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Summary

A common objective in longitudinal studies is the investigation of the association structure

between a longitudinal response process and the time to an event of interest. An attrac-

tive paradigm for the joint modelling of longitudinal and survival processes is the shared

parameter framework where a set of random-effects is assumed to induce their interdepen-

dence. In this work, we propose an alternative parameterization for shared parameter models

and investigate the effect of misspecifying the random-effects distribution in the parameter

estimates and their standard errors.

Some key words: Copula functions; Joint modelling; Sandwich variance estimator.

1. Introduction

In follow-up studies, it is common that each subject provides both a sequence of longitudinal

response measurements as well as the time to an event of interest. In such studies, the
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main scientific interest may focus on three distinct aspects, i.e., on either the longitudinal

process in which the event occurrence causes informative dropout, on the survival process in

which the longitudinal measurements are considered as a time-dependent covariate measured

with error, or on the association structure between the two processes. Typical examples in

this setting include HIV studies, in which longitudinal measurements of CD4 cell counts or

the estimated viral load are predictive for the time to onset of clinical AIDS or death, as

well as kidney disease studies where longitudinal glomerular filtration rate measurements are

predictive for the time to kidney failure.

Shared parameter models (SPMs) (Wu & Carroll, 1988; Wulfsohn & Tsiatis, 1997; Tsiatis

& Davidian, 2004) offer an appealing framework for the joint modelling of survival and

longitudinal processes. In particular, in SPMs it is assumed that a latent process, expressed

by a set of time-invariant random-effects, induces the dependence between the two explicitly

observed processes. These random-effects are usually assumed to be normally distributed,

even though this choice is not made on the grounds of computational simplicity. Some authors

have questioned the Gaussian assumption, in the sense that the resulting inferences can be

sensitive to assumptions not easily verifiable from the available data (see e.g., discussion to

Scharfstein et al., 1999). To this end, some approaches have been proposed that either relax

the distributional assumptions (Song et al., 2002) or make no parametric assumptions at

all (Tsiatis & Davidian, 2001) about the random-effects distribution. However, the main

empirical result from these approaches is that the parameter estimates are rather robust to

random-effects misspecification. Huang et al. (2006) have explored a similar behaviour in

structural measurement error models.

In this paper, we consider the SPMs framework and formally investigate the effect of

misspecifying the random-effects distribution using two possible parameterizations. In par-
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ticular, we show that, as the number of repeated longitudinal measurements per individual

grows, the effect of random-effects misspecification vanishes for certain parameters. The

intuitive justification for this claim is based on two arguments. First, as the number of

repeated measurements per individual increases, the dominating part in the SPMs factor-

ization is the longitudinal measurement model and thus any erroneous assumption about

the random-effects distribution is alleviated. Second, as it will be shown, SPMs assume in

general a restrictive association structure for the joint distribution of the two processes and

this partially explains robustness with respect to the random-effects distribution. Two types

of random-effects structure parameterizations are considered, namely either a common set

or different sets of random-effects for the two processes. For the second type, we propose a

copula representation of the random-effects distribution, allowing for different types of depen-

dence structure between the underlying measurement and survival processes, thus enabling

sensitivity analysis regarding the association structure.

The remainder of the paper is organized as follows. In § 2 we present the shared parameter

model factorization, discuss some of its features, and show the two possible parameterizations.

In § 3, we formally investigate the effect of random-effects misspecification as a function of

the number of repeated measurements per individual. In § 4 we describe the results of a

simulation study and § 5 considers a real data application.

2. Shared Parameter Models Framework

2·1 Model Specification

Let T ∗
i denote the true event time for the ith subject and consider a random sample of

n subjects (i = 1, . . . , n). Letting Ci denote the underlying potential censoring for subject

i, one observes Ti = min(T ∗
i , Ci) and δi = I(T ∗

i ≤ Ci), where I(·) is the indicator function.

Moreover, let yi(tij) denote the longitudinal measurement for subject i taken at time tij,
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j = 1, . . . , ni. Clearly, yi(tij) is observed whenever tij ≤ Ti, and generally yi(Ti) is not

available. Let Yi = {yi(tij), j = 1, . . . , ni} denote the observed longitudinal process for the

ith subject. Finally, let bi represent time-independent random-effects that underly both the

longitudinal measurement and survival processes. Under this setting, the shared parameter

model is defined as follows:

p(Yi, Ti; θ) =

∫
p(Yi | bi; θy) p(Ti, δi | bi; θt) p(bi; θb) dbi, (1)

where θ> = (θ>y , θ>t , θ>b ) is the vector containing the parameters of each one of the sub-

models, with > denoting the transpose, and p(·) denoting the appropriate probability density

functions. Here p(Ti, δi | bi; θt) = pT ∗i (Ti | bi; θt)
δiST ∗i (Ti | bi; θt)

1−δi , i.e., it equals either the

density for the true event times or the survival function for censored observations. Moreover,

we assume that, conditionally on bi, the longitudinal measurements Yi are independent, that

is

p(Yi | bi; θy) =
∏

j

p(yi(tij) | bi; θy). (2)

An implicit assumption in factorization (1) is that both the censoring and the visiting

processes are noninformative, i.e., independent of bi, and can be ignored in the modelling

procedure. Although such an assumption might be questionable in certain situations, we

adhere to it here and revisit it in § 6.

SPMs are built under the so-called conditional independence assumption, where the sur-

vival and longitudinal processes are assumed independent given the random-effects bi, im-

plying that all association is induced by the random-effects. It is customary to assume bi to

follow a normal distribution, even though this does not usually lead to a tractable form for

the integral in (1) and hence numerical integration remains a requirement to evaluate the

associated likelihood. According to (1), distributional assumptions for the random-effects al-

legedly play an important role in the SPM’s factorization since the bi’s link the two processes
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of interest. However, empirical results (Wang & Taylor, 2001; Song et al., 2002; Tsiatis

& Davidian, 2004) show that misspecification of the random-effects distribution does not

have a great impact on the parameter estimates, except for extreme cases such as discrete

distributions. We investigate this phenomenon in more detail in § 3.

