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2 Maringwa et al.: Smoothing Neuronal Data

Summary

Neuron experiments produce high-dimensional data structures. Therefore, application of smoothing tech-

niques in the analysis of neuronal data from electrophysiological experiments has received considerable

attention of late. We investigate the use of penalized smoothing splines in the analysis of neuronal data.

This is first illustrated when interested in the temporal trend of a single neuron. An approach to investi-

gate the maximal firing rate, based on the penalized spline model is proposed. Determination of the time

of maximal firing rate is based on non-linear optimization of the objective function with the correspond-

ing confidence intervals constructed based on the first-order derivative function. To distinguish between

the curves from different experimental conditions in a moment-by-moment sense, bias adjusted simulation-

based simultaneous confidence bands leading to global inference in the time domain are constructed. The

bands are an extension of the approach proposed by Ruppert et al. (2003). These methods are in a second

step extended towards the analysis of a population of neurons via a marginal or population-averaged model.

Key words: Marginal model; Maximal firing rate, Neuronal data analysis; Penalized splines; Simultaneous

confidence bands, Smoothing.

1 Introduction

Neurons carry information by means of electrical signals (action potentials or spikes) which are transmitted

across synapses. The spike is a pulse signal of about 1 ms duration and of the same amplitude and it

constitutes the relevant signal for the interactions between neurons. In electrophysiological experiments,

these spikes are recorded by microelectrodes inserted in the brain as they occur in the time course, time

stamps. It is assumed that the number of spikes per time unit, the spike rate, produced by single neurons

is a relevant parameter for the coding in the brain. Single-unit activity is irregular, both within and across

trials; hence to obtain the regularity of the response, trials are repeated several times. Furthermore, to assess

that the behavior of single neuron activity is present at population level, the statistical analysis should be

extended to the population of neurons with the same properties (Kass et al ˙, 2005).

The data considered here involve the electrical activity in 20 different neurons recorded in the ventral

premotor cortex (VPM) while a monkey performs a continuous discrimination task (CD task). In this
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task, the monkey reports a decision, based on the comparison of the orientation of two visual stimuli

shown sequentially, separated by a delay. The main determinant of the neuron’s discharge was whether

the second stimulus (test) was to the left or right of the first (reference). Several trials are performed,

classified according to orientation of the second stimulus with reference to the first (left or right) and the

degree of difficulty (easy, difficult). For each trial, within the experimental period, i.e., 1000 ms to 2500

ms, time points where electrical activity was noted are recorded. Full details of the experiment are given

in Section 2. Usually, data from such electrophysiological experiments is summarized using a raster plot,

displaying the complete set of spikes for each of the trials (Kass et al., 2005). Also the peristimulus

histogram (Gerstein and Kiang, 1960) can be used to summarize the overall activity and evolution in time

by counting spikes in intervals of a certain width. Several ways to smooth instantaneous firing rates have

been studied in the literature. An overview of the application of smoothing techniques in neuronal data

can be found in Kass et al. (2003). Cadarso-Suárez et al. (2006) and Roca-Pardinas et al. (2006), for

example, employ a flexible modeling technique based on the logistic Generalized Additive Model (GAM)

with local linear kernel smoothers. Faes et al. (2007) apply a flexible method based on natural cubic

splines to model synchrony in neuronal firing. Other recent techniques in this context include the Bayesian

adaptive regression splines (DiMatteo et al., 2001; Behseta et al. (2005); Behseta and Kass, 2005). Flexible

regression-based techniques come out favorable since they enjoy the flexibility of capturing the temporal

evolution without the restriction of parametric modeling as well as the possibility to include covariate or

factor information. We revisit this aspect in Section 3 where the models discussed happen to share similar

properties.

