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Abstract

In recent years, the cost of drug development has increased the demands

on efficiency in the selection of suitable drug candidates. Biomarkers for effi-

cacy and safety could be a plausible strategy to improve this selection process.

In the present work, we focus on the study and evaluation of different phys-

iological variables as biomarkers for pharmacological activity. We proposed

three different approaches using multivariate and univariate techniques. We

note that even though one could argue that the multivariate procedure is more

powerful than the other alternatives, the univariate methods also offer a great

flexibility to answer interesting scientific questions. The three approaches

were used to analyze a crossover study involving an opioid antagonist.

Keywords: biomarkers, surrogate marker, crossover, optimization.
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1 Introduction

The rising costs of drug development and the challenge of facing new and re-emerging

diseases are putting considerable demands on efficiency in the selection of suitable

drug candidates. An effective strategy in improving this process is the proper selec-

tion and application of biomarkers for efficacy and safety during the different stages

of the drug development pipeline.

Some authors refer to a biological marker or biomarker as a variety of physiological,

pathological, or anatomical measurements that are thought to relate to some aspect

of a healthy or pathological process (Temple 1995, Lesko and Atkinson 2001). In the

same vein, a biomarker has also been defined as a characteristic that can be measured

and evaluated as an indicator of healthy biological processes, pathological processes

or pharmacological responses to therapeutic intervention (NIH Biomarker Defini-

tions Working Group, 2001). Other definitions have since emerged and the discus-

sion on what biomarkers should be and where to apply them continues. Biomarkers

are currently being used in various areas, including disease identification, target dis-

covery and validation, volunteer/patient inclusion and stratification during clinical

studies, drug efficacy and safety and prediction of drug response (Suico et al (2006).

Such biomarkers include measurements that help identifying the etiology of certain

medical problem or the progress of a disease. They also include measurements re-

lated to the mechanism of response to treatments and actual clinical responses to

therapeutic interventions (Burzykowski, Molenberghs, and Buyse 2005).

From a regulatory perspective, a biomarker is not considered an acceptable end-

point for the determination of efficacy of new drugs unless it has been shown to

function as a valid indicator of clinical benefit, i.e., unless it is a valid surrogate.

The NIH Biomarker Definitions Working Group (2001) also addressed the relation-
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ship between biomarkers, clinical endpoints, and surrogate endpoints. A clinical

endpoint is considered the most credible indicator of drug response and is defined

as “a characteristic or variable that reflects how a patient feels, functions, or sur-

vives”. During clinical trials, clinical endpoints should in principle be used, unless

a biomarker is available that has risen to the status of a surrogate endpoint and is

expected to predict either, clinical benefit, harm, or lack of both benefit and harm.

Realistically, the working group points out that probably only a few biomarkers are

likely to achieve a consensus surrogate endpoint status.

Biomarkers differ in their closeness to the intended therapeutic response or clinical

benefit. Some biomarkers can be thought to be valid surrogates for clinical benefits,

such as, for example, blood pressure or cholesterol, while they can also reflect the

pathological process and could be considered potential surrogate endpoints, such as,

for example, brain appearance in Alzheimer brain infarct size. The evaluation of a

biomarker as potential surrogate endpoint has received considerable attention over

the last decade and a detailed discussion of the main contributions in this area can

be found in Burzykowski, Molenberghs, and Buyse (2005).

Additionally, other biomarkers have a more uncertain relation to clinical outcome

but they can still reflect the drug action, such as, for example, angiotensin converting

enzyme (ACE) inhibition, degree of binding to a receptor, or inhibition of an agonist.

In the present work, we focus on the evaluation of this type of biomarkers. More

specifically, emphasis will be on the evaluation of biomarkers of pharmacological

activity for a certain compound.

In Section 2, we introduce the motivating case study. Section 3 covers important as-

pects of the analysis of crossover trials with repeated measurements. Three methods

to evaluate biomarkers for pharmacological activity are introduced in Section 4. In
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Section 5, a targeted simulation study is carried out to compare the relative perfor-

mance of the methods introduced in Section 4. Finally in Section 6 the case study

is analyzed.

2 Case Study

The case study is a three-period (P1, P2, and P3), two-treatment cross-over trial in

which 15 male subjects received either Naltrexone (A) or a matching placebo (B)

in a given period. An ABB–BAA design was used and, within every period, the

treatment was administered at three consecutive day: D11, D12, and D13 in the first

period P1; D21, D22, and D23 in the second period P2; and D31, D32, and D33 in

the third period P3. Details can be found in Suico et al (2006).

Naltrexone is an opioid receptor antagonist, i.e., it acts by blocking the activation of

opioid receptors. The goal of the study was to identify the best biomarker of pharma-

cological activity for this kind of compound. Several biomarkers were considered in

the study: essentially, a group of variables was measured under different conditions

and at two different days. At day 1, measurements of 5 neurohormones: Adrenocor-

ticotropic (Acth), Cortisol, Luteinizing (LH), Follicle-stimulating hormone (FSH),

and Prolactin were taken following a single oral dose administration of either Nal-

trexone or placebo. Moreover, measurements of pupil diameter under three different

light conditions: scotopic (low luminosity — 0.04 lux), mesopic Lo (medium lumi-

nosity — 0.4 lux), and mesopic Hi (high luminosity — 4.0 lux) were also taken.

