
On the Decidability of Termination of Query

Evaluation in Transitive-Closure Logics for

Polynomial Constraint Databases

Floris Geerts a Bart Kuijpers b,∗

aUniversity of Helsinki, Helsinki Institute for Information Technology, Helsinki,

Finland

bUniversity of Limburg, Department of Mathematics and Computer Science,

Diepenbeek, Belgium

Abstract

The formalism of constraint databases, in which possibly infinite data sets are de-
scribed by Boolean combinations of polynomial inequality and equality constraints,
has its main application area in spatial databases. The standard query language for
polynomial constraint databases is first-order logic over the reals. Because of the
limited expressive power of this logic with respect to queries that are important in
spatial database applications, various extensions have been introduced. We study
extensions of first-order logic with different types of transitive-closure operators
and we are in particular interested in deciding the termination of the evaluation of
queries expressible in these transitive-closure logics. It turns out that termination
is undecidable in general. However, we show that the termination of the transitive
closure of a continuous function graph in the two-dimensional plane, viewed as a
binary relation over the reals, is decidable, and even expressible in first-order logic
over the reals. Based on this result, we identify a particular transitive-closure logic
for which termination of query evaluation is decidable and which is more expressive
than first-order logic over the reals. Furthermore, we can define a guarded fragment
in which exactly the terminating queries of this language are expressible.

Key words: Constraint databases, Query languages, Query evaluation

∗ Corresponding author: bart.kuijpers@luc.ac.be

Preprint submitted to Elsevier Preprint 26 February 2003

1 Introduction and summary

The framework of constraint databases, introduced in 1990 by Kanellakis, Ku-
per and Revesz [13] and by now well-studied [21, 26], provides an elegant
and powerful model for applications that deal with infinite sets of points
in some real space Rn, for instance spatial databases. In the setting of the
constraint model, these infinite sets are finitely represented as Boolean com-
binations of polynomial equalities and inequalities over the reals. A wide
range of geometric figures can be modelled in this way. The smiling face,
shown in Figure 1, is an example of a two-dimensional set that can be de-
scribed as {(x, y) ∈ R2 | x2/25 + y2/16 ≤ 1 ∧ x2 + 4x + y2 − 2y ≥ −4 ∧
x2 − 4x + y2 − 2y ≥ −4 ∧ (x2 + y2 − 2y 6= 8 ∨ y > −1)}. An example in
a higher dimension is the spatial database consisting of the set of points on
the northern hemisphere together with the points on the equator of the unit
sphere in the three-dimensional space R3. It can be represented by the formula
x2 + y2 + z2 = 1 ∧ z ≥ 0.

Fig. 1. An example of a constraint database in R
2.

The relational calculus augmented with polynomial constraints, or first-order
logic over the reals augmented with predicates to address the database, de-
noted FO for short, is the standard first-order query language for constraint
databases. The FO-sentence (∃r)(∀x)(∀y)(∀z)(S(x, y, z) → x2 + y2 + z2 < r2)
expresses that the three-dimensional spatial relation S is bounded. Although
variables in such expressions range over the real numbers, queries expressed in
this calculus can still be effectively computed, and we have the closure prop-
erty that says that an FO-query, when evaluated on a constraint database
yields again databases in the constraint model. These properties are direct
consequences of a quantifier-elimination procedure for the first-order theory
of real closed fields that was first given by Tarski [27].

Although many interesting properties can be expressed in FO, its most im-
portant deficiency is that its expressive power is rather limited. For instance,
several practically relevant topological properties of spatial data, such as con-
nectivity and reachability, are not expressible in FO [19] and various people
have proposed and studied extensions of FO with tractable recursion mecha-

2

nisms to obtain more expressive languages. For example, datalog versions with
constraints have been proposed [12, 18, 20] (for an overview see [21, Chapter
7]); a programming language extending FO with assignments and a while-loop
has been shown to be a computationally complete language for constraint da-
tabases [21, Chapter 2]; and extensions of FO with topological predicates have
been proposed and studied [2, 11]. In analogy with the classical graph connec-
tivity query, which cannot be expressed in the standard relational calculus but
which can be expressed in the relational calculus augmented with a transitive-
closure operator, also extensions of FO with various transitive-closure opera-
tors have been proposed. These extensions are more expressive, in particular,
they allow the expression of connectivity and reachability queries and some are
even computationally complete [10, 12, 15, 16, 17]. Recently, the present au-
thors introduced FO+TC and FO+TCS, two languages in which an operator
is added to FO that allows the computation of the transitive closure of un-
parameterized sets in some R2k [10]. In the latter language also FO-definable
stop conditions are allowed to control the evaluation of the transitive-closure.
Later on, Kreutzer has studied the language that we refer to as FO+KTC [16],
which is an extension of FO with a transitive-closure operator that may be
applied to parameterized sets and in which the computation of the transitive
closure can be restricted to certain paths (after specifying certain starting
points). The fragments of FO+TCS and FO+KTC, that does not use multi-
plication, are shown to be computationally complete on databases definable
by linear constraints [10, 16].

In all of these transitive-closure languages, we face the well-know fact that
recursion involving arithmetic over an infinite domain, such as the reals with
addition and multiplication in this setting, is not guaranteed to terminate.
In this paper, we are interested in termination of query evaluation in these
different transitive-closure logics and in particular in deciding termination.
We show that the termination of the evaluation of a given query, expressed
in any of these languages, on a given input database is undecidable as soon
as the transitive closure of 4-ary relations is allowed. In fact, a known un-
decidable problem in dynamical systems theory, namely deciding nilpotency
of functions from R2 to R2 [3, 4], can be reduced to our decision problem.
When the transitive-closure operator is restricted to work on binary relations,
the matter is more complicated. We show the undecidability of termination
for FO+TCS restricted to binary relations. However, both for FO+TC and
FO+KTC restricted to binary relations, finding an algorithm for deciding ter-
mination is related to some outstanding open problems in dynamical systems
theory. Indeed, a decision procedure for FO+KTC restricted to binary rela-
tions would solve the point-to-fixed-point problem. If we can show that testing
termination of the evaluation of expressions restricted to binary relations in
FO+TC is decidable, we also have decidability of nilpotency for functions
from R to R. Both these decision problems from dynamical systems theory
are already open for some time [3, 14].

3

x

0

y = 2x

y = 0

y = 1

1

2

Fig. 2. A function graph (thick) with non-terminating transitive closure (thin).

For FO+TC restricted to binary relations, we have obtained a positive decid-
ability result, however. A basic problem in this context is deciding whether the
transitive closure of a fixed subset of the two-dimensional plane, viewed as a
binary relation over the reals, terminates. Even if these subsets are restricted
to be the graphs of possibly discontinuous functions from R to R, this problem
is already puzzling dynamical system theorists for a number of years (it re-
lates to the above mentioned point-to-fixed-point problem). However, when we
restrict our attention to the transitive closure of continuous function graphs,
we can show that the termination of the transitive closure of these figures is
decidable. As an illustration of possible inputs for this decision problem, two
continuous function graphs are given in Figures 2 and 3. The one in Figure 2
has a non-terminating transitive closure, but the one in Figure 3 terminates
after four iterations. Furthermore, we show that this decision procedure is
expressible in FO. In the course of our proof, we also give a stronger version
of Sharkovskĭı’s theorem [1] from dynamical systems theory for terminating
continuous functions. We also extend another result in this area, namely, we
show that nilpotency of continuous semi-algebraic functions is decidable and
that this decision procedure is even expressible in FO. Previously, this result
was only stated, without proof, for continuous piecewise affine functions [4].

Based on this decision result, we define a fragment of FO+TC in which the
transitive-closure operator is restricted to work on graphs of continuous func-
tions from R to R. Termination of queries in this language is shown to be de-
cidable. Furthermore, we define a guarded fragment of this transitive-closure
logic in which only, and all, terminating queries can be formulated. We also
show that this very restricted form of transitive closure yields a language that
is strictly more expressive than FO.

This paper is organized as follows. In Section 2, we define constraint data-
bases, the query language FO and several extensions with transitive-closure
operators. In Section 3, we give general undecidability results. In Section 4, we
give a procedure to decide termination of the transitive closure of continuous
function graphs in the plane. In Section 5, we study the extension of FO with
a transitive closure operator that is restricted to work on continuous function
graphs. In this section, we also describe a guarded fragment of this language

4

1

y = x −

1

4

y = 3

4

y = 0

0 1

4

Fig. 3. A function graph (thick) with terminating transitive closure (thin).

and give expressiveness results. The paper concludes with some remarks on
generalizations to arbitrary real closed fields.

2 Definitions and preliminaries

In this section, we define constraint databases and their standard first-order
query language FO. We also define existing extensions of this logic with dif-
ferent transitive-closure operators: FO+TC, FO+TCS and FO+KTC.

