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ABSTRACT 

 

This paper studies mathematical properties of h-index sequences as developed by Liang 

Liming [h-index sequence and h-index matrix: constructions and applications. Scientometrics 

69(1), 153-159, 2006]. For practical reasons, Liang Liming studies such sequences where the 

time goes backwards while it is more logical to use the time going forward (real career 

periods). Both type of h-index sequences are studied here and their interrelations are revealed. 

We show cases where these sequences are convex, linear and concave. We also show that, 

when one of the sequences is convex then the other one is concave, showing that the reverse-

time sequence, in general, cannot be used to derive similar properties of the (difficult to 

obtain) forward time sequence. We show that both sequences are the same if and only if the 

author produces the same number of papers per year. If the author produces an increasing 
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number of papers per year, then Liang’s h-sequences are above the “normal” ones. All these 

results are also valid for g- and R-sequences. The results are confirmed by the h-, g- and R-

sequences (forward and reverse time) of the author. 

 

 

I.  Introduction 

 

In 2005, Hirsch defined his, now famous, Hirsch index or h-index. It was defined in Hirsch 

(2005) as follows (using our own formulation): if we order the papers of an author in 

decreasing order of the number of citations received, then the h-index of this author equals h 

if r h=  is the highest rank such that the first h papers each have h or more citations. Since this 

definition, there has been an “explosion” of papers on the h-index, applying it not only to 

authors but also to journals (Braun, Glänzel and Schubert (2005, 2006)), to research groups 

(van Raan (2006)) and even to topics (Banks (2006), The STIMULATE6 Group (2007), 

Egghe and Rao (2008)). 

 

Advantages and disadvantages of the h-index have been described in the literature (Glänzel 

(2006a,b), Egghe (2006), Jin, Liang, Rousseau and Egghe (2007)) leading to other indices 

which have better properties (or at least lack some undesirable properties of the h-index). One 

obvious disadvantage of the h-index (but also of all other indices) is that it is a fixed number, 

giving a moment’s value of a researcher’s career at a certain time. A consequence is also that 

h-indices of different researchers are difficult to compare (even in the same field) if their 

career lengths are not the same. Solutions for the latter problem are given in Burrell (2007b) 

and Jin, Liang, Rousseau and Egghe (2007) but the problem that only one number “describes” 

a career remains. 

 

We can refer to Egghe (2007a,b,c) and Burrell (2007a) for the first theoretical models for 

time-dependent h-indices, suggesting concavely increasing h-indices in the papers of Egghe 

and (approximate) linearly increasing h-indices in function of time, i.e. in function of career 

length in the Burrell paper. 

 

The problem remains to construct, from year to year, practical h-index sequences of 

researchers (in short: h-sequences). 
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This was defined and studied in Liang (2006) but, in our (and Burrell’s – see Burrell (2007)) 

opinion, Liang does not use the most logical definition of a h-sequence. In our opinion, the 

most logical definition of a h-sequence of a researcher is as follows. 

 

Let the career period of a researcher be described by time 
mt 1,2,..., t= : here t 1=  denotes the 

first year of the career (more exactly, the year of the first publication) and so on, until 
mt t= , 

the final year of the career or the last year we want to cover or the present year (in most 

cases). Then the h-sequence is constructed as follows. If we only consider the papers of 

publication year t 1=  and their citations obtained in the same year, we then can derive the 

first h-index, denoted 
1h . Next we consider the years t 1=  and t 2=  together and their 

citations obtained in the same period, yielding the next h-index, denoted 2h . We continue this 

way until we reach the final year 
mt : we consider all years mt 1,..., t=  and take into account all 

publications and citations to these publications in this period. This yields the last h-index 
mt

h . 

The sequence 1h , 2h , …, 
mt

h  gives a dynamic description of the visibility of this researcher’s 

career and can be compared within the same field, with another researcher’s h-sequence. 

