

Proceedings of the Eighth International Workshop
on the Web and Databases

WebDB 2005

June 16-17, 2005
Baltimore, Maryland

Collocated with ACM SIGMOD/PODS 2005

In Cooperation with ACM SIGMOD

Edited by AnHai Doan, Frank Neven,
Robert McCann, and Geert Jan Bex

FOREWORD

This volume contains 16 papers, 9 posters, and 2 demos that were presented at the Eighth International Workshop on the
Web and Databases (WebDB), which was held June 16-17, 2005, in Baltimore, Maryland, in conjunction with the ACM
SIGMOD/PODS conference. All contributions present preliminary reports on continuing research, and were selected by the
Program Committee out of 59 submissions. During the selection process, particular emphasis was given to papers that
promote novel research directions and to data integration, the underlying theme of this year's workshop edition. In addition
to the contributed papers, posters, and demos, the WebDB 2005 program included a panel moderated by Alon Halevy
(University of Washington), and two invited talks by Michael S. McQueen (W3C and MIT, joint with XIME-P) and by
William W. Cohen (Carnegie Mellon University).

The organizers thank the Program Committee for providing thorough valuations within a very short time, Rob McCann and
Geert Jan Bex for compiling the proceedings and maintaining the Web site, Microsoft for providing us with the Conference
Management Toolkit, the SIGMOD organizers (especially Marianne Winslett and Lisa Singh) for their assistance in
organizing the workshop, and Sihem Amer-Yahia, Luis Gravano, Juliana Freire - past WebDB organizers - for providing
advice on WebDB organization.

PROGRAM COMMITTEE

Bruce Croft University of Massachusetts at Amherst, USA

Kevin Chang University of Illinois at Urbana-Champaign, USA

Junghoo Cho University of California at Los Angeles, USA

Wenfei Fan Bell Labs and University of Edinburgh, UK

Juliana Freire University of Utah and OGI/OHSU, USA

Zack Ives University of Pennsylvania, USA

H. V. Jagadish University of Michigan, USA

Christoph Koch Technische Universitaet Wien, Austria

Nick Koudas University of Toronto, Canada

Chen Li University of California at Irvine, USA

Bertram Ludaescher University of California at Davis, USA

Maarten Marx University of Amsterdam, The Netherlands

Ioana Manolescu INRIA, France

Sergey Melnik Microsoft Research, USA

Christopher Olston Carnegie Mellon University, USA

Erhard Rahm University of Leipzig, Germany

Arnaud Sahuguet Bell Labs Research, USA

Jayavel Shanmugasundaram Cornell University, USA

Gerhard Weikum Max-Planck-Institut fuer Informatik, Saarbruecken, Germany

Clement Yu University of Illinois at Chicago, USA

ORGANIZERS

AnHai Doan University of Illinois, USA

Frank Neven Hasselt University, Belgium

WEB CHAIR
Geert Jan Bex Hasselt University, Belgium

PROCEEDINGS CHAIR
Robert McCann University of Illinois, USA

WORKSHOP SCHEDULE

DAY 1: Thursday June 16, 2005
2:30-3:30pm Invited Talk

What does XML have to do with Immanuel Kant?
Michael S. McQueen

3:30-4:00pm Coffee Break

4:00-5:00pm Panel on future directions of information integration
Organized by Alon Halevy

5:00-5:10pm Short Break

5:10-6:30pm Paper Session 1: Data Integration and Web
Chair: Gerhard Weikum

Searching for Hidden-Web Databases
Luciano Barbosa, Juliana Freire

iFuice - Information Fusion utilizing Instance Correspondences and Peer Mappings
Erhard Rahm, Andreas Thor, David Aumueller, Hong-Hai Do, Nick Golovin, Toralf Kirsten

Managing Integrity for Data Exchanged on the Web
Gerome Miklau, Dan Suciu

Design and Implementation of a Geographic Search Engine
Alexander Markowetz, Yen-Yu Chen, Torsten Suel, Xiaohui Long, Bernhard Seeger

DAY 2: Friday June 17, 2005
8:30-9:10am Paper Session 2: Web and Peer-to-Peer Systems

Chair: Kevin Chang

Using Bloom Filters to Refine Web Search Results
Navendu Jain, Mike Dahlin, Renu Tewari

JXP: Global Authority Scores in a P2P Network
Josiane Xavier Parreira, Gerhard Weikum

9:10-10:00am Short talks for posters (5 min each)
Chair: Frank Neven

XFrag: A Query Processing Framework for Fragmented XML Data
Sujoe Bose, Leonidas Fegaras

Analysis of User Web Traffic with A Focus on Search Activities
Feng Qiu, Zhenyu Liu, Junghoo Cho

Processing Top-N Queries in P2P-based Web Integration Systems with Probabilistic
Guarantees
Katja Hose, Marcel Karnstedt, Kai-Uwe Sattler, Daniel Zinn

Context-Sensitive Keyword Search and Ranking for XML
Chavdar Botev, Jayavel Shanmugasundaram

Constructing Maintainable Semantic Mappings in XQuery
Gang Qian, Yisheng Dong

The Framework of an XML Semantic Caching System
Wanhong Xu

A Data Model and Query Language to Explore Enhanced Links and Paths in Life Science
Sources
George Mihaila, Felix Naumann, Louiqa Raschid, Maria Esther Vidal

Malleable Schemas: A Preliminary Report
Xin Dong, Alon Halevy

Mining the inner structure of the Web graph
Debora Donato, Stefano Leonardi, Stefano Millozzi, Panayiotis Tsaparas

Managing Multiversion Documents & Historical Databases: a Unified Solution Based on
XML
Fusheng Wang, Carlo Zaniolo, Xin Zhou, Hyun J. Moon

10:00-10:40am Coffee Break/Poster Presentation

10:40-12:00pm Invited Talk
Chair: AnHai Doan

A Century Of Progress On Information Integration: A Mid-Term Report
William Cohen

12:00-1:00pm Buffet Lunch

1:00-2:20pm Paper Session 3: XML
Chair: Zack Ives

On the role of composition in XQuery
Christoph Koch

An Empirical Evaluation of Simple DTD-Conscious Compression Techniques
James Cheney

Towards a Query Language for Multihierarchical XML: Revisiting XPath
Ionut Iacob, Alex Dekhtyar

Indexing Schemes for Efficient Aggregate Computation over Structural Joins
Priya Mandawat, Vassilis Tsotras

2:20-2:50pm Coffee Break/Poster Presentation

2:50-3:50pm Paper Session 4: Keyword Search, Peer-to-Peer Systems, and Web
Chair: Jayavel Shanmugasundaram

An Evaluation and Comparison of Current Peer-to-Peer Full-Text Keyword Search
Techniques
Ming Zhong, Justin Moore, Kai Shen, Amy Murphy

Efficient Engines for Keyword Proximity Search
Benny Kimelfeld, Yehoshua Sagiv

Freshness-Aware Scheduling of Continuous Queries in the Dynamic Web
Mohamed Sharaf, Alexandros Labrinidis, Panos Chrysanthis, Kirk Pruhs

3:50-4:00pm Short Break

4:00-5:00pm Paper Session 5: XML
Chair: Christoph Koch

Vague Content and Structure (VCAS) Retrieval for Document-centric XML Collections
Shaorong Liu, Wesley Chu, Ruzan Shahinian

On the Expressive Power of Node Construction in XQuery
Wim Le Page, Jan Hidders, Philippe Michiels, Jan Paredaens, Roel Vercammen

Indexing for XML Siblings
SungRan Cho

INVITED TALKS

What does XML have to do with Immanuel Kant?
Michael S. McQueen, World Wide Web Consortium

This talk by one of the authors of the XML 1.0 specification will attempt to distinguish technical wheat from marketing
chaff and disentangle truths and fictions about XML as a data format. He will describe the origins of XML and the goals of
the original design, identify the technically and socially most interesting aspects of XML, and sketch out the roles it can
play in solving the problems of information management. The relation of syntax to semantics in XML markup, the
relationship of XML to the concept of 'semistructured data', and the role of schemas and data validation in XML will be
discussed. Particular attention will be paid to the ways in which XML and database systems complement each other or
compete.

A Century Of Progress On Information Integration: A Mid-Term Report
William Cohen, Carnegie Mellon University

Over the last half-century, information integration has progressed from the study of narrow problems, of interest only to
obscure technical communities, to a broad field of great scientific, social and economic importance. I believe that over the
next half-century, our lives will be profoundly affected by the degree to which today’s problems of information integration
can be solved, and the uses to which these solutions are put. In this talk I will survey some recent work in information
integration, and how this work relates to two important technical questions. First, when is it best to resolve uncertainty
about object identity, and when is it best to propagate this uncertainty? Second, how can structured information be
integrated with information in unstructured formats, such as genomic data, images and text?

PROCEEDINGS CONTENTS

PAPER SESSION 1: Data Integration and Web

Searching for Hidden-Web Databases
Luciano Barbosa, Juliana Freire 1

iFuice - Information Fusion utilizing Instance Correspondences and Peer Mappings
Erhard Rahm, Andreas Thor, David Aumueller, Hong-Hai Do, Nick Golovin, Toralf Kirsten 7

Managing Integrity for Data Exchanged on the Web
Gerome Miklau, Dan Suciu 13

Design and Implementation of a Geographic Search Engine
Alexander Markowetz, Yen-Yu Chen, Torsten Suel, Xiaohui Long, Bernhard Seeger 19

PAPER SESSION 2: Web and Peer-to-Peer Systems

Using Bloom Filters to Refine Web Search Results
Navendu Jain, Mike Dahlin, Renu Tewari 25

JXP: Global Authority Scores in a P2P Network
Josiane Xavier Parreira, Gerhard Weikum 31

PAPER SESSION 3: XML

On the role of composition in XQuery
Christoph Koch 37

An Empirical Evaluation of Simple DTD-Conscious Compression Techniques
James Cheney 43

Towards a Query Language for Multihierarchical XML: Revisiting XPath
Ionut Iacob, Alex Dekhtyar 49

Indexing Schemes for Efficient Aggregate Computation over Structural Joins
Priya Mandawat, Vassilis Tsotras 55

PAPER SESSION 4: Keyword Search, Peer-to-Peer Systems, and Web

An Evaluation and Comparison of Current Peer-to-Peer Full-Text Keyword Search Techniques
Ming Zhong, Justin Moore, Kai Shen, Amy Murphy 61

Efficient Engines for Keyword Proximity Search
Benny Kimelfeld, Yehoshua Sagiv 67

Freshness-Aware Scheduling of Continuous Queries in the Dynamic Web
Mohamed Sharaf, Alexandros Labrinidis, Panos Chrysanthis, Kirk Pruhs 73

PAPER SESSION 5: XML

Vague Content and Structure (VCAS) Retrieval for Document-centric XML Collections
Shaorong Liu, Wesley Chu, Ruzan Shahinian 79

On the Expressive Power of Node Construction in XQuery
Wim Le Page, Jan Hidders, Philippe Michiels, Jan Paredaens, Roel Vercammen 85

Indexing for XML Siblings
SungRan Cho 91

POSTER PAPERS:

XFrag: A Query Processing Framework for Fragmented XML Data
Sujoe Bose, Leonidas Fegaras 97

Analysis of User Web Traffic with A Focus on Search Activities
Feng Qiu, Zhenyu Liu, Junghoo Cho 103

Processing Top-N Queries in P2P-based Web Integration Systems with Probabilistic Guarantees
Katja Hose, Marcel Karnstedt, Kai-Uwe Sattler, Daniel Zinn 109

Context-Sensitive Keyword Search and Ranking for XML
Chavdar Botev, Jayavel Shanmugasundaram 115

Constructing Maintainable Semantic Mappings in XQuery
Gang Qian, Yisheng Dong 121

The Framework of an XML Semantic Caching System
Wanhong Xu 127

A Data Model and Query Language to Explore Enhanced Links and Paths in Life Science Sources
George Mihaila, Felix Naumann, Louiqa Raschid, Maria Esther Vidal 133

Malleable Schemas: A Preliminary Report
Xin Dong, Alon Halevy 139

Mining the inner structure of the Web graph
Debora Donato, Stefano Leonardi, Stefano Millozzi, Panayiotis Tsaparas 145

DEMONSTRATIONS:

Managing Multiversion Documents & Historical Databases: a Unified Solution Based on XML
Fusheng Wang, Carlo Zaniolo, Xin Zhou, Hyun J. Moon 151

T-SIX: An Indexing System for XML Siblings
SungRan Cho 154

Searching for Hidden-Web Databases

Luciano Barbosa
University of Utah

lab@sci.utah.edu

Juliana Freire
University of Utah

juliana@cs.utah.edu

ABSTRACT
Recently, there has been increased interest in the retrieval and inte-
gration of hidden-Web data with a view to leverage high-quality in-
formation available in online databases. Although previous works
have addressed many aspects of the actual integration, including
matching form schemata and automatically filling out forms, the
problem of locating relevant data sources has been largely over-
looked. Given the dynamic nature of the Web, where data sources
are constantly changing, it is crucial to automatically discover these
resources. However, considering the number of documents on the
Web (Google already indexes over 8 billion documents), automat-
ically finding tens, hundreds or even thousands of forms that are
relevant to the integration task is really like looking for a few nee-
dles in a haystack. Besides, since the vocabulary and structure of
forms for a given domain are unknown until the forms are actually
found, it is hard to define exactly what to look for.

We propose a new crawling strategy to automatically locate hid-
den-Web databases which aims to achieve a balance between the
two conflicting requirements of this problem: the need to perform
a broad search while at the same time avoiding the need to crawl
a large number of irrelevant pages. The proposed strategy does
that by focusing the crawl on a given topic; by judiciously choos-
ing links to follow within a topic that are more likely to lead to
pages that contain forms; and by employing appropriate stopping
criteria. We describe the algorithms underlying this strategy and
an experimental evaluation which shows that our approach is both
effective and efficient, leading to larger numbers of forms retrieved
as a function of the number of pages visited than other crawlers.

Keywords
hidden Web, large scale information integration, focused crawler

1. INTRODUCTION
Recent studies estimate the hidden Web contains anywhere be-

tween 7,500 and 91,850 terabytes of information [2, 14]. As the
volume of information in the hidden Web grows, there is increased
interest in techniques and tools that allow users and applications
to leverage this information. In this paper, we address a crucial
problem that has been largely overlooked in the literature: how to
efficiently locate the searchable forms that serve as the entry points
for the hidden Web. Having these entry points is a necessary con-
dition to perform several of the hidden-Web data retrieval and in-
tegration tasks. The searchable forms can be used as the starting

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

point for deep crawls [18, 1] and for techniques that probe these
databases to derive source descriptions [11]; and in form matching
they can serve as inputs to algorithms that find correspondences
among attributes of different forms [12, 24, 13].

Several factors contribute to making this problem particularly
challenging. The Web is constantly changing – new sources are
added, and old sources are removed and modified. A scalable so-
lution, suitable for a large-scale integration or deep-crawling task,
must automatically find the hidden-Web sources. In addition, even
for a well-defined domain (e.g., books for sale), it is hard to spec-
ify a schema (or schemata) that accurately describes the relevant
forms. Since there is a wide variation both in the structure and
vocabulary of forms, if the definition is too strict, we risk missing
relevant forms that use a slightly different schema vocabulary or
structure. And in order to obtain a general definition that covers
the domain well, it is necessary to have the forms to discover the
correspondences among attributes [12, 24, 13]. Thus, we need to
perform a broad search. But forms are very sparsely distributed. A
recent study estimates that there are 307,000 deep Web sites, and
an average of 4.2 query interfaces per deep Web site [7]. Thus,
searching for tens, hundreds or even thousands of forms, that are
relevant to the integration task among billions of Web pages is re-
ally like looking for a few needles in a haystack. In order to be
practical, the search process must be efficient and avoid visiting
large unproductive portions of the Web.