The number of spikes accumulated over the different trials can be assumed to come from an inhomogeneous

Poisson counting process (Cadarso-Suárez et al., 2006; Ventura et al., 2002; Kass et al., 2005), and our

interest lies in estimating the instantaneous firing rate, denoted by λ(t). Estimating the instantaneous firing

rate is necessary, especially in our situation where one of the main research goals is to determine the time

trend and the time of maximal firing rate. Capturing the temporal structure with a parametric function may
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4 Maringwa et al.: Smoothing Neuronal Data

prove difficult or unsatisfactory. For example, Ventura et al. (2002) define a piecewise parametric function

to describe the mean of the intensity function. One of the problems they face is that, for some neurons,

the proposed model does not conform to the observed pattern. An attractive alternative is to model the

time evolution by a flexible semiparametric function estimated through use of penalized smoothing splines

(Eilers and Marx, 1996; Verbyla et al., 1999; Ruppert et al., 2003), fitted in the mixed model framework.

The representation of the penalized splines as a mixed model is very appealing, since this connection

presents an opportunity for ordinary software packages for mixed models, such as, for example S-plus, R,

or SAS, to be used to fit the penalized spline model, and to select the amount of smoothing automatically via

maximum likelihood (ML) or restricted maximum likelihood (REML). Molenberghs and Verbeke (2005)

present an example together with SAS code for analyzing an ordinal outcome in a clinical-trial setting.

Other advantages are the unified framework for inference and the flexibility with which the models can be

extended.

One of the main objectives of the study is to summarize certain characteristics of the time evolution of

activity in the neurons from a population (all neurons) point of view. The important characteristics under

consideration include time at which the maximum firing rate is observed. In addition, confidence intervals

on the time of maximum firing rate are also required. We consider modeling the data from two perspectives,

namely, single-neuron analysis and a population-averaged approach. Modeling of the time evolution in the

two perspectives mentioned above essentially follows the same route as explained in Section 3.1.1.

The remainder of this paper is organized as follows. In Section, 2 details of the experiment are given.

Section 3 focuses on the methodology applied herein. In particular, penalized splines methodology, and

construction of simultaneous confidence bands for comparing curves in time are discussed. In Section 4

the methodology is applied to the study motivating this work.
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2 The Experiment

One monkey was trained to discriminate between different line orientations (stimuli) (Vazquez et al.,

2000). The stimuli (reference and test) consisted of stationary bright line segments presented on a mon-

itor screen in front of the monkey. Reference stimuli were presented with three different orientations

(85.5o, 90o, 94.5o). Eight test stimuli per reference were presented rotated clockwise or counter-clockwise

to the reference line in steps of 1.5o. Two bright circles were laterally displayed to the right and to the left

of the center of the screen.

A trial was initiated when the monkey fixated a small line centred on the screen. Then, when the fixa-

tion line disappeared, the two stimuli, reference and test, each of 500 ms duration, appeared in sequence,

separated by a fixed inter-stimulus interval (ISI, 1000 ms). At the end of the second stimulus, the subject

had to make a saccadic eye movement towards one of the two circles to indicate whether the orientation of

the second stimulus was clockwise (right) or counter-clockwise (left) to the reference stimulus. Monkeys

were rewarded for correct discriminations (see Table 1). Once trained, extra-cellular single unit activity

was recorded in the ventral premotor cortex (VPM).

The activity of some VPM neurons was modulated depending on the monkeys’ decision about the orienta-

tion of the test to the reference stimuli. We were interested in (1) determining the maximum peak activity

when the monkey correctly decided that the test stimuli were to the right and to the left of the reference

line, and (2) comparing the neural response between behaviorally relevant conditions.

The data collected were summarized across the different trials in the form of spike counts per time unit.

The period of analysis was between 1000–2500 ms. This time period occupies the last 500 ms of the ISI

and the 500 ms of the comparison/decision period (2000–2500 ms), this being the relevant period for this

analysis of the correct decisions to the left and to the right. Table 1 gives a summary of the events in each

trial.

Table 1 ABOUT HERE

Copyright line will be provided by the publisher



6 Maringwa et al.: Smoothing Neuronal Data

3 Methods

3.1 Single Neuron Analysis

Let us introduce the methodology, first in the context of a single neuron. It should be noted that extension of

the model to several neurons, in matrix notation, simply involves stacking together matrices corresponding

to the different neurons. To reduce the computational burden, the time scale is subdivided into 20ms bins

and each bin represented by the median time point of that bin.

