more similar to pattern 2 than to

pattern 3. The values of these chosen parameters are shown in Table 9. We further used

an increased sample size of N = 4000 to be able to assess consistency of the previously

defined estimates, as well as to be able to freely choose parameters in an NCMV way,

without having to encounter samples with incomplete combination levels. With respect

to missingness, we considered the same dropout settings as in our primary simulation

(Table 2). The underlying SEM-type marginal effects from these new PMMs are given

in Table 10. Finally, under these settings, we again generated S = 500 samples.

Table 9 Trivariate Dale model parameter values specified for the three dropout patterns for
the underlying pattern-mixture model having NCMV structure.

Pattern α1 β1 α2 β2 α3 β3 ψ12 ψ13 ψ23 ψ123

1 0.190 0.096 0.155 0.067 0.142 0.090 1.4 1.1 1.6 1.2
2 0.214 0.115 0.130 0.084 0.142 0.083 1.6 1.2 1.5 1.5
3 0.220 0.150 0.110 0.125 0.170 0.065 2.2 1.8 2.3 1.7

For conciseness’ sake, we present only partial results from these new simulations.

Inasmuch as the additional simulations exhibited the same results as the primary simu-

lations did, at least as far as the effects of the different dropout settings are concerned,

we restrict our presentation of results for these new simulations to those under setting 2,

having more missingness. In addition, with respect to comparison of the identifying re-

strictions, we discuss primarily the results for pattern 1, since the choice of scheme

is immaterial in pattern 2, under which they are equivalent. Full results are available

from the authors upon request. In what follows, we present the results for the initial

estimates, those for the pattern-specific estimates, and then the marginalized effects

Table 10 True marginal parameter values for the two underlying pattern-mixture models
having NCMV structure. (The marginal intercept and marginal treatment effect for the jth

outcome, j = 1, 2,3, are denoted Aj and Bj, respectively.)

PMM
Y1 Y2 Y3

A1 B1 A2 B2 A3 B3

1 0.2165 0.1303 0.1163 0.1128 0.1647 0.0681
2 0.2136 0.1193 0.1212 0.1048 0.1607 0.0711
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Table 11 For the underlying pattern-mixture model having NCMV structure and under
dropout setting 2, bias and MSE of the parameter estimates for the initial models fitted to
the observed data: trivariate Dale model for pattern 3, bivariate Dale model for pattern 2 and
logistic model for pattern 1.

Parameter
Pattern 1 Pattern 2 Pattern 3

Bias MSE Bias MSE Bias MSE

α1 0.0005 0.0114 -0.0060 0.0138 0.0027 0.0031
β1 -0.0056 0.0169 0.0150 0.0245 -0.0063 0.0077
α2 —— —— 0.0039 0.0136 -0.0008 0.0031
β2 —— —— -0.0082 0.0227 -0.0017 0.0083
α3 —— —— —— —— -0.0024 0.0028
β3 —— —— —— —— 0.0003 0.0068

lnψ12 —— —— 0.0068 0.0211 -0.0028 0.0073
lnψ13 —— —— —— —— -0.0067 0.0083
lnψ23 —— —— —— —— -0.0011 0.0075
lnψ123 —— —— —— —— -0.0018 0.0333

estimates. Finally, at the end of this section, we also compare the asymptotic variances

of the marginalized effects estimates with the variances obtained from the simulation

study.

Table 11 summarizes the results for the initial estimates for the NCMV-type PMM

under setting 2. Bias for all parameters are quite small and the MSEs are generally

smaller than those for the previous simulation (Table 4), demonstrating the consistency

of these estimates for the pattern-specific parameters of the initial models. Somewhat

larger MSEs are observed for the incomplete patterns, as these consist of fewer subjects

than the group of completers (pattern 3). Finally, though the MSEs indicate fairly

precise estimation of the initial parameters, it seems that the treatment effects and the

associations are less accurately estimated than are the intercepts.