A possible approach to address this problem would be to per-
form a full crawl of the Web, but this would be highly inefficient.
An exhaustive crawl can take weeks; and as the ratio of forms
to Web pages is small, this would lead to unnecessarily crawling
too many pages. Another alternative would be to use a focused
crawler. Focused crawlers try to retrieve only a subset of the pages
on the Web that are relevant to a particular topic. They have been
shown to lead to better quality indexes and to substantially im-
proved crawling efficiency than exhaustive crawlers [6, 19, 5, 10,
21]. However, existing strategies fail to meet the requirements of
our problem.

Crawlers that focus the search based solely on the contents of
the retrieved pages, such as the best-first crawler of [6], are not
effective. Since forms are sparsely distributed even within a re-
stricted domain, the number of forms retrieved per total of visited
pages can be very low (see Section 4). Renee and McCallum [19]
used reinforcement learning to build a focused crawler that is effec-
tive for sparse concepts. Instead of just considering the content of
individual pages and crawling through pages that give immediate
benefit, they train a learner with features collected from paths lead-
ing to a page. They do this by repeatedly crawling sample sites to
build the connectivity graphs with the optimized paths to the target
documents. However, this approach was designed for tasks which,

unlike searching for hidden-Web databases, consist of well-defined
search problems within a well-defined set of Web sites. For exam-
ple, locating the name of the CEO in a given company site; and
locating research papers available in the sites of computer science
departments [19].

We propose a new crawling strategy that combines ideas from
these two approaches. Similar to [6], we use a page classifier
to guide the crawler and focus the search on pages that belong
to a specific topic. But in order to further focus the search, like
in [19], our crawler learns to identify promising links, including
links whose benefit may not be immediate – in our case, a link
classifier selects links that are likely to reach pages that contain
forms (in one or more steps). However, instead of explicitly build-
ing the Web graph through repeated crawls of selected sites (which
can be prohibitively expensive for a broad search), we rely on the
backward crawling facilities provided by search engines in order to
approximate this graph [3, 10]. In addition, based on form-specific
characteristics, we introduce new stopping criteria that are very ef-
fective in guiding the crawler to avoid excessive speculative work
in a single site.

Our experimental results over three distinct domains show that,
even using an approximated connectivity graph, our crawler is more
efficient (up to an order of magnitude) than a set of representative
crawlers. Not only it is able to perform a broad search and retrieve
a large number of searchable forms, but, for a fixed number of vis-
ited pages, it also retrieves a significantly larger number of forms
than other crawlers. The experiments also show an added benefit
of combining a focused crawl with the identification of links that
lead to pages that contain forms: focusing the crawl on a topic
helps improve effectiveness of the link classifier, since the features
that are learned for links are often specific to a topic/domain.

The outline of the paper is as follows. We review related work
in Section 2. In Section 3, we describe the architecture of our
crawler, its implementation and underlying algorithms. An ex-
perimental evaluation and comparison against other approaches is
given in Section 4. We conclude in Section 5, where we discuss
directions for future work.

2. RELATED WORK
In what follows, we give an overview of previous works on fo-

cused crawling. We also briefly review approaches that address
different aspects of retrieval and integration of hidden-Web data.

Focused Crawling. The goal of a focused crawler is to select links
that lead to documents of interest, while avoiding links that lead to
off-topic regions. Several techniques have been proposed to fo-
cus web crawls (see e.g., [5, 6, 10, 19, 21]). In [6], Chakrabarti
et al describe a best-first focused crawler (called baseline in the
remainder of this paper) which uses a page classifier to guide the
search. The classifier learns to classify pages as belonging to top-
ics in a taxonomy (e.g., dmoz.org). Unlike an exhaustive crawler
which follows each link in a page in a breadth first manner, this
focused crawler gives priority to links that belong to pages classi-
fied as relevant. Although this best-first strategy is effective, it can
lead to suboptimal harvest rates, since even in domains that are not
very narrow, the number of links that are irrelevant to the topic can
be very high. An improvement to the baseline strategy was pro-
posed in [5], where instead of following all links in relevant pages,
the crawler used an additional classifier, the apprentice, to select
the most promising links in a relevant page. The baseline classi-
fier captures the user’s specification of the topic and functions as a
critic of the apprentice, by giving feedback about its choices. The
apprentice, using this feedback, learns the features of good links

and is responsible for prioritizing the links in the crawling fron-
tier. Although our approach also attempts to estimate the benefit of
following a particular link, there are two key differences. Whereas
the apprentice only considers links that give immediate benefit, our
link classifier learns to predict the distance between a link and a
target page, and thus, our crawler considers links that may be mul-
tiple steps away from a target page. Besides, the goal of our link
classifier is complementary to that of [5] – we want to learn which
links lead to pages that contain searchable forms, whereas the goal
of [5] to avoid off-topic pages. In fact, our approach would also
benefit from such an apprentice, since it would reduce the number
of off-topic pages retrieved and improve the overall crawling effi-
ciency. Integrating the apprentice in our framework is a direction
we plan to pursue in future work.

One issue with focused crawlers is that they may miss relevant
pages by only crawling pages that are expected to give immediate
benefit. In order to address this limitation, strategies have been pro-
posed that train a learner with features collected from paths leading
to a page, as opposed to just considering a page’s contents [10, 19].
Rennie and McCallum [19] use reinforcement to train a classifier
to evaluate the benefit of following a particular link. Their clas-
sifier learns features of links which include words in the title and
body of the document where the link is located, and words in the
URL, anchor and text in the neighborhood of the link. Given a link
(u,v), the classifier returns an estimate of the number of relevant
pages that can be reached by following (u,v). Diligenti et al [10]
also collect paths to relevant pages. But their classifier estimates
the distance from a page u to some relevant page w; it does not
distinguish among the links in u – if the classifier estimates that
a page u has high benefit, all pages v directly reachable from u
are retrieved. Similar to [19], we estimate the benefit of individual
links and select the ones that are more likely to reach pages that
contain forms. However, in order to train our classifier, instead
of explicitly building the Web graph through an exhaustive crawl
of selected sites, we use the same optimization applied in [10] to
build context graphs, i.e., we rely on the backward crawling facil-
ities provided by search engines in order to approximate the Web
connectivity graph.

Retrieving and Integrating Hidden-Web Data. MetaQuerier [8]
is a system that enables large-scale integration of hidden-Web data.
It consists of several components that address different aspects of
the integration. One of these components is a crawler for locating
online databases, the Database Crawler. Unlike our approach, the
Database Crawler neither focuses the search on a topic, nor does it
attempt to select the most promising links to follow. Instead, it uses
as seeds for the crawl the IP addresses of valid Web servers; then,
from the root pages of these servers, it crawls up to a fixed depth
using a breadth-first search. Their design choice is based on the
observation that searchable forms are often close to the root page
of the site [7]. As we discuss in Section 3, our crawler prioritizes
links that belong to pages close to the root of a site. However, we
also show that just limiting the depth of a breadth-first search leads
to low crawling efficiency (see Section 4).

Raghavan and Garcia-Molina [18] proposed HiWe, a task-specific
hidden-Web crawler. The key problem they addressed was how
to automatically fill out structured Web forms. Although this pi-
oneering work automates deep crawling to a great extent, it still
requires substantial human input to construct the label value set ta-
ble. In [1], we proposed a completely automated strategy to crawl
through (simpler) unstructured forms (i.e., keyword-based inter-
faces). Both crawlers can benefit from our system and use the re-
turned form pages as the starting point for deep crawls.

To further automate the process crawling through structured forms,

Figure 1: Form Crawler Architecture.

a hidden-Web crawler must understand the form interfaces so that
it can generate meaningful submissions. Several techniques have
been proposed that improve form understanding by finding matches
among attributes of distinct forms (see e.g., [12, 13, 24]). The
forms we find can serve as inputs to these techniques.

Finally, it is worth pointing out that there are directories spe-
cialized on hidden-Web sources, e.g., [4, 17, 20]. Hidden-Web
directories organize pointers to online databases in a searchable
topic hierarchy. Chang et al [7] note that these directories cover
a small percentage of the hidden-Web databases; and they posit
this low coverage is due to their “apparent manual classification”.
Being focused on a topic makes our crawler naturally suitable for
automatically building a hidden-Web directory.

3. FORM-FOCUSED CRAWLER
To deal with the sparse distribution of forms on the Web, our

Form Crawler avoids crawling through unproductive paths by: lim-
iting the search to a particular topic; learning features of links and
paths that lead to pages that contain searchable forms; and em-
ploying appropriate stopping criteria. The architecture of the Form
Crawler is depicted in Figure 1.

The crawler uses two classifiers to guide its search: the page and
the link classifiers. A third classifier, the form classifier, is used to
filter out useless forms. The page classifier is trained to classify
pages as belonging to topics in a taxonomy (e.g., arts, movies, jobs
in Dmoz). It uses the same strategy as the best-first crawler of [6].
Once the crawler retrieves a page P, if P is classified as being on-
topic, forms and links are extracted from it. A form is added to
the Form Database if the form classifier decides it is a searchable
form, and if it is not already present in the Form Database.1 The
link classifier is trained to identify links that are likely to lead to
pages that contain searchable form interfaces in one or more steps.
It examines links extracted from on-topic pages and adds to the
crawling frontier in the order of their importance. In the remainder
of this section we describe the core elements of the system in detail.

3.1 Link Classifier
Since forms are sparsely distributed, by selecting only links that

bring immediate return (i.e., links that directly point to pages con-
taining searchable forms), the crawler may miss “good” target pages
that can only be reached with additional steps. Thus, the link clas-
sifier aims to identify links that may bring delayed benefit, i.e.,
links that eventually lead to pages that contain forms. It learns the
following features of links: anchor, URL, and text in the proxim-
ity of the URL; and assigns a score to a link which corresponds to
the distance between the link and a relevant page that is reachable
from that link.

Learning Distance through Backward Crawling. In order to
learn the features of “good” paths, the link classifier needs ex-
1We check for duplicates because many Web sites have the same
form interface in multiple pages.

amples of paths that lead to pages that contain searchable forms.
These examples can be obtained from the connectivity graphs for
a set of representative sites. Note that to build this graph, it may be
necessary to perform exhaustive crawls over the sites. While this
is possible for a small set of sites [19], the task would be extraor-
dinarily expensive and time-consuming to apply in a large-scale
crawling task that may involve thousands of sites.

Instead of building the exact connectivity graph, we get an ap-
proximation of this graph by performing a backward crawl using
Google’s “link:” facility, which returns pages that point to a given
document [3, 10]. The backward crawl consists of a breadth-first
search starting from pages that contain searchable forms. Each
level l+1 is constructed by finding all documents that point to the
documents in level l. The resulting graph is an approximation be-
cause: Google does not provide complete connectivity informa-
tion; and since the number of backlinks can be large, we select
only a subset of these backlinks. Nonetheless, this approximation
is sufficient to train the link classifier. As we show in Section 4,
using multiple backward crawl levels leads to substantial gains in
the form harvest rates.

For each level of the backward crawl, we extract the features
of the links in pages that belong to that level. The classifier then
learns the distance between a given link (from its associated fea-
tures) and the target page which contains a searchable form. Intu-
itively, a link that matches the features of level 1 is likely to point
to a page that contains a form; and a link that matches the features
of level l is likely l steps away from a page that contains a form.

Feature Space Construction and Focused Crawl. The effec-
tiveness of the link classifier is highly dependent on the features it
considers. We experimented with different sets of features, as well
as with different ways of extracting them. Due to space limitations,
we discuss only the best of the strategies we examined.

For each level l in the backward crawl, we extract the words
in the neighborhood of the links in l. We consider three contexts:
URL, anchor, and text around the link. Since the number of ex-
tracted features tends to be large (and most of them have very low
frequency), we remove stop-words and stem the remaining words.
Then, for each context, we select only words with frequency larger
than a fixed threshold. Note that features are associated with a con-
text. For example, if the word “search” appears in both in the URL
and in the anchor text of a link, it is added as a feature in both
contexts.

Table 1 shows an excerpt of the feature space we constructed
for the jobs domain; for each context, it shows the most com-
mon words and their frequencies. For illustrative purposes, we also
show the common words in page title and text of the page where
the link is located. Note that:

• Link features contain words that are clearly associated with the
domain as well as with searchable forms: common words include
“search”, “career” and “job”. We have observed similar behav-
ior in other domains we explored, for example, for cars, common
words in the anchor included “search”, “used” and “car”;

• The document text is a very good indicator of the relevance of
a page. For example, words such as “job”, “search” and “career”
have very high frequencies in the document text in all levels;

• As a link gets farther from the target page, the frequency of clearly
related words decreases. For example, whereas the anchor fre-
quency of the word “job” in level 0 is 39, it goes down to 11 in
level 2. And although the number of words that are apparently re-
lated to topic decreases with the distance, many of the words in the
higher levels are still related to the topic.

level/field URL Anchor Around the link Title of page Text of page Number of pages

1

job 111 job 39 job 66 job 77 job 186

187

search 38 search 22 search 49 career 39 search 71
career 30 ent 13 career 38 work 25 service 42
opm 10 advanced 12 work 25 search 23 new 40

htdocs 10 career 7 home 16 staffing 15 career 35
roberthalf 10 width 6 keyword 16 results 14 work 34

accountemps 10 popup 6 help 15 accounting 13 site 27

2

job 40 job 30 job 33 job 46 job 103

212

classified 29 career 14 home 20 career 28 search 57
news 18 today 10 ticket 20 employment 16 new 36

annual 16 ticket 10 career 18 find 13 career 35
links 13 corporate 10 program 16 work 13 home 32
topics 12 big 8 sales 11 search 13 site 32
default 12 list 8 sports 11 merchandise 13 resume 26
ivillage 12 find 6 search 11 los 10 service 22

3

ivillage 18 job 11 job 21 job 17 font 37

137

cosmopolitan 17 advertise 8 new 17 ctnow 8 job 33
ctnow 14 web 5 online 11 service 8 service 24
state 10 oak 5 career 11 links 7 cosmo 20

archive 10 fight 5 contact 10 county 7 new 19
hc-advertise 10 career 5 web 9 career 7 career 19

job 9 against 5 real 9 employment 7 color 16
poac 9 military 5 home 9 work 6 search 16

Table 1: Excerpt of feature space for jobs domain. This table shows the most frequent words in each context for 3 levels of the
backward crawl, as well as the total number of pages in examined in each level. The selected features used for the different contexts
in the link classifier are shown in bold.

These observations reinforce our decision to combine a focused
crawler, that takes the page contents into account, with a mech-
anism that allows the crawler to select links that have delayed
benefit. The alternative of using a traditional breadth-first (non-
focused) crawler in conjunction with our link classifier would not
be effective. Although such a crawler might succeed in retrieving
forms reachable from links with generic features (e.g., “search”), it
is likely to miss links whose features are domain-dependent (e.g.,
“used”, “car”) if the frequencies of these features in the feature
table are below the fixed threshold.

