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Abstract

We study queries to spatial databases, where spatial gatadatelled as semi-
algebraic sets, using the relational calculus with polyiamequalities as a basic
query language. We work with the extension of the relati@adtulus with ter-
minating transitive closures. The main result is that thisguage can express
the linearization of semi-algebraic databases. We alsw $hat the sublanguage
with linear inequalities only can express all computablerggs on semi-linear da-
tabases. As a consequence of these results, we obtain aetengds result for
topological queries on semi-algebraic databases.

1 Introduction

Spatial database systems [1, 8, 12, 24, 25, 42] are conceitleithe representation and
manipulation of data that has a geometric or topologica&rprietation. Conceptually,
spatial databases store geometric figures, which are pypsHiiite sets of points in a
real spac®"™. The framework of constraint databases [34], introduceldnyellakis,
Kuper, and Revesz [27], provides an elegant and powerfubfrfod spatial databases.
In the setting of the constraint model, a geometric figureniefly represented as a
Boolean combination of polynomial equalities and inediediover the real numbers.
Such figures are known as semi-algebraic sets. The spes@abtéigures definable by
linear polynomials are known as semi-linear sets [6].

The relational calculus or first-order logic, expanded witilynomial equalities
and inequalities and evaluated over the semi-algebrasc(g&twed as relations over
the reals) stored in the database, serves as a basic spatigllgnguage, and is de-
noted by FO+BLY. The special case of queries expressed using linear egqaalitd
inequalities is denoted by FO+HlL. Several authors have argued that the restriction
to linear polynomial constraints provides a sufficientiyngeal framework for spatial
database applications [21, 46, 47]. Indeed, in geograplfacration systems (GIS),
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which form one of the main application areas of spatial dagab, linear representa-
tions are used to model spatial objects [34, Chapter 9].tilBgigmplementations of the
constraint model, for instance the work on the system DEDALE 20, 21], are also
restricted to linear polynomial constraints. Indeed, faste constraints, the evaluation
of queries expressed in FO#L is conceptually easier and can be computed by nu-
merous efficient algorithms for geometric operations oadinfigures [38]. The com-
putational complexity of evaluating an FO#Lquery on linear constraint databases
(NC!) is also slightly lower than that of evaluating an FG#® query on polynomial
constraint databases (NC) [2, 22, 41].

Since the expressive power of the basic query languages 60+&hd FO+LN is
rather limited [34, Chapter 5 and 6], it makes sense to censitbre powerful exten-
sions.

Various extensions with recursion have been already intted and studied. Grum-
bach and Kuper [18] defined syntactic variants of DATALOGhnlihear constraints
which capture exactly the queries on linear constrainthieges in the plane, which
have PTIME and PSPACE data complexity. Kreutzer [30] defsmeeral recursive
languages capturing PTIME and PSPACE on a restricted cfdseear constraint da-
tabases. Termination properties of DATALOG with polynoheianstraints are investi-
gated by Kuijpers, Smits, and Van den Bussche [31, 33].

In this paper, we study the expressive power of FO#P(and FO+LN) extended
with the transitive closure operator TC. Transitive cl@sisra simple form of recursion
and we only apply it in a simple way, specifically, we do notlgdpC to formulas with
extra free variables (parameters), as is allowed in thedatahdefinition of transitive
closure logic [11].

In the first part of the paper, we show that when we extend th@ge&ator with
explicit stop conditions, which we denote by TCS, the lamgugO+LN+TCS is com-
putationally complete on the class of databases definablégr polynomials with
integer coefficients, oZ-linear databases for short. This means that for everygharti
computable querg), there is a formul@ such that for ever{-linear databas®, the
evaluation ofy on D terminates if and only if)(D) is defined and results i@ (D).

It remains an open problem whether FQ#&kT C (without explicit stop conditions) is
also computationally complete in this sense. We point oalt tacently, Kreutzer [29]
defined an extension of FO+HlL with a different transitive closure operator and proved
completeness on linear constraint databases as well (semthof Section 3 for more
details).

In the second part of the paper, we investigate the expeepsiwer of FO+BLY +
TCS on general polynomial constraint databases. In cdritréise linear case we have
not been able to establish the computationally completeneést, we will show that
the language is complete as far as all Boolean topologicaiigsiare concerned.

In order to prove this result we show that there is a formul&Of-PoLY+TC
(no stop conditions are needed) that expredisesirization when evaluated on an
arbitrary semi-algebraic set, it results in a semi-linear set topologically equivalent
(i.e., homeomorphic) tel. Moreover,A can be assumed to bé/alinear set.

Importantly, our linearization formula always termingtesthe sense that on any
input A, every application of the TC operator in the formula conesrgfter a finite
number of stages. In caskis bounded, the linearization formula can be sharpened so



as to produce a set that is arbitrarily close to the input sdt

The components of the linearization formula require a nunolb@ew geometric
constructions in FO+8Ly. More specifically, we introduce the uniform cone radius
decomposition of semi-algebraic sets. Using the result @rG [14] we show that
this decomposition can be defined in FGxR. Also, we define the regular decom-
position of semi-algebraic sets and use the results of Raf8®] to show that this
decomposition is expressible in FOa By .

The linearization algorithm also implies that semi-algébsets inR™ can be lin-
earized, a fact which is known already for a long time [7]. Btendard constructive
linearization (or triangulation) algorithm for semi-algaic sets, which is attributed
to Hardt [26] can be found in the standard text book on reatlagic geometry [6,
Section 9.2] and in the more recent book on algorithms inakgdbraic geometry [3,
Chapter 5].

The difference with the existing linearization algorithor §emi-algebraic sets is
that the polynomials appearing in the description of theisdgebraic sets are used
explicitly. This is not possible in our setting because wé/ aran interact with the
semi-algebraic set using queries. Because of this, ouridigois not likely to be as
efficient as the existing algorithm (we did not compute thaatxxomplexity though).
Moreover, our linearization is based on the local conicélavéour of semi-algebraic
sets and the inductive construction based on these condg begof interest to real
algebraic geometry.

Finally, we use the linearization formula to show the exgitgity in FO+PoLy +
TC of two common queries which are known not to be expressidf©+PoLy: 1) we
show that the connectivity query on polynomial constraatathases is expressible by
an always terminating formula in FOeRY+TC; 2) we show that there is a formula
in FO+PoLy+TC which always has a terminating evaluation, and thatuatak on a
given bounded semi-algebraic séto a number that is arbitrarily close to the volume
of A.

We remark that some of the above results were already desdfiio considerably
less detail) for two dimensions [16] and arbitrary dimensifL3].

This paper is organized as follows. Section 2 gives the difimdf polynomial
constraint databases and defines the standard first-ordey tainguages. Section 3
extends these languages with a transitive closure opet®¢ation 4 studies the com-
putational completeness of these extensions gives somprassibility results of the
first-order query languages. Section 5 provides geometois thecessary for the lin-
earization construction. Section 6 presents the congbruitself and discusses appli-
cations of linearization (testing connectivity and appneating the volume).

2 Preliminaries

We denote the set of real numbersRy the set of algebraic numbers with, the set
of integers withZ, and the set of natural numbers with
A semi-algebraic set ilR" is a finite union of sets definable by conditions of the



form

fl(f) = fQ(f) == fk(f) = 05 gl(f) > 0792(5) > 07 ceey ge(f) > 05
whereZ = (z1,...,z,) € R", and wheref,(Z),..., fr(Z), g1(Z), ..., ge(T) are
multi-variate polynomials in the variables, . .., x,, with integer coefficients. AZ-

linear (A-linear) set inR™ is a semi-algebraic set which can be defined in terms of
linear polynomials withinteger(algebraiq coefficients.

A database schema is finite set of relation names, each with a given arity. A
polynomial constraint database overS assigns to each € S a semi-algebraic set
SPin R¥, wherek is the arity ofS. A Z-linear (A-linear) constraint databasassigns
to eachS € S aZ-linear (A-linear) setS” in R*, wherek is the arity ofS. A k-ary
queryover S is a partial function?, that maps each databaseover S to a k-ary
relationQ(D) C R*.

First-order logic over the vocabulafy-, x, 0,1, <) expanded with the database
schemas provides a basic query language which we denote by F&¥PThe sublan-
guage of FO+BLY consisting of the formulas that do not use multiplicatiodésnoted
by FO+LIN.

Every formulap(z1,. .., zx) in FO+POLY expresses A-ary query as follows: Let
D be a database ovér, then

(p(D) = {(alv---aak) € Rk | <R,D> ': w(al,...,ak)}.

Here, by (R, D) we mean the standard structure of the ré&s+, x,0, 1, <) ex-
panded with the relations (semi-algebraic setdpin

Example 2.1. Suppose thas contains the binary relation namg&. Then theFO+
PoLy formula

p(z,y) = 3eVa'Vy (e > 0A ((z —2')* + (y —¢)* <e — S(«,y)),
expresses the query that maps any databdaswerS to the interior ofSP.

FO+PoLy queries can be effectively evaluated as follows. ket , . .., zx) be an
FO+PoLy formula over schem&, and letD be a database ovér. For everyS € S,
we represent the s&t” by some quantifier-free polynomial constraint formuia(y, ,

.., Yr), Wherek is the arity ofS, that definesS” in the sense tha&&? = {(ay, ...,
ay) € R¥ | R = ¢s(ay,...,axr)}. Now replace inp every subformula of the form
S(z1,...,2k) bys(z1,. .., z). Doing these replacements for evéhye S we obtain
a polynomial constraint formula which we denotep¥, and which defineg(D) in
the sense that(D) = {(as,...,ar) € R* | R | ¢P(ay,...,a)}.

Because first-order logic over the reals admits quantifisrieation, we can rewrite
©" in a quantifier-free form from which we can conclude thaD) is always a semi-
algebraic set. This is called the closure principle. Thésre@hout multiplication also
admit quantifier elimination, so in the same way[Jfis semi-linear ang is in FO+
LiN, then alsop(D) is semi-linear. So, there is also a closure principle for EQ+
provided we work with semi-linear databases. For more médion on FO+BLY and
FO+LIN queries we refer to the literature [34].



3 Transitive Closure Logics

Many interesting spatial database queries are not exptessithe first-order query
languages FO+®Ly and FO+LN, e.g., the query that asks whether a given set is
topologically connected is not. Therefore, it makes senseohsider extensions of
FO+PoLy (or FO+LIN) with recursion to obtain more powerful query languages. We
study one of the most simple recursion constructs in thigesdni.e., the transitive
closure operator TC.

An immediate observation is that TC cannot be added justhi&ewith its standard
mathematical semantics, without losing the importantulegrinciple.

Example 3.1. The transitive closure of the semi-algebraic §et, y) € R? | y = 2z}
equals{(x,y) € R? | 3i € N : y = 2z}, which is not a semi-algebraic set.

Therefore, we look at the TC operator quite naturally as @@imming construct
with a purely operational semantics. For example, we wiklat the transitive closure
example just mentioned simply as a non-terminating contjpmaAlmost all program-
ming languages allow the expression of non-terminatingmadations, and it is part of
the programmer’s job to avoid writing such programs.

A formula in FO+PoLY+TC is a formula built in the same way as an F@FP
formula, but with the following extra formation rule: #f(Z, ) is a formula withz,
k-tuples of variables, and ¢ arek-tuples of terms, then

[TCzq ¥1(5,1) 1)

is also a formula which has as free variables those andi. Since the only free
variables iny(Z, ¢) are those irt andy, we do not allow parameters in applications of
the TC operator, as is allowed in general transitive clofge studied in finite model
theory [11]. With parameters, it is not so clear how to preséne simple and elegant
operational semantics we define next.

The semantics of a subformula of the above form (1) evaluaeal databas® is
defined in the following operational manner:

1. Evaluate, recursively;(D).
2. Start computing the following iterative sequenc@kbfary relations:
Xo = (D)
Xiy1 = X;U{(&9) € R* | 32(X,(&,2) A Xo(Z,7))}
Stop as soon as arhas been found such that = X, ;.
3. The semantics df"Cy.; 1) (5, ) is now defined as thk-ary relationX;;.

Since every step in the above algorithm, including the wskf, = X, 1, is express-
ible in FO+RoLy, every step is effective and the only reason why the evalnatiay
not be effective is that the computation does not termiratthat case the semantics of
the formula (1) (and any other formula in which it occurs asfermula) is undefined.

The language FO+h+TC consists of all FO+8LY+TC formulas that do not use
multiplication.



Example 3.2. Let.S be a relation name of arity.. Consider the followingFO+PoLY +
TC formula:

connected = V5V ((S(5) A S(£)) — [TCzy lineconn|(s,))

—\

wherelineconn(Z, %) is the formula
VA0 S XA < IAVEHE= AT + (1= N§ — S(1))).

In Section 6.5, we will prove that theC-subformula inconnected terminates on all
linear constraint databases ovet. Note that a pair of pointgp, ¢) belongs to the
TC of lineconn(D) (with D semi-linear) if and only ify and ¢ belong to the same
connected component §f°. Hence,connected effectively expresses connectivity of
semi-linear sets.

We will sometimes want to be able to specify an explicit tevation condition on
transitive closure computations. To this end we introdineelanguage FO+®LY +
TCS.

Formulas in FO+BLY+TCS are again built in the same way as in F@tP but
with the following extra formation rule: if)(Z, %) is a formula withZ, i k-tuples of
variablesy is an FO+PLY sentence (formula without free variables) over the schema
S expanded with a speciak-ary relation nameX'; ands, ¢ arek-tuples of terms, then

[TCz% | 0](3,%) )

is also a formula which has as free variables thos@ and¢. We call o the stop
conditionof this formula.

The semantics of a subformula of the above form (2) evaluatediatabase® is
defined in the same manner as in the case without stop camditib now we stop not
only in case ari is found such thaX; = X, 1, but also in case anis found such that
(D, X;) E o, whichever case occurs first.

Example 3.3. Let S be a relation name of arity, in S, and consider th&O+PoLy +
TCSformula
p1(s,t) = [TCay S](s,) (3)

and the formula
a(s,t) = [TCyy S| X(1,8)](s,1). 4)

On the databas® over S whereS? = {(z,y) € R? | y = 2z}, the evaluation of
formula (3) does not terminate, but formula (4) evaluate$ iterations to{(s,t) €
R?|t=2sVt=4sVt==6sVt=_8s} Anillustration is given in Figure 1.

The language FO+HIN+TCS consists of all FO+®Ly+TCS formulas that do not
use multiplication.

An alternative way of controlling the computation of thenséive closure is pro-
vided by Kreutzer [29]. He allows a parametrized transitil@sure operator in which
the computation of the transitive closure can be restritiasbrtain paths (after speci-
fying certain starting points).
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Figure 1: lllustration of the difference between trangitiNosure without stop condition
(left) and with stop condition (right).

It can be easily seen that any formula in FOxttTC or FO+RPLY+TC can be
expressed by an equivalent formula in the correspondirigdarf Kreuzer [17]. More-
over, the transitive closure logic FOM+KTC (the “K” stands for “Kreutzer”) is
computationally complete o#-linear constraint databases [29]. As we will see in
the next Section, the same completeness result holds fot RGHT CS. Hence, FO+
LIN+KTC and FO+LUN+TCS are equally expressive &ilinear constraint databa-
ses. Although this similarity, the way in which queries axpressed is quite different.
Indeed, FO+UIN+KTC has an “a-priori” character becaustrting points have to be
properly selected in order to obtain terminating formula.FO+LIN+TCS, termina-
tion is forced by thestopconditions, which are of an “a-posteriori” character.

We point out that termination properties of these logics @negal polynomial con-
straint databases have already been studied [17]. Howeewemplete comparison of
these logics on polynomial constraint databases is left.ope

4 Expressivity Results

In this section, we show a general result on the expressimeipof FO+LIN+TCS.
More specifically, we prove that FO+ll+TCS is computationally complete dfr
linear constraint databases (Theorem 1). The proof casighree steps. In the first
step, we show that any computable function on the naturabeustan be simulated in
FO+LIN+TCS (Lemmal). Inthe second step, we show that there exigis@ding of
Z-linear constraint databases by finite sets of rational rersjland show that both the
encoding and the corresponding decoding are expressiBl@+iLIN+TCS (Lemma 2
and Lemma 3). This implies that FO#+TCS is computationally complete &
linear constraint databases.

For polynomial constraint databases we show that FQ¥RTCS is computa-
tionally complete for Boolean topological queries. Thiidas from the complete-
ness onZ-linear constraint databases and the existence of an BO+T C query



that, given any polynomial constraint database as inpturme aZ-linear constraint
database which is topologically equivalent to the inputthiis section we show that
this “linearization query” is not expressible in FOa@Br. The FO+RLY+TC con-
struction of the linearization query will be presented it 6 (with preparations in
Section 5.1).

