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Abstract

In the geometric data model for spatio-temporal data, introduced
by Chomicki and Revesz [6], spatio-temporal data are modelled as a
finite collection of triangles that are transformed by time-dependent
affinities of the plane. To facilitate querying and animation of spatio-
temporal data, we present a normal form for data in the geometric
data model. We propose an algorithm for constructing this normal
form via a spatio-temporal triangulation of geometric data objects.
This triangulation algorithm generates new geometric data objects
that partition the given objects both in space and in time. A partic-
ular property of the proposed partition is that it is invariant under

time-dependent affine transformations, and hence independent of the
particular choice of coordinate system used to describe the spatio-
temporal data in. We can show that our algorithm works correctly
and has a polynomial time complexity (of reasonably low degree in the
number of input triangles and the maximal degree of the polynomial
functions that describe the transformation functions). We also discuss
several possible applications of this spatio-temporal triangulation.

1 Introduction and Summary

At this moment, spatial databases are a well-established area of research.
Since most natural and man-made phenomena have a temporal as well as a
spatial extent a lot of attention has also been paid, during the last decade,
to modelling and querying spatio-temporal data [3, 4, 5, 15, 17, 18, 24, 29].
Several data models for representing spatio-temporal data have been pro-
posed already. In this article, we adopt the geometric data model that was

∗An extended abstract of an earlier version of this paper appeared as [20].
†Contact author: bart.kuijpers@uhasselt.be
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introduced by Chomicki and Revesz [6] and of which closure properties under
boolean operations were later studied by them and the present authors [5, 23].
In the geometric data model, spatio-temporal objects are finitely represented
as geometric objects, which in turn are collections of atomic geometric ob-
jects. An atomic geometric object is given by its spatial reference object
(which determines its shape), a time interval (which specifies its lifespan)
and a transformation function (which determines the movement of the ob-
ject during the time interval).

Although this model is very natural, it is not immediately clear how
the spatio-temporal object represented by some atomic geometric objects
looks like. This difficulty has several possible reasons. To start with, the
time domain of the spatio-temporal object has to be computed from the
time domains of all atomic geometric objects, which might overlap or may
contain gaps (i.e., moments when the spatio-temporal object does not exist).
Furthermore, two different sets of atomic geometric objects may represent the
same spatio-temporal object and there may be elements in the set of atomic
geometric objects that do not contribute to the spatio-temporal object at
all, as they may be overlapped totally by other atomic objects. In short,
the proposed geometric data model would benefit from a normal form that
supports visualization and describes the objects in a unique way.

We propose as a normal form an affine-invariant spatio-temporal trian-
gulation. This triangulation can be used to preprocess geometric objects in
order to facilitate querying and animation in such a way that queries can
be executed much more efficiently and require few additional computations.
The main reason for this is that in a spatio-temporal triangulation the data
is partitioned in space as well as in time. Hence, no objects overlap, thus
reducing unnecessary computations. Actually, we deviate a little from the
strict mathematical concept of a triangulation and allow triangles in a spatial
and spatio-temporal triangulation to share boundaries with each other, as is
not uncommon (see, e.g., [14]).

Our spatio-temporal triangulation is also invariant under time-dependent
affinities. In the area of spatial database research, much attention has been
payed to affine invariance of both data description and manipulation tech-
niques and queries [16, 19, 27]. The main idea of working in an affine invariant
way is to obtain methods and techniques that are not affected by affine trans-
formations of the ambient space in which the data is situated. This means
that a particular choice of origin or some particular, possibly artificial, choice
of unit of measure (e.g., inches, centimeters, ...) and direction of coordinate
axis has no effect on the final result of the method, technique or query. This
means that an affine-invariant method is robust with respect to a particular
choice of measuring data.

Also in other areas, invariance under affinities is often relevant. In com-
puter vision, the so-called weak perspective assumption [31] is widely adopted.
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Time Complexity Output complexity

Spatial data O(m2 log m) O(m2)
Spatio-temporal data O(z(d, ǫ)dm5 log m) O(m5d)

Table 1: Summary of the complexity results.

This assumption says that when an object is repeatedly photographed from
different viewpoints, and the object is relatively far away form the camera,
that all pictures of the object are affine images of each other, i.e., all images
are equal up to an affinity of the photographic plane. We generalize this as-
sumption for spatio-temporal objects as follows. If a spatio-temporal event
is filmed by two moving observers, relatively far away from the event, then
both films will be the same up to a time-dependent affinity of the plane of
the pellicle. For each time moment, another affinity maps the snapshots of
the different movies onto each other.

The weak perspective assumption has necessitated affine-invariant sim-
ilarity measures between pairs of pictures [21, 22, 32]. Also, in computer
graphics, affine-invariant norms and triangulations have been studied [25]. In
the field of spatial and spatio-temporal constraint databases [28, 30], affine-
invariant query languages [16, 19, 27] have been proposed. For spatial data,
there exist several triangulation algorithms, but, apart from the triangulation
of Nielson [25], their output is not affine-invariant. The method proposed by
Nielson to triangulate a set of points in an affine-invariant way computes
an affine-invariant norm using the coordinate information of all points, and
then uses this norm in the triangulation algorithm. We develop a spatial
triangulation algorithm that is more intuitive, that is efficiently computable
and that naturally extends to a spatio-temporal triangulation algorithm.

The main contribution of this paper is an affine-invariant time-dependent
triangulation algorithm that produces a unique and affine-invariant trian-
gulation of a spatio-temporal object given as a geometric data object. As
mentioned before, a geometric input object for this triangulation algorithm,
consists of m atomic geometric objects, given by a triangle, a time interval
and a time-dependent transformation function that we assume to be given
as a fraction of polynomial functions of degree at most d. We show that
our triangulation algorithm runs in polynomial time in the size of the in-
put, measured by m and d. The worst-case time complexity is of order
z(d, ǫ)dm5 log m, where z(d, ǫ) is the complexity of finding all roots of an
univariate polynomial of degree d, with accuracy ǫ. The maximal number
of atomic objects in the resulting triangulation is of order m5d6. For static
spatial data the time complexity of triangulating is of order m2 log m and the
number of returned triangles is of order m2. These results are summarized in
Table 1.

We remark that such triangulations could also be computed via general
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purpose cell decomposition algorithms, most notably cylindrical algebraic de-
composition [7]. These algorithms are not affine-invariant, however, and are
therefore not directly suitable for the computational task that we consider.

In this paper, we also show some applications of the proposed triangu-
lation and show that, when computed in a preprocessing stage, it facilitates
the computation of certain types of queries and operations.

The outline of this paper is as follows. In Section 2, we explain the ge-
ometric data model and define spatial and spatio-temporal triangulations.
We introduce an affine invariant spatial triangulation method in Section 3.
Afterwards, in Section 4, we describe a novel affine-invariant triangulation
of spatio-temporal data. We describe the algorithm in detail and give and
prove some properties. Then, we give some possible applications of the trian-
gulation in Section 5 and we end with some concluding remarks in Section 6.

2 Preliminaries and Definitions

We denote the set of real numbers by R and the two-dimensional real space
by R

2. The space containing moving 2-dimensional objects will be denoted
(R2 ×R). We will use x and y (with or without subscripts) to denote spatial
variables and t (with or without subscripts) to denote time variables. The
letter T (with or without subscripts) will be used to refer to triangles, which
we assume to be represented by triples of pairs of points in R

2.
In this section, we first give the definition of a spatial, a temporal and a

spatio-temporal object. Next, we come back to the need of a normal form.
Finally, we define affine triangulations of spatial and of spatio-temporal data.

2.1 Spatio-temporal Data in the Geometric Data Model

In this section, we describe the geometric data model as introduced by
Chomicki and Revesz [6], in which spatio-temporal data are modeled by
geometric objects that in turn are finite collections of atomic (geometric)
objects. First, we define temporal, spatial and spatio-temporal data objects.
In this definition we work with semi-algebraic sets because these are infinite
sets that allow a effective finite description by means of polynomial equalities
and inequalities. More formally, a semi-algebraic set in R

d is a Boolean com-
bination of sets of the form {(x1, x2, . . . , xd) ∈ R

d | p(x1, x2, . . . , xd) > 0},
where p is a polynomial with integer coefficients in the real variables x1, x2,
..., xd. Properties of semi-algebraic sets are well known [2].

Definition 1 A temporal object is a semi-algebraic subset of R, a spatial
object is a semi-algebraic subset of R

2 and a spatio-temporal object is a se-
mi-algebraic subset of (R2 × R). ⊓⊔
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With the time domain of a spatio-temporal object, we mean its projection
on the time axis, i.e., on the third coordinate of (R2 ×R). It is a well-known
property of semi-algebraic sets, that this projection is a semi-algebraic set
and can therefore be considered a temporal object [2].

t=0

t=1

t=2

t=3

t=4

1

-1

Figure 1: An example of a spatio-temporal object.

Example 1 The interval [0, 4] and the finite set {0, 1, 2, 3, 4} are examples
of temporal objects. The unit circle in the plane is a spatial object, since
it can be represented by the polynomial inequalities ¬(1 − x2 − y2 > 0) ∧
¬(x2 + y2 − 1 > 0), usually abbreviated by the formula x2 + y2 = 1. The
set {(x, y; t) ∈ R

2 × R | x ≥ 2t ∧ x ≤ 2 + 2t ∧ y ≥ −t − 1 ∧ y ≤ −t ∧ t ≥
0 ∧ t ≤ 4} is a spatio-temporal object and it represents rectangle that is
translated at constant speed during the time interval [0, 4]. At each moment
t in this interval it has corner points (2t,−t), (2 + 2t,−t), (2 + 2t,−t − 1)
and (2t,−t − 1), as illustrated in Figure 1. ⊓⊔

In the geometric data model [5, 6], spatio-temporal objects are finitely rep-
resented by geometric objects, which in turn are finite collections of atomic
geometric objects. An atomic geometric object is given by its spatial refer-
ence object (which determines its shape), a time interval (which specifies its
lifetime) and a transformation function (which determines the movement of
the object during the time interval).

