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Abstract

Consider the model Y = m(X) + ε, where m(·) = med(Y |·) is unknown but smooth. It is often

assumed that ε and X are independent. However, in practice this assumption is in many cases

violated. In this paper we propose to model the dependence between ε and X by means of a

copula model, i.e. (ε, X) ∼ Cθ(Fε(·), FX(·)), where Cθ is a copula function depending on an

unknown parameter θ, and Fε and FX are the marginals of ε and X. Since many parametric

copula families contain the independent copula as a special case, the so-obtained regression

model is more flexible than the ‘classical’ regression model.

We estimate the parameter θ via a pseudo-likelihood method and prove the asymptotic normal-

ity of the estimator, based on delicate empirical process theory. We also study the estimation of

the conditional distribution of Y given X. The procedure is illustrated by means of a simulation

study, and the method is applied to data on food expenditures in households.
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1 Introduction

Consider the model

Y = m(X) + ε, (1.1)

where m(·) = med(Y |·) is the median regression function. The aim of this paper is to

propose and study a flexible way to model the dependence between ε and X. This goal

will be achieved by using copulas to model the joint distribution of ε and X.

Let us start with motivating this goal. When no assumption is imposed on the rela-

tion between ε and X (except that med(ε|X) = 0), the estimation of the conditional

distribution F (y|x) = P (Y ≤ y|X = x) can be done by using a kernel estimator of

the type
∑n

i=1 Wni(x, hn)I(Yi ≤ y), where Wni(x, hn) is an appropriate weight function

depending on a bandwidth h. This estimator has the advantage of making no model

assumption, but the disadvantage of only using local information around the point x.

One way to overcome this drawback is to assume that the error term ε is independent of

the covariate X, in which case the conditional distribution F (y|x) can be estimated by

n−1 ∑n
i=1 I(Yi − m̂(Xi) ≤ y − m̂(x)), where m̂(·) is e.g. a kernel estimator of m(·). This

estimator has been studied in Akritas and Van Keilegom (2001) and has the advantage

of much better exploiting the available data, since it is a global empirical distribution,

instead of a local one. On the other hand, the assumption of independence between ε

and X is often not satisfied in practice. See e.g. Einmahl and Van Keilegom (2008a,b),

where two procedures are developed for testing this independence assumption.

For these reasons, we propose an intermediate model, which combines the flexibility of the

completely nonparametric model, and the efficient use of the data of the model assuming

independence. The model assumes that Y = m(X) + ε, where m(X) = med(Y |X) and

the relationship between ε and X is given by

(ε,X) ∼ Cθ(Fε(·), FX(·)), (1.2)

where Fε(y) = P (ε ≤ y), FX(x) = P (X ≤ x), and Cθ is a copula function belonging

to a parametric family {Cθ : θ ∈ Θ}, where Θ is a compact subset of IRk. The true,

but unknown, value of θ is denoted by θ0. Since many copula families contain the

independent copula as a special case, the so-obtained regression model is more flexible

and robust than the model assuming independence between ε and X, and is on the other

hand more efficient than the completely nonparametric model.

2



Under this regression model we are interested in estimating the conditional distribution

F (y|x). The motivation for studying this function has many roots. First of all, one might

be interested in the estimation of the conditional distribution itself for a given value of the

predictor X. Second, any function or functional of the conditional distribution F (·|x) can

be obtained once F (·|x) has been properly estimated. Examples include the conditional

quantile function of Y given X, the Lorenz curve or Gini index, any conditional moment

(skewness, kurtosis, ...), the extreme value index, etc. The conditional distribution F (y|x)

can be rewritten as

F (y|x) = P (m(X) + ε ≤ y|X = x) = P (ε ≤ y − m(x)|X = x)

= C
2
θ (Fε (y − m(x)) , FX(x)) , (1.3)

where C
2
θ(u, v) = ∂

∂v
Cθ(u, v), (u, v) ∈ [0, 1]2, is the partial derivative of the copula function

Cθ with respect to its second component. Hence, F (y|x) can be estimated once we have

estimators for θ, the marginal distributions of ε and X, and the regression function m(·).

Note that due to the relation between the error variable ε and the covariate X, the

conditional distribution of the response Y is also influenced by the distribution of the

covariate X.

Copula models have become a useful and important tool in modeling dependencies be-

tween random variables. They have been used in a large variety of areas in statistics, like

in survival analysis (see e.g. Wang and Wells (2000), Braekers and Veraverbeke (2005)

and Chen and Fan (2007) for some of the more recent contributions in this field), in

risk theory (Frees and Valdez (1998), Charpentier and Segers (2007), Genest and Segers

(2008), among others) and in econometrics (see e.g. Hu (2006)). See also Joe (1997) and

Nelsen (1999) for two books devoted to this topic.

Note that the copula C has to be chosen in such a way that med(ε|X) = 0. It is easy to

see that this constraint is equivalent to imposing that

med(ε) = 0 and med(U |V ) = 1/2, (1.4)

where U and V are uniform random variables on [0, 1] satisfying (U, V ) ∼ Cθ. This

equivalence is important, as it allows to decompose the constraint med(ε|X) = 0 into a

constraint on the marginal distribution of ε and a constraint on the copula function. On

the other hand, if we would have taken a mean regression model, then the copula would

have to satisfy E(ε|X) = 0, and this cannot be decomposed in a constraint only on the
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marginals, and a constraint only on the copula function. Hence, the median regression

model offers important advantages over the mean regression model in this context.