4.1 Recursive Functions on the Natural Numbers

We first show that FO+IN+TCS is computationally complete on the set of natural
numbersN.

Lemma 1. For every partial computable functiofi: N* — N there exists a formula
¢¢(y) in FO+LIN+TCSover the schem& = {S}, with S a k-ary relation, such that
for any databasé overS with SP = {(n1,...,nx)}, we have thap (D) is defined

if and only if f(n1, ..., nx) is defined, and in this case; (D) = {f(n1,...,nx)}.

Proof. We show this by simulating the run of a non-determinigticounter machine
M which computes. HereM; = (Q, 0, qo,qy) WhereQ is a finite set of internal
states,qo € @ is the initial state, ang; < @ is the final (halting) state. The set
0 contains quadruples of the forf,7,s,¢'] € Q x {1,...,p} x {Z,P} x Q or
lq,i,d,¢'] € Q x{1,...,p} x {—,+} x Q. The quadruplég, i, s, q'] means that
if My is in stateq and theith counter is equal to zero (when= Z2), or positive
(whens = P), then change the state ingd. The quadruplédg, i, d, ¢'] means that
if M, is in stateg, then increase théh counter by one (whed = +) or decrease
the ith counter by one (whed = —), and change the state inj6. We assume that
Q=1{0,1,...,m —1,m}, go = 0 andgy = m. Moreover, we assume that> k and
that the initial configuration of\/; when computingf(n1, . ..,nx) hasni,...,n; as
the values of the first counters. When a halting state is reached, we assume that the
first counter containg(nq, ..., ng).

We define the first-order formuldsie;, (g, n1, - - -, 1y, ¢, 17, ..., ny,) Which de-
scribes a single step in a run of;. The formulaV., is the disjunction of the
following formulas for|q, i, s, ¢'] and|[q, i, d, ¢'] in ¢:

igiz.01 = Q@) A Q(¢') Anf=ni =0 A /\ n; =,
je{1,...;i—1,i+1,...,p}
Vigipg) = Qa) A Q(d) Anf =i >0 A /\ n; =,
je{1,...,i—1,i+1,...,p}
Vi) = Q@) A Q) Anf=ni+1A A n; = nj,
je{1,...,i—1,i+1,...,p}
\Ij[qﬂ',—,q’] =Q(g) A Q(q/) A ”; =n; —1A /\ n; = n;

JE{1, . si=1,i+1,...,p}

We use the stop conditionwhich checks whether the final state has been reached
starting form the initial state:

—

o= Hyl---Hypﬂnl---Enk(S(nl,...,nk)/\X(O,nl,...,nk,Op_k,m,yl,...,yp)).



Here,0, denotes thé-tuple (0, . .., 0).
The desired formulg(y) extractsf(ni,...,ns) from the first counter (repre-
sented by the variablg) when the stop condition is satisfied:

Jyz -+ FypIng ---Enk(S(nh---,nk)

A [ch7ﬁ;q/7ﬁ/ \I/stepl 0](0,n1, ey N Op_k, m,Y, Y2, ... ,yp)).

O

4.2 Finite Representation ofZ-linear Constraint Databases

Lemma 2. There exists an encoding @Flinear constraint databases into finite re-
lational databases over the rationals, and a correspondiegoding, which are both
expressible iFO+LIN+TCS.

Proof. It was shown by Vandeurzen et al. [46, 48] that &linear set inR"™ has a fi-
nite geometric representation by means of a finite set @eonsisting of(n + 1)2-ary
tuples. Basically, this geometric representation costtie projective coordinatesf
a complete triangulation of thé-linear set. Moreover, this representation can be ex-
pressed in FO+8LY. Vandeurzen et al. [46, 48] actually show that this reprigam
can be expressed in an extension of FQ+with some limited amount of multiplica-
tive power. Also, the corresponding decoding, which coraptiteZ-linear constraint
database given its finite geometric representation, canfresgsed in this logic.

Hence, the lemma follows, if we can show that FONETCS can perform this
limited amount of multiplication.

More specifically, we have to be able to express the mulagbn of rationalsy;

from a finite setS = {qu, ..., ¢} with a real number, i.e., gz fori = 1,...,m.
First, we express how integens andd; can be computed in FO+k+TCS such that
g =7 fori=1,...,m.

We assume that all rational numbers in the $etre positive. The case of all neg-
ative rational numbers is completely analogous. If bothtp@sand negative rational
numbers occur in the set, we separate the positive from th&tive and treat both sets
separately.

Consider the following enumeratiamum of pairs of natural numbergnum is a
mapping fromN x N to N x N defined by

- (i+1,j—1) ifj>0;
enum : (i,7) — ] L
(0,i+1) if j=0.
For every paif(p, ) € N x N there clearly exist¢ € N, such thatenum”(0,0) =
(p,q). We shall interpre{p, ¢) as the rational numbeg in caseq # 0, and as)
otherwise.

1Projective coordinates are used to deal with unboundedases and the unbounded simplices in their
triangulation.



Given a rational numbey and two natural numbers andd, we can test in FO+
LIN+TCS whether; = Z. This test can be performed as follows. lfetc : R* — R?
be the mapping defined as

fmc : (Qajvv) = (qv.] - 1,U+q)

Thenforagiven € Q, andn, d € N we have thag = % ifand only iffmcd(q, d,0) =
(¢,0,n).

To find the numerator and denominator of a rational nungbgre will enumerate
all pairs of natural numbers:, d) = enum”(0,0), k = 0,1, ... and test for each pair
whetherfrac®(q,d,0) = (g,0,n). For this, we combinenum andfrac into a partial
mappingtryall : R® — RS defined as

o {(q,i,j,u',v') with (g, u',v") = frac(q,u,v), if u > 1,
(¢, 1,4, u,0) — MRS e R
(q,7,7',7,0) with (¢, j") = enum(i, j), if u=0.
We claim thaty = % for n,d € N if and only if tryall*(q,0,0,0,0) = (¢,n,d,0,n).
Indeed, starting fronfg, 0, 0, 0, 0) the iterates ofryall behave as follows. Suppose
we are at thekth iterate. If the third coordinate ofryall*(q,0,0,0,0) is zero, a
new pair of natural numbers is generated (usingdhem mapping). Assume that
tryall**1(¢,0,0,0,0) = (q,1,4,7,0) and suppose that > 0 (otherwise we jump
to a new pair of natural numbers immediately). Then, usirgyfituc mapping we
end up afterj more iterations atryall**7+1(¢,0,0,0,0) = tryall’(q,i,j,,0) =
(¢,1,7,0,7q) (frac reduces the 4th coordinate with one in each iteration). huie
if i = jq, then we have found a numeratoand denominatos of ¢. In any case, we
move on tatryall*+2(q,0,0,0,0) = (¢,7, 4, 4',0) where(i’, j') is the next pair of
natural numbers, and the above process starts again. Wwadlyjshe iterates ofryall
visit every pair of natural numbers starting frdm 0, 0, 0, 0); between two consecu-
tive pairs it is checked whether the first pair is a numerdedminator pair fog. The
mappingtryall can clearly be expressed by an FOwlformula,

. . Y A / /
Q/Jtryall(%%]auavaq ;0,0 ,U,U )a

expressing thatryall(q, ¢, 7, u,v) = (¢',i',j', ', v").
LetW(q,i,7,u,v,q,i, 7, v v") be the formula:

g=0AiZ0AF>0AT 20N 20 Au>0Aqg=¢
A wtryall(% ia ja u, v, q/a ila jl7 uI7 U/)'

Given a finite set of rational numbefs= {q1, ..., ¢}, we obtain a denominator
and numerator for all these numbers by taking the trangitosure

[ch,i,j-,u,v;q/-,i/-,j’,u’,v’ 4 U](gvﬂa (5)
wheres andi are5-tuples of variables, and where

o =Vq(S(q) — InIdX (¢,0,0,0,0,q,n,d,0,n)).

10



This condition stops the computation of the transitive ectef¥ when for each ratio-
nal numbelg in S, there exists & such thatryall*(q,0,0,0,0) = (q,n,d,0,n), or

in other words, when a pair of natural numbénrsd) has been encountered such that
q = 5. If multiple pairs(n, d) represent the same rational numbesinwve select the
pair with the smallest value of. Thus, we obtain for eache S a unique denominator
and numerator.

We are now ready to show how to express the multiplicatioratibnal numbers
from a finite setS with a real number. By what we just showed, we may assumeltbat t
rational numbers are represented as numerator/denompzats, i.e., we may assume
thatS = {(nl, dl), ey (nm, dm)}

Let max be the largest natural number occurringsinWe first compute any multi-
plication of the formrn with » € R, andn € {0, 1, ..., max}.

For this, we define the following formulzat mul t (z,y, z, 2', v/, 2’):

r=2' ANy =y—1NZ =z+4+2
A Fmax(In(S(max,n) V S(n, max))
AVRYA(S(n,d) — n < max Ad < max) A0 < y Ay < max).

Then the formula
mul t (a,b,¢) = [TCyy 204y, NAt mul t](a,b,0,a,0,c)

holds if and only ifab = ¢, fora € R, b € N andb < max. In this way, we can
retrieve any multiple up tamax of any real number.

Finally, we definerat mul t (z,y,n,d) = Ju(mul t (z,d,u) A mul t (y,n,u)).
This formula holds fofz, y, n, d) if and only if 2 = yq with z,y € R, andg = % with
(n,d) € S. O

4.3 Natural Number Representation

Lemma 3. There exists an encoding of finite relations over the rationenbers into
single natural numbers, and a corresponding decoding, waie both expressible in
FO+LIN+TCS.

Proof. We assume that the relation to be encoded involves posiditienal num-
bers only. The general case can be dealt with by splittingréffegtion into “sign-
homogeneous” pieces, dealing with each piece separatalyeacoding the tuple of
natural numbers obtained for each piece again into a sirajlea number.

In the proof of Lemma 2, we have seen that we can go in FQ+LCS from ratio-
nal numbers (out of a finite set) to denominator/numeratos@ad back. Hence, we
can actually assume that the relation to be encoded invplegisive natural numbers
only.

We will encode this in two steps. In the first step, we encodaitefrelation over
N into a finite subset oN. In the second step, we encode a finite subs@{ @fito a
single natural number. Since queries can be composed, viseeathese two encoding
steps (and their corresponding decoding steps) separately

11



Encoding, first step A finite k-ary relations over N can be encoded into a finite
subsetnc, (s) of N:

k
Ency(s) = {[ [ p}" | (na, ..., k) € s}.
=1
Here,p; denotes théth prime number.

Now let S be ak-ary relation name. We will construct an FOm+TC formulae;
over{S} such that for any databagewhereS?” is finite and involves natural numbers
only, ¢; (D) = Enc; (SP). For notational simplicity, we give the construction onty f
the casé: = 2; the general case is analogous.

Consider the following formule (z1, z2, y, 21, 25, y'):

3’&13U2(S(U1,U2)/\$1 <uyp ANxe < ’U,g)
AN(z1>0AZ, =21 —1AZh =20 Ny = 2y)
V(1 =0Az2>0Az] =21 Aah=xz2—1AY =3y)).

Here,y’ = 2y is an abbreviation fog’ = y + y, and similarly fory’ = 3y; note that 2
and 3 are the first two prime numbers.

We now define the mappingx1, 22, y) = (2}, 2%, y) ifand only if (a1, z2, y, 27,
xh,y'). Aslong ask < 1, we have thap” (z1, 72, y) = (z1 — k, z2,y2"). As soon as
k > x1,p*(z1, 72, y) is undefined. Ik = z;, we can compute further iterates and have
thatp*(z1, 20, y) = p*(0, 20 — £,y2713") as long ag < z». lterates become again
undefined in casé> . Finally, if £ = x5 thenp*™*(z1, 2o, y) = (0,0,42%13%2) and
we obtain the encoding fdrr;, z2) for y = 1. No further iterates are defined starting
from (0,0, y").

We will compute the iterates gfusing transitive closure and check for edeh, n»)
whether there existsfasuch thatp® (n, ns, 1) = (0,0,%). More specifically, the de-
sired formulae (y) is equal to

3n13n2 (S(nla n2) A [Tcxl,xQ,y;m’l,x’z,y’ 1/1](711, na, 17 0, 07 y))

The discussion above shows that this formula gives the coareswer. The condi-
tion S(ui,u2) A x1 < ug A zo < us in ¢ bounds the values af; andz, and hence
ensures that the transitive closure computation alwaysitertes.

Decoding, firststep Let.S be a unary relation name. We will constructan FONETC
formulad; over{S} such that for any databagewhereS” equalsknc; (r) for some
r, we have), (D) = r. As above we keep with the case= 2.

Consider now the following formule(x1, x2, y, ), 25, y'):

1 >0A2e > 0Ny > 1A ((7) =21 + 1 AT =20 Ny = 2y)
Vi =z Aah=x0+ 1Ay =3y) AJu(S(u) Ay <u)

A similar analysis as fofnc; shows that when we defigéz;, zo2,y) = (2, 25, y")
if and only if ¢)(zy1, 2o, y, 2}, 24, y'), the iterates of satisfyq*(0,0,1) = (n1, na, u)
if and only if u = 2132,

12



Then the desired formul@ (ny, n2) is
Fu(S(u) A [TCwl,wz,y;I;,w;,y/ ¥](0,0,1,n1,n2,u)).

The conditior5u(S(u) Ay’ < u) in ¢ bounds the value af’ and hence ensures the
termination of the computation of the transitive closure.

Encoding, second step A finite ordered subset = {n,...,n,} of N can be en-
coded into a single natural numbencsy(s) := Hle it

Let S be a unary relation name. We will construct an FONETCS formulaes
over {S} such that for any databade where S” is a finite subset olN, we have
€2(D) = {Ency(SP)}.

We will use the following auxiliary FO+IN+TCS formulas; we will explain how
to get them later (except farin andmax which are easy to get).

e Formulascard, min, andmax over{S}, with the property that for anyp where
SP is finite of cardinality/: card(D) = {¢}; min(D) = {min S”}; and
max(D) = {max SP}.

e Formulasprime, mult, andnat, over{M }, with M a unary relation name, with
the property that for any whereM? = {m} is a natural number singleton:

— prime(D) = {pm};
- mult(D) = {(z,y,2) € R*| 2y = z andy € N andy < m}; and
—nat(D) ={0,1,2,...,m}.

e Formulapow over{M, M}, with M, M, unary relation names, with the prop-
erty that for anyD where M P = {m} andMP = {m,} are natural number
singletons:pow(D) = {(z,y,2) ER3 |2V = 2 & r e N&z<m &y €

Using composition, we also obtain:
e maxprime = prime(card), definingp, where/ is the cardinality ofS;
e nat’ = nat(maxprime), defining{0,1,2,...,p¢}; and

e pow’ = pow(maxprime,max), defining exponentiation of natural numbets,
by natural numbers. max S.

We furthermore construct the following formulas:

e mult’, obtained frommult by replacing each occurrence of a subformuféu)

by
IpeIm(maxprime(py) A max(m) A pow (pe, m,u))

This formula defines multiplication by natural numbergax 5.

e isprime(p), which definep1, po, ..., pe}:

nat’(p) Ap > 1 A—JuJv(nat’(u) Anat’(v) Au > 1Av > 1Amult (u,v,p)).

13



e succ(z,z), which specifies the next element aftein .S (or max(S) + 1) and
is given by the formula

(-max(z) A S(x')Aw <’
A=F2"(S(E")ANe < 2" <2'))V (max(z) A’ =2+ 1).

e next(p,p’), which specifies the next prime number greater thand smaller or
equal tharp, (or p, + 1) and is given by the formula

(-maxprime(p) A isprime(p’) Ap <p’
A —3p” (isprime(p”) Ap < p” < p')) V (maxprime(p) Ap' = p + 1).
We need to compute the prodtﬁ!f:lp?i. Consider now the following formula
Uz, p,y, 2,0 y):
S(x) A succ(z,z’) Anext(p,p’) Ay (pow' (p, z,y") Amult'(y,y",y)).

Note that the variablegandy’ are related by = p®y. In order to find the desired
product we have to compute the transitive closure>and check which/-value is
in the transitive closure witkin;,2,1) and(m + 1,p, + 1,3"). More explicitly, the
desired formulaz(n) is

InyImIpe(min(ng) A max(m) A maxprime(p)
N TCopyiar Y01, 2,1, m+ 1,pe + 1,1)).

It remains to show how the auxiliary formulas can be conséic Formulacard(¢)
can be written as

InyIm(min(ny) A max(m)
A[TCy er .0 S(x) A succ(z, ') A = c+ 1](n1,0,m + 1,7)),

wheresucc(z, 2’) is as above.

From the computationally completeness of FONETCS (Lemma 1), we derive
directly the formulgprime.