Several classes of geometric objects were introduced, depending on the
types of spatial reference objects and transformations [5, 6]. In this article,
we consider spatio-temporal objects that can be represented as finite unions
of triangles moved by time-dependent affine transformations (see also Def-
inition 2). Other combinations have been studied [5] in which triangles,
rectangles or polygons are transformed by time-dependent translations, scal-
ings or affinities, that, in turn, are given by linear, polynomial or rational
functions of time. The class of geometric objects that we consider is not only
the most general of the classes that were previously studied, it is also one of
the few classes that have the desirable property of being closed under the set
operations union, intersection and difference [5]. In Section 4, we will rely
on this closure property.
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Definition 2 An atomic geometric object O is a triple (T, I, f), where
• T ⊂ R

2 is the spatial reference object of O, which is a (filled) triangle with
corner points that have rational or algebraic coefficients1;
• I ⊂ R is the time domain (a point or an interval) of O; and
• f : R

2 × R → R
2 is the transformation function of O, which is a time-

dependent affinity of the form

(x, y; t) 7→

(

a11(t) a12(t)
a21(t) a22(t)

)

·

(

x
y

)

+

(

b1(t)
b2(t)

)

,

where aij(t) and bi(t) are rational functions of t (i.e., of the form p1(t)/p2(t),
with p1 and p2 polynomials in the variable t with rational coefficients) and
the determinant of the matrix of the aij ’s differs from zero for all t in I. ⊓⊔

We remark that this definition guarantees that there is a finite represen-
tation of atomic geometric objects by means of the polynomial constraint
description of the time-interval, (the cornerpoints of) the reference triangle
and the coefficients of the transformation matrices. An atomic geometric
object O = (T, I, f) finitely represents the spatio-temporal object

{(x, y; t) ∈ R
2 × R | t ∈ I ∧ (∃x′)(∃y′)((x′, y′) ∈ T ∧ (x, y) = f(x′, y′; t))},

which we denote as st(O). Atomic geometric objects can be combined to
more complex geometric objects.

Definition 3 A geometric object is a set {O1, . . . ,On} of atomic geometric
objects. It represents the spatio-temporal object ∪n

i=1st(Oi). ⊓⊔

By definition 3, the atomic geometric objects that compose a geometric
object are allowed to overlap in time as well in space. This is a natural
definition, but we will see in Section 2.2, that this flexibility in design leads
to expensive computations when we want to query spatio-temporal objects
represented this way.

We define the time domain of a geometric object {O1, . . . ,On} to be the
smallest time interval that contains all the time intervals Ii of the atomic ge-
ometric objects Oi (this is the convex closure of these time intervals, denoted

by
⋃n

i=1Ii).
Remark that a spatio-temporal object is empty outside the time domain

of the geometric object that defines it. Also, within the time domain, a spa-
tio-temporal object is empty at any moment when no atomic object exists.

Example 2 The spatio-temporal object of Example 1 can be represented by
the geometric object {O1,O2}, where O1 is represented by (T1, [0, 4], f) and
O2 equals (T2, [0, 4], f), with T1 the triangle with corner points (0, 0), (2, 0),
(2,−1), T2 the triangle with corner points (0, 0), (0,−1), (2,−1), and f the
transformation (x, y; t) 7→ (x + 2t + 2, y − t − 1). ⊓⊔
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t=0 t=1 t=2 t=3 t=4 t=5

Figure 2: A spatio-temporal object (a traffic sign) shown at six moments.

Example 3 Figure 2 shows a traffic sign at six moments (seen by an ob-
server walking around it). This observation can be described by seven atomic
geometric objects. During the interval [0, 3[, there exist three atomic objects,
two triangles, and one line segment. At the time instant t = 3 there exists
one atomic object that represents the shape of a line. During the interval
]3, 5] there exist three atomic objects, two triangles, and a line segment. ⊓⊔

To end this subsection, we define the snapshot of a spatio-temporal object
at a certain moment in time. Snapshots are spatial objects that show what
a spatio-temporal object looks like at a certain moment.

Definition 4 Let O be an atomic object. Let τ0 be a time moment in
the time domain of O. The snapshot of O at time τ0, denoted Oτ0 , is the
intersection of the spatio-temporal object st(O) with the plane in (R2 × R)
defined by t = τ0, i.e., the plane R

2 × {τ0}.
Let {O1, . . . ,On} be a geometric object. The snapshot of {O1, . . . ,On}

at time τ0, denoted {O1, . . . ,On}
τ0 , is the union of the snapshots at τ0 of all

atomic objects that compose {O1, . . . ,On}, i.e., ∪n
i=1O

τ0
i . ⊓⊔

As explained in Example 3, Figure 2 shows six snapshots of a geometric
object representing a traffic sign seen by a moving observer.

2.2 The Benefits of a Normal Form

As remarked after Definition 3, the atomic objects that compose a geometric
object may overlap both in space as in time. As a consequence, it is impos-
sible to answer some very basic queries about a geometric object without a
lot of computations.

To know the time domain of a spatio-temporal object, for example, one
needs to check all atomic objects that describe it, sort the begin and end
points of their time domains, and derive the union of all time domains.

Also, there might be atomic objects that do not contribute at all to the
shape of the spatio-temporal object as they are entirely overlapped by other
atomic objects. These objects are taken along unnecessarily in computations.
Furthermore, two geometric objects that represent the same spatio-temporal

1For technical reasons, we allow a triangle to degenerate into a line segment or a point.
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object can have a totally different representation by means of atomic objects.
It is computationally expensive to derive from their different representations
that they are actually the same.

These drawbacks can be solved by introducing a normal form for geo-
metric objects, that makes their structure more transparent. This normal
form should have the property that it is the same for all geometric objects
that represent the same spatio-temporal object, independent of their initial
representation by means of atomic objects. In this paper, we add the re-
quirement that this normal form should be invariant under affinities. If two
geometric objects are the same up to time-dependent affinities, we also want
their normal form representation to be the same up to these affinities.

2.3 Affine Triangulation Methods

We end this section with the definition of affine spatial and spatio-temporal
triangulation methods.

Definition 5 [Spatial and spatio-temporal triangulation] Let {O1, . . . ,
On} be a geometric object and τ0 be a time moment in the time domain of
{O1, . . . ,On}.
• A collection of triangles2 {T1, T2, . . . , Tm} in R

2 is a triangulation of the
snapshot {O1, . . . ,On}

τ0 if the interiors3 of different Ti are disjoint and the
union ∪m

i=1Ti equals {O1, . . . ,On}
τ0 .

• A geometric object {T1, . . . , Tm} is a triangulation of a geometric object
{O1, . . . ,On} if for each τ0 in the time domain of {O1, . . . ,On}, {T1, . . . ,
Tm}

τ0 is a triangulation of the snapshot {O1, . . . ,On}
τ0 and if furthermore

st({O1, . . . ,On}) = st({T1, . . . , Tm}). ⊓⊔

We remark that in the second part of Definition 5, at each moment τ0 in
the time domain of {O1, . . . ,On}, T

τ0
i may be empty (i.e., τ0 may be outside

the time domain of Ti).
In Figure 3, two stars with their respective triangulations are shown. Note

that, although triangulations of spatial sets intuitively are partitions of such
sets into triangles, they are not partitions in the mathematical sense. Indeed,
the elements of the partition may have common boundaries. For spatial data,
it is customary to allow the elements of a partition to share boundaries (see
for example [14]).

A spatial triangulation method is a procedure that on input (some repre-
sentation of) a snapshot of a spatio-temporal object produces (some represen-
tation of) a triangulation of this snapshot. A spatio-temporal triangulation

2Remark that we consider filled triangles and we allow a triangle to degenerate into a
closed line segment or a point.

3We define the interior as follows: the interior of a triangle is its topological interior;
the interior of a line segment is the segment without endpoints; and the interior of a point
is the point itself.
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Figure 3: The triangulations of a snapshot (left) and of an affine transfor-
mation of the snapshot (right).

(A) (B) (C)

Figure 4: Two different triangulations ((B) and (C)) of a convex polygon
((A)).

method is a procedure that on input (some representation by means of geo-
metric objects of) a spatio-temporal object, produces (some representation
by means of geometric objects of) a triangulation of this spatio-temporal
object.

Next, we define what it means for such methods to be affine-invariant.

Definition 6 [Affine-invariant triangulation methods] A spatial tri-
angulation method TS is called affine invariant if and only if for any two
snapshots A and B, for which there is an affinity α : R

2 → R
2 such that

α(A) = B, also α(TS(A)) = TS(B).
A spatio-temporal triangulation method TST is called affine invariant

if and only if for any geometric objects {O1, . . . ,On} and {O′

1, . . . ,O
′

m}
for which for each moment τ0 in their time domains, there is an affinity
ατ0 : R

2 → R
2 such that if ατ0({O1, . . . ,On}

τ0) = {O′

1, . . . ,O
′

m}
τ0 , also

ατ0(TST ({O1, . . . ,On})
τ0) = TST ({O′

1, . . . ,O
′

m})
τ0. ⊓⊔

Example 4 Given a convex polygon as shown in (A) of Figure 4. A spatial
triangulation method that takes the leftmost of the corner points with the
smallest y-coordinates of the polygon and connects it with all other corner
points, is not affine invariant. It is not difficult to see that, when an affine
transformation is applied to the polygon, another point may become the
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leftmost lowest corner point. Part (B) of Figure 4 shows the result of applying
this triangulation method to the convex polygon shown in (A).

A triangulation method that computes the barycenter of a convex polygon
and connects it with all corner points is affine-invariant. An illustration the
output of this method applied to the polygon shown in (A) is shown in (C)
of Figure 4. ⊓⊔

We now propose an affine-invariant spatial triangulation method for spa-
tial figures that are snapshots of geometric objects, or, that can be repre-
sented as finite sets of triangles.

