
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Empirical likelihood for non-smooth criterion functions

Peer-reviewed author version

MOLANES LOPEZ, Elisa Maria; VAN KEILEGOM, Ingrid & VERAVERBEKE, Noel

(2008) Empirical likelihood for non-smooth criterion functions.

Handle: http://hdl.handle.net/1942/9513



Empirical Likelihood for

Non-Smooth Criterion Functions

Elisa M. Molanes Lopez

Departamento de Estad́ıstica, Universidad Carlos III de Madrid

Ingrid Van Keilegom

Institute of Statistics, Université catholique de Louvain
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Abstract

Suppose that X1, . . . , Xn is a sequence of independent random vectors, identi-

cally distributed as a d-dimensional random vector X. Let µ ∈ IRp be a parameter

of interest and ν ∈ IRq be some nuisance parameter. The unknown, true parameters

(µ0, ν0) are uniquely determined by the system of equations E{g(X,µ0, ν0)} = 0,

where g = (g1, . . . , gp+q) is a vector of p+ q functions. In this paper we develop an

empirical likelihood method to do inference for the parameter µ0. The results in

this paper are valid under very mild conditions on the vector of criterion functions

g. In particular, we do not require that g1, . . . , gp+q are smooth in µ or ν. This

offers the advantage that the criterion function may involve indicators, which are

encountered when considering e.g. differences of quantiles, copulas, ROC curves,

to mention just a few examples. We prove the asymptotic limit of the empirical

log-likelihood ratio, and carry out a small simulation study to test the performance

of the proposed empirical likelihood method for small samples.

Key words: Confidence region; copulas; empirical likelihood; estimating equations; hy-

pothesis testing; nuisance parameter; quantiles; ROC curve.

Short title: EL for Non-Smooth Criterion Functions
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1 Introduction and general method

Suppose that X1, . . . , Xn is a sequence of independent random vectors, identically dis-

tributed as a d-dimensional random vector X. Let µ ∈ IRp be a parameter of interest and

ν ∈ IRq be some nuisance parameter. The unknown, true parameters (µ0, ν0) are uniquely

determined by the system of equations

E{g(X, µ0, ν0)} = 0, (1)

where g = (g1, . . . , gp+q) is a vector of p+q functions. In this paper we develop an empirical

likelihood method to do inference for the parameter µ0. The results in this paper are valid

under very mild conditions on the vector of criterion functions g. In particular, we do not

require that g1, . . . , gp+q are smooth in µ or ν. This offers the advantage that the criterion

function may involve indicators, which are encountered when considering e.g. differences

of quantiles, copulas, ROC curves, to mention just a few examples.

Qin & Lawless (1994) also consider the problem of developing empirical likelihood

(EL) theory for the parameter µ0. However, their results are restricted to smooth crite-

rion functions, and hence they exclude many interesting examples. See also the remark

following theorem 3.6 in Owen (2001), where some examples are given of situations that

are ruled out by their result, and section 10.6 in Owen (2001), which considers in more

detail the difficulties encountered when considering non-smooth estimating equations.

In this paper we will overcome this smoothness condition by using a different method

of proof. In fact, our proof is based on Sherman (1993), who developed general conditions

under which the maximizer of a locally quadratic criterion function is consistent and

asymptotically normal. His result is valid without assuming that the criterion function

is continuous. On the contrary, Qin & Lawless (1994) heavily use Taylor expansions in

their proofs, for which smoothness of the functions g1, . . . , gp+q is indispensable.

Define for any (µ, ν) ∈ IRp+q the empirical likelihood:

L(µ, ν) = nn sup
{ n∏

i=1

pi(µ, ν) : pi(µ, ν) ≥ 0,
n∑

i=1

pi(µ, ν) = 1,

n∑

i=1

pi(µ, ν)gj(Xi, µ, ν) = 0 (j = 1, . . . , p+ q)
}
. (2)

The supremum in (2) is defined to be zero when the set is empty, and exists and is unique

provided that 0 belongs to the interior of the convex hull of (g(X1, µ, ν), . . . , g(Xn, µ, ν)).
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In the latter case, the standard Lagrange multiplier method provides the optimal pi(µ, ν):

pi(µ, ν) =
1

n

(
1 +

p+q∑

j=1

λj(µ, ν)gj(Xi, µ, ν)

)−1

(i = 1, . . . , n), (3)

and also the following empirical log-likelihood ratio for µ:

`(µ, ν) = −2 logL(µ, ν) = 2
n∑

i=1

log
{

1 +

p+q∑

j=1

λj(µ, ν)gj(Xi, µ, ν)
}
, (4)

where the Lagrange multipliers λj(µ, ν) (j = 1, . . . , p+ q) satisfy the following equations:

n∑

i=1

gj(Xi, µ, ν)

1 +
∑p+q

k=1 λk(µ, ν)gk(Xi, µ, ν)
= 0 (j = 1, . . . , p+ q). (5)

Now, define an estimator ν̃(µ) of the nuisance parameter ν by maximizing L(µ, ν) over ν

for a fixed value of µ, or equivalently by minimizing `(µ, ν):

ν̃(µ) = argminν`(µ, ν), (6)

and let ν̃ = ν̃(µ0). Finally, define

`(µ) = `(µ, ν̃(µ)). (7)

The main result of this paper shows that the asymptotic distribution of `(µ0) is χ2
p.

In a number of papers, the lack of smoothness of the criterion functions g1, . . . , gp+q

has been overcome by replacing them by smooth approximations, leading to a so-called

smooth empirical likelihood. See e.g. Zhou & Jing (2003) for differences of quantiles,

Claeskens, Jing, Peng & Zhou (2003) for ROC curves and Chen, Peng & Zhao (2009) for

copulas. However, this has the drawback that a bandwidth parameter needs to be selected,

which is often a challenging problem. In this paper we do not apply any smoothing in

the EL procedure, thanks to the new method of proof.

Instead of profiling out the nuisance parameter ν0, as we have done in (6), one could

also replace ν0 by a certain ‘plug-in’ estimator, different from the above profile-estimator.

This idea has been considered in Hjort, McKeague & Van Keilegom (2008) in a general

framework (where ν0 is allowed to be a function rather than a parameter). With that

approach, the limit of the empirical log-likelihood ratio is however not necessarily a χ2
p

variable, but it is in general a weighted sum of χ2
1 variables, where the weights are often

unknown. The method proposed in this paper yields an unweighted χ2
p-distribution,

thanks to the way the parameter ν0 is estimated.
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The paper is organized as follows. In the next section, we formulate the main result

of this paper, and state the conditions under which this result is valid. We also discuss

the extension of the proposed method to the case of multiple samples. In section 3, a

number of specific examples are considered, and the general conditions are tested on these

examples. The results of a small simulation study are shown in section 4, whereas the

proof of the main result and some technical lemmas are given in the appendix.