The paper is organized as follows. In Section 2, we define the estimators of the pa-

rameter vector θ0 and of the conditional distribution F (y|x). Section 3 is devoted to the

asymptotic properties of the two estimators. In Section 4 we investigate the finite sample

properties of the estimators in a simulation study, whereas data on food expenditures in

households are analyzed in Section 5. Finally, in the Appendix we give the proofs of the

asymptotic results of Section 3.

2 The proposed estimators

Let (Xi, Yi), i = 1, . . . , n, be i.i.d. data coming from the model defined by (1.1), (1.2)

and (1.4). We develop in this section an estimator of the association parameter θ0 and

of the conditional distribution F (y|x). In order to estimate θ0, we first need to estimate

the marginal distributions of X and ε. Define

F̂X(x) = n−1
n

∑

i=1

I(Xi ≤ x),

and

F̂ε(y) = n−1
n

∑

i=1

I(ε̂i ≤ y).

Here, ε̂i = Yi − m̂(Xi), i = 1, . . . , n, and for any x in the support RX of X,

m̂(x) = F̃−1(0.5|x) = inf{y : F̃ (y|x) ≥ 0.5},

where F̃ (y|x) =
∑n

i=1 Wni(x, hn)I(Yi ≤ y) is a weighted empirical distribution function

(see Stone 1977). The weights are the Nadaraya-Watson kernel weights, defined as

Wni(x, hn) =
K

(

x−Xi

h

)

∑n
j=1 K

(

x−Xj

h

) , i = 1, . . . , n,

with K a probability density function (kernel) and h = hn a sequence of positive constants

tending to zero as n tends to infinity (bandwidth sequence). The estimator F̂ε has been

proposed and studied in detail in Akritas and Van Keilegom (2001).

We now estimate θ0 by using a pseudo-likelihood approach, as in Genest, Ghoudi and

Rivest (1995) and Tsukahara (2005). Other approaches are possible. See e.g. Chen, Fan
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and Tsyrennikov (2006) for a sieve maximum likelihood procedure to estimate jointly

the association parameter θ0 and the marginals of ε and X. Suppose that the copula Cθ

is absolutely continuous with density C
12
θ (u, v) = ∂2

∂u∂v
Cθ(u, v), (u, v) ∈ [0, 1]2, and that

this density is differentiable with respect to the components of θ. Denote C
12′

θ (u, v) =
(

∂
∂θ1

C
12
θ , . . . , ∂

∂θk
C

12
θ

)

(u, v). We estimate θ0 by

θ̂ = argmaxθ∈Θ l(θ), (2.1)

where l(θ) is the following pseudo-loglikelihood function :

l(θ) =
n

∑

i=1

log C
12
θ

(

F̂ ∗
ε (ε̂i), F̂

∗
X(Xi)

)

,

with F̂ ∗
ε = n/(n + 1)F̂ε and F̂ ∗

X = n/(n + 1)F̂X . This is equivalent to finding the value θ̂

of θ which solves the equation

n
∑

i=1

C
12′

θ

(

F̂ ∗
ε (ε̂i), F̂

∗
X(Xi)

)

C12
θ

(

F̂ ∗
ε (ε̂i), F̂ ∗

X(Xi)
) = 0. (2.2)

Combining the previous estimators and using equation (1.3), we define an estimator of

the conditional distribution F (y|x) by

F̂ (y|x) = C
2
θ̂

(

F̂ε (y − m̂(x)) , F̂X(x)
)

. (2.3)

Remark 2.1. Note that in the above estimation procedure we have estimated the

conditional median m(·) and the marginal distribution Fε of ε in a nonparametric way.

One could however also replace them by parametric or semiparametric estimators. This

does not change the basic idea of using copulas to model the dependence between the

error and the covariate, and has as far as we know, never been proposed in the literature.

Remark 2.2. If the goal of the analysis would be to estimate the median regression

function m(x) instead of estimating the conditional distribution F (y|x), then one could

update the original completely nonparametric estimator m̂(x) by a new, copula based,

estimator given by F̂−1(0.5|x). We do not study this estimator in this paper, but its

asymptotic properties could be derived in a fairly easy way, starting from the properties

of F̂ (y|x).

Remark 2.3. The proposed copula model can also be interpreted by looking at the

quantile function F−1(·|x) for a given x. It is easily seen that under the assumed model,

5



we have for any 0 < p < 1,

F−1(p|x) = m(x) + F−1
ε

(

(C2
θ,FX(x))

−1(p)
)

,

where (C2
θ,FX(x))

−1(p) = z if and only if C2
θ (z, FX(x)) = p. Hence, for a fixed value of

x, the difference between two quantiles is completely driven by the choice of the copula

function (and the marginals of ε and X). The nice feature of the above formula of

F−1(p|x) is that it is monotone in p, or in other words, the quantile curves will never

cross. See also Cosma, Scaillet and von Sachs (2007) for other nonparametric estimation

methods that are shape preserving.