3 An Affine-invariant Spatial Triangulation

Method

We next propose an affine-invariant triangulation method. Later on, in Sec-
tion 4, we will use the technique proposed here to construct a spatio-temporal
triangulation algorithm. We first explain the intuition behind the triangu-
lation method, and then give the details in Algorithm 1. We illustrate the
algorithm with an example, prove its correctness and end with determining
the size of the output and the time complexity of the algorithm.

Intuitively, the algorithm is as follows. The input is a snapshot S, given
as a finite set of triangles. In Figure 5 (A), for example, a snapshot of a
house-like shape is given by four triangles. One of those triangles is degener-
ated into a line segment (representing the chimney). To make sure that the
triangulation is independent of the exact representation of the snapshot by
means of triangles, the boundary of the snapshot, i.e., the boundary of the
union of the triangles composing S, is computed. For the snapshot of Fig-
ure 5, the boundary is shown in (B). The (triangle degenerated into a) line
segment contributes to the boundary. Therefor, we label it, the reason for
this will become clear in a further stage of the procedure. Also, the (triangles
degenerated into) points of the input that are not part of a line segment or
real triangle, i.e., the ones contributing to the boundary, are added to the
output immediately.

The set of all lines through the edges of the boundary partitions the plane
into a set of open convex polygons, open line segments, open (half-) lines and
points. The (half-) lines and some of the polygons can be unbounded, so we
use the convex hull CH(S) of the corner points of all triangles in the input
as a bounding box. In (C) of Figure 5, the grey area is the area inside of the
convex hull. The partition of the area inside the convex hull is computed.
The points in this partition are not considered. The points contributing to
the boundary were already added to the output in an earlier stage. For each
open line segments, it is checked whether it is part of a labelled line segment

10



(A) (B) (C)

(D) (E)

Figure 5: The several steps in the spatial triangulation algorithm.

of the input. Recall that only line segments that contribute to the boundary
are labelled in an earlier stage of the algorithm. Only if an open line segment
is part of a labelled segment, as is the case for the one printed in bold in
Figure 5 (D), its closure (i.e., a closed line segment) is added to the output.
For each open polygon in the partition, we compute the polygon that is its
closure and triangulate this polygon using its center of mass (see Figure 5
(D) for a polygon in the partition and (E) for its triangulation). Some open
polygons are only part of the convex hull of S, but not of the snapshot itself.
The polygons shaded in grey in (D) of Figure 5 are an example of such
polygons. If a polygon does not belong to S, we do not triangulate it. The
triangulations of all other polygons are added to the output. Note that we
can decide whether a polygon belongs to the snapshot by first computing the
planar subdivision U(S) (which we will define next) of the input snapshot
and then test for each open polygon whether its center of mass belongs to
the interior of a region or face in the subdivision. We will explain this in
more detail when analyzing the complexity of the algorithm.

In the detailed description of the algorithm, we will use some well known
techniques. One of those is the doubly-connected edge list [10], used to store
planar subdivisions.

Definition 7 [Planar subdivision] A planar subdivision is a subdivision
of the plane into labelled regions (or faces), edges and vertices, induced by
a plane graph. The complexity of a subdivision is the sum of the number of
vertices, the number of edges and the number of faces it consists of. ⊓⊔

Next, we describe the doubly-connected edge list, a data structure to store
planar subdivisions. For this structure, each edge is split into two directed
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half-edges. In general, a doubly-connected edge list contains a record for each
face, edge and vertex of the planar subdivision.

Definition 8 [Doubly-connected edge list] Given a planar subdivision
S. A doubly-connected edge list for S, denoted DCEL(S), is a structure
containing a record for each face, edge and vertex of the subdivision. These
records store the following geometric and topological information:

(i) The vertex record of a vertex a stores the coordinates of a and a pointer
to an arbitrary half-edge that has a as its origin;

(ii) The face record of a face f stores a pointer to an arbitrary half-edge on
its boundary. Furthermore, for each hole in f , it stores a pointer to an
arbitrary half-edge on its boundary;

(iii) The half-edge record of a half-edge e stores five pointers. One to its
origin-vertex, one to its twin half-edge, one to the face it bounds, and
one to the previous and next half-edge on the boundary on that face.

⊓⊔

Example 5 Figure 6 shows a planar subdivision in (B) and its topological
structure in (C), that is reflected in the doubly-connected edge list repre-
sented in Table 2. ⊓⊔

Algorithm 1 (or TS) gives the triangulation procedure more formally. The
input of this triangulation algorithm is a snapshot S, consisting of a geometric
object which we assume to be given as a finite set of (possibly overlapping
and possibly degenerated) triangles. We further assume that each triangle is
represented as a triple of pairs of coordinates, which are rational numbers.

To shorten and simplify the exposition of Algorithm 1, we assume that
S is fully two-dimensional, or equivalently, that points and line segments
that are not adjacent to a polygon belonging to S are already in the output.
Including their triangulation in the algorithm would make its description
tedious, as we would have to add, and consider, more node and edge labels.

We use C programming-style notation for pointers to records and elements
of records. For example, Let a = (a1, a2). In the vertex record Va of a,
Va.x = a1 and Va.y = a2. Let e be an edge record. The coordinates of the
origin e → origin of e are e → origin → x and e → origin → y.

Before proving the correctness of the algorithm and determining the size
of the output and the time complexity of the algorithm, we give an example.

Example 6 Let S be the set {T1, T2}, where T1 is the triangle with corner
points v1, v3 and v4, and T2 the triangle with corner points v2, v3 and v4, as
depicted in Figure 6. The doubly-connected edge list corresponding to (C)

12



Algorithm 1 TS (Input: S = {T1, T2, . . . , Tk}, Output: {T ′

1, T ′

2, . . . , T ′

ℓ})

1: Out:= ∅.
2: Compute the set B(S) containing all line segments, bounding a triangle

of the input, that contribute to the boundary of S (i.e., that contain
an edge of the boundary). Meanwhile, construct the planar subdivision
U(S) induced by the triangles composing S.

3: Compute the convex hull CH(S) of S.
4: Construct the doubly connected edge list DCEL(S), induced by the pla-

nar subdivision defined by the lines through the segments of B(S), using
CH(S) as a bounding box.

5: while there are any unvisited half-edges in DCEL(S) left do
6: Let e be an unvisited edge.
7: Σx := 0, Σy := 0, count := 0, Elist := ∅.
8: while e is unvisited do
9: Mark e with the label visited.

10: Elist := Elist ∪ {(e → origin, e → next → origin)}, Σx := Σx + e →
origin → x, Σy := Σy + e → origin → y, count := count + 1.

11: e := e → next.
12: end while
13: x := ( Σx

count
, Σy

count
).

14: if the point a in x belongs to a face of U(S) then
15: for all elements (as, ae) of Elist do
16: Out := Out ∪{Taasae

}, where Taasae
is the (closed) triangle with

corner points a, as and ae.
17: end for
18: end if
19: end while
20: return Out.
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Figure 6: The different steps of Algorithm 1 applied to S = {T1, T2}. In
this example, all boundary segments of all triangles of S contribute to the
boundary of S. The line arrangement induced by the carriers of the edges
of the input triangles is bounded by the convex hull of the input in (B). A
doubly-connected edge list is constructed out of the line arrangement, storing
its topological structure in (C). Finally, the triangulation is computed in (D).
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Half-edge Origin Twin IncidentFace Next Prev

e1,2 v1 e2,1 f5 e2,4 e3,1

e2,1 v2 e1,2 f1 e1,5 e5,2

e1,3 v1 e3,1 f2 e3,5 e5,2

e3,1 v3 e1,3 f5 e1,2 e4,3

e1,5 v1 e5,1 f1 e5,2 e2,1

e5,1 v5 e1,5 f2 e1,3 e3,5

e2,4 v2 e4,2 f5 e4,3 e1,2

e4,2 v4 e2,4 f3 e2,5 e5,4

e2,5 v2 e5,2 f3 e5,4 e4,2

e5,2 v5 e2,5 f1 e2,1 e1,5

e3,4 v3 e4,3 f4 e4,5 e5,3

e4,3 v4 e3,4 f5 e3,1 e2,4

e3,5 v3 e5,3 f2 e5,1 e1,3

e5,3 v5 e3,5 f4 e3,4 e4,5

e4,5 v4 e5,4 f4 e5,3 e3,4

e5,4 v5 e4,5 f3 e4,2 e2,5

Table 2: The half-edge records of the doubly-connected edge list correspond-
ing to Figure 6.

is shown in Table 2. We omitted the structures for vertices and faces, as we
don’t need them for the second part of the algorithm.

After the doubly-connected edge list is constructed, we create and output
the triangles. This is done by visiting all half-edges once. Suppose we start
with e2,1. The next-pointers lead to e1,5 and e5,2. The next pointer of the last
one points to e2,1, which we visited already. This means we visited all edges
of one polygon. The center of mass can now be computed and the triangles
added to the output. This is done for all polygons that are part of the input.
In this example, the polygon with corner points v1, v5 and v2 will not be
triangulated, as it is not part of the input. The algorithm stops when there
are no more unvisited edges left. ⊓⊔

Note that, as an optimization, we could decide to not triangulate faces
that are triangles already. This does not influence the complexity results,
however. Therefor, and also for a shorter and more clear exposition, we
formulated the algorithm in a more general form.

We now prove compute the complexity of both the output and execution
time of the triangulation method described in Algorithm 1 and afterwards
show that it is affine-invariant. First, we show that TS is indeed a triangula-
tion method.

Property 1 (Algorithm 1 is a triangulation method) Let S be a snap-
shot. The output TS(S) of Algorithm 1 applied to S is a triangulation of S.
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Proof. Let the set of triangles {T1, T2, . . . , Tk} determine a snapshot S. It is
easy to see that the output TS(S) = {T ′

1, T
′

2, . . . , T
′

ℓ} of TS is a triangulation.
By construction, TS(S) is a set of triangles that either have no intersection, or
share a corner point or bounding segment. It is clear from the algorithm that
⋃

i=1k Ti =
⋃

j=1ℓ T ′

j , because each triangle in TS(S) is tested for membership
of S. We are also sure that S is covered by the output, because initially, the
convex hull of S is triangulated, which contains S. ⊓⊔

Property 2 (Quadratic output complexity) Let a snapshot S be given
by the set {T1, T2, . . . , Tm}, consisting of m triangles. The triangulation
TS(S), where TS is the triangulation method described in Algorithm 1, con-
tains O(m2) triangles.