2 Main result

As mentioned in the introduction, the aim of this section is to show that Wilks’ theorem

(which says that the empirical log-likelihood ratio `(µ0) converges in distribution to a

χ2
p-variable) is valid, even when the criterion functions are not smooth. This then allows

to construct approximate confidence regions for the parameter of interest µ0.

The proof of this result relies on theorems 1 and 2 of Sherman (1993). In that paper,

a general method is given for establishing the rate of convergence and the asymptotic nor-

mality of a maximization estimator that does not require differentiability of the criterion

functions. The following matrix V of dimensions (p+2q)×(p+2q) will play an important

role:

V =

(
V11 V12

V t
12 0

)
, (8)

where

V11 = (E {gj(X, µ0, ν0)gk(X, µ0, ν0)})j,k=1,...,p+q

V12 =

(
− ∂

∂νk
E {gj(X, µ0, ν)} |ν=ν0

)

k=1,...,q;j=1,...,p+q

.

We will need the following conditions:

(C0) There exists a neighborhood N of ν0 such that P (L(µ0, ν) > 0 for all ν ∈ N )→ 1.

(C1) The functions gj(x, µ0, ν)(j = 1, . . . , p+ q) are uniformly bounded in IRd × IRq; the

functions E{gj(X, µ0, ν)gk(X, µ0, ν)} (j, k = 1, . . . , p + q), ∂
∂νk
E{gj(X, µ0, ν)} and

∂2

∂νk∂ν`
E{gj(X, µ0, ν)} (k, ` = 1, . . . , q; j = 1, . . . , p + q) are continuous for ν in a

neighborhood of ν0; the function E{g(X, µ0, ν)/[1 + ξtg(X, µ0, ν)]} has continuous

partial derivatives with respect to the components of ν in a neighborhood of ν0;
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the function E{g(X, µ0, ν)gt(X, µ0, ν)/(1 + ξtg(X, µ0, ν))2} is uniformly continuous

with respect to the components of ν and ξ in a neighborhood of ν0 and 0.

(C2) The matrix V11 in (8) is positive definite.

(C3) ν̃ = argminν`(µ0, ν) converges in probability to ν0.

(C4) n−1
∑n

i=1[gj(Xi, µ0, ν) − E{gj(X, µ0, ν)}] = OP (n−1/2), uniformly in ν in a o(1)-

neighborhood of ν0 (j = 1, . . . , p+ q).

(C5) n−1
∑n

i=1[gj(Xi, µ0, ν)gk(Xi, µ0, ν)−E{gj(X, µ0, ν)gk(X, µ0, ν)}] = oP (1), uniformly

in ν in a o(1)-neighborhood of ν0 (j, k = 1, . . . , p+ q).

(C6) n−1
∑n

i=1[gj(Xi, µ0, ν)−E{gj(X, µ0, ν)}−gj(Xi, µ0, ν0)+E{gj(X, µ0, ν0)}] = oP (n−1/2),

uniformly in ν for ν − ν0 = O(n−1/2) (j = 1, . . . , p+ q).

Condition (C0) is equivalent to requiring that the probability that the zero-vector

belongs to the interior of the convex hull of (g(X1, µ0, ν), . . . , g(Xn, µ0, ν)) for all ν ∈ N
converges to one, and is needed to ensure that the log-likelihood `(µ0, ν) can be written

as in (4). Note that in (C1) we only impose smoothness conditions on E{g(X, µ0, ν)} and

not on g(X, µ0, ν) itself. Hence, we are able to handle non-smooth criterion functions,

like indicators. The matrix in (C2) is by construction positive semidefinite. All we ask is

that it is also positive definite, which is a very mild assumption. To prove condition (C3),

use can be made of e.g. theorem 5.7 in Van der Vaart (1998, p. 45). Finally, conditions

(C4) and (C5) are standard uniform consistency results, while (C6) is a Bahadur type

modulus of continuity result. They can be easily proved or found in the literature for

particular choices of the criterion functions gj. See also section 3, where we check the

above conditions in a few particular examples of the general method.

Theorem 1 Assume (C0)-(C6). Then,

`(µ0) = `(µ0, ν̃(µ0)) = −2 logL(µ0, ν̃(µ0))
d→ χ2

p.

In the special case where g1, . . . , gp+q are smooth functions, this result has been shown in

corollary 4 in Qin & Lawless (1994), using a different method of proof.

Remark 1 [EL for two samples] The situation above can also be extended to the

multi-sample situation. For simplicity we describe here the two sample case. Suppose

X1, . . . , Xn1 is a sample from a d1-dimensional random vector X, and Y1, . . . , Yn2 is an
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independent sample from a d2-dimensional random vector Y . Suppose that the parameters

(µ0, ν0) are uniquely determined by the equations

E{g(X, µ0, ν0)} = 0, and E{h(Y, µ0, ν0)} = 0, (9)

where g = (g1, . . . , gr1), h = (h1, . . . , hr2) and r1 + r2 = p + q. The empirical likelihood

ratio for µ is now

L(µ, ν) = nn1
1 n

n2
2 sup

{ n1∏

i=1

pi(µ, ν)

n2∏

j=1

qj(µ, ν) : pi(µ, ν) ≥ 0, qj(µ, ν) ≥ 0,

n1∑

i=1

pi(µ, ν) = 1,

n2∑

j=1

qj(µ, ν) = 1,
n1∑

i=1

pi(µ, ν)gj(Xi, µ, ν) = 0,
n2∑

i=1

qi(µ, ν)hj(Yi, µ, ν) = 0
}
.

The empirical log-likelihood for µ is again defined as

`(µ, ν) = −2 logL(µ, ν)

= 2

n1∑

i=1

log
{

1 +

r1∑

j=1

λj(µ, ν)gj(Xi, µ, ν)
}

+ 2

n2∑

i=1

log
{

1 +

r2∑

j=1

κj(µ, ν)hj(Yi, µ, ν)
}
,

where the Lagrange multipliers λj(µ, ν) (j = 1, . . . , r1) and κj(µ, ν) (j = 1, . . . , r2) satisfy

equations analogous to the one in (5). The definitions of ν̃ = ν̃(µ0) and `(µ) = `(µ, ν̃(µ))

are the same as in (6) and (7). The analogue of the (p + 2q)× (p + 2q) matrix V in (8)

now becomes



V11 0 V13

0 V22 V23

V t
13 V t

23 0


 ,

with

V11 =
(
E{gj(X, µ0, ν0)gk(X, µ0, ν0)}

)
j,k=1,...,r1

V22 =
(
E{hj(Y, µ0, ν0)hk(Y, µ0, ν0)}

)
j,k=1,...,r2

V13 =
(
− ∂

∂νk
E{gj(X, µ0, ν)}|ν=ν0

)
j=1,...,r1;k=1,...,q

V23 =
(
− ∂

∂νk
E{hj(Y, µ0, ν)}|ν=ν0

)
j=1,...,r2;k=1,...,q

.