In addition to determining the distance of a particular link in
relation to the target, i.e., its category, it is also interesting to ob-
tain the probabilistic class membership of this link in the category.
This enables the crawler to prioritize links with higher probability
of belonging to a given class. For this reason, we chose a naı̈ve
Bayes classifier [16] to classify the links. It is worthy of note that
other crawlers have used this type of classifier to estimate link rel-
evance [5, 19].

3.2 Page Classifier
We used Rainbow [15], a freely-available naı̈ve Bayes classi-

fier, to build our page classifier. In the Form Crawler, Rainbow is
trained with samples obtained in the topic taxonomy of the Dmoz
Directory (dmoz.org) – similar to what is done in other focused
crawlers [5, 6]. When the crawler retrieves a page P, the page
classifier analyzes the page and assigns to it score which reflects
the probability that P belongs to the focus topic. If this probabil-
ity is greater than a certain threshold (0.5 in our case), the crawler
regards the page as relevant.

3.3 Form Classifier
Since our goal is to find hidden-Web databases, we need to filter

out non-searchable forms, e.g., forms for login, discussion groups
interfaces, mailing list subscriptions, purchase forms, Web-based
email forms. The form classifier is a general (domain-independent)
classifier that uses a decision tree to determine whether a form is
searchable or not.

The decision tree was constructed as follows. For positive ex-

Algorithm Error test rate
C4.5 8.02%

Support Vector Machine 14.19%
Naive Bayes 10.49%

MultiLayer Perceptron 9.87%

Table 2: Test error rates for different learning algorithms.

amples we extracted 216 searchable forms from the UIUC repos-
itory [22], and we manually gathered 259 non-searchable forms
for the negative examples. For each form in the sample set, we
obtained the following features: number of hidden tags; number
of checkboxes; number of radio tags; number of file inputs; num-
ber of submit tags; number of image inputs; number of buttons;
number of resets; number of password tags; number of textboxes;
number of items in selects; sum of text sizes in textboxes; submis-
sion method (post or get); and the presence of the string “search”
within the form tag.

We performed the learning task using two thirds of this corpus,
and the remaining one third was used for testing. We selected de-
cision trees (the C4.5 classifier) because it had the lowest error rate
among the different learning algorithms we evaluated [23]. The
error test rates are shown in Table 2.

Cope et al [9] also used a decision tree to classify searchable and
non-searchable forms. Their strategy considers over 550 features,
whereas we use a much smaller number of features (only 14); and
their best error rate is 15%, almost twice the error rate of our form
classifier.

3.4 Crawling
The search frontier consists of N queues, where N is the number

of levels used by the link classifier; the i-th queue is associated to
the i-th level. The crawler prioritizes links that are closer to the
target pages, i.e., links that are placed in the queues correspond-
ing to the lowest levels. Within a queue, links are ordered by the
likelihood of belonging to the respective level. However, links that
belong to pages close to the root of a Web site are given higher pri-
ority in the queue. Our decision to prioritize such links comes from
the observation that forms often occur close to the main pages of

Web sites [7]. Note, however, that “just” prioritizing these pages
is not enough – as we discuss in Section 4, a strategy that simply
fixes the search depth is not effective.

Before the crawl starts, the seed links are placed in queue 1.
At each crawl step, the crawler gets the most relevant link in the
queues, i.e., it pops the link with the highest relevance score from
the first non-empty queue. If the page it downloads belongs to the
domain, its links are classified by link classifier and added to the
persistent frontier. When the queues in the crawling frontier be-
come empty, the crawler loads a subset of the queues in the persis-
tent frontier (the most relevant links are given priority). By keeping
the persistent frontier separate, we ensure some fairness – all links
in the crawling frontier will eventually be followed.

Stopping Criteria. Due to the sparseness of searchable forms,
it is important for the Form Crawler to determine when to stop
crawling a given site to avoid unproductive searches. The Form
Crawler uses two stopping criteria: 1) the crawler leaves a site if
it retrieves a pre-defined number of distinct forms; or 2) if it visits
the maximum number of pages on that site. The intuition behind
the first criterion is that there are few searchable forms in a hidden-
Web site. Chang et al [7] observed that deep Web sites contain a
small number of query interfaces. They estimate that, on average,
a deep Web site has 4.2 query interfaces. Thus, after the crawler
finds these forms, it can stop since it is unlikely to find additional
forms. Since the Form Crawler performs a broad search, it visits
many sites that may contain fewer than 4.2 forms, and sites that
do not contain searchable forms. The second criterion ensures that
the crawler will not waste resources in such sites. As we discuss
below, these stopping criteria are key to achieving a high crawling
efficiency.

4. EXPERIMENTAL EVALUATION
The key distinguishing feature of the Form Crawler is that it per-

forms broad crawls to locate forms which are sparsely distributed
over the Web. In our experiments, we compare the efficiency of
our Form Crawler against that of three other crawlers:

• Baseline, a variation of the best-first crawler [6]. The page clas-
sifier guides the search: the crawler follows all links that belong to
a page classified as being on-topic;

• Fixed depth follows the strategy adopted by the Database Craw-
ler [8]. It performs a breadth-first search starting from the root
page of a site up to a fixed depth. In our experiments, we set the
depth to 3, since according to [7], most query interfaces (91.6%)
appear within this depth;

• Baseline SC is an extension of the baseline crawler which adopts
the stopping criteria described in Section 3.4.

In order to verify the effectiveness of using the distance between
a link and a relevant target page as a predictor of link importance,
we used different configurations for our Form Crawler:

• Form Crawler with 1 level, which corresponds to considering
only links that give immediate benefit, i.e., which lead to a form
page in a single step;

• Form Crawler with multiple levels, which besides links that give
immediate benefit also considers links that are multiple steps away
from a target page. We ran experiments using from 2 to 4 levels;
since the improvements obtained from level 4 are small, we only
show the results for configurations with 2 and 3 levels.

We ran these crawlers over three distinct domains: jobs, cars and
books. Seed pages for the actual crawl were obtained from the cat-
egories in the Google directory that correspond to these domains.

Figure 2: Performance of different crawlers for 3 domains.

For each domain, we created instances of the link and page classi-
fiers. In order to train the link classifier, we obtained a sample of
URLs of pages that contain forms (level 1) from the UIUC repos-
itory [22], and from these links we performed a backward crawl
up to level 4. For the page and form classifiers we followed the
procedures described in Sections 3.2 and 3.3, respectively.

An accepted measure for the effectiveness of a focused crawler
is the amount of useful work it performs. For our crawler, this
corresponds to the number of distinct relevant forms it retrieves
as a function of the number of pages visited. Recall that the rele-
vance of a form is determined by the form classifier (Section 3.3).
Figure 2 shows the performance of the different crawlers we con-
sidered for each domain. The multi-level Form Crawler performed
uniformly better than the other crawlers for all domains. In particu-
lar, multi-level always beats Form Crawler with only 1 level. Note
that the amount of improvement varies with the domain. Consid-
ering the total number of forms retrieved from crawling 30,000
pages, using 3 versus 1 level leads to improvements that range be-
tween 20% and 110%. This indicates that the use multiple levels
in the link classifier results in an effective strategy to search for

forms. The two multi-level configurations (with 2 and 3 levels)
have similar performance for both the jobs and books domains.
The reason was that for these domains, the sample links in level 3
contain many empty features. This is illustrated in Table 1: very
few of the selected features (shown in bold) are present in level
3. Note, however, that using 3 levels in the cars domain leads to
a marked improvement – for 30,000 pages, the 3-level crawler re-
trieves 2833 forms, whereas the 2-level retrieves 2511 forms. The
feature table for cars, unlike the ones for the other domains, con-
tains many more of the selected features in level 3.

While running the baseline crawler, we noticed that it remained
for a long time in certain sites, overloading these sites without re-
trieving any new forms. For example, in the jobs domain, after
crawling 10000 pages it had retrieved only 214 pages. The baseline
SC crawler avoids this problem by employing the stopping condi-
tions we described in Section 3.4. The stopping conditions lead to
a significant improvement in crawling efficiency compared to the
standard baseline. Nonetheless, as Figure 2 indicates, by further
focusing the search, our multi-level strategies retrieve a substan-
tially larger number of forms than baseline SC.

The performance of the fixed-depth crawler was similar to that
of the baseline crawler (without stopping conditions). As the den-
sity of forms in a site is very low, even performing a shallow crawl
(using depth 3) can be inefficient. Our multi-level strategies out-
perform the fixed-depth crawler by over 1 order of magnitude for
both cars and books, and for jobs, the gain is 5-fold.

5. CONCLUSION
In this paper we described a new crawling strategy to automat-

ically discover hidden-Web databases. Our Form Crawler is able
to efficiently perform a broad search by focusing the search on a
given topic; by learning to identify promising links; and by using
appropriate stop criteria that avoid unproductive searches within
individual sites. Our experimental results show that our strategy is
effective and that the efficiency of the Form Crawler is significantly
higher than that of a representative set of crawlers.

Our initial prototype makes use of a decision-tree-based classi-
fier to identify searchable forms. Although the test error rate for
this classifier is low, it is hard to determine how well it performs
with the actual forms retrieved by the Form Crawler. Since our
crawls retrieve thousands of forms, it is not feasible to manually
check all these forms. In future work, we plan to investigate auto-
mated techniques for evaluating the quality of the forms harvested
by the Form Crawler.

Since our system uses learning algorithms to control the search,
it can be used as a general framework to build form crawlers for
different domains. We are currently using the Form Crawler to
build a hidden-Web database directory – because it focuses the
crawl on a topic, the Form Crawler is naturally suitable for this
task.
Acknowledgments. This work was partially supported by the Na-
tional Science Foundation under grant EIA 0323604, and by the
Oregon University System.

6. REFERENCES
[1] L. Barbosa and J. Freire. Siphoning Hidden-Web Data

through Keyword-Based Interfaces. In Proc. of SBBD, pages
309–321, 2004.

[2] M. K. Bergman. The Deep Web: Surfacing Hidden Value
(White Paper). Journal of Electronic Publishing, 7(1),
August 2001.

[3] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast access

to linkage information on the Web. Computer Networks,
30(1-7):469–477, 1998.

[4] Brightplanet’s searchable databases directory.
http://www.completeplanet.com.

[5] S. Chakrabarti, K. Punera, and M. Subramanyam.
Accelerated focused crawling through online relevance
feedback. In Proc. of WWW, pages 148–159, 2002.

[6] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
Crawling: A New Approach to Topic-Specific Web
Resource Discovery. Computer Networks,
31(11-16):1623–1640, 1999.

[7] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang.
Structured Databases on the Web: Observations and
Implications. SIGMOD Record, 33(3):61–70, 2004.

[8] K. C.-C. Chang, B. He, and Z. Zhang. Toward Large-Scale
Integration: Building a MetaQuerier over Databases on the
Web. In Proc. of CIDR, pages 44–55, 2005.

[9] J. Cope, N. Craswell, and D. Hawking. Automated
Discovery of Search Interfaces on the Web. In Proc. of ADC,
pages 181–189, 2003.

[10] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused Crawling Using Context Graphs. In Proc.
of VLDB, pages 527–534, 2000.

[11] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A
system for automatic classification of hidden-Web
databases. ACM TOIS, 21(1):1–41, 2003.

[12] B. He and K. C.-C. Chang. Statistical Schema Matching
across Web Query Interfaces. In Proc. of SIGMOD, pages
217–228, 2003.

[13] H. He, W. Meng, C. T. Yu, and Z. Wu. Automatic integration
of Web search interfaces with WISE-Integrator. VLDB
Journal, 13(3):256–273, 2004.

[14] P. Lyman and H. R. Varian. How Much Information?
Technical report, UC Berkeley, 2003.
http://www.sims.berkeley.edu/research/projects/how-much-
info-2003/internet.htm.

[15] A. McCallum. Rainbow.
http://www-2.cs.cmu.edu/ mccallum/bow/rainbow/.

[16] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[17] Profusion’s search engine directory.

http://www.profusion.com/nav.
[18] S. Raghavan and H. Garcia-Molina. Crawling the Hidden

Web. In Proc. of VLDB, pages 129–138, 2001.
[19] J. Rennie and A. McCallum. Using Reinforcement Learning

to Spider the Web Efficiently. In Proc. of ICML, pages
335–343, 1999.

[20] Search engines directory.
http://www.searchengineguide.com/searchengines.html.

[21] S. Sizov, M. Biwer, J. Graupmann, S. Siersdorfer,
M. Theobald, G. Weikum, and P. Zimmer. The BINGO!
System for Information Portal Generation and Expert Web
Search. In Proc. of CIDR, 2003.

[22] The UIUC Web integration repository.
http://metaquerier.cs.uiuc.edu/repository.

[23] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ ml/weka.

[24] W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive
Clustering-based Approach to Integrating Source Query
interfaces on the Deep Web. In Proc. of SIGMOD, pages
95–106, 2004.

iFuice – Information Fusion
utilizing Instance Correspondences and Peer Mappings
Erhard Rahm, Andreas Thor, David Aumueller, Hong-Hai Do, Nick Golovin, Toralf Kirsten

University of Leipzig, Germany
{rahm, thor, aumueller, hong, golovin, tkirsten}@informatik.uni-leipzig.de

ABSTRACT
We present a new approach to information fusion of web data
sources. It is based on peer-to-peer mappings between sources and
utilizes correspondences between their instances. Such correspon-
dences are already available between many sources, e.g. in the
form of web links, and help combine the information about spe-
cific objects and support a high quality data fusion. Sources and
mappings relate to a domain model to support a semantically fo-
cused information fusion. The iFuice architecture incorporates a
mapping mediator offering both an interactive and a script-driven,
workflow-like access to the sources and their mappings. The
script programmer can use powerful generic operators to execute
and manipulate mappings and their results. The paper motivates
the new approach and outlines the architecture and its main com-
ponents, in particular the domain model, source and mapping
model, and the script operators and their usage.

Keywords: Data integration, Peer-to-peer system, mappings

1. INTRODUCTION
Most proposed data integration approaches rely on the notion of a
global schema to provide a unified and consistent view of the un-
derlying data sources [10]. This approach has been especially suc-
cessful for data warehouses, but is also used for virtual integration
of web data sources. Unfortunately, the manual effort to create
such a schema and to keep it up-to-date is substantial, despite re-
cent advances, e.g. in the area of semi-automatic schema matching
[14]. Likewise, the effort to integrate new sources is usually high
making it difficult to scale to many sources or to use such systems
for ad-hoc (explorative) integration. Notwithstanding the high ef-
fort associated with a global schema, it cannot guarantee good
data quality at the instance level. Integrating the real data, e.g.
during query processing over different web sources, may still re-
quire extensive data cleaning to achieve good results, e.g. to deal
with duplicate data [15].

The iFuice approach (information Fusion utilizing instance corre-
spondences and peer mappings) focuses on the instance data of
different sources and mappings between them. Many web sources
expose explicit, high quality instance-level correspondences to
other sources, e.g. in the form of web links. Such correspondences
represent one type of mapping iFuice uses to fuse information
from different sources. Sources and mappings are related to a do-
main model to support semantically meaningful information fu-
sion. The iFuice architecture incorporates a mapping mediator of-
fering both interactive and script-driven, workflow-like access to
the sources and their mappings. The script programmer can use
powerful generic operators to execute and manipulate mappings
and their results.

