Mathematical study of h-index sequences
Peer-reviewed author version

EGGHE, Leo (2009) Mathematical study of h-index sequences. In: INFORMATION PROCESSING \& MANAGEMENT, 45(2). p. 288-297.

DOI: 10.1016/j.ipm.2008.12.002
Handle: http://hdl.handle.net/1942/9279

Mathematical study of h-index sequences

by

L. Egghe

Universiteit Hasselt (UHasselt), Campus Diepenbeek, Agoralaan, B-3590 Diepenbeek,
\quad Belgium 1
and
Universiteit Antwerpen (UA), IBW, Stadscampus, Venusstraat 35, B-2000 Antwerpen,
\quad Belgium
leo.egghe @uhasselt.be

ABSTRACT

This paper studies mathematical properties of h-index sequences as developed by Liang Liming [h-index sequence and h-index matrix: constructions and applications. Scientometrics 69(1), 153-159, 2006]. For practical reasons, Liang Liming studies such sequences where the time goes backwards while it is more logical to use the time going forward (real career periods). Both type of h-index sequences are studied here and their interrelations are revealed. We show cases where these sequences are convex, linear and concave. We also show that, when one of the sequences is convex then the other one is concave, showing that the reversetime sequence, in general, cannot be used to derive similar properties of the (difficult to obtain) forward time sequence. We show that both sequences are the same if and only if the author produces the same number of papers per year. If the author produces an increasing

[^0]number of papers per year, then Liang's h-sequences are above the "normal" ones. All these results are also valid for g - and R -sequences. The results are confirmed by the $\mathrm{h}-\mathrm{g}$ - and R sequences (forward and reverse time) of the author.

I. Introduction

In 2005, Hirsch defined his, now famous, Hirsch index or h-index. It was defined in Hirsch (2005) as follows (using our own formulation): if we order the papers of an author in decreasing order of the number of citations received, then the h-index of this author equals h if $r=h$ is the highest rank such that the first h papers each have h or more citations. Since this definition, there has been an "explosion" of papers on the h-index, applying it not only to authors but also to journals (Braun, Glänzel and Schubert (2005, 2006)), to research groups (van Raan (2006)) and even to topics (Banks (2006), The STIMULATE6 Group (2007), Egghe and Rao (2008)).

Advantages and disadvantages of the h -index have been described in the literature (Glänzel (2006a,b), Egghe (2006), Jin, Liang, Rousseau and Egghe (2007)) leading to other indices which have better properties (or at least lack some undesirable properties of the h-index). One obvious disadvantage of the h -index (but also of all other indices) is that it is a fixed number, giving a moment's value of a researcher's career at a certain time. A consequence is also that h -indices of different researchers are difficult to compare (even in the same field) if their career lengths are not the same. Solutions for the latter problem are given in Burrell (2007b) and Jin, Liang, Rousseau and Egghe (2007) but the problem that only one number "describes" a career remains.

We can refer to Egghe (2007a,b,c) and Burrell (2007a) for the first theoretical models for time-dependent h-indices, suggesting concavely increasing h-indices in the papers of Egghe and (approximate) linearly increasing h-indices in function of time, i.e. in function of career length in the Burrell paper.

The problem remains to construct, from year to year, practical h-index sequences of researchers (in short: h-sequences).

This was defined and studied in Liang (2006) but, in our (and Burrell's - see Burrell (2007)) opinion, Liang does not use the most logical definition of a h -sequence. In our opinion, the most logical definition of a h -sequence of a researcher is as follows.

Let the career period of a researcher be described by time $t=1,2, \ldots, t_{m}$: here $t=1$ denotes the first year of the career (more exactly, the year of the first publication) and so on, until $t=t_{m}$, the final year of the career or the last year we want to cover or the present year (in most cases). Then the h -sequence is constructed as follows. If we only consider the papers of publication year $\mathrm{t}=1$ and their citations obtained in the same year, we then can derive the first h-index, denoted h_{1}. Next we consider the years $t=1$ and $t=2$ together and their citations obtained in the same period, yielding the next h-index, denoted h_{2}. We continue this way until we reach the final year t_{m} : we consider all years $t=1, \ldots, t_{m}$ and take into account all publications and citations to these publications in this period. This yields the last h-index $h_{t_{\mathrm{m}}}$. The sequence $h_{1}, h_{2}, \ldots, h_{t_{m}}$ gives a dynamic description of the visibility of this researcher's career and can be compared within the same field, with another researcher's h-sequence.