3 Asymptotic properties

We will develop the asymptotic theory of the proposed estimators θ̂ and F̂ (y|x) by making

use of the results in Chen, Linton and Van Keilegom (2003), who developed generic

conditions under which a parameter estimator that is defined via an estimating equation

depending on some nonparametric nuisance functions, is consistent and asymptotically

normal. Define

Gn(θ,H, FX) = n−1
n

∑

i=1

g(Xi, Yi, θ,H, FX) (3.1)

G(θ,H, FX) = E[g(X,Y, θ,H, FX)], (3.2)

where

g(x, y, θ,H, FX) =
C12′

θ (H(x, y), FX(x))

C12
θ (H(x, y), FX(x))

, (3.3)

H(x, y) = Fε(y−m(x)), C1
θ (u, v), C2

θ (u, v) and C ′
θ(u, v) denote respectively the derivative

of Cθ(u, v) with respect to u, v and the vector θ, and higher order derivatives of Cθ(u, v)

are defined in a similar way.

The true value θ0 of θ then satisfies G(θ0, H, FX) = 0, and θ̂ = argminθ∈Θ‖Gn(θ, Ĥ∗, F̂ ∗
X)‖,

where ‖ · ‖ denotes the Euclidean norm, and Ĥ∗(x, y) = F̂ ∗
ε (y − m̂(x)).

The following regularity conditions are needed for the results below.

(A1) (i) h satisfies nh3+δ(log h−1)−1 → ∞ for some δ > 0 and nh4 → 0.

(ii) K has compact support, is symmetric and is twice continuously differentiable.

(iii) RX is a closed interval in IR.
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(A2) Except for a finite number of values of u, v and θ, the function (u, v, θ) →

C
12′

θ (u, v)/C12
θ (u, v) is twice continuously differentiable with respect to u and v, and

once with respect to the components of θ, and all these derivatives are continuous

in (u, v, θ).

(A3) (i) FX is three times continuously differentiable and infx fX(x) > 0.

(ii) F (y|x) is twice continuously differentiable with respect to x and y, all derivatives

up to order two are continuous in (x, y) and are bounded uniformly in (x, y).

(A4) (i) For all δ > 0, there exists ǫ > 0 such that inf‖θ−θ0‖>δ ‖G(θ,H, FX)‖ ≥ ǫ.

(ii) Γ = ∂
∂θ

G(θ,H, FX)|θ=θ0
is of full rank.

Theorem 3.1 Assume (A1)-(A4). Then,

n1/2(θ̂ − θ0)
d
→ N(0, Γ−1V Γ−1),

where

V = Var
{

g(X,Y, θ0, H, FX) + v(X,Y, θ0)
}

and

v(x, y, θ) = E

[

∂

∂u
dθ(u, FX(X))

∣

∣

∣

u=Fε(ε)

{

I
(

y − m(x) ≤ ε
)

− Fε(ε) + ϕ(x, y, ε)
}

+
∂

∂v
dθ(Fε(ε), v)

∣

∣

∣

v=FX(X)

{

I(x ≤ X) − FX(X)
}

]

+E

[

∂

∂u
dθ(u, FX(x))

∣

∣

∣

u=Fε(ε)
fε(ε)

∣

∣

∣X = x

]

I(y − m(x) ≤ 0) − 1
2

f(m(x)|x)
,

dθ(u, v) =
C12′

θ (u, v)

C12
θ (u, v)

,

ϕ(x, y, e) = −fε(e)
I(y − m(x) ≤ 0) − 1

2

f(m(x)|x)
.

Theorem 3.2 Assume (A1)-(A4). Then, for any x ∈ RX , the process

(nh)1/2(F̂ (y|x) − F (y|x))

(−∞ < y < ∞) converges weakly to a Gaussian process W (y|x) with zero mean and

covariance function given by

Cov(W (y1|x),W (y2|x)) = f(y1|x)f(y2|x)
‖K‖2

2

4f 2(m(x)|x)fX(x)
,

where ‖K‖2
2 =

∫

K2(u)du.
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Remark 3.1. Note that the asymptotic variance of θ̂ does not show up in the asymptotic

variance of F̂ (y|x), since θ̂ is estimated at a faster rate of convergence than F̂ (y|x).

The copula model is however indirectly present in the above variance formula, via the

conditional density of Y given X.

It is also interesting to compare the asymptotic variance of F̂ (y|x) with that of the

completely nonparametric estimator F̃ (y|x) of F (y|x), given by

F̃ (y|x) =
1

∑n
i=1 K

(

x−Xi

h

)

n
∑

i=1

K
(x − Xi

h

)

I(Yi ≤ y).

The asymptotic variance of (nh)1/2F̃ (y|x) equals
‖K‖2

2

fX(x)
F (y|x)(1 − F (y|x)). Hence, when

y = m(x), both estimators have the same asymptotic variance. Figure 1 shows the

asymptotic variance of both estimators for a number of choices of the density f(·|x). Note

that for the normal and Student-t case (graphs on first row of Figure 1), the new estimator

outperforms the completely nonparametric one for all y, whereas for the Weibull and χ2

distribution this is not true for a certain range of y-values. This can be explained by

the fact that the variance of F̂ (y|x) is driven by the density f(·|x), whereas the variance

of F̃ (y|x) depends on the value of the distribution F (y|x). These two functions behave

quite differently especially when the density is asymmetric. Overall, the new estimator

shows however a significant improvement in the variance.

4 Simulations

In this section we carry out a simulation study to investigate the finite sample properties

of the estimators θ̂ and F̂ (y|x). Note that, as explained in Section 1, the copula function

Cθ needs to satisfy med(U |V ) = 1/2, where (U, V ) ∼ Cθ. The independent copula

Π(u, v) = uv satisfies this property, but most other common copula functions do not.