Proof. It is well-known (see, e.g., [8]), that an arrangement of m lines in
the plane results in a subdivision of the plane containing O(m2) lines, O(m2)
edges and O(m2) faces. It follows that the structure DCEL(S) will contain
O(m2) half-edges, i.e., two half-edges for each edge in the arrangement. In the
worst case scenario, when all faces of the partition of the bounding box belong
to S, one triangle is added to the output for each half-edge in DCEL(S)
(connecting that half-edge with the center of mass of the face it bounds).
Therefor, the output contains O(m2) triangles. ⊓⊔

In the following analysis of the running time of Algorithm 1, we assume
that triangles are represented as triples of points, and that a point is repre-
sented as a pair of rational or algebraic numbers. We further assume that all
basic arithmetic operations on coordinates of points require constant time.

Property 3 (O(m2 log m) running time) Let a snapshot S be given by
the set {T1, T2, . . . , Tm}, consisting of m triangles. The triangulation method
TS, described in Algorithm 1, computes the triangulation TS(S) of S in time
O(m2 log m).

Proof. Let a snapshot S be given by the set {T1, T2, . . . , Tm}. Using a plane-
sweep algorithm [11], we compute both the list of segments contributing to
the boundary of S and the planar subdivision U(S) induced by

⋃m

i=1 Ti.
This takes O(m2 log m), as there are at most m2 intersection points between
boundary segments of triangles of S.

The m triangles composing S together have at most 3m different corner
points. Computing the convex hull of m points in the plane can be done in
time O(m log m) (see [9]). The same authors propose, in [8], an algorithm
to compute a doubly-connected edge list, representing an arrangements of
m lines, in time O(m2). We next show that the changes we make to this
algorithm do not influence its running time. So, as B(S) contains at most
all 3m line segments, it induces an arrangement of at most 3m lines. Hence,
Step 3 of Algorithm 1 also takes time O(m2).
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We changed the original algorithm [8] for computing the doubly-connected
edge list of an arrangement of lines as follows:

(i) We computed the convex hull of the input to serve as a bounding box
instead of an axis-parallel rectangle containing all intersection points
of the arrangement. The complexity of computing such an axis-parallel
rectangle is higher (O(m2)) than that of computing the convex hull
(O(m log m)).

(ii) The cost of constructing the doubly-connected edge list of the convex
hull is O(m), as the convex hull contains at most 3m corner points
and the algorithm for computing it, as described in [9], already outputs
the corner points of the convex hull in circular order. In the original
algorithm [8] with an axis-parallel bounding rectangle, computing the
doubly-connected edge list of this rectangle only takes constant time.
This extra time does, however, not affect the overall complexity.

(iii) The next step of both algorithms involves finding the intersection points
between the lines to be inserted and the partial arrangement induced
by the previously inserted lines. In the original algorithm, this is easier
only for the intersection of a line with the bounding box. For the
intersections with all other lines in the arrangement, the cost is the
same.

The next part of Algorithm 1 (starting from Line 5) takes time O(m2 log m).
Each half-edge of the doubly-connected edge list is visited only once. Also,
each half-edge is only inserted once into the set Elist, and consulted only once
therein to create a triangle. As an arrangement of m lines in the plane results
in O(m2) edges, the number of half-edges in DCEL(S) also is O(m2). We can,
in time O(m2), preprocess U(S) into a structure that allows point location in
O(log m) time [13]. Therefor, testing for each of the O(m2) centers of mass
whether they are part of the input takes O(m2 log m). We can conclude that
all parts of Algorithm 1 run in time O(m2 log m). ⊓⊔

Table 3 summarizes the computational complexity of the various parts of
Algorithm 1.

Property 4 (TS is affine-invariant) The triangulation method TS is affine-
invariant.

Proof. According to the definition of affine-invariance of spatial triangu-
lation methods (Definition 6), we have to prove the following. Let A be a
snapshot given by the set of triangles {Ta,1, Ta,2, . . . , Ta,k} and B be a snap-
shot given by the set of triangles {Tb,1, Tb,2, . . . , Tb,ℓ}, such that there exists
an affinity α : R

2 → R
2 for which B = α(A). Then, for each triangle T of

TS(A), it holds that the triangle α(T ) is a triangle of TS(B).
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Line(s) Step Time complexity

2 Compute B(S) and U(S) O(m2 log m)
3 Compute CH(S) O(m log m)
4 Compute DCEL(S) O(m2)

5 − 19 Polygon extraction and triangulation O(m2 log m)

Overall time complexity O(m2 log m)

Table 3: The time complexity of the various parts of Algorithm 1, when the
input is a snapshot represented by n triangles.

We prove this by going through the steps of the triangulation procedure
TS. Let A and B be as above.

The convex hull and boundary of spatial figures are both affine-invariant
(more specific, the boundary is a topological invariant). Intersection points
between lines and the order of intersection points on one line with other
lines are affine-invariant (even topological invariant). The subdivision of the
convex hull CH(B) of B induced by the arrangement of lines through the
boundary of B is hence the image under α of the subdivision of the convex
hull CH(A) of A induced by the arrangement of lines through the boundary of
A. The doubly-connected edge list only stores topological information about
the arrangement of lines, i.e., which edges are incident to which vertices and
faces. Naturally, this information is preserved by affine transformations. The
center of mass of a convex polygon is an affine invariant. Finally, the fact
that a triangle is inside the boundary of the input and the fact that it is not
are both affine-invariant. This completes the proof. ⊓⊔

Summarizing this section, we proposed a spatial triangulation method
that, given a snapshot consisting of m triangles, returns an affine-invariant
triangulation of this snapshot containing O(m2) triangles, in time O(m2 log m).

We remark here that the idea of using carriers of boundary segments to
partition figures was also used in an algorithm to decompose semi-linear sets
by Dumortier, Gyssens, Vandeurzen and Van Gucht [12]. Their algorithm is
not affine-invariant, however.

In the next section, we will use the affine triangulation for snapshots to
construct a triangulation of geometric objects.

4 An Affine-invariant Spatio-temporal Trian-

gulation Method

In this section, we present an spatio-temporal triangulation algorithm that
takes as input a geometric object, i.e., a finite set of atomic geometric objects.
We will adapt the spatial triangulation method TS, described in Algorithm 1,
for time-dependent data.
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The proposed spatio-temporal triangulation algorithm TST will have three
main construction steps. First, in the partitioning step, the time domain
of the geometric object will be partitioned into a set of points and open
time intervals. For each element of this partition, all its snapshots have
an isomorphic triangulation, when computed by the method TS. We refer
to Definition 9 below for a formal definition of this isomorphism. Second,
in the triangulation step, the spatio-temporal triangulation is computed for
each element in the time partition, using the fact that all snapshots have
isomorphic triangulations. Third, in the merge step, we merge objects when
possible, to obtain a unique (and minimal) triangulation.

We will start this section by defining isomorphic triangulations. Then we
explain the different steps of the algorithm for computing a spatio-temporal
affine-invariant triangulation of geometric objects separately. We illustrate
the algorithm with an example and end with some properties of the triangu-
lation.

Intuitively, two snapshots S1 and S2 are called TS-isomorphic if the tri-
angles in TS(S1) ∪ TS(CH(S1) \ S1) and TS(S2) ∪ TS(CH(S2) \ S2) have the
same (topological) adjacency graph. In particular, if S1 and S2 are equal up
to an affinity of R

2, then they are TS-isomorphic.

Definition 9 [TS-isomorphic snapshots] Let S1 and S2 be two snapshots
of a geometric object. We say that S1 and S2 are TS-isomorphic, denoted
S1 ≡TS

S2, if there exists a bijective mapping h : R
2 → R

2 with the following
property: A triangle T = (a1, a2, a3) of TS(S1) is incident to the triangles
T1,2, T2,3 and T3,1 (where each Ti,((i+1) mod 3) is either a triangle of TS(S1)
that shares the segment aia((i+1) mod 3) with T, a triangle of TS(CH(S1) \
S1) that shares the segment aia((i+1) mod 3) with T, or is ǫ, which means
that no triangle shares that boundary segment with T) if and only if, the
triangle h(T) = (h(a1), h(a2), h(a3)) belongs to TS(S2) and is bounded by
h(T1,2), h(T2,3) and h(T3,1). Moreover, if Ti,((i+1) mod 3) is a triangle of TS(S1),
then h(Ti,((i+1) mod 3)) is a triangle of TS(S2) that shares the line segment
h(ai)h(a((i+1) mod 3)) with h(T), if Ti,((i+1) mod 3) is a triangle of TS(CH(S1) \
S1), then h(Ti,((i+1) mod 3)) is a triangle of TS(CH(S2) \ S2) that shares the
line segment h(ai)h(a((i+1) mod 3)) with h(T) and if Ti,((i+1) mod 3) equals ǫ,
then so does h(Ti,((i+1) mod 3)). ⊓⊔

Example 7 The triangulations shown in Figure 3 are TS-isomorphic to each
other. In Figure 7, all snapshots shown except the one at time moment
t = 3 are TS-isomorphic. The snapshot at time moment t = 3 is clearly not
isomorphic to the others, since it consists only of one line segment. ⊓⊔

Remark that for Figure 3, the mapping h is an affinity. In Figure 7, this
is not the case.
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t=0 t=1 t=2 t=3 t=4 t=5

Figure 7: Snapshots of a traffic sign as seen by an observer circularly moving
around it.
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Figure 8: The snapshots at time moments t = 1
4
(A), t = 1

2
(B), t = 1 (C),

t = 3
2
(D), t = 2 (E), t = 5

2
(F), t = 3 (G), t = 7

2
(H) and t = 4 (I) of the

geometric object of Example 8.