Very similar to the one sample case one can prove that `(µ0) is asymptotically χ2
p.
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The required conditions are completely similar to (C0)-(C6). For (C1) and (C4)-(C6),

we need to impose the parallel conditions on the functions gj and hj, whereas for (C2)

positive definiteness of V11 and V22 is required. We also need to impose the usual asymp-

totic balance condition on the sample sizes n1 and n2.

Remark 2 [Tests and confidence regions] An approximate 100(1 − α)% empirical

likelihood confidence region for µ0 is obtained by the following subset of IRp:
{
µ : `(µ) ≤ χ2

p,1−α

}
=
{
µ : L(µ, ν̃(µ)) ≥ exp

(
− 1

2
χ2
p,1−α

)}
,

where χ2
p,1−α is the (1−α)-quantile of the χ2

p distribution. Similarly, a level α test for the

null hypothesis H0 : µ = µ0 will reject H0 if `(µ0) > χ2
p,1−α.

3 Examples of the general method

In this section we consider four examples of the general theory in more detail. In each of

these examples, the criterion function involves indicators, which could not be dealt with

so far in the literature on EL methods without using smoothing techniques.

3.1 Difference of quantiles in the one sample problem

For d = 1 and X1, . . . , Xn a random sample from X with distribution function F , we

consider the difference of quantiles

µ0 = F−1(p2)− F−1(p1),

where 0 < p1 < p2 < 1 and F−1(u) = inf{x : F (x) ≥ u} for 0 < u < 1. Clearly,

when p1 = 0.25 and p2 = 0.75 we get the interquartile range. Introducing the parameter

ν0 = F−1(p1), we have the equations
{
F (µ0 + ν0)− p2 = 0

F (ν0)− p1 = 0.

So, we have (1) with p = q = 1, g1(X, µ, ν) = I(X ≤ ν) − p1 and g2(X, µ, ν) = I(X ≤
µ+ ν)− p2. This problem has been studied by Zhou & Jing (2003) by using a smoothed

empirical likelihood approach, whereas Chen & Hall (1993) studied one single quantile

using a smoothed EL approach.

From theorem 1 we know that `(µ0) converges to a χ2
1-distribution, provided conditions

(C0)-(C6) are satisfied. First, define N = {ν : δ < F (ν) < F (µ0 + ν) < 1 − δ} for
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some δ > 0. Then, with probability growing to one, we have that for all ν ∈ N , the

convex hull of (g(X1, µ0, ν), . . . , g(Xn, µ0, ν)) is equal to the triangle in IR2 with corners

(1 − p1, 1 − p2), (−p1, 1 − p2) and (−p1,−p2). It is easily seen that (0, 0) is inside this

triangle since p1 < p2. Hence, (C0) is satisfied. Condition (C1) is satisfied if F (x) is

twice continuously differentiable in a neighborhood of x = ν0. (C2) easily follows from

the fact that p1 < p2, whereas conditions (C4)-(C6) follow from the rate of convergence

and the modulus of continuity of the empirical distribution function. It remains to show

the validity of (C3). For a fixed sample X1, . . . , Xn and for ν such that L(µ0, ν) > 0, we

can write `(µ0, ν) = 2
∑n

i=1 log{1 +
∑2

j=1 λj(µ0, ν)gj(Xi, µ0, ν)}, where (for j = 1, 2)

n∑

i=1

gj(Xi, µ0, ν)

1 +
∑2

k=1 λk(µ0, ν)gk(Xi, µ0, ν)
= 0.

Note that ν̃ and ν0 are the maximizers of Γn(ν) and Γ(ν) respectively, where Γn(ν) and

Γ(ν) are as in (1) and (2). Hence, to show condition (C3), we will check the conditions

of theorem 5.7 in Van der Vaart (1998), i.e. we will show that

sup
ν
|Γn(ν)− Γ(ν)| P→ 0, (10)

sup
|ν−ν0|>ε

Γ(ν) < Γ(ν0) (11)

for all ε > 0. Condition (11) is ensured by the fact that ν0 is assumed to be unique

together with equation (5), whereas for (10) we write

Γn(ν)− Γ(ν)

=
[
− n−1

n∑

i=1

log(1 + λ(µ0, ν)tg(Xi, µ0, ν)) + E{log(1 + λ(µ0, ν)tg(X, µ0, ν))}
]

+
[
− E{log(1 + λ(µ0, ν)tg(X, µ0, ν))}+ E{log(1 + ξ(µ0, ν)tg(X, µ0, ν))}

]
.

The second term above is easily seen to be oP (1) by using standard arguments concerning

parametric Z-estimators (see e.g. Van der Vaart (1998), page 41, for the notion of Z-

estimators). To show that the first term goes to zero uniformly in ν, we will prove that

the class

F =
{
x→ log(1 + ηtg(x, µ0, ν)) : η ∈ R, ν ∈ IR

}

is Glivenko-Cantelli, where R ⊂ IR2 is such that (λ1(µ0, ν), λ2(µ0, ν))t belongs to R for

all ν and for all samples for which L(µ0, ν) > 0. Note that R can be taken compact.
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This is because 1 + λ(µ0, ν)tg(Xi, µ0, ν) is strictly positive for all i and all ν, and hence

(λ1(µ0, ν), λ2(µ0, ν))t needs to satisfy the constraints





1 + λ1(µ0, ν)(1− p1) + λ2(µ0, ν)(1− p2) > 0,

1− λ1(µ0, ν)p1 + λ2(µ0, ν)(1− p2) > 0,

1− λ1(µ0, ν)p1 − λ2(µ0, ν)p2 > 0.

The intersection of these three halfplanes is a triangle, and hence it is compact.

The Glivenko-Cantelli property of the class F can now be easily shown by using

theorem 2.7.5 in Van der Vaart & Wellner (1996), together with the monotonicity (in x)

of the function gj(x, µ0, ν) (j = 1, 2). This shows that condition (C3) is satisfied.

As a consequence of theorem 1, we can now construct an EL confidence region for µ0

or test hypotheses concerning the value of µ0.

3.2 Copula functions

Take d = 2 and let (X11, X21), . . . , (X1n, X2n) be a random sample from X = (X1, X2) with

unknown bivariate distribution function H(x1, x2) = P (X1 ≤ x1, X2 ≤ x2). According

to Sklar’s theorem, see e.g. Nelsen (1999), there exists a copula function C that links

the bivariate H to the marginals F1 of X1 and F2 of X2 via the formula H(x1, x2) =

C(F1(x1), F2(x2)). The copula function C is itself a bivariate distribution on the unit

square with uniform marginals. Moreover, if F1 and F2 are continuous, C is unique and

given by C(u1, u2) = H(F−1
1 (u1), F−1

2 (u2)), 0 ≤ u1, u2 ≤ 1. We want to do inference on

the value of the unknown copula function C at fixed 0 ≤ u1, u2 ≤ 1. Let

µ0 = C(u1, u2).