However, in Liang (2006), another h-sequence is defined: there one uses time in the reverse way (in the direction of the past). Concretely, the first index (which we will denote by h_{1}^{*}) is calculated based on the papers published in the year t_{m} and citations to these papers in the year t_{m}. The next h-index, denoted h_{2}^{*} is calculated, based on the papers published in the years t_{m} and $\mathrm{t}_{\mathrm{m}}-1$ and the citations to these papers in the same period. We continue this way until we reach year 1 : only this h-index (considering all years $t=1, \ldots, \mathrm{t}_{\mathrm{m}}$ for publications as well as citations to these publications), denoted $h_{t_{\mathrm{m}}}^{*}$ is the same as $h_{\mathrm{t}_{\mathrm{m}}}$.

We underline that the sequence $h_{1}, h_{2}, \ldots, h_{t_{m}}$ is the "natural" h-sequence of a researcher; the sequence $h_{1}^{*}, h_{2}^{*}, \ldots, h_{t_{m}}^{*}$ (denoted without stars in Liang (2006)) was used only for practical reasons: (only) if t_{m} is the present year, one can calculate $\mathrm{h}_{1}^{*}, \ldots, \mathrm{~h}_{\mathrm{t}_{\mathrm{m}}}^{*}$ in an automatic way from the Web of Science (WoS). In the WoS, only citation data, and subsequent h-indices are given (whatever the set of articles) for the citing period up to the present year. That is why Liang calculated $h_{1}^{*}, \ldots, h_{t_{m}}^{*}$ instead of the more natural $h_{1}, \ldots, h_{t_{m}}$ for which one has to
collect all citation data from the WoS and to restrict the citing period $(\mathrm{t}=1, \mathrm{t}=1$ and $\mathrm{t}=2$, ...) manually, which is very time-consuming.

We fully understand that Liang wanted to avoid the time-consuming calculation of the sequence $h_{1}, \ldots, h_{t_{m}}$ (for eleven physicists) by replacing it by the sequence $h_{1}^{*}, \ldots, h_{t_{\mathrm{m}}}^{*}$ but, in this case, we need to know that the latter sequence resembles the former one. The comparison of both sequences, in a logical Lotkaian publication-citation environment, is the topic of this paper.

The h-sequences will be studied for continuous time $t \hat{I} i^{+}$. Also we will suppose that, for each time period (backwards or forward), we have an information production process (IPP) (cf. Egghe (2005)) of publications and citations to these publications conforming with Lotka's law

$$
\begin{equation*}
f(j)=\frac{C}{j^{\alpha}} \tag{1}
\end{equation*}
$$

$C>0, \alpha>1$, where $f(j)$ denotes the density of the articles with a density j of citations to these articles (see Egghe (2005)). We assume that α is constant in each time period considered. It is clear that this simplification does not jeopardises the conclusions of this paper concerning the comparison of both h-sequences. Since we take time as a continuous variable we will denote the sequence $h_{1}, \ldots, h_{t_{m}}$ by $h(t)$, tî $\left[0, t_{m}\right]$ and the sequence h_{1}^{*}, \ldots, $h_{\mathrm{t}_{\mathrm{m}}}^{*}$ by $\mathrm{h}^{*}(\mathrm{t}), \mathrm{t} \hat{I}\left[0, \mathrm{t}_{\mathrm{m}}\right]$.

In the next section we will study $h(t)$ for a fixed number of publications per time unit (say per year) and for an increasing number of publications per time unit, where the increase is expressed using a power function or an exponential function. Necessary and sufficient conditions are given for the h-"sequence" (function) h(t) to be convexly, linearly or concavely increasing and we indicate that the concave increase is the most natural one.