Therefore, we first need to find a way to create parametric families of copulas satisfying

this property. This can either be done by constructing a copula family ‘by hand’ or

by adjusting (or transforming) an existing family of copulas. Here, we work out the

second method, and we propose four examples of possible transformations. Many other

transformations can be thought of, and the transformation to use in practice will in fact

depend on the type of dependence structure to be expected. In the first two constructions,

we linearly redistribute, for a given value of v, the probability mass of the conditional

distribution FU |V (u|v) in such a way that FU |V (1/2|v) becomes equal to 1/2, while in the
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Figure 1: Graphs of the asymptotic variance functions of F̂ (y|x) (dashed curve) and

F̃ (y|x) (full curve), divided by their common factor (‖K‖2
2/fX(x)). The upper left corner

corresponds to the case where f(y|x) is a standard normal density, the upper right corner

is for a Student-t density with 2 degrees of freedom, the lower left corner for a Weibull

density with parameters (2,5) and the lower right corner for a χ2 density with 10 degrees

of freedom.

last two constructions the u-axis is transformed (first linearly, then quadraticly). This

idea is visually represented in Figure 2.

The first transformation is given by the following ‘symmetric’ copula :

C1θ(u, v) =































v
∫

0

C
2
θ(F

−1
1Y (u), v∗)

2C2
θ (0.5, v∗)

dv∗ 0 ≤ u ≤ 0.5, 0 ≤ v ≤ 1

v −

v
∫

0

C
2
θ(1 − F−1

1Y (u), v∗)

2C2
θ (0.5, v∗)

dv∗ 0.5 < u ≤ 1, 0 ≤ v ≤ 1
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U|V

F(U|V)

1/2 1

1/2

1

Figure 2: Visual representation of the transformation of the probability mass (vertical

transformation) and of the u-axis (horizontal transformation) in order to obtain a copula

for which med(U |V ) = 1/2.

with

F1Y (y) =































1
∫

0

C
2
θ(y, v∗)

2C2
θ (0.5, v∗)

dv∗ 0 ≤ y ≤ 0.5

1 −

1
∫

0

C
2
θ(1 − y, v∗)

2C2
θ (0.5, v∗)

dv∗ 0.5 < y ≤ 1

Note that with this transformation, the conditional density of U |V = v is symmetric

around 0.5 for every v. A second transformation is given by

C2θ(u, v) =































v
∫

0

C
2
θ(F

−1
2Y (u), v∗)

2C2
θ (0.5, v∗)

dv∗ 0 ≤ u ≤ 0.5, 0 ≤ v ≤ 1

v

2
+

v
∫

0

C
2
θ(F

−1
2Y (u), v∗) − C

2
θ(0.5, v

∗)

2(1 − C2
θ (0.5, v∗))

dv∗ 0.5 < u ≤ 1, 0 ≤ v ≤ 1

with

F2Y (y) =































1
∫

0

C
2
θ(y, v∗)

2C2
θ (0.5, v∗)

dv∗ 0 ≤ y ≤ 0.5

0.5 +

1
∫

0

C
2
θ(y, v∗) − C

2
θ(0.5, v

∗)

2(1 − C2
θ (0.5, v∗))

dv∗ 0.5 < y ≤ 1

In this second construction, we redistributed the probability mass in the conditional

distribution of U |V = v to get an equal mass on both sides of u = 0.5. In a third
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construction, we linearly transform the u-axis and get for 0 ≤ v ≤ 1,

C3θ(u, v) =































v
∫

0

C
2
θ

(

2F−1
3Y (u)(C2

θ,v∗)−1(0.5), v∗
)

dv∗ 0 ≤ u ≤ 0.5

v
∫

0

C
2
θ

(

1 − 2((C2
θ,v∗)−1(0.5) − 1)(F−1

3Y (u) − 1), v∗
)

dv∗ 0.5 < u ≤ 1

with

F3Y (y) =































1
∫

0

C
2
θ

(

2y(C2
θ,v∗)−1(0.5), v∗

)

dv∗ 0 ≤ y ≤ 0.5

1
∫

0

C
2
θ

(

1 − 2((C2
θ,v∗)−1(0.5) − 1)(y − 1), v∗

)

dv∗ 0.5 < y ≤ 1

The fourth construction is similar to the third one, but is based on a bounded second

order interpolation instead of a piecewise linear transformation of the u-axis :

C4θ(u, v) =

v
∫

0

C
2
θ

(

G(F−1
4Y (u), v∗), v∗

)

dv∗ with F4Y (y) =

1
∫

0

C
2
θ

(

G(F−1
4Y (u), v∗), v∗

)

dv∗

and G(y, v) = max (0, min (2y(y − 0.5) − 4y(y − 1)(Cθ,v)
−1(0.5), 1)). In Figure 3, we gen-

erate a sample of 1500 data points for the four different copula constructions. As un-

derlying copula we use the Frank copula with θ = 5. We note that for constructions

2 and 3 the data cloud splits into two separate groups, unlike for constructions 1 and

4. Consequently, the bivariate density function is not continuous at u = 0.5 for these

constructions. To show that the four constructed copulas are indeed copulas, we use

the definition of a copula given by Nelsen (1999). Each of the constructed functions has

uniform marginals by construction. To show that these functions are 2-increasing on

any rectangle [u1, u2] × [v1, v2] with u1, u2, v1, v2 ∈ [0, 1], u1 ≤ u2 and v1 ≤ v2, we note

that either [u1, u2] × [v1, v2] lies within [0, 0.5] × [0, 1] (u1 ≤ u2 ≤ 0.5) or [0.5, 1] × [0, 1]

(0.5 ≤ u1 ≤ u2), or across the line u = 0.5 (u1 ≤ 0.5 ≤ u2). In the first and second

setting, the constructed functions are 2-increasing due to the monotonicity of the un-

derlying copula. In the third setting, we divide the rectangle [u1, u2] × [v1, v2] into two

areas [u1, 0.5]× [v1, v2] and [0.5, u2]× [v1, v2], and it is easy to show that the constructed

functions are 2-increasing on both areas separately.