Bioinformatics is one area where this approach holds great prom-

ise. There are hundreds of web-accessible data sources on molecu-
lar-biological objects such as genes, proteins, metabolic pathways,
etc. which highly cross-reference each other [5]. Creating a global
schema for a sizable fraction of these sites is virtually impossible
due to the high diversity, complexity and fast evolution of the
data. The existing cross-references represent a low-level way to
obtain additional information from other sources for a specific ob-
ject, e.g. a gene. The additional information is typically of high
quality since links are mostly established and maintained by do-
main experts. However, the manual navigation is unsuitable for
evaluating large sets of objects, e.g. for gene expression analysis,
so that there is a strong need for a more powerful integration ap-
proach. Moreover, the semantics of the links is typically not made
explicit so that the user has to know exactly what kind of relation-
ship they represent. The bioinformatics area also has a strong de-
mand for experimental workflows to repetitively perform a series
of analysis steps interrelating and aggregating information from
different sources. The iFuice script facility aims at supporting
such requirements with little development effort on the user side.

Instance-level cross-references are available in many other do-
mains or can be generated with little effort, e.g. to interrelate bib-
liographic information, product descriptions and prices, etc. For
simplicity we use examples from bibliographic data sources
throughout this paper to illustrate the approach. Figure 1a shows
three sample data sources and associated mappings. A physical
data source (PDS), e.g. DBLP, may offer objects of different
types. We call the object types of one PDS the logical data
sources (LDS), e.g., Author, Publication and Conference as pro-
vided by DBLP. Object types combined across sources are repre-
sented in the abstract domain model (Figure 1b). Each mapping
between source instances has a mapping type which is also repre-
sented in the domain model. Mappings map instances of an input
object type to instances of an output object type, e.g. all mappings
of type AuthorPubs relate author instances to their associated pub-
lications.

An important mapping type is signified by the same-mappings in-
terrelating instances of the same object type across PDS, and pro-
vides a means to fuse the information for the respective instances.
Typically, same-mappings are based on unique object ids, e.g. ac-
cession numbers in molecular-biological data sources or stable
web URIs. Figure 1a indicates three such same-mappings, of
which some already exist (e.g. DBLP links its author pages to the
ACM author entries).

All mappings of the source-mapping model are executable, e.g.
implemented by a query or web service. iFuice allows for explor-
ative data fusion by browsing along these mappings, e.g. to derive
from a DBLP author all publications from the directly or transi-
tively connected LDS. The execution of several mappings and
manipulation of their results can be specified within scripts to al-
low repeated executions for different input objects or to use the
script as an implementation of a complex mapping. For example,
we may want to have a script determining for a given conference

Copyright is held by the authors/owners.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

X its most frequently referenced papers, e.g. to determine candi-
dates for a 10-year best paper award. An iFuice representation of
such a script is shown later. Informally, it locates conference X in
DBLP, executes the PubConf mapping to get all publications of
that conference, uses the same-mapping to Google Scholar to get
the corresponding publications together with an attribute indicat-
ing the number of citations, sorting the publications on the num-
ber of citations, and returning the top-most publications. The ex-
ample shows that mappings need to be executable on a set of in-
put objects and return a set of output objects. Mapping execution
can be restricted to specific sources or to all sources of a specific
type for which a corresponding mapping implementation exists.

The main contribution of the paper is a new generic way to dy-
namic information fusion based on instance correspondences and
executable mappings between sources. Source and mapping se-
mantics are reflected in a domain model which is at a higher ab-
straction (ontological) level than a global schema and easier to
construct. Mappings are executable on sets of objects and highly
composable thereby supporting powerful aggregation of informa-
tion over several sources. We propose different types of mappings
on web data sources, including basic and aggregated mappings,
same- and association mappings, and id- and query mappings.
Furthermore, we introduce a set of declarative operators to exe-
cute the different kinds of mappings, to perform data aggregation
(fusion), and to manipulate mapping results. Lastly, we show the
usage of the operators for script programming.

In the next section, we introduce the representation of sources,
mappings and the domain model, and how to add new sources and
mappings. Section 3 introduces the iFuice operators on mappings
and mapping results including operators for data fusion. We illus-
trate the use of operators by a script for the introductory example.
Section 4 briefly outlines the architecture of the mapping media-
tor. In Section 5, we discuss related work. Finally, we conclude
with a summary and outlook.

2. SOURCES AND MAPPINGS
In this section we describe the metadata used by the mapping me-
diator to provide uniform access to the sources and their mappings
both for interactive exploration and script execution. The media-
tor’s metadata is held in a repository and specified by a metadata
model as shown in Figure 2. It consists of two main parts, a
source-mapping model and a domain model. The source-mapping
model describes both the accessible data sources and their associ-
ated mappings. The domain model specifies object types and
mapping types. The sample models of Figure 1 conform to meta-
data model of Figure 2.

In the following, we describe the modeling and use of sources,
mappings and the domain model. Finally we discuss the steps for

adding a new source and mapping to the system. The description
introduces several kinds of mappings, for which specific operators
will be defined in Section 3.

2.1 Sources
We distinguish between a physical data source (PDS) and logical data
source (LDS). A PDS can be a database, website, private user files
or any other information base. A PDS can hold instances of dif-
ferent object types. We separate a PDS into LDS’s each contain-
ing instances of exactly one object type of the domain model. The
structure of a LDS is described by a set of attributes (Fig. 2). We
only mandate the specification of an identifying key attribute per
LDS to access its instances and to ensure that each instance is
provided with a unique object id. Website instances are typically
identified by URLs. Uniqueness for database instances can be es-
tablished by concatenating instance key values with the ids of the
corresponding PDS and LDS.

Requiring only an id attribute per LDS allows us to integrate a va-
riety of heterogeneous data sources including unstructured and
semi-structured data sources, e.g. websites. Furthermore, it makes
it easy to add new data sources, and helps to insulate the mediator
information against structural changes in the sources and thus to
support a high degree of data source autonomy.

Each LDS has to provide a source-specific mapping for id-based
instance access, i.e. to return for a given id the associated instance
including all attribute values. We call these mappings getInstance
mappings. The implementation of such mappings may be very
simple (e.g. database lookup), but may also extract specific attrib-
utes from a webpage. The actual attributes returned are thus de-
termined by the mapping implementation and depend on the cur-
rent source content. The mapping mediator supports such variably
structured result sets and their dynamic fusion with data from
other sources at runtime.

In addition to the id attribute, further attributes can be optionally
specified in the mapping mediator for enhanced functionality, e.g.
to offer query access on the attributes or to select sources based
on the availability of specific result attributes (e.g. number of cita-
tions for publications). Query access can optionally be provided
by LDS-specific mappings, which we call QueryInstances map-
pings. The LDS attributes on which queries are supported should
explicitly be registered in the mediator metadata.

Another optional specification is correspondences between attrib-
utes of two sources. Such correspondences are useful to enhance
the fusion of instance values (see Figure 3). For instance, specify-
ing that DBLP.Author.name corresponds to ACM.Author.author
can help avoid author names appearing twice in author instances
fused from DBLP and ACM. Attribute correspondences can also
be used to map queries specified on one source to equivalent que-
ries on other sources (query transformation).

2.2 Mappings
Mappings describe directed relationships between instances of
two object types. They are used to uniformly interrelate instances
within and between physical data sources irrespective of the un-
derlying data management systems. The semantics of the mapping
relationship is expressed by a mapping type of the domain model.

We distinguish between several kinds of mappings, including ba-
sic (simple) vs. aggregated mappings, same- vs. association map-
pings and id- vs. query mappings. Basic mappings interrelate in-
stances of one input and one output LDS and return a result set
from the output LDS. All mappings shown in Fig. 1a are such ba-
sic mappings. Note that the input and output LDS may be the

Author

Publication

Conference

AuthPub
PubAuth

PubConf

Con
fP

ub

DBLP

Author

Publication

Conference

ACM

Author

Publication

GoogleScholar

Publication

C
oA

uthor

same

LDSPDS

Legend same

 a) source mapping model b) domain model

Figure 1. Fusion scenario for a bibliographic domain
(same-mappings are denoted by dashed lines)

same, e.g. for mappings of type CoAuthor or the source-specific
getInstance and queryInstances mappings. Aggregated mappings
are the result of mediator operations or scripts, and interrelate ag-
gregated objects from several LDS of the same type. An example
is a mapping to combine authors with their publications from sev-
eral LDS (e.g., DBLP, ACM and Google Scholar).

Same-mappings represent semantic equality relationships between
physical data sources at the instance level, i.e. each correspon-
dence should refer to the same real-world object. They thus inter-
relate LDS of the same object type from different PDS (e.g.
DBLP.Author and ACM.Author). These correspondences at the
instance level are much more specific than attribute correspon-
dences and can guide a high quality data fusion. Note that the
composition of same-mappings results in new same-mappings
which can thus be used to interrelate data from many sources. As-
sociation mappings are non-same-mappings and mostly represent
domain-specific relationships between LDS of the same PDS (e.g.
AuthorPubs). By composing them with same-mappings they can
relate to and fuse with data of other PDS (see section 3).

Mappings can be further categorized on whether they are id-based
or query-based with respect to their input instances (id- vs. query
mapping). The output of basic mappings is always assumed to in-
clude the id of the returned instances. A mapping may in fact only
return ids, e.g. as input for subsequent id-mappings and to limit
the amount of data to transfer to the mediator and to process there.

Id-mappings interrelate ids (and thus instances) of two LDS or
PDS and can easily be composed. The result of id-mappings can
be represented by a set of instance correspondences (id1, id2).
Query mappings are helpful to find relevant instances and their
ids in the first place. One example are source-specific QueryIn-
stance mappings. Their results include instance ids and can thus
be combined with id-mappings to obtain related query results
from different sources. The attribute values of a query result may
also be used to query another source.

The mapping specification in Figure 2 only considers basic map-
pings for simplicity. It derives the distinction between same- and
association mapping from the used mapping type of the domain
model. The attribute RequiresInputID indicates whether or not the
mapping is id-based.

The implementation of mappings can use other mappings, utilize
database queries, etc. To hide implementation differences, iFuice
mappings are uniformly encapsulated as web service operations
and use XML for data exchange. Ideally, id-mappings, including

same-mappings, can be based on existing instance correspon-
dences such as web links. Alternatively, they may be implemented
by a query mapping, e.g. to use instance values from one source
(e.g. obtained from a getInstance mapping) to search for corre-
sponding instances of a second source (input for query mapping).
For instance, the same-mapping between DBLP publications and
Google Scholar can be implemented by using the name and author
of a DBLP publication as a keyword query to Google Scholar.

For improved performance, the results of id-mappings, i.e. the set
of instance correspondences, may be stored or cached in binary
(id/id) mapping tables [8]. Composition between such mappings
then becomes a join operation. Materialized id-mappings can also
be inverted, even for n:m cardinalities (e.g., an AuthorPub map-
ping can be derived from an Id-based PubAuthor mapping and
vice versa).

2.3 Domain model
The domain model defines domain-specific object types and mapping
types to semantically (ontologically) categorize data sources and
mappings. A hierarchical (taxonomical) categorization of object
types is possible to classify sources in more detail (e.g., confer-
ences based on discipline). We do not include attributes for object
types to accommodate a large variety of data sources and to make
it much easier to construct the domain model than a global
schema. In many cases, we expect a small set of object types to be
sufficient. New object types may be added as needed to accom-
modate new sources, i.e. the domain model can be incrementally
extended in a bottom-up fashion. A mapping type interrelates two
object types. A special attribute indicates whether the mapping
type represents same-mappings (semantic equality relationship).

2.4 Adding Sources and Mappings
One goal of iFuice is to make it easy to add new sources and
mappings. A new physical data source requires to register at least
one logical data source. Registering a LDS requires to assign it to
the corresponding object type, specification of an id attribute, and
provision of a getInstance mapping. Furthermore, a peer mapping
P to at least one other LDS should be provided to permit data fu-
sion with other sources. Optionally, a QueryInstances mapping
can be provided, and additional attributes (e.g. known output at-
tributes of P or for query input) and attribute correspondences can
be specified. For a LDS of a new object type, the domain model
must be extended with the corresponding object type (e.g. Jour-
nal) and at least one associated mapping type (e.g. JournalPubs).

Provision of a new mapping requires its registration at the map-
ping mediator. This involves the specification of the mapping
characteristics and possibly the registration of a new mapping type
in the domain model. The mapping must be executable, i.e. an
implementation must be provided. The mapping implementation
can hide many details of the underlying data sources and typically
exposes only selected input and output attributes at the interface.
As discussed, we do not require that the input and output attrib-
utes of a mapping be registered in the source-mapping-model.

To illustrate the ease and benefit of providing data sources and
mappings consider the following simple example: A user keeps a
list of her favorite authors (including handpicked information like
e-mail address or nationality, which are accessible by a getIn-
stance operation) in a local file and wants to bind it to the map-
ping mediator so that she can periodically check the information
about the authors’ publications. This can be achieved by estab-
lishing a same-mapping between the local file and the LDS DBLP
author, e.g. by providing a list of DBLP URLs. Thereafter the ex-

Domain Model

ObjectType Id
IsA ObjectType Id
Name

MappingType Id
Input ObjectType Id
Output ObjectType Id
MapingTypeName
IsSameMapping

ObjectType

MappingType

Mapping Id
MappingType Id
Input LDS Id
Output LDS Id
RequiresInputID
IDOutputOnly
Name

Mapping

LogicalSource Id
ObjectType Id
PhysDataSource Id

Logical DataSource

1

n

1 1

n

1 nn

Attribute Id
LogicalSource Id
Name
IsKeyAttribute
IsNullable

Attribute

PhysDataSource Id
Name

Physical DataSource

n

1

1

n

Correspondence Id
Attribute1 Id
Attribute2 Id

Correspondence

1 1

nn

Primary Key
Foreign Key

Legend

1 n

1 n

1 n

Source Mapping Model
Figure 2. Metadata model of mapping mediator

isting mappings between DBLP, ACM and Google Scholar can be
used to gather the information of interest.

3. OPERATORS AND SCRIPTS
Interactive users and script programmers should not be limited to
the execution of one mapping at a time but are provided with
more powerful operators including data fusion capabilities.
Therefore, the iFuice mapping mediator supports a variety of op-
erators which can be used within script programs or to implement
derived mappings. This idea is inspired by the script approach for
model management, e.g. as implemented in Rondo [11]. While
Rondo focuses on metadata manipulation, iFuice provides opera-
tors for mapping execution and manipulation of instances.

We designed operators of different complexity to allow users to
focus access on specific data sources and mapping paths. Com-
pared to transparent access on many sources, this not only helps
improve performance but is also important for user acceptance
and data quality. This is because users often have specific prefer-
ences for some data sources, and the cleanliness of merged data
tends to decrease with more sources. Therefore we designed two
sets of operators, one for processing basic mappings returning ob-
jects from one source (getInstances, traverse, map, queryInstances, query-
Traverse queryMatch) and one for aggregated mappings and aggre-
gated objects (aggregateSame, aggregateQueryTraverse aggregateMap,
fuseAttributes). In both cases we have a set of operators to process
the respective results, similar to query languages (union, intersect,
project, sort, join, …). All operators are set-oriented, i.e. they work on
sets of simple or aggregated input objects and determine a set of
result objects or a mapping.

The next two subsections introduce these two sets of operators. In
3.4 we present a script program using the operators.

3.1 Operators for basic mappings
Basic mappings relate instances of one input LDS with instances
of one output LDS, i.e. we obtain a homogeneous set of result ob-
jects. An object (instance) oi consists of a unique id plus a (possi-
bly empty) list of attribute values. The id is assumed to also iden-
tify the logical data source to which the object belongs. We first
introduce operators for id-mappings and then for query mappings.