3.1.1 Penalized Splines with Radial Basis

Let yt(t = 1, . . . , T ) represent the total count of activities recorded in bin t, aggregated over all the trials,

xt the median time point of bin t and κ1, . . . , κK be a set of knots in the range of xt. To flexibly model the

response Y = (y1, . . . , yT )
′
, consider the model,

h(E[Y ]) = Xβ + Zku , (1)

where h(·) is an appropriate link function, such as the log link, and X and Zk are design matrices of the

form

X =
[
1 xt . . . xm−1

t

]
1≤t≤T

, Zk =
[
|xt − κk|2m−1

]
1≤t≤T , 1≤k≤K

.

The parameter vectors β and u are fixed and random effects, respectively. This defines the radial basis

spline function of degree 2m − 1. When using a large number of knots, this spline function has a lot of

flexibility. To overcome the problem of overfitting the data, the parameters u are restricted by assuming

that (Ruppert et al., 2003)

Cov(u) = σ2
u(Ωk)−1/2(Ω−1/2

k )T , with Ωk =
[∣∣∣κk − κ

′
k

∣∣∣
2m−1

]

1≤k,k′≤K

.

To fit the model using standard mixed model software, the transformation Z = ZkΩk
−1/2 is applied,

resulting in an equivalent model

h(E[Y ]) = Xβ + Zu, where Cov(u) = G = σ2
uI. (2)
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Estimation of the parameters in the model above are obtained via use of the SAS procedure GLIMMIX,

which uses pseudolikelihood estimation techniques (Wolfinger and O’Connell, 1993). The knots in this

case are selected as equally-spaced quantiles of the time variable (Ruppert, 2002; Ngo and Wand, 2004).

Broadly speaking, the idea is to have a large number of knots and then constrain their influence to yield a

smooth fit.

Since interest is in a comparison of the time trend among different experimental conditions (e.g., left versus

right, and easy versus difficult), a complex model is assumed which considers different smooth functions in

each of the experimental conditions. Such a model can be said to have factor by factor by curve interactions

(Ruppert et al., 2003). More specifically, consider the two-factor degree of difficulty (d = 0 if easy and

d = 1 otherwise) combined with orientation (z = 0 if left and 1 otherwise), then placing this covariate

information in the matrix X, the penalized spline model of degree 3 considered herein takes the form:

log(λt|X) = β0 + β1xt +
∑K

k=1 bk|xt − κk|3 + dαd + d
(∑K

k=1 vd
k|xt − κk|3

)
+ zγz

+z
(∑K

k=1 ωz
k|xt − κk|3

)
+ dzδdz + dz

(∑K
k=1 φdz

k |xt − κk|)3
)
,

(3)

where bk, vd
k , ωz

k, and φdz
k are random effects for smoothing, assumed to be N(0, σ2

s ). The parameters

αd, vd
k correspond to orientation, γz , ωz

k correspond to difficulty and δdz , φdz
k to the interaction between

the two factors. Using appropriate design matrices X and Z, this model can be written as (2) and fitted

as described in Section 3.1.1. Note that, although we fit different functions under the varying experi-

mental conditions, i.e., independent random effects for smoothing by condition, the amount of smoothing

is assumed the same, hence only one variance component has to be estimated. A more general model,

smoothing the different experimental conditions with varying smoothing parameters, can be considered as

well, in which case one may be inclined to test the need for varying the smoothing parameter by condition.

The model considered can easily be extended or reduced in several ways. For example, one can assume a

constant shift in the curves, if that is a reasonable assumption.

For comparison of curves from different experimental conditions, we propose use of bias adjusted simul-

taneous confidence bands around the fitted curves. Construction of such intervals requires the use of the
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8 Maringwa et al.: Smoothing Neuronal Data

variance-covariance matrix (see Ruppert et al., 2003; SAS Institute Inc., 2004):

V = Cov




β̂

û− u


 =




X
′
S−1X X

′
S−1Z

Z
′
S−1X Z

′
S−1Z + G−1




−

.

