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ABSTRACT
We address aggregate queries over GIS data and moving ob-
ject data, where non-spatial information is stored in a data
warehouse. We propose a formal data model and query lan-
guage to express complex aggregate queries. Next, we study
the compression of trajectory data, produced by moving ob-
jects, using the notions of stops and moves. We show that
stops and moves are expressible in our query language and
we consider a fragment of this language, consisting of regu-
lar expressions to talk about temporally ordered sequences
of stops and moves. This fragment can be used not only for
querying, but also for expressing data mining and pattern
matching tasks over trajectory data.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

General Terms
Design, Languages

Keywords
GIS, OLAP, View Materialization

1. INTRODUCTION
Geographic Information Systems (GIS) have been exten-

sively used in various application domains, ranging from eco-
nomical, ecological and demographic analysis, to city and
route planning [14]. In recent years, time is playing an
increasingly important role in GIS and spatial data man-
agement [11]. One particular line of research in this direc-
tion, introduced by Wolfson [15, 16, 17], concerns moving
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object data. Moving objects, carrying location-aware de-
vices, produce trajectory data in the form of a sample of
(Oid, t, x, y)-tuples, that contain object identifier and time-
space information. Recently, the notions of stops and moves
were introduced [2, 10]. These concepts serve to compress
the trajectory data that is produced by moving objects us-
ing application-dependent places of interest. A designer may
want to select a set of places of interest that are relevant
to her application. For instance, in a tourist application,
such places can be hotels, museums and churches. In a traf-
fic control application, they may be road segments, traffic
lights and junctions, stored in GIS layers. If a moving object
spends a sufficient amount of time in a place of interest, this
place is considered a stop of the object’s trajectory. In be-
tween stops, the trajectory has moves. Thus, we can replace
a raw trajectory given by (Oid, t, x, y)-tuples by a sequence
of application-relevant stops and moves. This also adds se-
mantic information valuable for querying and analysis.

In this paper, we are interested in aggregate queries over
GIS data and moving object data. Typically, when aggre-
gation becomes important, it is advisable to organize the
non-spatial data in a GIS in a data warehouse. In a data
warehouse, numerical data are stored in fact tables built
along several dimensions. For instance, we may store the
sales amounts in a fact table over three dimensions store,
time and product. In general, dimensions are organized into
aggregation hierarchies. For example, stores can aggregate
over cities which in turn can aggregate into regions and coun-
tries. Each of these aggregation levels can also hold descrip-
tive attributes like city population, the area of a region, etc.
On Line Analytical Processing(OLAP) [6] provides tools and
algorithms that allow efficiently querying a data warehouse.

1.1 Motivation and Running Example
We motivate our work with the following example. Figure

1 (left) shows a simplified map of Paris, containing two ho-
tels, denoted Hotel 1 and Hotel 2 (H1 and H2 from here on),
the Louvre and the Eiffel tower. We consider three moving
objects, O1, O2 and O3. Object O1 goes from H1 to the
Louvre, the Eiffel tower, spends just a few minutes there,
and returns to the hotel. Object O2 goes from H2 to the
Louvre, the Eiffel tower, (spending a couple of hours visiting
each place), and returns to the hotel. Object O3 leaves H2
to the Eiffel tower, visits the place, and returns to H2. An
example of these trajectory samples is shown on the right
hand side of Figure 1. All points of the same trajectory are
temporally ordered (and stored together). In what follows,
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Oid t x y
O1 1 x1 y1
O1 2 x2 y2
O1 3 x3 y3
O1 4 x4 y4
... ... ... ...
O2 5 x5 y5
O2 6 x6 y6
O2 7 x7 y7
... ... ... ...
O3 4 x5 y5
O3 5 x8 y8
O3 6 x9 y9
... ... ... ...

Figure 1: Running example

we will use the object identifier as the trajectory identifier,
unless specified.

Many useful applications open in this scenario. For in-
stance, a GIS user may be interested in finding out trajec-
tory information, like “number of persons going from H1 to
the Louvre and then to the Eiffel tower (stopping for visiting
both places) in the same day”, or “number of persons going
from a hotel in the left bank of the Seine, to the Louvre in
the mornings during the last summer season”. An analyst
may also want to discover hidden information using data
mining techniques. For instance, she would like to identify
interesting patterns in the trajectory data using association
rule mining. Complex queries that aggregate non-spatial in-
formation, and also involve GIS and moving object data,
must also be addressed. For instance, “total sales in muse-
ums such that people visit them before going to the Eiffel
Tower in the same day, and that are located in the left bank
of the Seine”.