2·2 Two Parameterizations

The usual SPMs assume that the longitudinal and event processes share a common set

of random-effects. In particular, the conditional sub-models for Yi and Ti have the form

Yi | bi ∼ N(ηyi, σ
2
yIni

) ; log Ti | bi ∼ P with E(log Ti | bi) = ηti

ηyi = Xyiβ + Zyibi ; ηti = x>tiγ + (Zyibi)
>α, (3)

where Ini
denotes the ni-dimensional identity matrix, P denotes a parametric distribution

(e.g., extreme value, normal, logistic or other), Xyi and Zyi are known fixed- and random-

effects design matrices, respectively, for the longitudinal process, β is a vector of unknown

fixed-effects parameters, σ2
y is the error variance, xti is a vector of covariates for the event

process with an associated coefficient vector γ, and α denotes a vector of association pa-

rameters linking the survival process with the random-effects structure of the measurement

process. If α = 0, then the two processes are unrelated, implying that joint modelling is not

required under the posited model.

An implicit feature of parameterization (3) is that it assumes perfect linear correlation

between the latent structures of the two processes, since the same random-effects are shared.

This could be regarded as a rather restrictive assumption that may not be desirable, es-

pecially in settings in which the association structure between the measurement and event

processes is of interest. Therefore, we propose a more flexible parameterization that consid-

ers two separate sets of random effects for the two processes, linking them using a copula
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function. Copulas (Nelsen, 1999) are multivariate cumulative distribution functions with

uniform marginals, which provide a natural approach to construct joint distributions and

explore dependence. The consideration of two separate random-effects is in the spirit of the

approach proposed by Henderson et al. (2000) who postulate a bivariate Gaussian latent

process shared by the two processes. In particular, we assume that

ηyi = Xyiβ + Zyibyi and ηti = x>tiγ + bti, (4)

p(byi, bti) = c{Fy(byi), Ft(bti); α} p(byi) p(bti), (5)

where byi are random-effects for the measurement process and bti is a frailty term for the

survival process. The frailty term is assumed to represent an unobserved covariate explaining

heterogeneity (Keiding et al., 1997). For the joint density of {byi, bti} given in (5) we assume

a copula representation, where c(·) denotes the density of a copula function C(·), and Fy(·)

and Ft(·) are the marginal cumulative distributions functions for byi and bti, respectively. In

the case of multivariate byi, we assume that the copula behind Fy(·) is directly compatible

with C(·) (Nelsen, 1999, pp. 85–86). It is important to note that under, (4), the association

parameter is a parameter of the random-effects model and specifically of the copula function,

in contrast to (3) where α is a parameter of the event process model. The main advantage of

parameterization (4) is the flexibility in considering different dependence structures between

the two processes by using different copula functions while keeping all other aspects of the

model fixed. For instance, under the usual normality assumption for bi, parameterization

(3) is a special case of (4) with C(·) being the Gaussian copula with a restricted correlation

matrix assuming corr(byi, bti) = ±1 depending on the sign of α under (3), and Gaussian

marginals Fy(·) and Ft(·). In this example, bti = αbyi, that is, α2 is merely a rescaling factor

for the variance of byi.

However, even though the latter parameterization offers increased flexibility for the as-
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sociation structure between the two processes, we should note that SPMs, in general, imply

a restrictive representation of the marginal joint distribution {Yi, Ti}. To see this, con-

sider the following simple but instructive example. Assume no censoring and moreover

that all processes involved, namely Yi | byi, log Ti | bti and {byi, bti} follow a normal dis-

tribution. Then the covariance for the marginal distribution {Yi, log Ti} is of the form

V = Z̃DZ̃> + Σ, where Z̃ = diag{Zy, 1}, D is the covariance matrix for the joint dis-

tribution of {byi, bti}, and Σ is the residual covariance matrix for the joint distribution of

{Yi, log Ti | byi, bti} = {Yi | byi} · {log Ti | bti}. Clearly, V is of a specific form assuming

positive correlation and not a general variance-covariance matrix.

3. Random-Effects Misspecification

In this section, we investigate the effect of misspecifying the random-effects distribution

in parameter estimates and standard errors under the SPMs framework. Unless explicitly

stated, we will denote by bi the set of random-effects under both parameterizations (3) and

(4); in the latter case b>i = (b>yi, bti). In particular, we assume that the true random-effects

probability density function is p(bi), whereas the fitted one is f(bi; θb), where both p(bi) and

f(bi; θb) are absolutely continuous. Moreover, we assume that there is no θb ∈ Θb, such that

f(bi; θb) = p(bi), where Θb is the parameter space of θb. Finally, the conditional models for the

longitudinal measurement and event processes, p(Yi | bi; θy) and p(Ti, δi | bi; θt), respectively,

are assumed correctly specified.

3·1 Parameter estimates

We will distinguish between two sets of parameters, namely θ>yt = (θ>y , θ>t ) and θb. The

effect of using f(bi; θb) instead of the true p(bi) in the parameter estimates is described in

the following theorem.
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Theorem 1. For fixed sample size n and as the number ni of repeated measurements per

individual in the longitudinal process Yi increases, then the maximum likelihood estimator

θ̃yt under f(bi; θb) converges to the maximum likelihood estimator θ̂yt under the correct model

p(bi).

The proof can be found in the Appendix. The key argument behind Theorem 1 lies in

the fact that, as ni grows the longitudinal measurement model p(Yi | bi; θy) becomes the

dominating part in the posterior distribution of the random-effects p(bi | Yi, Ti, δi; θ), implying

that the choice between p(bi) or f(bi; θb) is of minimal importance. However, the above

theorem does not hold for θb, and in this case the effect of misspecification will be more

prominent. According to White (1982), the maximum likelihood estimator θ̃b will converge

in probability to the value θo
b that minimizes the Kullback-Leibler distance D(p : f ; θb) =

∫∫
p(Y , T, δ) log{p(Y , T, δ)/f(Y , T, δ; θb)} dYdT .

Two remarks based on the above theorem are worth making. First, in many clinical

examples the main interest lies in the degree of the association between the longitudinal

measurements and the survival process. As we noted in § 2·2, in the common parameterization

(3) that assumes perfect correlation, the association parameter α is, in fact, a parameter of

the survival model or a parameter of the longitudinal model, if (3) was written as ηyi =

Xyiβ + Zyib
∗
i , ηti = x>tiγ + bi, with b∗i = α · bi. Thus, under Theorem 1, α will be minimally

affected by misspecification of the random-effects distribution, which explains the empirical

results reported by other authors (Wang & Taylor, 2001; Song et al., 2002; Tsiatis & Davidian,

2004). However, under parameterization (4), α is a parameter of the copula function, which is

a part of the random-effects model. Thus, even for large ni, we may observe some sensitivity

in the estimation of α under different choices for C(·). Second, a straightforward extension

of Theorem 1 shows that θy will be unbiasedly estimated, even if the event process model is



Shared parameter models under misspecification 9

misspecified. This has a direct impact in the missing data context where SPMs are also used

to correct for nonignorable dropout (Follmann & Wu, 1995). In particular, if the informative

censoring mechanism producing the missing data in the longitudinal process is described by

a SPM, then the effect of misspecifying both the survival and the random-effects model will

be minimal as the number of repeated longitudinal measurements per individual increases.