Here, the matrix S is the conditional variance of the pseudo-data (see e.g., Molenberghs and Verbeke,

2005), generated during the fitting process. Let P denote the pseudo-data, then

S = var[P |u] = ∆−1A
1
2 RA

1
2 ∆−1.

From (1), one can write E[Y ] = h−1(Xβ +Zku) = h−1(η) and subsequently define ∆ = ∂h−1(η)
∂η . The

matrix A is diagonal, containing variances of the response as a function of the mean and R is a residual

variance matrix, dependent on user specifications.

Let g = (x1, . . . , xT )
′

be a set of values for which a simultaneous confidence band for f = (fx1 , . . . , fxT )
′

is required. It can be assumed that, approximately,



β̂ − β

û− u


 ∼ N (0, V ) . (4)

Simultaneous confidence bands for f can then be obtained as

[
f̂xt ± h(1−α)ŝtdev{f̂(xt)− f(xt)}

]
1≤t≤T

,

where h(1−α) is the 1− α quantile of (see Ruppert et al., 2003)

max
1≤xt≤T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


Cg




β̂ − β

û− u







xt

ŝtdev{f̂(xt)− f(xt)}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5)

with Cg = [C Z], see Section 3.1.1. Essentially one simulates from (4) and computes (5) for N times and

the value with rank (1 − α)N becomes h(1−α). As a result, h1−α/zα approximates how wide the simul-

taneous confidence bands are, compared to their pointwise counterparts. The construction of confidence
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bands can be performed on the scale of the linear predictor and then transformed to intervals for the mean

of the firing rate.

3.2 Derivation of the Time of Maximal Firing Rate and its Confidence Interval

One of the goals of the research is to detect the time at which the maximal firing rate occurs. To that

effect, non-linear optimization techniques are implemented. After estimating the instantaneous firing rate,

optimization and specifically, the conjugate gradient method (Gill, Murray and Wright, 1981; Fletcher,

1987) is applied. The optimization of the firing rate function λt is implemented in the SAS procedure IML

using the NLPCG subroutine. The maximum firing rate is an immediate by-product of the maximization

procedure. As is commonly encountered with non-unimodal optimization problems, the optimization al-

gorithm implemented converges towards local rather than global optima. The smallest local minimum of

an objective function is called the global minimum, and the largest local maximum of an objective function

is called the global maximum. It is therefore not unusual that the algorithm occasionally fails to obtain the

global optimum. Therefore, several starting values within the time range of interest are used. The objective

function is evaluated over all these possible candidates, and the time that gives the maximum probability

is taken as the time resulting in the maximal firing probability. This approach can be considered along the

lines of a general concept for looking for features such as peaks, often referred to in literature as bump

hunting (e.g., Heckman, 1992). Related approaches also include tests for monotonicity of regression func-

tions (Gijbels et al., 2000).

To determine a confidence interval for the time of maximal firing, we make use of the first-order deriva-

tive of the objective function. Similar approaches have been used in the literature, for example, Ganguli

and Wand (2007) who apply tests for feature significance using the significant zero crossings methodol-

ogy (SiZer) due to Chaudhuri and Marron (1999). Harezlak, Naumova and Laid (2007) employ bootstrap

techniques to construct a test for bump hunting with penalized spline regression methodology. While these

authors also make use of the first derivative of the objective function in the construction of their test, the
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10 Maringwa et al.: Smoothing Neuronal Data

main focus here is to determine the time corresponding to the maximal firing rate accompanied by a confi-

dence interval.

Denote the derivative of h(E[Y ]) with respect to time by h
′
(E[Y ]) and define the following matrices:

Xd = [0 1]1≤t≤T , Zd = Z∗
kΩ

−1/2
k , and Z∗

k = [3(xt − κk)|xt − κk|]1≤t≤T , 1≤k≤K .