1.2 Related Work
The field of moving objects databases has been extensively

studied in the last ten years, specially regarding data mod-
eling an indexing. Güting and Schneider [4] provide a good
reference to this large corpus of work. Wolfson [17] et al
stated a set of capabilities that a moving object database
must have, and introduced the DOMINO system. Hornsby
and Egenhofer [5] introduced a framework for modeling mov-
ing objects, that supports viewing objects at different granu-
larities, depending on the sampling time interval. The basic
modeling element they consider is a geospatial lifeline, which
is composed of triples of the form < Id, location, time >,
where Id is the identifier of the object, location is given
by x-y coordinates, and time is the timestamp of the ob-
servation. The possible positions of an object between two
observations is estimated to be within two inverted half-
cones that conform a lifeline bead, whose projection over
the x-y plane is an ellipse. For mining trajectories in road
networks, Brakatsoulas et al [1] proposed to enrich trajec-
tories of moving objects with information about the rela-
tionships between trajectories (e.g., intersect, meets), and
between a trajectory and the GIS environment (stay within,
bypass, leave). They also propose a mining language de-
noted SML (for Spatial Mining Language). However, the
language does not take advantage of the particular char-
acteristics that moving object data present. Lee et al. [8]
aim at discovering common sub-trajectories, and also use
the a partitioning strategy, proposing a partition-and-group
framework for clustering trajectories.

Techniques that add semantic information to trajectory
data have been recently proposed. Mouza and Rigaux [10]
presented a model where trajectories are represented by a
sequence of moves. They propose a query language based
on regular expressions, aimed at obtaining so-called mobility
patterns. Note that this language, as well as the proposals
commented above, does not relate trajectories with the GIS
environment. With a similar idea, Damiani et al. [2] intro-
duced the concept of stops and moves, in order to enrich
trajectories with semantically annotated data.

Data aggregation is still an open field, either in GIS or
in a moving objects scenario. Meratnia and de By [9] have
tackled the topic of aggregation of trajectories, identifying
similar trajectories and merging them in a single one, by
dividing the area of study into homogeneous spatial units.
Papadias et al [12] index historical aggregate information
about moving objects. Kuijpers et al. [7] proposed a taxon-
omy of aggregation queries on moving object data.

1.3 Contributions and Paper Organization
Our proposal studies problems not addressed in the efforts

commented above. To begin with, we present a conceptual
model and aggregation language that integrates with GIS
and non-spatial data (stored in the data warehouse) in a uni-
fied framework (Section 2). At the basis of this aggregation
query language is a multi-sorted first-order query language
Lmo for moving object and GIS data in which one can spec-
ify properties of moving objects, geometric elements of GIS
layers and OLAP data storing the non-spatial GIS data (Sec-
tion 3). We give a geometric definition of stops and moves
and show that they are computable and study the compres-
sion of trajectory data, using the notions of stops and moves
(see Section 4). Finally, we sketch a sub-language of Lmo

that allows us to talk about temporally ordered sequences of
stops and moves. The syntax of this language is given in the
form of regular expressions (see Section 5). We show that
this language considerably extends the language proposed
by Mouza and Rigaux [10], and can be used to express data
mining and pattern matching tasks over trajectory data.

2. DATA MODEL

Spatial Data. Our model for spatio-temporal data, builds
on a previously introduced one [3], which supports just spa-
tial data. Here we give an overview, in order to help the
understanding of the remainder of the presentation. Figure
2 (left) depicts the schema of a so-called GIS dimension, ba-
sically a set of hierarchies (one for each GIS layer). The bot-
tom level of each hierarchy, denoted the Algebraic part of the
dimension, contains the infinite points in a layer, and could
be described by means of linear algebraic equalities and in-
equalities [13]. Above this part there is the Geometric part,
that stores the identifiers of the geometric elements of GIS,
and it is used to solve the geometric part of a query (i.e. find
the polylines in a river representation). Each point in the Al-
gebraic part may correspond to one or more elements in the
Geometric part. Thus, at the GIS dimension instance level
we will have rollup relations (denoted rgeom1→geom2

L ). These
relations map, for example, points in the Algebraic part, to
geometry identifiers in the Geometric part. For example,
rpoint→Pg

Lprovince
(x, y, pg1) says that point (x, y) corresponds to a

polygon identified by pg1 in the Geometric part, in the layer
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Figure 2: A GIS dimension schema (left) and A GIS
dimension instance (right)

representing provinces (note that a point may correspond to
more than one polygon, o to more than one polylines that
intersect with each other).

