
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Lotkaian informetrics and applications to social networks

Non Peer-reviewed author version

EGGHE, Leo (2009) Lotkaian informetrics and applications to social networks. In:

BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 16(4).

p. 689-703.

Handle: http://hdl.handle.net/1942/9281



Lotkaian informetrics and applications to social
networks

L. Egghe

Universiteit Hasselt (UHasselt), Campus Diepenbeek, Agoralaan,

B-3590 Diepenbeek, Belgium

E-mail address: leo.egghe@uhasselt.be

ABSTRACT. Two-dimensional informetrics is defined in the general context of

sources that produce items and examples are given. These systems are called “Infor-

mation Production Processes” (IPPs). They can be described by a size-frequency

function f or, equivalently, by a rank-frequency function g. If f is a decreasing

power law then we say that this function is the law of Lotka and it is equivalent

with the power law g which is called the law of Zipf. Examples in WWW are given.

Next we discuss the scale-free property of f also allowing for the interpretation

of a Lotkaian IPP (i.e. for which f is the law of Lotka) as a self-similar fractal.

Then we discuss dynamical aspects of (Lotkaian) IPPs by introducing an item-

transformation ϕ and a source-transformation ψ. If these transformations are power

functions we prove that the transformed IPP is Lotkaian and we present a formula

for the exponent of the Lotka law. Applications are given on the evolution of WWW

and on IPPs without low productive sources (e.g. sizes of countries, municipalities

or databases).

Lotka’s law is then used to model the cumulative first citation distribution and

examples of good fit are given.

Finally, Lotka’s law is applied to the study of performance indices such as the

h-index (Hirsch) or the g-index (Egghe). Formulas are given for the h- and g-index

in Lotkaian IPPs and applications are given.
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1 Introducing Lotkaian informetrics

1.1 Information Production Processes (IPPs)

Every system in which there are sources that “produce” items can be considered as

an IPP (in a generalized meaning). Examples:

Sources → Items

Authors → Articles

Journals → Articles

Articles → Citations (to/from)

Articles → Co-authors

Books → Borrowings

Words (= types) → Use of words in a text (=tokens)

Web sites → Hyperlinks (in-/out-)

Web sites → Web pages

Cities/villages → Inhabitants

Employees → Their production

Employees → Their salaries

. . .

All social networks are examples of (extended) IPPs: WWW, Intranets, Internet,

citation networks, collaboration networks, ...
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1.2 Informetrics

Every IPP can, mathematically, be described by a size-frequency function f :

f(n) = # sources with n items (1)

(n = 1, 2, 3, . . .). Equivalently, every IPP can be described by a rank-frequency

function g: order the sources in decreasing order of their number of items. Then g

is defined as

g(r) = # items in the source on rank r (2)

(r = 1, 2, 3, . . .). We have, clearly

r = g−1(n) =
∞

k=n

f(k) (3)

For calculatory reasons we will work with continuous variables, i.e. with item and

source densities: r ∈ [0, T ], j ∈ [1,+∞[,

r = g−1(j) =
∞

j

f(jI)djI (4)

f(j) = − 1

gI(g−1(j))
(5)

1.3 Lotkaian informetrics

The most important type of informetrics is Lotkaian informetrics, i.e. where f(j)

has the form:

f(j) =
C

jα
(6)

C > 0, α > 1 (cf. Lotka (1926)). Even when this is disputed by some or when

better fits are possible, using more intricate models (with more parameters), the

Lotka function (6) yields an easy tool to explain many regularities (see e.g. further)

and hence, (6) could be considered as a kind of “axiom” within this theory. So f is a

decreasing power function. The value α = 2 is a turning point in informetrics: many

informetric properties change when going from α < 2 to α > 2 (see also further).

It is easily seen that Lotka’s law is equivalent with Zipf’s law: g(r) has the form

g(r) =
B

rβ
(7)
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B, β > 0. Important here is the formula

β =
1

α− 1 (8)

Zipf’s law originates from linguistics (Zipf 1949) (but see already Estoup (1916)

and Condon (1928)). The type of law (7) also appears in econometrics and is there

called the law of Pareto. That the same law was invented in these diverse disciplines

underlines its importance.