3.1.1 Operators for id-mappings
Let L1, L2, … denote logical data sources, O1, O2, … sets of L1 ob-
jects, L2 objects … and m1, m2, … id-mappings (same- or associa-
tion mappings).

traverse (O1, m2, …, mk) → Ok
traverse (O1, m2, …, mk) = mk (mk-1 (… m2(O1)))

consecutively executes m2, m3 … thereby traversing via L2 – L3 to
Lk. Of course, the input source of mi must correspond to the output
source of mi-1. Note that both same- and association mappings can
be used within a traversal path. For same-mappings the LDS
names can be used instead of the mapping names. The output is
required to be a set, i.e. no duplicates are allowed. Example: Let
O1 be a list of DBLP author URLs, traverse (O1, ACM, ACMAu-
thorPub) returns their corresponding ACM publications. traverse
(O1, DBLPAuthPub, DBLPPubConf) returns the conferences in
which the authors in O1 have published (without returning the au-
thors and publications).

For same-mappings we provide a variation of traverse

traverseSame (O1, LDSk) → Ok

It is not restricted to a single traversal path but considers all paths
of same-mappings from the input LDS1 to LDSk and takes the un-
ion of their LDSk results.

The traverse and traverseSame operators only return the instances of
the last LDS on the mapping path which can thus be the input for
other operators on objects. Frequently one wants to see the corre-
lations between objects of the first and last source. This is
achieved by

map(O1, m2,…, mk) → O1 × Ok
map(O1, m2,…, mk) = {(o1,ok)|o1∈O1, ok∈ traverse({o1},m2, …,mk)}

In the special case k=2, map returns the instance correspondences
of a single mapping (there may be just id-id combinations, e.g. for
same-mappings). For more than one mapping, the semantics cor-
responds to that of a classical compose operation. Example:
map (O1, DBLPAuthPub, DBLPPubConf) returns authors together
with the conferences in which they published, i.e. these different
instances are 'fused' together by the mapping result.

The support operator

getInstances (O1) → O1
determines for the input instances in O1 the available attribute
values. This operator usually is applied to objects that only hold
an id value or a subset of attributes. Example: Given a list of
DBLP author URLs, getInstances adds attribute values, e.g. name,
no. of co-authors etc. In the previous operators, the implementa-
tion of the mappings, especially mk, determines which attributes
are present in the output instances. Applying the getInstances opera-
tor on these instances helps to obtain additional attribute values if
needed.

3.1.2 Operators for (basic) query mappings
In iFuice, queries are posed for one source and can then be propa-
gated to other sources by applying id-mappings or query match-
ing. For querying a source we use

queryInstances : (L1, {cond}) → O1

which returns all object instances (i.e. at least their ids) from L1
which fulfill the given set of attribute conditions {cond}.

To propagate a query, we use derived operators combining queryIn-
stances with traverse or traverseSame.

queryTraverse (L1, {cond}, m2, …, mk)
= traverse (queryInstances (L1, {cond}), m2, …, mk) → Ok

queryTraverseSame (L1,{cond}, Lk)
= traverseSame (queryInstances (L1,{cond}), Lk))

Example: queryTraverseSame (DBLP, {name= ‘Bernstein’}, ACM)
returns the ACM author objects of all DBLP authors with that
name.

Operator queryMatch transforms an input query for one source to an
equivalent one on a second source:

queryMatch (L1, {cond}, L2) = queryInstances (L2, attrTransf ({cond}))

The function attrTransf utilizes specified attribute correspondences
to map the L1 query condition into a corresponding L2 query con-
dition. Hence, queryMatch is only applicable to L2 sources for which
a queryInstances implementation and attribute correspondences have
been provided. This operator typically is used to build the union
of the source-specific results which leads to aggregated objects.

3.2 Operators for aggregated mappings
Same-mappings identify semantically equivalent objects (syno-
nyms, duplicates) which should be combined to reduce redun-
dancy and merge (complement) the available information from
different sources. We separate this into two steps, called aggrega-
tion and fusion. Figure 3 exemplifies this for two semantically
equivalent publication objects. In step 1 we combine them into
one aggregated object which is a combination of all attributes
from the original objects. In step 2 we fuse the attributes to reduce

redundancy without losing information. The first step is usually
the most difficult one, but is well supported in iFuice by the same-
mappings thereby facilitating good data quality. The second step
can use attribute correspondences or actually analyse the existing
values for merge possibilities.

Most iFuice operators for aggregated mappings deal with aggre-
gated objects where all attribute values are still available for fur-
ther processing. The fusion of attribute values is performed by a
separate operator, fuseAttributes, which is best applied before re-
turning aggregated objects to the user.

Let {o1, o2, o3, …}) be a set of semantically equivalent objects of
object type T from one or more logical data sources. The aggrega-
tion of these objects agg ({o1,o2,o3,…}) = (o1-o2-o3-…) is called
an aggregated object and also refers to object type T.

disagg (o1-o2-o3-…) = {o1,o2,o3,…} returns the components of an
aggregated object.

Aggregating objects of the same type
Let AO1, AO2, … be sets of aggregated objects of type T, and L2 a
LDS of object type T. The operator

aggregateSame (AO1, L2) → AO2

={agg(ao1,{traverseSame ({o1},L2) | o1∈disagg(ao1)}) | ao1∈AO1}

aggregates all AO1 objects with semantically equivalent objects in
L2 by evaluating the same-mappings from the input objects to the
corresponding L2 objects. Note that the operator can also be ap-
plied to simple input objects from one input LDS. Note further
that the same-mappings implement the duplicate detection and can
thus support efficient and high quality data aggregation. The defi-
nition of aggregateSame can easily be generalized to more than one
target LDS since the operator works on sets of aggregated objects,
e.g. the output of a previous aggregateSame execution.

Combining the results for a propagated query at different sources
leads to aggregated objects and is supported by

aggregateQueryTraverse (L1,{cond}, Lk)
= aggregateSame (queryInstances (L1,{cond}), Lk).

The standard set-oriented (relational) operators intersect, diff, union,
restrict, project, sort etc. can be extended to deal with aggregated
objects and duplicates. Due to space constraints we only define
intersection.

intersect (AO1, AO2) = {(ao1-ao2)|ao1∈AO1, ao2∈AO2, ao1≈ao2}

Thereby, ≈ denotes that two aggregated objects are semantically
equivalent. This is the case if they share at least one component
object or if they are related by a same-mapping.

Aggregating objects of different types
Association mappings typically interrelate objects of different
types which should not be aggregated together like equivalent ob-
jects. For these mappings, we generalize the traverse operation to
both mapping types and aggregated objects.

aggregateTraverse (AO1, mt) → AO2

={agg({ traverse({ok},m)| ok∈disagg(aok), m of mt })| aok∈AO1}

applies all association mappings of type mt for all objects in AO1
and aggregates the resulting objects. Similarly, we generalize the
map operator for association mappings and aggregated objects to
obtain binary aggregated mappings:

aggregateMap (AO1, mt) → AO1 × AO2

={(ao1, ao2) | ao1∈AO1, ao2∈aggregateTraverse ({ao1}, mt)}

Example: Given a set AO1 of aggregated objects of DBLP and
ACM authors, aggregateMap (AO1, AuthPubs) returns author-
publication pairs of aggregated objects that contain object in-
stances from DBLP or ACM or both.

For aggregated mapping results MR1 ⊆ AO1 × AO2 and MR2 ⊆
AO3 × AO4 the operators join and compose are defined as follows

join (MR1, MR2)
= {(ao1,(ao2-ao3),ao4)|(ao1,ao2)∈MR1,(ao3,ao4)∈MR2, ao2≈ao3}
compose(MR1,MR2) = ({ao1,ao4}|(ao1,ao2,ao4) ∈ join (MR1, MR2))

The given join semantics refers to an inner join, but left outer join
etc. can be specified analogously. Join and compose also need a
duplicate detection to aggregate semantically equivalent objects.

3.3 Script Example
A script is a sequence of operator calls. Each operator call stores
the results into a variable (denoted by a ‘$’-prefix). The following
simple script example presents an approach to determine candi-
dates for the 10-Year Best Paper Award.
$SIGMODPubs := queryTraverse (LDS=DBLP.Conf, {Name=”SIGMOD 1995”},

DBLPConfPubs)
$CombinedConfPub:= aggregateSame ($SIGMODPubs, GoogleScholar)
$CleanedPubs := fuseAttributes ($CombinedConfPub)
$Result := sort ($CleanedPubs, "NoOfCitings“)
In this example, step 1 uses a queryTraverse operation to query on
the LDS DBLP.Conf to determine the DBLP id for the conference
of interest and traversing to the associated publications. The used
mapping DBLPConfPubs is assumed to determine complete in-
stances. Step 2 utilizes the same-mapping on publications between
DBLP and Google Scholar to aggregate the DBLP values with the
corresponding instances in Google Scholar. In step 3 we clean the
aggregated objects by applying fuseAttributes. Finally, we sort the
resulting set of fused publications on the attribute denoting the
number of citations. The top items/publications in the final result
set indicate likely candidates for the 10-Year Best Paper Award.

Since operators can process many input objects at a time, the
script does not only apply to a single conference but many. To de-
termine the most-cited publications of, say, a whole conference
series, one could use a modified query in step 1 to select these
conferences, e.g. SIGMOD or VLDB. The rest of the script can
remain unchanged.

4. MEDIATOR ARCHITECTURE
Figure 4 gives an overview of the iFuice mediator architecture. Its
main components are the repository (already described in Section

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm

DBLP

DBLP
DBLP
DBLP

Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

GS
GS
GS
GS

Publication

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

DBLP

DBLP
DBLP
DBLP

Publication

GS
GS
GS
GS

Generic schema matching with Cupid
http://vldb.org...
http:// data.cs.washington.edu...
Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
J Madhavan, PA Bernstein, E Rahm
VLDB 2001
243

DBLP
DBLP

DBLP

Publication

GS

GS
DBLP

GS

GSName:
URL:

Authors:

Conference:
NoOfCit:

aggregation attribute fusion
Publication

Figure 3. Example for aggregation and attribute fusion

2), mediator interface (MI), the fusion control unit (FCU), and the
mapping execution service (MES). The MI provides two modes of
operation. The interactive mode supports an explorative approach
where users can execute mappings step by step. The script-based
mode defines a batch of execution steps for the mediator, return-
ing a final result set. Operations are executed within the FCU, the
central unit of the system. The mapping handler coordinates single
mapping calls according to the appropriate mapping definition of
the metadata model. It manages (temporary) mapping results for
further operations. It also performs duplicate handling for aggre-
gating objects. The mapping execution service actually executes
the called mappings and returns their results to the FCU.

As a proof of concept we have implemented a first subset of the
mediator functionality for interactive mapping execution (explor-
ative navigation). The prototype is implemented in Java and util-
izes a relational database system for the repository and mapping
results. It can execute mappings and operation sequences as in the
examples shown, including the example on the 10-year best paper
award.

5. RELATED WORK
Most previous data integration approaches for web data sources
utilize a global schema and a query mediator. In contrast to
iFuice, these approaches do not utilize peer mappings and in-
stance correspondences. Moreover, the global schema tends to be
much more complex than our domain model leading to increased
effort to add sources or to deal with changing sources.

More related to our approach is recent work on P2P databases and
biological databases. P2P prototypes such as PeerDB and Piazza
[12][17] focus on query processing across peer mappings without
a global schema. PeerDB propagates IR searches, whereas Piazza
reformulates queries based on metadata mappings. Queries refer
to the peer schema where the query was initially posed. By con-
trast, iFuice focuses on instance-level correspondences and can
apply a variety of executable peer mappings including queries.
Moreover, we support a set of powerful operators (including ag-
gregation operators) and the execution of script programs.

Several integration approaches in the bioinformatics area [16],
[9], [7] utilize cross-references at the instance level to combine
data from different sources. Systems like SRS [4] and our Gen-
Mapper prototype [1] materialize instance correspondences in
mapping tables for improved performance. These efforts lack a
sufficient consideration of the semantics of the cross references
but expect the users to know what the cross references mean. The
iFuice domain model differentiating different mapping types, in-
cluding different same-mappings, allows a much more focused
data fusion. To our knowledge, the proposed framework of map-
ping operators and scripts is also unknown so far in the bioinfor-
matics domain.

SEMEX [3] is an interesting personal information management
system which utilizes a domain model and mappings similar to
our approach. However, it only deals with centrally stored data,
while we integrate data from different web data. Most previous
work on data cleaning was done in the data warehouse area with a
focus on duplicate identification [1][15]. The use of semantic ob-
ject-ids for data integration in the TSIMMIS mediator [13] has
similarities to the utilization of ids in our same-mappings.

6. CONCLUSION AND OUTLOOK
iFuice combines a set of techniques to a new approach for inte-
grating information from diverse web data sources. It does not de-
pend on a global schema and utilizes explicit instance correspon-
dences and executable peer mappings. We proposed the use of a
domain model and a mapping mediator to control the execution of
a variety of such mappings. Furthermore, we introduced a set of
powerful operators for mapping execution and data aggregation.
An initial prototype for interactive mapping execution showed the
viability and flexibility of the approach.

In future work, we will fully implement the outlined approach and
investigate techniques based on caching mapping tables to im-
prove performance. We plan to adopt the iFuice implementation
to different domains and to support integration of both web data
sources and local / private data sources.

Acknowledgements. A. Thor and N. Golovin are funded by the Ger-
man Research Foundation (DFG) within the Graduiertenkolleg “Knowl-
edge Representation”. H. Do and T. Kirsten are supported by DFG grant
BIZ 6/1-1. Phil Bernstein and Sergey Melnik gave helpful comments.

7. REFERENCES
[1] Chaudhuri, S. et al.: Robust and efficient fuzzy match for online

data cleaning. Proc. SIGMOD 2003
[2] Do, H.-H., Rahm, E.: Flexible integration of molecular-biological

annotation data: The GenMapper Approach. Proc. of EDBT 2004
[3] Dong, X., Halevy, A. Y.: A platform for personal information man-

agement and integration. CIDR 2005
[4] Etzold, T. et al.: SRS: An integration platform for databanks and

analysis tools in bioinformatics. In [9]: 109-145.
[5] Galperin, M.Y.: The molecular biology database collection - 2004

update. Nucleic Acids Research 32, Database issue, 2004.
[6] Greco, S. et al: Integrating and managing conflicting data. Proc. Of

Conf. on Perspectives of System Informatics. 2001
[7] Hernandez, T, Kambhampati, S: Integration of biological sources:

current systems and challenges ahead. SIGMOD Record 33(3), 2004
[8] Kementsietsidis, A. et al.: Mapping data in peer-to-peer sys-

tems:semantics and algorithmic issues. Proc. SIGMOD 2003
[9] Lacroix, Z., Critchlow T. (Eds.): Bioinformatics: Managing Scien-

tific Data. Morgan Kaufmann, 2003
[10] Lenzerini, M: Data integration: a theoretical perspective. Proc.

PODS 2002
[11] Melnik, S. et al.: Developing metadata-intensive applications with

Rondo. Journal on Web Semantics, 2003
[12] Ng, W. S., et al.: PeerDB: A P2P-based System for Distributed

Data Sharing. Proc. ICDE 2003
[13] Papakonstantinou, Y. et al.: Object Fusion in Mediator Systems.