Introducing the parameters ν01 = F−1
1 (u1) and ν02 = F−1

2 (u2), we have the equations





H(ν01, ν02)− µ0 = 0

F1(ν01)− u1 = 0

F2(ν02)− u2 = 0.

This is of the form (1) with p = 1, q = 2, g1(X, µ, ν) = I(X1 ≤ ν1, X2 ≤ ν2) − µ,

g2(X, µ, ν) = I(X1 ≤ ν1)−u1, and g3(X, µ, ν) = I(X2 ≤ ν2)−u2. This example has been

studied using a smoothed empirical likelihood by Chen, Peng & Zhao (2009).

The verification of conditions (C0)-(C6) can be carried out in much the same way as

in the previous example. Note that we now have three estimating equations instead of
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two, and some arguments (especially the geometric arguments) are therefore somewhat

more technical than in the previous example. The main reasoning is however the same

and details are therefore omitted.

In the last two examples we consider the context of two samples. The verification

of the conditions is very analogous to the first example, since the criterion functions are

again based on indicators. The same method of proof as in the first example can therefore

be followed.

3.3 Difference of quantiles in the two sample problem

For independent random samples X1, . . . , Xn1 from X with distribution function F1 and

Y1, . . . , Yn2 from Y with distribution function F2, we consider

µ0 = F−1
2 (t)− F−1

1 (t),

where 0 < t < 1. Introducing the parameter ν0 = F−1
1 (t), we have the equations

{
F1(ν0)− t = 0

F2(µ0 + ν0)− t = 0.

This is of the form (9) with g(X, µ, ν) = I(X ≤ ν)− t and h(Y, µ, ν) = I(Y ≤ µ+ ν)− t.

3.4 ROC-curves

In the situation of section 3.3, we consider

µ0 = 1− F1(F−1
2 (1− t)),

where 0 < t < 1, which is the receiver operating characteristic curve (ROC curve),

evaluated in the point t. For a nice introduction on ROC curves see e.g. Pepe (2003).

Introducing the parameter ν0 = F−1
2 (1− t) leads to the equations

{
F1(ν0)− (1− µ0) = 0

F2(ν0)− (1− t) = 0,

which is again of the form (9). A smoothed empirical likelihood approach to this problem

has been considered in Claeskens, Jing, Peng & Zhou (2003) for completely observed data

and in Molanes Lopez, Cao & Van Keilegom (2008) for censored and truncated data.
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4 Simulations

For the sake of brevity, in this section we only consider the example introduced in section

3.2, regarding copula functions. Through a simulation study, we check the behavior of

our empirical likelihood method in this particular case and compare it with the smoothed

EL approach proposed by Chen, Peng & Zhao (2009), hereafter abbreviated by CPZ.

A 100(1− α)% confidence region for µ0 = C(u1, u2) includes all those values of µ for

which the null hypothesis H0 : C(u1, u2) = µ can not be rejected. According to remark

2, an approximate 100(1− α)% confidence region for µ0 is given by

I1−α(u1, u2) =
{
µ : `(µ) ≤ χ2

1,1−α
}
. (12)

We draw 1000 samples of size n from the mixture copula, C(u1, u2; γ, θ1, θ2), given by:

C(u1, u2; γ, θ1, θ2) = γ
{
u−θ11 + u−θ12 − 1

} 1
θ1 +(1−γ) exp

{
−((− log u1)θ2 + (− log u2)θ2)

1
θ2

}
,

(13)

where the marginals are standard normal distributions and the parameters θ1, θ2 and γ

are such that θ1 > 0, θ2 > 1 and γ ∈ [0, 1]. We take the above mixture copula with

θ1 = 2 and θ2 = 3, as previously considered by CPZ. When γ = 1 the mixture copula in

(13) becomes a Clayton copula with parameter θ1 and when γ = 0 it becomes a Gumbel-

Hougaard copula with parameter θ2. The parameter γ denotes the mixing probability of

these two copulas in the mixture.

The selection of observations from a given copula has been carried out based on a

general approach, which is outlined in e.g. Embrechts, Lindskog & McNeil (2001). This

general method entails solving an equation which, in the particular case of a Gumbel-

Hougaard copula, does not have an analytical solution. Although a numerical algorithm

can in principle be used to solve this equation, this approach turns out to be very time

consuming, given the large number of times the algorithm needs to be applied. For this

reason, drawing from a Gumbel-Hougaard copula has been done using an alternative

algorithm proposed by Marshall & Olkin (1988), based on a mixture of powers.

In order to check the performance of our method, a Monte Carlo approximation of the

coverage probability of (12) is obtained under different scenarios. For every trial, we first

obtain the value of `(µ0) by solving the optimization problem in (14)-(16) below:

min
ν
`(µ0, ν) (14)
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subject to

n∑

i=1

gj(Xi, µ0, ν)

1 +
∑3

k=1 λk(µ0, ν)gk(Xi, µ0, ν)
= 0, for j = 1, 2, 3, (15)

1 +
3∑

k=1

λk(µ0, ν)gk(Xi, µ0, ν) > 0, for i = 1, . . . , n, (16)

where gk(Xi, µ0, ν) (k = 1, 2, 3 and i = 1, . . . , n) are given in section 3.2 above. Once

we obtain `(µ0) we check if µ0 falls in the confidence region given in (12) by checking

whether `(µ0) ≤ χ2
1,1−α. The proportion of times that µ0 falls in (12) gives us a Monte

Carlo approximation of the coverage probability of (12).

Note that the constraints in (16) must be imposed to exclude any λ(µ0, ν) = (λ1(µ0, ν),

λ2(µ0, ν), λ3(µ0, ν)) for which some pi(µ0, ν) ≤ 0 (see (3)). Following the ideas presented

in Owen (2001) (see page 62 and 235), the constrained optimization problem in (14)-(16)

is equivalent to

min
ν
`(µ0, ν), (17)

subject to

n∑

i=1

log(1)
?

{
1 +

3∑

k=1

λk(µ0, ν)gk(Xi, µ0, ν)
}
gj(Xi, µ0, ν) = 0, for j = 1, 2, 3, (18)

where

log?(z) =

{
log(z) if z ≥ 1

n
,

log( 1
n
)− 1.5 + 2nz − (nz)2

2
if z ≤ 1

n
,

and log(1)
? (z) = ∂

∂z
(log?(z)). With this new formulation of the problem, the inequality

constraints in (16) have been ruled out.