For formulamult, consider the following formula (x, y, u, 2’ y', u'):

Yd=zANy =y—1Ad =u+zAN0<yAIm(Mm)Ay <m)

Thenmult(z,y, 2) iS [TCy y uw .y v ¥|(2,y,0, 2,0, 2).
Formulanat(n) can be written as

n=0V[TCpyu (0 <z AIM(M(m)Az<m)Az' =z+1)](0,n).
Finally, for formulapow, consider the following formule (z, u, v; 2/, u’, v'):

nat(z) AIm(M(m) Az <m)A0<uAIms
(Ma(ma2) ANu < mg) A/ =u+1Amult(v,z,0").

Thenpow(z,y,2)is(y =0A z2=1) V [TCy uviwr,w v V) (2,0,1, 2,9, 2).
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Decoding, second step Let £/ be a unary relation name. We will construct an FO+
LIN+TCS formulas, over{ E} such that for any databagewhereE” is a singleton
{e} such that equalsEncs(s) for somes, we haveis (D) = s.

By Lemma 1, we have formulasighprime andhighexp over{E} such that for
any D as above, we haveighprime(D) = {p,} andhighexp(D) = {m}, wherep,
is the highest prime factor ef andm is the highest exponent of a prime number in the
prime factorization of.. Composing the formulpow of above with these two formu-
las, we obtain a formula defining exponentiation of natutahbers< p, by natural
numbers< m, which we again denote kpow’. Also, analogously to the way we con-
structed the formulasprime of above, we obtain a formula definifg:, po, .. ., pe},
which we again denote bysprime.

We need a formulalivisor that finds all divisors of a natural number. First,
consider the following formula (u, v, v, v'):

0<uATe(E(e)N\u<e)Av>1Av =vAu =u—wv
and letdivisor(d) be the formula
Je(E(e) A [TCuvu v ¥](e, d,0,d)).
Then, the desired formuta(n) is
Ip(isprime(p) A Jd(pow (p,n,d) A divisor(d))
A =3n'3d (pow (p,n’,d") A divisor(d') An' > n)).

O

4.4 Completeness Result foZ-linear Constraint Databases

Theorem 1. For every partially computable query on Z-linear constraint databa-
ses, there exists @O+LIN+TCSformulap such that for each databade, ¢(D) is
defined if and only if(D) is, and in this case(D) andQ (D) are equal.

Proof. The proof follows directly from the lemmas above, as is ilated in the fol-
lowing diagram. LeD be aZ-linear constraint database overa schéma {51, ..., S;},
and@ an arbitrary partially computable query.

D £ QD)
(Lemma Z)l T(Lemma 2)
{S1,fins -, Sk fin} Stin
(Lemma 3)l T(Lemma 3)
k fo
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Figure 2: LetA be the circle (dark grey). Left: an algebrai@pproximation; Middle:
a rationalk-approximation; Right: an algebraic linearization (right

First, eachi = 1,...,k, SiD is encoded in a finite relations; fn, which in its turn is
encoded in a natural numbey. In this way, ak-tuple(nq,...,ny) is obtained. Since
@ is computable, there exists a partial computable funcfigrwhich implements)
on these encodings. Let (D) be the result of g on input(n,, . .., nx). Thisinteger
is decoded into a finite relatio$y, which in its turn is decoded in A-linear constraint
databasé)’. This database is then the result of the qu@rgn the input database,
i.e., D' =Q(D). O

4.5 Implications for Polynomial Constraint Databases

For polynomial constraint databases we cannot prove cdergss and have to settle
for less. Although finite representations of polynomial stoaint databases exist, it is
not known whether a finite encoding can be expressed in EQ¥PTCS.

Let A be a semi-algebraic setl". An algebraic linearizatiorof A is anA-linear
setA in R", such thatd andA are topologically equivalent. Aational linearization
of A is aZ-linear setA 4 in R™, such thatd and A, are topologically equivalent.

For7 € R", we define||Z|| = /22 + --- + 2. A linearization approximates the
setA also from a metric point of view if the following condition satisfied: for every
pointin A, |7 — h(p)|| < e for a fixede > 0, wereh is a homeomorphism dR”,
such thati(A) = A. If this condition is satisfied for a (rational) linearizati, we call
this linearization grational) e-approximatiorof the setd. We will denote rational and
algebraic=-approximations respectively s - and A..

Example 4.1. Consider the planar semi-algebraic sét= {(x,y) € R? | 22 + % =

2}. Lete = % In Figure 2, we have drawn an algebraicapproximationA.

{(z,y) € R? | max{|z|, |y|} = V2}, a rationalg—approximationﬁ,at,8 = {(z,y)
R? | max{|z|,|y|} = 1}, and a linearizationA which is not are-approximation.

m

Algebraic and rational linearizations exist for any seigiearaic set. This is no
longer true fors-approximations, where the existence is only guaranteeddonded
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semi-algebraic sets. Consider, e.g., the semi-algebedi(s,y) € R? | y = 2%}.
It is easy to see that this parabola cannot be approximatedfinyte number of line
segments, and hence haszapproximation for any > 0.

Let S = {S}, with S an n-ary relation name. We define for any polynomial
constraint database overS, analgebraic (rational) linearization quer@iin (Qratiin),
as a query such thélra( D) (Qrariin( D)) is an algebraic (rational) linearization 6.

Similarly, for anys > 0 and any polynomial constraint databds@versS such that
SP is a bounded semi-algebraic set, we definalgabraic (rational)e-approximation
queryQe. (Qrate), as a query such th&@.(D) (Qrai (D)) is an algebraic (rationab-
approximation of5?,

It is an open question whether some algebraic or rationahlization query can
be expressed in FOtRyY. With respect to the-approximation query, neither the
algebraic, nor the rational version can be expressed in QP

Proposition 1. Lete > 0 be a real number. Ne-approximation query is expressible
in FO+PoLy.

Proof. LetS = {S}, with S a binary relation name. Ld? be a polynomial constraint
database ove$. Consider the following FO+®&LyY formulas ovess:

e Aformulacircle such that for any databageoverS, circle(D) is either the
circle through the points a$?, if S” consists of three non-collinear points, or
circle(D) = (. This formula is easily seen to be in FOaFEY.

e Aformulacornerpointssuch thatfor any databageoverS, corner-points(D)
is either the set of points in whic$” is not locally a straight line, in casg” is
semi-linear, okornerpoints(D) = (), otherwise. By a result of Vandeurzen et
al. [10], itis expressible in FO+®Ly whether a semi-algebraic set is semi-linear.
Hence,cornerpoints is expressible in FO+®LY.

Assume that the querg. (and similarly,Qratc) is expressible in FO+®Ly. Let
¢- appr ox be the formula which expressés. Then the formula

¢ = cornerpoints(e- appr ox(circle))

is also in FO+PLY. However, the number of points in(D), |¢(D)|, can be made
arbitrarily large by choosing such thatS” consist of three points far enough apart.
This contradicts the Dichotomy Theorem of Benedikt and Likj4], which guarantees
the existence of a polynomia}, such thaty(D)| < p,(|SP|) = p,(3) in casep(D)|

is finite. O

In contrast to the negative expressiveness result in Pitopo, we will prove that
all kinds of linearizations are expressible in FG#RP+TC. Indeed, in Section 6 we
show that there exists

e an FO+RPLY+TC expressible algebraic linearization query (Theorem 7)

e an FO+RPLY+TC expressible rational linearization query (Theoreny 10)

17



e an FO+RPLY+TC expressible algebraic-approximation query (Theorem 8);
and

e an FO+RPLY+TC expressible rationalapproximation query (Theorem 11).

We shall denote the FO€RY+TC formula which expresses the rational lineariza-
tionbyrat | i n. Let@ be a partially computable Boolean topological query. SiRce
is partially computable, it is in particular partially conpble onZ-linear constraint
databases, and therefore, by Theorem 1 expressible ondh&sgases by a formula
g in FO+LIN+TCS.

Because() is topological,Q(D) is true if and only ifpg(ratlin(D)) is true.
Hence, we have proven the following theorem:

Theorem 2. For every partially computable Boolean topological qu&pyon poly-
nomial constraint databases, there existsFD+PoLY+TCSformulay such that for
each databas®, ¢(D) is defined if and only if)(D) is defined, and in this casg(D)
andQ@(D) are equal.

5 Geometrical Properties of Semi-algebraic Sets

In this section, we discuss a number of topological propeitif spatial databases that
can be expressed in first-order logic. They are used in thetagstion of the lineariza-
tion of polynomial constraint databases in the next section

We will use the following notation: Let C R", the closure of4 is denoted by
cl(A), andint (A) indicates the interior ofi. We denotel(A) —int(A) (the boundary
of A) with 0 A.

5.1 The Cone Radius

Let A be a semi-algebraic set R, andp be a point inR™. We define theone with
baseA and topp as the union of all closed line segments betwgeamd points inA.
Formally, this is the seftb + (1 — )7 | b € A,0 < ¢t < 1} and we denote this set by
Cone(A4, p).

For a pointy’ € R", ande > 0, we denote the closed ball centeregratith radius
e by B™(p, €), and denote the sphere centered with radiuss by S™ (7, €).

The local conic structure of semi-algebraic sets charaetethe local topology of
semi-algebraic sets:

Theorem 3 (Local Conic Structure, Theorem 9.3.6,[6])et A be a semi-algebraic
set inR™ and p’ be a point ofcl(A). Then there is a real number > 0 such that
intersectionB™ (5, €) N A is homeomorphic to the s€bne(S" 1 (7, e)N 4, p), in case
7 € A, and homeomorphic t6one(S™ (7, ) N A, p) — {p}, otherwise.

Before we can state a “box” version of this theorem, we needdtowing defini-
tions: Consider &n-tuple B = (ay,b1,...,an,b,) € R* with a; < b; for eachi.
One can associate with each such tupleaary relation| B| in R™:

|B| :={(z1,....2n) € R" | (a1 < z1 <b1) A+ A(an <z < Dp)}-
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AnN|B] Cond AN o|B|,p)

Figure 3: The local conic structure of semi-algebraic sets.

We call B aboxin R™ and|B| is thegeometric realization oB. Thedimensiorof a
box is the number of pair&:;, b;) with a; # b;. Thediameterof a box B, diamB),
equals(>_1, (b; — a;)?)Y/2. Thecenterof B is the point((a; + b1)/2, ..., (a, +
bn)/2).

Theorem 4([14]). Let A be a semi-algebraic set R™ andp a point ofcl(A4). Then
there is a real number > 0 such that for any:-dimensional box3 in R™ such that

1. pe int(|B|); and
2. |B|g(p1_€’p1+€)X"'X(pn_gapn+5)y

we have that the intersectiofi N | B| is homeomorphic to the set Canen J| B, p),
in casep € A, and homeomorphic to the set Céren 0| B|, p) — {p}, otherwise.

Any positive real number as in Theorem 4 is called@ne radiuof A in p’(See
Figure 3).

Let S = {S}, with S ann-ary relation name. We define tle®ne radius query
Qradius @S @ query which maps any polynomial constraint databasger S to a set
of pairs(p,7) € R™ x R such that for every € cl(S?) there exists at least one pair
(P,7) € Qradius D), and for everyp, r) € Qradiud D), 7 is a cone radius of? in .

Theorem 5([14]). The cone radius query defined above is expressibORPOLY .

The FO+RLY formula overS, constructed in [14] and whose existence is referred
to in Theorem 5 will be denoted byadius. The exact properties of this formula
are not important (except for the fact that for each pgiittassigns an open interval
(0,7) C R, such that for eacht’ € (0,r), v’ is a cone radius) until the proof of
Claim 6.1. There we have to go back to the constructiaredfi us for the cone radius
query as presented in [14].

As observed above, for each pojnt

{r"| (p,r") e radi us(D)} = (0,r).

Definer to be the cone radius/2. Moreover, leuni quer adi us be the FO+BLY
formula oversS, such that for each poipte c1(SP), (7, rz) isinuni quer adi us(D).
Basically,uni quer adi us assigns a unique cone radius to each point.
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Figure 4: Example of a semi-algebraic set which does not hawgform cone radius.

For a given semi-algebraic s¢tin R", we now define the semi-algebraic mapging
~Yeonea fromcl(A) to R which maps each point € cl(A) to the unique cone radius
rz € R given byuni quer adi us(D), whereS? = A.

5.2 The Uniform Cone Radius Decomposition

Although every point of a semi-algebraic set has a cone saghich is strictly greater
than zero (Theorem 4), we are now interested in findinmiform cone radiugor a
semi-algebraic set. We define a uniform cone radius of a ségebraic sed C R"
as a real number, > 0 such that 4 is a cone radius ofl in all points of A. For
any X C A C R", we define a uniform cone radius &f with respect toA, as a real
numbere > 0 such that is a cone radius ofl in all points of X .

A first observation is that a uniform cone radius of a semehtgic set does not
always exist.

Example 5.1. Consider the set shown in Figure 4. We have drawn the maxiored ¢
radius around the pointg}, ps, p3, P4, andps. Itis clear that the closer these points
are to the pointp, the smaller their maximal cone radius is. Because we caremak
the maximal cone radius arbitrarily small by taking poinery close top, we may
conclude that the set shown in this figure has no uniform cadais.

Let A be a semi-algebraic setR". We define the-neighborhoodf A as
A ={ZcR"|3GGEAN|T—7|| <e)}.

We will frequently use the following notation: Léfy, ..., U,, be pairwise disjoint
semi-algebraic subsets of(A4), which satisfy the following condition: For any.-
tuple (e, . .., &, ) Of positive real numbers, and foe= 0, . .., m, the sets

m

inf{yconea (Ui — |J U;")} > 0. (6)
j=i+1

2A mapping is called semi-algebraic if its graph is a semehtgic set.
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Note that these sets have a uniform cone radius with respett iHence, we say that
the setd)y, . .., U,, form auniform cone radius collectioaf c1(A).
When the set#y, ..., U, of a uniform cone radius collection of form a decom-
position ofcl(A),i.e.,
c(A)=UpU---UUp,

then we cally, . . ., U,,, auniform cone radius decomposition af( A).
We now show how to construct such a uniform cone radius deositipn ofcl(A).
For any closed subséf C cl(A), we define

Tne(X) :={p' € X | Yeonea | x is NOt continuous ip}. (7)

Let Ap := cl(A), and letA; ;1 := cl(Tne(4A;)) N A;. We define fork = 0,1, .. ., the
sets
Cr = Ag — Ag41. (8)

By taking f = vconea in the following Lemma we obtain thdt,.(X) is semi-
algebraic andlim (T'ne(X)) < dim X.

Lemma 4. For each semi-algebraic set in R™ and each semi-algebraic function
f: X — R, thesef’(f) = {p'e X | f(p)is notcontinuous ip} is semi-algebraic
anddim(T'(f)) < dim X.

Proof. The set

N(f)={peR"| (e >0)(Vé >0)I7€ R"
(JE XﬂBn(ﬁ76) A |f(17) - f((j)| > 5)}7

is clearly semi-algebraic. This proves the first assertion.

We prove the second assertion by contradiction.d_et dim X and suppose that
dim(T'(f)) = d. Then there exists a semi-algebraic déliC T'(f) of dimensiond.
By the Cell Decomposition Theorem of semi-algebraic seds Theorem 2.11] there
exists a semi-algebraic cell decompositiordinto a finite number of semi-algebraic
cells,

V=Wu---UVaUVep U---UV,,

with dim(V;) = dfori =1,...,kanddim(V;) < dforj =k +1,...,¢, such that

flv, is continuous forevery=1, ..., (. 9)
SinceV; C V has dimension fori = 1,...,k, V; is open inV, andV; is also open
in X fori=1,..., k. From (9) we deduce that eathfori =1,..., kisincluded in
X —T'(f) which is impossible sinc& C I'(f). Hencedim(I'(f)) < d. O

An immediate consequence of this lemma is that fios n + 1 on, theC;’s are
all empty. Let us denote by: the latest index such thét,, is nonempty. Som < n.
We now prove that for any tupley, . . ., €,,,) of positive real numbers, the sets

m
ci— |J ¢, fori=0,1,....m,
j=it1
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ps L b3

Figure 5: The pointg1, ps, p3, ps4, andps form the partC; which hass; as uniform
cone radius. As can be seen, theGgt= A — C}' has a uniform cone radius.

have a uniform cone radius. Sin€g, = A,, is closed,ycone 4(Cir) is also closed
and therefore has a minimum which is strictly positive. Heg,, has a uniform cone

radius. For > 0 there exists an < min{ey, ..., ey} such that
Ci— |J ¢y cz:=20-A],. (10)
j=i+1

The setZ is closed and the restrictionone 4 | Z is continuous. Henceyone a(Z) is
closed inR, and has a minimum which is strictly positive. We may coneltihat”
has a uniform cone radius, and by (10) so bas- U}”:Z.H Cj.j. So,Cy,...,Cphpisa
uniform cone radius decomposition@f A).