All mentioned IPPs (incl. all social networks) agree reasonably with Lotka’s law

(see examples in Figs.1-4, for more examples, see the book Egghe (2005b)). The

source-item relation is based on the principle ”Success-Breeds-Success” (cf. Simon

(1957), Price 1976)). Random networks (the so-called Erdös-Rényi networks) are

different and agree with exponentially decreasing size-frequency functions f (Erdös

and Rényi (1960)).
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Fig.1 Rank-frequency distribution of web sites versus # web pages (log-log scale)
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Fig.2 Rank-frequency distribution of web sites versus # users (log-log scale)
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Fig.3 Rank-frequency distribution of web sites versus # out-links (log-log scale)
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Fig.4 Rank-frequency distribution of web sites versus # in-links (log-log scale)

2 Fractal aspects of Lotkaian IPPs

The law of Lotka - being a power law - has the so-called scale-free property for

functions defined on [1,+∞[: ∀C > 1, ∃D > 0 such that f(Cx) = Df(x) for all x.

In fact, as is well-known, this property characterizes power laws (Roberts (1979))

for functions defined on IR+. This property, indirectly, is the reason why we can

interpret Lotkaian IPPs as self-similar fractals. The following theorem is of Naranan

(1970).

Theorem: Suppose that

(i) the number of sources grows exponentially in time t:

N(t) = c1a
t
1 (9)

(ii) the number of items in each source grows exponentially in time t and the

growth rate is the same in every source:

P (t) = c2a
t
2 (10)

Then this IPP is Lotkaian: if f(p) denotes the number of sources with p items, then

f(p) =
C

pα
(11)
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where

α = 1 +
ln a1
ln a2

(12)

Naranan did not see that this result makes it possible to interpret a Lotkaian IPP as

a self-similar fractal. Indeed, take e.g. the triadic Koch curve (Feder (1988), p.16):

start with a line piece, divide its length by 3 and form a ”hat” by using 4 of these

line pieces. This is then repeated infinitely. Hence we have

(i) The number of line pieces grows exponentially in time t, proportionally to 4t

(ii) 1/length of each line piece grows exponentially in time t with the same growth

rate of 3: we have growth proportional to 3t.

Hence by the theorem of Naranan we can consider a Lotkaian IPP as a self-similar

fractal. The fractal dimension of the Koch curve is
ln 4

ln 3
. So a Lotkaian IPP is

interpreted as a self-similar fractal with fractal dimension

D =
ln a1
ln a2

(13)

By (12) and (13) we see that

D = α− 1 (14)

We see here the crucial role of the Lotka exponent α. Result (14) was proved earlier

by Mandelbrot but only for a special IPP: random texts (linguistics) (Mandelbrot

(1967, 1977). Egghe (2005a, 2005b)) extended this to general Lotkaian IPPs. Note

that α = 2⇔ D = 1 ⇔ a1 = a2 so that sources and items (in sources) grow at the

same rate in this case.

3 Dynamical aspects of Lotkaian IPPs

Dynamical aspects of Lotkaian IPPs can be described using transformations on

the sources and on the items (Egghe (2007): an article in the new ”Journal of

Informetrics”). Let us have a general IPP in which item densities j and rank densities

r are described by the size-frequency function j → f(j) and the rank-frequency

function r → g(r). We apply the following transformations on j and r : j → ϕ(j) =
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j∗, r → ψ(r) = r∗ such that the new rank-frequency function, denoted r∗ → g∗(r∗),
is given by

g∗(r∗) = g∗(ψ(r)) = ϕ(g(r)) (15)

Theorem (Egghe (2007)): The new size-frequency function j∗ → f ∗(j∗) is given
by

f ∗(j∗) = f(j)
ψI(g−1(j))
ϕI(j)

(16)

Theorem (Egghe (2007)): In case our IPP is Lotkaian:

f(j) =
C

jα
(17)

(C > 0,α > 1) and in case we apply power transformations:

r∗ = ψ(r) = Arb (18)

j∗ = ϕ(j) = Bjc (19)

(A,B, b, c > 0), we have

f∗(j∗) =
G

jδ
(20)

(G > 0 a constant) and where δ is given by

δ = 1 +
b(α− 1)

c
(21)

Note that δ is only dependent on b/c due to the scale-free nature of Lotkaian systems.
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Corollary (Egghe (2007)):

δ < α⇔ b < c (22)

δ > α⇔ b > c (23)

δ = α⇔ b = c (24)

The results above where checked in Cothey (2007) in the connection of the evolution

of a part of WWW: the above theory was confirmed except in one case where non-

Lotkaian evolution was found, probably due to “automatic” creation of web pages

(deviation from a social network).