 

However, in Liang (2006), another h-sequence is defined: there one uses time in the reverse 

way (in the direction of the past). Concretely, the first index (which we will denote by *

1h ) is 

calculated based on the papers published in the year mt  and citations to these papers in the 

year mt . The next h-index, denoted *

2h  is calculated, based on the papers published in the 

years mt  and mt 1-  and the citations to these papers in the same period. We continue this way 

until we reach year 1: only this h-index (considering all years mt 1,..., t=  for publications as 

well as citations to these publications), denoted 
m

*

th  is the same as 
mt

h . 

 

We underline that the sequence 
1h , 

2h , …, 
mt

h  is the “natural” h-sequence of a researcher; the 

sequence *

1h , *

2h , …, 
m

*

th  (denoted without stars in Liang (2006)) was used only for practical 

reasons: (only) if mt  is the present year, one can calculate *

1h , …, 
m

*

th  in an automatic way 

from the Web of Science (WoS). In the WoS, only citation data, and subsequent h-indices are 

given (whatever the set of articles) for the citing period up to the present year. That is why 

Liang calculated *

1h , …, 
m

*

th  instead of the more natural 1h , …, 
mt

h  for which one has to 
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collect all citation data from the WoS and to restrict the citing period ( t 1= , t 1=  and t 2= , 

…) manually, which is very time-consuming. 

 

We fully understand that Liang wanted to avoid the time-consuming calculation of the 

sequence 
1h , …, 

mt
h  (for eleven physicists) by replacing it by the sequence *

1h , …, 
m

*

th  but, in 

this case, we need to know that the latter sequence resembles the former one. The comparison 

of both sequences, in a logical Lotkaian publication-citation environment, is the topic of this 

paper. 

 

The h-sequences will be studied for continuous time t +Î ¡ . Also we will suppose that, for 

each time period (backwards or forward), we have an information production process (IPP) 

(cf. Egghe (2005)) of publications and citations to these publications conforming with Lotka’s 

law 

 

 ( )
C

f j
j

=  (1) 

 

C 0> , 1> , where ( )f j  denotes the density of the articles with a density j of citations to 

these articles (see Egghe (2005)). We assume that   is constant in each time period 

considered. It is clear that this simplification does not jeopardises the conclusions of this 

paper concerning the comparison of both h-sequences. Since we take time as a continuous 

variable we will denote the sequence 1h , …, 
mt

h  by ( )h t , [ ]mt 0, tÎ  and the sequence *

1h , …, 

m

*

th  by ( )*h t , [ ]mt 0, tÎ . 

 

In the next section we will study ( )h t  for a fixed number of publications per time unit (say 

per year) and for an increasing number of publications per time unit, where the increase is 

expressed using a power function or an exponential function. Necessary and sufficient 

conditions are given for the h-“sequence” (function) ( )h t  to be convexly, linearly or 

concavely increasing and we indicate that the concave increase is the most natural one. 

 

In the third section we define the *h -function ( )*h t  in function of ( )h t  and prove a necessary 

and sufficient condition for ( ) ( )*h t h t=  for all [ ]mt 0, tÎ , the ideal situation: indeed, only in 
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this case we can substitute ( )*h t  (the one that can be calculated in an automatic way) for ( )h t  

(the one that requires a lot of manual intervention but the natural one). It turns out that 

( ) ( )*h t h t= , for all [ ]mt 0, tÎ  and all 
mt 0> , if and only if the number of publications per time 

unit (say a year) of the researcher is constant. This is an important case but, as shown by the 

author’s data, is only a rough approximation of reality. We also show that ( ) ( )*h t h t³ , for all 

[ ]mt 0, tÎ  if the number of publications per time unit (year) of the researcher increases. 

 

In the fourth section we even prove that, for general publication production schemes, if one of 

the functions ( )h t  or ( )*h t  is convex (including the linear case), then the other one is 

concave, showing that, in general, the behavior of the h-“sequences” ( )h t  and ( )*h t  is 

different. We also note that the converse of the above assertion is false by giving examples of 

cases where both ( )h t  and ( )*h t  are concave. 