Both pupillary diameter and neurohormones were assessed at approximately 0.5, 1,

1.5, 2, and 3 hours post-dose. At day 3, a two-minute fentanyl dose infusion was ad-

ministered to all subjects 1h after receiving their oral dose of Naltrexone or placebo.

Measurements of neurohormones and pupil diameter were evaluated at 1 h 20, 1 h

40, 2 h, 2 h 20, 2 h 40, and 3 h, following the oral dose of Naltrexone or placebo.
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Finally, at approximately 3 h 10 post oral dose, a cold pressor test was administered

after completion of the pupillometry and neurohormones measurements. The cold

pressor test (Cp) is typically used to evaluate the analgesic effects of a compound

(such as fentanyl). Thereupon, this test will show the ability of Naltrexone to block

the effects of fentanyl. The test consisted in rating the pain felt by a subject during

2 minutes following immersion of the subject’s dominant hand in warm and cold

baths. During the test, participants verbally rated pain intensity at time 0, and at

15, 30, 60, 90, and 120 seconds.

Day 1 measurements were taken following a single dose of Naltrexone or placebo and

therefore, they represent the direct pharmacological action. Day 3 measurements

followed a short infusion of the opioid receptor agonist fentanyl, that is, a substance

that increases the activation of opioid receptors. Hence, measurements taken at the

third day show the ability of Naltrexone, an antagonist, to block the pharmacological

effects of the agonist. We can then consider that these measurements represent

another way of evaluating the pharmacological activity of the antagonist compound.

The previous discussion suggests the analysis of the three day 1 measurements, taken

at D11, D21, and D31, as an initial cross-over study and then, separately the three

day 3 measurements, taken at D13, D23, and D33, as a further cross-over study.

The variables recorded for each subject are displayed in Table 1. Eight biomarkers

were measured at the first and third days whereas one (Cp) was measured only at

day three. Each combination biomarker-day is of scientific interest and hence 17

responses in total will be analyzed.

The main objective of the study is to identify biomarkers for pharmacological activity

and therefore, we are primarily interested in determining for which biomarker the

difference between Naltrexone and placebo is largest.
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Table 1: Candidate biomarkers.

Biomarkers Day 1 Day 3

Acth ? ?

Cortisol ? ?

LH ? ?

FSH ? ?

Prolactine ? ?

Mesopic Hi ? ?

Mesopic Lo ? ?

Scotopic ? ?

Cp ?

3 Cross-over Designs and Repeated Measurements:

Remarks for the Analysis

This was a cross-over study with repeated measurements in which two treatments,

three periods and two sequences were considered: ABB and BAA. This design is

optimal in the sense that it allows for a minimum variance unbiased estimator for

the treatment effect.

Let us denote by Yih`j the response observed at time point j for the `th subject in

period h and in sequence group i. Additionally, we shall denote by tO, p, s, and m

the number of treatments, periods, sequences and time points, respectively. Note

that for the ABB–BAA design, tO = 2, p = 3, and s = 2. Further, we shall define

Y ih.j =
1

ni

ni∑

`=1

Yih`j ,

where ni is the number of patients in sequence group i. According to Jones and

Kenward (2003) one of the issues in modeling cross-over data with repeated mea-

surements is how best to handle both the between-period and within-period covari-

ance structure. These authors observed that, in the two sequence design, one can
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avoid the need to introduce a between-period structure by exploiting the fact that

all estimators take the form A1j − A2j, where Aij =
∑p

h=1 ahY ih.j and, for within-

subject estimators,
∑p

h=1 ah = 0. Conventional repeated measurement methods can

then be applied to the derived subject contrast

Ci`j =

p∑

h=1

ahYih`j .

For the design considered in this study, i.e., ABB–BAA, one can estimate the treat-

ment effect using the contrast

CTi`j = −2Yi1`j + Yi2`j + Yi3`j. (1)

Indeed, if the previous contrast is calculated for each subject (within sequence),

then the treatment effect can be expressed as the difference between the contrast’s

mean values in each of the two sequence groups. This allows us to evaluate the

treatment effect by applying classical repeated-measurement modeling techniques

to the previously defined contrasts, without having to introduce a between-period

structure in our models.

In the subsequent analyses, we shall consider the following longitudinal model

CTi`j = µij + εi`j, (2)

where µij denotes the mean for the ith sequence at the jth time point, with i = 1, 2

and j = 1, . . . , m, and εi` = (εi`1, εi`2 . . . , εi`m)′ denotes a vector of error terms which

is assumed to follow an m-dimensional normal distribution with mean zero and

unstructured variance-covariance matrix Σ. Note that the previous model describes

the mean structure using a parameter for each sequence group by time combination

and, therefore, the mean structure is modeled in a saturated way. Likewise, the

covariance structure is modeled using a fully general unstructured matrix.
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Using the previous modeling framework, in the next section, we shall introduce three

possible methods to determine the best biomarker of pharmacological activity.