In the third section we define the h^{*}-function $\mathrm{h}^{*}(\mathrm{t})$ in function of $\mathrm{h}(\mathrm{t})$ and prove a necessary and sufficient condition for $h^{*}(t)=h(t)$ for all $t \hat{I}\left[0, \mathrm{t}_{\mathrm{m}}\right]$, the ideal situation: indeed, only in
this case we can substitute $h^{*}(t)$ (the one that can be calculated in an automatic way) for $h(t)$ (the one that requires a lot of manual intervention but the natural one). It turns out that $h(t)=h^{*}(t)$, for all $t \hat{I}\left[0, t_{m}\right]$ and all $t_{m}>0$, if and only if the number of publications per time unit (say a year) of the researcher is constant. This is an important case but, as shown by the author's data, is only a rough approximation of reality. We also show that $h^{*}(t)^{3} h(t)$, for all $\mathrm{t} \hat{I}\left[0, \mathrm{t}_{\mathrm{m}}\right]$ if the number of publications per time unit (year) of the researcher increases.

In the fourth section we even prove that, for general publication production schemes, if one of the functions $h(t)$ or $h^{*}(t)$ is convex (including the linear case), then the other one is concave, showing that, in general, the behavior of the h-"sequences" $h(t)$ and $h^{*}(t)$ is different. We also note that the converse of the above assertion is false by giving examples of cases where both $h(t)$ and $h^{*}(t)$ are concave.

The fifth section gives $h(t)$ and $h^{*}(t)$ for this author. It is also remarked that the same results hold for the g-index (Egghe (2006)) and the R-index (Jin, Liang, Rousseau and Egghe (2007)) and are illustrated by presenting $g(t), g^{*}(t), R(t)$ and $R^{*}(t)$ for this author.

We can then conclude that one cannot avoid the time-consuming task of calculating the natural h-sequence $h_{1}, \ldots, h_{t_{m}}$ (and similarly for the g - and R-index) of a researcher except in the case the researcher has a (more or less) constant publication production per year. We end the paper by proposing open problems and advises.

II. Study of the h-"sequence" $h(t)$

For the natural h-sequence (function) $h(t)$, we consider the career of a researcher from the start $(t=0)$ up to a time $t>0$. Let us denote by $T(t)$ the total number of publications of this researcher at time t. This set of publications is assumed to have citations (in the same period $[0, t]$) according to Lotka's law (1), with α independent from t (as explained in the

Introduction). It was proved in Egghe and Rousseau (2006) that, in this case, the h-index (tdependent here) equals

$$
\begin{equation*}
h(t)=T(t)^{\frac{1}{\alpha}} \tag{2}
\end{equation*}
$$

for each $\mathrm{t} \hat{\mathrm{I}}\left[0, \mathrm{t}_{\mathrm{m}}\right]$ (note that, for $\mathrm{t}=0$, we have $\mathrm{T}(0)=0$ and $\mathrm{h}(0)=0$ naturally).

We will now study the shape of the function $h(t)$ in three simple, natural cases.

II. 1 The case of constant production

If a researcher publishes the same number of papers per time unit (e.g. a year), say b, then we have that, for every $t \hat{I}\left[0, t_{\mathrm{m}}\right]$ that $\mathrm{T}(\mathrm{t})=\mathrm{bt}$. Then (2) implies

$$
\begin{equation*}
h(t)=b^{\frac{1}{\alpha}} t^{\frac{1}{\alpha}} \tag{3}
\end{equation*}
$$

which is a concavely increasing function since $\alpha>1$. This is the simplest model for $h(t)$ and is a first approximation of reality.

Table 1 shows this author's yearly production of publications (articles and books) according to publication year. Time $\mathrm{t}=1$ is the starting year 1978, up to 2007, totalling 30 years of publications.

Table 1. Number of publications per year of L. Egghe

t	$\#$								
1	2	7	3	13	8	19	8	25	8
2	0	8	4	14	5	20	11	26	9
3	4	9	3	15	8	21	8	27	9
4	5	10	5	16	4	22	10	28	13
5	5	11	9	17	5	23	11	29	15
6	2	12	0	18	6	24	7	30	14

It is clear that a constant production per year is not the case. One can see a moderate increase which can be described by a power function or an exponential function. These cases will be studied below.