Finally, there is the OLAP part of the dimension. This
part contains the conventional OLAP structures. The levels
in the geometric part are associated to the OLAP part via a
function, denoted αdimLevel→geom

L,D . For instance, αriverId→gr
Lr ,Rivers

associates information about a river in the OLAP part (the
riverId), to the identifier of a polyline (gr) in a layer con-
taining rivers (Lr) in the Geometric part.

Example 1. Figure 2 (left) shows the schema of a GIS
dimension, where we have defined three layers, for rivers,
cities, and provinces, respectively. The schema is composed
of three graphs; the graph for rivers contains edges saying
that a point (x, y) in the algebraic part relates to a line iden-
tifier in the geometric part, and that in the same portion of
the dimension, this line aggregates on a polyline identifier.

In the OLAP part we have information given by two di-
mensions, representing districts and rivers, associated to the
corresponding graphs, as the figure shows. For example, a
river identifier at the bottom layer of the Rivers dimension
in the OLAP part, is mapped to the polyline dimension level
in the geometric part in the graph in the rivers layer Lr.

Figure 2 (right) shows a portion of a GIS dimension in-
stance of the rivers layer Lr in the dimension schema of
the schema in the left of the figure. Here, an instance of
a GIS dimension in the OLAP part is associated to the
polyline pl1, which corresponds to the Seine river. For sim-
plicity we only show four different points at the point level
{(x1, y1), . . . , (x4, y4)}. There is a relation rpoint→line

Lr
con-

taining the association of points to the lines in the line level,
and a relation rline→polyline

Lr
, between the line and polyline

levels, in the same layer.

Elements in the geometric part can be associated with
facts, each fact being quantified by one or more measures.
Besides, there may also be classical OLAP fact tables.

Moving Object Data Representation. Besides the static
information representing geometric components, time in the
OLAP part will be represented by a Time dimension (ac-
tually, there could be more than one Time dimension, sup-
porting different notions of time). Moving objects are inte-
grated in the former framework using a distinguished fact
table denoted Moving Object Fact Table. First, we say what
a trajectory is.

Definition 1 (Trajectory). A trajectory is a list of
time-space points 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN )〉,
where ti, xi, yi ∈ R for i = 0, ..., N and t0 < t1 < · · · <
tN . We call the interval [t0, tN ] the time domain of the
trajectory. For the sake of finite representability, we may
assume that the time-space points (ti, xi, yi), have rational
coordinates.

Definition 2 (Moving Object Fact Table). Given
a finite set T of trajectories, a Moving Object Fact Table
(MOFT) for T is a relation with schema < Oid, T, X, Y >,
where Oid is the identifier of the moving object, T represents
time instants, and X and Y represent the spatial coordinates
of the objects. An instanceM of the above schema contains
a finite number of tuples of the form (Oi, t, x, y), that rep-
resent the position (x, y) of the object Oi at instant t, for
the trajectories in T . The table in the Figure 1(right),is the
MOFT for our running example.

3. QUERY LANGUAGE
The aggregation queries we address in this paper are based

on a first-order moving object query language we denote
Lmo, and they are of the following types: (1) the Count op-
erator applied to sets of the form {Oid | φ(Oid)}, where mov-
ing objects identifiers satisfying some Lmo-definable prop-
erty φ are collected; (2) the Count operator applied to sets
of the form {(Oid, t) | φ(Oid, t)}, where moving objects iden-
tifiers combined with time moments, satisfying some Lmo-
definable property φ, are collected (assuming that this set
is finite; otherwise the count is undefined); (3) the Count

operator applied to sets of the form {(Oid, t, x, y) | φ(Oid, t,
x, y)}, where moving objects id’s combined with time and
space coordinates, satisfying some Lmo-definable property
φ, are collected (assuming that this set is finite); (4) the
Area operator applied to sets of the form {(x, y) ∈ R