Put table 1 about here

Table 1 shows the coverage probabilities of our method and those reported in CPZ, which

makes our results directly comparable with theirs. The expected standard deviation of

each number in the table due to Monte Carlo is in general less than 0.01. The bandwidth

parameter in their method is selected using a cross validation procedure (see their paper

for a detailed description of the procedure). From this comparison, we conclude that the

behavior of our method, which has the advantage of avoiding a bandwidth selection prob-

lem, is in general at least as good as the behavior of the smoothed EL approach of CPZ. A

closer inspection of the table reveals that CPZ’s method has a coverage probability that

12



is in general closer to the target than our method, but on the other hand CPZ’s method

is slightly more variable. Moreover, as CPZ indicate, the bandwidth in their procedure

has a non-negligible impact on the coverage probability, and the choice of the optimal

bandwidth in terms of coverage probability remains an open problem, both theoretically

and practically. Our method on the contrary does not depend on a bandwidth, and hence

it does not share this drawback.

In table 2 we show the coverage probabilities obtained with our method for other

sample sizes, other values for the parameter γ in (13), and for points (u1, u2) falling

outside of the unit square diagonal. CPZ did not consider this setting in their simula-

tion study. However, from the experience we gained during the implementation of our

methodology, we observed that achieving convergence is more challenging when dealing

with non-diagonal points. The table shows that the empirical coverage probabilities are

close to their nominal values and that the results improve when the sample size increases.

Put table 2 about here

Note that the fact that we do not introduce smoothing and avoid a delicate bandwidth

selection problem, inherent to CPZ’s method, entails on the other hand that our method-

ology is more complex to program, because no derivatives can be taken. We specially

found more difficulties for our method to achieve convergence when non-diagonal points

are considered. This is the reason why in the implementation of our methodology we

finally used a combination of numerical algorithms as explained below.

For every trial we first try to solve the optimization problem specified in (17)-(18)

by using a Matlab function for non-linear constrained optimization problems (fmincon).

If this algorithm fails to find the solution to (17)-(18), we then use a modification of

a basic generating set search (GSS) algorithm for unconstrained optimization, proposed

by Frimannslund & Steihaug (2007). This algorithm is derivative-free and incorporates

curvature information about the objective function as the search progresses. If this second

algorithm does not converge either, then we use a crude grid search. We evaluate (17) at an

equally spaced grid of points, ν = (ν1, ν2), placed around (F−1
1n (u1), F−1

2n (u2)), where F−1
jn

denotes the empirical quantile function of Fj for j = 1, 2. Note that for the implementation

of these two last algorithms, the evaluation of the objective function in (17) at a given ν

goes through previously finding the solution, λ(µ0, ν), to the nonlinear system of equations

defined in (18). The Matlab function fsolve has been used to solve these non-linear

equations.

13



Put figure 1 about here

In order to empirically examine the accuracy of the χ2
1 approximation to the distribu-

tion of the log-likelihood function at the true parameter, `(µ0), we draw QQ-plots that

compare the c-quantiles of the χ2
1 distribution for c ∈ {0.001, 0.002, . . . , 0.999}, with the

corresponding sample quantiles obtained from 1000 values drawn from `(µ0) (see figure 1

where different scenarios are considered). From these QQ-plots we can conclude that, ex-

cept for extreme upper quantiles, the distribution of `(µ0) is reasonably well approximated

by a χ2
1 distribution.
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Appendix: Proofs

Throughout this appendix we will use the abbreviated notation λj(ν) = λj(µ0, ν) (j =

1, . . . , p + q). We will give here the proofs of the main theorem and of several lemmas.

Since these will rely on theorems 1 and 2 of Sherman (1993), it is convenient to introduce

15



some extra notation in order to bring our situation into theirs. Since we know from

condition (C3) that ν̃ converges in probability to ν0, we can restrict attention in what

follows to a o(1)-neighborhood of ν0. In that case, the empirical log-likelihood ratio can

be written in the form (4) for n large, and we therefore define:

Γn(ν) = −n−1

n∑

i=1

log(1 + λ(ν)tg(Xi, µ0, ν)) (1)

Γ(ν) = −E{log(1 + ξ(ν)tg(X, µ0, ν))}, (2)

where λ(ν) is defined in (5), and ξ(ν) = (ξ1(ν), . . . , ξp+q(ν)) satisfies

E
{ g(X, µ0, ν)

1 + ξ(ν)tg(X, µ0, ν)

}
= 0. (3)

Note that ξ(ν) exists, and is non-stochastic, unique and continuously differentiable for

ν in a neighborhood of ν0. This follows from the implicit function theorem (see e.g.

theorem 13.7 p. 374 in Apostol (1974)), together with condition (C1). Also note that

`(µ0, ν) = −2nΓn(ν), where `(µ0, ν) is defined in (4).

We start with a preliminary lemma concerning ν̃ and ν0.

Lemma 1 Under (C0)-(C2), and with ν̃ defined in (6), we have

ν̃ = arg max
ν

Γn(ν), (4)

ν0 = arg max
ν

Γ(ν). (5)

Proof. (4) follows from the fact that

max
ν

Γn(ν) = −1

2
n−1 min

ν
`(µ0, ν) = −1

2
n−1`(µ0, ν̃) = Γn(ν̃).

For (5), note that Γ(ν0) = 0 since ξ(ν0) = 0, and that for any ν 6= ν0,

Γ(ν) = −ξ(ν)tE
{ g(X, µ0, ν)

1 + ξ(ν)tg(X, µ0, ν)

}
− 1

2
E
{ (ξ(ν)tg(X, µ0, ν))2

(1 + α(ν)tg(X, µ0, ν))2

}
,

for some α(ν) on the line segment between 0 and ξ(ν). The first term above equals 0,

whereas the second one is strictly negative. Hence ν0 is a maximizer of Γ(ν).

Lemma 2 Under (C0)-(C2), (C4), (C5), we have

λ(ν) = OP (n−1/2) +OP (‖ν − ν0‖), (6)

λ(ν)− ξ(ν) = OP (n−1/2) (7)
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uniformly for all ν in a o(1)-neighborhood of ν0, and

λ(ν) = V −1
11 (ν)n−1

n∑

i=1

g(Xi, µ0, ν) + oP (n−1/2), (8)

uniformly for all ν in a O(n−1/2)-neighborhood of ν0, where V11(ν) = (E{gj(X, µ0, ν)

gk(X, µ0, ν)})j,k=1,...,p+q.

Proof. First note that V11(ν) is positive definite for ν in a neighborhood of ν0 because

of conditions (C1) and (C2). The proof of (6) and (8) follows along the same lines as

the proof of e.g. theorem 3.2 in Owen (2001) (page 219). The proof of (7) follows using

standard arguments concerning parametric Z-estimators (see e.g. Van der Vaart (1998),

page 41, for the notion of Z-estimators).

Lemma 3 Under (C0)-(C2), there exists a neighborhood N of ν0 and a constant K > 0

for which

Γ(ν) ≤ −K‖ν − ν0‖2

for all ν ∈ N , where ‖ · ‖ is the Euclidean norm.

