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Abstract 
 
The relation between the Hirsch index and Egghe’s g-index is determined for 
some simple models such as the uniform model, the point model, the linear 
model and Zipf’s model. 
 
 
Introduction 
 
Recently the Hirsch-index, in short: h-index, has attracted a lot of attention in 
the scientific community (Ball, 2005; Bornmann & Daniel, 2005; Liang, 2006; 
Egghe, 2006c; Egghe & Rousseau, 2006; Rousseau, 2007). This index, 
introduced by J.E. Hirsch (2005) is calculated as follows. Consider the list of 
publications [co-]authored by scientist S, ranked according to the number of 
citations each of them has received over a given period. Then S' h-index is m if 
the first m publications received each at least m citations, while the publication 
ranked m+1 received strictly less than m+1 citations. 
 
Clearly, this definition can also be applied to some other source-item pairs, 
besides a scientist's publications and citations (Braun et al. 2005; Egghe & 
Rousseau, 2006; Rousseau, 2006). In general we will denote the production of 
the source ranked r, as P(r), and its piecewise linear interpolation as P(x), this 
is: the function connecting the points (r, P(r)), where r denotes the rank (r = 1, 
2, ...). 
 
A slight generalization of Hirsch’ original definition is obtained by defining the 
h-index as the abscissa of the intersection of the lines y = x and the observed 
function P(x). The original h-index is always a strictly positive integer, while this 
generalization, denoted as hr, is a real number. Note that hr is an index derived 
from observed data. If hr is known than the corresponding h-value is equal 

to rh⎢ ⎥⎣ ⎦ . This is the floor function of hr, or the largest natural number smaller 

than or equal to hr. Note that using a real-valued Hirsch index is the natural 
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thing to do when, e.g., citations are counted fractionally. Of course the h-index 
may also be modelled in a continuous context (Egghe, 2006c) but then this 
index is not anymore derived from observed data. 
 
 
The g-index 
 
The g-index has been introduced by my colleague Leo Egghe (2006a,b,d). It is 
calculated as follows: one draws the same list as for the h-index, but now the 
g-index is the highest rank such that the cumulative sum of the number of 
citations received is larger than or equal to the square of this rank. Clearly h ≤ 
g. 
 
The g-index too can be calculated as a real number. It is then defined as the 
abscissa of the intersection of the curves y = x² and y = C(x), where C(x) is the 

function connecting the points C(r) = 
=
∑

1
( )

r

k
P k . Similar to the notation hr, this 

index is denoted as gr. 
 
 
Calculation of the h-index and the g-index for some simple models 
 
We first consider two simple extreme cases, and will then consider a linear 
model. Also the Zipf model and the exponential model are briefly considered. 
 
Model 1. The uniform model 
 
In this case the production function is constant, say equal to c∈N. Then clearly 
h = g = c. 
 
Model 2. The point model 
 
In this case P(1) = c > 0, while all other P(r) are zero. Then clearly h = 1 and gr 

= c . 

 
Model 3. The linear model 
 
Here we assume that P(r) = a – br, with a, b > 0. The h-index is determined by 
the requirement that a – bh = h. Solving this equation actually yields not h but 

hr = 
+1
a

b
. As h, and hence also hr must at least be equal to one, we must 

require that b ≤ a-1 (and hence certainly a > 1). 
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In this model the g-index is determined by: 
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Again this value is actually gr. Note that we have to require that gr > 0, or 2a > b 
(one may also want to require that gr ≥ 1, or a ≥ 1+b), and that P(gr) > 0, or 2a 
–ab+b² > 0. Hence, not every decreasing linear function can be used as a 
model for a production function. 
 
 
Model 4. The Zipf model 

We assume that β=( ) AP r
r

, with A > 0, β ≥ 1. Then hr = β +
1

1A . For the special 

case β = 1, hr = A . These values can also be found in (Egghe & Rousseau, 

2006). 
 

The corresponding g-index is determined by: β
=

=∑ 2

1

g

r

A g
r

. This equation can 

only be solved numerically. Some examples for the integer-valued g-index are 
given in Table 1 
 

Table 1. Calculated integer-valued g-index for some values of A and β. 
 