Proc. VLDB 1996
[14] Rahm, E., Bernstein, P. A.: A survey of approaches to automatic

schema matching. VLDB Journal, 10(4), 2001
[15] Rahm, E., Do, H.-H.: Data cleaning: problems and curren ap-

proaches. IEEE Bull. Techn.Com. Data Engineering, 23 (4), 2000
[16] Stein, L. D.: Integrating biological databases. In Nature Review

Genetics, 4, 2003
[17] Tatarinov, I., et al.: The Piazza peer data management project.

SIGMOD Record, 32(3), 2003

Repository

mapping call mapping
resultExecution

Properties

request response

Object- and
Mapping Types

Script / Batch Interactive (step by step)

Fusion Control Unit

Mapping
Results

Mapping Handler

Duplicate Detection

Mediator Interface

Mapping Execution Service

Webservice SQL-Query Application

Figure 4. Architecture of the iFuice mediator

Managing Integrity for Data Exchanged on the Web

Gerome Miklau Dan Suciu
University of Washington

{gerome, suciu}@cs.washington.edu

ABSTRACT
The World Wide Web is a medium for publishing data
used by collaborating groups and communities of shared
interest. This paper proposes mechanisms to support
the accuracy and authenticity of published data. In our
framework, publishers annotate data with virtually un-
forgeable evidence of authorship. Intermediaries may
query, restructure, and integrate this data while propa-
gating the annotations. Final recipients of the data may
then derive useful conclusions about the authenticity of
the data they receive.

1. INTRODUCTION
The emergence of diverse networked data sources has

created new opportunities for the sharing and exchange
of data. In particular, the Web has become a medium
for publishing data used by collaborating groups and
communities of shared interest. Once published, it is
common for other parties to combine, transform, or
modify the data, and then republish it.

In such distributed settings there are few mechanisms
to support users in trusting the accuracy and authen-
ticity of data they receive from others. To address this
problem, we investigate guarantees of data integrity for
exchanged data. Integrity is an assurance that unau-
thorized parties are prevented from modifying data1.
Integrity benefits both the authors of data (who need
to make sure data attributed to them is not modified)
and the consumers of data (who need guarantees that
the data they use has not been tampered-with).

After publication, the owner of data can never directly
prevent modification of the published data by recipients.
But it is possible to annotate published data with vir-
tually unforgeable evidence of its authenticity that can
be verified by recipients. Data authors need techniques
which allow them to annotate data with claims of au-
thenticity. These claims should be difficult to forge or
transfer, and must be carried along with the data as it
is exchanged and transformed. Subsequent users must
then be able to derive useful integrity guarantees from

1We adopt the meaning of integrity common to infor-
mation security (not databases).

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.
.

query results containing these claims. We explore here
techniques to accomplish these goals.

To illustrate the importance of integrity in data ex-
change, we describe two applications: scientific data ex-
change and personal identity databases.

Scientific data exchange.As a representative scien-
tific domain we consider the field of molecular biology.
From primary sources containing original experimental
data, hundreds of secondary biological sources [2] are de-
rived. The secondary sources export views over primary
sources and/or other secondary sources, and usually add
their own curatorial comments and modifications [23].
These databases are often published on the Web, as
structured text files – not stored in proprietary systems
or servers that can provide security guarantees. The
data consumers are scientists, and a significant fraction
of research takes place in so-called “dry” laboratories
using data collected and curated by others. An illustra-
tion of this scenario is provided in Figure 1.

The threat of malicious tampering with the data is
usually not a primary security concern in this setting.
Instead, the main issues are attributing and retaining
authorship and avoiding the careless modification of data.
To the best of our knowledge, security properties are
rarely provided in scientific data exchange. Although in
some cases authorship is traced, there is little evidence
or verification of authorship.

Personal identity databases.A large class of databases,
which we call personal identity databases, have in com-
mon the fact that they contain personally identifying
information about individuals (e.g. census data, medi-
cal databases, organizations’ member lists, business cus-
tomer data). Such databases can be viewed as interme-
diate sources that collect data from primary source in-
dividuals donating their personal data. The secondary
sources may disseminate or further integrate this iden-
tity data. For example, individuals present their per-
sonal data to a hospital database when admitted. Hos-
pitals add treatment data and send patient records to
an insurance company that integrates it with data of
patients from other hospitals.

Integrity is critical as the data migrates between or-
ganizations: only authorized parties should be able to
modify data, or create new records, and those parties
should be identifiable after the fact. If an individual

A

C

B

D

E

F
Primary
Sources

Intermediate integrators,
contributors, publishers

Research
scientists

Lab

Lab

Lab

Figure 1: Data publishing and exchange scenarios for scientific data management.

applies for insurance coverage, the insurance company
will evaluate the cost of insuring the individual based
on the data in its database. An individual should have
the right to verify the accuracy of that data. This can
be accomplished if the data carries integrity metadata,
and the insurance company is required to present the
data and its evidence of integrity. To continue the ex-
ample, some of the individual’s personal data will be
signed by the individual himself, some will be signed
by individual’s doctors, etc. Regulations need to be in
place that make it illegal for the insurance company to
base coverage decisions on data that is not verifiably
authentic.

Origin authenticity and Origin-critical data
Our particular focus is an aspect of data integrity called
origin authenticity: an assurance that data comes from
an attributed source (and that it has not been modified
from its original state) [16].

There are two important threats to origin authentic-
ity. The first is the threat of copying data published by
an author Alice. For example, an adversary, Mallory,
may duplicate the data received from Alice, remove the
original evidence of attribution and claim himself as the
author. This threat, while important, is not our focus
here. (It requires substantially different techniques like
watermarking [1], or legal measures [13].)

Instead we focus on the threat of an adversary tam-
pering with data authored by Alice. This can happen in
two related ways. Alice may author some data, which
is properly attributed to her, but Mallory changes the
data while keeping the attribution. Or more directly,
Mallory forges the attribution itself, applying it to data
of his choosing. To justify our focus on this threat, we
describe next origin-critical data, for which tampering
is the primary concern.

Origin-critical data is data whose value or utility de-
pends critically on its authenticity or the authority of its
source2. A table of stock recommendations like {(IBM,
buy), (MSFT, sell)} is an example of origin-critical data.
The raw data can easily be fabricated or duplicated and
therefore is worth little if its source is unknown or the
claim of its origin is untrusted. For instance, proof that
the author of the data is an expert equity analyst makes
the data valuable. If authored by a high-school invest-
ment club however, the stock ratings are substantially
less useful. Therefore, its origin is critically important.
An mp3 file is an example of data whose origin is not

2Some of these ideas were inspired by [5].

critical. The utility of the mp3 file seems to consist
solely in the contents of the file. Its source, and the au-
thenticity of its attributed source, are usually not rele-
vant to the listener who is happy to download the file
from an unknown party on the Internet.

Many kinds of digital data are origin-critical, and a
primary integrity concern is to maintain and manage
verifiable claims of authorship. For example, in scien-
tific data management the consumers of data (the sci-
entists) are reluctant to use data that does not come
from a reputable source. In e-business transactions, a
party may not be willing to act on data received if it
is not verifiably authentic. For origin-critical data it
is usually in the interest of the participants to retain
evidence of origin authenticity.

Our goal is therefore to develop a framework to (1)
allow authors to annotate data with evidence of author-
ship, (2) allow recipients to query, restructure, and in-
tegrate this data while propagating the evidence, and
(3) enable recipients to derive useful conclusions about
the authenticity of the data they receive. In support
of these goals, first a pair of integrity annotations are
proposed, which are applied to data to represent use-
ful claims of origin authenticity. Then cryptographic
techniques are described that can be used to support
these annotations so that the claims are not forgeable
or transferable. Finally, we assess the requirements and
challenges of managing data with integrity annotations.

2. INTEGRITY ANNOTATIONS
Annotations are applied to fragments of a database.

For relational data, a fragment may be an individual
attribute, a tuple, or a set of tuples. For XML data,
a fragment may be a complex subtree, or a forest of
subtrees. We propose in this section two related forms
of annotation – signature and citation – which are used
by data authors to represent claims of origin authentic-
ity. We describe the semantics of these annotations and
their use. In the next section we describe cryptographic
techniques to implement these forms of annotation.

Signatures.On paper, signatures are intended as proof
of authorship or an indication of agreement with the
contents of a document. Signatures serve their purpose
because they have some or all of the following prop-
erties [27]: the signature is unforgeable, the signature
cannot be reused on another document, and the signed
document is unalterable. For the present discussion we
will assume a basic signature primitive possessing these

IBM TechnologyBUY
MSFT TechnologyHOLD
WFMI ConsumerHOLD
JPM FinancialSELL

A

B

C D E

Stock (ticker, rating, industry)
Stock

Buy Hold Sell

IBM MSFT WFMI JPM

Tech ConsumerTech Financial

Stock.xml
F

G

Figure 2: A relational table of stock recommendations (left), the same data represented as XML
(right), and an illustration of fragments of the data to be signed.

properties that can be applied to any fragment of data.
Realization of the signature primitive is discussed in the
next section.

The author signs data to ensure that others cannot
modify it. The granularity of signatures can vary: an
author can sign an entire table, a tuple, a single column
value.3 Usually signatures are used to associate some
data in an unmodifiable way, as shown in the next ex-
ample. In what follows we use stock recommendations
as a simple example of origin critical data, however the
intended application domains remain those described in
Section 1.

Example 2.1 Figure 2 shows stock recommendations
represented as a relational table Stock(ticker, rating, in-
dustry) and as an XML document. The dotted regions
illustrate portions of the data that are signed, called the
target fragment of a signature. Signature sig(A) is ap-
plied to target A, i.e. the entire table, and sig(F) is sim-
ilarly applied to the entire document. If the user wanted
to compare the performance of the recommended port-
folio represented by Stock, then these signatures provide
integrity: poorly performing stocks cannot be removed
and outperforming stocks cannot be added after signing.
Signature sig(B) and sig(G) are applied to ticker-rating
pairs. This associates the ticker name with the rating
in an unmodifiable way, however a collection of such
signed tuples does not prevent deletions, rearranging or
additions to the collection. Signatures sig(C), sig(D),
and sig(E) are applied to individual attribute targets.
By themselves, these three are probably not useful sig-
natures since they do not authenticate the association
between ticker and rating, which is of primary impor-
tance here.

The choice of signature granularity is application de-
pendent. The signature of an entire database protects
against all possible changes, but may be inefficient since
verification must be performed on the entire database.
In practice authors sometimes want to authorize smaller
pieces of data. In many contexts, the author may wish
to publish data signed in more than one way, with vary-
ing granularity. This allows a recipient to republish the
data in various forms, retaining its evidence of authen-
ticity. For example:

1. In Example 2.1, an author may wish to sign all
subsets of tuples by sector, so that the data con-

3Although the main focus for data exchange is XML, we
present some examples in relational form for simplicity
of presentation.

sumer can extract authenticated data for any rel-
evant industry sectors, and omit others.

2. Consider a college transcript represented as a struc-
tured document, and signed by a academic ad-
ministrator. The original form of the transcript
may include fields the student wishes to hide when
the transcript is submitted to a potential employer
(e.g. date of birth). The administrator may wish
to provide two signed versions of the document –
one with the date of birth, and one without. (The
administrator would not however, want to grant
the student signed versions of the transcript that
omit bad grades.)

3. If the order of elements is critical for an XML
document, then a signature must secure the or-
der. For other data, the author may wish to sign
an unordered collection, allowing any ordering to
be authenticated. In this case, the author would
need to sign all possible orderings, or use a signa-
ture primitive that is order insensitive (we return
to this in the next section).

Citations. We propose another integrity annotation that
allows for the citation of signed data. We define a cita-
tion to be an annotation of a data fragment (the derived
data), with a query and a reference to some signed data
(the target). A citation represents a claim of authen-
ticity: the derived data is the result of evaluating the
query on the target fragment. The following examples
provide some intuition, and an illustration of the flexi-
bility of citations.

Example 2.2 Consider again the stock recommenda-
tions in Figure 2. Table 1 presents four examples of
citations. For each, the first column is a derived frag-
ment (tuples or sets of tuples in this case). The second
column is the citation query which is expressed as a con-
junctive query over the signed target fragment. Here A
refers to the fragment signed by sig(A). The last col-
umn indicates that the target is backed by a signature.
We describe the meaning of each:

1. Citation (1) has derived data consisting of two tu-
ples. Its citation claims that the fragment is the
result of evaluating query C1 on the target (the
entire Stock table) which is signed by signature
sig(A).

2. Citation (2) is very similar with a different selec-
tion condition in the citation query.

3. Citation (3) consists of the same derived data as
(2), however its citation query is different: it claims
that the derived data is contained in the result of
query C3. Clearly this citation provides a different
authenticity guarantee than citation (2).

4. The target data of a citation was signed in each
of the examples above, but in other cases may in-
stead be cited, resulting in a composition of ci-
tations. Assume that the derived fragment from
Citation 1 is called T1. Citation 4 therefore refers
to a fragment that is itself cited. The claim of au-
thenticity here is the composition of the individ-
ual claims. That is, the citation claims that tuple
(MSFT, HOLD) is the result of query C4 evaluated
on table T1 which itself is the result of citation
query C1 on the original data signed with sig(A).

Since a citation is merely a claim, it must be verified
by checking the signature of the cited source, and veri-
fying that the cite fragment is in fact the result of the
citation query evaluated on the citation source. (In the
next section we mention techniques to make this verifi-
cation procedure more efficient.) It is worth noting that
a citation is a generalization of a signature. A citation
whose query is the identity query is precisely a signature
as described above.

Citations are useful because they do not require the
compliance of the author, and provide additional flexi-
bility if the signature on the source data does not permit
the extraction a user desires. Citations are also useful
for representing the relationship of an aggregation to
its contributing values. However, citations may not of-
fer the same level of integrity guarantee as a signature,
and as the example shows, the same data may be cited
using more than one citation query resulting in different
authenticity conditions. Notice that Citations (2) and
(3), as well as Sig(B) from Example 2.1, are each anno-
tations representing a claim of integrity about the target
(WFMI, HOLD). Each of these integrity annotations has
a different meaning. The distinction may be important,
and careful reasoning about integrity semantics may be
required.

3. CRYPTOGRAPHIC TECHNIQUES
Our objective is not merely to carry claims of au-

thenticity along with data, but to propagate virtually
unforgeable evidence of authenticity, verifiable by recip-
ients. To do this we must employ cryptographic tech-
niques. The most basic is the digital signature, which
can be used to implement the basic signature annota-
tion above. We then describe more advanced techniques
which support extensibility. We show how Merkle hash
trees can be used to design a signature primitive per-
mitting controlled removal of elements from a signed
collection. We then give an overview of more advanced
techniques from the cryptographic literature that can be
used to implement extensible signatures and citations.

Digital signatures
Digital signatures [11] are the basic tool for supporting
origin authenticity. Digital signature schemes are gener-
ally based on public-key cryptography [11], and consist

t1=(IBM, buy) t2=(MSFT, hold) t3=(WFMI, hold) t4=(JPM, sell)

h00=f(t1) h01=f(t2) h10=f(t3) h11=f(t4)

h0=f(h00 || h01) h1=f(h10 || h11)

hϵ=f(h0 || h1)

Figure 3: Merkle hash tree over stock tuples.

of two operations: signing and verification. Alice signs
a piece of data by computing the one-way hash of the
data and then encrypting the hash with her private key.
The result is the signature value, and accompanies the
data element when published. RSA [25] and SHA-1 [26]
are examples of public key encryption and hash func-
tions, respectively, from which a signature scheme can
be built. Bob verifies a signature by retrieving Al-
ice’s public key, using it to decrypt the signature, and
checking that the result is equal to the hash of the data
element purportedly signed.