2.1 Constraint databases and first-order logic over the reals

Let R denote the set of the real numbers, and Rn the n-dimensional real space
(for n ≥ 1).

Definition 1 An n-dimensional constraint database is a geometrical figure
in Rn that can be defined as a Boolean combination (union, intersection and
complement) of sets of the form {(x1, . . . , xn) ∈ Rn | p(x1, . . . , xn) > 0}, where
p(x1, . . . , xn) is a polynomial with integer coefficients in the real variables
x1, . . . , xn. ut

Spatial databases in the constraint model are usually defined as finite collec-
tions of such geometrical figures (see Chapter 2 in [21]). We have chosen the
simpler definition of a database as a single geometrical figure, but all results
carry over to the more general setting.

We remark that in mathematical terminology, constraint databases are called
semi-algebraic sets [5]. If a constraint database can be described by linear
polynomials only, we refer to it as a linear constraint database.

Example 1 The constraint model allows to describe a wide range of geomet-
rical figures. In the Introduction some examples were given. Figure 4 shows
another example of a constraint database in R2 which can be defined by the

5

formula (x = 0 ∧ 0 ≤ y ≤ 2) ∨ (−1 ≤ x ≤ 1 ∧ y = 2)∨ ((x− 5
2
)2 + (y − 1)2 =

1 ∧ x ≤ 5
2
). ut

Observe that p(x1, . . . , xn) = 0 is equivalent to ¬(p(x1, . . . , xn) > 0)∧¬(−p(x1, . . . , xn) >
0), so polynomial equations can be used as well as polynomial inequalities.

Fig. 4. An example of a constraint database in R
2.

In this paper, we will use FO, the relational calculus augmented with polyno-
mial inequalities as a basic query language.

Definition 2 A formula in FO, over an n-dimensional input database, is a
first-order logic formula, ϕ(y1, . . . , ym, S), built, using the logical connectives
and quantification over real variables, from two kinds of atomic formulas,
namely S(x1, . . . , xn) and p(x1, . . . , xk) > 0, where S is a n-ary relation name
representing the input database and p(x1, . . . , xk) is a polynomial with integer
coefficients in the real variables x1, . . . , xk. ut

In the expression ϕ(y1, . . . , ym, S), y1, . . . , ym denote the free variables. Vari-
ables in such formulas are assumed to range over R. Tarski’s quantifier-
elimination procedure for first-order logic over the reals guarantees that FO
expressions can be evaluated effectively on constraint database inputs and
their result is a constraint database (in Rm) that also can be described by
means of polynomial constraints over the reals [6, 27].

If ϕ(y1, . . . , ym, S) is an FO formula, a1, . . . , am are reals, and A is an n-
dimensional constraint database, then we denote by (a1, . . . , am, A) |= ϕ(y1,
. . . , ym, S) that (a1, . . . , am, A) satisfies ϕ. We denote by ϕ(A) the set {(a1, . . . , am) ∈
Rm | (a1, . . . , am, A) |= ϕ(y1, . . . , ym, S)}.

The fragment of FO in which multiplication is disallowed is called FOLin. This
fragment is closed on the class of linear constraint databases [21].

Example 2 The FO formula S(x, y) ∧ (∀ε)(ε > 0 ⇒ (∃v)(∃w)(¬S(v, w) ∧
(x − v)2 + (y − w)2 < ε)) has x and y as free variables. For a 2-dimensional
constraint database S, it expresses the set of points with coordinates (x, y)
that belong to the intersection of S and its topological border.

6

The sentence (∃r)(∀x)(∀y)(S(x, y, z) → x2 + y2 + z2 ≤ r2) expresses that a
given 3-dimensional constraint database S is bounded. ut

2.2 Transitive-closure logics

We now define a number of extensions of FO (and of FOLin) with different
types of transitive-closure operators. Recently, the present authors introduced
and studied the first two extensions, FO+TC and FO+TCS [9, 10]. The latter
extension, FO+KTC, is due to Kreutzer [16].

Definition 3 A formula in FO+TC is a formula built in the same way as an
FO formula, but with the following extra formation rule: if ψ(~x, ~y) is a formula
with ~x and ~y k-tuples of real variables, and with all free variables of ψ among
~x and ~y and if ~s, ~t are k-tuples of real variables, then

[TC~x;~y ψ(~x, ~y)](~s,~t) (1)

is also a formula which has as free variables those in ~s and ~t. ut

The semantics of a subformula of the above form (1) evaluated on a database A
is defined in the following operational manner: Start computing the following
iterative sequence of 2k-ary relations: X0 := ψ(A) and Xi+1 := Xi ∪ {(~x, ~y) ∈
R2k | (∃~z) (Xi(~x, ~z) ∧ X0(~z, ~y))} and stop as soon as Xi = Xi+1. The semantics
of [TC~x;~y ψ(~x, ~y)](~s,~t) is then defined as (~s,~t) belonging to the 2k-ary relation
Xi.

Since every step in the above algorithm, including the test for Xi = Xi+1, is
expressible in FO, every step is effective and the only reason why the evaluation
may not be effective is that the computation does not terminate. In that case
the semantics of the formula (1) (and any other formula in which it occurs as
subformula) is undefined.

In general, the semantics of a formula ϕ in FO+TC is evaluated in the standard
bottom-up fashion. The result of the evaluation of subformulas is passed on
to formulas that are higher up in the parsing tree of ϕ. Also for the languages
FO+TCS and FO+KTC, that we discuss below, this bottom-up evaluation
method is used.

Example 3 As an example of an FO+TC formula over a 2-dimensional input
database S, we take

[TCx;y S(x, y)](s, t).

This expression, when applied to a 2-dimensional figure, returns the transitive
closure of this figure, viewed as a binary relation over R.

7

For illustrations of the evaluation of this formula, we return to the examples
in Figures 2 and 3 in the Introduction. When applied to the graph of the
function shown in Figure 2 (thick lines), we get a non-terminating evaluation.
Indeed, in each iteration, line segments of the line y = 1 and of a line y = 2nx
for ever larger n ≥ 1 are added. But on input the graph of the function shown
in Figure 3 (thick lines), it terminates after four iterations (since X5 = X4)
and returns the depicted figure (thick plus thin lines). ut

The language FOLin+TC consists of all FO+TC formulas that do not use
multiplication.

The following language, FO+TCS, is a modification of FO+TC that incor-
porates a construction to specify explicit termination conditions on transitive
closure computations.

Definition 4 A formula in FO+TCS is built in the same way as an FO
formula, but with the following extra formation rule: if ψ(~x, ~y) is a formula
with ~x and ~y k-tuples of real variables; σ is an FO sentence over the input
database and a special 2k-ary relation name X; and ~s, ~t are k-tuples of real
variables, then

[TC~x;~y ψ(~x, ~y) | σ](~s,~t) (2)

is also a formula which has as free variables those in ~s and ~t. We call σ the
stop condition of this formula. ut

The semantics of a subformula of the above form (2) evaluated on databases
A is defined in the same manner as in the case without stop condition, but
now we stop not only in case an i is found such that Xi = Xi+1, but also
when an i is found such that (A,Xi+1) |= σ, whichever case occurs first.
As above, we also consider the restriction FOLin+TCS. It was shown that
FOLin+TCS is computationally complete, in the sense of Turing-complete on
the polynomial constraint representation of databases (see Chapter 2 of [21])
on linear constraint databases [10].

Example 4 As an example of an FO+TCS formula over a 2-dimensional
input database S, we take

[TCx;y S(x, y) | (∃x)(∃y)(X(x, y) ∧ y = 1 ∧ 10x ≤ 1)](s, t).

When applied to the graph of the function shown in Figure 2, we see that X3

satisfies the sentence in the stop condition since for instance (1
16

, 1) belongs
to it. The evaluation has become terminating (as opposed to the expression
without stop condition in Example 3). On input the graph of the function
shown in Figure 3, this expression still terminates after four iterations (since
X5 = X4, not because the stop condition is satisfied) and returns the same
result as in the case without stop condition. ut

8

Finally, we define FO+KTC. In finite model theory [8], transitive-closure log-
ics, in general, allow the use of parameters. Also the language FO+KTC allows
parameters in the transitive closure. Moreover, the computation of the transi-
tive closure can be restricted to certain paths, after specifying certain starting
points.