3·2 Standard Errors

As we argued in the previous section, the MLE θ̃yt under the misspecified random-effects

model converges to the MLE θ̂yt under the correct random-effects model, which implies

that misspecification does not affect consistency. However, the effect of misspecifying the

random-effects distribution will be more prominent in the estimation of standard errors of θ̃yt.

This becomes more transparent by examining the form of the minus inverse Hessian matrix

under the SPM (1), which we would have used as a consistent estimator of the asymptotic

inverse Fisher Information matrix if misspecification was ignored. In particular, adopting the

notation introduced in Appendix A1 and for k, k′ = y, t, b we set Hkk′ = n−1
∑

i ∂Lf
i (θ̃k)/∂θk′

to denote the corresponding block of the Hessian matrix H, where

∂Lf
i (θ̃k)

∂θk′
=





Ef

{
∂h(·; θ̃k)/∂θk′

}
+ Ef

[
h(·; θ̃k)

{
h(·; θ̃k)− Lf

i (θ̃k)
}>]

, k′ = k

Ef

[
h(·; θ̃k)

{
h(·; θ̃k′)− Lf

i (θ̃k′)
}>]

, k′ 6= k

(6)

with Ef{·} denoting the expectation with respect to the posterior distribution f(bi | Yi, Ti, δi; θ).

Following this notation and assuming that H−1 exists, the asymptotic variance of θ̃yt un-

der standard likelihood methods has the form ̂var(θ̃yt) = −(Hyt − Hyt,bH
−1
bb H>

yt,b)
−1, where

H>
yt,b = {H>

yb, H
>
tb}. The second part in the parenthesis is clearly affected by misspecification;

to see this we focus on the Hyb block of Hyt,b, with the results for Htb and Hbb following
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similarly. For Hyb, (6) can be rewritten as

Hyb = n−1

n∑
i=1

Ef

[{
ni∑

j=1

∂

∂θy

log p(yi(tij)|bi; θ̃y)

} {
∂

∂θb

log f(bi; θ̃b)

}>]
−

{
Lf

i (θ̃y)
}{

Lf
i (θ̃b)

}>
.

If we let ni grow, then Ef{} → Ep{}, i.e., in the corresponding expectations the true posterior

is used. However, note that both parts of Hyb still depend on the misspecified random-effects

model, since Lp
i (θb) =

∫ {∂ log f(bi; θb)/∂θb} p(bi | Yi, Ti; θ) dbi, which will result in some bias

in the standard error estimates.

Following standard maximum likelihood theory under misspecification (White, 1982), the

asymptotic covariance matrix for θ̃ is var(θ̃) = K−1DK−1, where K = E{−H(θ∗yt, θ
o
b)},

D = E{Lf (θ∗yt, θ
o
b)L

f (θ∗yt, θ
o
b)
>}, and the expectations are taken with respect to the true

distribution p(Y , T, δ; θ∗). Using the sandwich variance estimator as a consistent estimator

for this covariance matrix we obtain,

˜var(θ̃yt) = AXA+ 2BZ>A+ BWB>, (7)

whereA = ̂var(θ̃yt) = −(Hyt−Hyt,bH
−1
bb H>

yt,b)
−1, X = n−1

∑
i L

f
i (θ̃yt)L

f
i (θ̃yt)

>, B = −H−1
yt Hyt,b(Hb−

H>
yt,bH

−1
yt Hyt,b)

−1, Z = n−1
∑

i L
f
i (θ̃yt)L

f
i (θ̃b)

>, and W = n−1
∑

i L
f
i (θ̃b)L

f
i (θ̃b)

>. Note that

as, n → ∞ and if the correct model p(bi) had been used, then ‖ ˜var(θ̃yt) − ̂var(θ̃yt)‖ → 0.

Straightforward algebra then implies that diag{AX +2BZ>+BWB>A−1}−1 quantifies the

extra variance for θ̃yt owing to misspecification.

4. A Simulation Study

4·1 Study Set-up

A small simulation study was performed to empirically corroborate the arguments un-

folded in § 3. Since the one random-effect case has been extensively studied in the literature

(e.g., by Song et al., 2002), here we investigate the effect of misspecifying the random-effects
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distribution in parameter estimates and standard errors for the two random-effects case (5).

The study considers a two-group comparison with n = 200. In particular, for the linear

mixed-effects model in (3), we assume measurement error variance σ2
y = 0·52, and linear

predictor given by ηyi = (β0 + byi) + β1Ti + β2tij + β3t
2
ij + β4Titij + β5Tit

2
ij, where byi de-

notes a random-intercepts term, Ti is the binary treatment indicator and (β0, . . . , β5)
> =

(1, 0, 1·5, 2·5,−0·5,−1). For the survival model in (3), we assume that P follows the ex-

treme value distribution with scale parameter σt = 0·5, and linear predictor given by

ηti = (γ0 + bti) + γ1Ti, where bti is a frailty term and (γ0, γ1)
> = (2, 1·5). The censoring

mechanism follows an exponential distribution with mean 20, resulting in about 50% censor-

ing and the visiting times tij are random. For the random-effects model in (4) the following

three scenarios are considered: (i) a bimodal mixture distribution 0·45×N((−2,−2·1)>, Σ)+

0·55×N((1·636, 1·718)>, Σ), with Σ = vech(1·52, 12, 0·5) (where in vech(s2
1, s

2
2, ρ), s2

1 and s2
2

denote the two variances and ρ the correlation of the covariance matrix Σ); (ii) a unimodal

skewed mixture distribution 0·7 × N((1·3, 0·9)>, Σ) + 0·3 × N((−3·033, 2·1)>, Σ), with Σ =

vech(1·62, 1·72, 0·7); and (iii) a normal distribution N(0, Σ), with Σ = vech(2·52, 2·22, 0·82).