II. 2 The case of increasing production per year, using a power function

Here we assume a number (density) of publications per time unit being bt ${ }^{\beta}$ where $b, \beta>0$ (the case $\beta=0$ corresponds to the previous case). Hence for every tî $\left[0, \mathrm{t}_{\mathrm{m}}\right]$:

$$
\begin{equation*}
T(t)=\dot{O}_{0}^{t} b t^{\beta \beta} d t^{\prime}=\frac{b}{\beta+1} t^{\beta+1} \tag{4}
\end{equation*}
$$

Now, according to (2) we have
which is concave iff $\beta+1<\alpha$, linear iff $\beta+1=\alpha$ and convex iff $\beta+1>\alpha$. One can expect that a researcher's production does not increase fastly so that a small β occurs more often in which case we again expect a concavely increasing function $h(t)$.

II. 3 The case of increasing production per year, using an exponential

function

Here we assume a number (density) of publications per time unit being bc^{t} where $\mathrm{b}>0$, c>1. One could even take $0<c<1$ in which we have a decreasing yearly production. The case $c=1$ corresponds to the case studied in subsection II.1. Now, for every tî $\left[0, \mathrm{t}_{\mathrm{m}}\right]$:

$$
\begin{equation*}
\mathrm{T}(\mathrm{t})=\dot{\mathrm{O}}_{0}^{\mathrm{t}} \mathrm{bc} \mathrm{t}^{\prime} \mathrm{dt}=\frac{\mathrm{b}}{\ln \mathrm{c}}\left(\mathrm{c}^{\mathrm{t}}-1\right) \tag{6}
\end{equation*}
$$

Now, according to (2) we have
which is, for $\mathrm{c}>1$, increasing and where $\mathrm{h} "(\mathrm{t})<0$ iff $\mathrm{c}^{\mathrm{t}}<\alpha$. So here, dependent on the values of c, α and t we can have a concave $\mathrm{h}(\mathrm{t})$ or an S -shaped $\mathrm{h}(\mathrm{t})$ (since $\alpha>1$ we have that, for t small enough we always have $c^{t}<\alpha$ so that a completely convex $h(t)$ is not possible here).

For a moderate increase per year of the production (i.e. c>1 but close to 1) we hence have, if t_{m} is not very large, that $\mathrm{h}(\mathrm{t})$ is concavely increasing.

We now start the study of the reverse function $h^{*}(t)$. The next section defines this function and presents a necessary and sufficient condition for $h^{*}(t)=h(t)$ for all $t \hat{I}\left[0, t_{m}\right]$.

III. Liang's h-sequence $h^{*}(t)$

Let us denote the career length of a researcher by t_{m} : hence the researcher has publications in the time period $\left[0, \mathrm{t}_{\mathrm{m}}\right]$. Let us denote, as in the previous section, by $\mathrm{T}(\mathrm{t})$ the total number of publications of this researcher at time t (i.e. t time units since the start of the career at $t=0$). Liang starts at time t_{m}, going back to the past as depicted in Fig. 1: For Liang, time t is the period (in normal time) between $\mathrm{t}_{\mathrm{m}}-\mathrm{t}$ and $\mathrm{t}_{\mathrm{m}}\left(\right.$ for $\left.\mathrm{t} £ \mathrm{t}_{\mathrm{m}}\right)$.

Fig. 1. Time and reverse time

Hence, in reverse time, one considers a number of publications, denoted as $T^{*}(t)$, equalling

$$
\begin{equation*}
\mathrm{T}^{*}(\mathrm{t})=\mathrm{T}\left(\mathrm{t}_{\mathrm{m}}\right)-\mathrm{T}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right) \tag{8}
\end{equation*}
$$

In the Introduction we assumed that, for any time t in the direct way or in the reverse way, the number of publications $\mathrm{T}(\mathrm{t})$ or $\mathrm{T}^{*}(\mathrm{t})$ have citations according to Lotka's law (1), where $\alpha>1$ is fixed. This yields the following Proposition.