Definition 5 A formula in FO+KTC is a formula built in the same way as
an FO formula, but with the following extra formation rule: if ψ(~x, ~y, ~u) is a
formula with ~x and ~y k-tuples of real variables, ~u some further `-tuple of free
variables, and where ~s, ~t are k-tuples of real terms, then

[TC~x;~y ψ(~x, ~y, ~u)](~s,~t) (3)

is also a formula which has as free variables those in ~s, ~t and ~u. ut

Since the free variables in ψ(~x, ~y, ~u) are those in ~x, ~y and ~u, here parameters
are allowed in applications of the TC-operator. The semantics of a subformula
of the form (3), with ~s = (s1, . . . , sk), evaluated on a database A is defined in
the following operational manner: Let I be the set of indices i for which si is a
constant. Then we start computing the following iterative sequence of (2k+`)-
ary relations: X0 := ψ(A)∧

∧
i∈I(si = xi) and Xi+1 := Xi∪{(~x, ~y, ~u) ∈ R2k+` |

(∃~z) (Xi(~x, ~z, ~u) ∧ ψ(~z, ~y, ~u))} and stop as soon as Xi = Xi+1. The semantics
of [TC~x;~y ψ(~x, ~y, ~u)](~s,~t) is then defined as (~s,~t, ~u) belonging to the (2k+`)-ary
relation Xi.

We again also consider the fragment FOLin+KTC of this language. It was
shown that FOLin+KTC is computationally complete on linear constraint da-
tabases [16].

Example 5 As an example of an FO+KTC formula over a 2-dimensional
input database S, we take

[TCx;y S(x, y)](
1

4
, t).

When applied to the graph A of the function, shown in Figure 2, we see that
X0 = A ∩ {(x, y) | x = 1

4
} and this set is just {(1

4
, 1

2
)}. Next, X1 is computed

to be {(1
4
, 1

2
)}∪ {(1

2
, 1)}. In subsequent iterations, no further tuples are added

(i.e., X2 = X1). This example shows that in FO+KTC, the evaluation can
be restricted to the computation of certain paths in the transitive closure and
this gives control over the termination. ut

We next make the following remark.

Proposition 1 All FO+TC formulas are expressible in FO+KTC.

9

Proof. It is clear that it suffices to show that FO+TC-expressions of the form
[TC~x;~y ψ(~x, ~y)](~s,~t) are expressible in FO+KTC. It is readily verified that this
formula is equivalently expressed by (∃~v)([TC~x;~y ψ(~x, ~y)](~v,~t) ∧ ~v = ~s), where
~v is a vector of previously unused variables. ut

For all of the transitive-closure logics that we have introduced in this section,
we consider fragments in which the transitive-closure operator is restricted
to work on relations of arity at most 2k and we denote this by adding 2k
as a superscript to the name of the language. For example, in the language
FO+TCS4, the transitive closure is restricted to binary and 4-ary relations.

3 Undecidability of the termination of the evaluation of transitive-

closure formulas

The decision problems that we consider in this section and the next take
couples (ϕ,A) as input, where ϕ is an expression in the transitive-closure
logic under consideration and A is an input database, and the answer to the
decision problem is yes if the computation of the semantics of ϕ on A (as
defined for that logic) terminates. We then say, for short, that ϕ terminates
on A.

Now, we give a general undecidability result concerning termination. In its
proof and further on, the notion of nilpotency of a function will be used: a
function f : Rn → Rn is called nilpotent if there exists a natural number
k ≥ 1 such that for all ~x ∈ Rn, fk(~x) = (0, . . . , 0).

In the proof of the following theorem and further on, we also use the notion of
a piecewise affine function. A function f : Rn → Rn is called piecewise affine
if its graph is a linear semi-algebraic subset of Rn × Rn.

Theorem 1 It is undecidable whether a given formula in FO+TC4 terminates
on a given input database.

Proof. We reduce deciding whether a piecewise affine function f : R2 →
R2 is nilpotent to deciding whether the evaluation of a formula in FO+TC4

terminates. For the sake of contradiction, assume that termination of formulas
in FO+TC4 is decidable. For a given piecewise affine function f : R2 →
R2, graph(f), the graph of f , is a semi-algebraic subset of R4. We give a
(hypothetical) procedure to decide whether f is nilpotent:

Algorithm nilpotent(input f):

10

Step 1. Decide (using the decision procedure that exists by assumption) whether
the FO+TC4-query

[TCx1,x2;y1,y2
S(x1, x2, y1, y2)](s1, s2, t1, t2)

terminates on the input graph(f); if the answer is no, then return no, else
continue with Step 2.

Step 2. compute f 1(R2), f 2(R2), f 3(R2), . . . and return yes if this ends with
{(0, 0)}, else return no.

This algorithm decides correctly whether f is nilpotent. Indeed, suppose that
the function f is nilpotent. Then there exists a natural number k such that for
all (x, y) in R2, fk(x, y) = (0, 0). Therefore, the evaluation of the transitive
closure of graph(f) will terminate after at most 2k iterations. Therefore, for
nilpotent f , also the process in Step 2 is guaranteed to terminate, and the
correct answer is produced. Also for functions f that are not nilpotent, it is
clear that in both cases (output in Step 1 or in Step 2) the correct answer is
returned.

Since nilpotency of piecewise affine functions from R2 to R2 is known to be
undecidable [4], this completes the proof. ut

The following corollary follows immediately from the previous theorem and
the fact that FO+TC4-formulas are in FO+KTC4 (as shown in Proposition 1).

Corollary 1 It is undecidable whether a given formula in FO+KTC4 termi-
nates on a given input database. ut

For transitive-closure logics with stop-condition, we even have undecidability
for transitive closure restricted to binary relations.

Theorem 2 It is undecidable whether a given formula in FO+TCS2 termi-
nates on a given input database.

Proof. We prove this result by reducing the undecidability of a variant of
Hilbert’s 10th problem to this decision problem. This variant of Hilbert’s 10th
problem is deciding whether a polynomial p(x1, . . . , x13) in 13 real variables
and with integer coefficients has a solution in the natural numbers [7, 23].
For any such polynomial p(x1, . . . , x13), let σp be the FO-expressible stop-
condition:

(∃x1) · · · (∃x13)(
13∧

i=1

X(−1, xi) ∧ p(x1, . . . , x13) = 0).

11

Since, in consecutive iterations of the computation of the transitive closure
of the graph of y = x + 1, −1 is mapped to 0, 1, 2, . . ., it is easy to see that
p(x1, . . . , x13) has an integer solution if and only if [TCx;y y = x + 1 | σp](s, t)
terminates. Since the above mentioned Diophantine decision problem is unde-
cidable [7, 23], this completes the proof. ut

The results, given in this section, are complete for the languages FO+TC,
FO+TCS and FO+KTC, apart from the cases FO+TC2 and FO+KTC2. The
former case will be studied in the next sections. For the latter case, we remark
that an open problem in dynamical systems theory, namely, the point-to-fixed-
point problem reduces to it. This open problem is the decision problem that
asks whether for a given algebraic number x0 and a given piecewise affine
function f : R → R, the sequence x0, f(x0), f

2(x0), f
3(x0), . . . reaches a fixed

point. Even for piecewise linear functions with two non-constant pieces this
problem is open [3, 14]. It is clear that this point-to-fixed-point problem can be
expressed in FO+KTC2. So, we are left with the following unsolved problem.

Open problem 1 Is it decidable whether a given formula in FO+KTC2 ter-
minates on a given input database? ut

4 Deciding termination for continuous function graphs in the plane

In this section, we study the termination of the transitive closure of a fixed
semi-algebraic subset of the plane, viewed as a binary relation over R. We
say that a subset A of R2 has a terminating transitive closure, if the query
expressed by [TCx;y S(x, y)](s, t) terminates on input A using the semantics
of FO+TC. In the previous section, we have shown that deciding nilpotency
of functions can be reduced to deciding termination of the transitive closure
of their function graphs. However, since it is not known whether nilpotency of
(possibly discontinuous) functions from R to R is undecidable, we cannot use
this reduction to obtain the undecidability in case of binary function graphs.
We therefore have another unsolved problem:

Open problem 2 Is it decidable whether a given formula in FO+TC2 ter-
minates on a given input database? ut

Here, we study the termination of the transitive closure of fixed semi-algebraic
function 1 graphs in the plane. Function graphs are easier to deal with than
arbitrary sets in R2. They have the nice property that they have a terminating
transitive closure if and only if this transitive closure is also semi-algebraic.

1 A function is called semi-algebraic if its graph is semi-algebraic.

12

For arbitrary sets in R2 this is not true. Take, for example, the filled triangle
with corner points (0, 0), (1

4
, 1) and (1

2
, 1) in the plane. This set has a non-

terminating transitive closure. But its transitive closure, which is reached after
a countably infinite number of steps, is the filled semi-algebraic triangle with
corner points (0, 0), (0, 1) and (1

2
, 1). The mentioned property of function-

graphs is the following.

Proposition 2 Let f : R → R be a semi-algebraic function. The graph of f
has a terminating transitive closure if and only if the transitive closure 2 of
the graph of f is semi-algebraic.

Proof. The only-if direction is trivial, so we focus on the if-direction. So,
assume that TC(f), the transitive closure of the graph of f , is semi-algebraic.
The transitive closure of graph(f) is the set

⋃

k≥1

{(x, fk(x)) | x ∈ R}.