The parameter values have been chosen such that the variances σ2
by and σ2

bt, and the degree

of association (in terms of Kendall’s τ) for the random-effects are of the same magnitude

for all three scenarios. For ni, two cases are considered, namely the large-ni case where

maxi{ni} = 15 with 10 measurements per subject on average, and the small-ni case where

maxi{ni} = 4 with 2·5 measurements per subject on average. Finally, for each scenario and

for each ni-case, 100 data-sets are simulated.

4·2 Analyses Models

For each simulated data-set four joint models are fitted. In particular, for the longitudinal

p(Yi | byi; θy) and the survival p(Ti, δi | bti; θt) processes the correct models are assumed,
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whereas for the random-effects model four copulas are considered, namely the Frank, Gumbel,

Gaussian and Student’s-t (df = 4) copulas, with normal marginals. Thus, under scenarios

(i) and (ii) all fitted models are misspecified, whereas for scenario (iii) the normal copula

random-effects model corresponds to the true joint model we simulated from. Furthermore,

the quality of the model based standard errors v̂ar(θ̃) (i.e., assuming the random-effects

distribution had been correctly specified) and the sandwich estimator standard errors ṽar(θ̃)

is compared to the empirical standard errors obtained by
{∑M

m=1(θ̂m − θ)2/(M − 1)
}1/2

,

where θ̂m denotes the MLEs in the mth simulated data-set, θ =
∑M

m=1 θ̂m/M , and M = 100.

The models are fitted using an EM algorithm in which the random-effects are treated as

missing values; more details can be found in Appendix A2. All computations have been

performed in R (R Development Core Team, 2006).

4·3 Results

Tables 1, 2 and 3 present the simulation study results.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

For all scenarios we observe that the parameter estimates for the longitudinal and survival

models are rather robust to random-effects misspecification. On the contrary, the para-

meter estimates for random-effects model, and especially the estimates of the association

parameter, show greater sensitivity regarding the choice of the copula C(·). Furthermore,

the small-ni case yielded relatively more sensitive results for the parameter estimates, which

is in accordance with Theorem 1. An interesting feature is that the Gaussian copula per-

formed rather well under misspecification. This feature can be explained by the concept
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of local dependence introduced by Holland & Wang (1987). The local dependence function

equals ∂2 log p(byi, bti)/∂byi∂bti and is used to quantify dependence when both the degree and

the direction of the dependence is different in different regions of the plane (Jones, 1996).

A numerical comparison between the values of the local dependence function of the true

random-effects densities under scenarios (i) and (ii), and the corresponding values of the

assumed copulas, reveals that the Gaussian copula is on average closer to the true densities

than the other copulas. Finally, regarding the estimation of standard errors, we observe that

the average of sandwich estimates is closer to the empirical standard errors than the corre-

sponding model-based ones, with exception scenario (iii) under the Gaussian copula, where

the model-based standard errors, as expected, show good behaviour.

5. Application

In this section, we present the analysis of data coming from a longitudinal study on patients

who received a kidney transplant. The main scientific focus lies in the time a patient can

maintain the new graft. In this case, a good marker for the kidneys’ performance is the level

of serum creatinine in blood. However, due to the fact that the observed levels of this marker

are directly influenced by a person’s muscle activity, the glomerular filtration rate (GFR) is

typically used, which is an inverse function of serum creatinine correcting also for sex, weight,

and age.

During the 10 year follow-up period GFR measurements are regularly taken and our

aim here is to explore the association structure between longitudinal GFR measurements

and the time to graft failure. Out of the 432 patients, 91 (21·1%) experienced the event;

moreover, patients made on average 72 visits (standard deviation 22·4 visits), resulting in a

total of 31,062 records. Based on descriptive measures and plots we adopted the following

models for the two processes. For the longitudinal process a linear random-intercepts model
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is assumed with fixed-effects quadratic time trends for the first 6 months, followed by linear

time trends for the remaining follow-up period. For the survival process we include the age,

weight, and sex as main effects, and a frailty term related to the random-intercept term of

the measurement model.

To investigate the influence of parametric assumptions on the size of the association

between the two processes, we performed a sensitivity analysis under different copula func-

tions and assuming normal marginals for the joint distribution of the random-effects, and

different survival distributions. In particular, we considered the Frank, Gumbel, Gaussian,

and Student’s-t (df = 4) copulas, and the Weibull, log-normal and log-logistic as survival

distributions. The estimates of Kendall’s τ for each scenario are presented in Table 4.

[Table 4 about here.]

For the entire analysis we observed similar results as in § 4. In particular, the main effects for

both the linear mixed and survival models were minimally affected by different assumptions

regarding the random-effects, whereas the degree of the association between the two processes

was influenced to a much larger extent by the choice of the copula function. The results

suggest a moderate positive association between the underlying latent processes, ranging

from 0·56 to 0·86. However, note that this is far from the perfect correlation that the

common parameterization (3) assumes.

6. Concluding Remarks

In this paper, we investigated the effect of misspecifying the random-effects distribution under

the shared parameter model framework. In particular, we showed that, as the number ni of

repeated longitudinal measurements per individual increases, the effect of misspecification

becomes minimal for certain parameter estimates. However, estimation of the standard errors
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under the misspecified model will generally be affected, and thus the use of the sandwich

estimator is recommended. How large ni has to be depends on the type of information for bi

that is included in Yi. In particular, we expect that for linear mixed models, smaller values

of ni will suffice as opposed to generalized or nonlinear mixed models. The reason is that

in the former case log p(Yi | bi; θy) will be quadratic in bi, which implies that convergence

of p(bi | Yi, Ti, δi; θ) to a normal distribution will be faster. In addition, note that Theorem

1 requires all subjects to have a relatively large number of repeated measurements. Thus,

in cases in which some groups of subjects have very few measurements (e.g., many subjects

dropout too early in the study), choosing the correct random-effects distribution will be

important. Moreover, our results are based on the assumption that both p(bi) and f(bi; θb)

are continuous densities, excluding the case in which the true random-effects distribution is

discrete, with few support points. In this setting we would expect that the robustness for θ̃yt

is seriously affected.

Moreover, the formulation of the SPM presented in § 2 assumed a noninformative visiting

process, which enabled an easier likelihood construction. However, in cases where such an

assumption is erroneous, ignoring the visiting process may considerably influence results since

each subject will have ni measurement occasions leading to a multivariate model. Thus, the

posterior distribution of the random-effects will then heavily depend on both the longitudinal

and visit process models.