4 Three Strategies for the Selection of the Best

Biomarker

4.1 Approach I: The Ellipsoid Method

Following the notation introduced in Section 3, let us denote the mean evolution

over time for the ith sequence by µi = (µi1, µi2, . . . , µim)′. We shall further denote by

µ̂i the maximum likelihood estimator for the previous mean profile, computed based

on the saturated linear model (2). The treatment effect over time ∆T = µ1 − µ2

can then be estimated as ∆̂T = µ̂1 − µ̂2, where ∆̂T has asymptotic distribution

∆̂T ∼ N(∆T , Σ∆T ). Note that Σ∆T can be consistently estimated using the hessian

matrix obtained from model (2). From the previous results and using the Cochran

theorem we have that, asymptotically

(∆̂T − ∆T )′Σ̂−1
∆T (∆̂T − ∆T ) ∼ χ2

m,

where Σ̂∆T is the consistent estimator of Σ∆T . This leads to the confidence region

R = {∆T : (∆T − ∆̂T )′Σ̂−1
∆T (∆T − ∆̂T ) ≤ C(α)},

where the constant is chosen so that P (R) = 1 − α. Testing the hypothesis

H0 : ∆T = 0 can now be done by verifying whether 0 ∈ R or, equivalently, us-

ing the test ∆̂
′

T Σ̂−1
∆T ∆̂T > C(α). Further, let us denote by r the distance between

zero and the ellipsoid defined by the frontier of R

∂R = {∆T : (∆T − ∆̂T )′Σ̂−1
∆T (∆T − ∆̂T ) = C(α)}.

Note that r is the solution of the optimization problem

r = min
∆T∈∂R

‖ ∆T ‖2 . (3)
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Similar to the univariate setting, we argue that the larger r is, the further the

ellipsoid is from the origin and therefore the larger the treatment effect is. The

problem is then reduced to finding the solution of the optimization problem given

in (3). The following theorem offers an analytic expression for this solution.

Theorem 1 The solution of the optimization problem (3) is given by

r =
∑

i

(
qiλ

αi + λ

)2

, (4)

where

a) αi are the eigenvalues of Σ̂∆T ,

b) q′ = (q1, q2, . . . , qm) = P∆̂T with P an orthogonal matrix so that Σ̂∆T = P ′D0P ,

and D0 = (αi)ii,

c) λ is a root of
∑

i

αiq
2
i

(αi + λ)2
= C(α).

An outline of the proof can be found in the appendix. Under Approach I, one can

calculate, for each biomarker, the distance from zero to the corresponding ellipsoid

and then choose as the best biomarker the one for which its ellipsoid is furthest

away from the origin. Note that this last step is of a univariate type, even though

the input for it is derived from multivariate calculations.

4.2 Approach II: The L2-Norm Method

Let us start by considering the following model





Y1(t) = f1(t) + ε1(t),

Y2(t) = f2(t) + ε2(t),
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where t denotes time and Yi the response variable for group i (i = 1, 2), fi is a general

function that describes the average time evolution for group i, and (ε1(t), ε2(t))

follows a bivariate Gaussian distribution with mean zero and variance-covariance

matrix Σ(t).

In the absence of treatment effect, f1(t) = f2(t) and therefore it is intuitively appeal-

ing to use the distance between f1 and f2 as a measure of the effect’s magnitude. If

we further denote the time interval by I = [a, b], then we can measure the distance

between f1 and f2 using the L2-norm

d2(f1, f2)
2 =‖ f1(t)− f2(t) ‖

2=

∫ b

a

[f1(t) − f2(t)]
2 dt. (5)

In practice, g(t) = f1(t) − f2(t) is unknown and hence needs to be estimated. We

can estimate g, for instance, through fitting a saturated linear model like (2) in such

standard software packages as SAS, R, or Splus. Given that we can only consider

a fixed set of time points {t1, t2, . . . , tm}, fitting a saturated model merely leads to

estimates of g at these prespecified values

µ∗

j = g(tj) = f1(tj) − f2(tj) = µ1j − µ2j,

(j = 1, . . . , m). Using the points (tj, µ
∗

j ), we can approximate (5) through the

trapezoidal integration formula

‖ f1(t)− f2(t) ‖
2=‖ g(t) ‖2≈ υ(f1, f2) =

m−1∑

j=1

µ∗2
j + µ∗2

j+1

2
∆j,

where ∆j = tj+1 − tj. Note that υ(f1, f2) can also be written as

υ(f1, f2) =
m∑

j=1

αjµ
∗2
j =

m∑

j=1

αj(µ1j − µ2j)
2,

where αj = (∆j−1 + ∆j)/2 and ∆0 = ∆m = 0. In terms of the original time points,

the weights αj take the form αj = (tj+1 − tj−1)/2, with t0 = t1 and tm+1 = tm.