Now, we introduce a spatio-temporal triangulation method TST that con-
structs a time-dependent affine triangulation of spatio-temporal objects that
are represented by geometric objects. We will explain its three main steps,
i.e., the partitioning step, the triangulation step and the merge step sepa-
rately in the next subsections.

We will illustrate each step on the following example.

Example 8 Let O = {O1,O2} be a geometric object, where O1 is given
as (((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2,
3)), [0, 4], f) and f is the mapping given by (x, y, t) 7→ (x + t, y). Figure 8
shows the snapshots of O at time moments t = 1

4
(A), t = 1

2
(B), t = 1 (C),

t = 3
2
(D), t = 2 (E), t = 5

2
(F), t = 3 (G), t = 7

2
(H) and t = 4 (I). ⊓⊔

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be
a geometric object. We assume that the Si are given as triples of points (i.e.,
pairs of rational or algebraic numbers), the Ii as structures containing two
rational or algebraic numbers and two flags (indicating whether the interval
is closed on the left or right side) and, finally, the fi are affinities given by
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rational functions, i.e., fractions of polynomials with integer coefficients (that
we assume to be given in dense or sparse representation), for i = 1, . . . , m.

4.1 The Partitioning Step.

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be a
geometric object. In the first step of TST , the time domain I of O, i.e., the
convex closure

⋃m

i=1Ii of the union of all the time domains Ii(i = 1, . . . , m)
is partitioned in such a way that, for each element of that partition, all its
snapshots are TS-isomorphic.

Below, we refer to the set of lines that intersect the border of fi(Si, τ) in
infinitely many points, the set of carriers of the snapshot fi(Si, τ) and denote
it car(fi(Si, τ)), (i = 1, . . . , m).

In [5], we defined the finite time partition P of the time domain of two
atomic objects in such a way that for each element P of P, the carrier sets of
each snapshot of P are topologically equivalent. This definition can easily be
extended to an arbitrary number of atomic objects. Also the property stating
that the finite time partition exists, still holds in the extended setting.

Definition 10 [Generalized finite time partition] We call a finite time
partition of a geometric object O = {O1,O2, . . . ,Om} any partition of the in-

terval I =
⋃m

i=1Ii into a finite number of time intervals J1, . . . , Jk such that for
any τ, τ ′ ∈ Jℓ (and all 1 ≤ ℓ ≤ k),

⋃m

i=1 car(fi(Si, τ)) and
⋃m

i=1 car(fi(Si, τ
′))

are topologically equivalent sets in R
2. ⊓⊔

Here, two subsets A and B of R
2 are called topologically equivalent when

there exists an orientation-preserving homeomorphism h of R
2 such that

h(A) = B.
The proof of the following property follows the lines of a proof in [5].

Property 5 (Existence of a generalized finite time partition) Let O
= {O1,O2, . . . ,Om} be a geometric object.There exists a finite time partition
of O. ⊓⊔

We now proceed with the partitioning step of the spatio-temporal tri-
angulation algorithm. In this step, a generalized finite time partition of O
is computed, using the information of the time-dependent carriers of the
atomic objects in O. Each time an intersection point between two or more
time-dependent carriers starts or ceases to exist, or when intersection points
change order along a line, a new time interval of the partition is started.
Given three continuously moving lines, the intersection points of the first
line with the two other lines only change order along the first line, if there
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Algorithm 2 Partition (Input: O = {O1, ...,On}, Output: χ =
(τ1, τ2, . . . , τm))

1: Let χ = (τ1 ≤ τ2 ≤ . . . ≤ τk) (with 2 ≤ k ≤ 2n) be a sorted list of time
moments that appear either as a begin or endpoint of Ii for any of the
objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n.

2: C = ∅.
3: for all atomic objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n do
4: Add the new atomic objects (Si,1, Ii, fi), (Si,2, Ii, fi) and (Si,3, Ii, fi) to

C, where Si,1, Si,2 and Si,3 are the boundary segments of Si.
5: end for
6: for all pairs of objects (Si,ℓ1, Ii, fi) and (Sj,ℓ2, Ij, fj) of C (1 ≤ i < j ≤

n; 1 ≤ ℓ1, ℓ2 ≤ 3) do
7: if Ii ∩ Ij 6= ∅ then
8: Compute the end points of the intervals during which the intersection

of the carriers of both time-dependent line segments does exist. Add
those such end points that lie within the interval Ii ∩ Ij to χ, in a
sorted way.

9: end if
10: end for
11: for all triples of objects (Si,ℓ1, Ii, fi), (Sj,ℓ2, Ij, fj) and (Sk,ℓ3, Ik, fk) of C

(1 ≤ i < j < k ≤ n; 1 ≤ ℓ1, ℓ2, ℓ3 ≤ 3) do
12: if Ii ∩ Ij ∩ Ik 6= ∅ then
13: Compute the end points of the intervals during which the carriers of

the three time-dependent line segments intersect in one point. Add
those such end points that lie within the interval Ii ∩ Ij ∩ Ik to χ, in
a sorted way.

14: end if
15: end for
16: Return χ.
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Element Carrier

Oc,1 = (((−1, 0), (1, 0)), [0, 4], Id) y = 0
Oc,2 = (((−1, 0), (0, 2)), [0, 4], Id) y = 2x + 2
Oc,3 = (((0, 2), (1, 0)), [0, 4], Id) y = −2x + 2
Oc,4 = (((−3, 1), (−1, 1)), [0, 4], f) y = 1
Oc,5 = (((−3, 1), (−2, 3)), [0, 4], f) y = 2x + 7 − 2t
Oc,6 = (((−2, 3), (−1, 1)), [0, 4], f) y = −2x − 1 + 2t

Table 4: The elements of the list C during the execution of the partitioning
algorithm (Algorithm 2) on the geometric object from Example 9.

exists a moment where all three lines intersect in one point. Algorithm 2
describes the partitioning step in detail.

We will show later that the result of the generalized finite time partition
is a set of intervals during which all snapshots are TS-isomorphic. This par-
tition is, however, not the coarsest possible partition having this property,
because there might be atomic objects that, during some time, are completely
overlapped by other atomic objects. Therefor, we will later, after the trian-
gulation step, again merge elements of the generalized finite time partition,
whenever possible.

We illustrate Algorithm 2 on the geometric object of Example 8.

Example 9 Recall from Example 8 that O = {O1,O2}, where O1 is given
as (((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2,
3)), [0, 4], f) and f is the affinity mapping triples (x, y, t) to pairs (x + t, y).

We now illustrate the partitioning algorithm on input O. First, the list
χ will contain the time moments 0 and 4. The list C will contain six el-
ements. Table 4 shows these segments and the formulas describing their
time-dependent carriers. All pairs of segments have an intersection that ex-
ists always, except for the pairs (Oc,2,Oc,5), (Oc,3,Oc,6) and (Oc,1,Oc,4). The
intersections of Oc,2 with Oc,5 and Oc,3 with Oc,6 exist only at respectively
t = 5

2
, t = 3

2
. The segments Oc,1 and Oc,4 never intersect. Of all possible

triples of carriers, only two triples have a common intersection within the
interval [0, 4]. The carriers of Oc,2, Oc,4 and Oc,6 intersect at t = 1

2
and the

carriers of Oc,3, Oc,4 and Oc,5 intersect at t = 7
2
. The partitioning step will

hence return the list

χ = (0,
1

2
,
3

2
,
5

2
,
7

2
, 4).

⊓⊔

We analyze both the output complexity and sequential time complexity of
the partition step. First remark that the product of ℓ univariate polynomials
of degree d is a polynomial of degree ℓd. Let the transformation function of an
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atomic object consists of rational coefficients, being fractions of polynomials
of degree at most d. It follows that the time-dependent line segments and
carriers can be defined using fractions of polynomials in t of degree O(d).
Also, the time-dependent intersection point of two such carriers and the
time-dependent cross-ratio of an intersection point compared to two moving
end points of a segment, can be defined using fractions of polynomials in t
of degree O(d).

Property 6 (Partition: output complexity) Given a geometric object
O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting
of n atomic objects. Let d be the maximal degree of any polynomial in
the definition of the transformation functions fi, 1 ≤ i ≤ n. The procedure
Partition, as described in Algorithm 2, returns a partition of I =

⋃n

i=1Ii

containing O(n3d) elements.

Proof. It is clear that the list χ contains O(n) elements after Line 1 of
Algorithm 2. Indeed, at most two elements are added for each atomic object.
The list C will contain at most 3n elements. For each atomic object with a
reference object that is a “real” triangle, 3 elements will be added to C. In
the case that one or more corner points coincide, one or two objects will be
added to C.

Now we investigate the number of time moments that will be inserted
to χ while executing the for-loop starting at Line 6 of Algorithm 2. The
intervals during which the intersection of two time-dependent carriers exists
are computed. The intersection of two time-dependent line segments doesn’t
exist at time moments where the denominator of the rational function defin-
ing it is zero. Because this denominator always is a polynomial P in t, it has
at most deg(P ) zeroes, where deg(P ) denotes the degree of P . Accordingly,
at most deg(P ) = O(d) elements will be added to χ. Hence, in total, O(n2d)
time moments are added in this step.

For the intersections of three carriers, a similar reasoning can be used.
Hence, during the execution of the for-loop starting at Line 11 of Algorithm 2,
O(n3d) elements are added to χ.