Proof. From the proof of lemma 1, we have

Γ(ν) = −1

2
E

{
(ξ(ν)tg(X, µ0, ν))2

(1 + α(ν)tg(X, µ0, ν))2

}
,

with α(ν) on the segment between 0 and ξ(ν). Since from (3) it follows that ξ(ν) is contin-

uously differentiable, we have that ξ(ν) = ξ(ν0) + ξ′(ν∗)(ν − ν0) = ξ′(ν∗)(ν − ν0), with ν∗

between ν0 and ν. Hence, (ξ(ν)tg(X, µ0, ν))2 = (ν−ν0)tξ′(ν∗)tg(X, µ0, ν)gt(X, µ0, ν)ξ′(ν∗)

(ν − ν0), and Γ(ν) = 1
2
(ν − ν0)tF (ν, ν∗)(ν − ν0), where

F (ν, ν∗) = −ξ′(ν∗)tE
{
g(X, µ0, ν)gt(X, µ0, ν)

(1 + α(ν)tg(X, µ0, ν))2

}
ξ′(ν∗).

From condition (C1) it follows that F (ν, ν∗) is uniformly continuous in a compact neigh-

borhood of ν0 and hence

Γ(ν) ≤ 1

2
(ν − ν0)tF (ν0, ν0)(ν − ν0) + δ‖ν − ν0‖2

for any δ > 0. Since F (ν0, ν0) = −ξ′(ν0)tE{g(X, µ0, ν0)gt(X, µ0, ν0)}ξ′(ν0), we have by

(C2) that the inner matrix is positive and hence that F (ν0, ν0) is negative definite. This

means that it has the following representation : F (ν0, ν0) = P−1ΛP , where P−1 = P t
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and Λ is a diagonal matrix with the eigenvalues on the diagonal. These eigenvalues are

strictly negative. Then,

(ν − ν0)tF (ν0)(ν − ν0) = (ν − ν0)tP−1ΛP (ν − ν0) = (P (ν − ν0))tΛ(P (ν − ν0))

≤ −K‖P (ν − ν0)‖2 = −K(ν − ν0)tP tP (ν − ν0) = −K‖ν − ν0‖2,

with −K equal to the eigenvalue with the largest absolute value.

Lemma 4 Under (C0), (C1), (C4), (C5), we have

Γn(ν) = Γ(ν) +OP (n−1/2‖ν − ν0‖) + oP (‖ν − ν0‖2) +OP (n−1)

uniformly in ν, for ν − ν0 = o(1).

Proof. First note that

n−1
n∑

i=1

{
log(1 + λ(ν)tg(Xi, µ0, ν))− log(1 + ξ(ν)tg(Xi, µ0, ν))

}

= {λ(ν)− ξ(ν)}tn−1
n∑

i=1

{ g(Xi, µ0, ν)

1 + ξ(ν)tg(Xi, µ0, ν)

}

+
1

2
{λ(ν)− ξ(ν)}tn−1

n∑

i=1

{g(Xi, µ0, ν)gt(Xi, µ0, ν)

(1 + η(ν)tg(Xi, µ0, ν))2

}
{λ(ν)− ξ(ν)},

for some η(ν) on the line segment between λ(ν) and ξ(ν). The first term above is OP (n−1)

by equations (3) and (7), while the second one is OP (n−1) by lemma 2 and the boundedness

of the function g.

Hence, it suffices to calculate the order of

n−1
n∑

i=1

log(1 + ξ(ν)tg(Xi, µ0, ν))− E{log(1 + ξ(ν)tg(X, µ0, ν))}

= n−1
n∑

i=1

[
ξ(ν)tg(Xi, µ0, ν)− E{ξ(ν)tg(X, µ0, ν)}

]

−1

2
n−1

n∑

i=1

[(ξ(ν)tg(Xi, µ0, ν))2 − E{(ξ(ν)tg(X, µ0, ν))2}]

+
1

3
n−1

n∑

i=1

[
(ξ(ν)tg(Xi, µ0, ν))3

(1 + η1i)3
− E

{
(ξ(ν)tg(X, µ0, ν))3

(1 + η2)3

}]

= T1 + T2 + T3,
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where |η1i| ≤ |ξ(ν)tg(Xi, µ0, ν)| ≤ M
∑p+q

j=1 |ξj(ν)| and similarly for η2, and where M =

supj,x,ν |gj(x, µ0, ν)| <∞ by condition (C1). For T1 we have

|T1| ≤
p+q∑

j=1

|ξj(ν)|
∣∣∣n−1

n∑

i=1

[gj(Xi, µ0, ν)− E{gj(X, µ0, ν)}]
∣∣∣

= OP

(
n−1/2

p+q∑

j=1

|ξj(ν)|
)

= OP

(
n−1/2‖ν − ν0‖

)
+OP (n−1)

because of condition (C4) and lemma 2. Further,

|T2| ≤
1

2

p+q∑

j,k=1

|ξj(ν)ξk(ν)|
∣∣∣n−1

n∑

i=1

[gj(Xi, µ0, ν)gk(Xi, µ0, ν)− E{gj(X, µ0, ν)gk(X, µ0, ν)}]
∣∣∣

= oP

(( p+q∑

j=1

|ξj(ν)|
)2)

= oP (‖ν − ν0‖2) + oP (n−1)

by using (C5). Similarly,

|T3| ≤
1

3

p+q∑

j,k,`=1

|ξj(ν)ξk(ν)ξ`(ν)|
∣∣∣n−1

n∑

i=1

[gj(Xi, µ0, ν)gk(Xi, µ0, ν)g`(Xi, µ0, ν)

(1 + η1i)3

−E
{gj(X, µ0, ν)gk(X, µ0, ν)g`(X, µ0, ν)

(1 + η2)3

}]∣∣∣.

By (C1) and since |η1i| ≤M‖ξ(ν)‖ and |η2| ≤ M‖ξ(ν)‖, we have that, for each sequence

of random variables {rn} with rn = o(1):

sup
‖ν−ν0‖≤rn/M

|T3| ≤ (constant)
( p+q∑

j=1

|ξj(ν)|
)3 1

1− rn

= OP (‖ν − ν0‖3 + n−3/2)
1

1− rn
= oP (‖ν − ν0‖2) +OP (n−1).