A further application is given in Egghe and Rousseau (2006a), based on a special

case of the results in, Egghe (2007) which were already published in Egghe (2004):

ψ = Id = the identity function and ϕ(j) = Bjc, B, c > 1: sources remain the same

but they grow in number of items. Now (21) gives

δ = 1 +
α− 1
c

(25)

and (22) gives: δ < α and, since j ≥ 1 : ϕ(j) ≥ B > 1. Repeated application

of this transformation yields that IPPs where there are no low productive soures

(ϕ(j) >> 1) have small Lotka exponents δ. This is confirmed in all the cases which

Egghe and Rousseau investigated:

1. Country sizes: data from www.gazetteer.de (July 10, 2005): 237 countries:

δ = 1.69

2. Municipalities in Malta (1997 data): 67 municipalities: δ = 1.12

3. Database sizes: on the topic “fuzzy set theory” (20 largest databases on this

topic - Hood and Wilson (2003)): δ = 1.09

4. Unique documents in the 20 databases above (Hood and Wilson (2003)): δ =

1.33.
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4 Lotka’s law and the modelling of the cumulative

first-citation distribution

The cumulative first-citation distribution is the cumulative distribution over time at

which an article receives its first citation. The time t1 at which an article receives

its first citation is an important indicator of the visibility of research: at the time

t1, the article switches its status from “unused” to “used”. t1 is a measure of “im-

mediacy” but, of course, different from the immediacy index (instant impact factor)

of Thomson Scientific.

So let Φ(t1) denote the cumulative fraction of all papers that have, at t1, at least 1

citation. In the literature one finds two different typical shapes of Φ(t1): a concavely

increasing one (e.g. Motylev (1981)) and an S-shaped one (first convexly and then

concavely increasing) (e.g. Rousseau (1994)).

Rousseau (1994) uses two different differential equations to model the two differ-

ent shapes. However, these equations are not explained and are not linked with any

informetric distribution. In Egghe (2000) we applied the law of Lotka to solve this

problem and one model (of course involving the Lotka exponent α) will explain both

the concave shape and the S-shape of Φ according to α < 2 or α > 2. We see here

that α = 2 is a turning point in Lotkaian informetrics. We obtained:

Theorem (Egghe (2000)): Let

(i) c(t) = bat = the density function of citations to an article, t time after its

publication (exponential function, 0 < a < 1)

(ii) ϕ(A) =
D

Aα
= the density function of the number of papers with A citations

(received) in total (Lotka, α > 1), A ≥ 1 (only ever cited papers are used

here)

Let γ ∈]0, 1[ be the fraction of ever cited papers (we use γ in order to include also
the never cited articles). Then

Φ(t1) = γ(1− at1)α−1 (26)

which is concave if 1 < α ≤ 2 and is S-shaped if α > 2.
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For the Motylev (1981) data we have a fit as in Fig. 5. For the Rousseau (1994)

data we have a fit as in Fig. 6, conform with the above theory.
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Fig. 5 Cumulative first-citation distribution: case of Motylev data.
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Fig. 6 Cumulative first-citation distribution: case of Rousseau data.
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All the results on Lotka’s law described here (and a lot more) are described in the

book Egghe (2005b).

We now come to an application of Lotka’s law, established in the post-2005 pe-

riod.

5 Lotka’s law and its applications to the

modelling of the h-index and the g-index

The h-index, defined by Hirsch in 2005 (Hirsch (2005)), is a new performance indica-

tor for the visibility and quality of the publication output of a researcher. However,

the h-index can be calculated for any set of articles.

Definition (Hirsch (2005)): Let us rank the publications of an author in de-

creasing order of the number of citations they received. The h-index is then the

largest rank such that the paper on this rank (and hence also all papers on rank

1, . . . , h) has h or more citations.

Example: the h-index of this author (based on data of the Web of Science), date

July 24, 2008. We give the number of citations to the first 23 papers (for reasons

which will become clear later) in decreasing order of citations received
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r # citations

1 56

2 44

3 43

4 36

5 27

6 22

7 21

8 20

9 18

10 17

11 17

12 16

13 16

14 16

15 16

16 16

17 15

18 15

19 14

20 14

21 14

22 13

23 13

It is clear that h = 16 for this author at this time.