 

The fifth section gives ( )h t  and ( )*h t  for this author. It is also remarked that the same results 

hold for the g-index (Egghe (2006)) and the R-index (Jin, Liang, Rousseau and Egghe (2007)) 

and are illustrated by presenting ( )g t , ( )*g t , ( )R t  and ( )*R t  for this author. 

 

We can then conclude that one cannot avoid the time-consuming task of calculating the 

natural h-sequence 1h , …, 
mt

h  (and similarly for the g- and R-index) of a researcher except in 

the case the researcher has a (more or less) constant publication production per year. We end 

the paper by proposing open problems and advises. 

 

 

II.  Study of the h-“sequence” h(t) 

 

For the natural h-sequence (function) ( )h t , we consider the career of a researcher from the 

start ( )t 0=  up to a time t 0> . Let us denote by ( )T t  the total number of publications of this 

researcher at time t. This set of publications is assumed to have citations (in the same period 

[ ]0, t ) according to Lotka’s law (1), with   independent from t (as explained in the 
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Introduction). It was proved in Egghe and Rousseau (2006) that, in this case, the h-index (t-

dependent here) equals 

 

 ( ) ( )
1

h t T t =  (2) 

 

for each [ ]mt 0, tÎ  (note that, for t 0= , we have ( )T 0 0=  and ( )h 0 0=  naturally). 

 

We will now study the shape of the function ( )h t  in three simple, natural cases. 

 

II.1  The case of constant production 

If a researcher publishes the same number of papers per time unit (e.g. a year), say b, then we 

have that, for every [ ]mt 0, tÎ  that ( )T t bt= . Then (2) implies 

 

 ( )
1 1

h t b t =  (3) 

 

which is a concavely increasing function since 1> . This is the simplest model for ( )h t  and 

is a first approximation of reality. 

 

Table 1 shows this author’s yearly production of publications (articles and books) according 

to publication year. Time t 1=  is the starting year 1978, up to 2007, totalling 30 years of 

publications. 

 

Table 1. Number of publications 

per year of L. Egghe 

 

t # t # t # t # t # 

1 

2 

3 

4 

5 

6 

2 

0 

4 

5 

5 

2 

7 

8 

9 

10 

11 

12 

3 

4 

3 

5 

9 

0 

13 

14 

15 

16 

17 

18 

8 

5 

8 

4 

5 

6 

19 

20 

21 

22 

23 

24 

8 

11 

8 

10 

11 

7 

25 

26 

27 

28 

29 

30 

8 

9 

9 

13 

15 

14 
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It is clear that a constant production per year is not the case. One can see a moderate increase 

which can be described by a power function or an exponential function. These cases will be 

studied below. 

 

II.2  The case of increasing production per year, using a power function 

Here we assume a number (density) of publications per time unit being bt  where b, 0>  

(the case 0=  corresponds to the previous case). Hence for every [ ]mt 0, tÎ : 

 

 ( )
t

1

0

b
T t bt ' dt ' t

1

 



+= =
+ò  (4) 

 

Now, according to (2) we have 

 

 ( )

1
1

b
h t t

1






+æ ö
÷ç= ÷ç ÷ç ÷+è ø

 (5) 

 

which is concave iff 1 + < , linear iff 1 + =  and convex iff 1 + > . One can expect 

that a researcher’s production does not increase fastly so that a small   occurs more often in 

which case we again expect a concavely increasing function ( )h t . 

 

II.3  The case of increasing production per year, using an exponential 

function 

Here we assume a number (density) of publications per time unit being tbc  where b 0> , 

c 1> . One could even take 0 c 1< <  in which we have a decreasing yearly production. The 

case c 1=  corresponds to the case studied in subsection II.1. Now, for every [ ]mt 0, tÎ : 

 

 ( ) ( )
t

t ' t

0

b
T t bc dt ' c 1

lnc
= = -ò  (6) 

 

Now, according to (2) we have 
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 ( ) ( )

1
1

tb
h t c 1

ln c




æ ö÷ç= -÷ç ÷çè ø
 (7) 

 

which is, for c 1> , increasing and where ( )h '' t 0<  iff tc < . So here, dependent on the 

values of c,   and t we can have a concave ( )h t  or an S-shaped ( )h t  (since 1>  we have 

that, for t small enough we always have tc <  so that a completely convex ( )h t  is not 

possible here). 