The results for the pattern-specific estimates after imputation of the missing values

are given in Table 12. As expected, for any given parameter, bias and MSE are more

or less equal across the identification schemes in pattern 2. Moreover, as observed

under the previous simulations, parameters involving the missing outcome, namely

α3, ψ13, ψ23 and ψ123, exhibit higher bias and MSEs. However, the treatment effect at

the last time point, β3, is quite precisely estimated in comparison with all the other

estimates. Moving on the the results for pattern 1, it can be observed that both bias

and MSE are smallest under the NCMV restriction for most parameters, except β3 and

ψ23, both of which were most precisely estimated under the CCMV case. For pattern 1,

NCMV borrows from pattern 2, but the latter pattern contains no information about

these two parameters and hence the actual information propagates from pattern 3

instead. As a result, uncertainly increases and performance worsens. The differences,

however, in the bias and MSE between the NCMV and CCMV case for the latter two

parameters are much less pronounced than those for the other parameters. We also

notice that the bias and MSEs are higher for the association parameters than the α

and β parameters, but the smallest values for these are generally still obtained under

the NCMV case.

Let us now consider the results for the marginalized effects estimates, which are

tabulated in Table 13. We start by a comparison of these results with those for set-

ting 2 in Tables 7 and 8. For both sets of estimates, substantially smaller MSEs are
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Table 12 For the underlying pattern-mixture model having NCMV structure and under
dropout setting 2, bias and MSE of the pattern-specific parameter estimates for the trivariate
Dale models fitted to the completed data using various identifying restrictions.

Pattern Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

1 α1 -0.0000 0.0113 0.0007 0.0113 0.0007 0.0113
β1 -0.0048 0.0169 -0.0059 0.0168 -0.0060 0.0168
α2 0.3086 0.0984 0.2222 0.0528 -0.0239 0.0159
β2 -0.0255 0.0055 -0.0178 0.0058 -0.0006 0.0250
α3 0.3734 0.1424 0.3330 0.1136 0.2831 0.0832
β3 -0.0550 0.0073 -0.0634 0.0085 -0.0669 0.0093

lnψ12 0.4351 0.1979 0.3792 0.1523 0.1455 0.0450
lnψ13 0.4223 0.1929 0.4653 0.2277 0.4056 0.1761
lnψ23 0.2512 0.0782 0.3187 0.1136 0.3039 0.1034
lnψ123 0.4761 0.2872 0.3549 0.1728 0.3380 0.1637

2 α1 -0.0058 0.0137 -0.0057 0.0138 -0.0058 0.0137
β1 0.0146 0.0243 0.0145 0.0243 0.0147 0.0243
α2 0.0041 0.0135 0.0039 0.0135 0.0040 0.0136
β2 -0.0085 0.0225 -0.0082 0.0224 -0.0084 0.0227
α3 0.2857 0.0854 0.2853 0.0846 0.2882 0.0868
β3 -0.0485 0.0084 -0.0473 0.0081 -0.0507 0.0086

lnψ12 0.0068 0.0211 0.0068 0.0211 0.0068 0.0211
lnψ13 0.3144 0.1122 0.3113 0.1109 0.3129 0.1108
lnψ23 0.3733 0.1523 0.3726 0.1513 0.3713 0.1494
lnψ123 0.1187 0.0619 0.1206 0.0642 0.1278 0.0689

consistently observed for all parameters and for all identification schemes under this

simulation using N = 4000. With respect to bias, under the NCMV case, all param-

eters exhibit smaller bias compared to the previous simulations with smaller sample

size. Thus, at least under the NCMV strategy, both bias and MSE are considerably

reduced for all parameters, which is compatible with these estimates’ consistency. Un-

der the CCMV and ACMV schemes, almost all parameter estimates yield smaller bias

for this setting of increased sample size, with the exception of the estimates for the

marginalized intercept for outcome 2, AJM2
or APL2

. For this parameter, bias actu-

ally increased slightly for N = 4000 under CCMV and ACMV. Though this might

seem contrary to intuition, as an increased sample size usually leads to a less biased

estimate, the slight inflation of the bias might be attributed to the use of the incorrect

identifying strategy.