Indeed, it is easily verified that the latter set contains graph(f) and is transi-
tively closed and therefore contains TC(f). The other inclusion is trivial.

By the Uniform Bounds Theorem 3 [24] there exists an integer NTC(f) such
that for each x ∈ R, the cardinality of ∪k≥1{f

k(x)} is less than NTC(f). Hence,
the evaluation of the query expressed by [TCx;y S(x, y)](s, t) will terminate,
on input graph(f), after at most NTC(f) stages. ut

There are obviously classes of functions for which deciding termination of their
function graphs is trivial. An example is the class of the piecewise constant
functions. In this section, we concentrate on a class that is non-trivial, namely
the class of the continuous semi-algebraic functions from R to R. The main
purpose of this section is to prove the following theorem.

Theorem 3 There is a decision procedure that on input a continuous semi-
algebraic function f : R → R decides whether the transitive closure of graph(f)
terminates. Furthermore, this decision procedure can be expressed by a formula
in FO (over a 2-dimensional database that represents the graph of the input
function). ut

2 Here, we mean transitive closure in the mathematical sense, i.e., the smallest
transitively closed subset of R

2 that contains the graph of f .
3 The Uniform Bounds (or Uniform Finiteness [28]) Theorem, applied to R

2, states
that if A ⊆ R2 is a semi-algebraic set, then there exists an integer NA such that for
each x ∈ R, the set {y ∈ R | A(x, y)} is composed of fewer than NA intervals and
isolated points.

13

Before we arrive at the proof of Theorem 3, we give a series of six technical
lemma’s. First, we introduce some terminology.

Let f : R → R be a continuous function and let x be a real number. We
call the set {fk(x) | k ≥ 0} the orbit of x (with respect to f). A real number
x is said to be a periodic point of f if fd(x) = x for some natural number
d ≥ 1. And we call the smallest such d the period of x (with respect to f). Let
Per(f) be the set of periodic points of f . If a real number x is not a periodic
point of f , but if fk(x) is periodic for some natural number k ≥ 1, we call x
an eventually periodic point of f and we call the smallest such number k the
run-up of x (with respect to f). Finally, we call f terminating if graph(f) has
a terminating transitive closure.

We remark that Lemmas 1–4 hold for arbitrary functions, not only for semi-
algebraic ones.

Lemma 1 The function f : R → R is terminating if and only if there exist
natural numbers k and d such that for each x ∈ R, fk(x) is a periodic point
of f of period at most d.

Proof. For the if-direction, if there exist natural numbers k and d such that
for each x ∈ R, fk(x) is a periodic point of f of period at most d, then clearly
each path in the transitive closure of graph(f) is of length at most k + d.

For the only-if direction, if the computation of the transitive closure of graph(f)
terminates after n iterations, then for each x ∈ R, fn(x) is a periodic point
of f of period at most n. ut

Lemma 2 Let f : R → R be a continuous function. If f is terminating,
then Per(f) is a non-empty, closed and connected part of R. In particular,
Per(f) = fk(R) for some k ≥ 1.

Proof. It follows from Lemma 1 that, for a terminating f , there is a bound
d on the periods with respect to f and a bound k on the run-ups with respect
to f .

Denote by Ci the set of fixed points of f i, i.e., the set of x ∈ R for which
f i(x) = x. We first show that Per(f) is closed. Since, Per(f) equals C1∪· · ·∪
Cd, it suffices to show that each Ci is closed. Hereto, let x be a point in the
closure of Ci and consider a sequence (xk)k≥1 in Ci converging to x. From the
continuity of f it follows that f i(x) = limk→∞ f i(xk) = limk→∞ xk = x. Hence
x is in Ci. This implies that Ci is closed.

Now, we show that Per(f) = fk(R) for some k ≥ 1. The non-emptyness
of Per(f) follows immediately from this. It also implies the connectedness

14

of Per(f). Indeed, since f is continuous and R is connected, also fk(R) is
connected.

Since all the run-ups are smaller than k, it is clear that fk(R) ⊆ Per(f). On
the other hand, let x be a periodic point of f with period d′, with d′ ≤ d. Let
y = fa(x) where a is −k mod d′. Then fk(y) = fk+a(x) = f qd′(x) for some
integer q ≥ 1, since (k+a) mod d′ = 0. Since f qd′(x) = x, x belongs to fk(R)
and therefore Per(f) ⊆ fk(R). ut

Lemma 3 Let C be a non-empty, closed and connected part of R. If f : C →
C is a continuous function and if every x ∈ C is a periodic point of f , then f
or f 2 is the identity mapping on C.

Proof. We remark that C can either be the complete line R or be of the
form [a, +∞), (−∞, b] or [a, b] with a ≤ b. We will cover all these cases by
taking C to be [a, b], with the understanding that a can be −∞ and/or b can
be +∞.

First of all, we observe that f must be a bijection of C. Indeed, let y ∈ C
a periodic point of period d, then y = fd(y) = f(fd−1(y)) = f(x) with
x = fd−1(y). Hence f is surjective. Next suppose that f(x) = f(y). This
implies that f(x) and f(y) are in the same orbit of f , say of period d. Therefore,
x = fd−1(f(x)) = fd−1(f(y)) = y and f is also injective.

Since a continuous bijection is either strictly increasing or decreasing, we must
have that either f(a) = a and f(b) = b, or f(a) = b and f(b) = a. To prove
the lemma, it suffices to show that f(a) = a and f(b) = b implies that f is the
identity mapping. Indeed, the second case reduces to the first when applied
to f 2.

So, we assume that f(a) = a and f(b) = b. Suppose that there exists an
x0 ∈ C such that f(x0) 6= x0. By continuity, this means that there exists an
open interval (c, d) containing x0 such that f(x) 6= x in (c, d). Let (c, d) be
maximal with these properties. From the maximality of (c, d) it follows that
f(c) = c and f(d) = d and hence f((c, d)) = (c, d) (for the unbounded cases,
c and/or d may be −∞ and +∞, or just one of them). Moreover, we have
that either f(x) > x for all x ∈ (c, d), or f(x) < x for all x ∈ (c, d). Take a
point y ∈ (c, d), then y, f(y), f 2(y), . . . is a strictly increasing (if f(x) > x) or
a strictly decreasing (if f(x) < x) sequence of points. Hence, (c, d) does not
contain any periodic points, which contradicts the premises. Hence, f is the
identity mapping on C. ut

Lemma 4 For a continuous and terminating f : R → R, Per(f) = {x ∈ R |
f 2(x) = x}.

15

Proof. If f is terminating, then, by Lemma 2, Per(f) is a closed and con-
nected. Therefore, Lemma 3 can be applied to f restricted to Per(f). This
shows that Per(f) ⊆ {x ∈ R | f 2(x) = x}. The other inclusion follows from
the fact that any x which satisfies f 2(x) = x has period 1 or 2. ut

Denote by Ci, as in the proof of Lemma 2, the set of fixed points of f i, i.e.,
the set of x ∈ R for which f i(x) = x. From the previous lemmas it follows
that for continuous and terminating f ,

Per(f) = C1 ∪ C2,

and that either C2 \C1 is empty and C1 is non-empty or C2 \C1 is non-empty
and C1 is a singleton with the points of C2 \C1 appearing around C1 (remark
that C1 ⊆ C2) .

Sharkovskĭı’s theorem [1] from 1964, one of the most fundamental result in
dynamical system theory, tells us that for a continuous and terminating f :
R → R only periods 1, 2, 4, . . . , 2d can appear for some integer value d. The
previous lemma has the following corollary which strengthens the result of
Sharkovskĭı’s for terminating functions.

Corollary 2 If f : R → R is continuous and terminating, then f can only
have periodic points with periods 1 and 2. ut

Further on, in the proof of Theorem 3, we distinguish between functions f
for which C1 ∪ C2 is R, and other functions. For the former case, no further
tests are needed. For the latter case, however, if C = C1 ∪ C2 is closed and
connected, we construct a continuous function f̃ from the given continuous
function f , and further investigate f̃ .

Let C = C1 ∪ C2 be closed and connected and different from R. Hence, C is
of the form [a, b], [a, +∞) or (−∞, b].

First, we collapse C to {a} if C is bounded or of the form [a, +∞); and to
{b} if C is of the form (−∞, b]. Let us first consider the case C = [a, b]. Let
f∈C = {x ∈ R | f(x) ∈ C}, f<C = {x ∈ R | f(x) < a}, and f>C = {x ∈ R |
f(x) > b}.

We define the continuous function f̄ on R as f̄(x) :=





f(x) if x ∈ f<C and x < a,

f(x) − (b − a) if x ∈ f>C and x < a,

f(x + (b − a)) if x + (b − a) ∈ f<C and x > a,

f(x + (b − a)) − (b − a) if x + (b − a) ∈ f>C and x > a,

a if x ∈ f∈C .