Example 5.2. In Figure 5, we have shown the uniform cone radius decormniposiff
the set depicted in Figure 4.

LetS = {S}, with S ann-ary relation name. We define the+ 1 queriesynform,
such that for any polynomial constraint databaseversS,

aniform(D> — Ck,

fork =0,1,...,n,with Cy, ..., C, being the uniform cone radius decomposition of
cl(SP).

Becauseyconesr €qualsuni quer adi us(D), and by Theorem 5 the formula
uni quer adi us is in FO+PRoLy, the following lemma is immediate.

Lemma 5. The querie®) x-uniform, ¥ = 0, 1, ..., n are expressible ifFO+POLY.

5.3 The Regular Decomposition

In this section, we construct a decomposition of semi-algjietsets such that a certain
regularity condition is satisfied on each part of the decasitfmm. In order to define
this regularity condition, we need to define the tangentspaa semi-algebraic set in
a point. The following definitions are taken from Rannou [39]
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Let A be a semi-algebraic setR™. Thesecants limit sedf A in a pointp € A, is
defined as the set

limsec; A := ) cl({A(if — #) € R" | A € Randi, 7 € AN B"(5,n)}).
n>0

If limsecy A is a vector space, then we define thagent space ofl in pasTy A :=
P + limsec; A. If limsecy A is not a vector space, then the tangent spacé of p'is
undefined.

LetS = {S}, with S ann-ary relation name. We define the qu&pangentas the
query such that for any polynomial constraint databasevers,

Qtangen{ D) := {(#,7) € SP x R" | Tz S exists inZ andv € Tz SP}.
Lemma 6. The queryQiangentis expressible ifFO+PoLy.

Proof. It is shown by Rannou [39, Lemma 2] that the definition of thease limit set

of a set in a point can be translated into a first-order fornouker the reals. Since it
is straightforward to check in FO€RY whether a secant limit set is a vector space
(i.e., we need to check whether for &Ji in a secant limit set, also the sug- 7 'is an
element of this secant limit set), the lemma is immediate. O

The setd isregular ingif and only if Tz A exists and there exist a neighborhdod
of p'such that the orthogonal projection.dn U onT7 A is bijective. A set isegular
if it is regular in all its points.

A finite number of pairwise disjoint regular seig, ..., Ry is called aregular
decompositionofl if A= Ry U---U Ry.

We now show that every semi-algebraic dehas a regular decomposition.

We denote the set of points whedés regular and where the local dimensionbof
is k by Regr(A). Note thatRegi (A) is either empty orlim Regy(A) = k.

Define inductively fork = n,n — 1,...,0, the sets
Ry :=Rege(A— | Ry). (11)
j=k+1

These sets are pairwise disjoint and form a decompositioh o&.,
A=R,UR,_1U---URj. (12)

Note thatn + 1 parts are really sufficient, because for any semi-algelseti& C R"
of dimensiond, X — Reg4(X) has a strictly lower dimension thaxi [45].

Moreover, by (11) eaclRy, is regular and hence, we define tiegular decomposi-
tion of A as then + 1 setsRy, ..., R,.

Example 5.3. In Figure 6, we have illustrated the three possible cadgsA does not
exist, Ty A and T A exist, butA is not regular ing'and 7, and finally, A is regular
in §. In Figure 7, we have drawn an example of the regular decoitipn®f a three-
dimensional set iR >.
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Figure 6: The snowmad has no tangent spacejih A has a tangent spacedrandr,
but is not regular in these points, adds regular ins.

o000 O o o
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O O O O
R3 Ry Ry Ry

Figure 7: The three-dimensional sdtof Figure 6 is decomposed into four parts
Ry,R1,R2, andR3 according to the construction of the regular decomposition
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LetS = {S}, with S ann-ary relation name. We define the+ 1 queriesQ® as
the queries such that for every polynomial constraint degab,

(D) = Ry,

fork =0,...,n, with Ry, ..., R, the regular decomposition &f”.
It was proved by Rannou [39, Proposition 2] that checkingtivbiea semi-algebraic
set is regular in a point is first-order expressible. Heneaixt lemma:

Lemma 7. The querie®)y.req, kK = 0, 1, ..., n are expressible iffO+PoLY.

Regular decompositions of semi-linear sets are fully &teéy Dumortier et al. [10,
46]. These authors showed that on semi-linear databasesthl queriesQ.reg are
already expressible in FO+ilt. There is however a great difference. Indeed, in the
semi-algebraic case, regularity implies that the set &' esmooth algebraic variety,
while in the semi-linear case, regularity implies that teeis aC°°-smooth algebraic
variety. One could ask if it possible to define a regularitydition in first-order logic,
such that it also induceS>°-smoothness of semi-algebraic sets, but this is impossi-
ble [49].

However, we still can generalize the regular decompostitefined above t6'*-
regular decompositions by demandifi§-smoothness instead 6f' -smoothness (reg-
ularity). Using again results from Rannou [39, Proposit8nve have first-order ex-
pressibility of the corresponding query in this case too.

An interesting question is which extensions of F@tl can expres§’>°-regular
decompositions. A useful observation in this context mightthat for every semi-
algebraic set there exists a natural numhiesuch that for allk > K, a C*-regular
decomposition is already@>-regular decomposition. Unfortunately, it is not known
how to find K for a given semi-algebraic set [40] and we might have to cam@ti-
regular decompositions for increasing values ahtil two consecutive decompositions
are identical. This indicates that recursion is neededicomputation of*°-regular
decompositions. We leave open whether the recursion in EQ¥+PTC or FO+RoLY +
TCS is sufficient for this purpose.

5.4 Transversality

In computational geometry [9], a convenient assumptiohéshypothesis of “general
position”, which dispenses with the detailed consideratid special cases. In the
description of our linearization algorithm in Section 6, weuld like to assume this
hypothesis. However, we need to make precise what we wilhrbgayeneral position,
and see if this may indeed be assumed.

Let A and B be two regular semi-algebraic setsRi*. From differential topol-
ogy [23], we recall thatd and B are said tantersect transversallatp € A N B,
if 3

TsA+T;B=R" (13)

3Let U andV be two subspaces of a vector spatethen thesumU + V is the set of all vectorg + @,
whereu € U andv € V. Besides[J + V is a subspace ok .
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Figure 8: Curves iR2.
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transversal not transversal

transversal not transversal

Figure 9: Curves and surfacesiy.

The setsA and B arein general positiorif they intersect transversally in every point
of AN B. We denote this byd th B. This is illustrated in Figure 8 and Figure 9
where some examples of transversal and non-transversaéations irR? andR?
are depicted.

Let A = {Ay,...,A,} andB = {By,..., B} be finite sets of regular semi-
algebraic sets ilR" such thatd; N A; = 0 andB; N B; = () for ¢ # j. We say thatd
andB are in general position ift; andB; are in general position for eveiy=1,...,n
and everyj = 1,..., m. We denote this byl h 5.

LetS = {5, S2}, with S; andS, two n-ary relation names. We define the Boolean
queryQ@s, such that for every polynomial constraint databBseverS,

Qn(D) = trueif and only if SP and S are regular and? m SP.

Condition (13) can be readily expressed in F@tP, and by Lemma 7, regularity is
expressible in FO+&LY. Hence:

Lemma 8. The Boolean querg), is expressible ifFO+FoLY.

Given two arbitrary regular semi-algebraic sdteind B in R™ not in general po-
sition, we can ask how to force them to be in general positibhe following the-
orem answers this question. A translation of a ¥etC R" is a set of the form
X+71:={F+7€R"|7e X}, wherer € R".

Theorem 6. Let A and B two regular semi-algebraic sets iR". For almost all
7 € R", we have thatd + T and B are in general position.
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Proof. This theorem is a direct consequence of the Transversdiigpiiem of differ-
ential topology. A proof of the Transversality Theorem givey Guillemin and Pol-
lack [23] for C°°-smooth varieties ilR™ goes literally through in this case, except that
theC''-version of Sard’s Theorem given by Wilkie [50] needs to bedlisistead of the
standard”°°-smooth version. O

Here, “almost all” means that the set of translation vectofgr which A + = and
B are not in general position haseasure zer® Since a set of measure zero cannot
contain an open set iR", the set of translation vectotsfor which A + = and B are
in general position is dense R™.

Moreover, Theorem 6 can be easily generalized as follows:

Corollary 1. LetA = {A;,...,A,} andB ={By,..., B, } be sets of regular semi-
algebraic sets iR"™ such thatd; N A; = 0 (B; N B; = 0) for i # j. Then for almost
almeR", A+7mhB.

We mention three useful properties of sets in general positiet.4 and5 be as
above, then ifA M B, then there exists an> 0 such thatd + = i B for anyr € R"
of norm less thare. Therefore, one says that transversality istableproperty. A
second useful property is that the intersection of two ragsets in general position, is
again regular. A third property is that the tangent spacepniat of the intersection
of two sets in general position, is the intersection of they&nt spaces of these sets in
this point [23].

5.5 Box Collections

We need one more ingredient before we can start explainglintdarization algorithm:
box collections.

We define ar-dimensional box collectio8 in R™ as a finite set ofi-dimensional
boxes satisfying an intersection condition: L&t and B, be two arbitrary boxes iff.
Then, if| B1| and|B| intersect, the intersection is included in their boundadies; |
andd|Bs|. By thegeometric realization3| of 3, we mean the union of the geometric
realizations of all boxes 3. If X C R" is a semi-algebraic set aiftian-dimensional
box collection inR", thenB N X is the set of all boxe® € B such thatB N X # (.

Let D be a set ofi-dimensional boxes, which does not necessarily satisfgloge
intersection condition. In the following, we show how toisjpl FO+PoLY the boxesin
D into smaller boxes, such that the collection of these smiadiges is a box collection.
We call this thébox collection ofD, and denote it byp. By construction, the geometric
realization of each box i is the union of the geometric realizations of certain boxes
of D.

We first give an example of the construction and then prebergéneral construc-
tion more formally.

Example 5.4. Fix the dimensiom = 2, and consider the seb consisting of two
boxes(0,2,0,3) and (1,3,1,4). The geometric realizationD| of D is depicted in

4A set inR™ hasmeasure zerif it can be covered by a countable numbemeflimensional boxes with
arbitrary small volume.
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Hy-—--- 4-- s -
|B7|| |Bs|| |Bsl
HS ””” - = -
|Bs|| |Bs|| |Be|
Ho-——-- 4 -
[B1]i |Bz2|| |Bs|
Hy ‘ ;
|D] i Vo V3V |D|

Figure 10: A two-dimensional example of the constructioa @bx collection for two
boxes in theR?2.

Figure 10. In this figure, two sets of lin€$p , = {H:, Hy, H3, H4}, andHp , =
{Vi1,Va,V3,V,}, are drawn. Denote the intersectignp . N JHp,, by I. In this
example,l consists ofl6 points{p1,...,p1s}. From these points we construct the
setP which contains th® two-dimensional boxes denoted By, i = 1,...,9. The
geometric realizations of these boxes are shown in the figisecan be seen, these
boxes intersect only at their boundaries, and hence formadimensional box col-
lection. Finally, we define the box collecti@nhof D as the boxes included D], i.e.,

D = {Bi, By, By, Bg, Bs, Bs, Bo}.

In general, we define unions of(n — 1)-dimensional hyperplanes
Hp,i = {(I’l, .o, xn) ER? | E(Cll,bl, cey Oy, by) € DA (acz- =a; Vx; = bl)},

fori =1,...,n. Let] C R" be the set of pointd{p 1 N--- N Hp .

It is easily shown thaf is a finite set of points. Indeed, a proof by induction
shows thadim(Hp1 N---NHpr) = n—kforanyk = 1,...,n. In particular
dim(I) =n —n = 0, or in other wordd is a finite set.

Next, we construct a-dimensional box collection, which we denote By such
that the geometric realization of each boxris the union of the geometric realizations
of boxes inP. More specifically,

P = {(a1,b1,...,an,b,) € R*™ | Ip13¢, - - - Ipn3Gn € 1

/\(ai = (ﬁz)z ANb; = (CTZ)Z Na; < bl)
A (V’FE I /\ —(a; < (F)l < bz))}

Finally, we defineD as thoser-dimensional boxe®3 in P such thatB| is included
in the geometric realization of any of the boxesi By construction,D is a box
collection, and the geometric realization of any boxris the union of the geomet-
ric realizations of certain boxes iR. The construction o for a givenD, can be
expressed in FO+®LY, as is clear from the above expressionsHgs ; andP.
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13 16 19 221

Figure 11: The setD| — |D|. (left). The one-dimensional box collectidh, U P,
where the line segmei; is labelled with the number(center). The seD|, (right).

LetS = {S}, with S a2n-ary relation name. We define thex collection query
Q@uwe, sSuch that for any polynomial constraint databasever S representing a set of
n-dimensional boxes iR ",

@ve(D) =D,

whereD is the box collection oD. From the constructions above, the following result
is immediate.

Lemma 9. The quenQy,. is expressible ifrO+PoLY.

When applied to the union of two box collectiohsand D’, we will denote the
box collectionQy.(D U D) by DU D'.

We next define a useful decomposition of box collections. g&ragive first an
example.

Example 5.5. (See Figure 10 and Figure 11). Let us continue the previoasgike.
Let|D|, be the setiR? defined PYJic(1,2,4.5,6,8,9 0t (| Bi]). Consider the sgD| —
|D|2 and defineP, to be the set of horizontal line segmeiits withi = 1,...,12,
and letP, be the set of vertical line segments, withi = 13,...,24. The line
segmentd.; can easily be defined from the pointdiand form a one-dimensional box
collection. We defin®! to be the box collection consisting of boxe$inu Py, which
are contained ifD|. Next, defingD|; to be the sel;c (1 o4} (3,10,22,15) 0 (| Li]).
Here, when taking the interior, we regard ealdh| as a space on itself, so the result
is an open line segment without the endpoints (as opposdteternpty set when we
would regard eachL;| as a setinR?). Now,|D| — |D|, — |D|; is a subset of, which
we denote byD|y. Hence, we have obtained a decompositiofTof

This decomposition is important for two reasons. First,geemetric realization
of each box ofD is the disjoint union of the interiors of the geometric reations of
certain boxes iD?, D', andD'. Secondly, the interiors of boxeshare open subsets
of Rego(|D|), the interiors of boxes i®! are open subsets éfeg; (|D| — |D|2), and
finally |D|o equalsRego(|D| — |D|2 — |D|1).

In general, the construction of this decomposition goesl®is. Fork = 0,1,...,n
and any combination df different elements, , ..., i, in {1,...,n}, we define the fol-
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lowing set ofn — k-dimensional boxes ilR"™:
Pliy,.iny = 1(a1,01,...,a,,b,) € R?" | 35131 - - 3pn3G, € 1
N (ai= (B Abi = (§)) AVFET J\ ~(ai < (7 < bi)
i€{l,...,n} i=1
A A ai<bin N ai=b} (14)
i€{1,ec.;n}—{i1,0e ik } A€{i1,0e ik }

Note thatPy, ., = I, andPy = P. Itis clear that these sets are expressible in FO+
PoLy. We also define fok = 0, 1, ..., n and any combination df different elements
i1,...,iin {1,...,n}, the followingn — k-dimensional box collection iR ":

D{'Ll ..... zk} = {(G/l, b17 ceey Ap, bn) S P{il,...,ik} | 3(0/1, Ila L aa{n,a b{n,) S D

We then define

Finally, for £ = 0,1,...,n, we define|D|,,_; as the union of the interiors of the
geometric realizations of boxes " ~*. Here, when taking the interior, we regard
each geometric realization of a box as a space on itself,esoetfult is an open box.

By construction, we have the following properties:

1.
ID| = |Dln U U|Dlo; (15)

2. each geometric realization of a boxiiris the union of the geometric realizations
of boxes in|D|x, fork =0,1,...,n;and

3. the interiors of the geometric realizations of boxesih are open subsets of
Regi(|D| = |Dln — - = [Dli+1).

LetS = {S}, with S a2n-ary relation name. We define thet 1 queriesR k-box
such that for any polynomial constraint datab&seversS representing a box collection
D!

Qk-box(D) =D
fork =0,1,...,nwith D! thei-dimensional box collection iRR™ defined above. The
following trivially holds.

Lemma 10. The querie®x-nox, £ = 0,1, ..., n are expressible iirO+FPOLY.
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Figure 12: Thej-cover of a semi-open annulus foe= 1.