We now use the above copula constructions to carry out a small simulation study. We

assume that the error ε is standard normally distributed and that the covariate X is

uniformly distributed on [0, 1]. Furthermore, let m(x) = 5.5 − 4x + 3x2. We model
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Figure 3: A simulated data cloud (n = 1500) generated from the different copula con-

structions with an underlying Frank copula (θ = 5).

the association between the error ε and the covariate X by using the first three copula

constructions outlined above with both the Frank and the Plackett copula as underlying

copula. The fourth copula construction is not considered in the simulations, since it

leads to much heavier computations. On the other hand, we will illustrate this copula

construction for the analysis of a data set, considered in the next section. For each

sample, we estimate the conditional median m(x) by the estimator m̂(x) studied in

Section 2, where we take a biquadratic kernel function K(x) = 15
16

(1−x2)2I(|x| ≤ 1) and

use a cross validation criterion to determine the best bandwidth. This nonparametric

estimator does not depend on the form of the relation between ε and X, and therefore

consistently estimates m(x), even when the model is not fully satisfied.

In Tables 1 and 2 we present the results of the simulation study. Table 1 gives for each

combination of the copula constructions and underlying copulas, the bias and variance of

the estimator θ̂, while Table 2 gives the bias and variance of the estimator F̂ (4.5|0.45).

The results are shown for different sample sizes. The number of simulated samples is

in each setting equal to 500. When the underlying copula is the Frank copula, we take

θ = 5, while for the Plackett copula we set θ = 25. In both scenarios, we note that

12



we clearly stay away from the independent copula. Table 1 shows that the bias of θ̂

is larger for the copula constructions 2 and 3 than for the ‘symmetric’ construction 1.

As we expect the bias diminishes when the sample size increases. The bias always has

a negative sign, which means that the estimated values of θ are shrinked towards zero.

Table 2 indicates that the bias of the estimator F̂ (4.5|0.45) is small in all cases. This

suggests that the shrinkage which is present for the estimation of θ, has only little effect

on the estimation of the conditional distribution.

Sample size Construction 1 Construction 2 Construction 3

Frank family (θ = 5)

n = 100 -0.9301 (2.1502) -3.5619 (3.1948) -3.0748 (3.2799)

n = 500 -0.3366 (0.3409) -2.4372 (1.1214) -2.3802 (1.1508)

n = 1000 -0.1791 (0.1871) -2.1701 (0.7634) -2.0186 (0.5946)

Plackett family (θ = 25)

n = 100 -11.9732 (63.6874) -17.7490 (50.4729) -20.9438 (35.1630)

n = 500 -5.7858 (25.8923) -14.7173 (32.7931) -20.5509 (7.7449)

n = 1000 -4.1806 (16.1749) -13.0706 (32.8799) -19.7610 (5.8461)

Table 1: The bias (variance) of the estimator θ̂.

Sample size Construction 1 Construction 2 Construction 3

Frank family (θ = 5)

n = 100 0.0053 (0.0090) -0.0303 (0.0083) -0.0238 (0.0099)

n = 500 -0.0032 (0.0016) -0.0361 (0.0017) -0.0317 (0.0014)

n = 1000 -0.0020 (0.0009) -0.0414 (0.0007) -0.0286 (0.0007)

Plackett family (θ = 25)

n = 100 0.0058 (0.0073) -0.0603 (0.0073) -0.0221 (0.0094)

n = 500 -0.0004 (0.0015) -0.0630 (0.0012) -0.0319 (0.0014)

n = 1000 -0.0011 (0.0010) -0.0624 (0.0008) -0.0322 (0.0007)

Table 2: The bias (variance) of the estimator F̂ (4.5|0.45).

Finally, we have carried out some simulations in which we assume that the function

13



m(x) belongs to the class of quadratic regression functions, and estimated the regression

coefficients from parametric L1-regression. The bias of the estimator θ̂ turned out to be

considerably smaller than in Table 1, which suggests that the bias in Table 1 is mainly

caused by the fact that m(x) is estimated nonparametrically.

5 Example: food expenditures in households

In this section, we illustrate the developed estimation methods on a data set on food

expenditures in Dutch households. The data are extracted from the Data Archive of

the Journal of Applied Econometrics; see also Adang and Melenberg (1995). As in

Einmahl and Van Keilegom (2008a,b), we look at the expenditures on food and the total

expenditures accumulated over the year from October 1986 through September 1987 for

two person households. The sample size is n = 159. Two models are considered. First, we

regress the response Y1 = share of food expenditure on X = log(total expenditure) and

second, we study the relationship between Y2 = log(food expenditure) and X. Einmahl

and Van Keilegom (2008a,b) have tested the independence between the error εj = Yj −

mj(X) (j = 1, 2) and X in a completely nonparametric way by using two different test

procedures. The results of their tests suggest that in the first model the error depends

on X, whereas in the second it does not.