2 |
φ(x, y)}, which define some Lmo-definable part of the plane
R

2 (assuming that this set is linear and bounded); (5) the
Count, Max and Min operators applied to sets of the form
{t ∈ R | φ(t)}, when the Lmo-definable condition φ defines
a finite set of time instants ; (6) the Max-l, Min-l, Avg-

l and TimeSpan-l operators applied to sets of the form
{(ts, tf ) ∈ R

2 | φ(ts, tf )}, which represents an Lmo-definable
set of time intervals; (7) the Area operator applied to sets of
the form {gid | φ(gid)}, where identifiers of elements of some
geometry (in the geometric part of our data model), satis-
fying an Lmo-definable φ are collected; (8) the Count op-
erator applied to sets of the form {(Oid, gid, ts, tf ) | φ(Oid,
gid, ts, tf )}. Obviously, the above list is not complete, but it
covers the most interesting and usual cases.

To complete the description of our moving-object aggre-
gation language, the query language Lmo remains to be de-
fined. In the Lmo-definable sets considered above, we can
see that there are variables of different kinds, like Oid, t, x, y
and gid. In fact, Lmo is a multi-sorted first-order logic using
variables of these types to define sets as considered above.

Definition 3. The first-order query language Lmo has
four types of variables: real variables x, y, t, . . . ; name vari-
ables Oid, ...; geometric identifier variables gid, ... and di-
mension level variables a, b, c, ..., (which are also use for
dimension level attributes). Besides (existential and uni-
versal) quantification over all these variables, and the usual
logical connectives ∧,∨,¬..., we consider the following func-
tions and relations to build atomic formulas in Lmo: (a) for



every rollup function in the OLAP part, we have a function

symbol f
Gi→Gj

Dk
, where Gi and Gj are geometries and Dk

is a dimension; (b) analogously, for every rollup relation in

the GIS part, we have a relation symbol r
Gi→Gj

Lk
, where Gi

and Gj are geometries and Lk is a layer; (c) for every α
relation associating the OLAP and GIS parts in some layer

Li, we have a relation symbol α
Ai→Gj

Lk,D�
, where Ai is a OLAP

dimension level and Gj is a geometry, Lk is a layer and D�

is a dimension; (d) for every dimension level A, and every
attribute B of A, denoted A.B, there is a function βA→B

Dk

that maps elements of A to elements of B in dimension Dk;
(e) we have functions, relations and constants that can be
applied to the alpha-numeric data in the OLAP part (e.g.,
we have the ∈ relation to say that an element belongs to a
dimension level, we may have < on income values and the
function concat on string values); (f) for every MOFT, we
have a 4-ary relationMi; (g) we have arithmetic operations
+ and ×, the constants 0 and 1, and the relation < for real
numbers. (h) finally, we assume the equality relation for
all types of variables. If needed, we may also assume other
constants.

Definition 3 describes the syntax of the language Lmo.
The interpretation of all variables, functions, relation, and
constants is standard, as well as that of the logical connec-
tives and quantifiers. We illustrate the semantics through
an elaborated example.

Example 2. Let us consider the query “Total number of
buses per hour running in the morning in the Paris districts
with a monthly income of less than C 1500,00.”

We use the MOFT M (Figure 1, center), that contains
the moving objects samples. For clarity, we will denote the
geometry polygons by Pg, polylines by P l and point by Pt.
We use distr to denote the level district in the OLAP part
of the dimension schema. The GIS layer which contains
district information is called Ld. The query returning the
region with the required income is expressed:
{(x, y) | ∃n∃g1(r

Pt→Pg
Ld

(x, y, g1) ∧ αdistr→Pg
Ld,Distr (n) = g1 ∧

βdistr→income
Distr (n) < 1.500)}
In this expression, rPt→Pg

Ld
(x, y, g1) relates points to poly-

gons in the district layer; the function αdistr→Pg
Ld,Distr (n) = g1

maps the district identifier n in the OLAP part to the geome-
try identifier g1 in the layer Ld (here Distr is the dimension
in the OLAP part representing districts); and βdistr→income