11

If we further denote by µ̂′

i = (µ̂i1, µ̂i2, . . . , µ̂im) the maximum likelihood estimator

of µi, (i = 1, 2), then we have that

υ̂(f1, f2) =
m∑

j=1

αj(µ̂1j − µ̂2j)
2. (6)

Taking into account that ∆̂T ∼ N(∆T , Σ∆T ) with ∆̂T = µ̂1 − µ̂2 we can apply now

the delta method to obtain

υ̂(f1, f2) =
m∑

j=1

αj∆̂
2
T j ∼ N(υ(f1, f2), σ

2
N(f1,f2)

), (7)

where σ2
N(f1,f2)

= δ′Σ∆T δ and δ = (2α1∆T 1, 2α2∆T 2, . . . , 2αm∆Tm)′. A consistent

estimator for the variance of υ̂(f1, f2) can be obtained as σ̂2
N(f1,f2)

= δ̂
′

Σ̂∆T δ̂, where δ̂

is computed by substituting ∆T i by its maximum likelihood estimator in δ. Finally,

from (7) the following confidence interval follows

CIα[υ(f1, f2)] =
[
υ̂(f1, f2) − z1−α

2

σ̂N(f1,f2), υ̂(f1, f2) + z1−α

2

σ̂N(f1,f2)

]
. (8)

We would like to point out that υ(f1, f2) has been considered under the current

Approach II as an approximation to the distance between f1 and f2. We are then

constructing confidence intervals, not for the parameter of interest ‖ f1(t)−f2(t) ‖
2,

but rather for an approximation of this distance. If (8) contains zero, then the data

are not in contradiction with the equal treatment effects hypothesis.

4.3 Approach III: Different Weights Method

In Approach II, υ(f1, f2) was considered an approximation for the L2 distance be-

tween f1 and f2. However, we could consider this parameter in the following, more

general, way

υ(f1, f2) =
m∑

j=1

αj(µ1j − µ2j)
2, (9)

with αj > 0 and
∑

j αj = 1. By using different sets of weights one can study a variety

of interesting questions, such as, for instance, for which biomarker the treatment
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effect is largest at the end of the study. Alternatively, we may be interested in

finding the biomarker for which the treatment effect is mainly expressed at the

beginning of the study, and so on. All of these situations can be explored using

(9), by selecting an appropriate set of weights. Essentially, choosing different sets of

weights can allow us to zoom in in certain specific regions of the longitudinal profiles,

presumably increasing our chances of finding an effect in that regions. Here again,

we can construct confidence intervals in a similar way as we did in the previous

subsection and finally we could select the biomarker with interval farthest away

from the origin.

In the following section we shall further explore the previous proposals using a lim-

ited simulation study. The idea is to get a better insight about the performance of

these procedures under controlled conditions, where the order between the biomark-

ers regarding treatment effect is known.

5 Simulation Study

In all simulations, linear mean profiles were considered for each group and three main

scenarios were taken into account: 1) the mean profiles were parallel; 2) the difference

between the mean profiles was largest at the beginning of the time sequence; and 3)

the difference between the mean profiles was largest at the end of the time sequence.

As the name indicates, in the parallel mean profiles setting µ1 = µ2+k·1 where 1
′

=

(1, 1, . . . , 1) is an m-dimensional vector. The constant k was biomarker-specific, and

it was chosen such that the first biomarker had the smallest corresponding treatment

effect, whereas the last one had the largest associated treatment effect. In the second

setting, the difference between µ1 and µ2 was largest at the beginning of the sequence

and decreased towards the end. Like before, this difference was biomarker-specific

and chosen as an increasing function of the biomarker’s number. Finally, in the
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third scenario, the difference between the mean profiles was largest towards the end

of the sequence and, here again, the difference was an increasing function of the

biomarker’s number. Following the case study, in all the previous settings mean

profiles for 17 biomarkers were generated. Along the ideas of Section 4.2 we can

quantify the treatment effect using the area (A) encircled by the mean profiles for

the treated and control group. In the simulation study, these areas were given by:

• Parallel setting: Ai = [1 + log(i − 0.5)] A1, where 2 ≤ i ≤ 17 denotes the

biomarker and A1 = 10.

• More effect at the beginning setting: A(18−i) = A17 − 12.5 [−1 + log(i + 1)],

where 2 ≤ i ≤ 17 denotes the biomarker and A1 = 10.

• More effect at the end setting: Ai = A1+12.5 [−1 + log(i + 1)], where 2 ≤ i ≤ 17

denotes the biomarker and A1 = 10.

Once the mean profiles were specified, the error terms were generated using a multi-

variate normal distribution with an AR1 variance-covariance matrix, characterized

by a correlation ρ = 0.5 and a variance parameter σ2 = 1. In all scenarios, 6 equally

space time points were used: 1, 2, 3, 4, 5, 6, and a sample size of 15 subjects was

considered. For each setting, 500 data sets were created and model (2) was fitted to

the generated data for each biomarker separately. Using this model, maximum like-

lihood estimates of the mean parameters and the variance-covariance matrix were

obtained. Further, the three approaches previously introduced were applied and the

biomarkers ranked.

For approach III, three different sets of weights were chosen: (a) equal weights at

all time points, denoted by ‘Eq’ in Table 2; (b) 67% of the weight equally assigned

to the first half of the longitudinal sequence, 33% equally assigned to the second
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half, and denoted by ‘Be’ in Table 2; (c) 33% of the weight equally assigned to the

first half of the longitudinal sequence, 67% equally assigned to the second half, and

denoted by ‘End’ in Table 2.

The results of the simulations are summarized in Table 2. The table is divided

into three different horizontal sections, corresponding to the three settings studied.