 

For a moderate increase per year of the production (i.e. c 1>  but close to 1) we hence have, if 

mt  is not very large, that ( )h t  is concavely increasing. 

 

We now start the study of the reverse function ( )*h t . The next section defines this function 

and presents a necessary and sufficient condition for ( ) ( )*h t h t=  for all [ ]mt 0, tÎ . 

 

 

III.  Liang’s h-sequence h
*
(t) 

 

Let us denote the career length of a researcher by mt : hence the researcher has publications in 

the time period [ ]m0, t . Let us denote, as in the previous section, by ( )T t  the total number of 

publications of this researcher at time t (i.e. t time units since the start of the career at t 0= ). 

Liang starts at time mt , going back to the past as depicted in Fig. 1: For Liang, time t is the 

period (in normal time) between mt t-  and 
mt  (for mt t£ ). 

 

tm - t tm

t 0

0
 

 

Fig. 1.  Time and reverse time 

 

Hence, in reverse time, one considers a number of publications, denoted as ( )*T t , equalling 
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 ( ) ( ) ( )*

m mT t T t T t t= - -  (8) 

 

In the Introduction we assumed that, for any time t in the direct way or in the reverse way, the 

number of publications ( )T t  or ( )*T t  have citations according to Lotka’s law (1), where 1>  

is fixed. This yields the following Proposition. 

 

Proposition III.1: 

Let ( )h t  denote the h-sequence of a researcher for normal time and ( )*h t  denote the h-

sequence of this researcher for the reverse time as described above (e.g. formula (8)). Then 

we have, supposing Lotka’s law (1), 

 

 ( ) ( ) ( )( )
1

*

m mh t T t h t t
 = - -  (9) 

 

for all [ ]mt 0, tÎ . 

 

Proof: 

Using Lotka’s law (1) we have that, for every [ ]mt 0, tÎ  

 

 ( ) ( )
1

h t T t =  

 

, by (2). If we apply this for mt t-  (also belonging to the interval [ ]m0, t ) we have 

 

 ( ) ( )
1

m mh t t T t t - = -  

 

or  

 

 ( ) ( )m mT t t h t t


- = -  (10) 

 

Further, using again (1) and (2) to the publication set ( )*T t , we have that 
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 ( ) ( )
1

* *h t T t =  (11) 

 

for all [ ]mt 0, tÎ . Formulae (8), (10) and (11) prove formula (9), finishing this proof.           

 

Although the Liang h-“sequence” ( )*h t  has interest in itself, it can only give information 

about the natural h-sequence ( )h t  if they are (more or less) equal. A characterization of this 

will be given in the next Theorem. 

 

Theorem III.2: 

Both h-sequences ( )h t  and ( )*h t  are identical: 

 

 ( ) ( )*h t h t=  (12) 

 

for all [ ]mt 0, tÎ  and all mt
+Î ¡  if and only if the researcher has a constant production of 

publications per time unit. In other words: (12) is valid iff 

 

 ( )T t bt=  (13) 

 

for a certain constant b 0> . 

 

Proof: Formula (9) and (12) yield, for all [ ]mt 0, tÎ  

 

 ( ) ( ) ( )( )
1

*

m mh t T t h t t
 = - -  

 

        ( ) ( )
1

h t T t = = , 

 

using also (2). Using again (2) we have 

 

 ( ) ( )m mh t t T t t


- = -  
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so that we have (necessary and sufficient to have (12)) 

 

 ( ) ( ) ( )m mT t T t t T t- - =  (14) 

 

(otherwise stated: ( ) ( )*T t T t=  for all [ ]mt 0, tÎ , by (8)). 