Here, we will analyze these data by assuming that the dependence between εj and X

follows a given copula model, i.e. we assume that Yj = mj(X) + εj, where mj(X) =

med(Yj|X) and

(εj, X) ∼ Cθj
(Fεj

(·), FX(·)) (j = 1, 2). (5.1)

We use the Frank and Plackett copula, combined with the copula transformation C4θj
,

given in the previous section. Under these models, we like to estimate the parameter θj,

but also we like to test whether εj and X are independent.

Under the assumed copula model, testing whether the error ε is independent of X, is

equivalent to testing whether the association parameter θ equals the value of θ that

corresponds to the independent copula (θ = 0 for the Frank copula, and θ = 1 for the

Plackett copula). In this paper we use the following likelihood ratio type test statistic :

LR = 2l(θ̂) − 2l(θH0
)
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where l(θ) is the pseudo-loglikelihood function given in Section 2. We note that under

H0 (i.e. when ε and X are independent), the second term in this expression is zero.

Furthermore we see that, under H0, the association parameter θ is embedded in the

interior of the parameter space. Therefore, we expect that the distribution of the test

statistic LR converges to a χ2 distribution with one degree of freedom. Based on this

approximated distribution, we calculate the p-value of the test. Table 3 gives the results

of this analysis. The bandwidth for calculating m(·) is determined by means of a cross-

validation procedure, as in the simulation section. The table shows that for the response

Y2, the independence between ε2 and X is strongly accepted, since the p-values are close

to one for both the transformed Frank and Plackett copula. On the other hand, for

the response Y1 the situation is less clear. The p-values are non-significant, but are

somewhat borderline for the Frank copula. More research is needed here to understand

this dependence.

Response 1 Response 2

θ̂1 LR p-value θ̂2 LR p-value

Frank 2.573 2.436 0.119 4.14 × 10−8 2.36 × 10−8 0.999

Plackett 3.257 1.791 0.181 0.999 −2.04 × 10−14 1

Table 3: Estimated values of θ, values of the LR-test statistic and associated p-values

for model (5.1).

A crucial element that needs more investigation is the choice of the copula model and of

the copula transformation. More insight in the nature of the dependence between ε and

X, coming from economical studies on expenditure behavior (the so-called Engel curves)

will be useful here. Furthermore it would be interesting to construct and do inference for

a goodness-of-fit test for the parametric copula family to which our unknown copula Cθj

belongs. In the case where the errors ε1, . . . , εn would be observable, this problem has

been studied by Fermanian (2005), Scaillet (2007), among others. See also Genest and

Rémillard (2008) for a bootstrap approximation in general semiparametric models, that

could be used to approximate the distribution of the test statistic. In the present context

where ε1, . . . , εn need to be estimated, it would be interesting to work out the asymptotic

theory and to test the finite sample behavior of appropriately modified versions of the

above mentioned tests.
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Appendix: Proofs

Proof of Theorem 3.1. Throughout this proof, we will denote the true distributions

of ε and X by Fε0 and FX0 respectively. We will make use of Theorem 2 in Chen, Linton

and Van Keilegom (2003) (CLV hereafter), which gives generic conditions under which θ̂

is asymptotically normal. First of all, we need to show that θ̂ − θ0 = oP (1). For this, we

verify the conditions of Theorem 1 in CLV. Condition (1.1) holds by definition of θ̂, while

the second and third condition are guaranteed by assumptions (A2) and (A4). Finally,

conditions (1.4) and (1.5) are weaker than conditions (2.4) and (2.5), respectively, of

Theorem 2 of CLV, which we will verify below. So, the conditions of Theorem 1 are

verified, except for conditions (1.4) and (1.5) which we postpone to later. Next, we verify

conditions (2.1)–(2.6) of Theorem 2 in CLV. Condition (2.1) is, as for condition (1.1),

valid by construction of the estimator θ̂, while condition (2.2) follows from assumptions

(A2) and (A4). Straightforward calculations show that

Γ2(θ,H0, FX0)[H − H0, FX − FX0]

= lim
τ→0

τ−1
[

G(θ,H0 + τ(H − H0), FX0 + τ(FX − FX0)) − G(θ,H0, FX0)
]

= E
[ ∂

∂u
dθ(u, FX0(X))

∣

∣

∣

u=Fε0(ε)
(H − H0)(X,Y )

+
∂

∂v
dθ(Fε0(ε), v)

∣

∣

∣

v=FX0(X)
(FX − FX0)(X)

]

,

and hence,

G(θ,H, FX) − G(θ,H0, FX0) − Γ2(θ,H0, FX0)[H − H0, FX − FX0] (A.1)

= E
{

dθ(H(X,Y ), FX(X)) − dθ(Fε0(ε), FX0(X))

−
∂

∂u
dθ(u, FX0(X))

∣

∣

∣

u=Fε0(ε)
(H − H0)(X,Y )

−
∂

∂v
dθ(Fε0(ε), v)

∣

∣

∣

v=FX0(X)
(FX − FX0)(X)

}

.