Proposition III.1:

Let $h(t)$ denote the h-sequence of a researcher for normal time and $h^{*}(t)$ denote the $h-$ sequence of this researcher for the reverse time as described above (e.g. formula (8)). Then we have, supposing Lotka's law (1),

$$
\begin{equation*}
h^{*}(t)=\left(T\left(t_{m}\right)-h\left(t_{m}-t\right)^{\alpha}\right)^{\frac{1}{\alpha}} \tag{9}
\end{equation*}
$$

for all $\mathrm{t} \hat{\mathrm{I}}\left[0, \mathrm{t}_{\mathrm{m}}\right]$.

Proof:

Using Lotka's law (1) we have that, for every tî $\left[0, \mathrm{t}_{\mathrm{m}}\right]$

$$
h(t)=T(t)^{\frac{1}{\alpha}}
$$

, by (2). If we apply this for $\mathrm{t}_{\mathrm{m}}-\mathrm{t}$ (also belonging to the interval $\left[0, \mathrm{t}_{\mathrm{m}}\right]$) we have

$$
h\left(t_{m}-t\right)=T\left(t_{m}-t\right)^{\frac{1}{\alpha}}
$$

or

$$
\begin{equation*}
\mathrm{T}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right)=\mathrm{h}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right)^{\alpha} \tag{10}
\end{equation*}
$$

Further, using again (1) and (2) to the publication set $\mathrm{T}^{*}(\mathrm{t})$, we have that

$$
\begin{equation*}
h^{*}(t)=T^{*}(t)^{\frac{1}{\alpha}} \tag{11}
\end{equation*}
$$

for all $\mathrm{t} \hat{\mathrm{I}}\left[0, \mathrm{t}_{\mathrm{m}}\right]$. Formulae (8), (10) and (11) prove formula (9), finishing this proof.

Although the Liang h-"sequence" $h^{*}(t)$ has interest in itself, it can only give information about the natural h-sequence $h(t)$ if they are (more or less) equal. A characterization of this will be given in the next Theorem.

Theorem III.2:

Both h-sequences $h(t)$ and $h^{*}(t)$ are identical:

$$
\begin{equation*}
h(t)=h^{*}(t) \tag{12}
\end{equation*}
$$

for all $t \hat{I}\left[0, \mathrm{t}_{\mathrm{m}}\right]$ and all $\mathrm{t}_{\mathrm{m}} \hat{\mathrm{I}} \mathrm{i}^{+}$if and only if the researcher has a constant production of publications per time unit. In other words: (12) is valid iff

$$
\begin{equation*}
T(t)=b t \tag{13}
\end{equation*}
$$

for a certain constant $\mathrm{b}>0$.

Proof: Formula (9) and (12) yield, for all tî $\left[0, \mathrm{t}_{\mathrm{m}}\right]$

$$
\begin{aligned}
\mathrm{h}^{*}(\mathrm{t}) & =\left(\mathrm{T}\left(\mathrm{t}_{\mathrm{m}}\right)-\mathrm{h}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right)^{\alpha}\right)^{\frac{1}{\alpha}} \\
& =\mathrm{h}(\mathrm{t})=\mathrm{T}(\mathrm{t})^{\frac{1}{\alpha}},
\end{aligned}
$$

using also (2). Using again (2) we have

$$
h\left(t_{m}-t\right)^{\alpha}=T\left(t_{m}-t\right)
$$

so that we have (necessary and sufficient to have (12))

$$
\begin{equation*}
T\left(t_{\mathrm{m}}\right)-T\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right)=\mathrm{T}(\mathrm{t}) \tag{14}
\end{equation*}
$$

(otherwise stated: $\mathrm{T}^{*}(\mathrm{t})=\mathrm{T}(\mathrm{t})$ for all $\mathrm{t} \hat{\mathrm{I}}\left[0, \mathrm{t}_{\mathrm{m}}\right]$, by (8)).