16

graph(f̄)

a

a
ba

a

b

graph(f)

Fig. 5. Illustration of the construction of f̄ (right) from f (left).

This construction is illustrated in Figure 5.

Let us next consider the case C = [a, +∞). First, remark that here f is the
identity on [a, +∞), i.e., C2 \C1 is empty. Here, the function f̄ on R is defined
as 




f(x) if x ∈ f<C and x < a,

a if x < a and x ∈ f∈C or if x ≥ a.

In the case C = (−∞, b], f̄ is defined as





f(x) if x ∈ f>C and b < x,

b if b < x and x ∈ f∈C or x ≤ b.

Remark that here f is the identity on (−∞, b], i.e., C2 \ C1 is also empty in
this case.

Finally, we define

f̃(x) := f̄(x + c) − c,

where c is a or b, depending on the case.

The following lemma describes the relation between f and f̃ . Although, when
looking at the graphics this result is intuitively clear, its proof is somehow
tedious.

Lemma 5 Let f : R → R be a function with non-empty, closed and connected
C1∪C2 that is not R and such that f(C1∪C2) = C1∪C2. Then fk(R) = C1∪C2

if and only if f̃k(R) = {0}.

Proof. Let f be as in the statement of the lemma. Abbreviate C1 ∪ C2 by
C. Let c denote a or b, depending on the case, as in the above definition of f̃ .

From f̃(x) := f̄(x + c) − c it is easy to show that for k ≥ 1 we have
f̃k(x) := f̄k(x + c) − c, for example, by straightforward induction on k.

17

From this observation, it immediately follows that f̃k(R) = {0} if and only if
f̄k(R) = {c}.

It therefore suffices to show that fk(R) = C if and only if f̄k(R) = {c}. We
first do this for the easier cases where C is unbounded and next prove this
equivalence for a bounded interval C.

Let C be [a, +∞) and thus c = a. Here, we show, by induction on k ≥ 1, that
for all x ∈ R that

f̄k(x) = min{a, fk(x)}.

For k = 1, this follows from the definition of f̄ . Assume, it holds for k. Because
f̄k+1(x) = f̄(f̄k(x)), we know that f̄k+1(x) ≤ a. So, if f̄k+1(x) is strictly
smaller than a we have to show that it equals fk+1(x). Indeed, from f̄(f̄k(x)) <
a it follows that f(f̄k(x)) < a and therefore also fk(x) < a (here we use that
f([a, +∞)) = [a, +∞)). By the induction hypothesis, therefore f̄k(x) = fk(x)
and f̄k+1(x) = f̄(f̄k(x)) = f̄(fk(x)) = f(fk(x)) = fk+1(x). From f̄k(x) =
min{a, fk(x)}, it follows that for all x ∈ R, fk(x) ≥ a if and only if for all
x ∈ R, f̄k(x) = a. This proves this case.

In the case where C is (−∞, b], we show in a similar way that for k ≥ 1 and
for all x ∈ R that f̄k(x) = max{b, fk(x)}, and this proves this case.

Finally, we have the case where C is a bounded interval [a, b]. Here we have
c = a. To facilitate the notation, we introduce two functions from R to R: α
and β. We define α(x) as





x if x < a,

a if a ≤ x ≤ b, and

x − (b − a) if x > b,

and β(x) as




x if x ≤ a,

x + (b − a) if x > a.

Intuitively, we could say that α maps the domain of f to that of f̄ and β does
the inverse. Indeed, the composed function β ◦ α is the identity on (−∞, a] ∪
(b, +∞) and constant a on the interval (a, b].

It is easily verified that f̄k = (α ◦ f ◦ β)k, for k ≥ 1. Finally, we define the
function g to be β ◦ α ◦ f . This function is constant a where f maps numbers
in [a, b] and is equal to f on all other numbers. From the above it follows that
f̄k = α ◦ f ◦ gk−1 ◦ β.

18

Claim: for all k ≥ 1 and all x ∈ R, gk(x) = a if fk(x) ∈ [a, b] and gk(x) =
fk(x) if fk(x) 6∈ [a, b].

Proof of the claim. We proceed by induction on k ≥ 1. For k = 1, the claim
follows from the definition of g. Assume that the claim holds for k. For k + 1
there are two cases. Firstly, assume that fk+1(x) ∈ [a, b]. We have to show
that gk+1(x) = a. There are two subcases. If fk(x) ∈ [a, b], then gk(x) = a
by the induction hypothesis and therefore gk+1(x) = a. If fk(x) 6∈ [a, b], then
gk(x) 6= a by the induction hypothesis and therefore gk+1(x) = g(gk(x)) =
g(fk(x)) = a since f(fk(x)) ∈ [a, b]. Secondly, assume that fk+1(x) 6∈ [a, b].
Then f j(x) 6∈ [a, b] for all j, 1 ≤ j ≤ k + 1, since f([a, b]) = [a, b]. Therefore,
gk(x) = fk(x). So, fk+1(x) = f(fk(x)) = g(fk(x)) = g(gk(x)) = gk+1(x).
The second equality holds since fk(x) 6∈ [a, b]. This concludes the proof of the
claim. ut

We are now ready to show that fk(R) = [a, b] if and only if f̄k(R) = {a}.

For the if-direction, we assume that f̄k(R) = {a}. Suppose that there exists an
x0 ∈ R such that fk(x0) 6∈ [a, b]. We claim that f̄k(α(x0)) 6= a, contradicting
the assumption. Indeed, assume that f̄k(α(x0)) = a. Since f̄k(α(x0)) = (α◦(f◦
β◦α)k−1◦f◦β◦α)(x0) = (α◦(f◦β◦α)k)(x0), we get that (f◦β◦α)k(x0) ∈ [a, b].
From this follows that fk(x0) ∈ [a, b], contradicting the assumption made
about x0. To prove the latter implication, assume that fk(x0) 6∈ [a, b]. Then
f j(x0) 6∈ [a, b] for all j with 0 ≤ j ≤ k. From this, and the definition of β ◦α, it
follows that (f ◦ β ◦ α)j(x0) = f j(x0) for all j with 0 ≤ j ≤ k. This concludes
the proof of the if-direction.

For the only-if direction, assume that for all x ∈ R, fk(x) ∈ [a, b]. Assume
that there exists an x0 ∈ R such that f̄k(x0) 6= a. Using an above made
remark, we therefore have that (α ◦ f ◦ gk−1 ◦ β)(x0) 6= a and therefore also
(f ◦ gk−1 ◦ β)(x0) 6∈ [a, b]. So, (gk−1 ◦ β)(x0) 6∈ f∈[a,b] and therefore certainly
(gk−1 ◦ β)(x0) 6= a. Because of the above proven claim we have that therefore
gk−1(β(x0)) = fk−1(β(x0)). Hence, f̄k(x0) = (α ◦ f ◦ gk−1 ◦ β)(x0) = (α ◦
f ◦ fk−1 ◦ β)(x0) = (α ◦ fk ◦ β)(x0). Since this latter value is not equal to a,
we have that fk(β(x0)) 6∈ [a, b]. We conclude that there exists a number y0,
namely y0 = β(x0), such that fk(y0) 6∈ [a, b]. This contradicts the above made
assumption and concludes the proof. ut

As mentioned in the previous section, in the area of dynamical systems, a
function f̃ is called nilpotent if f̃k(R) = {0} for some integer k. The following
lemmas show that this is a decidable property in our setting. For continuous
piecewise affine functions this result was already stated (without proof) [4]. So,
we extend this result to continuous semi-algebraic functions and furthermore
show that the decision procedure is expressible in FO.

19

Lemma 6 There is an FO sentence that expresses whether a continuous semi-
algebraic function f : R → R is nilpotent.

Proof. We describe the algorithm nilpotent(input f) to decide nilpotency
of continuous semi-algebraic functions f : R → R and later on argue its
correctness.

Algorithm nilpotent(input f):

Step 1. Compute the set {x ∈ R | f 2(x) = x}. If this set differs from {0},
then answer no, else continue with Step 2.

Step 2. Compute the set B = {r | γBB(r)}, where γBB(r) is the formula
that defines positive real numbers r that satisfy one of the following three
conditions:

(1) limx→−∞ f(x) and limx→+∞ f(x) are constants and f((−∞, r]) ⊂ (−r,
+r) and f([r, +∞)) ⊂ (−r, +r);

(2) limx→−∞ f(x) = +∞ and limx→+∞ f(x) is a constant and f([r, +∞)) ⊂
(−r, +r);

(3) limx→−∞ f(x) is a constant and limx→+∞ f(x) = −∞ and f((−∞, r]) ⊂
(−r, +r);

If B is empty, answer no, else compute the infimum r0 of B and continue with
Step 3.