Lemma 5 Under (C0), (C1), (C5) and (C6) we have

Γn(ν) =
1

2
(θ − θ0)tV (θ − θ0)− n−1/2(θ − θ0)tWn + oP (n−1) (9)

uniformly in ν, for ν − ν0 = O(n−1/2), where θ = (λ(ν), ν)t, θ0 = (0, ν0)t,

Wn =
(
n−1/2

n∑

i=1

g1(Xi, µ0, ν0), . . . , n−1/2
n∑

i=1

gp+q(Xi, µ0, ν0), 0q

)
, (10)

and where 0q is a vector of q zeros.
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Proof. Throughout the proof we will use the notation θ1 = λ(ν), θ2 = ν, θ01 = 0 and

θ02 = ν0. Taylor expansion as in lemma 4 gives

Γn(ν) =−n−1
n∑

i=1

log(1 + θt1g(Xi, µ0, θ2))

=−n−1

n∑

i=1

θt1g(Xi, µ0, θ2) +
1

2
n−1

n∑

i=1

(θt1g(Xi, µ0, θ2))2 − 1

3
n−1

n∑

i=1

(θt1g(Xi, µ0, θ2))3

(1 + ξ1i)3

= S1 + S2 + S3,

where |ξ1i| ≤M
∑p+q

j=1 |θ1j|. As in the proof of lemma 4 we have that S3 = OP (‖θ−θ0‖3) =

oP (n−1), since λ(ν) = OP (n−1/2) by lemma 2. Next consider S1. We write

S1 = − n−1

n∑

i=1

p+q∑

j=1

gj(Xi, µ0, θ02)θ1j − n−1

n∑

i=1

p+q∑

j=1

[gj(Xi, µ0, θ2)− gj(Xi, µ0, θ02)] θ1j

= S11 + S12.

Note that S11 = −n−1/2(θ − θ0)tWn. For S12 we write

S12 = −n−1

p+q∑

j=1

n∑

i=1

[
gj(Xi, µ0, θ2)− E {gj(X, µ0, θ2)} − gj(Xi, µ0, θ02) + E{gj(X, µ0, θ02)}

]
θ1j

−
p+q∑

j=1

[
E{gj(X, µ0, θ2)} − E{gj(X, µ0, θ02)}

]
θ1j . (11)

From (C6) we have that the first term in (11) is oP (n−1/2
∑p+q

j=1 |θ1j|) = oP (n−1/2‖θ−θ0‖) =

oP (n−1). For the second term in (11), we have, using (C1), that it is equal to

−
p+q∑

j=1

∂

∂θ2

E{gj(X, µ0, θ2)}
∣∣∣∣
θ2=θ02

(θ2 − θ02) θ1j + oP (n−1),

where ∂
∂θ2
E{gj(X, µ0, θ2)} |θ2=θ02 is the vector with elements ∂

∂θ2k
E{gj(X, µ0, θ2)} |θ=θ02.

Hence, S12 = (θ1 − θ01)tV12(θ2 − θ02) + oP (n−1). Now we deal with S2.

S2 =
1

2
n−1

n∑

i=1

p+q∑

j,k=1

gj(Xi, µ0, θ02)gk(Xi, µ0, θ02)θ1jθjk

+
1

2
n−1

n∑

i=1

p+q∑

j,k=1

[gj(Xi, µ0, θ2)gk(Xi, µ0, θ2)− gj(Xi, µ0, θ02)gk(Xi, µ0, θ02)]θ1jθjk

= S21 + S22.
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For S21 we write

S21 =
1

2
n−1

p+q∑

j,k=1

n∑

i=1

[
gj(Xi, µ0, θ02)gk(Xi, µ0, θ02)

− E{gj(X, µ0, θ02)gk(X, µ0, θ02)}
]
θ1jθ1k

+
1

2

p+q∑

j,k=1

E{gj(X, µ0, θ02)gk(X, µ0, θ02)}θ1jθ1k. (12)

From (C5), we have that the first term in (12) is oP ((
∑p+q

j=1 |θ1j|)2) = oP (‖θ − θ0‖2) =

oP (n−1). The second term in (12) is equal to 1
2
(θ1 − θ01)tV11(θ1 − θ01). The term S22 can

be written as

S22 =
1

2
n−1

p+q∑

j,k=1

n∑

i=1

[
gj(Xi, µ0, θ2)gk(Xi, µ0, θ2)− E{gj(X, µ0, θ2)gk(X, µ0, θ2)}

−gj(Xi, µ0, θ02)gk(Xi, µ0, θ02) + E{gj(X, µ0, θ02)gk(X, µ0, θ02)}
]
θ1jθ1k

+
1

2

p+q∑

j,k=1

[
E{gj(X, µ0, θ2)gk(X, µ0, θ2)} − E{gj(X, µ0, θ02)gk(X, µ0, θ02)}

]
θ1jθ1k.

From (C5) it follows that the first term is oP (‖θ − θ0‖2) = oP (n−1) and that the second

term is OP (‖θ − θ0‖3) = oP (n−1), using (C1). This shows (9).

Lemma 6 Under (C0)-(C6), we have

Γn(ν) = −1

2
(ν − ν0)tV t

12V
−1

11 V12(ν − ν0) + n−1/2(ν − ν0)tV t
12V

−1
11 Xn

−1

2
n−1X t

nV
−1

11 Xn + oP (n−1) (13)

uniformly in ν, for ν − ν0 = O(n−1/2), and

ν̃ − ν0 = n−1/2(V t
12V

−1
11 V12)−1V t

12V
−1

11 Xn + oP (n−1/2) (14)

where Wn = (Xn, 0q)
t, and V and Wn are given in (8) and (10) respectively.

Proof. We start with the first assertion. From lemma 2, together with conditions (C1)

and (C6), we know that λ(ν) = V −1
11 [n−1/2Xn − V12(ν − ν0)] + oP (n−1/2) uniformly for all
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ν in a O(n−1/2)-neighborhood of ν0. Hence, it follows from lemma 5 that

Γn(ν) =
1

2

[
λ(ν)tV11λ(ν) + 2(ν − ν0)tV t

12λ(ν)
]
− n−1/2(λ(ν)t, (ν − ν0)t)Wn + oP (n−1)

=
1

2

[{
n−1/2X t

n − (ν − ν0)tV t
12

}
V −1

11

{
n−1/2Xn − V12(ν − ν0)

}]

+(ν − ν0)tV t
12V

−1
11

{
n−1/2Xn − V12(ν − ν0)

}

−n−1/2
{
n−1/2X t

n − (ν − ν0)tV t
12

}
V −1

11 Xn + oP (n−1)

=−1

2
(ν − ν0)tV t

12V
−1

11 V12(ν − ν0) + n−1/2(ν − ν0)tV t
12V

−1
11 Xn

−1

2
n−1X t

nV
−1

11 Xn + oP (n−1). (15)

To show the second assertion of the lemma, we will apply theorems 1 and 2 in Sher-

man (1993). First note that condition (C3) and lemmas 1, 3 and 4 imply that ν̃ − ν0 =

OP (n−1/2), by applying theorem 1 in Sherman (1993). Next, (15) shows that the dis-

played condition (4) in the statement of theorem 2 in Sherman (1993) is satisfied, except

for the term − 1
2
n−1X t

nV
−1

11 Xn, which should not be there. However, careful inspection

of the proof of this theorem reveals that the result remains valid when this extra term

is present, since this term does not depend on ν. It now follows from the proof of this

theorem that ν̃ − ν0 = n−1/2(V t
12V

−1
11 V12)−1V t

12V
−1

11 Xn + oP (n−1/2). This shows the second

statement of the lemma.