Denoting $\mathrm{t}=\mathrm{x}, \mathrm{t}_{\mathrm{m}}-\mathrm{t}=\mathrm{y}$, hence $\mathrm{t}_{\mathrm{m}}=\mathrm{x}+\mathrm{y}$, (14) requires

$$
\begin{equation*}
T(x+y)=T(x)+T(y) \tag{15}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \hat{\mathrm{I}} \mathrm{i}^{+}$(since the above is required for all $\mathrm{t} \hat{\mathrm{I}}\left[0, \mathrm{t}_{\mathrm{m}}\right]$ and all $\mathrm{t}_{\mathrm{m}}>0$). Relation (15) can be extended to all $\mathrm{x}, \mathrm{y} \hat{\mathrm{I}} ;$ by defining, for $\mathrm{x} \hat{\mathrm{I}} \mathrm{i}^{-}: \mathrm{T}(\mathrm{x})=\mathrm{T}(-\mathrm{x})$ so that (15) is valid for all x , yÎ i . Since we, evidently, assume that the function $\mathrm{T}($.$) is continuous, we have, by a well-$ known result (cf. Roberts (1979) - see also Egghe (2005), Appendix 1, Theorem A.I.1) that the function $\mathrm{T}($.$) must be linear: there exists a number bî ;$ such that

$$
\begin{equation*}
T(t)=b t \tag{16}
\end{equation*}
$$

Of course, since $T(t)>0$ for all $t>0$, we have $b>0$, completing the proof of this Proposition.

Note that (13) trivially implies (12) since $h(t)=T(t)^{\frac{1}{\alpha}}=(b t)^{\frac{1}{\alpha}}$ and since, by (8): $T^{*}(t)=T\left(t_{m}\right)-T\left(t_{m}-t\right)=b t_{m}-b\left(t_{m}-t\right)=b t$, hence $h^{*}(t)=T^{*}(t)^{\frac{1}{\alpha}}=(b t)^{\frac{1}{\alpha}}=h(t)$, for all tî $\left[0, \mathrm{t}_{\mathrm{m}}\right]$.

The case that a researcher has a constant number of publications per time unit is an important simple case and a first approximation of reality: we can indeed, roughly, assume that a researcher, in his/her career, produces more or less the same number of papers per year, certainly in the middle part of the career: in the beginning of the career, the researcher will

$$
\begin{equation*}
T\left(t_{\mathrm{m}}\right)-\mathrm{T}(\mathrm{t})=\mathrm{T}^{\prime}(\lambda)\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right) \tag{18}
\end{equation*}
$$

for a certain $\lambda \hat{\mathrm{I}}] \mathrm{f}, \mathrm{t}_{\mathrm{m}}[$ and

$$
\begin{align*}
T\left(t_{m}-t\right) & =T\left(t_{m}-t\right)-T(0) \\
& =T^{\prime}(\xi)\left(t_{m}-t\right) \tag{19}
\end{align*}
$$

for a certain $\xi \hat{I}]$, $\mathrm{t}_{\mathrm{m}}-\mathrm{t}[$.
 increases, we have $\mathrm{T}^{\prime}(\xi)<\mathrm{T}^{\prime}(\lambda)$. Hence (18) and (19) imply

$$
T\left(t_{\mathrm{m}}\right)-\mathrm{T}(\mathrm{t})>\mathrm{T}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}\right)
$$

hence (17).
(ii) Let ${ }^{\text {t }}<\frac{\mathrm{t}_{\mathrm{m}}}{2}$

By the mean value theorem on $T(t)$ we now have

$$
\begin{equation*}
T\left(t_{m}\right)-T\left(t_{m}-t\right)=T^{\prime}(\eta) t \tag{20}
\end{equation*}
$$

for a certain $\eta \hat{I}] \mathbf{f}_{\mathrm{m}}-\mathrm{t}, \mathrm{t}_{\mathrm{m}}[$ and

$$
\begin{align*}
\mathrm{T}(\mathrm{t}) & =\mathrm{T}(\mathrm{t})-\mathrm{T}(0) \\
& =\mathrm{T}^{\prime}(\kappa) \mathrm{t} \tag{21}
\end{align*}
$$

[^0]: ${ }^{1}$ Permanent address
 Key words and phrases: h-index sequence, g-index sequence, R-index sequence, reverse time, Web of Science (WoS).
 Acknowledgement: The author thanks M. Goovaerts for his preparation of the Excell sheets used for the raw citation data of WoS and A. Baeten for the preparation of Figs. 1-6.