There is a column for each of the procedures used in the analysis and each of these

columns is divided into two sub-columns denoted as Rank and Power. The Rank

sub-column contains the median of the ranks assigned to each biomarker by the

corresponding method, whereas the Power sub-column displays the proportion of

times the method detected a significant difference between both treatment groups.

Essentially, it was analyzed in how many cases the confidence region used by the

method did not contained zero.

Generally, all approaches seem to perform very reasonably; the median of the ranks

clearly reflects the way the data were generated with the lowest values appearing for

the biomarkers identified with the largest numbers. Surprisingly, no major differ-

ences were found between the methods regarding the ranking. For instance, similar

results were obtained, irrespective of the set of weights used for approach III. Many

reasons could be put forward to explain this behavior: perhaps more extreme sets of

weights need to be used, or it is also possible that the variation over time considered

in the simulations may have been relatively too small with respect to the overall

treatment effect. However, regarding power, some clear differences between the

methods were observed. For example, in all settings the ellipsoid method exhibited

the highest power.
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Table 2: Simulation study. Median of the ranks for each biomarker.

Biom Ellipsoid L2 Eq Be End

Rank Power Rank Power Rank Power Rank Power Rank Power

Parallel profiles.

1 17.0 0.98 17.0 0.46 17.0 0.51 17.0 0.47 17.0 0.48
2 16.0 1.00 16.0 0.99 16.0 0.99 16.0 0.99 16.0 0.99
3 15.0 1.00 15.0 1.00 15.0 1.00 15.0 0.99 15.0 0.99
4 14.0 1.00 14.0 1.00 14.0 1.00 14.0 0.99 14.0 0.99
5 13.0 1.00 13.0 1.00 13.0 1.00 13.0 1.00 13.0 1.00
6 12.0 1.00 12.0 1.00 12.0 1.00 12.0 1.00 12.0 1.00
7 11.0 1.00 11.0 1.00 11.0 1.00 11.0 1.00 11.0 1.00
8 10.0 1.00 10.0 1.00 10.0 1.00 10.0 1.00 10.0 1.00
9 9.0 1.00 9.0 1.00 9.0 1.00 9.0 1.00 9.0 1.00
10 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00
11 7.0 1.00 7.0 1.00 7.0 1.00 7.0 1.00 7.0 1.00
12 6.0 1.00 6.0 1.00 6.0 1.00 6.0 1.00 6.0 1.00
13 5.0 1.00 5.0 1.00 5.0 1.00 5.0 1.00 5.0 1.00
14 4.0 1.00 4.0 1.00 4.0 1.00 4.0 1.00 4.0 1.00
15 3.0 1.00 3.0 1.00 3.0 1.00 3.0 1.00 3.0 1.00
16 3.0 1.00 3.0 1.00 3.0 1.00 3.0 1.00 3.0 1.00
17 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00

Mean difference larger at the beginning.

1 14.0 1.00 14.0 1.00 14.0 1.00 14.0 1.00 14.0 1.00
2 14.0 1.00 14.0 1.00 14.0 1.00 14.0 1.00 14.0 1.00
3 13.0 1.00 14.0 1.00 13.0 1.00 13.0 1.00 14.0 1.00
4 13.0 1.00 13.0 1.00 13.0 1.00 13.0 1.00 13.0 1.00
5 12.0 1.00 13.0 1.00 12.5 1.00 12.0 0.99 13.0 0.99
6 11.0 1.00 12.0 1.00 11.5 1.00 11.0 1.00 12.0 1.00
7 11.0 1.00 12.0 1.00 11.0 1.00 11.0 1.00 12.0 1.00
8 11.0 1.00 11.0 1.00 11.0 1.00 11.0 1.00 11.0 1.00
9 10.0 1.00 10.0 1.00 10.0 1.00 10.0 1.00 10.0 1.00
10 9.0 1.00 9.0 1.00 9.0 1.00 9.0 1.00 9.0 1.00
11 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00
12 7.0 1.00 7.0 1.00 7.0 1.00 7.0 1.00 7.0 1.00
13 6.0 1.00 6.0 1.00 6.0 1.00 6.0 1.00 5.0 1.00
14 5.0 1.00 4.0 1.00 5.0 1.00 5.0 1.00 4.0 1.00
15 3.0 1.00 3.0 1.00 3.0 1.00 4.0 1.00 3.0 1.00
16 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00
17 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 1.0 1.00

Mean difference larger at the end.

1 15.0 0.98 14.5 0.48 15.0 0.54 14.0 0.48 15.0 0.52
2 15.0 0.99 15.0 0.49 15.0 0.54 15.0 0.47 15.0 0.53
3 14.0 0.99 13.0 0.63 13.0 0.70 13.0 0.62 13.0 0.66
4 13.0 0.99 12.0 0.70 12.0 0.75 12.0 0.70 12.5 0.75
5 12.0 0.99 12.0 0.73 12.0 0.80 12.0 0.71 12.0 0.81
6 11.0 1.00 11.0 0.77 11.0 0.84 11.0 0.78 11.0 0.83
7 10.0 1.00 10.0 0.83 10.0 0.87 9.0 0.82 10.0 0.87
8 9.0 1.00 8.5 0.89 8.5 0.92 9.0 0.89 9.0 0.93
9 8.0 1.00 8.0 0.89 8.0 0.92 8.0 0.88 8.0 0.92
10 8.0 1.00 8.0 0.89 8.0 0.93 8.0 0.91 8.0 0.93
11 7.0 1.00 6.0 0.91 7.0 0.93 7.0 0.90 6.0 0.93
12 6.0 1.00 6.0 0.91 6.0 0.96 6.0 0.91 6.0 0.95
13 6.0 1.00 6.0 0.92 6.0 0.95 6.0 0.92 6.0 0.95
14 6.0 1.00 6.0 0.95 6.0 0.97 6.0 0.95 6.0 0.97
15 5.0 1.00 6.0 0.93 5.0 0.97 6.0 0.94 5.0 0.97
16 5.0 1.00 5.0 0.95 5.0 0.97 5.0 0.95 5.0 0.98
17 5.0 1.00 5.0 0.97 5.0 0.98 5.0 0.95 5.0 0.98
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This is not a surprising result. Indeed, both the L2-norm and weighted distance