The h-index can be defined in any IPP by ranking the sources in decreasing order of

their number of items. In Lotkaian IPPs we have the following result on the h-index.

Theorem (Egghe and Rousseau (2006b)) Let the IPP be Lotkaian with Lotka

exponent α > 1. Denote by T the total number of productive sources (i.e. with at

least one item). Then

h = T 1/α (27)

This basic result, together with the transformation theory for IPPs (Section III)

gives us the possibility, at least theoretically, to see how h changes when we change
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the number of items (citations) or sources (papers). Let us have a Lotkaian IPP

such that (27) is valid. Suppose we double the number of citations per paper. Then

Egghe (2008) has shown that, for this new situation (denoting its h-index by h∗)

h < h∗ = 2
α−1
α h < 2h (28)

Suppose that we start with (27) and that we double the number of papers (#

citations remain the same). Then this situation has a h-index (denoted h∗)

h < h∗ = 21/αh < 2h (29)

Suppose we start with (27) and now we double the number of papers and that we

divide the number of citations by 2. The new h-index h∗ is now

h∗ = 22/α−1h > h (30)

iff α < 2. So h∗ > h⇔ α low⇔ h high (by (27))⇔ prolific author. A situation like

this occurs in non-controlled listings (splitting articles) or in case of “publicitis”:

publishing the ”least publishable unit”.

The h-index is robust in the sense that it is insensitive to the existence of a set

of lowly cited articles. However, a disadvantage of h-index is that it is also insensi-

tive to the number of citations of the highly cited articles. Indeed, in the previous

example of citation data of this author, the first article has 56 citations but h would

remain the same (h = 16) if this article had any number of citations larger than or

equal to 16. The same goes for the other articles.

In Egghe (2006), we tried to present a new index which takes into account the

number of citations of the ”most” cited articles. Note that the h-index satisfies the

property: the first h articles have, together, at least h2 citations. Egghe (2006)

defines the g-index as the largest rank g with this property. Otherwise formulated

we have the following definition.

Definition (Egghe (2006)): Let us rank the publications of an author in de-

creasing order of the number of citations they received. The g-index is the largest

rank such that the first g papers have, on average, g citations.

In the example of this author we have that the total number of citations of the
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first 22 papers equals 486 > 222 while the total number of citations of the first 23

papers equals 499 < 232, hence g = 22. Note that always, by definition and the

property of h, g ≥ h. In practise it can be that the sum of all citations of an author is
higher than T 2, the square of the total number of papers. In this case add fictitious

papers with zero citations, enough to calculate the g-index as indicated. Schreiber

(2008a, b) and Tol (2008) agree with the fact that the g-index characterizes the data

set better than the h-index and that the g-index has greater discriminating power

than the h-index.

In Lotkaian IPPs we have the following result, analogous to (27), for the g-index.

Theorem (Egghe (2006)): Let the IPP be Lotkaian with Lotka exponent α > 2.

Denote by T the total number of sources. Then

g =
α− 1
α− 2

α−1
α

T 1/α (31)

g =
α− 1
α− 2

α−1
α

h (32)

The h-index is calculated in Scopus and the Web of Science. The h- and the g-index

are calculated in http://www.harzing.com/pop.htm which is a Google Scholar re-

lated site. Note, however, that the h- and g-index values depend on the used data-

base.

Note: In Jin, Liang, Rousseau and Egghe (2007) one defines the R-index which

has also the purpose to improve the h-index by taking actual citation scores of

highly cited papers. Denote by ci the number of citations received by the ith pa-

per (as always, papers are ranked in decreasing order of the number of received

citations). Then R is defined as

R =
h

i=1

ci (33)

where h is the h-index. It is trivial that R ≥ h and in Jin, Liang, Rousseau and
Egghe (2007) we have shown that in Lotkaian IPPs with exponent α > 2, we have

R =
α− 1
α− 2 T

1/α (34)

R =
α− 1
α− 2 h (35)
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Note: The reader might think that, from (32) and (35), g and R are linear functions

of h and hence one could wonder what is the specific value of g and R above h.

However, g and R are not linear functions of h. Indeed, by (27), if we keep T , the

total number of sources, constant then h can only vary when α varies. But then we

see from (32) and (35) that g and R do not vary linearly on h.
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