It then follows from Section 3.1.1 that

h
′
(E[Y ]) = Xdβ + Zdu. (6)

Note that the model we consider assumes that m = 2 in (1). In general,

Xd =
[
0 1 2xt . . . (m− 1)x(m−1)

t

]
1≤t≤T

and Z∗
k =

[
(2m− 1)(xt − κk)|xt − κk|2m−3

]
1≤t≤T , 1≤k≤K

.

The derivative function should be zero at the time corresponding to the maximum firing rate. To construct

a confidence interval for time of maximal firing, a confidence interval for the derivative function is con-

structed. Defining g(λt) = h
′
(E[yt]), the variance function at a particular time point t is (Ruppert et al.,

2003)

var{(ĝ(λt)− g(λt))} ' CT
t V Ct ,

where Ct =
[
Xd

t Zd
t

]
. Construction of simultaneous confidence now follows the discussion in Section

3.1.1, with an appropriate adjustment to Cg using Xd and Zd. Confidence limits for the time of maxi-

mal firing rate are then taken as the points where the obtained confidence limits for the derivative function

cross the zero line. Note that the first-order derivative function at the scale of the link function is readily ob-

tained by substituting the parameters by their estimates obtained from the model. Due to the monotonicity

property of the link function, confidence intervals constructed for h
′
(·) therefore suffice in this situation.

3.3 Population-averaged Model: Combining Information from Different Neurons

Our discussion until this far has focused on data from a particular neuron. However, it is the goal to com-

bine the information from different neurons, resulting in a so-called population based analysis. We propose
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the use of a marginal or population-averaged model (Molenberghs and Verbeke, 2005). The approach used

in this paper, which is implemented in the SAS procedure GLIMMIX, is based on linearization of the

outcome variable (see e.g., Molenberghs and Verbeke, 2005), resulting in the application of weighted least

squares (McCullagh and Nelder, 1989). In particular, the neurons are considered as the different subjects,

accounting for the correlation of the measurements from each neuron through specification of a particular

correlation structure, for example, an unstructured correlation or compound symmetry. The more gen-

eral case of the generalized linear mixed model (GLMM) is of course a useful paradigm. Thus, one can

consider a random-effects model, where neuron-specific random effects are used to account for the asso-

ciation. Such models are also handled by the procedure GLIMMIX. The marginal average evolution can

then be obtained by averaging the conditional means over the random effects (Molenberghs and Verbeke,

2005), essentially integrating over them. Here, the random effects implied are neuron-specific effects, e.g.,

random intercepts, and not the random coefficients for smoothing. The former approach, which directly

results in a population-averaged fit, is preferred in this situation.

Information from different experimental conditions from the different neurons is therefore combined to

obtain condition-specific population-averaged profiles from which aspects of interest will be calculated.

Since for each neuron the number of trials per experimental condition varies, we fit the model with the

number of trials as an offset variable.

4 Application to the Data

4.1 Single Neuron Analysis

This section applies the penalized splines methodology on single neuron data, with the main focus on

the population-averaged model being the subject of Section 4.2. Figure 1 displays data from a particular

neuron, selected from the 20 neurons performing the CD task.

Figure 1 ABOUT HERE
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12 Maringwa et al.: Smoothing Neuronal Data

The graph shows the observed firing rates from the different experimental conditions, the corresponding

raster plot from 176 trials as well as the fitted curves for each experimental condition, obtained using the

penalized spline model. From the graphs, one observes that for this neuron, there is increased activity

around 2000 ms into the experiment. The maximum firing rate occurs in this period. The more relevant

comparison of the left and right decisions, for a fixed level of difficulty, is done using pointwise confidence

intervals and simultaneous confidence bands in Figure 2. Other than the small section between about

1750 and 2000 ms, which appears to show a difference, the pointwise confidence intervals to suggest no

significant differences between the left and right decisions in this case.

Figure 2 ABOUT HERE

Using the simultaneous confidence bands, which are expected to be wider than the pointwise counterparts,

the apparent difference mentioned above is absorbed and the hypothesis of no difference between left and

right is upheld. Figure 3 shows the first-order derivative function corresponding to the fitted profiles in

Figure 1, together with their 95% pointwise confidence intervals and simultaneous bands. One can then

approximate the confidence intervals for the time of maximal firing rate as suggested by the shaded areas

in Figure 3. We return to the use of the derivative function and its confidence interval in the following

section, where a marginal model that combines information from different neurons is considered.