Distr (n)
maps the district identifier n to the value of the income
attribute which then is compared by an OLAP relation <
with an OLAP constant 1.500. The instants correspond-
ing to the morning hours mentioned in the fact tables are
obtained through the rollup functions in the Time dimen-
sion. We assume in the Time dimension a category denoted
timeOfDay, rolling up to the dimension category hour (i.e.,
timeOfDay → hour). The aggregation of the values in the
fact table corresponding only to morning hours is computed
with the following expression: Mmorning = {(Oid, t, x, y) |
fhour→timeOfDay

Time (t) = “Morning”∧ M(Oid, t, x, y)}. In this
formula “Morning” appears as a constant in the OLAP part.
Finally, the query we discuss reads:
Count{(Oid, t) | (∃x)(∃y)(∃g)(∃g1)(∃n) (rPt→Pg

Ld
(x, y, g1) ∧

Mmorning(Oid, t, x, y) ∧ αdistr→Pg
Ld,Distr (n) = g ∧

βdistr→income
Distr (n) < 1, 500)}.

Proposition 1. Moving object queries expressible in Lmo

are computable. The proposed aggregation operators are also
computable.

The proof follows from the restrictions imposed on the
applicability of aggregation operators make sure that they
can be effectively evaluated.

4. THE STOPS AND MOVES FACT TABLE
In a GIS scenario, stops and moves depend on the places of

interest of a particular application. For instance, in a tourist
application, places of interest may be hotels, museums and
churches. In a traffic application, places of interest may be
road segments, road junctions and traffic lights. First, we
define the notion of “places of interest of an application”.

Definition 4. [Places of Interest] A place of interest (PoI)
C is a tuple (RC , ∆C), where RC is a (topologically closed)
polygon, polyline or point in R

2 and ∆C is a strictly positive
real number. The set RC is called the geometry of C and
∆C is called its minimum duration. The places of inter-
est of an application PA is a finite collection of PoIs with
mutually disjoint geometries.

Definition 5. [Stops and moves of a trajectory] Let T =
〈(t0, x0, y0), (t1, x1, y1), ..., (tn, xn, yn)〉 be a trajectory. Also,
PA = {C1 = (RC1 , ∆C1), ..., CN = (RCN , ∆CN )}.

A stop of T with respect to PA is a maximal contigu-
ous subtrajectory 〈(ti, xi, yi), (ti+1, xi+1, yi+1), ..., (ti+�, xi+�,
yi+�)〉 of T such that for some k ∈ {1, ..., N} the follow-
ing holds: (a) (xi+j, yi+j) ∈ RCk for j = 0, 1, ..., �; (b)
ti+� − ti > ∆Ck .

A move of T with respect to PA is: (a) a maximal contigu-
ous subtrajectory of T in between two temporally consecutive
stops of T ; (b) maximal contiguous subtrajectory of T in be-
tween the starting point of T and the first stop of T ; (c) a
maximal contiguous subtrajectory of T in between the last
stop of T and ending point of T ; (d) the trajectory T itself,
if T has no stops.

Intuitively, if a trajectory is inside a place of interest
longer than the minimum duration ∆C , the place of inter-
est is a stop. We remark that our definition of stops and
moves of a trajectory is arbitrary and can be modified in
many ways. For example, if we would work with linear in-
terpolation of trajectory samples, rather than with samples,
the trajectory may leave a place of interest, not in a sam-
ple point, but in the interpolation. We could incorporate a
tolerance for this kind of small exits in the definition.

Proposition 2. There is an algorithm that returns, for
any input (PA, T ) with PA the places of interest of an ap-
plication, and T a trajectory the stops of T with respect to
PA. This algorithm works in time O(n · p), where p is the
complexity of answering the point-query [14].

Note that a MOFT only provides the position of objects
at a given instant. Sometimes we are not interested in such
level of detail, but we look for more aggregated information
instead. For example, we may want to know the how many
people go from a hotel to a museum on weekdays. Or, we can
even want to perform data mining tasks like inferring tra-
jectory patterns that are hidden in the MOFT. These tasks
require semantic information, not present in the MOFT. In



the best case, obtaining this information from that table
will be expensive, because it would imply a join between
this table and the spatial data. As a solution, we propose
to use the notion of Stops and Moves in order to obtain a
more concise MOFT, that can represent the trajectory in
terms of places of interest, characterized as Stops. This ta-
ble cannot replace the information provided by the MOFT,
but complement it, allowing to quickly obtain information
of interest without accessing the complete data set. In this
sense, this concise MOFT, which we will denote SM-MOFT
behaves like a summarized materialized view of the MOFT.
The SM-MOFT will contain the object identifier, the identi-
fier of the geometries representing the Stops, and the interval
[ts, tf ] of the stop duration. Notice that we do not need to
store the information about the moves, which remains im-
plicit, because we know that between two stops there could
only be a move or a transition. Also, if a trajectory passes
through a PoI, but remains there an insufficient amount of
time for considering the place a trajectory stop, the stop is
not recorded in the SM-MOFT. Thus, for this application,
two trajectories apparently identical, will be distinguished
by these representation scheme.