Proof of theorem 1 Without loss of generality we condition on the event that ‖ν̃−ν0‖ ≤
K for some K > 0. This is possible, since ν̃−ν0 = OP (n−1/2) (see lemma 6). From lemma

6 it follows that, with V22.1 = −V t
12V

−1
11 V12,

Γn(ν̃) =−1

2
n−1X t

nV
−1

11 V12V
−1

22.1V
t

12V
−1

11 Xn −
1

2
n−1X t

nV
−1

11 Xn + oP (n−1)

=−1

2
n−1X t

nV
−1/2

11 DV
−1/2

11 Xn + oP (n−1),

where D = V
−1/2

11 {I + V12V
−1

22.1V
t

12V
−1

11 }V 1/2
11 , or equivalently,

`(µ0) = X t
nV
−1/2

11 DV
−1/2

11 Xn + oP (1). (16)

Note that D can also be written as D = V
1/2

11 V 11V
1/2

11 , where

V −1 =

(
V 11 V 12

(V 12)t V 22

)
,
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since it follows from lemma 3 in Qin & Lawless (1994) that

V −1 =

(
I −V −1

11 V12

0 I

)(
V −1

11 0

0 V −1
22.1

)(
I 0

−V t
12V

−1
11 I

)

=

(
V −1

11 (I + V12V
−1

22.1V
t

12V
−1

11 ) −V −1
11 V12V

−1
22.1

−V −1
22.1V

t
12V

−1
11 V −1

22.1

)
.

Also, note that V
−1/2

11 Xn = V
−1/2

11 n−1/2
∑n

i=1 g(Xi, µ0, ν0)
d→ N(0; I), so that from (16) it

follows that `(µ0)
d→ χ2

p, provided we can show that

D is symmetric, (17)

D is idempotent, (18)

tr(D) = p, (19)

where tr(D) is the trace of the matrix D. For (17), we have that Dt = D since it is easily

seen that V t
11 = V11 and (V 11)t = V 11. For (18), note that DD = V

1/2
11 V 11V11V

11V
1/2

11 =

V
1/2

11 V 11V
1/2

11 = D, since by direct calculation, it follows that V 11V11V
11 = V −1

11 (I +

V12V
−1

22.1V
t

12V
−1

11 )(I + V12V
−1

22.1V
t

12V
−1

11 ) = V −1
11 (I + V12V

−1
22.1V

t
12V

−1
11 ) = V 11. Finally, for (19)

we have:

tr(D) = tr(V
1/2

11 V 11V
1/2

11 ) = tr(V11V
11) = tr(I + V12V

−1
22.1V

t
12V

−1
11 )

= tr(I(p+q)×(p+q)) + tr(V t
12V

−1
11 V12V

−1
22.1)

= tr(I(p+q)×(p+q))− tr(Iq×q) = p + q − q = p.

23



Table 1: Empirical coverage probabilities for the empirical likelihood based confidence

region in (12) with sample sizes n = 200, 400 and points (u1, u2) on the unit square

diagonal. The first line corresponds to the new method, the second line to the smoothed

EL method of Chen, Peng & Zhao (2009).

n 200 400

(γ, u1, u2) I0.90(u1, u2) I0.95(u1, u2) I0.90(u1, u2) I0.95(u1, u2)

(0.0,0.25,0.25) 0.893 0.940 0.886 0.944

0.923 0.957 0.902 0.944

(0.0,0.50,0.50) 0.906 0.954 0.891 0.954

0.889 0.940 0.896 0.948

(0.0,0.75,0.75) 0.844 0.934 0.862 0.936

0.897 0.951 0.890 0.939

(0.5,0.25,0.25) 0.900 0.930 0.889 0.940

0.919 0.970 0.895 0.949

(0.5,0.50,0.50) 0.907 0.943 0.900 0.936

0.908 0.961 0.846 0.908

(0.5,0.75,0.75) 0.897 0.952 0.878 0.942

0.876 0.932 0.869 0.924

(1.0,0.25,0.25) 0.870 0.915 0.894 0.935

0.922 0.964 0.901 0.954

(1.0,0.50,0.50) 0.877 0.931 0.885 0.938

0.898 0.952 0.893 0.948

(1.0,0.75,0.75) 0.902 0.952 0.858 0.919

0.825 0.910 0.762 0.850

24



Table 2: Empirical coverage probabilities for the empirical likelihood based confidence

region in (12) with sample sizes n = 200, 300 and points (u1, u2) outside the unit square

diagonal and such that |u1 − u2| = 0.10, 0.20, 0.30.

n 200 300

(γ, u1, u2) I0.90(u1, u2) I0.95(u1, u2) I0.90(u1, u2) I0.95(u1, u2)

(0.25,0.30,0.40) 0.909 0.966 0.895 0.948

(0.50,0.30,0.40) 0.926 0.948 0.915 0.958

(0.75,0.30,0.40) 0.886 0.948 0.900 0.948

(0.25,0.40,0.50) 0.895 0.949 0.894 0.947

(0.50,0.40,0.50) 0.907 0.939 0.914 0.959

(0.75,0.40,0.50) 0.879 0.945 0.865 0.949

(0.25,0.30,0.50) 0.901 0.947 0.901 0.963

(0.50,0.30,0.50) 0.898 0.957 0.864 0.946

(0.75,0.30,0.50) 0.895 0.923 0.879 0.923

(0.25,0.40,0.60) 0.856 0.958 0.870 0.944

(0.50,0.40,0.60) 0.884 0.958 0.907 0.947

(0.75,0.40,0.60) 0.869 0.949 0.878 0.942

(0.25,0.30,0.60) 0.935 0.942 0.811 0.971

(0.50,0.30,0.60) 0.958 0.962 0.918 0.922

(0.75,0.30,0.60) 0.830 0.955 0.874 0.954

(0.25,0.40,0.70) 0.923 0.952 0.888 0.964

(0.50,0.40,0.70) 0.841 0.965 0.896 0.956

(0.75,0.40,0.70) 0.895 0.922 0.879 0.951
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Figure 1: A QQ plot with the c-quantiles of the χ2
1-distribution (c ∈

{0.001, 0.002, . . . , 0.999}) plotted against the corresponding sample quantiles obtained

from 1000 values drawn from `(µ0) under different settings: for (γ, u1, u2) = (1, 0.5, 0.5),

with n = 200 (dark points) and n = 400 (grey points) (left-top panel), for (γ, u1, u2) =

(0.5, 0.25, 0.25), with n = 200 (dark points) and n = 400 (grey points) (right-top panel),

for (γ, u1, u2) = (0, 0.75, 0.75), with n = 200 (dark points) and n = 400 (grey points)

(left-bottom panel), and for (γ, u1, u2) = (0.25, 0.30, 0.50), with n = 200 (dark points)

and n = 300 (grey points) (right-bottom panel). The 45◦ line and two reference points

corresponding to nominal confidence levels of 90% and 95% are also included in each plot.
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