In terms of the precision of the marginalized effects estimates relative to each other,

it can be observed that the treatment effects generally seem to be more precisely

estimated than the intercepts, for outcomes 2 and 3, under most schemes and for

both sets of estimates – a result that is quite practical since interest is usually on the

treatment effect rather than on the intercept, particulary so on that of the last outcome.

The intercept for the last outcome, however, seems to be beset with a substantive

amount of bias, and hence, a larger MSE, than the other parameters, for both the

Jansen and Molenberghs (2007) and Park and Lee (1999) estimates. In comparison

with the corresponding estimates under the simulations with smaller sample size, we

see that this bias, though still substantial, has already improved in this setting with

the use of a larger sample. However, since this improvement is not much, there would

be no reason to believe that it will decrease much further under an even larger sample
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Table 13 For the underlying pattern-mixture model having NCMV structure and under
dropout setting 2, bias and MSE of the marginalized parameter estimates using approximation
(15) of Jansen and Molenberghs (2007) and using the direct linear approach (13) of Park and
Lee (1999) for the pattern-mixture model fitted to the completed data using various identifying
restrictions. (The additional subscript j, j = 1,2,3, is used to identify the outcome number.)

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

AJM1
-0.0023 0.0021 -0.0021 0.0021 -0.0021 0.0021

BJM1
0.0086 0.0044 0.0083 0.0044 0.0083 0.0044

AJM2
0.0820 0.0085 0.0606 0.0057 -0.0019 0.0036

BJM2
-0.0108 0.0042 -0.0088 0.0045 -0.0047 0.0067

AJM3
0.1423 0.0217 0.1322 0.0190 0.1203 0.0160

BJM3
-0.0182 0.0038 -0.0201 0.0040 -0.0217 0.0039

APL1
-0.0020 0.0021 -0.0018 0.0021 -0.0018 0.0021

BPL1
0.0082 0.0044 0.0079 0.0044 0.0080 0.0044

APL2
0.0839 0.0088 0.0616 0.0059 -0.0017 0.0036

BPL2
-0.0116 0.0042 -0.0095 0.0046 -0.0051 0.0068

APL3
0.1448 0.0225 0.1343 0.0195 0.1221 0.0164

BPL3
-0.0193 0.0039 -0.0212 0.0041 -0.0228 0.0040

size. This might be a reflection of our earlier qualification that the marginalized effects

estimates may be biased for the SEM-type marginal parameters, particularly when the

unconditional pattern proportions are not equal to the conditional ones. On the one

hand, one might try to improve the bias by using the conditional pattern probabilities as

weights in the proposed estimates (19) of Jansen and Molenberghs (2007). In contrast,

if focus does not lie on the marginalized intercept but on the marginalized treatment

effect, one may proceed to use the estimates as they are, since the above results seem to

indicate that the treatment effects are fairly well estimated by the proposed procedure.

Finally, with respect to comparisons across the two sets of estimates, both bias and

MSE are slightly higher for the approximation by Park and Lee (1999).

To evaluate the performance of the marginalized effects estimates, we computed

the asymptotic variances, as given in (20) and (21), using the underlying parameter

values. Variances and/or covariances of the pattern-specific estimates are obtained from

the simulation runs, while variances and/or covariances of the pattern proportions are

obtained using standard results for the multinomial and/or binomial distributions.

For instance, V ar(bπt) = πt(1 − πt)/n. This was then compared with the simulation

variance for the corresponding marginalized effects estimate. The results under each

identification scheme are shown in Table 14. The very small differences, generally of

order (1×e−04), between the asymptotic and simulation variance demonstrate efficiency

of the marginalized effects estimates.