Figure 3 ABOUT HERE

To give an overview on individual neurons, a similar analysis has been performed on each of the other

neurons. There appears to be relatively large variability between neurons (see also Figure 4). A comparison

of left and right orientations based on confidence intervals for each neuron separately is performed and plots

given in Figures 7 and 8 in the Appendix. The results indicate that although in most neurons, differences

between left and right occur in the region 1500-2000 ms, for some neurons, differences occur elsewhere.

Moreover, the maximal firing rates in the sections showing differences are highly variable, suggesting that
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different neurons have different peaks. As such, in a population analysis, it may be difficult to detect

differences between left and right with differences in different places tending to cancel other.

4.2 Overall Average Profile

In this section, focus is put on the marginal or population-averaged model. Essentially, all data from the

different neurons have been combined to produce condition-specific profiles. Figure 4 shows individual

neuron profiles for each of the experimental conditions wherein within-neuron variability appears substan-

tial.

The model fitted assumes the same linear trend in the different experimental conditions albeit with inde-

pendent random effects for smoothing each experimental condition, as in (3).

Figure 4 ABOUT HERE

This effectively produces different curves for different experimental conditions. Although the random

effects are different, a single smoothing parameter is used, implying similar amount of smoothing in all

experimental conditions. First, an independence model with an overdispersion parameter is considered.

Figure 5 ABOUT HERE

Other types of correlation structures, for example the compound-symmetry structure and AR(1) process,

can be specified. We present results based on the compound-symmetry structure, under which the model

was relatively easier to converge. Note that an unstructured variance-covariance matrix would yield a

computationally prohibitive number of parameters and therefore may not be a good choice.

The fitted profiles in each of the experimental conditions are given in Figure 4 (right panel). The plot shows

that curves from the same decision (left or right) look rather similar, suggesting no differences between

levels of difficulty for a fixed decision.

Figure 6 ABOUT HERE
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14 Maringwa et al.: Smoothing Neuronal Data

From Figure 4, one can observe increased firing activity for decision to the left in the time period 1500 to

2000 ms. However, for decision to the right, no clear peak is evident, rather an overall increase is apparent

between approximately 1500 and 2250 ms. The plot suggests that the time of maximal firing occurs earlier

for decisions to the left compared to the right with the maximal firing rate being higher for decisions to the

left.

Table 2 ABOUT HERE

Based on pointwise confidence intervals, apart from a small section between 1500 and 2000 ms, no differ-

ences between left and right are apparent in either of the levels of difficulty. Again, as one might expect, this

apparent difference disappears as one considers simultaneous confidence bands. The simultaneous confi-

dence bands used were found to be about 1.54 times wider than their pointwise counterparts. Note that

the simultaneous confidence bands allow us to reach overall conclusions regarding differences or equality

between the curves under comparison.

Figure 6 shows the first-order derivative and its 90% pointwise and simultaneous confidence intervals, to-

gether with an indication of the time of maximal firing. Since we already know the time of maximal firing,

one would expect that its confidence interval may be deduced from the confidence interval of the derivative

function, as exemplified by the shaded region in Figure 6. Note that in some experimental conditions, such

as, for example, decisions to the right (see Figure 4), the time of maximal firing rate is not clear and may

occur in a relatively wide region. In such instances, the upper and lower limits of the interval do not cross

the zero line, leading to open-ended intervals. Here, we illustrate use of the proposed methodology using

90% confidence intervals. Such an interval can be interpreted as an interval such that in an indefinite repeat

of similar experiments, 90% of the calculated confidence intervals for the maximal firing time will contain

the true value of the time of maximal firing time. Table 2 displays the maximal firing times for each of the

experimental conditions and the corresponding 90% pointwise and simultaneous confidence bands. The

results in Table 2 suggest that for a fixed decision, there are no drastic differences between the levels of

difficulty, neither in terms of the maximal firing rate nor the time of its occurrence. A similar conclusion
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may be drawn for the comparison between the left and right-oriented decisions. It is important to note the

relatively wide confidence intervals/bands, especially for decision to the right. It is clear from the fitted

curves in Figure 4 that for this condition, the maximum or peak may not be clearly determined, hence the

wide confidence intervals on the time of maximal firing rate. The observed wide confidence intervals could

be attributed to the large variability among the neurons, as mentioned before.