 

Denoting t x= , 
mt t y- = , hence 

mt x y= + , (14) requires 

 

 ( ) ( ) ( )T x y T x T y+ = +  (15) 

 

for all x,y +Î ¡  (since the above is required for all [ ]mt 0, tÎ  and all 
mt 0> ). Relation (15) can 

be extended to all x,y Î ¡  by defining, for ( ) ( )x :T x T x-Î = -¡  so that (15) is valid for all 

x,y Î ¡ . Since we, evidently, assume that the function ()T .  is continuous, we have, by a well-

known result (cf. Roberts (1979) – see also Egghe (2005), Appendix 1, Theorem A.I.1) that 

the function ()T .  must be linear: there exists a number b Î ¡  such that 

 

 ( )T t bt=  (16) 

 

Of course, since ( )T t 0>  for all t 0> , we have b 0> , completing the proof of this 

Proposition.                          

 

Note that (13) trivially implies (12) since ( ) ( ) ( )
1 1

h t T t bt = =  and since, by (8): 

( ) ( ) ( ) ( )*

m m m mT t T t T t t bt b t t bt= - - = - - = , hence ( ) ( ) ( ) ( )
1 1

* *h t T t bt h t = = = , for all 

[ ]mt 0, tÎ . 

 

The case that a researcher has a constant number of publications per time unit is an important 

simple case and a first approximation of reality: we can indeed, roughly, assume that a 

researcher, in his/her career, produces more or less the same number of papers per year, 

certainly in the middle part of the career: in the beginning of the career, the researcher will 
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produce (most probably) less papers (cf. Table 1) as is probably also the case at the end of a 

career (luckily I cannot illustrate this yet !). 

 

But the above Proposition also indicates that, in all cases where paper production is not 

constant per time unit, we have that ( ) ( )*h t h t¹ . 

 

Could it then be that the shapes of both functions are the same ? Then the (easier) calculation 

of ( )*h t  could at least give some insight in the shape of ( )h t , which is, as said above, very 

time-consuming to calculate. The next section shows that, in general, the shapes of ( )*h t  and 

( )h t  are very different, jeopardizing, to a large extent, the use of ( )*h t  as a substitute for 

( )h t . 

 

We close this section with the following Theorem on the comparison of ( )*h t  and ( )h t . 

 

Theorem III.3: 

If ( )T' t  (strictly) increases (i.e. ( )T t  convex) then 

 

 ( ) ( ) ( )*h t h t³ >  

 

for every [ ]mt 0, tÎ . 

 

Proof: 

It follows from (2) and (9) that ( ) ( )*h t h t>  if and only if 

 

 ( ) ( ) ( )m mT t T t t T t> - +  (17) 

 

(and similarly for the ³  sign; we leave this to the reader). 

 

(i)  Let m
t

t
2

³  

By the mean value theorem on the function ( )T t  (supposed to be differentiable) we have 
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 ( ) ( ) ( )( )m mT t T t T' t t- = -  (18) 

 

for a certain ] [mt, t Î  and 

 

      ( ) ( ) ( )m mT t t T t t T 0- = - -  

 

 ( )( )mT' t t= -  (19) 

 

for a certain ] [m0, t t Î - . 

 

Since mt
t

2
>  we have that ] [ m

m m

t
t, t , t

2

ù é
ú êÌ
ú êû ë

 and ] [ m
m

t
0, t t 0,

2

ù é
ú ê- Ì
ú êû ë

. Hence, since ( )T' t  strictly 

increases, we have ( ) ( )T' T' < . Hence (18) and (19) imply 

 

 ( ) ( ) ( )m mT t T t T t t- > -  

 

hence (17). 

 

(ii)  Let m
t

t
2

<  

By the mean value theorem on ( )T t  we now have 

 

 ( ) ( ) ( )m mT t T t t T' t- - =  (20) 

 

for a certain ] [m mt t, tÎ -  and 

 

       ( ) ( ) ( )T t T t T 0= -  

 

 ( )T' t=  (21) 
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for a certain ] [0, t Î . Now, since mt
t

2
<  we have that ] [ m

m m m

t
t t, t , t

2

ù é
ú ê- Ì
ú êû ë

 and ] [ mt0, t 0,
2

ù é
ú êÌ
ú êû ë

. 