5.6 Expressing the Box Covering Query

Let 6 > 0 be a real number. We define tmedimensional standard grid of size
calledé-grid, as then-dimensional box collection-grid consisting of all boxes of the
form (k10, (k1 4+ 1)0, ..., k9, (k, + 1)0), whereky, ..., k, € Z. We define théox
covering of sizé of a semi-algebraic se4, denoted by-coverA), as those boxes in
0-grid that intersect the closure df (see Figure 12). Le§ = {S}, with S ann-ary
relation name. We define for eagh> 0, thebox covering querfs-cover Such that for
every constraint databageoversS,

Qs-covel D) := d-coverSP).
Proposition 2. Letd > 0. The quen@s-coveriS NOt expressible iFO+FOLY.

Proof. Let S = {S}, with S a binary relation name. We consider the following FO+
PoLy formula overS: a formulacircle such that for any databage overS, either
circle(D) is the circle through the points 6%, if S¥ consists of three non-collinear
points, orcircle(D) = SP.

Assume that the quers.cover is €xpressible in FO+®Ly. Let - cover be the
formula which expressé3;.cover Then the formula

p =4-cover(circle)

is also expressible in FO€RyY. However, the number of-tuples inp(D) can be
made arbitrarily large by choosing to be a database ové; such thatS” consists
of three points far enough apart. This contradicts the Qiimimy Theorem of Benedikt
and Libkin [4], which guarantees the existence of a polyrmmi such thaty(D)| <
po(ISP]) = py(3) in caselp(D)| is finite. O

However, in FO+BLY+TC we can express the box covering query:

Proposition 3. For eachd > 0, the queryQs-cover IS €xpressible irFO+PoLY+TC
when restricted to bounded input databases.
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Proof. LetS = {S}, with S ann-ary relation name. We define the bounding box query
Qbb as the query such that for every polynomial constraint detab, such thats”

is bounded@Qun(D) := {M}, with M a real number such that(S?) C [-M, M]".
This query is clearly FO+8LY expressible by a formula oveér which we denote by
boundi ngbox(z). Let

gri d(u) = [TCy,er IM (boundi ngbox(M Az >0
ANe' =z + 6Nz < M)]0,u)Vu=0.

Let

8- COVer (U1, 01, ... Uy, vy) = /\(vi =u;+0Agrid(u))
1=1

A 3Z(l(S)(Z) A /”\ u; < xy < ;).

i=1

ThenQs.coved D) = 6- cover (D) for any databas® overS such thats” is bounded.
O

6 Linearization and Approximation of Semi-algebraic
Sets

In this section, we give a construction of both an algebrimedrization and an-
approximation of semi-algebraic sets which are implentdata FO+RoLY+TC. This
implementation is based on the construction of a box catlecatisfying some special
properties.

More specifically, it is shown in Section 6.1 how to constrsieth a box collec-
tion R for a semi-algebraic set. In Section 6.2 we derive a box collectidhfrom
R and take a closer look a4 on the boundaries dff. We show that we can apply
the construction in 6.1 again fot on the lower dimensional box collections on the
boundaries ot{/. This inductive process is the basis of the algorithmEARIZE in
Section 6.3 which builds an algebraic linearization and-approximation of bounded
semi-algebraic sets. In the same section, we prove theatoess of the algorithm
LINEARIZE and show that the algorithm can be expressed by a query in BO+HP
TC.

We also show how to extend this algorithm such that it alsédblalgebraic lin-
earizations of possibly unbounded semi-algebraic setslllyj in Section 6.4 we show
that after some minor changes, the algorithm#ARIZE can be used to build a rational
linearization and am-approximation of semi-algebraic sets.

6.1 Construction of a Special Box Collection

Let B be ann-dimensional box collection iR™, and letX = { X, ..., X} be afinite
set of pairwise disjoint semi-algebraic setsRri. We now define whei and X’ are
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in general position. We decompoigsl andX’ into a finite number of regular sets, and
then define “being in general position”, in terms of theseodegositions as follows.
In (15), we defined a decomposition of a box collection intputar sets. Applied to

|B], this results in the decompositiof|.,, . . ., |Blo, where|B]; is a union of interiors
of i-dimensional boxes iR ™.

For eachX,, let R,o, ..., R, be a regular decomposition &f;,. We say that3
andX are in general position if and only{i5|.,., ..., |[Blo} and{R1 0, ..., Riny,-- -,
Ry, ..., Rk n, } arein general position.

We now describe the construction of ardimensional special box collection (the
properties of this box collection will become clear late).ofhe construction takes as
input:

e a bounded semi-algebraic séin R"™;

e auniform cone radius collectidiy, . . ., Uy, of c1(A) (as defined in Section 5.2);
and

¢ a fixedn-dimensional box collectiorf in R™, which is in general position with
{UOa EEEE) Um}

The result of the construction will be
e a set of box collection® = {Ry,...,Rn}; and
e a positive real numbet,

satisfying some properties. Before we can state these giepae need to define for
k=m,...,0andr € R" the box collections

BE(T) = (R U---URp) +TUF)NUy)
\{B" € (RekU--URw) +TUF)NU | |B'| C B (1) U---UBR(T)[}.

In the following, we will write BX for B (0) and letU = UyU- - -UU,,,. The definition
of BJ*(7) basically tells how to fit all the box collections R together and specifies
which boxes should be disregarded. We illustrate the diefindf B¢ by the following
example.

Example 6.1. Assume we have a box collectiBn= { R, R1} coveringlU = UyUU;.

In Figure 13 (left) we have depictédl, andR; with solid and dotted lines respectively.
Moreover, the set/; consists of the dotted curve, whilg is shown as a thick solid
line. In this example, we assume that no fixed box collectigpresent.

Then, by definitiol87 (1) = (R, + 7) N U;. This box collection (in this example
consisting of a single box only) corresponds to the largekddraded box in Figure 13
(middle). For the construction a8 (T), we first compute the box collectig®R LI
R1) + 7, which consists of all the boxes shown in Figure 13 (midde)id line boxes
intersectlUy, dotted line boxes do not. In order to obtd#¥ (), all dotted line boxes
are removed as well as those solid line boxes, which are deadun B () (the dark
shaded area). The resulting box collectif () is shown in Figure 13 (right).
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Figure 13: lllustration of the construction of the box cotien B () for R =
{Ro,R1} andU = U, U U; as explained in Example 6.1. The picture shdws-
(right), the intermediate resuliR, LI R1) + 7 (middle), and the end resuB*(r)
(right).

We now continue with the statement of the desired propesfiéise box collection
‘R and real numbef: They must satisfy the properties

() cl(U)° Cint(|BFU---UBE|);

(i) forall i =0,...,mand for allr € R™ of normless thad, (R; + ) UF th U;;
and

(iii) forall « = 0,...,m and for all= € R"™ of norm less tharm, and for each-
dimensional boxB € BX(r), there exists a point € int(|B| N U;) such that
’Ycone,A(ﬁ) > dian‘(B).

Construction algorithm  The construction of the box collection is inductively on the
number of partsn in the uniform cone radius collectidiy, ..., Uy, }.
For the base case, when the uniform cone radius collectiemisty, we define
R_1 = and taked = oo. The properties (i),(ii), and (iii) are then trivially ssafied.
Suppose now thal’ is non-empty and consists oi parts. By the induction hy-
pothesis, there exist-dimensional box collectior®’ = {R1, ..., R.,} and a positive
real numbep’, such that

() cl(U\Up)? Cint(|BR U---UBR'));

(i)’ foralli =1,...,mandforallr € R™ of norm less tha#&’, (R}, +7)UF m U;;
and

(iii)” foralls = 1,...,m and for allT € R™ of norm less thar’, and for each-
dimensional box3 € B (1), there exists a point € int(|B| N U;) such that
’Ycone,A(ﬁ) > dian‘(B).

The construction consists of two steps:
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e First step: Cover the part ot/, which may become uncovered by translations
of the box collectiorR’ + , for || || < ¢’, with a box covering of a certain size.
This size is determined by the uniform cone radius of the p&atff, possibly
uncovered by the translates&f.

e Second step:Some of the boxes in the above box covering might be in a degen-
erate position and in this way preventing the box collectisatisfy the required
properties. This can be easily resolved, however, by tasing all boxes by a
small translation vector. Lemma 13 shows that it is possible to bring all boxes
in general position, Lemma 14 shows that translating theebaogsults in a box
collection with the desired properties indeed.

We describe the two steps now in more detail. An example ofdmstruction can be
seen in Figure 14.

First step: Covering Uy We will define a setRy and defineR; = R for i =
1,...,m, such that forR” = {R{,...,R.L}, l(U)" C int(|BR' () U --- U
BR"(7)]) for somes” > 0.

Al points of U, that can become uncovered by varying the veetar |BR (1) U
- UBR ()| with ||7|| < &, are included in the set

V=T~ (BF U--- UBF| — (9IBF U--- UBFT).

By (i)’, the minimal distance from any point i \ Uy to the boundary(|BR U - - - U
BR'|) is greater than or equal . This implies that

Cl(U\UO)% c|BF U~--UB§| — (9|BF U"'UBZE/D%,

and hence, becausg, . .., U,, is a uniform cone radius collection, there exists a uni-
form cone radiussy, of A for the sefV. LetR{j be 46\‘//5-COV8I(V). Note that
diam(B) = %V (16)

for any boxB € R{. The reason why we take this specific box covering is thatthxe b
collection, which we are constructing, must satisfy proyéii).

We now show that there exists a positive real numifesuch that (i) holds for
R" ={Rg,..., Ry} andd".

We partitionUy U - - - U Uy, into three partsU \ Uy, V, and

W=Uon(BR U---UBR"| - (8|BR" U---uBR'|)¥).
By (i),
AU\ U)* Cint(IBR U---UBR|) Cint(IBR u---UBR"|).  (@7)

We shall need the following Lemma, which is readily verified:
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We consider the case that no fixed box collectibris
present. Le{ Ao, A1} be the uniform cone radius decom-
position ofcl(A) (see Figure (a)). The set; consists of
the thick horizontal circle and pointin Figure (a). The
setAy is equal to the remaindet(A) \ A;.

1. Base case. (not shown in Figuré):= 0, Uy = 0.

@)
. R
;
R T R +T .............
(b)
B

(©

By definition,R_1 = {0}, 6 = co.

. CaSGTL:LU:Al,U():Al.

Covering Uy: Since in Step 1, nothing is con-
structed yet, we have th&t = Uy, W = 0, and

¢ = oo. Hence,R" = ~V=-coverV'). This box
covering is depicted by the dashed boxes in Fig-
ure (a). By definitiony” = min{%/ =00,1,( =
oo} = nwherenis such thatl (V)" C int (|R"]).
Translating R”: As can be seen in Figures (a) and
(b), the pointp'lies on a side of one of the boxes at
the bottom. In other wordg;is not in general posi-
tion with the box collection. A simple small trans-
lation, however, resolves this situation and brings
P in general position with the box collection (see
Figure (b)) while keeping the other point% in
general position as well. The resulting box collec-
tion is denoted byR.

FromR we getBl, as shown in Figure (c) by re-
moving, in this case, a single box which does not
intersect/y anymore.

(Example is continued on the next page.)

Figure 14: Construction of the special box collecti®n
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3. Casen =2,U = Ag U A1, Uy = Ay, /1/:7?,,
andd’ = § (obtained in Step 2).
Covering Uy: We focus on a region around the
box B in R} containingp (See Figure (d)). For
expository reasons, the position Gfwith respect
to B is slightly simplified.
We have depicted the skt (dark shaded area) of
points inUy which might be outsid¢B| when B
(d) is slightly translated, and show the remaining set
W (light shaded area) as well. The new box col-

lecion Ry will be Tvz-coverV). In order not to

Ry overload the Figure, we have depicted the box col-
lection from a sideways’ point of view (See Figure
(e)). LetR" = {R¢, RY}.
The constrain®’ on the norm of translation vec-
tors is given by = min{%'m,g}. It takes into
account the distance betweBn and the boundary

: of the boxes constructed in Step@),(the distance

: |B| betweenV” and Fhe t_)ounQary of boxes R{ (n),

(e) and the constraint given in Step &)

Translating R”: If necessary, slightly translate
R’ to bring it in general position such that it satis-
fies the desired properties. This results in the final
box collectionR.

We also show part dBf¢ (See Figure (f)). We refer
to Example 6.1 for a discussion on its construction.
The collectionBT is equal toBf constructed in
Step 2.

(f)

Figure 14: Construction of the special box collection.
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Lemma 11. Let X andY be two sets iR"™. If X is bounded, thenl(X) C int(Y")
implies that there exists a positive real numbeuch thatcl(X )¢ C int(Y).

By definition of a box covering;1(V) C int(|BF"|) C int(|BF U ---UBR")).
Since A is bounded)V is also bounded. By Lemma 11, there exists a positive real
numbern such that

A(V)" Cint(IBR U---uBR)). (18)

We now prove that Lemma 11 can also be usedfor
Lemma 12. cl(W) C int(|BR U --- U BR'|).

Proof of Lemma 12 Suppose that there exists a pgire cl(W) such thaf ¢ int (|BR'U
---UBR')). Let(p,,) for m > 0 be a sequence of points i such that|p — || <
1/m. By the definition ofi¥/, for all points in7* € 9|BR U -+ UBR|, |7 — pin| = &
for everym.

Now, every line segmert\j,, + (1 — )7 | 0 < A < 1}, intersect®)| BR U --- U
BR'| in a point7,,,. However, sincé|g,, — p] < 1/m, also||fm — 7w < 1/m. So,
we obtain a contradiction forn, large enough such thdn:t < % O

Hence, by Lemma 11 and Lemma 12 there exists a positive redber( such that
WS Cint(|BR U---UBR|) Cint(|BF U---UBR)). (19)

From the inclusions (17), (18), and (19), it follows that peaty (i) is satisfied foR”
ando”, with ¢ = min{%, n,C}.

Second step: translatingR” The box collections inR” already satisfy property
(i) for 0”. However, properties (ii) and (iii) are not necessarilyis§ed. This can be
seen in Figure 14 (a) and (b) and the discussion next to it. dveshow that a little

translation of the box collection is all that is needed sa #ilgproperties are satisfied
by the translated box collections.

Lemma 13. For eachi = 0, ..., m, there exists a translation € R" of norm||r| <
0", such that
(R +7)UF U,

Proof of Lemma 13Consider the decomposition[§fR} ++)LF| into the set$(R} +
T)UF|;,fori =0,...,mandforj =0,...,n. Recall from Section 5.5 tha&tR +
T) LI F|; is the union of the geometric realizations of boxe§(iRj + 7) LI F)7.

We need to prove that there exists a translatioa R", ||| < ¢”, such that for
eachi = 0,...,m, for eachr € {0,...,n;}, for eachj € {0,...,n} and for each
B e ((R? + 1)U F)7, we have that

|B| h Ry, (20)

Let T" denote the set of all possible translatiofis:= {r € R" | ||7|| < ¢”}. Note
that case > 0 of (20) holds for anyr € 7' by induction. Hence, we can focus on the
casei = 0. Take an arbitrary3 as in (20), take: arbitrary in{0, ..., n}, and consider
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a pointz € |B| N Ry,. We are going to impose several conditionsnsuch that

if 7 € T andT satisfies these conditions, then (20) holds+orBy definition of the

union operatot, there exists a neighborho®d of # such that one of the following
three cases holds:

1. |B|NW = |B’|nW for someB’ € F? for somep. Note that
Tz|B| =Tz(|BlnW) =Tz(|B'|nW) =Tz |B|. (22)

By the given thatF h Uy, |B’| and R, ,- are transversal it¥ for all 7 € T'. By
(21), we may conclude thaB| and R, are transversal i for all = € T'.

2. |B|NnW = |B"|nW for someB” € (Ry + 7)? for someg. Note that
Tz|B| =Tz(|B|nW) = Tz(|B"|nW) =Tz |B"|. (22)
Suppose that

Then,|B”| Uy and hence|B”| and Ry, are transversal if for all 7 € T’
such that condition (T1) is satisfied. By (22), we may coneltiat| B| and R,
are transversal i for all 7 € T" such that condition (T1) is satisfied.