Finally, we have assumed that the parameter space of the survival model is of finite

dimension. This excludes the commonly used semiparametric framework in which the baseline

hazard is left unspecified. Extensions of the results presented here for this case are under

consideration.
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Appendix

Technical Details

A1. Proof of Theorem 1

Let p(Y , T, δ; θ) and f(Y , T, δ; θ) denote the marginal densities under the correctly speci-

fied p(b) and the misspecified f(b; θb) random-effects distributions, respectively. First, we

work under parameterization (3) with a common random-effect bi for the two processes.

We make the following assumptions: (i) both p(Y , T, δ; θ) and f(Y , T, δ; θ) are well-defined

densities under the usual regularity conditions (Cox & Hinkley, 1974, pp. 281); (ii) for

fixed n we define the log-likelihood functions `p
n(θ) = n−1

∑n
i=1 log p(Yi, Ti, δi; θ), `f

n(θ) =

n−1
∑n

i=1 log f(Yi, Ti, δi; θ), and in addition, we assume that `p
n(θ) and `f

n(θ) have unique

maxima at θ̂yt ∈ Θyt and θ̃yt ∈ Θyt, respectively, with θy and θt having disjoint para-

meter spaces, i.e., Θyt = Θy × Θt; (iii) for the score vectors Lp
n(θ) = ∂`p

n(θ)/∂θ, and

Lf
n(θ) = ∂`f

n(θ)/∂θ we assume that the required conditions hold which allow differentia-

tion to be taken inside the integral sign; (iv) finally, we assume that both log p(bi) and

log f(bi; θb) are bounded and smooth functions of bi around the neighborhood of the mode b̂i

of log p(Yi | bi; θy) =
∑ni

j=1 log p(yi(tij) | bi; θy).

Next we note that, under assumption (iii), the score vector takes the form

Lp
n(θ) =

n∑
i=1

∂

∂θ
log

∫
p(Yi | bi; θy) p(Ti, δi | bi; θt) p(bi) dbi

=
n∑

i=1

∫
h(·; θ) p(bi | Yi, Ti, δi; θ) dbi, (A.1)

where h(·; θ) denotes the corresponding score vector of each of the sub-models (e.g., for the

measurement process, Lp
n(θy) requires h(·; θ) = ∂ log p(Yi | bi; θy)/∂θy). Analogously, the



Shared parameter models under misspecification 17

misspecified score vector takes the form

Lf
n(θ) =

n∑
i=1

∫
h(·; θ) f(bi | Yi, Ti, δi; θ) dbi. (A.2)

(A.2) differs from (A.1) in that f(bi | Yi, Ti, δi; θ) is the posterior under f(bi; θb), but also

that for Lf
n(θb), h(·; θ) = ∂ log f(bi; θb)/∂θb. For fixed n, the score vectors are functions of the

number of repeated measurements ni. Following we assume that for all i, ni → ∞. Then,

under assumptions (i) and (iv) both posterior distributions pni
(bi | Yi, Ti, δi; θ) and fni

(bi |

Yi, Ti, δi; θ) will concentrate around the neighborhood of the mode b̂i of the correctly specified

longitudinal model log p(Yi | bi; θy) =
∑ni

j=1 log p(yi(tij) | bi; θy) (Cox & Hinkley, 1974, pp.

399–400), which implies that, as ni → ∞, |fni
(bi | Yi, Ti, δi; θ) − pni

(bi | Yi, Ti, δi; θ)| → 0.

Based on this result, we have that for every ε > 0 there exists an integer m such that for all

ni ≥ m and for all θyt ∈ Θyt we get

‖Lf
ni

(θyt)− Lp
ni

(θyt)‖ =

= ‖
∑

i

∫
h(·; θyt) {fni

(bi | Yi, Ti, δi; θ)− pni
(bi | Yi, Ti, δi; θ)} dbi‖

≤
∑

i

∫
‖h(·; θyt) {fni

(bi | Yi, Ti, δi; θ)− pni
(bi‖Yi, Ti, δi; θ)} ‖ dbi

≤
∑

i

∫
‖h(·; θyt)‖· | fni

(bi | Yi, Ti, δi; θ)− pni
(bi | Yi, Ti, δi; θ) | dbi < ε,

where ‖ · ‖ denotes the Euclidean vector norm. The last statement combined with the

application of the mean value theorem to either Lf
ni

(θyt) or Lp
ni

(θyt) implies that ‖θ̃yt− θ̂yt‖ →

0.

Under the two random-effects parameterization (4), the arguments raised above can be

adapted accordingly to show that θ̃y will converge to θ̂y. However, for θ̃t we have that

Lf
n(θt) =

n∑
i=1

∫∫
∂

∂θt

log p(Ti, δi | bti; θt) f(byi, bti | Yi, Ti, δi; θ) dbyidbti

=
n∑

i=1

∫
∂

∂θt

log p(Ti, δi | bti; θt) f(bti | Yi, Ti, δi; θ) dbti,
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where f(bti | Yi, Ti, δi; θ) ∝ f(Yi | bti; θy, θb)p(Ti, δi | bti; θt)f(bti; θb), with f(Yi | bti; θy, θb) =

∫
p(Yi | byi; θy)f(byi | bti; θb)dbyi. Heuristically, as long as f(byi | bti; θb) 6= f(byi; θb), then

as ni increases the p(Yi | byi; θy) part of f(Yi | bti; θy, θb) provides increasing information

regarding bti, and this information becomes greater as the association between byi and bti

gets stronger. Formally, note that for θ̃t to converge to θ̂t as ni → ∞, we need |fni
(bti |

Yi, Ti, δi; θ)−pni
(bti | Yi, Ti, δi; θ)| → 0. This would be the case as along as fni

(bti | Yi, Ti, δi; θ)

is concentrated around the neighborhood of the mode b̂ti of fni
(Yi | bti; θy, θb). To ensure this,

we moreover adopt the regularity conditions of Heyde & Johnstone (1979), under which both

fni
(bti | Yi, Ti, δi; θ) and pni

(bti | Yi, Ti, δi; θ) will converge to the same normal distribution

with mean b̂ti, even though conditional independence does not hold in this case, i.e, f(Yi |

bti; θy, θb) 6=
∏ni

j=1 f(yi(tij) | bti; θy, θb).

Finally, to make the above results probabilistic in nature and to ensure that θ̃yt converges

in probability to the true parameter vector θ∗yt, we assume that n → ∞ and that θ̂yt is a

consistent estimator for θ∗yt.