methods construct a confidence interval for υ(f1, f2), which is a summary statistic

for the mean differences ∆T . Nevertheless, the ellipsoid approach constructs a

confidence region for ∆T in a multivariate fashion. Arguably, the loss of information

derived from using a summary statistics could imply a reduction of power that may

explain this finding. Moreover, a closer look at the performance of the weighted

distance method for the different sets of weights reveals a very coherent behavior.

For instance, when the mean profiles are parallel, setting equal weights along the

entire time sequence results in a mild gain in power. The same result is observed

in the last setting when most of the effect is present towards the end of the study.

Under this scenario, assigning more weights at the end of the sequence results in a

higher power than the one obtained, for example, with the L2-norm.

Obviously, more simulations will be necessary to shed additional light on this specific

issue. However, the information obtained from this study reinforces our confidence

in the general performance of the three methods introduced in the previous sections.

6 Analysis of Case Study

We shall now apply the three approaches defined in Section 4 to the data intro-

duced in Section 2. A logarithmic transformations was used for the neurohormones

variables.

6.1 Exploratory Analysis

Let us start by noting that conventional graphical techniques for longitudinal data

would ignore the cross-over design of our study. For instance, in a mean profile

by treatment graph, each patient would contribute to both treatment groups, ig-

noring the between-period association. Hence, it is more appropriate to base our
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Figure 1: Contrast profiles.

exploratory analysis on the individual contrasts (1). The contrast profile per patient

is presented in Figure 1.

The difference between the two mean contrast profiles for each sequence provides

an estimate of the evolution of the treatment effect over time. This evolution is

displayed in Figure 2. Note that any deviation from the horizontal zero-line indicates

a treatment effect. This graph hints on a nonlinear evolution of the treatment effect

over time. It also emanates from Figure 2 that Prolactine at day 3 is the biomarker

in which the largest treatment effect is observed. This pattern is also present in

Figure 1, where two clearly differentiated groups can be observed for Prolactine at

day 3.
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Figure 2: Mean treatment effect over time: Naltrexone-Placebo.

Another important issue emerging from the exploratory analysis is the difference

between the relative behavior of Naltrexone and placebo at days one and three.

For the biomarkers on which the treatment effect seems to be largest, the mean

evolution of the Naltrexone group lies above the mean evolution of the control group

at day one, provoking a positive treatment effect. However, this behavior seems to

be reversed at the third day. This could be explained by the infusion of fentanyl

administrated to the patients at day 3 before the measurements were taken.

Fentanyl is an opioid receptor agonist, i.e., it increases the activation of opioid

receptors. This could explain the lower mean evolution of the treatment group

relative to the placebo. Nevertheless, Figure 2 illustrates that, in spite of the initial
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Table 3: Ellipsoid method.

Biomarker r-distance

ACTH-day1 0.000

ACTH-day3 2.374

Cortisol-day1 0.003

Cortisol-day3 0.381

LH-day1 0.505

LH-day3 0.524

FSH-day1 0.000

FSH-day3 0.000

Prolactine-day1 0.129

Prolactine-day3 30.631

Mesopic Hi-day3 1.492

Mesopic Lo-day1 0.000

Scotopic-day1 0.000

Scotopic-day3 3.556

Cp 0.000

decrease in the Naltrexone effect, a tendency to recover over time appears towards

the end of the time interval.

6.2 Assessment of Biomarker Quality

Given the large number of biomarkers used in the study, a Bonferroni correction was

applied to account for the number of confidence intervals involved, which equals the

number of biomarkers under scrutiny. Table 3 displays the results obtained after

applying the procedure described in Section 4.1. Using Theorem 1, we calculated

the distance from the origin to each of the ellipsoids defined by the biomarkers. For

Mesopic Lo-day3 and Mesopic Hi-day1, model (2) did not converge and therefore

these biomarkers were not included in the analysis.

For ACTH at day 1, FSH at days 1 and 3, Mesopic Lo at day 1, Scotopic at day 1,
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and Cp, the values for the r-distance were so small that they were set to zero. Table 3

is in complete agreement with the findings of the exploratory analysis. Prolactine at

day 3 was clearly the biomarker with the ellipsoid furthest away from zero, followed

by Scotopic at day 3 and ACTH at day 3.