Step 3. Let g be the function defined as g(x) := f(x) if −r0 < x < r0 and
g(x) := f(−r0) if x ≤ −r0 and g(x) := f(r0) if x ≥ r0.

If for g there exists a positive real number ε such that

(1) g is constant 0 on (−ε, +ε), or
(2) g is constant 0 on (0, +ε) and has a left tangent with strictly negative

slope in 0, or
(3) g is constant 0 on (−ε, 0) and has a right tangent with strictly negative

slope in 0,

then continue with Step 4, else answer no.

Step 4. If for all x > 0, g(x) < x and g2(x) < x and for every x < 0, g(x) > x
and g2(x) > x holds, then answer yes, else answer no.

We now prove the correctness of the algorithm nilpotent. Clearly, if f has
periodic points other than 0, then f cannot be nilpotent. Furthermore, for a

20

nilpotent f , f(0) must be 0. From Sharkovskĭı’s theorem [1], it follows that
if f has periodic points of some period d (d > 1), then f also has periodic
points of period 2. Therefore, the test in Step 1, makes sure that 0 is the only
periodic point of f .

In Step 2, the consistency of nilpotency with the behavior of f towards −∞
and +∞ is tested. We first remark that if the limit conditions in either of the
three cases are satisfied, also values of r satisfying the inclusion conditions are
guaranteed to exist. This follows from the fact that f is semi-algebraic. We
show this for Case 2. The other cases are similar. So, assume limx→−∞ f(x) =
+∞ and limx→+∞ f(x) = c with c a constant. We have to show that there
exists an r such that f([r, +∞)) ⊂ (−r, +r). Consider the set {x ∈ R | f(x) <
c + 1}. This is a semi-algebraic subset of R that is not bounded towards +∞.
Therefore there exists a number d such that [d, +∞) is completely in {x ∈ R |
f(x) < c+1}. It is clear that r = max{c+1, d} satisfies f([r, +∞)) ⊂ (−r, +r).

From the fact that f has a semi-algebraic graph it follows that the set B, com-
puted in Step 2, is empty if (1) limx→−∞ f(x) = −∞ or (2) limx→+∞ f(x) =
+∞ or (3) limx→−∞ f(x) = +∞ and limx→+∞ f(x) = −∞.

In Case (1), for all x < 0 we have (1a) f(x) < x < 0 or (1b) x < f(x) < 0.
Indeed, because of the test in Step 1, the case f(x) = x cannot occur any
more outside the origin. In Case (1a), there exists an infinite orbit · · · <
f 2(x) < f(x) < x < 0, hence f is not nilpotent. In Case (1b), there exist
arbitrary long orbits converging to x, namely from any point in the sequence
· · · < f−2(x) < f−1(x) < x < 0. Hence f is not nilpotent.

For Case (2), a similar analysis can be made, again depending on the graph
of f being situated below or above the diagonal.

Also in Case (3), we have this phenomena, this time depending on the graph
of f 2 being situated below or above the diagonal. Here, for all x > 0, we have
(3a) x < f 2(x) or (3b) x > f 2(x). Because of the test in Step 1, there is no
third case. In Case (3a), there exists an infinite orbit because x < f 2(x) <
f 4(x) < · · · , hence f is not nilpotent. In Case (3b), there exist arbitrary long
orbits starting from any point in the sequence 0 < x < f−2(x) < f−4(x) < · · · .
Hence f is not nilpotent.

Hence, if B is empty, then f is not nilpotent.

If B is non-empty, on the other hand, then f((−∞, r0]) ⊂ (−r0, r0) and/or
f([r0, +∞)) ⊂ (−r0, r0) (depending on which case occurred in Step 2). For
the function g, defined in Step 3, this also holds if you replace r0 by some r1,
with r1 larger than r0 and max {|g(x)| | x ∈ R}. Furthermore g([−r1, +r1]) ⊆
[−r1, +r1] holds for such r1. By the choice of r1, it follows that f is nilpotent
if and only if g is nilpotent. The only-if direction is immediately clear. For

21

the if-direction, we observe that f or f 2 (again depending on the case that
occurred in Step 2) maps numbers outside [−r1, +r1] into [−r1, +r1], and (the
behaviour of) f and g are the same within [−r1, +r1].

In Steps 3 and 4, the consistency of the behavior of g in a neighborhood of 0
with nilpotency is tested. In the Cases (1), (2) and (3), g2(x) = 0 holds for a
small ε-environment of 0. Every different behavior of g in the neighborhood of
0, leads to infinitely long or arbitrarily long orbits of g (and hence of f). Since
this analysis is completely analogous to the one made in Step 2, we omit the
details.

The condition in Step 4, expresses what is known as the global convergence of
g [3], which is equivalent to nilpotency of g because g2 maps a neighborhood
of 0 to 0 [4]. That g2 maps a neighborhood of 0 to 0 follows from Step 3.

Finally, we remark that all computations and tests performed in the algorithm
nilpotent, are expressible by a FO formula over the binary relation repre-
senting the graph of the input f . Limits, for instance, can be implemented in
FO using the classical ε-δ definition. ut

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. We describe a decision procedure terminate(input
f) that on input a function f : R → R, decides whether the transitive closure
of graph(f) terminates after a finite number of iterations.

Algorithm terminate(input f):

Step 1. Compute the sets C1 = {x | f(x) = x} and C2 = {x | f 2(x) = x}.
If C2 is a closed and connected part of R and if C1 is a point with C2 \ C1

around it or if C2 \ C1 is empty, then continue with Step 2, else answer no.

Step 2. If C2 is R, answer yes, else compute the function f̃ (as described before
Lemma 5) and apply the algorithm nilpotent in the proof of Lemma 6 to f̃
and return the answer.

The correctness of this procedure follows from Lemmas 4, 5 and 6. From the
remark at the end of the proof of Lemma 6 and the construction of C1, C2

and f̃ , it is clear that all ingredients can be expressed in FO. ut

22

Example 6 We use the function f1, given in Figure 2 in the Introduction,
and the function f2, given in Figure 3, to illustrate the decision procedure
terminate(input f).

For f1, C1 ∪ C2 is {0, 1}, and therefore f1 doesn’t survive Step 1 and termi-

nate(input f1) immediately returns no.

For f2, C1 ∪ C2 is {0}, and therefore we have f̃2 = f2. Next, the algorithm
nilpotent is called with input f2. For f2, the set B, computed in Step 2
of the algorithm nilpotent, is non-empty and r0 is 2. So, the function g in
Step 3 will be f2 again and r1 is strictly larger than 2. Since g is identical
zero around the origin, finally the test in Step 4 decides. Here, we have that
for x > 0, g(x) < x and also g2(x) < x since x − 1

4
< x and x − 1

2
< x. For

x < 0, we have that both g(x) and g2(x) are identical zero and thus the test
succeeds also here. The output of nilpotent on input f2 and therefore also
the output of terminate on input f2 is yes. ut

For a continuous and terminating function, the periods that can appear are 1
and 2 (see Lemma 3). In dynamical systems theory, finding an upper bound
on the length of the run-ups in terms of some characteristics of the function, is
considered to be, even for piecewise affine functions, a difficult problem [22, 25].
Take, for instance, the terminating continuous piecewise affine function that is
constant towards −∞ and +∞ and that has turning points (0, 1

3
), (1

3
, 2

3
− ε),

(4
9
, 4

9
), (5

9
, 5

9
), (2

3
, 1

3
), and (1, 2

3
), with ε > 0 small. Here, it seems extremely

difficult to find an upper bound on the length of the run-ups in terms of the
number of line segments or of their endpoints. The best we can say is that
also the maximal run-up can be computed.

Corollary 3 Let f : R → R be a continuous, terminating semi-algebraic
function. The maximal run-up of a point in R with respect to f can be com-
puted. ut

We end this section with a remark concerning termination of continuous func-
tions that are defined on a connected part I of R. Let f : I → I be such
a function. We define the function f̄ to be the continuous extension of f to
R that is constant on R \ I. It is readily verified that the transitive closure
of graph(f) terminates if and only if f̄ is terminating. We therefore have the
following corollary of Theorem 3.

Corollary 4 Let I be a connected part of R. There is an FO expressible
decision procedure that decides whether the transitive closure of the graph of a
continuous semi-algebraic function f : I → I terminates. ut

23

5 Logics with transitive closure restricted to function graphs

In this section, we study fragments of FO+TC and FO+TCS where the transi-
tive-closure operator is restricted to work only on the graphs of continuous
semi-algebraic functions from Rk to Rk. These languages bear some similarity
with deterministic transitive-closure logics in finite model theory [8].