A2. EM Steps

The maximum likelihood estimates for the parameter vector θ are obtained using an EM

algorithm, where byi and bti are treated as missing data. We assume the following sub-models

for the processes involved in the specification of the SPM:

Yi = Xyiβ + Zyibyi + εyi and log Ti = x>tiγ + bti + σ−1
t εti,

where εyi ∼ Nni
(0, Vi = σ2

yQi) with Qi being a correlation matrix with an associated parame-

ter vector κ, εti ∼ P where P denotes an appropriate distribution function with corresponding

survival function S and density function p, and σt is a scale parameter (Kalbfleisch & Pren-

tice, 2002, Ch. 3). Finally, the joint density of {byi, bti} follows (5), with copulas belonging

to either the Archimedean or elliptical classes and Gaussian marginals.
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For the E-step we set Ä to denote E {A(byi, bti) | Yi, Ti, δi; θ}, where the required integrals

are approximated using a Gauss-Hermite quadrature rule. For the parameters with no closed-

form solutions, we set `(·) to denote the score vector of the complete data log-likelihood.

The expected value ῭(·) of `(·), with respect to p(byi, bti | Yi, Ti, δi; θ), is used to numerically

maximize the expected value of the complete data log-likelihood, based on a quasi-Newton

algorithm. In particular, the following expressions define the M-step.

Longitudinal measurement model:

β =

{
n∑

i=1

X>
yiV

−1
i Xyi

}−1 {
n∑

i=1

X>
yiV

−1
i (yi − Zyib̈yi)

}
,

σ2
y =

1

N

n∑
i=1

µ>yiQ
−1
i (µyi − 2Zyib̈yi) + tr(Z>

yiQ
−1
i Zyiv̈byi) + b̈>yiZ

>
yiQ

−1
i Zyib̈yi,

῭(κ) =
1

2

n∑
i=1

tr(−Q−1
i Wi) + µ>yiKi(µyi − 2Zyib̈yi) + tr(Miv̈byi) + b̈>yiMib̈yi,

where N =
∑n

i=1 ni, µyi = yi − Xyiβ, b̈yi = E(byi | Yi, Ti; θ), v̈byi = var(byi | Yi, Ti; θ),

Wi = ∂Qi/∂κ, Ki = Q−1
i WiQ

−1
i , Mi = Z>

yiKiZyi.

Event process model:

`(γ) = σ−1
t

n∑
i=1

xtiai and `(σt) = σ−1
t

n∑
i=1

ωiai − δi,

where ai = −δi{∂ log p(ωi)/∂ωi}− (1− δi){∂ log S(ωi)/∂ωi}, and ωi = (log Ti−x>tiγ− bti)/σt.

Random-effects model: We distinguish between the following cases. First, the Gaussian cop-

ula combined with normal marginals results in a multivariate normal distribution with known

derivatives for the variance components. Second, the Student’s-t copula involves the in-

verse distribution function of the Student’s-t distribution and thus numerical derivatives are

used. Finally, for Archimedean copulas, `(α) is derived for each particular copula separately,

whereas for the parameters θby and θbt of the marginal models for byi and bti, the following

general formula is used

`(θby) =
n∑

i=1

[{
g(3)(C(ui, vi))
g(2)(C(ui, vi))

− 3
g(2)(C(ui, vi))
g(1)(C(ui, vi))

}
cu(vi) +

g(2)(ui)
g(1)(ui)

]
∂u

∂θby
+

∂ log p(byi; θby)
∂θby

,
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where g(·) is the generator function of the archimedean copula with g(l)(·) denoting its lth

derivative, cu(v) = ∂C(u, v)/∂u, u and v are the distribution functions of the marginal

Gaussian distributions for byi and bti, respectively, and `(θbt) is derived analogously.
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Table 1. Parameter estimates and standard errors under the bimodal scenario (i). The top
part contains the results for the large-ni case (i.e., maxi{ni} = 15), whereas the bottom part

contains the results for the small-ni case (i.e., maxi{ni} = 4). The ‘Std. Err.’ columns
contain the empirical/average sandwich/average model-based standard errors, respectively.

Frank Gumbel Gaussian Student’s-t

True Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

β0 1 0·979 0·141/0·111/0·081 0·966 0·146/0·122/0·089 0·982 0·145/0·136/0·098 0·980 0·146/0·133/0·093

β1 0 0·038 0·215/0·191/0·174 0·038 0·206/0·183/0·107 0·029 0·201/0·194/0·155 0·024 0·216/0·191/0·166

β2 1·5 1·502 0·022/0·023/0·014 1·503 0·022/0·023/0·018 1·502 0·022/0·023/0·013 1·502 0·022/0·024/0·014

β3 2·5 2·499 0·002/0·002/0·001 2·500 0·002/0·002/0·001 2·500 0·002/0·002/0·001 2·500 0·002/0·002/0·001

β4 -0·5 -0·502 0·031/0·030/0·020 -0·503 0·031/0·030/0·022 -0·503 0·031/0·030/0·019 -0·502 0·031/0·031/0·018

β5 -1 -1·000 0·002/0·002/0·001 -0·999 0·002/0·002/0·001 -1·001 0·002/0·002/0·001 -1·000 0·002/0·002/0·001

σy 0·5 0·498 0·013/0·010/0·008 0·497 0·015/0·017/0·009 0·499 0·013/0·016/0·009 0·498 0·014/0·013/0·009

γ0 2 1·978 0·210/0·198/0·188 1·992 0·209/0·199/0·172 2·005 0·201/0·191/0·172 1·982 0·201/0·203/0·176

γ1 1·5 1·496 0·272/0·264/0·167 1·510 0·260/0·242/0·188 1·492 0·269/0·272/0·196 1·492 0·290/0·273/0·198

σt 0·5 0·418 0·199/0·188/0·173 0·610 0·308/0·313/0·266 0·429 0·218/0·190/0·150 0·669 0·210/0·207/0·183

τ 0·62 0·619 0·075/0·065/0·036 0·724 0·117/0·108/0·098 0·634 0·067/0·059/0·042 0·693 0·098/0·100/0·068

σby 2·35 2·305 0·104/0·108/0·025 2·319 0·140/0·129/0·099 2·349 0·105/0·110/0·078 2·372 0·116/0·117/0·073

σbt 2·15 2·172 0·143/0·145/0·136 2·141 0·199/0·172/0·145 2·205 0·164/0·146/0·101 2·121 0·197/0·192/0·151

β0 1 0·952 0·195/0·136/0·134 0·905 0·259/0·130/0·131 0·964 0·210/0·192/0·104 0·941 0·214/0.183/0.120