Hence, since ( )T' t  strictly increases, we have by (20) and (21) ( ) ( )T' T' <  and hence 

 

 ( ) ( ) ( )m mT t T t t T t- - >  

 

yielding again (17). This concludes the proof.                                 

 

Note that ( )T' t  denotes the number of papers per time unit, say, in the discrete case, the 

production per year. So Theorem III.3 deals with an increasing number of papers, say per 

year. Note that the conclusion of theorem III.3 ( ( ) ( )*h t h t>  for all t) implies that ( )*h t  cannot 

be convex in this case (since ( ) ( )*h 0 h 0 0= =  and ( ) ( )*

m mh t h t= ). 

 

Of course, if ( )T' t  (strictly) decreases (what we do not expect to be the case, usually) we have 

( ) ( ) ( )*h t h t£ <  for every [ ]mt 0, tÎ . In this case, ( )h t  cannot be convex. 

 

Note that ( ) ( )*h 0 h 0 0= =  and ( ) ( ) ( )
1

*

m m mh t h t T t = =  (by (2) and (9)). The tangent lines in 

t 0=  have slopes ( )*h ' 0  and ( )h ' 0 . We have 

 

 
( )

( )

( )

( )

* *

t 0 t 0

h ' t h t
lim lim

h ' t h t® ®
> >

=  (22) 

 

by de l’Hôspital’s rule (and since ( ) ( )*h 0 h 0 0= =  and since ( )*h t  and ( )h t  are continuous). 

By (2) and (9) we have 

 

           
( )

( )

( ) ( )

( )

*

m m

t 0 t 0

h t T t T t t
lim lim

h t T t® ®
> >

- -
=  

 

 
( )

( )
mT' t

T ' 0
=  (23) 
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again by the l’Hôspital’s rule. In the case of Theorem III.3 is the highest difference between 

the values ( )T' t , [ ]mt 0, tÎ  given by ( )T' 0  (smallest value) and ( )mT' t  (largest value), so that 

(22) and (23) imply that 

 

 
( )

( )

*

t 0

h ' t
lim 1

h ' t®
>

>  

 

which means that, from t 0=  onwards, ( )*h t  increases faster than ( )h t . 

 

 

IV.  General relations between h(t) and h
*
(t) 

 

We can prove the following result which is bad news for the useability of the ( )*h t  function 

instead of the function ( )h t . 

 

Theorem IV.1: 

In the general situation of Proposition III.1, we have that, if ( )h t  is convex (including the 

linear case), then ( )*h t  is strictly concave. 

 

Proof: Based on (9) we have the general formulae, for all [ ]mt 0, tÎ  

 

 ( ) ( ) ( )( ) ( ) ( )
1

1
1*

m m m mh ' t T t h t t h t t h ' t t
 

-
-

= - - - -  

 

which is strictly positive (assuming, of course, that ( )T t  strictly increases) since 

( ) ( ) ( )m m mh t t T t t T t


- = - <  and since h ' 0>  (by (2) and the fact that ( )T t  strictly 

increases). Further 
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 ( ) ( ) ( )( ) ( ) ( )
1

2
2 2* 2

m m m m

1
h '' t 1 T t h t t h t t .h ' t t

  


-
-æ ö

÷ç= - - - - -÷ç ÷çè ø
 

 

  ( ) ( )( ) ( ) ( ) ( )( )
1

1
2 2

m m m mT t h t t 1 h t t h ' t t 1
  

-
-

+ - - - - - -  

 

  ( ) ( )( ) ( ) ( )( )
1

1
1

m m m mT t h t t h t t h '' t t 1
 

-
-

+ - - - - - . 

 

Each term in the above formula is negative because 1> , since ( )h '' t 0³  for all [ ]mt 0, tÎ  and 

again since ( ) ( )m mh t t T t


- < . This shows the strict concavity of *h  (i.e. ( )*h '' t 0<  for all 

[ ]mt 0, tÎ ) (even in case ( )h t  is linear).                             

 

If we replace ( )h t  and ( )*h t  in the above Theorem, we again have a valid result. 