Definition 6 (SM-MOFT). Let PA = {C1 = (RC1 ,
∆C1), ..., CN = (RCN , ∆CN )} be the set of PoI of an appli-
cation, and letM be a MOFT. The SM-MOFTMsm ofM
with respect to PA consist of the tuples (Oid, gid, ts, tf ) such
that (a) Oid is the identifier of a trajectory inM; (b) gid is
the identifier of the geometry of a PoI Ck = (RCk , ∆Ck) of P
such that the trajectory with identifier Oid in M has a stop
in this PoI during the time interval [ts, tf ]. This interval is
called the stop interval of this stop.

Proposition 3. There is an Lmo formula φsm(Oid, gid,
ts, tf ) that defines the SM-MOFT Msm of M with respect
to PA.

We omit the proof of this property but remark that the use
of the formula φsm(Oid, gid, ts, tf ) allows us to speak about
stops and moves of trajectories in Lmo. We can therefore
add predicates to define stops and moves of trajectories as
syntactic sugar to Lmo.

5. A LANGUAGE FOR STOPS AND MOVES
We will show how the language Lmo yield sub-languages

that can address many interesting aggregation queries for
moving objets in a GIS environment. We will sketch a query
language based on regular expressions, along the lines pro-
posed by Mouza and Rigaux [10]. However, our language
goes far beyond, taking advantage of the integration between
GIS, OLAP and moving objects provided by the data model.
Moreover, queries that do not require access to the MOFT
can be evaluated efficiently using the SM-MOFT,Msm. The
idea is based on the construction of the SM-Graph defined
below.

We will assume that there will be a different dimension
for each type of (application-dependant) place of interest
in the OLAP part of the model. For instance, there will
be a dimension for hotels, with bottom level hotelId, or a
dimension for restaurants, with bottom level restaurantId.
Aggregation levels can be defined as required. There will
also be a layer in the Geometric part of the GIS dimension,
that could be designed in different ways. For simplicity, we

Oid Gid ts tf
O1 H1 0 10
O1 M1 15 30
O1 M2 40 50
O1 M2 60 70
O1 M3 80 100
O2 T1 120 150
O2 T2 180 200
O3 H1 220 240
O3 T2 280 340
O3 M3 410 Now

3
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4
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M2
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H1

T2

T1

M1

Figure 3: An SM-MOFT (left), and its SM-Graph
(right)

assume that all places of interest with the same geometry
are stored together. For instance, there will be a layer (i.e.,
a hierarchy graph) for polygons, and/or one hierarchy for
lines. There are also the functions introduced in Section
2. For example, αhotelId→Pg

Lp,Hotel maps a hotel identifier to a

polygon representing it, in a layer for polygonal PoIs.

Definition 7 (SM-Graph). Let us consider a trajec-
tory sample T of moving objects, the PoIs of an applica-
tion PA = {C1 = (RC1 , ∆C1), ..., CN = (RCN , ∆CN )},
a MOFT M, and its SM-MOFT Msm with respect to A.
Also, for clarity but w.l.o.g., consider that all the tuples in
Msm are ordered according to their stop interval attributes,
that is, if t1 and t2 are two consecutive tuples in Msm,
t1.ts < t1.tf < t2.ts < t2.tf . An SM-Graph for Msm, de-
noted G(Msm), is a graph constructed as follows: (1) For
each gid ∈

∏
Gid

(Msm) there is a node v in G, denoted

v(gid), with a node number n ∈ N, different for each node.
(2) There is an edge m in G between two nodes v(gid1) and
v(gid2), for every pair of t1, t2 of consecutive tuples inMsm

with the same Oid. (3) For each node v ∈ G the extension
of v, denoted ext(v) is given by the identifier of the PoI that
represents the node in the OLAP part of the model. (4) For
each node v ∈ G the label of v, denoted label(v) is the name
of the dimension of the PoI in the OLAP Part (i.e., the
name of the dimension D mentioned above). (5) For each
node v ∈ G the stop temporal elements of v, denoted STE(v)
is a set of stop intervals {I1, ..., Ik} (technically, a temporal
element), such that there is an interval Ii ∈ STE(v) for each
edge incoming to v in G.