5 Discussion

We have considered an application of a flexible modeling technique, penalized smoothing splines in

smoothing neuronal data. This approach is convenient, it can be applied by means of widely available

commercial software for mixed models. The models can also be fitted in the Bayesian framework and con-

sequently WinBugs, a publicly available free software package can be used. The models we have discussed

are so general that they can be extended in several ways, exactly as required by the researcher. In particular,

several possible scenarios depicting the evolution of curves in different experimental conditions, can be as-

sumed. Differences or similarities can be assumed in the linear part of the models, the non-parametric part,

or in both parts of the model. Extension of these models may also include variation of levels of smoothing

in the different experimental conditions.

Focus has been on detecting the time of maximal firing rate and the maximal firing rate in a population of

neurons subjected to different experimental conditions. Moreover, we were also interested in comparing

the temporal evolution across the experimental conditions, the comparison between the left- and right-

oriented decisions being the main focus. The model we focused on is of a marginal or population-averaged

type, wherein correlations of observations from independent subjects, neurons in this case, is specified.

Different types of correlation structures can be used in this context. However, with the number of time

points encountered in such electrophysiological experiments, some structures like the unstructured corre-

lation are simply computationally infeasible. As a result, less computationally demanding structures, for

example the compound-symmetry or the simple structure, can be used. To compare the curves in a moment
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by moment sense (Cardárso-Suarez et al., 2006), simultaneous confidence around the fitted instantaneous

firing rates are constructed. This effectively solves the problem of testing for a difference at multiple time

points and therefore allows global conclusions in the time domain.

For the time of maximal firing one can fit the model and obtain the time corresponding to the maximum fir-

ing rate. However, the time of maximal firing rate does not necessarily have to be one of the design points,

and therefore we implemented an optimization procedure based on the penalized spline model fitted and

confidence intervals on the time of maximal firing determined via the first order derivative function. It

is clear that a number of properties of our proposed approach need to be investigated. For example, it is

useful to assess the impact of the form of the underlying function, since it makes a difference whether it is

constant, exhibits a single and small maximum, or features two local maxima. Also, the mean square error

of the estimator as well as the coverage probability of the confidence intervals need to be investigated. In

addition, a comparison with alternative estimators is worth undertaking. Also, it is worth exploring further

to what extent results depend on the choices made for the grid on the time variable. This is topic of further

research.

The analysis performed here suggests no significant difference between the experimental conditions under

consideration, both in terms of temporal evolution and the occurrence of the time of maximal firing rate.

Three possible causes for the result in the population analysis may be anticipated: (1) there is temporal

variation between neurons and this jittering provokes the lack of significance; (2) the different heights of

discharge rate at single neuron level damped the differences at population level. If this were the case,

perhaps normalizing the firing rates could solve it; (3) the firing rate maximum peaks for left and right are

almost of the same height but occur at different times; as a consequence there is no statistical difference

between the two peaks. In our situation the data may be considered as heterogeneous in some sense. This

means that events occur at different times so peaks tend to cancel the possible differences. It would be

interesting to compare the results with a population of neurons known to be homogeneous or in the same

‘phase’.
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It is important to mention that, with the methodology considered here, inference and specifically hypothe-

ses testing may be compromised due to violation of existing theory. For example, the likelihood ratio test

in the presence of penalized splines is discussed by Ruppert et al., 2003 and Crainiceanu et al., 2004).
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Appendix

Figures 7 and 8 show the comparison between left and right decisions in either of the two levels of difficulty

for neuron-specific data.