We can conclude that the list χ will contain O(n3d) elements. ⊓⊔

Now we analyze the time complexity of Partition. We first point out
that finding all roots of an univariate polynomial of degree d, with accuracy
ǫ can be done in time O(d2 log d log log(1

ǫ
)) [26]. We will use the abbreviation

z(d, ǫ) for the expression O(d2 log d log log(1
ǫ
)). Note also that, although the

product of two polynomials of degree d is a polynomial of degree 2d, the
computation of the product takes time O(d2). To keep the proofs of the
complexity results as readable as possible, we will consider the complexity of
any manipulation on polynomials (computing zeros, adding or multiplying)
to be z(d, ǫ), where a precision of ǫ is obtained.
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Property 7 (Partition: computational complexity) Given a geomet-
ric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}
consisting of n atomic objects. Let d be the maximal degree of any poly-
nomial in the definition of the transformation functions fi, 1 ≤ i ≤ n and
let ǫ be the desired precision for computing the zeros of polynomials. The
procedure Partition, as described in Algorithm 2, returns a partition of
I =

⋃n

i=1Ii in time O(n3(z(d, ǫ) + d log n)).

Proof. Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}
be a geometric object. Let d be the maximum degree of any of the polyno-
mials used in the definition of the functions fi, 1 ≤ i ≤ n.

Constructing the initial list χ, on Line 1, takes time O(n log n) (it is
well known that the inherent complexity of sorting a list of n elements is
O(n logn)). Computing the set C can be done in time O(nd): all n elements
of O are considered, and the time needed to copy the transformation functions
fi depends on the maximal degree the polynomials defining them have. Recall
that C contains at most 3n elements.

The first for-loop, starting at Line 6 of Algorithm 2 is executed O(n2)
times. One execution of its body takes z(d, ǫ). Indeed, computing the formula
representing the time-dependent intersection, checking whether its denomi-
nator is always zero and finding the zeros of the denominator (a polynomial
of degree linear in d) have all time complexity z(d, ǫ). Therefor, the first
for-loop takes time O(n2z(d, ǫ)) in total.

The second for-loop has time complexity O(n3z(d, ǫ)). The reasoning here
is the same as for the previous for-loop.

Finally, sorting the list χ, which contains O(n3d) elements at the end,
requires O(n3d log(nd)).

If we summarize the complexity of all the separate steps, we obtain
O(n3(z(d, ǫ) + d log n)). ⊓⊔

We now proceed with the triangulation step.

4.2 The Triangulation Step.

Starting with a geometric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2),
. . . ,On = (Sn, In, fn)}, the partitioning algorithm identifies a list χ of time

moments that is used to partition the time domain I =
⋃n

i=1Ii of O into
points and open intervals. For each element in that partition (point or open
interval), we now triangulate the part of O restricted to that point or open
interval.

The triangulation of the snapshots of O at the time moments in χ is
straightforward. For each of the time moments τ of χ, the spatial triangu-
lation method TS is applied to the snapshot Oτ . For each of the triangles T
in TS(Oτ ), an atomic object is constructed with T as reference object, the
singleton {τ} as time domain and the identity as its transformation function.
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The triangulation of the parts of O restricted to the open intervals in the
time partition requires a new technique. We can however benefit from the fact
that throughout each interval, all snapshots of O have an TS-isomorphic tri-
angulation. For each of the open intervals defined by two subsequent elements
]τj , τ(j+1)[ of χ, we compute the snapshot at the middle τm = 1

2
(τj + τ(j+1))

of ]τj , τ(j+1)[ and its triangulation TS(Oτm). Each triangle boundary seg-
ment that contributes to the boundary of Oτm at time moment τm, will also
contribute to the boundary of O at the snapshot of O at any time moment
τ ∈]τj , τ(j+1)[. So, the moving line segment can be considered a boundary seg-
ment throughout ]τj , τ(j+1)[. If two carriers of boundary segments intersect at
time moment τm, the intersection of the moving segments will exist through-
out ]τj , τ(j+1)[, and so on. Therefor, we will compute the spatial triangulation
of the snapshot Oτm using the procedure TS, but we will copy every action
on a point or line segment at time moment τm on the moving point of line
segment of which the point or segment is a snapshot. The triangles returned
by the spatial triangulation algorithm when applied to Oτm will be reference
objects for the atomic objects, returned by the spatio-temporal triangula-
tion algorithm. These atomic objects exist during the interval ]τj , τ(j+1)[.
Knowing the functions representing the time-dependent corner points of the
triangles (because of the copying), together with the time interval and the
reference object, we can deduce the transformation function and construct
atomic objects (the formula computing this transformation was given in [5]).

Next, a detailed description of the spatio-temporal triangulation is given
in Algorithm 3. In this description of the spatio-temporal triangulation pro-
cedure, we will use the data type Points which is a structure containing a
(2-dimensional) point (represented using a pair of real numbers), a pair of
rational functions of t (a rational function is represented using a pair of vec-
tors of integers, denoting the coefficients of a polynomial), representing a
moving point, and finally a time interval (represented as a pair of real num-
bers and two flags indicating whether the interval is open or closed at each
end point). We will only use or fill in this time information when mentioned
explicitly. Given an element Pt of type Points, we address the point it stores
by Pt → Point, the functions of time by Pt → fx and Pt → fy respectively,
and the begin and end point of the time interval by Pt → Ib and Pt → Ie.
The flags Pt → Cb and Pt → Ce are true when the interval is closed at
its begin or end point respectively. A pair of elements of the type Points is
denoted an element of the type Segments.

We again illustrate the spatio-temporal triangulation algorithm on the
geometric object of example 8.

Example 10 Recall from Example 8 that O = {O1,O2}, where O1 is given
as (((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2,
3)), [0, 4], f) and f is the affinity mapping triples (x, y, t) to pairs (x + t, y).
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Algorithm 3 Triangulate (Input: O = {O1, ...,On}, χ = (τ1, . . . , τk), Out-
put = {O′

1, . . . ,O
′

ℓ})

1: for all time moments τj , j = 1 . . . k, of χ do
2: for all triangles T in TS(Oτj ) do
3: return the atomic element (T, {τj}, Id).
4: end for
5: end for
6: Let S< be the list containing all atomic objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n,

sorted by the begin points Ii,b of their time domains.
7: Let SActive be a list of elements of the type Segments, SActive = ().
8: for all pairs (τj , τj+1), j = 1 . . . (k − 1)), in χ do
9: τm:= 1

2
(τj + τj+1).

10: Remove all elements (Pt1, P t2) of SActive for which τj = Pt1 → Ie =
Pt2 → Ie.

11: for all elements (Pt1, P t2) remaining in SActive do
12: Ptr → Point := (Ptr → fx(τm), P tr → fy(τm)), r = 1, 2.
13: end for
14: for all Oi = (Si = (a1, a2, a3), Ii, fi) in S< for which Ii,b is τi do
15: Construct three Points Pt1, Pt2 and Pt3 such that Ptr → Point =

ar, Ptr → fx = fi(ar,x, τm), Ptr → fy = fi(ar,y, τm) and Ptr → Ib

and Ptr → Ie respectively contain τj and τj+1 (r = 1, . . . , 3).
16: Construct three Segments St1, St2 and St3, containing two different

elements from the set {Pt1, P t2, P t3}. Add them to SActive.
17: end for
18: Compute the set Bt(SActive) of elements of the type Segments, using

only the constant point information of the elements of SActive. Mean-
while, construct the subdivision U(Oτm).

19: Compute the convex hull CHt(SActive), using only the constant point
information of the elements of SActive, a list of elements of the type
Points.

20: Construct DCELt(SActive), where each half-edge (resp. origin) is now
an element of the type Segments (resp. Points). Use CHt(SActive) as
a bounding box. Each time the intersection of two constant carriers
is computed, also compute the formula representing the moving inter-
section point.

21: while there are any unvisited Segments St in DCELt(S) left do
22: Compute the list Etlist of Segments that form a convex polygon.

Compute the Points structure Ptm containing both the constant
and time-dependent center of mass of that polygon

23: if Ptm → Point belongs to a face of U(Oτm) then
24: for all elements St = (Pt1, P t2) of Etlist do
25: Output the atomic object (S, I, f), where S is the triangle with

corner points Pt1 → Point, Pt2 → Point and Ptm → Point
and I is ]τj , τj+1[. The transformation function f is computed
using the functions Pt1 → fx, Pt1 → fy, Pt2 → fx, Pt2 → fy,
Ptm → fx and Ptm → fy.

26: end for
27: end if
28: end while
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(A) (B) (C) (D) (E)

(F) (G) (H) (I)

Figure 9: The triangulations of the objects of Example 8 at time moments
t = 1

4
(A), t = 1

2
(B), t = 1 (C), t = 3

2
(D), t = 2 (E), t = 5

2
(F), t = 3 (G),

t = 7
2
(H) and t = 4 (I).

From Example 9, we recall that the output of the procedure Partition
on input O was the list χ = (0, 1

2
, 3

2
, 5

2
, 7

2
, 4).

The triangulation of the snapshots at one of the time moments in χ are
shown in Figure 9. To keep the example as simple as possible, we did not
further triangulate convex polygons that are triangles already.

The open intervals to be considered are ]0, 1
2
[, ]1

2
, 3

2
[, ]3

2
, 5

2
[, ]5

2
, 7

2
[ and

]7
2
, 4[. We illustrate the triangulation of the interval ]0, 1

2
[. During the time

interval ]0, 1
2
[, the triangulation will always look like the one shown in Part

(A) of Figure 9. Hence, O2 will not change, and O1 will be partitioned
into seven triangles. The top one will not change, so the atomic object
(((0, 2), (1, −1

2
), (1, 1

2
)), ]0, 1

2
[, Id) will be part of the output. For the others,

we have to compute the time-dependent intersections between the carriers
and afterwards apply the formula from [5]. We illustrate this for O2. the
snapshot of O2 at the middle point 1

4
of ]0, 1

2
[ is the triangle with corner points

(−11
4

, 1), (−3
4

, 1) and (−7
4

, 3). Its time-dependent corner points are (−3+ t, 1),
(−1 + t, 1) and (−2 + t, 3). Solving the matrix equation

















−11
4

1 0 0 1 0
0 0 −11

4
1 0 1

−7
4

3 0 0 1 0
0 0 −7

4
3 0 1

−3
4

1 0 0 1 0
0 0 −3

4
1 0 1

































a(t)
b(t)
c(t)
d(t)
e(t)
f(t)

















=

















−3 + t
1

−2 + t
3

−1 + t
1

















gives the transformation function f ′ that maps triples (x, y, t) to pairs (x −
1
4

+ t, y). ⊓⊔

We also give the output complexity and time complexity for this trian-
gulation step.
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Property 8 (Triangulation step: output complexity) Given a geomet-
ric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}
consisting of n atomic objects and a finite partition χ of its time domain into
k time points and k − 1 open intervals. The procedure Triangulation, as
described in Algorithm 3, returns O(n2k) atomic objects.