4 Concluding Remarks

In this paper, we have applied, under simulated settings, a procedure for fitting pattern-

mixture models to categorical data with monotone missingness via the use of identify-

ing restrictions. Asymptotic variances for marginalized effects estimates, as proposed

by Jansen and Molenberghs (2007) and Park and Lee (1999), were derived and the

performance of these marginalized effects was subsequently investigated.
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Table 14 Asymptotic variance (Asy) and simulation variance (Sim) of the marginalized
parameter estimates for the underlying pattern-mixture model having NCMV structure and
under dropout setting 2

Parameter
CCMV ACMV NCMV

Asy Sim Asy Sim Asy Sim

AJM1
0.0022 0.0021 0.0021 0.0021 0.0022 0.0021

BJM1
0.0043 0.0043 0.0043 0.0043 0.0043 0.0043

AJM2
0.0016 0.0018 0.0016 0.0021 0.0024 0.0036

BJM2
0.0037 0.0041 0.0037 0.0044 0.0050 0.0067

AJM3
0.0012 0.0015 0.0012 0.0015 0.0012 0.0015

BJM3
0.0026 0.0035 0.0026 0.0036 0.0026 0.0035

APL1
0.0022 0.0021 0.0022 0.0021 0.0022 0.0021

BPL1
0.0043 0.0044 0.0043 0.0043 0.0043 0.0043

APL2
0.0016 0.0018 0.0016 0.0021 0.0024 0.0036

BPL2
0.0037 0.0041 0.0037 0.0045 0.0050 0.0068

APL3
0.0012 0.0015 0.0012 0.0015 0.0012 0.0014

BPL3
0.0026 0.0035 0.0026 0.0036 0.0026 0.0034

It was observed that although the (maximum likelihood) estimates for the param-

eters of the pattern-specific initial models were consistent, precision was contingent on

the amount of missingness within the pattern. This sparseness in some patterns may

have further consequences on the resulting imputations required for the method, since

within these patterns, conditional probabilities on which the imputations are based will

probably be less reliable. In such situations, identifying strategies that are based on

the more amply filled patterns may prove to be more effective. Similarly, the pattern-

specific estimates of the trivariate Dale model parameters were also influenced by the

amount of missing data in the particular pattern. However, even for the least filled

pattern, the precision for the main parameters (e.g., intercepts and treatment effects)

seemed to be quite reasonable. The association parameters, on the other hand, were

generally seen to be poorly estimated, but as these are usually regarded as nuisance

parameters, such a result is not too alarming. Moreover, these were specified in a sim-

plistic manner – as constants – in our underlying Dale models, but one could always

reformulate the Dale model in such a way that these associations are more meaningfully

modeled in terms of some known covariates, thereby possibly improving their estima-

tion. Interestingly, the results of the simulations showed that the treatment effect at

the last time point, on which scientific interest usually lies, was the most precisely

estimated parameter, under any dropout setting or any identification scheme.

With respect to the marginalized effects estimates, missingness again played a fairly

important role, with decreased precision in the case of more incomplete data. In ad-

dition, the direct linear approach by Park and Lee (1999) yielded slightly more bias

and less precision than the proposed estimates of Jansen and Molenberghs (2007). Yet

again the primary parameter of interest, i.e., the marginalized treatment effect at the

last outcome, was seen to be remarkably stable. The additional simulations allowed

us to more objectively assess the behavior of these marginalized effects estimates in

terms of the various identifying restrictions. The most favorable results were observed

under the restriction that was consistent with the underlying identification scheme,

demonstrating that the proposed method and its accompanying marginalization ac-

tually can be considered successful, provided the appropriate identification is used.

However, the use of an identification scheme that is inconsistent with the underlying
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one could induce bias in some of the less important parameters (e.g., intercept at the

last time point). This, of course, poses a more difficult issue to deal with, in the sense

that the underlying identification pattern is almost always unverifiable. At best, the

bias might be reduced by using the conditional pattern proportions in the estimation

of the marginalized effects, as opposed to the unconditional ones, whenever obtaining

SEM-type marginal effects from a fitted PMM is the goal.