3. |B|nW = |B'|n|B"|nW for someB’ € FP for somep, and for some
B" € (R + 7)? for somegq. Suppose that

(R + 1) th F. (T2)

Because the intersection of regular sets in general posgticegular, the tangent
spacel'z(|B’'| N |B”|) exists. Note that

T3 |B| = Tz(|BInW) = Tz(|B'|n [B"|nW) = Ta(|B'| N|B"]). (23)
Furthermore, suppose that
[B"| h (1B N Ro.). (T3)

When two regular sets intersect transversally in a poiettaingent space of the
intersection in this point, is the intersection of the tamggpaces of the regular
sets in this point [23]. Hence, by (T2) and the given thath Uy, we have that
Tz |B'|NTz|B"| = Tz(|B'|N|B"|)andTz|B'|NTz(Ro,») = Tz(|B'|NRo,).
Moreover,Tz(|B’|NRy,) € Tz(Ro,). By (T3) we have thal'z(|B’'|N|B"|)+
Tz(|B'|N Ry,) = Tz|B’'|. Hence,
T3 |B|+ Tz(Ro,) = Tz(B'[N|B"])+ Tz(Ro.,)
= T(B'|N|B"[) + Tz(|B'| N Ro,r) + Ta(Ro,)
Tz#(1B']) + Tz(Ro.r)

= R"
Hence, we may conclude thgB| and Ry ,- are transversal i¥ for all 7 € T
such that conditions (T2) and (T3) are satisfied.
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We may conclude thdt{R{ + 7) U F| th Uy, if 7 € T andr is such that for each
box B € ((R§ + 7) U F)? for j = 0,...,n, either no extra condition holds, the
condition (T1) holds, or both conditions (T2) and (T3) hattence, we obtain a finite
number of conditions on the translationsZin By Corollary 1, the set of translations
T € T for which a single transversality condition, like (T1), (Tand (T3), is not
satisfied, has measure zero. Since a finite union of sets c$ureaero, also has
measure zero, this implies that for almost all translation®', all conditions can be
satisfied simultaneously. This concludes the proof of thete. O

Let T be a translation, as specified in Lemma 13. We now define$00, ..., m,
Ri; =TR! + 79 and consideR = {Ry, ..., Ry} andd” < " — |||

Lemma 14. There exists @ > 0 such thatRy, . .. , R,,, ando satisfy properties (i), (ii)
and (iii).
Proof of Lemma 14 We first prove that there existsda> 0 such that property (ii) is
satisfied. Indeed, the proof of Lemma 13 shows that fer0, ..., m, (R +7)UF M
U;, holds for anyr which satisfy a finite number of transversality conditioRecall
from Section 5.4 that being transversal is a stable propeewnce, ifr is a translation
vector satisfying these transversality conditions, there exists am > 0 such that
anyt’ € R", for which||7' — 7|| < ¢, also satisfies these transversality conditions.
SinceR; = R} + 79, and is such that Lemma 13 holds, there exists & 0
such that forr € R”, ||7]| < ¢,

(Ri—i—r)!_l]-"rhUi,

fori = 0,...,m. Hence, property (ii) is satisfied f@&,, . . ., R,,, andé = min{6"’, e}.

We now prove thaRy, ..., R,, andd also satisfy property (i). We will need the
following properties which can be readily verified: LEtandY” be semi-algebraic sets
in R™. Then

(1) X:CY = X CY + 7 foranyr € R"” such that|r|| < ¢; and
(2) (X61>62 — Xeitez,

We already knowel(U)%" C int(|BR" U --- U BR"|). Lete = 6" — |70 — 6.
Sinced < §" — ||Tol|, e > 0 and by property (2),

A(U)Y" = (cl(U)?)ITell+@"=lmoll=0)  ing(1IBR U - U BR)).
By property (1), we have that

AU Cint(IBF U-UBR )+ Vri|T| < 7ol +e.
In particular,cl(U)° C int(|BF" U---UBR"|) + 79 = int(|BF U--- U BE|), and
property (i) is satisfied foR andd.

We now prove that property (iii) is satisfied. L&t € BX(r) for anyr € R",
IT|| < d. We distinguish between the following two cases:
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1. i > 0. SinceBR () € BR' (¢ + 7) and||T — 7| < &', we have by induction
that there exists g € int (| B|) N U; such thatycone 4 (p) > diam(B).

2. 1= 0. Since|B|NU, # (), we need to prove that there existg & int (| B|) Uy
such thatycone 4 (p) > diam(B).

Solet,# € |B|NUy. If ¥ € int(|B|), we are done. I € 9|B|, then¥ ¢
|B'| N Uy for some|B’| € (Ro U -+ URy)+ 7)UF)? and somep. Let
D= (xy—e,x1+¢,...,2, — &,2, + €) be ann-dimensional box centered
around?, with e € R. Fore sufficiently small,|B’| N int(]D|) has the form

(x1—e,x1—¢€) X - X (xp —€,2p+6€) X {Tpp1} X -+ x {zp},

or a permutation of this form, which is handled analogouldignce,int (| B|) N
int(]D|) has the form

(x1—e,x1—¢e) XX (xp—&,2p+6) X (Tpy1, Tpt1+E) X+ X (Tp, Ty, +£),

or a permutation of this form which is handled analogoustyewen a variant
of this form where some of the — p intervals(x;,z; + ) are replaced by
(x; — e, x;), which again is handled analogously.

By property (ii),
Tz|B'| + Tz Uy = R™. (24)

Now, anys € Tz |B'| is of the formv = (vi,...,vp, Tpt1,...,2s), hence,
by (24) there exists a tangent vectore Tz Uy such thate, 1 < wpy, ...,
xn, < wy. By definition of the tangent space,|jifi — || is small enough, there
exists a pointy'in Uy arbitrarily close taw. This pointg'is also arbitrarily close
to Z, and also has — p last coordinates which are strictly greater thanthe p
last coordinates of. Hence,d is in int(|B|) N int(]D|) and we have found a
pointinint(|B|) N Up.

We now show that for any € int (| B|)NUy, Yeone 4 (P) > diam(B). Indeed, any
boxin BJF(7) isincluded in a box iRy +7o+7. By (16),R{ consists of boxes
which have a diameter which is strictly smaller than the amif cone radius of
int (| B|) N Uy. Henceycone a () > diam(B) for any pointy € int (| B|) N Uyp.

As a result, property (iii) is satisfied f@ andJ. O

This concludes the construction of the box collecti®dm@mnds > 0.

6.2 A First Glance at the Linearization Algorithm

In this section we describe how the special box collecRoronstructed in the previous
section, helps us in achieving our goal of linearizing a salgébraic setd C R™.
First, using the box collectioR, we define

U=Bru---uBr. (25)
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Recall, that3* stands foi37¥(0). Since eactB[* is a box collection anéht (|B7|) N
int (|BJX|) = 0 for anyi # j, U is a box collection too. It is clear that inherits some
of the properties oR. Indeed, by property (i) oR, we know that/ is a box covering
of c1(A) and by property (iii) ofR, we know that for each bo® € U/ there exists a
pointp € int(|B|) N A such thatycone 4 (p) > diam(B).

The linearization algorithm, which will be described in raatetail in Section 6.3,
works inductively on the boundaries of the boxeg/inFor each box3 € U, the lin-
earization algorithm replacé®| N A by a semi-linear set in two steps: In the induction

step it replaces the intersectiohB| N A by a semi-linear se?|§|FA ond|B| which
is homeomorphic t@|B| N A. Then, for each boB € U, it replacedB| N A by the
semi-linear set -

Condd|B| N A,p)

wherep € int(|B|) N A such thatycone 4(p) > diam(B). It is shown in Lemma 15
that in this way we end up with a linearization.éf An illustration of the linearization
algorithm is given in Figure 15.

In order to construct the linearizatiégiB| N A on 9| B| of boxesB € U, we will
need to construct again a box collectiBnbut this time on the boundaries of the boxes
inU.

We will decompose the boundaries of the boxe& iaccording to the direction of
their supporting hyperplanes and according to the cootelivedue of the fixed coordi-
nate of these hyperplanes.

These coordinates can be computed as

Coor({U{i}) = {a €eR | daq,3bq, ..., da;—1,3b;_1, ﬂai_,_l, Hbi+1, ..., day, b,
(al, bl, ey Ai—1, bifl, Ay, Ay Aj+41, bi+1, ceey Oy, bn) S Z/[{Z}},

fori=1,...,n and wheré{;, are then-dimensional box collections defined in (14).
Recall that//(;, contains alln-dimensional boxes on the boundaries of boxe#/in
whoseith coordinates are all equal.

We will need for eaclu € Coordify;;), all the points ircl(A) with theith coordi-
nated fixed ta. l.e.,

Cl(A)(i)_’a = {(.I'l, B T I o7 R IS xn) eR"! |
($1, B 7 T I o7 S DA ,In) S CI(A)}

fori=1,...,n.
Similarly, we define thén — 1)-dimensional box collections

u(i),a = {(al, b1 ce ,bifl, Aj41y. -y Qn, bn) S RQ(nil) |
(al, bi...;bi—1,a,a,a;41,...,Gn, bn) S U{l}},

fori=1,...,n.
Sincecl(A) = Co U -+ U Cpy, andCly, = Ry, U -+ - U Ry, 0, We have that
d(A)@p.a = (Co)@yaV U (Cm)i)a
(Ci)iya = (Rim)@,aY--U(Rj0)@).a
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|B|N{z = a} "

y L
Uizya

¢ Linearize

X

A Cone
Construction

2

Figure 15: lllustration of the linearizatio inside| B|. The top side 0| B is shown
together with that part df/ .y and A lying on it. The top side has-coordinatez (top
left). The two-dimensional projected séts,) , and A, , are shown (top right). The
linearization algorithm is called inductively on these Bwdimensional sets (bottom
right). The three-dimensional linearization consists wfding a cone with tog’ and
base the previous constructed linearization on the boyrafas (bottom left).
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For eachi = 0,...,n and eachu € Coordy;;) we now show that we can
construct ann — 1)-dimensional box collectiofR as described in Section 6.1, for
cl(A)(),q in the role ofcl(A), (Co)(),as---» (Cm)iy,a in the role of respectively

- U, andU; , in the role of 7.

However, for the construction to be succesful, we need tifyvéirat we start with
valid input data. In other words, we need to show t@§) ;). is a uniform cone
radius with a regular decomposition given @¥; ) (;),. and thatF (which isi/; ,)
is in general position withiCy) ;) , for the regular decompositidii;, . ) (;),q-

Claim 6.1. The set§Co)(s)q; - - - s (Cm)(i),« fOrm a uniform cone radius decomposi-
tion OfCl(A)(i)_’a.

Proof. By definition, the set§Co) i).a; - - -, (Cin ) (3),o form a decomposition afl (A) ;) 4,
so we only need to show that each of the $€tg) ;) o, - - -, (Cin) (), form a uniform
cone radius collection.

We will need the following property which is readily verifietlet X andY be
semi-algebraic sets R™. Then,

(1) if Y is closed and bounded, then for &lithere exists aa such thatX°* NY C
(XNY)<.

LetH; ,={Z € R" | 2; = a}andr; : R™ — R"~! defined bwl(acl, X)) =
(T1, .y Tim1, Tig1, ..., Ty). Letj € {0,...,m} and letey, ... e}, be posmve real
numbers. We have that

m

\ U Ck (1 a k = ﬂ-i((cj N H(i),a) \ U (Ck N H(i),a)ak)7
k=j+1 k=j+1
By property (1), there existy > 0, ..., s, > 0 such that

(Cj n H(i),a) \ U (Ck n H(i)_’a)ai‘ - (Ck N H(i),a) \ U (CE’“ n H(l a) (26)

k=j+1 k=j+1

= (C;\ U CF) N H ) q-
k=j+1

Moreover, we have thafl(A) = Cy U --- U C,, and sinceCy, . . ., Cy, is a uniform

cone radius collection, from the inclusion (26), it follotinat

0< inf{'YconeA((Cj \ U Clik) N H(i),a)}

k=j+1
< inf{yeonea((C5 N Hyy o)\ | (Ck N Hep o))}
k=j+1
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We will next show that the following inequality holds:

m

inf{"conea((Cj N H),a) \ U (Cr.N H(i),a)ak)}
k=j+1

< inf{’YconeAﬂHm,a((Cj N H(i),a) \ U (Ck N H(i),a>€;)}
k=j+1

= inf{’Yconeﬂ'i(AﬂH(i),a)(Wi((cj N H(i),a) \ U (Ck N H(z),a)sgc))}

k=j+1
Hence,
0< inf{'YconeA(i) z) a\ U Ck z) }
k=j+1
which proves thatCo) iy q; - - - , (Cm ) (4),« IS @ uniform cone radius collection.

We still need to prove that for eaghe C; N H;) 4,

“Ycong A (f) < 'YconeAﬂH(i),a(f)'

The proof idea is illustrated in Figure 16. The main ingretlis the construction
of the cone radius as described in the proof of Theorem 2 ih [A& explained in
the paragraph after Theorem 5, the radius query producesfdr pointr an interval
(0, ) of cone radii, where is the minimal distance betweehand eact¥ € S C R",
whereS contains those points which have a tangent space which is orthogonal to
Z — s or parallel to one of the axes-parallel hyperplanes. Haeetangent spaces are
taken with respect to a Whitney-decompositi&rof A which is compatible with the
union of all axes-parallel hyper planes (includidg,) throughZ. An example of such
a Whitney-decomposition is given in Figure 16 (top right)s@in this figure, we have
depicted the sef. The (maximal) cone radius of in (a, ) is illustrated by the dashed
circle centered aroun@, b).

Recall that we defined

. 1 1
YeoneA(T) = 57" = —mind(Z, 3),

2 ses
whered denotes the ordinary distance function.
In the same way,

~ 1
'YconeAmH(i)'a(l’) = 5 ?elg} d(ac 3),

whereS’ contains those pointg which have a tangent space which is orthogonal to
Z — s or parallel to one of the axes-parallel hyperplanes. Haeetangent spaces are
taken with respect to a Whitney-decompositi®hof A N H ;) ,. An example of such
Whitney-decomposition is given in Figure 16 (bottom righ8lso in this figure we
have depicted’. The (maximal) cone radius is illustrated by the intervalhded by
the two dashed line segments and witim the middle.
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A A Whitney-decomposition oft

[/ || -

~

al
(

- _—
/ (aa b) / \ a, b) /
\ /

a 7 ¢ N

A - 7

A =m,(An{y =a} Whitney-decomposition oft’

Figure 16: Semi-algebraic setlocally around(a, b) (top left). Whitney decomposi-
tion Z of A compatible with axes-parallel hyperplanes throGglb) (top right). Inter-
sectionA’ of A with horizontal hyperplane throudh, b) and projected on the-axis
(bottom left). Whitney decompositiog’ of A’ (bottom right). The isolated points
(top and bottom right) denote the critical points, i.e.,nts{c, d) with a horizontal or
vertical tangent space, or a tangent space perpendicutheteector(c, d) — (a,b).
Note that these tangent spaces are relative to the Whitreyngeosition. Moreover,
by construction the sef of critical points forA around(a, b) shown as the isolated
points (top right) includes the sét of critical points of A’ arounda (bottom right).
Consequentlyycone 4 (@, ) < Yeonea’ ().
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Due to the requirement the&& is compatible with the axes-parallel hyperplanes
through, the Whitney-decompositio’ of AN H ;) , is equal to those straté € Z
suchthatZ C H;) ,. In other wordsS’ C S and hence

I SR r . -
’YconeA(iE) = 5 glelg d(fEa §') < 5 ?ég}, d(:p, §‘) = 7Ycone ANH ;) 4 (:r)a

as desired. O
Claim6.2. The set$R;0)(iy,a: - - - » (Rj.n; ) (5),« fOrmaregular decomposition 6€; ) ;). o-

Proof. By definition, the setéR; ) ().q, - - - » (15,0) (s),« fOrm adecomposition aiC’) iy, a»
so we only need to show that each of the ¢étss.) ;... for k = 0, ..., n, is regular.
LetH; , = {Z € R" | z; = a} andr; : R" — R"~! defined byr;(z1,...,2,) =
LlyeooyLi—1,Li41y. .- ,,CCn).

It is sufficient to show thafz; , and H;) , are in general position. Indeed, by the
observation at the end of Section 5.4, the intersection ofregular sets in general
position is again regular. HencR; ;. N H;) , is regular. SO(R; 1) (),o = mi(Rjx N
H;q) is the image by th€'! -diffeomorphismr; of a regular set and hence is regular
itself.

We still need to show thak; . M Hy; .. By property (i) of the constructed box
collectionZ/, we know thatR; ; h U and henceR; ;. th [U|,. Letd € Rjx N H)q
andB € (4)* such thatt € B C H; .- Note that suchB always exists because
a € CoordU;)) andU coversA. Hence,R;; M |B| or in other wordsT'z R; . +
Tz|B| = R". Since|B| C H(; , we have thall'z |B| C Tz H(;),, and hence also
Ti: Rjyk + Ti: H(i),a =R". O

Claim 6.3. The box collection&;) , are in general position withiCo) (;).a; - - - , (Cin ) (i) ,a-

Proof. We need to prove thdliid(;) alo, - - - [Uey,aln} D {(Rjx) @) | J=0,...,m,
k=0,...,n}. LetHy , = {f € R" | 2; = a} andm,; : R® — R"~! defined by
7Ti(l’1, cee ,xn) = (acl, ey Li—1, Lj41y - ,xn).