Proof. The number of atomic objects returned by the triangulation proce-
dure for one time interval is the same as the number of triangles returned by
the spatial triangulation method on a snapshot in that interval. We know
from Property 2 that the number of triangles in the triangulation of a snap-
shot composed from n triangles is O(n2). Since their are O(k) moments and
intervals for which we have to consider such a triangulation, or a slightly
adapted version of it, this gives O(n2k). ⊓⊔

Property 9 (Triangulation step: computational complexity) Let a ge-
ometric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In,
fn)} consisting of n atomic objects and a finite partition χ of its time do-
main into k time points and k − 1 open intervals be given. Let d be the
maximal degree of any polynomial in the definition of the transformation
functions fi, 1 ≤ i ≤ n and let ǫ be the desired precision for computing the
zeros of polynomials. The procedure Partition, as described in Algorithm 2,
returns a spatio-temporal triangulation of O in time O(kz(d, ǫ)n2 log n).

Proof. The first for-loop of Algorithm 3 is executed k times. The time
needed for computing the snapshot of one atomic object at a certain time
moment is z(d, ǫ). The spatial triangulation algorithm TS runs in time
O(n2 log n), as was shown in Property 3. So we can conclude that the body
of the first for-loop needs O(n2 log n + nz(d, ǫ)) time. Sorting the atomic
objects by their time domains takes O(n log n).

The second for loop is executed once for each open interval, defined by
two consecutive elements of χ. In the body of this loop, first the list SActive

is updated. Each insertion or update takes time z(d, ǫ). At most all objects
are in the list SActive, so this part, described in the Lines 10 through 18 of
Algorithm 3, needs time O(nz(d, ǫ)). The next part, described in the Lines 19
through 29 essentially is the spatial triangulation algorithm, but, any time
the intersection between two line segments is computed, also the rational
functions defining the time-dependent intersection of their associated time-
dependent line segments are computed. Computing those functions takes
time z(d, ǫ). So the second part of the body of the second for loop requires
O(z(d, ǫ)n2 log n).

If we add up the time complexity of two for-loops and the sorting step,
we have O(k(nz(d, ǫ) + n2 log n) + n log n + kz(d, ǫ)(n + n2 log n)), which is
O(kz(d, ǫ)n2 log n). ⊓⊔
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4.3 The Merge Step.

We already mentioned briefly in the description of the partitioning step that
the partition of the time domain, as computed by Algorithm 2, might be
finer than necessary. The partitioning algorithm takes into account all line
segments, also those of objects that, during some time span, are entirely
overlapped by other objects. To solve this, we merge as much elements of
the time partition as possible.

The partition of the time domain is such that the merging algorithm will
either try to merge a time point τ and an interval of the type ]τ, τ ′) or (τ ′, τ [,
or two different intervals of the type (τ ′′, τ ] and ]τ, τ ′) or (τ ′′, τ [ and [τ, τ ′).
Here, we use the (unusual) notational convention that ( and ) can be either
[ or ].

The simplest case is when a time moment and an interval have to be
tested. Assume that these are (τ ′, τ [ and τ , respectively. These elements
can be merged if there is a one to one mapping M from the atomic elements
with time domain (τ ′, τ [ to those with time domain {τ} in the triangulation.
Furthermore, for each pair of atomic objects O1 = (S1, (τ

′, τ [, f1) and O2 =
(S2, {τ}, Id), O2 = M(O1) if and only if the left limit limt→τ f1(S1, t) = S2.
Note that, for rational functions f of t, limt→τ f(t) equals f(τ), provided
that τ is in the domain of f 4.

When two intervals are to be merged, the procedure involves some more
tests. Let (τ ′′, τ [ and [τ, τ ′) be the intervals to be tested. First, we have to
verify that for each atomic object O1 = (S1, (τ

′′, τ [, f1), [τ, τ ′) is in the domain
of f1 and that for each atomic object O2 = (S2, [τ, τ

′), f2), (τ ′′, τ [ is in the
domain of f2. Second, we have to test whether (τ ′′, τ [ can be continuously
expanded to (τ ′′, τ ]. This involves the same tests as for the simple case where
an interval and a point are tested. Finally, two atomic object can only be
merged if the combined atomic object again is an atomic object. This means
that, if S2 would have been chosen as a reference object for O1, then f1 would
be equal to f2, and vice versa. This can be tested ([5]).

This merge step guarantees that the atomic objects exist maximally and
that the resulting triangulation is the same for geometric objects that repre-
sent the same spatio-temporal object. Algorithm 4 shows this merging step
in detail.

We illustrate Algorithm 4 on the geometric object of Example 8.

Example 11 Recall from Example 8 that O = {O1,O2}, where O1 is given
as (((−1, 0), (1, 0), (0, 2)), [0, 4], Id) and O2 is given as (((−3, 1), (−1, 1), (−2,
3)), [0, 4], f) and f is the linear affinity mapping triples (x, y, t) to pairs (x +
t, y).

4Note that τ is in the domain of f only if all coefficients of the transformation function
f are well-defined for t = τ and if the determinant of f is nonzero for t = τ .
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Algorithm 4 Merge (Input: O = {O1, ...,On}, χ = (τ1, τ2, . . . , τk), Output:
{O′

1,O
′

2, . . . ,O
′

ℓ}

1: Sort all atomic objects Oi by their time domains.
2: Let χ′ be the list (τ1, ]τ1, τ2[, τ2, . . . , ]τk−1, τk[, τk).
3: Let J1 be the first element of χ′ and J2 the second.
4: while there are any elements in χ′ left do
5: S1 (resp. S2) is the set of all objects having J1 (resp. J2) as their time

domain.
6: if J1 is a point then
7: Preprocess the reference objects of the elements of S1 such that we

can search the planar subdivision U1 they define.
8: let Found be true.
9: for all objects Oi = (Si, J2, fi) in S2 do

10: Check whether J1 is part of the time domain of fi.
11: Compute their snapshot at time J1 (which is a triangle T).
12: Do a point location query with the center of mass of T in U1 and

check whether the triangle found in S1 has the same coordinates
as T. If not, Found becomes false.

13: if Found is false then
14: break;
15: end if
16: end for
17: if found is true then
18: remove all elements of S1 from O and extend the time domain of

all elements of S2 to J1 ∪ J2.
19: J1 = J1 ∪ J2 and J2 is the next element of χ′ if any exists.
20: else
21: J1 = J2 and J2 is the next element of χ′, if any exists.
22: end if
23: else
24: if J2 is a point then
25: do the same as in the previous case, but switch the roles of J1 and

J2.
26: else
27: Let J ′

1 be the element of {J1, J2} the form (τ ′′, τ [ and J ′

2 the one
of the form [τ, τ ′).

28: Check whether (τ ′′, τ [ and {τ} can be merged.
29: if this can be done then
30: Check for each pair of matching atomic objects whether their

transformation functions are the same ([5]).
31: end if
32: end if
33: end if
34: end while
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From Example 9, we recall that the output of the procedure partition
on input O was the list χ = (0, 1

2
, 3

2
, 5

2
, 7

2
, 4). This resulted in a partition of

the interval [0, 4] consisting of the elements {0}, ]0, 1
2
[, {1

2
}, ]1

2
, 3

2
[, {3

2
}, ]3

2
, 5

2
[,

{5
2
}, ]5

2
, 7

2
[, {7

2
}, ]7

2
, 4[ and {4}. For each of these elements, (a snapshot of)

their triangulation is shown in Figure 9.
During the merge step, the elements t = 0 and ]0, 1

2
[ of the time partition

will be merged. ⊓⊔

It is straightforward that the output and input of the merging algorithm
have the same order of magnitude. Indeed, it is possible that no intervals
are merged, and hence no objects. We discuss the computational complexity
of the algorithm next. Note that the complexity is expressed in terms of
the size of the input to the merging algorithm, which is the output of the
spatio-temporal triangulation step.

Property 10 (Merge step: computational complexity) Given a geo-
metric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)},
which is the output of the triangulation step, and a finite partition χ of its
time domain into K time moments and open intervals. Let d be the maxi-
mal degree of any polynomial in the definition of the transformation functions
fi(1 ≤ i ≤ n) and let ǫ be the desired precision for computing the zeros of
polynomials. The procedure Merge, as described in Algorithm 4, merges
the atomic objects in O in time O(n log n

K
+ nz(d, ǫ)).

Proof. Sorting all atomic objects by their time domains can be done in
time O(n logn). Computing the list χ′ can be straightforwardly done in time
O(K). This list will contain 2K − 1 elements. We assume that K > 1 (in
case K = 1 the merging algorithm is not applied). The while-loop starting
at Line 4 of Algorithm 4, is executed at most 2K − 2 times. Indeed, at each
execution of the body of the while-loop, one new element of χ′ is considered.
The if-else structure in the body of the while-loop distinguishes three cases.
All cases have the same time complexity, as they are analogous. We explain
the first case in detail.