A verified digital signature provides extremely strong
evidence of origin authenticity. The digital signature
therefore provides the basic implementation for our sig-
nature annotation described above. Publishers generate
public/private key pairs, add signature values to their
data, and references to public key resources. Recipients
verify signatures and propagate signatures to versions
they in turn publish (as long as they publish the data
in precisely the form it is signed).

Extensible signature techniques
As mentioned above, it is often necessary to sign data
in more than one way, or to sign data in such a way
that certain modifications are permitted without inval-
idating the signature. The naive way to support this
flexibility is for the author to publish many signatures
along with the data. This can be very inefficient since,
for example, providing signatures for every possible or-
der in a collection would require an exponential number
of signatures. We hope to avoid this by employing the
techniques described next.

Merkle trees to allow authorized deletions.Suppose
Alice wants to sign a collection of data items so that
Bob can delete items but not add new items. If Carol
receives a modified collection from Bob, she should be
able to verify that each item was indeed authored by
Alice, although some items may be missing. Alice’s sig-
nature permits authorized deletions in this case, and
this effect can be implemented using Merkle trees [17].
Note that signing each item in the original collection in-
dividually allows unauthorized mixing of items if Alice
signs more than one collection over a period of time.

We illustrate how Alice would sign the collection of
stock recommendations by building the hash tree illus-
trated in Fig. 3. Alice uses a collision-resistant hash
function f to build a binary tree of hash values as fol-
lows. First, she computes the hash for each tuple ti.
Then she pairs these values, computing the hash of their

Table 1: Citations, referring to the relational data in Figure 2.

Derived fragment Citation query Target Signature /
fragment Citation

(1) (IBM, BUY) C1(t, r) :- A(t, r, “Technology”) A Sig A
(MSFT, HOLD)

(2) (WFMI, HOLD) C2(t, r) :- A(t, r, “Consumer”) A Sig A

(3) (WFMI, HOLD) C3(t, r) ⊆ A(t, “HOLD”, i) A Sig A

(4) (MSFT, HOLD) C4(t, r) :- T1(t, ”HOLD”) T1 Cit T1

concatenation (denoted || in the figure) and storing it
as the parent. She continues bottom-up, pairing values
and hashing their combination until a root hash value hε

is formed. Note that hε is a hash value that depends on
all tuples in her database. Alice publishes a description
of f along with hε signed with her private key.

If Bob would like to delete t3 from the collection, he
will publish to Carol tuples t1, t2, t4 along with h10 and
the root hash signed by Alice. Carol will verify the au-
thenticity of the data by recomputing the Merkle tree
up to the root hash, and verifying Alice’s signature on
it. We assume a fixed order for the tuples and some
specified structural information allowing Carol to deter-
ministically reproduce the hash tree. Bob cannot add
tuples not in the original collection without finding a
collision in f , which is computationally infeasible. Note
that, using this construction, Carol can tell how many
items have been removed and from which positions in
Alice’s original data. This may be considered a feature
and not a limitation for many applications.

The construction above is vulnerable to dictionary
attacks by Carol, who can guess values for the omit-
ted tuples and check them efficiently by hashing. In
[14] a more secure signature scheme supporting con-
trolled deletions is presented that avoids this vulner-
ability, along with other controlled operations includ-
ing a version of deletion that does not reveal positions
deleted.

The study of these extensible signature schemes is an
active research area in cryptography, with a number of
open problems mentioned in [24], and interesting exten-
sibility features realized in [14, 19]. Our future goal is to
adapt these techniques to our setting, as they provide
an important efficiency improvement: when an exten-
sible signature scheme exists for a useful operation, an
author can effectively authorize many data elements by
providing a single extensible signature. Naturally, ex-
tensible operations must be chosen carefully to avoid
unintended forged signatures.

Query certification
The naive strategy for verification of a citation is to
retrieve the original signed target data, compute the
citation query and compare the result with the anno-
tated data. This may be inefficient or impossible in a
data exchange setting. Research into consistent query
protocols [15, 22, 10, 9] can provide a more efficient
verification process in some cases. These techniques al-
low a citation to carry proof that the derived data is
the result of the citation query, relative to the summary
signature on the original database. In particular, the
techniques are again based on Merkle trees [17, 18] and

allow signing of a database D such that given a query Q
and an possible answer x to Q, a verification object can
be constructed which proves that x = Q(D). We omit
further discussion of these techniques for lack of space;
please see [20] for further details.

4. MANAGING ANNOTATED DATA
Managing data that contains annotations requires rep-

resenting the annotated data, expressing queries over
the data, propagating annotations through queries, and
interpreting the data and annotations that result.

We are motivated by data exchange scenarios, and
therefore focus on semistructured data enhanced with
integrity annotations. The W3C Recommendation for
XML digital signature syntax [12] can provide a basis
for data representation and supports the signing of ar-
bitrary fragments of an XML document. It is easy to
support multiple signatures over the same document,
overlapping signatures, and signatures by multiple au-
thors. To this basic signature schema, we wish to add
metadata for extensible signatures and citations.

Querying integrity-annotated data.A query over an-
notated data results in output data with integrity anno-
tations. Queries must include selection conditions over
the annotations (which for instance assert that certain
data elements must be signed and verified) and propa-
gation rules which determine how signatures should be
propagated from the input to the output. For example,
if data in the input has multiple signatures it may be
sufficient to propagate just one, or it may be necessary
to carry all signatures into the output. Further, because
of the flexibility of citations, a wide variety of annota-
tions could be propagated to the output, and the choice
will depend on the setting. Recent work in data prove-
nance provides some techniques for annotation propa-
gation. In addition users should be able to query the
integrity of data declaratively, without resorting to calls
to low-level cryptographic routines.

A formal model of data authenticity.A number of
challenges in this area call for a formal model to ana-
lyze claims of authenticity. First, it may not be clear
in all applications how an author should sign data. For
instance, in Example 2.1 we considered the case where
signatures of stock recommendations were applied to
tickers and ratings separately, and did not secure their
association. In such a simple example this flaw was im-
mediately evident. In a more complex setting the ques-
tion of what to sign – and especially what extension
semantics to permit for extensible signatures – could be

a difficult issue for a data source. Second, decisions on
propagation rules should be guided by the authenticity
assertions that users want to verify. Finally, interpreting
the meaning of multiple, possibly nested, signatures or
complex citations may be very difficult. A formal model
of authenticity will serve each of these issues. We have
begun to address these issues by relating the authen-
ticity guarantees of signatures to conventional database
constraints [21].

5. RELATED WORK AND CONCLUSION
The authors of [4] use conventional digital signatures

to implement “content extraction signatures” which al-
low an author to sign a document along with a defi-
nition of permissible operations of blinding (similar to
redaction) and extraction. Recipients can extract data
freely, but the verification procedure requires contact-
ing the original author. The authors of [3] propose a
framework of cooperative updates to a document by pre-
determined recipients constrained by integrity controls.
In both cases, integrity properties are provided at the
expense of flexible data exchange.

A number of projects [8, 6, 7] have studied data prove-
nance, or lineage, which involves tracing and recording
the origin of data and its movement among databases.
These results provide important tools for managing in-
tegrity annotations, including complexity results for de-
cision problems related to provenance and a background
for propagation rules [6]. However, the emphasis of this
work is not integrity, and we are concerned not just with
carrying annotations, but providing cryptographic evi-
dence of source attribution. Please see [20] for a full
description of related research.

Conclusion.Today’s web publishing applications re-
quire guarantees of integrity not provided by current
technology. We have proposed primitives for expressing
claims of origin, cryptographic techniques to implement
these primitives, and have identified key problems in
managing claims of integrity in the course of querying
and restructuring of data. Solutions to these problems
require formalizing the integrity guarantees of crypto-
graphic primitives, and integrating these with query lan-
guages used for data management. We have tried to
highlight the compelling challenge of preventing unau-
thorized modification of data while at the same time al-
lowing innocuous modifications performed in the course
of common collaboration and data integration.

6. REFERENCES
[1] R. Agrawal, P. J. Haas, and J. Kiernan. Watermarking

relational data: framework, algorithms and analysis.
The VLDB Journal, 12(2):157–169, 2003.

[2] Andreas D. Baxevanis. Molecular biology database
collection. Nucleic Acids Research, available at
www3.oup.co.uk/nar/database/, 2003.

[3] E. Bertino, G. Mella, G. Correndo, and E. Ferrari. An
infrastructure for managing secure update operations
on xml data. In Symposium on Access control models
and technologies, pages 110–122. ACM Press, 2003.

[4] L. Bull, P. Stanski, and D. M. Squire. Content
extraction signatures using xml digital signatures and

custom transforms on-demand. In Conference on
World Wide Web, pages 170–177. ACM Press, 2003.

[5] P. Buneman. Curated databases, November 2003.
personal communication.

[6] P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[7] P. Buneman, S. Khanna, and W. C. Tan. On
propagation of deletions and annotations through
views. In PODS ’02, pages 150–158, 2002.

[8] Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. In ICDE, pages 367–378, 2000.

[9] P. Devanbu, M. Gertz, A. Kwong, C. Martel,
G. Nuckolls, and S. G. Stubblebine. Flexible
authentication of xml documents. In ACM Computer
and Communications Security, pages 136–145, 2001.

[10] P. T. Devanbu, M. Gertz, C. Martel, and S. G.
Stubblebine. Authentic third-party data publication.
In IFIP Workshop on Database Security, pages
101–112, 2000.

[11] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[12] D. Eastlake, J. Reagle, and D. Solo. Xml signature
syntax and processing.
http://www.w3.org/TR/xmldsig-core, February 12
2002. W3C Recommendation.

[13] H.r. 3261, to prohibit the misappropriation of certain
databases. Introduced in the House, 108th Congress,
available at http://frwebgate.access.gpo.gov, 2003.

[14] R. Johnson, D. Molnar, D. X. Song, and D. Wagner.
Homomorphic signature schemes. In RSA Conference
on Topics in Cryptology, pages 244–262, 2002.

[15] J. Killian. Efficiently committing to databases.
Technical report, NEC Research Institute, February
1998.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[17] R. C. Merkle. Protocols for public key cryptosystems.
In IEEE Symposium on Security and Privacy, pages
122–134, 1980.

[18] R. C. Merkle. A certified digital signature. In
CRYPTO, pages 218–238, 1989.

[19] S. Micali and R. L. Rivest. Transitive signature
schemes. In RSA Conference on Topics in Cryptology,
pages 236–243. Springer-Verlag, 2002.

[20] G. Miklau. Research problems in secure data exchange.
Univ. of Washington Tech Report 04-03-01, Mar 2003.
Available at www.cs.washington.edu /homes/gerome.

[21] G. Miklau and D. Suciu. Modeling integrity in data
exchange. In Proceedings of VLDB 2004 Workshop on
Secure Data Management, August 2004.

[22] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient
consistency proofs on a committed database.

[23] Peter Buneman and Sanjeev Khanna and Wang-Chiew
Tan. Data Provenance: Some Basic Issues. In
Foundations of Software Technology and Theoretical
Computer Science, 2000.

[24] R. Rivest. Two new signature schemes. Presented at
Cambridge seminar, March 2001. See
http://www.cl.cam.ac.uk/Research/Security/seminars/
2000/rivest-tss.pdf.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[26] Secure hash standard. Federal Information Processing
Standards Publication (FIPS PUB), 180(1), April
1995.

[27] B. Schneier. Applied Cryptography, Second Edition.
John Wiley and Sons, Inc., 1996.

Design and Implementation of a Geographic Search Engine

Alexander Markowetz 1 Yen-Yu Chen 2 Torsten Suel 2

Xiaohui Long 2 Bernhard Seeger 3

ABSTRACT
In this paper, we describe the design and initial implementation of
a geographic search engine prototype for Germany, based on a large
crawl of the de domain. Geographic search engines provide a flex-
ible interface to the Web that allows users to constrain and order
search results in an intuitive manner, by focusing a query on a par-
ticular geographic region. Geographic search technology has recently
received significant commercial interest, but there has been only a
limited amount of academic work. Our prototype performs massive
extraction of geographic features from crawled data, which are then
mapped to coordinates and aggregated across link and site structure.
This assigns to each web page a set of relevant locations, called the
geographic footprint of the page. The resulting footprint data is then
integrated into a high-performance query processor on a cluster-based
architecture. We discuss the various techniques, both new and exist-
ing, that are used for recognizing, matching, mapping, and aggre-
gating geographic features, and describe how to integrate geographic
query processing into a standard search architecture and interface.

1. INTRODUCTION
The World-Wide Web has reached a size where it is becoming in-

creasingly challenging to satisfy certain information needs. While
search engines are still able to index a reasonable subset of the (sur-
face) web, the pages the user is really looking for may be buried under
hundreds of thousands of less interesting results. Thus, search engine
users are in danger of drowning in information. Adding additional
terms to standard keyword searches often fails to drill the iceberg of
results that are returned for common searches. A natural approach is
to add advanced features to search engines that allow users to express
constraints or preferences in an intuitive manner, resulting in the de-
sired information to be returned among the first results. In fact, search
engines have added a variety of such features, often under a special
advanced search interface, though mostly limited to fairly simple con-
ditions on domain, link structure, or last modification date.

In this paper we focus on how to constrain web queries geograph-
ically. Geography is a particularly useful criterion, since it most di-
rectly affects our everyday lives and thus provides an intuitive way
to express an information request. In many cases, a user is interested
in information with geographic constraints, such as local businesses,
locally relevant news items, or tourism information about a particular
region. When taking up yoga, local yoga schools are often of much
higher interest than those of the world’s ten biggest yoga schools.

We expect that geographic search engines, i.e., search engines that
support geographic preferences, will have a major impact on search
technology and associated business models. First, geographic search
engines provide a very useful tool. They allow a user to express in

1Department of Computer Science, University of Science and Tech-
nology, Kowloon, Hong Kong. alexmar@cs.ust.hk
2CIS Department, Polytechnic University, Brooklyn, NY.
{yenyu@photon.poly.edu,suel@poly.edu,xlong@cis
.poly.edu}. Research supported by NSF CAREER Award NSF
CCR-0093400 and the New York State Center for Advanced Tech-
nology in Telecommunications (CATT) at Polytechnic University.
3Department of Mathematics and Computer Science, Philipps Uni-
versität, Marburg. seeger@informatik.uni-marburg.de

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16–17, 2005, Baltimore, Maryland.

a single query what might take multiple queries with conventional
search engines. Thus, a user of a conventional search engine looking
for a yoga school in or close to Brooklyn may end up trying queries
such as (yoga AND new york) or (yoga AND brooklyn),
but even this might yield inferior results as there are many ways to re-
fer to a particular area and since the engine has no notion of geograph-
ical closeness, e.g., a result across the bridge to Manhattan might also
be acceptable. Second, geographic search is a fundamental technol-
ogy for location-based services on mobile devices. Third, geographic
search supports locally targeted web advertising, thus attracting ad-
vertisement budgets of small businesses. Other opportunities arise
from mining geographic properties of the web, e.g., for market re-
search.