Hence, using a Taylor expansion of order two, it follows that the norm of (A.1) is bounded

by a constant times ‖(H−H0, FX−FX0)‖
2
H := max(E|H(X,Y )−H0(X,Y )|2, E|FX(X)−

FX0(X)|2). This shows the first part of condition (2.3). For the second part, it follows

from the proof of Theorem 2 in CLV that it suffices to show that

∥

∥

∥Γ2(θ̂, H0, FX0)[Ĥ
∗ − H0, F̂

∗
X − FX0] − Γ2(θ0, H0, FX0)[Ĥ

∗ − H0, F̂
∗
X − FX0]

∥

∥

∥

= oP (1)‖θ̂ − θ0‖,
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and this follows from the differentiability conditions on the copula function C and from

the mean value theorem. Next, for condition (2.4), define the classes

H1 =
{

(x, y) → h1

(

y − gm(x)
)

: h1 is monotone and maps onto [0, 1], (A.2)

gm ∈ C1+δ
M (RX)

}

,

H2 = {x → h2(x) : h2 is monotone and maps onto [0, 1]}, (A.3)

and H = H1 × H2, where C1+δ
M (RX) (for some δ > 0) is defined by the set of all

differentiable functions g : RX → IR with ‖g‖1+δ ≤ M , where

‖g‖1+δ := max{sup
x

|g(x)|, sup
x

|g′(x)|} + sup
x1,x2

|g′(x1) − g′(x2)|

|x1 − x2|δ
,

and 2‖m‖1+δ ≤ M < ∞. Then,

P
({

(x, y) → Ĥ∗(x, y)
}

∈ H1

)

→ 1,

and P ({x → F̂ ∗
X(x)} ∈ H2) → 1, since F̂ ∗

ε and F̂ ∗
X are monotone and P (m̂ ∈ C1+δ

M (RX)) →

1 (see e.g. Akritas and Van Keilegom (2001)). Moreover,

‖(Ĥ∗ − H0, F̂
∗
X − FX0)‖

2
H = OP ((nhn)−1 log n) = oP (n−1/2).

For condition (2.5) note that by Theorem 3 in CLV, it suffices to show that

|gj(x, y, θ1, H1, FX1) − gj(x, y, θ2, H2, FX2)|

≤ bj(x, y)
{

‖θ1 − θ2‖ + ‖(H1 − H2, FX1 − FX2)‖H
}

, (A.4)

where gj(x, y, θ,H, FX) (j = 1, . . . , k) is the j-th component of the function g defined in

(3.3), and E[bj(X,Y )2] < ∞, and that
∫ ∞

0

√

log N(λ,H, ‖ · ‖H) dλ < ∞, (A.5)

where N(λ,H, ‖ · ‖H) is the covering number, defined by the minimum number of balls

of radius λ (with respect to the norm ‖ · ‖H) needed to cover H. Condition (A.4) follows

easily from the assumptions on the copula C. For (A.5), note that for any λ > 0,

N(λ,H, ‖ · ‖H) ≤ N[ ](2λ,H, ‖ · ‖H)

≤ N[ ](2λ,H1, ‖ · ‖L2
) × N[ ](2λ,H2, ‖ · ‖L∞

),

where the first inequality follows from page 84 in Van der Vaart and Wellner (1996)

(VdVW hereafter). Consider first

log N[ ](λ,H2, ‖ · ‖L∞
) ≤

K

λ
,
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by Theorem 2.7.5 in VdVW. Next, for H1 we know by Corollary 2.7.2 in VdVW that

log N[ ](λ
2, C1+δ

M (RX), ‖ · ‖L∞
) ≤

K

λ2/(1+δ)
.

Let gL
m1 ≤ gU

m1, . . . , g
L
ms ≤ gU

ms be s = O(exp(K/λ2/(1+δ))) λ2-brackets for the functions

gm ∈ C1+δ
M (RX), and let hL

1 ≤ hU
1 , . . . , hL

r ≤ hU
r be r = O(exp(K/λ)) monotone λ-brackets

for the set of monotone functions h that map onto [0, 1]. Then, for an arbitrary function

(x, y) → h(y − gm(x)) in H1, there exist 1 ≤ j ≤ s and 1 ≤ ℓ ≤ r such that

hL
ℓ

(

y − gU
mj(x)

)

≤ h
(

y − gm(x)
)

≤ hU
ℓ

(

y − gL
mj(x)

)

for all x, y. Moreover,

E
[{

hU
ℓ

(

Y − gL
mj(X)

)

− hL
ℓ

(

Y − gU
mj(X)

)}2]

≤ 2E
[{

hU
ℓ

(

Y − gL
mj(X)

)

− hU
ℓ

(

Y − gU
mj(X)

)}2]

+2E
[{

hU
ℓ

(

Y − gU
mj(X)

)

− hL
ℓ

(

Y − gU
mj(X)

)}2]

. (A.6)

The first term above is bounded above by (since supe hU
ℓ (e) ≤ 1)

2E
[

hU
ℓ

(

Y − gL
mj(X)

)

− hU
ℓ

(

Y − gU
mj(X)

)]

≤ 2
∫ ∫

[

hU
ℓ

(

y − gL
mj(x)

)

− hU
ℓ

(

y − gU
mj(x)

)]

f(y|x) dy dFX(x)

= 2
∫ ∫

hU
ℓ (z)[f(z + gL

mj(x)|x) − f(z + gU
mj(x)|x)] dz dFX(x)

< Kλ2,

for some K > 0. Next, consider the second term of (A.6), which can be written as

2
∫

[hU
ℓ (e) − hL

ℓ (e)]2fY −gU
mj

(X)(e) de

≤ 2 sup
e

|hU
ℓ (e) − hL

ℓ (e)|2 ≤ Kλ2,

for some K > 0. This shows that
∫ ∞

0

√

N(λ,H, ‖ · ‖H) dλ < ∞.