 

Theorem IV.2: 

In the general situation of Proposition III.1, we have that, if ( )*h t  is convex (including the 

linear case), then ( )h t  is strictly concave. 

 

Proof: 

We again invoke equation (9): 

 

 ( ) ( ) ( )( )
1

*

m mh t T t h t t
 = - -  

 

, valid for all [ ]mt 0, tÎ . A little bit of algebra yields, for all [ ]mt 0, tÎ  

 

 ( ) ( ) ( )( )
1

*

m mh t t T t h t
 - = -  

 

for all [ ]mt 0, tÎ . Putting mx t t= -  we have: for all [ ]mx 0, tÎ  
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 ( ) ( ) ( )( )
1

*

m mh x T t h t t
 = - -  

 

which is exactly formula (9) but for ()h .  and ()*h .  reversed. Hence the Theorem follows from 

Theorem IV.1.                                 

 

We next show, by one example, that the converses of Theorems IV.1 and IV.2 are not true. 

This is done by calculating ( )*h t  for the case studied in Subsections II.1 and II.2. 

 

Example : h
*
(t) versus h(t) in case of Subsection II.1 

Here we assumed a constant number of papers per time unit and we obtained (Subsection II.1 

and Theorem III.2) for all [ ]mt 0, tÎ : 

 

 ( ) ( )
1 1

*h t b t h t = = , 

 

hence both ( )h t  and ( )*h t  are strictly concave. 

 

Example : h
*
(t) versus h(t) in case of Subsection II.2 

Here we assumed (4) yielding formula (5). From these results we have, using formula (9) that 

 

 ( ) ( )( )
1

1
1* 1

m m

b
h t t t t

1


 



++
æ ö

÷ç= ÷ - -ç ÷ç ÷+è ø
 (24) 

 

A quick calculation shows that ( )*h t  is always strictly concave since 1> . Note that we 

showed in Subsection II.2 that ( )h t  is concave iff 1 + <  (yielding the case that both ( )h t  

and ( )*h t  functions are concave), that ( )h t  is linear iff 1 + =  and that ( )h t  is convex iff 

1 + >  (the last two cases confirm Theorem IV.1). 
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V.  Verification of these results on the h-sequences of 

Egghe and extension to the g- and R-sequences 

 

Fig. 2 gives the h-sequence of this author where t 1=  is the year 1978. So ( )h 1  is the h-index 

for the set publications in 1978 and citations to these papers in 1978. Similarly ( )h 2  is the h-

index for the set publications in  the 1978-1979 period and citations in this period to these 

papers, and so on: ( )h 30  is the h-index for the set publications in the 1978-2007 period and 

citations to these papers in this period. 

 

Fig. 3 gives the *h -sequence of this author, where now t 1=  is 2007. So ( )*h 1  is the h-index 

for the set of publications in 2007 and citations to these papers in 2007. Similarly ( )*h 2  is the 

h-index for the set publications in the period 2006-2007 and citations in this period to these 

papers, and so on: ( )*h 30  is the h-index for the set publications in the 1978-2007 period and 

citations to these papers in this period. So, only for t 30=  we have ( ) ( )*h 30 h 30= . 
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Fig.  2.  ( )h t  for the career of Egghe 
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Fig.  3. ( )*h t  for the career of Egghe 

 

We clearly see that ( )h t  is approximately linear (confirming in this case Burrell (2007a)) 

while ( )*h t  has a more concave shape, confirming Theorem IV.1. We also see that 

( ) ( )*h t h t>  confirming Theorem III.3 taking into account the “overall” increase of the 

number of papers per year (Table 1). We also see that, for small t, ( )h t  increases more slowly 

than ( )*h t , also confirming results of Section III. This is also logical since, in the beginning of 

a career, the first papers will, normally, be cited in a later period. Conversely, ( )*h t  increases 

more slowly, for larger t, than ( )h t  which is also logical since high t for ( )*h t  means: the 

beginning period. 