If ~x and ~y are k-dimensional real vectors and if ψ(~x, ~y) is an FO+TC-formula
(respectively FO+TCS-formula), let γψ be the FO+TC-sentence (respectively FO+TCS-
sentence) γ1

ψ ∧ γ2
ψ, where γ1

ψ expresses that ψ(~x, ~y) defines the graph of a
function from Rk to Rk and where γ2

ψ expresses that ψ(~x, ~y) defines a contin-
uous function graph. We can express γ2

ψ using the classical ε-δ definition of
continuity.

More specifically, γ1
ψ can be written as

(∀~x)(∃~y)ψ(~x, ~y) ∧ (∀~x)(∀~y)(∀~z)(ψ(~x, ~y) ∧ ψ(~x, ~z) ⇒ ~y = ~z)

and γ2
ψ can be written as

(∀~x1)(∀ε > 0)(∃δ > 0)(∀~x2)(‖~x1 − ~x2‖ < δ ⇒

(∀~y1)(∀~y2)(ψ(~x1, ~y1) ∧ ψ(~x2, ~y2) ⇒ ‖~y1 − ~y2‖ < ε)).

Proposition 3 Let ψ(~x, ~y) be an FO+TC-formula (respectively an FO+TCS-
formula). The evaluation of ψ(~x, ~y) on an input database A terminates if and
only if the evaluation of γψ on A terminates.

Proof. It should be clear that the above expressions for γ1
ψ and γ2

ψ make
direct calls to ψ(~x, ~y) and no new calls to a TC-formula are introduced. Using
the bottom-up evaluation method described in Section 2.2, it is clear that
evaluation of both γ1

ψ and γ2
ψ terminates on A if and only the evaluation of ψ

terminates on A. ut

Definition 6 We define FO+cTC (respectively FO+cTCS) to be the frag-
ment of FO+TC (respectively FO+TCS) in which only TC-expressions of
the form [TC~x;~y ψ(~x, ~y) ∧ γψ](~s,~t) (respectively [TC~x;~y ψ(~x, ~y) ∧ γψ | σ](~s,~t))
are allowed to occur. ut

We again use superscript numbers to denote restrictions on the arities of the
relations of which transitive closure can be taken.

24

5.1 Deciding termination of the evaluation of FO+cTC2 queries

Since, when ψ(x, y) is y = x + 1, γψ is true, from the proof of Theorem 2 the
following negative result follows.

Corollary 5 It is undecidable whether a given formula in FO+cTCS2 termi-
nates on a given input database. ut

We remark that for this undecidability it is not needed that the transitive
closure of continuous functions on an unbounded domain is allowed (f(x) =
x+1 in the proof of Theorem 2). Even when, for example, only functions from
[0, 1] to [0, 1] are allowed, we have undecidability. We can see this by modifying
the proof of Theorem 2 as follows. For any polynomial p(x1, . . . , x13), let σp

be the FO-expressible stop-condition:

(∃x1) · · · (∃x13)(
13∧

i=1

((∃yi)(xiyi = 1 ∧ X(1, yi)) ∨

xi = 0 ∨ xi = 1) ∧ p(x1, . . . , x13) = 0).

Since, in consecutive iterations, the continuous extension f̄ of f : [0, 1] →
[0, 1] : x 7→ x

x+1
, maps 1 to 1

2
, 1

3
, 1

4
, . . ., it is then easy to see that p(x1, . . . , x13)

having an integer solution is equivalent to

[TCx;y ψ(x, y) | σp](s, t)

terminating, where ψ(x, y) defines graph(f̄). Remark again that the γgraph(f̄)

is true.

The main result of this section is the following.

Theorem 4 It is decidable whether a given formula in FO+cTC2 terminates
on a given input database. Moreover, this decision procedure is expressible in
FO+cTC2.

Proof. Given a formula ϕ in FO+cTC2 and an input database A, we can
decide whether the evaluation of ϕ on A terminates by first evaluating the
deepest FO-formulas on which a TC-operator works on A and then using
Theorem 3 to decide whether the computation of transitive closure halts on
this set. If it does not terminate, we answer no, else we compute the result
and continue recursively to less deep occurrences of TC-operators in ϕ. We
continue this until the complete formula ϕ is processed. Only if we reach the
end and all intermediate termination tests returned yes, we output yes.

The expressibility of the decision procedure in FO+cTC2 can straightforwardly
be proven by induction on the structure of the formula. ut

25

5.2 A guarded fragment of FO+cTC2

The fact that termination of FO+cTC2-formulas is expressible in FO+cTC2,
allows us to define a guarded fragment, FO+cTC2

G
, of this language. Indeed,

if ψ is a formula in FO+cTC2 of the form [TC~x;~y ψ(~x, ~y)](~s,~t), let τψ be the
FO+cTC2-sentence that expresses that this TC-expression terminates (obvi-
ously, τψ also depends on the input database). We can now define the guarded
fragment of FO+cTC2, in which every TC-expression is accompanied by a
termination guard.

Definition 7 We define FO+cTC2
G

to be the fragment of FO+cTC2 in which
only TC-expressions of the form [TC~x;~y ψ(~x, ~y) ∧ τψ](~s,~t) are allowed. ut

The following property follows from the above remarks.

Proposition 4 In the language FO+cTC2
G
, every query terminates on all

possible input databases. Furthermore, all terminating queries of FO+cTC2

are expressible in FO+cTC2
G
.

Proof. Since, for each expression ϕ in FO+cTC2
G
, every subformula of ϕ

that is a TC-expression includes a termination guard, these subexpressions
are guaranteed to terminate on all inputs. Therefore the evaluation of ϕ is
guaranteed to terminate on every input.

For the second part of this proposition, let ϕ be a formula in FO+cTC2 that
is terminating on all inputs. By adding termination guards in ϕ, starting at
TC-subformulas that appear deepest and continuing outwards, we obtain a
formula ϕ̄ in FO+cTC2

G
that equivalently expresses the query expressed by

ϕ. ut

5.3 Expressiveness results

Even the least expressive of the discussed transitive-closure logics is still more
expressive than first-order logic.

Theorem 5 The language FO+cTC2
G

is more expressive than FO on finite
constraint databases.

Proof. Consider the following query Qint on 1-dimensional databases S: “Is S
a singleton that contains a natural number?”. The query Qint is not expressible
in FO (if it would be expressible, then also the predicate nat(x), expressing
that x is a natural number, would be in FO). The query Qint is expressible in
FO+cTC2

G
by the sentence that says that S is a singleton that contains 0, 1

26

or an element r > 1 such that (∃s)(∃t)([TCx;y ψ(x, y) ∧ γψ ∧ τψ(x,y)∧γψ
](s, t) ∧

s = 1 ∧ t = 1
r
), where ψ(x, y) is the formula (∃r)(S(r) ∧ ϕ(r, x, y)). Here,

ϕ(r, x, y) defines the graph of the continuous piecewise affine function that
maps x to

y =





0 if x ≤ 1
r
,

x − 1
r

if 1
r

< x < 1,

1 − 1
r

if x ≥ 1.

Remark that γψ is always true. The sentence τψ(x,y)∧γψ
is true when the

database is a singleton containing a number larger than one. The function
given by ϕ(r, x, y) is illustrated in Figure 3 for r = 4. The evaluation of this
transitive closure is guaranteed to end after at most dre iterations and this
sentence indeed expresses Qint since (1, 1

r
) belongs to the result of the transi-

tive closure if and only if r > 1 is a natural number. ut

We remark that the fact that we can express in FO+cTC2
G

that a 1-dimensional
singleton databases S contains a natural number does not imply that we can
define the natural numbers in FO+cTC2

G
. This follows immediately from the

guaranteed termination of FO+cTC2
G
-expressible queries. On input a con-

straint database the evaluation of a FO+cTC2
G
-expression is guaranteed to

terminate and to return an output that can be described by means of poly-
nomial constraints, i.e., that is semi-algebraic. The set of natural numbers is
non-semi-algebraic subset of R and can therefore not be defined in FO+cTC2

G
.

Looking at the formula in the above proof that expresses that a 1-dimensional
singleton databases S contains a natural number, we see that the therein used
TC-expression works on the formula ψ(x, y), which is (∃r)(S(r) ∧ ϕ(r, x, y)).
We see that the number r of which naturalness is expressed is bound by a
quantifier in the formula ψ(x, y). Therefore, if we would want to define the
natural numbers by modifying the formula in the proof this would lead to
applying the transitive-closure operator to a formula ψ′(x, y, r) with an extra
parameter. This would lead us outside FO+cTC and inside FO+KTC.