Regarding the choice of our simulation settings, two points deserve mention here.

The first is with regard to the sample size, N = 1000, which is undoubtedly large for

a typical clinical trial. Although not quite realistic except for very large clinical trials,

such a sample size is not unusual for survey-type data, in which case the outcome

vector would be a truly multivariate one, rather than a single outcome measured longi-

tudinally. The applicability therefore extends beyond longitudinal data. As was already

pointed out earlier, the large sample size was necessary to ensure that all combinations

were present within each pattern, to allow fitting of the initial and final models; this is

a feature, and sometimes a drawback, of the PMM framework, which is indeed a prag-

matic concern. Though we were able to get around this issue in our simulation study

with the use of a large sample size, one ought not forget that for real data analysis

settings, sparsely filled or even empty levels are bound to occur. It is thus relevant to

address rather than circumvent this issue. A second point that arises has to do with

the type of missingness: monotone in our case. One might argue that such type of

missingness is more difficult to define for a multivariate outcome vector (e.g., survey

data) than in the longitudinal case, where one can rely on the natural time-ordering

of the measurement sequence. However, when the multivariate outcomes within the

vector can somehow be ranked, e.g., by order of importance of the variables in the

survey, then defining monotone missingness is sometimes an option.

Jansen and Molenberghs (2007) pointed out that the final analysis model can, but

does not have to be, equal to the initial model fitted to the observed data. That is,

although one fits a pattern-mixture model to the observed data at the first stage, it

is entirely possible to fit a selection model after the identification/imputation stage,

i.e., after the data have been completed. This, however, raises the issue of “proper”

imputation, which Rubin (1987) defines as one where the analysis model is in agreement

with the imputation model. This means, broadly, that the imputation model ideally is

a super-model of the analysis model. Fitting a selection model at the final stage would

therefore pose a conflict in this regard. Thus, we have restricted our final models

to pattern-mixture types to avoid so-called improper imputation. The nature of the

scientific question, however, would, of course, be an important consideration as well.

For instance, if marginal effects are of primary interest, then a selection model would

be the natural choice for final analysis model. Hence, the final choice would have to

be a balance between the desire for proper imputation and the nature of the scientific

question.

Regarding application of the procedure to the non-monotone case, several concerns

arise. The first issue has to do with parsimony. In the case of non-monotone missingness,

a lot more patterns arise, leading to a proliferation of parameters. In this study, where

we considered longitudinal sequences of three time points, only three patterns arise in

the monotone case, each employing 10 parameters, and this is only assuming a very

simple structure such as, for example, a single treatment indicator and/or association

parameters that are not allowed to vary over covariate levels. For the non-monotone

case, there will be 8 patterns, and, under the same simple structure we considered,

the PMM will consist of a full set of 80 parameters! It is easy to see that increasing
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the number of time points, even just slightly, will necessitate estimation of even much

larger numbers of parameters. In addition, these patterns should be more or less suffi-

ciently filled in order to get any useful information from them. And, unless the study

employs a very large sample size, it is quite difficult to foresee such a situation. In

line with this, complete combinations would also be necessary within each pattern, to

fit the proposed models without any computational challenges, again requiring large

numbers of subjects. On a somewhat different note, difficulties also arise in consider-

ing which outcome to impute first. Jansen and Molenberghs (2007) discussed that the

formulations they present can be seen as merely a few points in a vast, continuous,

design space. To compound the issue, in the non-monotone setting, there are no ex-

plicit expressions for ACMV, which might be the more popular choice of identifying

restriction as it is the equivalent of MAR a pattern-mixture framework (Molenberghs

et al., 1998). For these reasons, we deemed it best to defer focus and discussion of the

non-monotone case, perhaps to a separate study on its own, so that such issues can be

adequately dealt with and properly discussed therein.
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