 

As noted in Egghe (2006) and Jin, Liang, Rousseau and Egghe (2007) the indices g and R are 

fixed (for   fixed) multiples of h. Hence the theoretical results, proved in Section II, III and 

IV are also valid for the sequences ( )g t , ( )R t (forward time) and ( )*g t  and ( )*R t  (reverse 

time). 

 

For each period, the g-index was defined as the largest rank such that the total number of 

citations to the papers on ranks 1,...,g  is larger than or equal to 2g . Also, R equals the square 

root of the sum of the number of citations to the first h papers. They were introduced to avoid 
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the disadvantage of the h-index that it is insensitive to the number of citations to papers in the 

h-core. 

 

That the results on ( )h t  and ( )*h t  are also valid for ( )g t , ( )*g t , ( )R t  and ( )*R t  is illustrated 

in Figs. 4, 5, 6 and 7 based on the same data of Egghe used in Figs. 2, 3. 
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Fig.  4. ( )g t  for the career of Egghe 
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Fig.  5. ( )*g t  for the career of Egghe 
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Fig.  6. ( )R t  for the career of Egghe 

 

 

0

4

5 10 20 30 t

R*(t)

15 25 35

8

10

12

14

18

20

16

2

6

 

 

Fig. 7. ( )*R t  for the career of Egghe 
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VI.  Remarks and conclusions 

 

This paper studied the sequences (functions) ( )h t  (forward time) and ( )*h t  (reverse time, as 

defined by Liang). Concrete examples are given based on paper production models per time 

unit. We showed that ( ) ( )*h t h t=  for all t, iff paper production per time unit is constant and 

that ( ) ( )*h t h t>  for all t if the paper production per time unit strictly increases. We also show 

that even the shapes of ( )h t  and ( )*h t  can be very different (e.g. one being convex and the 

other one being concave). Hence, we can conclude that, apart from constant paper production, 

( )*h t  cannot be used to study ( )h t  which is a pity since ( )*h t  can be generated from the WoS 

in an automatic way while ( )h t  (the sequence which is the more natural one) must be 

calculated in a time-consuming manual way. 

 

It is our advise – as also Burrell did (Burrell (2007b)) – that the WoS produces such h-

sequences in an automatic way. It would be very good that researchers and policy makers can 

have h-sequences at their disposition: it better shows the evolution of a career which a single 

h-index cannot. Of course, from now on, a researcher can calculate his/her h-index on a yearly 

basis, generating a h-sequence after many years, but this, obviously, requires a lot of patience! 

 

We remarked that all theoretical result on ( )h t  and ( )*h t  are also true for the g-index and R-

index. 

 

We presented ( )h t , ( )*h t , ( )g t , ( )*g t , ( )R t  and ( )*R t  for the career of this author (period 

1978-2007) and confirm hereby the theoretical results. 

 

We obtained a linearly increasing ( )h t  function for the Egghe data. Yet, the formula (2) 

shows a concave (since 1> ) relation of h in function of T. As proved in Section II, in many 

models is ( )h t  a concave function of time t. We can conclude in the Egghe case that the 

cumulative production ( )T t  more or less compensates the exponent 
1


 in (2) so that 

(approximately) ( )T t ct=  (c a constant) resulting in 
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        ( ) ( ) ( )
1

h t T t ct
  = =  

 

 
1

c t=  

 

, a linear function of t. In this case, the function ( )h t  follows the straight line connecting 

( )0,0  and ( )( )m mt ,h t , which has equation 

 

 
( )m

m

h t
y t

t
=  (25) 

 

The function ( )h t  is entirely below this line if and only if 

 

 ( ) ( )
( )1

m

m

h t
h t T t t

t
= £  

 

which is equivalent with 

 

 ( ) ( )m

m

t
T t T t

t


æ ö

÷ç ÷£ ç ÷ç ÷çè ø
 (26) 

 

Note that in this case ( )h t  cannot be concave (as e.g. is the case for ( )T t bt=  for all t, which 

does not satisfy (26) since 1> ). 

 

Similar inequalities can be given for ( )h t  above (25) and ( )*h t  below or above (25). 
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