β1 0 0·083 0·290/0·186/0·170 0·021 0·339/0·257/0·190 0·060 0·309/0·287/0·193 0·053 0·308/0.259/0.189

β2 1·5 1·505 0·029/0·029/0·006 1·508 0·029/0·029/0·011 1·506 0·029/0·029/0·009 1·505 0·029/0.029/0.006

β3 2·5 2·500 0·002/0·003/0·001 2·500 0·003/0·003/0·001 2·500 0·002/0·001/0·003 2·500 0·003/0.002/0.001

β4 -0·5 -0·505 0·035/0·038/0·008 -0·507 0·035/0·038/0·012 -0·506 0·035/0·038/0·012 -0·506 0·035/0.038/0.008

β5 -1 -1·000 0·003/0·003/0·001 -0·999 0·003/0·003/0·001 -1·000 0·003/0·003/0·003 -1·000 0·003/0.003/0.001

σy 0·5 0·497 0·023/0·015/0·225 0·498 0·023/0·023/0·015 0·497 0·022/0·019/0·015 0·497 0·022/0.015/0.008

γ0 2 2·032 0·215/0·139/0·061 1·989 0·277/0·156/0·087 2·059 0·251/0·185/0·097 2·036 0·256/0.196/0.090

γ1 1·5 1·511 0·321/0·201/0·080 1·479 0·378/0·219/0·091 1·495 0·348/0·219/0·091 1·473 0·354/0.344/0.272

σt 0·5 0·327 0·128/0·095/0·033 0·580 0·358/0·124/0·092 0·411 0·203/0·174/0·122 0·615 0·285/0.254/0.174

τ 0·62 0·663 0·045/0·039/0·013 0·758 0·131/0·107/0·067 0·660 0·045/0·056/0·012 0·727 0·106/0.095/0.046

σby 2·35 2·294 0·107/0·114/0·037 2·266 0·215/0·196/0·116 2·338 0·108/0·120/0·033 2·408 0·222/0.201/0.171

σbt 2·15 2·298 0·154/0·162/0·025 2·191 0·239/0·210/0·173 2·279 0·179/0·171/0·055 2·256 0·295/0.265/0.191
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Table 2. Parameter estimates and standard errors under the skewed scenario (ii). The top
part contains the results for the large-ni case (i.e., maxi{ni} = 15), whereas the bottom part

contains the results for the small-ni case (i.e., maxi{ni} = 4). The ‘Std. Err.’ columns
contain the empirical/average sandwich/average model-based standard errors, respectively.

Frank Gumbel Gaussian Student’s-t

True Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

β0 1 0·992 0·169/0·151/0·142 0·993 0·171/0·166/0·156 0·995 0·173/0·161/0·155 0·995 0·177/0·167/0·118

β1 0 -0·014 0·256/0·210/0·199 -0·009 0·260/0·231/0·220 -0·024 0·269/0·272/0·251 -0·022 0·269/0·256/0·193

β2 1·5 1·501 0·022/0·021/0·017 1·502 0·022/0·022/0·011 1·501 0·022/0·021/0·016 1·502 0·022/0·022/0·011

β3 2·5 2·499 0·002/0·002/0·001 2·500 0·002/0·002/0·001 2·500 0·002/0·002/0·001 2·500 0·002/0·002/0·001

β4 -0·5 -0·499 0·029/0·028/0·019 -0·500 0·029/0·028/0·015 -0·500 0·029/0·028/0·015 -0·501 0·030/0·028/0·013

β5 -1 -1·000 0·002/0·002/0·001 -1·000 0·002/0·002/0·001 -1·000 0·002/0·001/0·001 -1·000 0·002/0·002/0·001

σy 0·5 0·504 0·013/0·010/0·007 0·506 0·021/0·018/0·010 0·506 0·021/0·019/0·010 0·506 0·021/0·018/0·012

γ0 2 1·947 0·226/0·235/0·195 1·980 0·222/0·207/0·174 2·028 0·238/0·219/0·178 2·004 0·222/0·209/0·188

γ1 1·5 1·502 0·326/0·308/0·268 1·518 0·330/0·336/0·273 1·506 0·352/0·326/0·296 1·501 0·374/0·354/0·308

σt 0·5 0·582 0·260/0·269/0·203 0·574 0·282/0·257/0·199 0·471 0·226/0·203/0·177 0·589 0·244/0·223/0·197

τ 0·63 0·654 0·103/0·101/0·085 0·684 0·093/0·100/0·077 0·626 0·060/0·055/0·033 0·661 0·082/0·065/0·051

σby 2·56 2·549 0·109/0·107/0·072 2·523 0·121/0·131/0·067 2·527 0·108/0·118/0·083 2·530 0·107/0·117/0·088

σbt 2·19 2·105 0·218/0·221/0·179 2·110 0·209/0·196/0·149 2·159 0·205/0·193/0·127 2·092 0·222/0·202/0·176

β0 1 0·981 0·272/0·213/0·190 1·027 0·249/0·189/0·154 1·022 0·251/0·199/0·178 1·004 0·260/0·213/0·143

β1 0 0·006 0·314/0·295/0·269 -0·006 0·327/0·295/0·191 0·003 0·329/0·310/0·299 0·018 0·337/0·298/0·234

β2 1·5 1·502 0·028/0·029/0·006 1·502 0·028/0·029/0·007 1·502 0·028/0·029/0·006 1·502 0·028/0·029/0·007

β3 2·5 2·500 0·003/0·003/0·001 2·500 0·003/0·003/0·001 2·500 0·003/0·003/0·001 2·500 0·003/0·003/0·001

β4 -0·5 -0·504 0·036/0·038/0·008 -0·504 0·036/0·038/0·008 -0·504 0·036/0·038/0·007 -0·504 0·036/0·038/0·008

β5 -1 -1·000 0·003/0·003/0·001 -0·999 0·003/0·003/0·001 -1·000 0·003/0·003/0·001 -1·000 0·003/0·003/0·001

σy 0·5 0·496 0·021/0·015/0·009 0·496 0·021/0·015/0·008 0·496 0·021/0·015/0·009 0·496 0·021/0·017/0·009

γ0 2 1·937 0·233/0·191/0·112 1·996 0·204/0·196/0·101 2·022 0·228/0·184/0·088 1·983 0·225/0·197/0·123

γ1 1·5 1·539 0·320/0·299/0·111 1·511 0·317/0·297/0·133 1·544 0·332/0·310/0·185 1·557 0·352/0·294/0·193