We have thaild(;) .|¢ = m;(JU]e N H(iyo). SOB' € Uy ,,)" if and only if [B'| =
7TZ(|B|) with B € (U)Z and|B| - H(i),a-

As already observed in the proof of the former claftn, N |U/|, is a regular set.
Hence, forZ € R;; N |U|, the tangent spac® (R, N [U|,) exists. Moreover,
Tz(Rjx N |U]e) = Tz(R;, N |B|) for someB € (U)* and|B| € H;) .

Let |B’| = m;(|B|). We need to prove that

Tigyu 1B+ Tag . (Rik)i),a) = R* (27)

We have that
Tz, |B'| = dm(T, |B]), and (28)
Ta).. (Rik)(i),a) = dmi(Tz(Rjx 0| Bl)), (29)

wheredr; is the differential ofr; [23].
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Moreover, because of property (ii) of the box collectidrand the remark at the
end of Section 5.4 on the intersection of tangent spaces,

Tz |B| + Tf(R]k) =R", and (30)
Tf(RjJC N |B|) =Tz Rj,k NTz |B| (31)
Now, |et(U1, ey Vi1, Vi 1y - ,’Un) e R !andlety = (Ul, e ie1, 0,041,

...,vn) € R". By (30) there exists € T |B| and € Tz(R;%) suchthat = b+ 7.
Moreover, we may také; = 0 since vectors ifl'; | B| have no component in the
ith coordinate. Hence; has to be zero too. By (31), we haves Tz(R,; N |B|).
Letd = drm;(b) and# = dm;(7). Then by (28)}' € Ty, , |B'| and by (29)7 €
Tf(i)’a((Rj_,k)(i),a). By construction(vy, ..., v;—1,Vi41,...,0n) = b proviré;

6.3 Putting Everything Together: The Linearization Algorithm

The algorithm that constructs a-linear set which is homeomorphic to a given semi-
algebraic set, works inductively on the dimension of theaumding space in which
the semi-algebraic set is embedded.

6.3.1 The bounded case

The algorithm consists of two parts. The first part is a pregssing step: It takes as
input a bounded semi-algebraic sein R™ and returns the regular decomposition of
each part of the uniform cone radius decompositiod of

Subroutine: PREPROCESS

Input: A semi-algebraic setl in R™.

Output: A uniform cone radius decompositi@ry, . . . , C of A and for eaclC;
a regular decompositioR; o, . . ., R; ; of C;.
Method:

1. Compute the uniform cone radius decompositiod of

A=CoU---UCk.

2. Compute the regular decomposition(af fori = 0,.. ., k:

C; = Ri_’oU"'URi_’i.
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Subroutine: LINEARIZE-IN-n-DIMENSIONS

Input: ({C;},{Rir},F), with Cy,...,C) a uniform cone radius collection
{R;,} a regular decomposition af;, andF ann-dimensional box col-
lection inR™ which is in general position withy, . . ., Cy.

Output: An A-linear seC' in R which is homeomorphicte = CoU- - - UCy.
Method:

e If n > 1 do the following:

1. Compute the box collectidi constructed in Section 6.2.

2. Compute a3n + 1)-ary relation? consisting of pairg B, pz,b),
where B is ann-dimensional box iri/, pp € R™ andb € {0,1}
such that:

(@) pp € cl(C) Nint(B) and is uniquely selected for eaéh

(b) 'YconeC(ﬁB) > diam(B); and
(c) b=0incasejp € cl(C)\ C andb = 1 in casepp € C.

3. Compute allf(;) , with a € Coordiy;,) andi € {1,...,n}.
4. Compute all(C;);). € R™ ! with a € Coordiy;,) andi €

{1,...,n}.
5. Compute all(R; ). € R™ ' with a € Coordiy;;) andi €
{1,...,n}.

6. For all input triples ({(C)ay.ats {(Rir)),a}, Ugiy,a) With @ €
CoordUy;y) andi € {1,...,n}, apply LINEARIZE-IN-(n — 1)-
DIMENSIONS and embed the result in the corresponding hyperplane
in R", i.e., apply(x1,...,2p-1) — (1,...,a,...,2,—1) Wherea
appears in théth position.

7. Initialize C to the union of the results of the calls teNEARIZE-IN-
(n — 1)-DIMENSIONS of step 6.

e If n =1, then do the following:
1. Initialize Cto Cy U - - - U Cy.
e Output

C := CU{Cone(C NB,pz) | (B,jp,b) € Pandb =1}
U {Cone(C N8B, 5p) \ {Fz} | (B.ps,b) € P andb = 0}.
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Algorithm: LINEARIZE
Input: A bounded semi-algebraic sdtin R".
Output: An A-linear set4 in R™ which is homeomorphic tal.

Method:

1. Call LINEARIZE-IN-n-DIMENSIONS(PREPROCESEA), ().

Before we prove the correctness of thelEARIZE algorithm, we want to point out
the importance of the general position assumption madeeiinibut of the algorithm.
First of all, it allows us to treat all boxes M in the same way. More specifically,
for every boxB we are assured to have a pojf € int(|B|) as described in Step
2 of the algorithm (see Lemma 14). The existence of thesetpdgnessential for
the linearization as is clear from the last step in the atbori Secondly, the general
position assumption ensures that the lower dimensionaldafined in Steps 3-5 are
nice and are again in general position (see the three clai®sdtion 6.2).This implies
that we can apply INEARIZE on the lower dimensional sets, which is a key feature for
the algorithm.

Lemma 15. For any semi-algebraic set in R"”, the setd = LINEARIZE(A) is indeed
a linearization ofA.

Proof. The linearity ofA is immediate, so we focus on the existence of a homeomor-
phismh : R™ — R™ which mapsA to A.

The existence proof (which is also a constructive proofhisnaluctive proof. Be-
fore we can state the induction hypothesis, we need to defime $0x collections in
R™.

We defindf},,) to be then-dimensional box collectiot in R™ constructed in Step
1 when LNEARIZE-IN-n-DIMENSIONSIs called.

Letk < n. With each call of LNEARIZE-IN-k-DIMENSIONS during the lineariza-
tion of A, we associate the p&(f,,—x, a;—r) € {1,...,n} x R such that,,_y, is the
value in Coord{(;, ,;) used in Step 6. Note that is the box collection constructed
in Step 1 during the preceding call ofNEARIZE-IN-(k + 1)-DIMENSIONS.

This sequence of pairs gives us a unique identifier for the dmbection con-
structed in Step 1 during each call of the algorithm. Morec#mally, we denote by
Uiy ar),..(in—r.an ) the box collectiord/ constructed in Step 1 of the callLlEARIZE-
IN-k-DIMENSIONScorresponding ti,, ., a,—x ), which was called within INEARIZE-
IN-(k+1)-DIMENSIONScorresponding t@i,,—x—1, an—k—1), and so forth until INEARIZE-
IN-(n — 1)-DIMENSIONS is called with (i1, a;) within the initial call LINEARIZE-
IN-n-DIMENSIONS. If & = 1, then no box collectioid/ is constructed since Step
1 is skipped in the algorithm. However, for the purpose o$ thioof, we define
Uiy ,ar),(in_1,an_y) 10 08U 1y, Wherel is the box collection constructed
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in Step 1 of the preceding call toiIlEARIZE-IN-2-DIMENSIONS corresponding to
(in—2,an—2), and so forth.

At the same time the sequence of pairs a;) tells how to correctly embed;, o.).... (i _x,an_x)
into R™. Indeed, the embedding simply mapg R” to the vector’ € R™ obtained
by puttinga; at position:; and filling up thek open slots with the values (in this order)
r1,. .., 2. We will denote this embedding By;, a.),....¢i,_y.an_x)-

We now define thé-dimensional box collectioty;; in R™ as

u[k] = U(i1,01)s000 (i r@m— ) P(51,01) s (i — ks 1) (u(il7a1)7~~~7(7:n7k;an7k)) :

Letl|<y) be the union of all boxes i}y, . . . ,Uj;). We shall construct homeomor-
phismshy, : (U<l — (U<, such that

o hi(AN Ukl = An U< ; and
o for all boxesB in Uy, ..., Upny, hi| B : | B] — | B| is a homeomorphism.

We shall construct the homeomorphisimsby induction onk.

For the base casé, = 1 the linearization algorithm keep$ intact (see the case
n = 1in the description of the INEARIZE-IN-n-DIMENSIONS algorithm). Hence,
U N A = U N Aand we leth, be the identity mapping o). Both conditions are
trivially satisfied forh; .

Suppose we have constructed a homeomorphism : |Ui<i,—1j| — [U<p—1]]
such that

° hk,l(A n |U[<k_1]|> = A\ﬁ |U[<k_1]|; and
o for all boxesB in Uy, ..., Uy, he—1]|B) : | B| — | B| is a homeomorphism.
Let B’ € Uy, then we will definehs| 5| : |B’| — |B’| as the composition of two

homeomorphismg andg. Let us first describe the homeomorphignBy definition,
|B/| = P(i1,a1),... (in,fk-,an,fk)(|B|) with B € u(ilyal) »»»»» (fn—kr@n—1)"

Let P be the relation computed in Step 2 alt®y, ..).....¢i,,_,.a,_,) WaS computed.
By the definition of the relatior® and by Theorem 4 there exists a homeomorphism
glis| : |B| — | B| such thay|y g, is the identity, and either

1. glip/(|B| N A) = Cond AN J|B|, pp) in case(B,pp, 1) € P; or

2. gli|(|B| N A) = CondANI|B|,pp) \ {Pp} in caseB, pp,0) € P.
Since the second case is completely analogous to the fiestwasassume that the first
case holds fog. This concludes the description of the homeomorphjsm

Before we explain the construction of the second homeomsmpf, we show how
to partition| B| using the boundary of boxé®,| parametrized by € [0, 1]. Suppose

that| B| = [a1,b1] X -+ X [an, b,] @and SUpposgs = (c1,...,cn), Witha; < ¢; < b;
fori =1...,n. Then the following sets, fdr < t < 1:

|Bt| = [ta1 + (1 — t)Cl,tbl + (1 — t)Cl] X oo
X [tan + (1 = t)cp, thy + (1 — t)ey] 0<t<l,
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Figure 17: Construction of the homeomorphigm|B| — |B|. The figure shows the
construction off (%) for a pointz € |B|.

partition|B| such that B| = Uyc[o,110| Bt|.
Let # € |B|. To start with the construction of(Z) for & € |B|, we define the
uniquet, such that? € 9| By, |. Then, letL be the halfline fronp’z to # and define

7=LnNo|B.

Next, let L is the halfline frompz to hy_1(7). Note thathy_;(y) still lies on the
boundary)|B|. Finally, definef|z| : |B| — |B|in & as

fli|(&) = 9|By, | N L.
It can easily be verified that], 5 is a homeomorphism frond| to | B| such that
fli5|(Cong€ AN I|B|, pg)) = Conéhy—1(ANI|B|),ps)). (32)

Finally, we define| /| : |B’| — |B’| using the composition of the two homeo-
morphismsf| 5| andg| s, i.e.,

hicl|B1) = Piv,ar),..(im—rran—i) © Fl1B1 © GBI © iy i -
We now defineuy : |U[<k]| — |U[<k]| as
hy = U bl B,
Bely)

and show that it has the desired properties. First, we prhatéf is a homeomorphism.
By the Gluing Lemma [35, Lemma 3.8], it is sufficient to showttfor any two boxes
B andB’ in Uy, we have that
hilisjuis) = helig U hkl i+ |BIU|B'| — [B|U |B'|.
For this to hold, it is sufficient to show that for akydimensional box3’ € U in
R",
(heliz)liB) = (hilisr)liB)- (33)
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This holds indeed. IfB| N |B’| = 0, then we are done. Suppose tifat |B| N |B’|.
Then by the definition of a box collectior, € J|B| N d|B’|. Now, for every box
B" e U[k], hk|3|Bu|(f) = f|3‘3//|(f) = hk_l(f). Hence,

(helis)liB () = hiloBina B (F)
hi—1(Z)

= hilo|prinoB|(F)

(hiel Bl 3 (Z)-

Hence by : U<k — U<k | is @ homeomorphism.

Second, we show that for all boxésin Uiy, . .., Uy, hi—1l) : |B| — |Blis a
homeomorphism. By construction this holds for any i®x /). For boxesB’ in
Uy, for i < k it sufficient to observe that such boxBSlie on the boundary of a bok
in Uy, and on these boundarikg coincides withi, ; for which the desired property
holds by induction. R

Finally, we still need to verify thalt, (AN [U<|) = AN U<yl Itis sufficient to
show thath, (AN |B|) = AN |B| for any B € Uy,. By (32), the induction hypothesis,
and the definition ofd in the algorithmLINEARIZE-IN-n-DIMENSIONS,

hx(AN|B|) = Conédhy_1(ANJ|BI|),pp)
— CondANd|B|,ps)
= AnN|B|.

Since|U| is closed, a standard result from topology [36] implies thatfinal ho-
meomorphisnh,, can be extended to a homeomorphismR"™ — R™. O

We are now ready to state the main result of this section.

Theorem 7. For eachn there exists arFO+PoLY+TC formulal i neari ze over
the schema& = {S}, with S an n-ary relation name, such that for any polynomial
constraint databas@® overS, linearize(D) is an algebraic linearization of?, if
SP is bounded.

Proof. The desired FO+8LY+TC formulalinearize expresses the algorithmn.-
EARIZE described above. From Lemma 5 and Lemma 7, it follows thaalerithm
PREPROCESSs FO+RoLy-expressible.

Concerning the algorithmINEARIZE-IN-n-DIMENSIONS we have the following:
In step 1, the box collectio#f is computed. In the construction of this box collection
in Section 6.1 we need to compute the following things:

e The computation of a uniform cone radius. This is F@tP-expressible by
Theorem 5.

e The computation of a finite number of box coverings, i.e.,ﬁ% — cove(V)
coverings of Section 6.1. This is FO®Py+T C-expressible by Proposition 3.
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e A candidater € R" as specified in Lemma 13 needs to be found. Since this
is essentially checking a finite number of transversalityditions, this is FO+
PoLy-expressible by Lemma 8.

Hence, we may conclude that the computatiot¥a$ in FO+RoLY+TC. In step 2, the
relationP is constructed. Given the box collectidfy we know by property (iii) of
this collection that in eaclB € U/ there exists a point € int(|B|) N cl(C) such that
Yeonec (P) > diam(B). The set of points ifint (| B|) with this property is FO+BLY-
expressible by Theorem 5. Hence, we can also select in BOtRr eachB € U, a
unique representant among these points. This wilfpeHence, we may conclude that
the computation of the relatioh is FO+RoLY-expressible. In step 3,4, and 5, we need
to compute Coor@{y;y), Ugiy.ar (C)(i),ar ANA(Ri 1) (3),q- By definition these are all
FO+PoLy-expressible. In step 6 we call the algorithntimes. We have to be careful
how the inductive step is translated in FGAHR+TC. A straightforward translation
would result in a parametrized call of the transitive cl@saperators in the compu-
tation of the box coverings in step 1. Observe, however, tiiatset of parameters
Coordl;)) fori = {1,...,n} can be computed inside the transitive closure operator
and that these parameters can then be passed on outsideniigve closure operator
by simply annotating the vectors inside the transitive ateswith these parameters.
Indeed, suppose that we want to compute the transitive idasfua parameterized set
X € R™™™ where the lastn coordinates are the parameters. Suppose that the set of
parameters is FO+R.y+TC-definable from the database by a formulaNe now de-
fineY = [TC; ;X ANd = b A p(@)]. We can then uniquely identify the result of this
transitive closure computation for each parameter valuadiyng for all(#,d) € Y
for which p(a@) holds. By adapting the box-covering formula constructegrimposi-
tion 3, we can compute the box coverings for the parametesetdi/(; ) in parallel
and keep them apart afterwards. In this way, we do not neeahy&rized transitive
closure and hence step 6 is expressible in FOH*TC.

In step 7 a simple union is performed (which is trivially in #FBoLy) and finally
the cones are constructed which is also clearly expressifi®©+PoLy.

Since the recursion depth is bounded by the dimension, wevdéathe complete
execution of the algorithm as a single FOR +TC formula. O

If the linearization obtained in Theorem 7 also needs to bead@pproximation
from a metrical point of view, we can easily adapt the aldwnis such that the approx-
imation lies arbitrarily close to the original polynomiabrestraint database. Indeed,
we can simply bound the diameter of the boxes used in the remtisin by a specified
e-value. We will see some applications of thesapproximationsn the next section.