The number of atomic objects having the same time domain is of the or-
der of magnitude of O( n

K
). This follows from Property 8. The preprocessing

of the snapshot takes O( n
K

) time [13]. The for-loop, starting at Line 9 of
Algorithm 4 is executed at most O( n

K
) times. The time needed for checking

whether an atomic object exists at some time moment and computing the
snapshot (a triangle) is z(d, ǫ). Because of the preprocessing on the snap-
shot at time moment J1, testing the barycenter of the triangle against that
snapshot can be done in O(log n

K
) time [13]. In case the snapshots are the

same, adjusting the time domains of all atomic objects takes time O( n
K

).
Summarizing, the time complexity of the first case is O( n

K
log n

K
+ n

K
z(d, ǫ)).
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Step Time complexity Output complexity

Partition O(z(d, ǫ)n3 log n) O(n3d)
Triangulate O(z(d, ǫ)dn5 log n) O(n5d)
Merge O(n5d(log n + z(d, ǫ))) -

Overall O(z(d, ǫ)dn5 log n) O(n5d)

Table 5: The output and time complexity of the various parts of Algorithm 5,
when the input is a geometric object, composed of n atomic objects, where
the maximal degree of the polynomials describing the transformation func-
tions is d and the desired precision for computing the zeros of polynomials is
ǫ.

Combining this with the fact that the while-loop is executed O(K) times,
and the time complexity of the first two steps of the algorithm, we get an
overall time complexity of O(n log n

K
+ nz(d, ǫ)). ⊓⊔

Finally, the spatio-temporal triangulation procedure TST combines the
partition, triangulation and merging step. Algorithm 5 combines all steps.

Algorithm 5 TST (Input: O = {O1, ...,On}, Output: {O′

1,O
′

2, . . . ,O
′

ℓ})

1: χ = Partition(O);
2: {O′′

1 ,O
′′

2 , . . . ,O
′′

m} = Triangulate(O, χ);
3: if χ has more than one element then
4: {O′

1,O
′

2, . . . ,O
′

ℓ} = Merge({O′′

1 ,O
′′

2 , . . . ,O
′′

m}, χ);
5: return {O′

1,O
′

2, . . . ,O
′

ℓ}.
6: else
7: return {O′′

1 ,O
′′

2 , . . . ,O
′′

m}.
8: end if

The following property follows from Property 6 and Property 8.

Property 11 (TST : output complexity) Given a geometric object O =
{O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n
atomic objects. Let d be the maximal degree of any polynomial in the defini-
tion of the transformation functions fi(1 ≤ i ≤ n). The spatio-temporal tri-
angulation method TST , as described in Algorithm 5, returns O(n5d) atomic
objects.

The next property follows from Property 7, Property 9 and Property 10.
Table 5 summarizes the time complexity of the different steps.

Property 12 (TST : computational complexity) Given a geometric ob-
ject O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consist-
ing of n atomic objects. Let d be the maximal degree of any polynomial
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in the definition of the transformation functions fi(1 ≤ i ≤ n) and let ǫ be
the desired precision for computing the zeros of polynomials. The spatio-
temporal triangulation method TST , as described in Algorithm 5, returns a
spatio-temporal triangulation of O in time O(z(d, ǫ)dn5 log n).

We now show that Algorithm 5 describes an affine-invariant spatio-temporal
triangulation method. We remark first that the result of the procedure TST is
a spatio-temporal triangulation. Given a geometric object O. It is clear that
each snapshot of TST (O) is a spatial triangulation. Also, st(O) = st(TST (O)).
This follows from the fact that the time partition covers the whole time do-
main of O and that the method TS produces a spatial triangulation.

Property 13 (TST is affine-invariant) The spatio-temporal triangulation
method TST , described in Algorithm 5, is affine-invariant.

Proof. (Recall Definition 6 for affine-invariance.) Let O = {O1, . . . ,On}
and O′ = {O′

1, . . . ,O
′

m} be geometric objects for which for each moment
τ0 in their time domains, there is an affinity ατ0 : R

2 → R
2 such that

ατ0({O1, . . . ,On}
τ0) = {O′

1, . . . ,O
′

m}
τ0 .

It follows from the construction of the spatio-temporal triangulation that
TST ({O1, . . . ,On})

τ0 = TS({O1, . . . ,On}
τ0) and also TST ({O′

1, . . . ,O
′

m})
τ0 =

TS({O′

1, . . . ,O
′

n}
τ0). The property now follows from the affine-invariance of

the spatial triangulation method TS. ⊓⊔

The following corollary follows straightforwardly from Property 13:

Corollary 1 Let O = {O1, . . . ,On} and O′ = {O′

1, . . . ,O
′

m} be two geo-
metric objects such that there is an affinity α : R

2 → R
2 such that, for each

moment τ0 in their time domains α(Oτ0) = O′τ0 holds. Then, for each atomic
element (S, I, f) of TST (O), the element (α(S), I, f) belongs to TST (O′). ⊓⊔

This shows that the partition is independent of the coordinate system
used to represent the spatio-temporal object. The affine partitions of two
spatio-temporal objects that are affine images of each other only differ in the
coordinates of the spatial reference objects of the atomic objects.

Remark also that, in practice, either most of the original objects have
the same time domain, making the number of intervals in the partition very
small, or all different time domains, which greatly reduces the number of
objects existing during each interval. So, in practice, the performance will
be better than the worst case suggests.

5 Applications

We now describe some applications that we believe can benefit from the
triangulation described in Algorithm 5. We first say what we mean by a
spatio-temporal database.
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Definition 11 A spatio-temporal database is a set of geometric objects. ⊓⊔

For this section, we assume that each atomic object is labelled with the
id of the geometric object it belongs to.

5.1 Efficient Rendering of Objects

When a geometric object that is not in normal form has to be displayed
to the user, there are two tasks to perform. First, the snapshots of the
geometric object at each time moment in the time domain of the object have
to be computed. This can be done in a brute force way by computing the
snapshots of all atomic objects. Since some will be empty, this approach
might lead to a lot of unnecessary computations. Another algorithm could
keep track of the time domains of the individual atomic objects and keep
a list of active ones at the moment under consideration, which has to be
updated every instant. If the geometric object is in normal form, the atomic
objects can be sorted by their time domains, and during each interval in the
partition of time domain, the list of active atomic objects will remain the
same.

The second task is the rendering of the snapshot. If the geometric object is
not in normal form, the snapshots of the atomic objects overlap, so pixels will
be computed more than once. Another solution is computing the boundary,
but this might take too long in real-time applications. When a geometric
object is in normal form, no triangles overlap, so each pixel will be computed
only once.

5.2 Moving Object Retrieval

The triangulation provides a means of automatic affine invariant feature ex-
traction for moving object recognition. Indeed, the number of intervals in
the time domain indicates the complexity of the movement of the geometric
object. This can be used as a first criterium for object matching. For objects
having approximately the same number of intervals in their time domains,
the snapshots at the middle of each time interval can be compared. If they are
all similar, which can be, for example, defined as TS-isomorphic, the objects
match. Or, if more exact comparison is needed, one can extract an affine-
invariant description from the structure of the elements of the triangulation
of the snapshot (see also Section 5.6).

5.3 Surveillance Systems

In some applications, e.g., surveillance systems, it is important to know the
time moments when something changed, when some discontinuity appeared.
This could mean that an unauthorized person entered a restricted area, for
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example, or that a river has burst its banks. Triangulating the contours
of the recorded images and reporting all single points and end points of
intervals of the partition of the time domain indicates all moments when
some discontinuity might have occurred.

5.4 Precomputing Queries

If we do not triangulate each geometric object in a database separately, but
use the contours of all geometric objects together in the triangulation, the
atomic objects in the result will have the following nice property. For each
geometric object in the original database, an atomic object will either belong
to (or be a subset of) it entirely, or not at all. This means that we can label
each element of the spatio-temporal triangulation of the database with the
set of id’s of the geometric objects it belongs to. We illustrate this for the
spatial case only in Figure 10. Suppose we have two triangles A and B. The
set A is the union of the light grey and white parts of the figure, the set B is
the union of the dark grey and white parts of the figure. After triangulation,
we can label the light grey triangles with {A}, the white triangle with {A, B},
and the dark grey triangles with {B}.

A

B

Figure 10: The set operations between objects are pre-computed in the tri-
angulation.

Using this triangulation of databases in a preprocessing stage, means that
the results of queries that ask for set operations between geometric objects
are also pre-computed. Answering such a query boils down to checking labels
of atomic objects. This means a lot of gain in speed at query time. Indeed,
even to compute, for example, the intersection of two atomic objects, one
has to compute first the intervals where the intersection exists, and then to
consider all possible shapes the intersection can have, and again represent it
by moving triangles.
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5.5 Maintaining the Triangulation.

If a geometric object has to be inserted into or removed from a database (i.e.,
a collection of geometric objects), the triangulation has to be recomputed for
the intervals in the partition of the time domain that contain the time domain
of the object under consideration. This may require that the triangulation
in total has to be recomputed.

However, the nature of a lot of spatio-temporal applications is such that
updates involve only the insertion of objects that exists later in time than the
already present data. In that case, only the triangulation at the latest time
interval of the partition should be recomputed together with the new object,
to check whether the new data are a continuation of the previous. Also,
data is removed only when it is outdated. In that case a whole time interval
of data can be removed. Examples of such spatio-temporal applications are
surveillance, traffic monitoring and cadastral information systems.

5.6 Affine-invariant Querying of Spatio-temporal
Databases

An interesting topic for further work is to compute a new, affine-invariant
description of geometric objects in normal form, that does not involve co-
ordinates of reference objects. The structure of the atomic objects in the
spatio-temporal triangulation can be used for that. Once such a description
is developed, a query language can be designed that asks for affine-invariant
properties of objects only.

6 Concluding Remarks

We adopted the hierarchical data model of Chomicki and Revesz [6] for mov-
ing objects, since it is natural and flexible. However, this model lacks a
normal form, as different sets of objects might represent the same spatio-
temporal set in R

2 × R. Furthermore, we are interested in affine-invariant
representation and querying of objects, as the choice of origin and unit of
measure should not affect queries on spatio-temporal data.

We first introduced a new affine-invariant triangulation method for spatial
data. We then extended this method for spatio-temporal data in such a way
that the time domain is partitioned in intervals for which the triangulations
of all snapshots are isomorphic.

The proposed affine-invariant triangulation is natural and can serve as an
affine-invariant normal form for spatio-temporal data. Further work includes
the affine-invariant finite representation of data and the design of an affine-
generic spatial/ spatio-temporal query language to query such a normal form.
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