σt 0·5 0·552 0·290/0·244/0·096 0·535 0·271/0·178/0·088 0·431 0·203/0·163/0·082 0·628 0·246/0·191/0·091

τ 0·63 0·687 0·105/0·089/0·021 0·709 0·081/0·068/0·014 0·649 0·048/0·035/0·012 0·672 0·081/0·063/0·013

σby 2·56 2·570 0·138/0·117/0·057 2·543 0·134/0·131/0·040 2·539 0·123/0·130/0·034 2·545 0·124/0·130/0·041

σbt 2·19 2·180 0·213/0·179/0·085 2·159 0·190/0·160/0·024 2·203 0·177/0·173/0·076 2·098 0·202/0·196/0·088
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Table 3. Parameter estimates and standard errors under the normal scenario (iii). The top
part contains the results for the large-ni case (i.e., maxi{ni} = 15), whereas the bottom part

contains the results for the small-ni case (i.e., maxi{ni} = 4). The ‘Std. Err.’ columns
contain the empirical/average sandwich/average model-based standard errors, respectively.

Frank Gumbel Gaussian Student’s-t

True Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

β0 1 1·056 0·215/0·199/0·118 1·055 0·216/0·194/0·110 1·004 0·212/0·190/0·223 1·066 0·214/0·193/0·163

β1 0 0·077 0·220/0·113/0·089 0·073 0·225/0·175/0·102 0·022 0·215/0·222/0·210 0·062 0·230/0·198/0·120

β2 1·5 1·498 0·019/0·024/0·014 1·498 0·019/0·024/0·017 1·497 0·018/0·026/0·019 1·498 0·018/0·021/0·014

β3 2·5 2·500 0·001/0·002/0·001 2·500 0·001/0·002/0·001 2·500 0·002/0·002/0·002 2·500 0·002/0·002/0·001

β4 -0·5 -0·496 0·024/0·031/0·015 -0·496 0·024/0·028/0·013 -0·496 0·024/0·032/0·025 -0·497 0·024/0·030/0·015

β5 -1 -1·000 0·002/0·002/0·002 -1·000 0·002/0·002/0·002 -1·000 0·002/0·003/0·002 -1·000 0·002/0·002/0·001

σy 0·5 0·501 0·013/0·011/0·007 0·501 0·014/0·017/0·008 0·501 0·014/0·019/0·011 0·501 0·013/0·012/0·009

γ0 2 2·000 0·246/0·226/0·193 2·028 0·271/0·236/0·189 2·034 0·264/0·279/0·257 2·026 0·275/0·202/0·172

γ1 1·5 1·528 0·438/0·374/0·253 1·542 0·464/0·423/0·396 1·506 0·448/0·460/0·438 1·538 0·497/0·461/0·395

σt 0·5 0·682 0·301/0·282/0·220 0·655 0·340/0·335/0·271 0·527 0·255/0·234/0·228 0·641 0·259/0·233/0·196

τ 0·61 0·712 0·124/0·096/0·054 0·730 0·130/0·116/0·096 0·610 0·036/0·040/0·033 0·676 0·114/0·127/0·085

σby 2·5 2·519 0·135/0·123/0·094 2·486 0·131/0·137/0·109 2·487 0·127/0·132/0·126 2·487 0·128/0·121/0·099

σbt 2·2 2·049 0·184/0·158/0·112 2·103 0·159/0·146/0·117 2·174 0·160/0·215/0·148 2·098 0·191/0·198/0·138

β0 1 0·966 0·344/0·331/0·293 0·997 0·332/0·303/0·343 1·043 0·323/0·353/0·344 0·994 0·323/0·335/0·216

β1 0 0·028 0·321/0·280/0·149 -0·017 0·293/0·254/0·190 0·098 0·311/0·373/0·354 0·098 0·303/0·285/0·196

β2 1·5 1·504 0·029/0·030/0·005 1·505 0·029/0·030/0·016 1·505 0·029/0·030/0·026 1·505 0·029/0·030/0·007

β3 2·5 2·500 0·003/0·003/0·001 2·500 0·003/0·003/0·002 2·500 0·003/0·003/0·001 2·500 0·003/0·003/0·001

β4 -0·5 -0·506 0·037/0·038/0·007 -0·507 0·037/0·038/0·011 -0·508 0·037/0·045/0·038 -0·508 0·037/0·038/0·008

β5 -1 -0·999 0·003/0·003/0·001 -0·999 0·003/0·003/0·001 -0·999 0·003/0·003/0·001 -0·999 0·003/0·003/0·001

σy 0·5 0·495 0·019/0·016/0·009 0·495 0·019/0·016/0·010 0·495 0·019/0·023/0·017 0·495 0·019/0·015/0·010

γ0 2 1·976 0·250/0·215/0·165 2·007 0·249/0·216/0·136 2·024 0·252/0·291/0·235 1·994 0·242/0·222/0·164

γ1 1·5 1·580 0·294/0·236/0·142 1·534 0·290/0·247/0·197 1·572 0·300/0·283/0·293 1·551 0·289/0·253/0·195

σt 0·5 0·494 0·263/0·236/0·123 0·502 0·280/0·258/0·213 0·424 0·197/0·250/0·207 0·559 0·245/0·246/0·183

τ 0·61 0·644 0·094/0·071/0·027 0·666 0·091/0·075/0·048 0·604 0·064/0·082/0·061 0·642 0·074/0·058/0·019

σby 2·5 2·515 0·147/0·126/0·091 2·478 0·158/0·146/0·055 2·482 0·136/0·167/0·159 2·492 0·135/0·127/0·092

σbt 2·2 2·205 0·223/0·189/0·109 2·178 0·199/0·171/0·124 2·156 0·189/0·198/0·179 2·149 0·207/0·199/0·121
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Table 4. Estimated Kendall’s tau (sandwich/model-based standard errors) for the
association between time to graft failure and GFR longitudinal measurements under

different copulas and survival models.

Frank Gumbel Gaussian Student’s-t

Weibull 0·569 (0·091/0·062) 0·803 (0·051/0·021) 0·855 (0·022/0·011) 0·657 (0·068/0·030)

log-normal 0·564 (0·103/0·064) 0·802 (0·062/0·022) 0·629 (0·042/0·019) 0·747 (0·066/0·026)

log-logistic 0·566 (0·088/0·066) 0·802 (0·048/0·022) 0·747 (0·075/0·040) 0·591 (0·071/0·031)