Additionally, we estimated the distance between f1 and f2, as described in Sec-

tion 4.2. The results are summarized in the first three columns of Table 3, where LL

and UL denote the lower and upper limits of the corresponding confidence interval,

respectively. Here again, the Prolactine at day 3 is the clear winner, followed again

by the Scototopic at day 3 and Mesopic Hi at day 3. Note that for other biomarkers,

like ACTH at day 3 or Cortisol at day 3, the confidence interval contains the origin

and therefore the hypotheses of no treatment effect could not be rejected in these

cases. This seems to contradict the conclusions found with the ellipsoid method

with which these biomarkers produced an ellipsoid that did not contain the origin.

The results obtained in the simulations can help to explain this issue. As stated

in section 5 the ellipsoid approach constructs a confidence region for ∆T in a mul-

tivariate fashion whereas the other methods only work with summary statistics of

this vector. The simulation study showed that the loss of information derived from

using a summary statistics could imply a reduction in power to detect a treatment

effect. Note also that some of these biomarkers produced very small values for the

r-distance, which can also help to explain the results found when the L2-norm was

used. The ACTH at day 3, which was ranked third by the ellipsoid method, pro-

duces here a very large point estimate for υ(f1, f2) but with a very wide confidence

interval that contains zero.

Finally, we analyzed the data following the approach introduced in Section 4.3.

Similarly to what was done in the simulation study, in this analysis three different

sets of weights were considered: (a) equal weights at all time points, denoted by ‘Eq’
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Table 4: L2 and different weights results.

Biomarker L2 LL UL Eq EqLL EqUL Be BeLL BeUL End EndLL EndUL

ACTH-d1 22.46 -12.58 57.50 2.10 -1.12 5.31 2.05 -1.03 5.13 2.14 -1.29 5.57

ACTH-d3 128.75 -143.93 401.43 16.48 -20.47 53.43 20.30 -22.10 62.71 12.65 -18.90 44.20

Cort.-d1 24.34 -15.79 64.47 2.14 -1.30 5.58 1.92 -1.01 4.86 2.36 -1.63 6.34

Cort.-d3 22.54 -33.01 78.09 3.32 -5.51 12.14 3.59 -5.14 12.33 3.04 -5.90 11.99

LH-d1 28.62 -2.92 60.15 2.79 -0.28 5.87 2.51 -0.47 5.48 3.08 -0.25 6.40

LH-d3 9.96 -5.97 25.89 1.88 -1.16 4.92 1.61 -1.23 4.46 2.14 -1.12 5.41

FSH-d1 1.07 -2.30 4.44 0.104 -0.24 0.45 0.07 -0.18 0.33 0.13 -0.30 0.57

FSH-d3 0.10 -0.30 0.50 0.02 -0.07 0.10 0.02 -0.04 0.08 0.02 -0.09 0.13

Prol.-d1 10.59 -1.06 22.24 1.024 -0.12 2.17 0.97 -0.13 2.07 1.08 -0.15 2.30

Prol.-d3 206.03 64.68 347.37 27.56 7.91 47.20 32.17 10.18 54.17 22.93 5.57 40.30

Mes. Hi-d3 6.41 2.57 10.24 0.86 0.36 1.35 0.98 0.41 1.56 0.73 0.31 1.16

Mes. Lo-d1 0.58 -0.41 1.58 0.08 -0.05 0.21 0.07 -0.07 0.22 0.08 -0.05 0.21

Scot.-d1 0.14 -0.13 0.41 0.01 -0.01 0.04 0.01 -0.01 0.03 0.02 -0.01 0.05

Scot.-d3 16.64 6.96 26.32 2.04 0.79 3.30 2.51 1.06 3.96 1.58 0.50 2.66

Cp 38.75 -61.98 139.49 0.38 -0.79 1.56 0.46 -1.07 1.99 0.31 -0.52 1.14

LL,UL: Lower and upper limits of the 95% confidence interval

Eq: Weights distributed equally over the whole sequence.

Be: 67% of the weight at the beginning.

End: 67% of the weight at the end.

L2: L2–norm method.

in Table 3; (b) 67% of the weight equally assigned to the first half of the longitudinal

sequence, 33% equally assigned to the second half, and denoted by ‘Be’ in Table 3;

(c) 33% of the weight equally assigned to the first half of the longitudinal sequence,

67% equally assigned to the second half, and denoted by ‘End’ in Table 3. The same

notation as before was used for the confidence interval limits.

Note that, regardless of the set of weights used, Prolactine at day 3 always produced

the best results, followed by Scotopic at day 3 and Mesopic Hi at day 3. Interestingly,

we also observed some mild impact of the weights on the analysis. For instance, for

Prolactine at day 3 the largest point estimate was obtained when most of the weights

were assigned at the beginning of the sequence. Further, a closer look at Figure 2

corroborates that most of the effect appears at the beginning of the study and it

fades away a bit towards the end. Similarly, for Scotopic at day 3, the largest point

estimate was obtained when most of the weights were assigned at the beginning of
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the sequence. Like before, here also Figure 2 confirms that most of the treatment

effect is manifested for this biomarker at the beginning of the study. This clearly

illustrates how the weights used in approach III could help to detect some interesting

patterns in the longitudinal profiles even though they all lead to the same general

conclusion.