Theorem 8. For eachn there exists arFO+PoLY+TC querye- appr ox over the
schemaS = {S} with S ann-ary relation name, such that for any polynomial con-
straint databaseD over S such thatS” is bounded, the set- appr ox(D) is an
algebraics-approximation of5 ™.

Proof. The proof follows at once from the fact that the homeomonplfisonstructed
in the proof of Theorem 7 mapd N |B| to A N |B|, for each boxB € U. So, if
p € An|B|then alsai(p) € |B|. Because diafiB) < ¢ the distance betweenand
h(p) is smaller tham, so in this casel will be an=-approximation of4. O
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Figure 18: A semi-algebraic set (shaded area) is njappedtbatephereS‘Q(ﬁ, 1),
flipped vertically, and projected back onto the sph&té), 1). This brings the point at
infinity 7 to the origin0.

6.3.2 The general case

Let A be an unbounded semi-algebraic seRifi. We reduce the construction of an
algebraic linearization ofl to the construction for bounded semi-algebraic sets as fol-
lows:

First, we need to define treone radius of4 in the point at infinityp,,. Consider
the embedding : R* — R™™ : (z1,...,2,) — (71,...,7,,0). Letp : R"*! —
R"*! be the reflection defined by1, ..., xn11) — (21, ., Tn, —Tni1). LELR™ U
{P} be the one-point compactificationBf* [35]. Finally, consider the stereographic
projectiono : S™((0,...,0),1) — i(R™) U {px} defined byo(x1,...,2p41) =
(”111,71?) ando(0,...,0,1) = Puo.

We define a cone radius df at p,, as a cone radius of the semi-algebraic set

i o (p(o™ (i(A) U{p}))))

in the origin ofR™. The local conic structure of semi-algebraic sets impliet there
exists anm > 0 such that{Z € R™ | ||Z]] > m} N A is topologically equivalent to
{MeR"|Zed([-m,m]x...x[-m,m])NAAX>1}.

We now present the unbounded version of the algorithRERRIZE.

Algorithm LINEARIZE’
Input: A semi-algebraic setl in R™ R".
Output: An A-linear set4 in R™ which is homeomorphic tal.

Method:

1. Compute a cone radius of Ain pi. LetM = [—m,m]| X ... x [-m, m].

3

2. Call Lineariz¢ AN M).
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3. Output

o~

A= (ANM)U{NTeR" | T€ ANOM AN > 1},

We obtain the following generalization of Theorem 7:

Theorem 9. For eachn there exists arFO+PoLY+TC formulal i neari ze over
the schema& = {S}, with S an n-ary relation name, such that for any polynomial
constraint databas® overS, linearize(D) is an algebraic linearization of ",

6.4 Rational Linearizations
We now refine the previous theoremgédional linearization

Theorem 10. For eachn there exists akRO+PoLY+TC queryratlin over the schema
S = {5}, with S n-ary, such that for any polynomial constraint databd3eoverS
such thatS” is boundedratlin(D) is a rational linearization of5”.

Proof. We can obtain this result easily by modifying the constauttdf the special
box collection in Section 6.1 in the following way. When ingleonstruction the box
coveringV of size 5—\/% is computed, we compute a rational number that is smaller
thanf/—Vﬁ, and take this as the size of the box coveringp be computed. By similar
techniques as those in Section 4, it is easy to show that thests an FO+BLY+

TC query which returns a rational number smaller than thatinpmber. In this way,

all boxes inR C Q?". A second adaptation is that the relatiBris replaced by the
following relation

P'={(B,cp,b) €U x Q" x{0,1} | 3ps(B, P, b) € P},

wherecs denote the center of the bdx
In this way the algorithm INEARIZE-IN-n-DIMENSIONS will select points with
rational coordinates. O

We also have a rational equivalent of Theorem 8.

Theorem 11. For eachn there exists alFO+PoLY+TC querye-r at | i n over the
schemaS = {S}, with S ann-ary relation name, such that for any polynomial con-
straint databaseD overS such thatS? is bounded, the set r at | i n(D) is a ratio-
nal s-approximation ofs?.

6.5 The Connectivity Query

Although we know already that the connectivity query, whadks whether a polyno-
mial constraint database is connected, is expressible #PBOY+TCS, we show in
this section that the connectivity query is already expbéssn FO+RoLY+TC. Let
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A be a semi-algebraic set IR”. For semi-algebraic sets, expressing the connectiv-
ity query is the same as expressing whether any two pointdeactonnected by a
path lying entirely inA [6, Proposition 2.5.13]. One can even choose the paths to be
semi-algebraic, in case of a semi-algebraic set, and dega#| in case of a semi-linear
set [44, Proposition 3.2, Chapter 6].

We now show that this query can be expressed in FQ+R T C using the formula
linearize given in Theorem 9.

LetS = {S}, with S ann-ary relation name. Consider the FO3F +TC formula
I i neconn(7, 5) overS such that for any databageoverS, (p,¢) € lineconn(D)
if and only if

VYAO<S A1), A+ (1—AN)J € linearize(D).

Define now the FO+B8LY+TC sentenceonnect ed which tests for any databage
overS whether

Vp € linearize(D),Vq € linearize(D), (p,q) € [TCzglineconn(D)].

Proposition 4. Let S = {S} with S an n-ary relation name. Th&O+PoLy+TC
formulaconnect ed always terminates and expresses the connectivity query.

Proof. Sincelinearize(D) is topologically equivalent t&”, SP is connected if
and only iflinearize(D) is. Sincelinearize(D) is semi-linear, two pointgandq
belong to the same connected componentiafearize(D) if and only if there exists
a piecewise linear path fromito ¢ lying entirely in linearize(D). The formula
connect ed expresses that all points binearize(D) belong to the same connected
component, i.e., thatinearize(D) is connected.

To conclude that the evaluation of the transitive closuteé@formulaconnect ed
ends in finitely many steps, we need to show that there existgoper bound on the
number of line segments ininearize(D), needed to connect any two points in the
same connected componentlafmearize(D). Now, any semi-linear set can be de-
composed in a finite number of convex sets [44]. The finitené#sis decomposition
yields the desired bound. O

Since FO+PLY+TC is included in stratified DATALOG with polynomial con-
straints, Proposition 4 solves the question [15, 31, 33]thdrestratified DATALOG
with polynomial constraints can express the connectivitgry.

6.6 Volume Approximation

In this section, we shall use the box covering andstlagpproximation to approximate
the volume of semi-algebraic sets with an F@tP+TC formula. We restrict our
attention to bounded semi-algebraic sets and require ligagvtaluation of this FO+
PoLY+TC formula is effective for all bounded semi-algebraictitg

Let S = {S}, with S ann-ary relation name. LeD be a polynomial constraint
database oves.

The volumeof a databasé is defined as the Lebesgue-measure of the semi-
algebraic sef” C R", and is denoted by ®L(D).
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Figure 19: A semi-algebraic setwith x(A) = 12.
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Since we want an FO+®.y+TC formula whose evaluation is effective on all da-
tabases, it is impossible to define #xactvolume of polynomial constraint databases
in FO+PoLY+TC. Indeed, consider the database consisting of the wsktiin R2.
The volume ofD equalsr. Sincer is not algebraic, this value cannot be the output of
an effective FO+BLY+TC query.

Hence, as suggested by Koiran [28], and Benedikt and LiEinWe consider for
eache > 0, ane-volume approximation queryoL®, such that for any polynomial
constraint databasle overS, such that ifv € VoL®(D), then

lv — VoL(SP)| < e.

It is known that volume approximation is not expressible @+PoLy [5]. We
show that it is expressible in FOeRY+TC.
We will use the following result:

Theorem 12([28]). Let A be a semi-algebraic set R", and letj-cover(A) be its box
covering of sizé. Then

1
|[VoL(A) — VoL (é-cover(A))| < g(diam(A))""’lm(A)n, (34)
wherex(A) is the maximal number of connected components of the ictévaeof A
with any axis-parallel lineL (see Figure 19), and wheriam(A) is the diameter of
A5

Theorem 13. For eache > 0, there exists am-volume approximation query RO+
PoLY+TC.

Proof. We first show that the numberof Theorem 12 is expressible in FO®BPr+TC.
Thereto, first we define setsK; which contain(2n—1)-tuples(ai, ..., a;—1,@it1,. - ., an, D)
wherea; € Rforj =1,...,i—1,i+1,...,n, and wheregy is either an isolated

point on the intersection oft with {Z | A, ,; z; = a;}, or the middle of an inter-

val in this intersection. Using similar techniques as int®ec4, we compute for each
(a1,...,ai-1,a;41,...,a,)thenumber of pointg, suchthatas, ..., a;—1,ai41,...,an, D) €
K;. We then obtaim setsK| consisting ofn-tuples(as, ..., a;—1, @Gi+1,- .., an, N)

with N € N, and we definé/; to be the maximum of all thos¥ which are inK?/ for
SOME(a1, ..., Qi1, Qitl,-- ., 0n). FiNally,k = max{M,..., M,}.

SFor X C R™ bounded, theliameterof X is defined as the supremum fz — ]| | Z,4 € X}.
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Lets = < (diam(SP))"x(SP)n + 1. By Proposition 3, the box covering 6% of
sized is expressible in FO+®LY+TC. By Theorem 12, 6L (5-cove(S”)) approxi-
mates the volume of” within ane-error margin.

Recall thats-cover S”) is represented as2Zu-ary relation. Eacl2n-tuple corre-
sponds to am-dimensional box of sizé (see Section 5.5). Leir of boxes(y) be
the formula

[TC; .5 . lexicographic(b,b') Az’ =z + 1](bmin, 1, bmax ¥),

wherelexicographic(b, b') is an FO+RLY formula expressing thatis less thard’
with respect to the lexicographical ordering on tuple®if, and Wher&min,bmax €
5-covefSP) is the minimum (respectively maximumy-tuple in §-cover S”) with
respect to the lexicographical ordering. Finally,}etc R such thanr of boxes (V)
holds. Then we define®.°(v) to be the FO+BLY+TC formula which expresses that
v=NJ§". O

Since the)-approximation of4 is included in the box coveringycoverf A), a better
volume approximation can be obtained by using the volumédefiapproximation
instead of the volume ojf-covefA4). By the next theorem, this also gives an FO+
PoLY+TC expressible-approximation query.

It is known that taking the volume of a semi-linear set doestake us out the
semi-algebraic setting and that the volume of a semi-liseacan be expressed in the
aggregate language FO®Py+Sum [5].

Theorem 14. Let S = {S}, with S an n-ary relation name. There exists &0+
PoLy+TC formulavolume overS, such thatvolume(S?) is the volume of? for
any linear constraint database overS.

Proof. If dim(S”) < n, then we defingolume(x) = 2 = 0. Suppose thatim(S”) =
n. Since VOL(SP) = VoL(cl(int(SP))), we actually may assume thét’ is closed
and consists entirely of-dimensional pieces.

It is well-known thatS™ is a finite union of convex sets, . . ., ¢, of a partition of
R" induced by a finite number @i — 1)-dimensional hyperplands,, ..., H, [48].
Vandeurzen et al. [48] show that there exists an FO#Pformulahyperplanes(vs,
..., Un,d) such thatyperplanes(D) consists ofs tuples(vy,d;), ..., (¥s,ds) such
thatH; = {Z € R"™ | ;7 = d;}. Moreover, there exists an FO®Py formulapoints
such thatpoints(D) is equal to the extremal points of the convex sats . ., cs.
Recall that theextremal point®f a convex set are those points which cannot be written
as a linear combination of two other points of the convexSgL [

We now want to retrieve the extremal points of the convexesgts ., ¢,.. In order
to do so, we shall first select a unique point in the interioeath convex set. With
each of these points we then associate all special pointdwane in the corresponding
convex set. These will be then the extremal points.

We thus define an FO4Ry+TC formulauni que overS such thatuinique(D)
consists of pointgy, ..., ps such thaty; € int(c;) fori = 1,...,s. The formula
unique makes use of the following formulas ou&r
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e A formula overS which computes the barycenter of amdimensional simplex
obtained as the convex hull of &n—+ 1)-tuple of points inspecialpoints(D),
ie.,

barycenter(Z) = 3y .. -35n+1(/\ points(¥;)
i=1
1 S "
= n—((yl)i + A (Pnr1)i)-

e AformulainteriorsoverS which computes the interiors of the sets. . . , ¢,
ie.,

interiors(Z) = S(&) A ~(3v3d(hyperplanes(v,d) A v - & = d)).

e A formula overS which checks whether two barycenters are in the same convex

sete; for somey, i.e.,

samecell(Z, §) = barycenter(Z) A barycenter(y)
AVA(0 < A < 1) — interiors(AZ + (1 — M\)Y)

We then define the formulenique(Z) as
VZsamecell(Z, Z) — lexicographic(Z, ),
wherelexicographic(Z, 7) is an FO+®LyY formula expressing thatis less than or
equalz with respect to the lexicographical ordering on tupleRin.
Define the formula

extremal(Z, ) = points(Z) A unique(y)
AVA0 < XA < 1) — interiors(Ay + (1 — \)Z).

We can now identify each convex sst ... ¢,., so we may focus on a single con-
vex set. We now show that, given the extremal points of a coset¢c in R", a
decomposition of in a finite number of.-simplices can be constructed in FO3iF .
Then-simplices will be represented by+ 1 independent points.

We first identify the hyperplanes which hajre— 1)-dimensional intersection with
the boundary of the convex set Letey,..., e, be the extremal points aof. Let
onboundary be the FO+BLY formula which selects the tuples iyperplanes(D)
with this property. Next, letameface be an FO+BLY formula such thatace(€, ¥, d)
if and only if € is an extremal points of, (¥,d) € onboundary(éi,...,€), and
ee {Z¥eR"| U &= d}. Inthis way we can group the extremal points:&fuch that
each group corresponds to a single face of the convex.cell

For each face of, we now project the extremal points corresponding to thig fa
to R"~!, such that they are the extremal points of a convex s@®im!. So, if
face(#,v,d,€1,...,6x) A --- A face(Zy,U,d,€1,...,€x), then we obtain extremal
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points of a convex set iR™~! as follows: Leti € {1,...,n} be such tha{z € R" |

x; = 0} is not perpendicular t§z € R™ | ¥--- & = d} (This can be easily expressed
in FO+PoLY). Then consider the projectian : R* — R"~! defined asr; (1, ...,
Xn) — (T1,. .., Tio1, Tig1, - - -, ) and apply this map offy, . . ., Zy.

Algorithm TRIANGULATE-IN-n-DIMENSIONS
Input: The extremal pointsy, .. ., €, of a convex set in R™.
Output: A finite number ofn-simplices forming a decomposition of
Method:
1. Compute the pair&, d) € onboundary(€éi, ..., €x).
2. For each{©, d) € onboundary(éy,.. ., €y) do the following:

(a) Computeface(Z,v,d, ey, ... ,€).
(b) Find ani as described above and calRIRNGULATE-IN-(n — 1)-
DIMENSIONS(7; (face(, d, €1,...,€x)))
3. Select a poinf,,+; in the interior ofc.

4. Output the(n + 1)-tuples(pi, ..., pn, Pnt+1) Where(py, ..., pn) is ann-
tuple in the result of the calls of RIANGULATE-IN-(n — 1)-DIMENSIONS
in step 2(b).

We now define the FO+®LY formulasimplexdecomp overS such thasi npl ex-
deconp(D) is a decomposition inta-simplices of S”, for any polynomial con-
straint databas® over{S}. Lettriang be a formula which expresses the algorithm
TRIANGULATE-IN-n-DIMENSIONS. Then

simplexdecomp(Z1, ..., Znt1) = Fy(unique(y)

A triang(extremal)(Zy,...,Znt1,7))-

Let (1, ..., Pnt+1) be ann-simplex points. Let; = p; — py fori =2,...,n+ 1,
and letG be then x n matrix whose rows contain the coordinates of the veatpier
1 < j < n. Then by the Gram determinant formula [37], the volumegaf . . ., P 11)
is equal to

|det(GGY)|2
n!
whereG" is the transpose af’. Hence, the volumes of the simplices are expressible
by an FO+RLY formula, which we will denote byolsimplex.

)
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Finally, define

V(y) = [TCysiar,s = 1, - -+, Wnt1, 3G, - -+, In1
volsimplex(pi, ..., Ppni1) As = volsimplex(qy,. .., dnhi1)
A successor(qi, .- Gntls Ply- -« Dntl)
A simplexdecomp(p, ..., Pnt1) A simplexdecomp(qi, - - -, Ghnt1)
Ax' =z + 8](0,v1,y,v0),

wheresuccessor is a successor relation defined on thaimplices in the decom-
position into simplicesimplexdecomp(D), and wherey; andu, are respectively the
volume of the first and last simplex according to this suamesslation. The total
volume of S is then given by

volume(v) = JyV(y) Av =y + vy,

with v, as above. O
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