It remains to show condition (2.6) in CLV. Consider

Gn(θ0, H0, FX0) + Γ2(θ0, H0, FX0)[Ĥ
∗ − H0, F̂

∗
X − FX0]

= n−1
n

∑

i=1

dθ0
(Fε0(εi), FX(Xi))

+E

[

∂

∂u
dθ0

(u, FX0(X))
∣

∣

∣

u=Fε0(ε)
(Ĥ∗ − H0)(X,Y )

+
∂

∂v
dθ0

(H0(ε), v)
∣

∣

∣

v=FX0(X)
(F̂ ∗

X − FX0)(X)

]

. (A.7)
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Using the i.i.d. representation of Ĥ∗ −H0, which can be easily derived from the proof of

Theorem 1 in Akritas and Van Keilegom (2001), we have that (where e = y − m(x))

(Ĥ∗ − H0)(x, y) = F̂ ∗
ε (y − m̂(x)) − Fε0(y − m(x))

= n−1
n

∑

i=1

{I(εi ≤ e) − Fε0(e) + ϕ(Xi, Yi, e)} − fε0(e){m̂(x) − m(x)} + oP (n−1/2),

uniformly in x, y. Note that

m̂(x) − m(x)

= −f−1(m(x)|x)
[

F̂ (m(x)|x) −
1

2

]

+ OP ((nh)−1 log n)

= −f−1(m(x)|x)f−1
X (x)

[

n−1
n

∑

i=1

Kh(x − Xi)
{

I(Yi ≤ m(x)) −
1

2

}]

+ OP ((nh)−1 log n),

uniformly in x, where Kh(u) = h−1K(u/h). Now define

S(x, e) =
∂

∂u
dθ0

(u, FX0(x))|u=Fε0(e)fε0(e)f
−1(m(x)|x)f−1

X (x).

Then, it can be easily seen that

n−1
n

∑

i=1

E
[

S(X, ε)Kh(X − Xi)
{

I(Yi ≤ m(X)) −
1

2

}]

= n−1
n

∑

i=1

fX(Xi)E[S(X, ε)|X = Xi]
{

I(Yi ≤ m(Xi)) −
1

2

}

+ oP (n−1/2).

Hence, (A.7) can be written as

n−1
n

∑

i=1

(

dθ0
(Fε0(εi), FX0(Xi))

+E

[

∂

∂u
dθ0

(u, FX0(X))
∣

∣

∣

u=Fε0(ε)

{

I(εi ≤ ε) − Fε0(ε) + ϕ(Xi, Yi, ε)
}

+
∂

∂v
dθ0

(Fε0(ε), v)
∣

∣

∣

v=FX0(X)

{

I(Xi ≤ X) − FX0(X)
}

]

+E

[

∂

∂u
dθ0

(u, FX0(X))u=Fε0(ε)fε0(ε)
∣

∣

∣X = Xi

]

f−1(m(Xi)|Xi)
{

I(εi ≤ 0) −
1

2

}

)

+oP (n−1/2).

The result now follows.

Proof of Theorem 3.2. Write

F̂ (y|x) − F (y|x)

= C2
θ̂
(F̂ε(y − m̂(x)), F̂X(x)) − C2

θ0
(Fε(y − m(x)), FX(x))

= C2′

ξ̂
(F̂ε(y − m̂(x)), F̂X(x)) [θ̂ − θ0] + C22

θ0
(F̂ε(y − m̂(x)), η̂) [F̂X(x) − FX(x)]

+C21
θ0

(Fε(y − m(x)), FX(x)) [F̂ε(y − m̂(x)) − Fε(y − m(x))] + OP ((nh)−1 log n),
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where ξ̂ is between θ0 and θ̂, and η̂ is between FX(x) and F̂X(x). The first and second

term above are OP (n−1/2) = oP ((nh)−1/2), whereas the third term can be written as

f(y|x)

fε(y − m(x))
[F̂ε(y − m̂(x)) − Fε(y − m(x))]

=
f(y|x)

fε(y − m(x))

{

[F̂ε(y − m̂(x)) − Fε(y − m̂(x))] + [Fε(y − m̂(x)) − Fε(y − m(x))]
}

= −f(y|x)[m̂(x) − m(x)] + oP ((nh)−1/2)

= −
f(y|x)

f(m(x)|x)fX(x)

[

(nh)−1
n

∑

i=1

K
(x − Xi

h

){

I(Yi ≤ m(x)) −
1

2

}

]

+ oP ((nh)−1/2),

which follows from the fact that supx |m̂(x) − m(x)| = OP ((nh)−1/2(log n)1/2) and

supe |F̂ε(e) − Fε(e)| = OP (n−1/2(log n)1/2) = oP ((nh)−1/2) (see Theorem 2 in Akritas

and Van Keilegom (2001)). The result now follows, since Var[(nh)1/2{m̂(x) − m(x)}] =
‖K‖2

2

4f2(m(x)|x)
+ o(1).
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