7 Concluding Remarks

Biomarkers are playing an increasingly important role, not only in the study and

development of new drugs and therapies, but also in the diagnostics of a medical

condition or in improving our understanding of several medical conditions. The

recent developments in genetics will likely further increase their utility and use in

the near future. Even though considerable research has been done in recent years to

study the potential of biological markers as surrogate endpoint; other possible uses

have received less attention from a statistical point of view.

In the present work, we focused on the study and evaluation of different physiological

variables as biomarkers for pharmacological activity. This type of studies are typi-

cally carried out following a cross-over design and include a relatively small group of

patients. The use of a cross-over design in a longitudinal context will require special

analysis considerations. In all cases, we decided to use a saturated linear model,

guaranteeing the necessary flexibility to model the time evolution of a relatively

large number of biomarkers. Further, we proposed three different approaches using

multivariate and univariate techniques. Note that even though one could argue that

the multivariate ellipsoid method is more powerful than the other alternatives, the

L2-norm and weighted procedures also offer a great flexibility to answer interesting

scientific questions.
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From a theoretical point of view, there is a rich potential arising from the possibility

to vary the weighting scheme. For example, if varying the weighting scheme affects

the results not at all or only very little, it could essentially imply that there is a

uniform impact throughout time. In the reverse case, varying the weighting scheme

could allow further exploration of the differential impact occurring across time. In-

deed, in such a case, by choosing appropriate sets of weights, one could explore not

only in which biomarker the treatment effect is expressed most but also in which

biomarkers the treatment effect acts in a time-specific way, and whether such action

is seen, for example, earlier or later in the sequence. Our simulations showed a

negligible impact of the weighting scheme on the ranking of the biomarkers. How-

ever, the weights seem to have an effect on the power of the different procedures.

It is clear that more research will be needed before a more complete idea about the

potential and limitations of different sets of weights can emerge.

The three methods introduced in this work are clearly model dependent. More

complicated models may be required to handle more complex designs, or to handle

a period effect. However, the general ideas underneath the three approaches are

fully general and could, in principle, be applied as well with more complex models

after some adjustment. For instance, in the ellipsoid approach, the vector of pa-

rameters characterizing the treatment effect evolution over time may have different

dimension and interpretation, depending on the specific modeling framework used

for analysis. Nevertheless, the corresponding maximum likelihood estimator will

still be asymptotically normal and Theorem ?? will still be valid.

Finally, note that biomarkers can serve a variety of purposes. In the study under

consideration here, the main question was to find out in which biomarker the effect of

treatment is seen most clearly, in other words, is expressed most. In other settings,

there may be the desire to eventually use a biomarker as a surrogate marker or



24

surrogate endpoint; in such a scenario, one would like to predict the treatment

effect on a so-called true endpoint, using the treatment’s effect on the surrogate. This

requires appropriate and somewhat different technology. An important contribution

to this effect has been made by Burzykowski and Buyse (2006), through their so-

called surrogate threshold effect.
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Appendix

Proof of Theorem 1

To simplify the notation we shall denote ∆T = x, and ∆̂T = d and Σ = Σ̂∆T . We

can then rewrite the previous expressions as:

r = min ‖ x ‖2= x′x

st: (x − d)′Σ−1(x − d) = C(α).

Using Lagrange’s method, our problem is reduced to minimizing the following func-

tion: F (x, λ) = x′x + λ(x − d)′Σ−1(x − d) − λC(α). Equivalently, we have to solve

the simultaneous equations:

∂F

∂x
= 2x + 2λΣ−1(x − d) = 0, (10)

∂F

∂λ
= (x− d)′Σ−1(x − d) − C(α) = 0. (11)

It is not difficult to show that (10) leads to x = λ(Σ+λI)−1d. Additionally, we have

that there exist an orthogonal matrix P so that Σ = P ′D0P with P ′P = PP ′ = I .

D0 is a diagonal matrix, i.e., D0 = (αi)ii, where αi is the ith eigenvalue of Σ. Using

this orthogonal decomposition we see that x = λP ′(D0 + λI)−1Pd.

If we now denote D1(λ) = λ(D0 + λI)−1 = diag
(

λ
αi+λ

)
, then x = P ′D1(λ)Pd.

Combining this last expressions for x with (11) we obtain

(x − d)′Σ−1(x − d) = q′
[
D3(λ) − 2D2(λ) + D−1

0

]
q,

where D2(λ) = diag
(

λ
αi(αi+λ)

)
, D3(λ) = diag

(
λ2

αi(αi+λ)2

)
, and q = Pd.

The matrix of the previous quadratic form is symmetric with diagonal elements

equal to D3(λ) − 2D2(λ) + D−1
0 = diag

(
αi

(αi+λ)2

)
. If q′ = (q1, q2, . . . , qm) then

(x − d)′Σ−1(x − d) =
∑ αiq

2
i

(αi + λ)2
, (12)
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The previous expression clearly illustrates that (11) is equivalent to the equation (4)

defined in theorem 1

∑ αiq
2
i

(αi + λ)2
= c(α). (13)

Using (13) we calculate λ, and finally we just have to calculate the distance

r = x′x = q′D1(λ)2q =
∑(

λqi

αi + λ

)2

.