Figure 3 (left) shows an SM-MOFT table for one mov-
ing object’s trajectory. The distinguished term “Now” in-
dicates, as usual in temporal databases, the current time.
We denote Hi, Mi, and Ti, hotels, museums and tourist
attractions, respectively. Figure 3 (right) shows the cor-
responding SM-Graph. As an example, the extension of
node 3 is ext(3) = M2, its label is label(3) = Museums,
and STE(3) = {[80, 100], [410, Now]}.

Now we are ready to define our query language based on
Stops and Moves. The language combines in a single ex-
pression, the notion of regular expressions and first order
constraints. The SM-Graph G can be seen as an automa-
ton accepting regular expressions over the places of interest.

Definition 8 (R.E. for Stops and Moves). A reg-
ular expression on stops and moves, denoted smRE is an
expression generated by the grammar

E ←− dim | dim[cond] | (E)∗ | E.E | ε |?



where dim ∈ D (a set of dimension names in the OLAP
part), ε is the symbol representing the empty expression, “.”
means concatenation, and cond represents a condition that
can be expressed in Lmo. The term“?” is a wildcard meaning
“any sequence of any number of dim”.

Aggregation is built on top of smRE : for each trajectory
T in an SM-MOFT such that there is a sub-trajectory of
T that matches the smRE, the query returns the Oid of T.
The following examples provide an overview of the language.
We begin with the query “Total number of trajectories from
a Hilton hotel to a tourist attraction, stopping at a museum,”
which reads in smRE :
Count(H[name = “Hilton”].?.M.?.T)

As another example, the query “Total number of trajec-
tories that went from a Hilton hotel to the Louvre, in the
morning” is expressed in smRE :
Count(H[name = “Hilton”].?.M[name = “Louvre” ∧
I.ts ∧ f timeId→TimeOfDay

Time (ts) = “morning”])
In these queries, the conditions are evaluated over the cur-

rent nodes (the node the parser is evaluating). For instance,
in Q2, if the parser is at node 1 in Figure 3, the condition
name = “Hilton” returns “true” if ext(1).name = “Hilton”
and label(1) = “Museum”. Also, variable I corresponds
to the time interval of the node that is being visited when
evaluating the expression, and ts is its starting point. The
following query shows the full power of the language, be-
cause it includes geometric and temporal conditions, that
show how all elements in the model interact. Here, also, the
encoded fact table is not enough, and we need to access the
geometry. However, note that for many useful queries and
patterns, much simpler expressions will suffice. The query is:
‘‘Total number of trajectories going from a tourist attraction
to a museum in the 19th district of Paris in the morning.”
Count(T.?.M[ftimeId→TimeOfDay

Time (I.ts) = “morning” ∧ (∃ gid)
(∃ x) (∃ y) (∃Oid) ∃ (t1) (∃ p) (∃ pg) (∃ d) (M(Oid, t1, x, y) ∧
α

mid→Pg
Lp,Museum(p) = gid ∧ rpoint→Pg

Lp
(x, y) = gid ∧ αdistr→Pg

Ld,Distr (d) =

pg ∧ pg.number = 19 ∧ fpoint→Pg
Ldist

(x, y) = pg])

Let us explain this expression. The function αmid→Pg
Lp,Museum(p) =

gid, maps the id of the PoI in the extension of the current
node (p), to the polygon representing it in the geographic

part (gid), while αdistr→Pg
Ld,Distr (d) = pg has the meaning already

explained. The equality fpoint,Pg
Ldist

(x, y) = pg checks that the
point of the trajectory belongs to the 19th district.

6. FUTURE WORK
Our future work will be focused in the implementation

of the model and query languages proposed here 1. We also
believe that the REsm language is promising for mining tra-
jectory data, specifically in the context of sequential patterns
mining with constraints, and we will work in this direction.
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