  A    
  10 50 100 200
β 1 4 12 18 28 
 1.5 4 9 14 20 
 2 3 8 12 17 
 3 3 7 10 15 

 
 
For β = 1, the g-index can also be found (approximately) as follows:  
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( )γ
=

= ⇒ + =∑ 2 2

1
ln( )

g

r

A g A g g
r

, where γ is Euler’s constant (≈ 0.5772). Also this 

equation must be solved numerically. For A = 10, 50, 100, 200 this yields: gr = 
4.48, 12.45, 18.73, 27.96. The corresponding g-values are 4, 12, 18 and 28 
(rounded), as shown in Table 1. 
 
 
Model 5: The exponential model 
 
Now P(r) = K a – r, with K, a > 1. The h-index is determined as h = K a –h. This 
leads to ln(K) – h. ln(a) – ln(h) = 0, an equation which can only be solved 
numerically. See Table 2. 
 

Table 2. Calculated hr-index for some values of a and K (rounded to one 
decimal). 

 
  K    
  10 50 100 200 
a 1.1 5.8 13.6 18.0 22.8
 1.2 4.4 9.3 11.7 14.4
 1.5 3.0 5.5 6.7 8.0 
 2.0 2.2 3.7 4.5 5.3 

 
 

The g-index is obtained as the solution of −

=

=∑ 2

1

g
r

r
Ka g  or 

−−
=

−
21

1

gaK g
a

, 

which is again an equation that can only be solved numerically. See Table 3. 
 

Table 3. Calculated gr-index for some values of a and K (rounded to one 
decimal). 

 
  K    
  10 50 100 200 
a 1.1 7.0 20.8 30.8 44.4
 1.2 5.7 15.3 22.2 31.6
 1.5 4.0 9.9 14.1 20.0
 2.0 3.0 7.0 10.0 14.2

 
 
Construction of h for a given g 
 
In this section we consider the following problem. Given a g-value and a 
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particular model, find the parameters of the model yielding this g-value and find 
the corresponding h-value. We restrict ourselves to the two extreme cases and 
the linear model. 
 
Problem 1: the uniform model 
 
Given the natural number g = g0 ≥ 1, then clearly P(1) = …= P(g0) = g0 = h. 
 
Problem 2: a point model 
 
Given the natural number g = g0 ≥ 1, then P(1) = g0² and P(2) = … = P(g0) = 0. 
For the point model the corresponding h-index is 1. 
 
Problem 3: a linear production model 
 
Let a value of the g-index, g0 > 1, be given. Again g0 is assumed to be a natural 
number. Then we want to determine a linear production function P(x) such that 
its g-index is equal to the given value g0. We will also determine the 
corresponding h-index. 
 
Put P(x) = a + bx and assume further that P(g0) = c (c ∈ N). From this 

requirement we see that c = a + bg0, hence 
0

a cb
g
−

=− .  As P(x) must be a 

decreasing function, b must be negative, and hence the problem has only a 

solution if c < a. From 
0

2
0

1

( )
g

r

P r g
=

=∑  we obtain:  
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We conclude that P(x) = 
2
0 0 0

0 0

2 ( 1) 2( )
1 1

g c g g c x
g g
− + −

−
− −

. 

In particular, P(1) = 
2
0 0 0

0
0 0

2 ( 1) 2( ) 2
1 1

g c g g c g c
g g
− + −

− = −
− −

. 
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If c = 1 then P(x) = 02 1 2g x+ −  and P(1) = 2g0 -1. 

The requirement c < a becomes: 
2
0 0

0
0

2 ( 1)
1

g c gc or c g
g
− +

< <
−

. 

The corresponding hr-index is the solution of. 

Hence
2
0 0 0

0 0
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− −
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Note that because c < g0 and g0 > 1, the denominator is always strictly positive. 
For the same reason the numerator is also strictly positive, so that hr is a 

positive number. If g0 is large we see that 02
3r
gh ≈ . This shows that in this 

model the g-index is about 50% larger than the h-index. 
 

If c = 1, then 02 1
3r

gh +
= . 

 
Conclusion 
 
The relation between the h- and the g-index is determined for some simple 
models such as the uniform model, the point model, the linear model, Zipf’s 
model and the exponential model. 
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