Figure 7 ABOUT HERE

Figure 8 ABOUT HERE
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Fig. 1 Observed firing rates by experimental condition (left) raster plot for that particular neuron (center) and fitted

profiles by experimental condition (right).
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Fig. 2 Pointwise confidence intervals and simultaneous bands comparing the left and right orientation for a fixed

level of difficulty.

Copyright line will be provided by the publisher



22 Maringwa et al.: Smoothing Neuronal Data

Time (ms)

F
irs

t d
er

iv
at

iv
e

1000 1500 2000 2500

-3
0

-1
0

0
10

20
30

Difficult-Left

Derivative function
Pointwise intervals
Simultaneous bands

Time (ms)

F
irs

t d
er

iv
at

iv
e

1000 1500 2000 2500

-3
0

-1
0

0
10

20
30

Difficult-Right

Time (ms)

F
irs

t d
er

iv
at

iv
e

1000 1500 2000 2500

-3
0

-2
0

-1
0

0
10

20

Easy-Left

Time (ms)

F
irs

t d
er

iv
at

iv
e

1000 1500 2000 2500
-3

0
-1

0
0

10
20

30

Easy-Right

Fig. 3 First-order derivative functions (continuous line) for each condition together with corresponding 95% point-

wise and simultaneous confidence intervals. The vertical dashed line indicates the time of maximal firing rate and the

shaded regions indicate its corresponding confidence interval, approximated by the pointwise intervals.
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Fig. 4 Observed firing rates for all neurons in the different experimental and fitted curves in each condition.
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Fig. 5 Overall comparison of left and right orientations for a fixed level of difficulty using 95% pointwise and simul-

taneous confidence bands.

Table 1 The sequence of events over time in each trial, starting from -500 to 4500 ms.

Time period Event

-500-0ms Control period

0-500ms Presentation of first (reference) stimulus

500-1500ms Interstimulus interval (ISI) or delay period

1500-2000ms Presentation of second (test) stimulus (comparison/decision period)

2000ms + Subject makes a saccadic eye movement towards

one of the 2 circles for reward

Copyright line will be provided by the publisher



24 Maringwa et al.: Smoothing Neuronal Data

Time (ms)

F
irs

t o
rd

er
 d

er
iv

at
iv

e 
fu

nc
tio

n

1000 1500 2000 2500

-6
-4

-2
0

2
4

6

Derivative function
Pointwise intervals
Simultaneous bands

Left-Difficult

Maximal firing time

Time (ms)
F

irs
t o

rd
er

 d
er

iv
at

iv
e 

fu
nc

tio
n

1000 1500 2000 2500

-6
-4

-2
0

2
4

6

Left-Easy

Time (ms)

F
irs

t o
rd

er
 d

er
iv

at
iv

e 
fu

nc
tio

n

1000 1500 2000 2500

-6
-4

-2
0

2
4

6

Right-Difficult

Time (ms)

F
irs

t o
rd

er
 d

er
iv

at
iv

e 
fu

nc
tio

n

1000 1500 2000 2500

-6
-4

-2
0

2
4

6
Right-Easy

Fig. 6 First-order derivative functions (continuous line) for each condition together with corresponding 90% point-

wise and simultaneous confidence bands. The vertical dashed line indicates the time of maximal firing rate and the

shaded region indicates its corresponding pointwise confidence interval.
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Table 2 Maximal firing times and corresponding 90% pointwise and simultaneous confidence bands. Also given are

the maximal firing times (in milli seconds) and maximal firing rates for the different experimental conditions.

Approximate 90% confidence intervals

Pointwise Simultaneous

Tmax(ms) Lower Upper Lower Upper Firing rate (spikes per sec)

Left Difficult 1703 1668 1765 1635 ∞ 15

Easy 1712 1668 1795 1630 ∞ 14

Right Difficult 2222 1637 2340 1550 ∞ 12

Easy 2264 1637 ∞ -∞ ∞ 12
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Fig. 7 Confidence intervals comparing Left vs Right in individual neuron data: 1 (D represents ”difficult” and E

represents ”Easy”).
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Fig. 8 Confidence intervals comparing Left vs Right in individual neuron data: 2.
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