6 Concluding remarks

We conclude with a number of remarks. One of our initial motivations to look
at termination of query evaluation in transitive closure logics was to study the
expressive power of FO+TC compared to that of FO+TCS. As mentioned in
the Introduction and Section 2, the latter language is computationally com-
plete on linear constraint databases. It is not clear whether FO+TC is also
complete. In general, we have no way to separate these languages. But if we
restrict ourselves to their fragments FO+cTC2 and FO+cTCS2, the fact that

27

y1

y3

y4

y2 x1

1

y

Fig. 6. The graph of the function f(x, y1, . . . , y4) in the (x, y)-plane.

for the former termination is decidable, whereas it is not for the latter, might
give the impression that at least these fragments can be separated. But this is
not the case, since equivalence of formulas in these languages is undecidable.
In fact, the expressions used in the proof of Theorem 2, are expressible in
FO+TC (they do not even use an input database).

A last remark concerns the validity of the results in Section 4 for more general
settings. Lemmas 1–5 are also valid for arbitrary real closed fields R. One
could ask whether the same is true for Lemma 6. However, the proof of the
correctness of the FO-sentence which decides global convergence in Step 4 [3],
relies on the Bolzano-Weierstrass theorem, which is known not to be valid for
arbitrary real closed fields [5]. Furthermore, we can even prove the following.

Theorem 6 Termination of continuous semi-algebraic functions f : R → R
for arbitrary real closed fields R is not expressible in FO.

Proof. Let FR be the family of continuous piecewise affine functions from R
to R parameterized by [0, 1]4 ⊂ R4 and defined by

FR : R × [0, 1]4 → R : (x, ~y) 7→ f(x, ~y),

where ~y = (y1, . . . , y4) and f is the continuous piecewise affine function that
is constant outside [0, 1] and that in the unit interval connects (0, y1) with
(y2, y3) and (y2, y3) with (1, y4) (see Figure 6).

For each k > 0, it is clear that there exists an FO-formula ϕk(~y) which ex-
presses that the evaluation of the transitive closure of graph(FR(~y)) terminates
after k iterations.

We prove the proposition by contradiction. Suppose that there exists an FO-
sentence ψ which expresses the termination of the transitive closure of function
graphs for semi-algebraic functions on an arbitrary real closed field R. This
implies that there also exists a FO-formula ψ(~y) which expresses that the
evaluation of the transitive closure of graph(FR(~y)) is terminating.

Let ψrcf be an FO-sentence expressing the axioms of real closed fields. Then,

28

y

10 x

y1 = y3 = 0

y2 =
1

k+2

y4 =
k+1

k+2

1

Fig. 7. The graph of the function f(x, 0, 1
k+2 , 0, k+1

k+2).

for each k > 0, the formula

(∃~y)(ψ(~y) ∧ ¬ϕ1(~y) ∧ · · · ∧ ¬ϕk(~y)) ∧ ψrcf

is satisfied when we consider R = R and we take y1 = 0, y2 = 1/(k + 2),
y3 = 0, and y4 = (k + 1)/(k + 2) as parameters. Indeed, the evaluation of
the transitive closure of the graph of f(x, 0, 1/(k + 2), 0, (k + 1)/(k + 2)) is
terminating but only after k + 1 iterations (see Figure 7).

Hence, by the compactness theorem, the countable set of formulas {ψrcf , ψ(~y),
¬ϕ1(~y),¬ϕ2(~y), . . .} is consistent. Hence, there exists a real closed field R̃ and a
~y ∈ R̃4 such that ψ(~y) expresses that the evaluation of the transitive transitive
closure of graph(F

R̃
(~y)) terminates, or equivalently, that f~y : R̃ → R̃ : x 7→

f(x, ~y) is terminating. However, there exists no k such that f(x, ~y) terminates
after k iterations. This is clearly a contradiction. Hence, the assumption that
ϕ expresses the termination of functions f : R → R for arbitrary real closed
fields R must be false. ut

Acknowledgements. The authors would like to thank Michael Benedikt for
suggesting a significant simplification to the proof of Proposition 6.

References

[1] Ll. Alsedà, J. Llibre, and M. Misiurewicz. Combinatorial Dynamics and
Entropy in Dimension One, volume 5 of Advances Series in Nonlinear
Dynamics. World Scientific, 1993.

[2] M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and
connectivity queries in constraint databases. In Proceedings of the 19th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS’00), pages 104–115. ACM, 2000.

[3] V.D. Blondel, O. Bournez, P. Koiran, C.H. Papadimitriou, and J.N. Tsit-
siklis. Deciding stability and mortality of piecewise affine dynamical sys-
tems. Theoretical Computer Science, 255(1-2):687–696, 2001.

29

[4] V.D. Blondel, O. Bournez, P. Koiran, and J.N. Tsitsiklis. The stability of
saturated linear dynamical systems is undecidable. Journal of Computer
and System Sciences, 62(3):442–462, 2001.

[5] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, vol-
ume 36 of Ergebenisse der Mathematik und ihrer Grenzgebiete. Folge 3.
Springer-Verlag, 1998.

[6] G.E. Collins. Quantifier elimination for real closed fields by cylindrical al-
gebraic decomposition. In Automata Theory and Formal Languages, vol-
ume 33 of Lecture Notes in Computer Science, pages 134–183. Springer-
Verlag, 1975.

[7] M. Davis, Y. Matijasevič, and J. Robinson. Hilbert’s Tenth Problem.
Diophantine equations: positive aspects of a negative solution. In Math-
ematical Developments Arising from Hilbert Problems, volume 28, pages
323–378. American Mathematical Society, 1976.

[8] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag,
1995.

[9] F. Geerts. Linear approximation of semi-algebraic spatial databases us-
ing transitive closure logic, in arbitrary dimension. In G. Ghelli and
G. Grahne, editors, Proceedings of the 8th International Workshop on
Database Programming Languages (DBPL’01), volume 2397 of Lecture
Notes in Computer Science, pages 182–197. Springer-Verlag, 2002.

[10] F. Geerts and B. Kuijpers. Linear approximation of planar spatial da-
tabases using transitive-closure logic. In Proceedings of the 19th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS’00), pages 126–135. ACM, 2000.

[11] Ch. Giannella and D. Van Gucht. Adding a path connectedness operator
to FO+poly (linear). Acta Informatica, 38(9):621–648, 2002.

[12] S. Grumbach and G. Kuper. Tractable recursion over geometric data. In
G. Smolka, editor, Proceedings of Principles and Practice of Constraint
Programming (CP’97), volume 1330 of Lecture Notes in Computer Sci-
ence, pages 450–462. Springer-Verlag, 1997.

[13] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query lan-
guages. Journal of Computer and System Science, 51(1):26–52, 1995. A
preliminary report appeared in the Proceedings 9th ACM Symposium on
Principles of Database Systems (PODS’90).

[14] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132:113–
128, 1994.

[15] S. Kreutzer. Fixed-point query languages for linear constraint databases.
In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS’00), pages 116–125. ACM,
2000.

[16] S. Kreutzer. Operational semantics for fixed-point logics on constraint
databases. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of
the 8th International Conference on Logic for Programming, Artificial

30

Intelligence, and Reasoning (LPAR’01), volume 2250 of Lecture Notes in
Computer Science, pages 470–484. Springer-Verlag, 2001.

[17] S. Kreutzer. Query languages for constraint databases: First-order logic,
fixed-points, and convex hulls. In J. Van den Bussche and V. Vianu,
editors, Proceedings of 8th International Conference on Database Theory
(ICDT’01), volume 1973 of Lecture Notes in Computer Science, pages
248–262. Springer-Verlag, 2001.

[18] B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Bussche. Termina-
tion properties of spatial Datalog programs. In D. Pedreschi and C. Zan-
iolo, editors, International Workshop on Logic in Databases (LID’96), vol-
ume 1154 of Lecture Notes in Computer Science, pages 101–116. Springer-
Verlag, 1996.

[19] B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological ele-
mentary equivalence of closed semi-algebraic sets in the real plane. The
Journal of Symbolic Logic, 65(4):1530–1555, 2000.

[20] B. Kuijpers and M. Smits. On expressing topological connectivity in spa-
tial datalog. In V. Gaede, A. Brodsky, O. Gunter, D. Srivastava, V. Vianu,
and M. Wallace, editors, Proceedings of the workshop “Constraint Data-
bases and their Applications” (CDB’97), volume 1191 of Lecture Notes in
Computer Science, pages 116–133. Springer-Verlag, 1997.

[21] G.M. Kuper, J. Paredaens, and L. Libkin. Constraint databases. Springer-
Verlag, 1999.

[22] J. Llibre and C. Preston. Personal communication. 2002.
[23] Y. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.
[24] A. Pillay and C Steinhorn. Definable sets in ordered structures. III.

Transactions of the American Mathematical Society, 309:469–476, 1988.
[25] C. Preston. Iterates of Maps on an Interval, volume 999 of Lecture Notes

in Mathematics. Springer-Verlag, 1983.
[26] P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2002.
[27] A. Tarski. A Decision Method for Elementary Algebra and Geometry.

University of California Press, 1951.
[28] L. van den Dries. Tame Topology and O-minimal Structures. Cambridge

University Press, 1998.

31