Given these opportunities, it comes as no surprise that most lead-
ing search engines have made significant efforts to deploy some form
of geographic web search. Our approach differs from these, both in
the way geographic information is extracted from the web and how
it is integrated into query processing. In particular, commercial en-
gines focus on matching pages with data from business directories,
supporting search for local businesses and organizations. While this
is an important part of geographic search, we focus on more general
information requests. A user may not just be interested in finding
businesses listed in yellow pages, but may have broader interests that
can best be satisfied by private or non-commercial web sites, such as
local news and cultural events, or the history of a certain area. In or-
der to facilitate such queries, we extract geographic markers, such as
addresses or phone numbers, from web pages, independent of their
listing in any directory. To extend search capabilities to those pages
that contain no such markers, we employ a combination of new and
previously proposed techniques based on link and site structure.

Before continuing, we briefly outline our basic approach. Our sys-
tem is a crawl-based engine that starts by fetching a subset of the web
for indexing and analysis, focusing on Germany and crawling the de
domain. Afterwards, a standard text index is built. In addition, data
extraction and mining is used to assign a set of relevant locations to
each page, called a geographic footprint. Finally, search queries con-
sisting of textual terms and geographic areas are evaluated against the
index and footprint data using an appropriate ranking function. The
goal of this project is to test and further develop ideas outlined in
earlier work [21, 11, 19], by building a complete prototype.

Our contributions are: First, we provide the first in-depth descrip-
tion of an actual implementation of large-scale geographic web search.
Our prototype, to be made available soon, is based on a crawl of over
30 million pages in the de domain, with plans to expand further. Sec-
ond, we combine several known and new techniques for deriving ge-
ographic data from the web, using features such as town names, zip
codes, phone numbers, link and site structure, and external sources
such as whois. We represent the resulting geographic footprint of a
page in a simple highly compressible format that is used during link
and site analysis and query processing. Third, we provide the first
discussion of efficient query execution in large geographic search en-
gines. Due to space constraints, we have to omit many details. An
expanded version of this paper is available as a technical report [20].

2. RELATED WORK
In this section, we describe related work on geo coding, existing

geographic search engines, and the Semantic Web. Since we treat
content, not hardware, we have omitted work on determining physical

locations of servers. Most web pages today are hosted in server farms
hundreds of miles away from either author or geographic regions they
relate to.

Geo Coding: A good discussion of geographic hints commonly
found in web pages is provided by McCurley [21], who introduces
the notion of geo coding. He describes various geographic indicators
found in pages, such as zip codes or town names, but does not dis-
cuss in detail how to extract these, or how to resolve the geo/geo or
nongeo/geo ambiguity.

Work in [4, 11] introduced the idea of a page’s geographic scope,
i.e., the area it addresses in terms of readership. Initially, they assign
a position to every web site based on its whois entry. Then a fixed
hierarchy of administrative regions is superimposed, and some link
analysis is performed. If enough links from a region point to a web
site and these links are evenly distributed, the region is included in
the site’s geographic scope. The approach was applied to the United
States using states, counties, and cities for the geographic hierarchy.
Our approach in Section 4.6 is basically a generalization and refine-
ment of the work in [4, 11], but differs in several ways. In general,
[4, 11] is fairly coarse-grained as it focuses on sites instead of single
pages and on relatively large geographic regions. It relies on the exis-
tence of a sufficient number of incoming links, and thus does not work
well for pages and sites with moderate in-degree. The evaluation in
[11] is limited to sites in the edu domain, where whois provides a
good estimate of a site’s location, and does not address more noisy
data from page content.

The approach closest to ours is [1], using a hierarchical gazetteer
with 40,000 names of cities all over the globe. It performs geo cod-
ing by looking for names of cities with more than 500,000 people,
though decreasing the minimum size to 5,000 is reported to have a
positive effect. The gazetteer’s hierarchy is used for disambiguation
when there are several towns of the same name, but the size of towns
is not considered in this case. Similar to our geographic footprint,
[1] focuses on a document’s geographic focus rather than the more
specialized geographic scope of [11]. In contrast to our system, the
geographic focus of a page is not represented in geographic coordi-
nates, but tied to a node in the hierarchical gazetteer. There can be
several foci for a document, although the authors explicitly seek to
avoid this by grouping.

Geographic Search Engines: Several geographic search engines
are already available online. Some are academic prototypes based
either on small specialized collections or a meta search approach. In
particular, [16] performs automatic geo coding of documents based
on the approach in [11]. Most other prototypes, such as [8], require
pages either to carry special markup tags or to be manually registered
with the search engine.

There are several lesser-known geographic engines by commercial
players. Some, such as the extension to Northern Light by Divine
[12], have already disappeared again. Others such as [14] rely on
geographic meta data in the pages, or query internet directories such
as the Open Directory Project. Of all these, the Swiss search.ch en-
gine [22], which has been around for several years, is closest to our
approach. It allows users to narrow down their initial search by spec-
ifying a more and more focused location, over several hierarchical
levels such as cantons (states) and cities within Switzerland.

As mentioned, geographic search has recently received a lot of at-
tention from the major search companies. Both Google and Yahoo
have introduced localized search options [15, 24]. Their approaches
appear to be quite different from ours, and seem to rely on an inter-
mediate business directory. Users first retrieve entries for businesses
that satisfy certain keywords and are close by, and can then extend the
search to actually retrieve pages about these businesses and the area
they are located in. The exact algorithms are not publicized. There are
two main differences to our approach, the intermittent business direc-
tories and the location modeling to point coordinates, i.e., the street
address of the businesses, to be displayed on detailed street maps.

There seems to be no mechanism to model geographic footprints of
pages that cover larger areas, such as a county or state.

Geographic Semantic Web: It seems natural to extend the Se-
mantic Web to a Geographic Semantic Web, such as proposed in [13],
where each web page contains some meta data, defining its geographic
footprint. Several models are already available [3, 9]. Other models
from the GIS community, such as GML from the Open GIS Consor-
tium [7], can be adapted. However, there are two major problems,
inherent to the Semantic Web, that make this approach infeasible
for general web search (though it may be useful in other scenarios).
First, there is a chicken and egg problem. Authors will only include
meta information if search engines use them, while engines will wait
for a sufficient amount of meta information to become available be-
fore building any services on it. Second, Web authors are not to be
trusted, as they frequently provide misleading information to manipu-
late search engines. For this reason current engines pay little attention
to existing meta tags.

3. UNDERLYING DATA
We now briefly describe the data, as used in our prototype. Using

the PolyBot web crawler [23], we acquired about 31 million distinct
web pages from the de domain in April 2004. We chose the de do-
main for two reasons. First, it is the right size both geographically and
in terms of number of pages. It is quite dense with about 7.8 million
registered domains within a relatively small area. It is also reasonably
self-contained in terms of link structure. Thus, the domain provides
a nice test bed, meaningful but not outside the reach of academic re-
search. The de domain was estimated in 2000 at 3.67% of the entire
web [2]. This translates to about 150 million pages to achieve the
same coverage as 4 billion pages (the size of Google as of November
2004) on the entire web; this is within reach of our current setup. Sec-
ond, availability of geographic data is a big issue. The whois entries
for de domains are complete and well structured, allowing us to ex-
tract information without effort. We retrieved 680,000 whois entries
for all the domains our crawl had touched; many of the 7.8 million
registered domains do not actually have a live web server. We also
had access to several other sources of geographic data for Germany,
and an understanding of the language, administrative geography, and
conventions for referring to geographic entities.

We focused on two geographic data sets for Germany. The first
maps each of 5,000 telephone area codes to one city and also to the
coordinates of the centroid of the region that the code covers. The
second maps zip codes to 82,000 towns, and these towns to their po-
sitions. If the town was a village, it was also mapped to the asso-
ciated city. This data set originated from a GIS application, where
geographic positions are the database keys and town names are only
for display to the user. Names were often misspelled or abbreviated
in various nonstandard ways, requiring painstaking manual cleaning.

4. GEO CODING
The process of assigning geographic locations to web pages that

provide information relevant to these locations is called geo coding.
A document can be associated with one or multiple locations, for ex-
ample when a company web page refers to several different outlets.
We call this collection of locations the page’s geographic footprint.
For every location in the footprint, an integer value is assigned that
expresses the certainty with which we believe the web page actually
provides information relevant to the location.

In our approach, we divide geo coding into three steps, geo extrac-
tion, geo matching, and geo propagation. The first step extracts all
elements from a page that might indicate a geographic location, in-
cluding elements in URLs. The second step tries to make sense of
these by mapping them to actual locations, i.e., coordinates, and leads
to an initial geo coding of the pages. In these first two steps, we make
use of databases of known geographic entities such as cities or zip
codes. In the third step, we perform geo propagation to increase the

quality and coverage of the geo coding through analysis of link struc-
ture and site topology. Before we proceed with the description of our
geo coding process, we introduce our representation of a document’s
geographic footprints.

4.1 Geographic Footprints of Web Pages
In every GIS, a basic design decision has to be made between a

vector data model and a raster data model, mapping data onto a dis-
crete grid. A web page may contain several geographic hints, some
referring to point positions, others (cities or zip codes) refer to polyg-
onal areas. Thus, our data model has to handle both types. We de-
cided to use a raster data model, representing geographic footprints
in a bitmap-like data structure. In comparison to a vector model, we
lose some precision by pressing the information into the grid. With
a sufficiently fine grid however, the degree of imprecision is small,
especially when compared to other uncertainties in the data and ex-
traction process. In our case, we superimposed a grid of 1024× 1024
tiles, each covering roughly a square kilometer, over Germany, and
stored an integer amplitude with each tile, expressing the certainty
that the document is relevant to the tile.

This representation has two advantages. First, it allows us to effi-
ciently implement some basic aggregation operations on footprints. If
a page contains several geographic features, the footprint for the page
is defined as the sum of the footprints of the individual features, after
suitable normalization. These operations are very useful during geo
propagation and query processing. Second, since for most documents
only a few tiles are non-zero, we can efficiently store the footprints in
a highly compressed quad-tree structure. Moreover, we can use lossy
compression (smoothing) on such structures to further reduce their
size and thus facilitate efficient query processing.

We implemented a small and highly optimized library for opera-
tions such as footprint creation, aggregation, simplification (smooth-
ing), and intersection (for query processing) based on quad-trees. Our
focus here, as discussed earlier, is not on simple yellow page opera-
tions but more general classes of geographic search operations. Our
grid model is particularly useful for the geo propagation and query
processing phases, where exact locations are not that crucial.

4.2 External Databases
In addition to geographic markers extracted from pages, various ex-

ternal sources can also be used for geo coding, in particular business,
web, and whois directories.

Business directories (yellow pages) map businesses and associated
web sites to addresses, and thus to geographic positions. Some geo-
graphic search engines such as those of Google and Yahoo [15, 24]
appear to make heavy use of business directories. The main problem
with business directories is also their biggest strength. They require
registration fees, and thus usually list mainly commercial companies,
ignoring many personal or non-profit web sites. The fees however
also often result in higher data quality.

Web directories such as Yahoo and ODP maintain geographic di-
rectories that categorize sites by region. They are difficult to maintain,
far from complete, and often outdated. However, they can be useful
as an additional data source in geo coding.

As an integral part of the Internet infrastructure and freely accessi-
ble, the whois directory is also a good source of geographic infor-
mation. For every domain, it contains the address of the individual
that registered it. An earlier study [25] showed a high degree of accu-
racy for whois entries. However, the quality of whois entries dif-
fers between top-level domains. For the de domain, they are highly
structured and usually complete, with precise addresses and phone
numbers. In contrast, entries for the uk domain typically contain less
information and are fairly unstructured.

In Section 4.6.1 we discuss how to plug information from such
databases into our geo coding process.

4.3 Germany’s Administrative Geography

Effective geo coding requires an understanding of a country’s ad-
ministrative geography and common usage of geographic terms. Thus,
one has to know how geographic names are composed, what the role
of states and counties is, and how postal or area codes are used. Since
every country is organized differently, the rules presented for Ger-
many in this section will have to be adapted for other countries and
languages. In the United States, for example, most addresses contain
the state, which can be used to resolve ambiguities between towns
with the same name. In German addresses, states are never men-
tioned. German telephone area codes and zip codes are highly clus-
tered, i.e., codes with a common prefix tend to be in the same region.
Large companies might have their own zip code, but we could infer
their position from the positions of similar zip codes.

We give a brief summary of the usage of geographic terms in Ger-
many. States, like counties and districts play little role in daily life
and are rarely mentioned, and thus ignored. Area and zip codes are
distributed in clusters; at least all entries with the same first digit are
clustered. There is no simple relation between these numeric codes
and towns. A town might cover several of these codes or several towns
might share the same numeric code.

Towns fall into two categories, cities and villages (also boroughs),
with a one-to-many relationship between the two. Every village is as-
sociated with exactly one city, but a city might be associated with sev-
eral villages. Villages are often mentioned in conjunction with their
cities. German town names consist of up to three parts. First, there
is an optional single-term descriptive prefix, such as Bad. Second,
there is a mandatory main name, such as Frankfurt, and third, extra
descriptive terms, such as bei Köln, am Main, Sachsen.1 Descriptive
prefixes and large parts of the descriptive terms are often dropped or
abbreviated in various ways. The city of Frankfurt am Main might
be written as Frankfurt M., Frankfurt/Main, Frankfurt a.M., or just
Frankfurt.

4.4 Geo Extraction
This step reduces a document to the subset of its terms that have ge-

ographic meaning. If there is any uncertainty whether a term is used in
a geographic meaning or not (called geo-nongeo ambiguity [1]), then
this is resolved at this point. We extract only those geographic mark-
ers that we know how to map to geographic positions: town names,
phone numbers, and zip codes. In addition to page content, we also
analyzed URLs. URLs are a very useful source of geographic infor-
mation, but tricky to analyze since terms are often not well separated
(e.g., finding a city name in cheapnewyorkhotels.com is not
straightforward). We refer to [20] for details.

4.4.1 Town Names
When extracting terms that might refer to towns, we could simply

write out all terms that appear as part of some town name. However,
this would produce a lot of garbage; many terms from town names are
also common German or English words or surnames. To avoid this,
we manually divided the set of all terms that appear town names into
3,000 weak terms that are common language terms, and 55,000 strong
terms that are almost uniquely used as town names. When parsing
web pages, we first try to extract all strong terms. Next, we look for
any weak terms that appear together with the extracted strong terms
in the same town name. The underlying idea is that we try to find a
town’s main name first and then parse for weak terms (often found in
the descriptive suffixes and prefixes) to resolve any ambiguity.

We assigned a distance to each weak term. A weak term would only
be recognized if it appears within that distance from an associated
strong term. Thus, if we find the strong term Frankfurt, we might
accept the weak term Main anywhere on the page (distance = ∞),
or the weak term Oder within distance = 2 since it is a much more
common term.2

1near the city of Cologne, on the river Main, in the state of Saxony
2Main and Oder are names of rivers; however, Oder is also the Ger-

To further increase the precision of the extraction, we assigned
killer terms and validator terms to the strong terms. Any appearance
of a strong term will be ignored if one of its killer terms also appears
within some distance. Also, if a strong term has a validator term as-
signed to it, then any appearance of the strong term will be ignored
unless the validator term appears within some distance. This allows
us to handle town names that are also normal German words. We also
introduced a list of general killers such that any strong term within
some distance of a general killer will be ignored. This list was filled
with 3,500 common first names and titles such as Mr., Mrs., or Dr. to
avoid mistaking surnames for town names. More details are given in
[20], where we discuss phone numbers and zip codes.

4.5 Geo Matching
The previous step reduced documents to sets of terms that carry

a geographic meaning. This step maps these terms to actual towns,
and thus to geographic locations. The problem, is that some terms
can point to several town names, called geo-geo ambiguity [1]. Some
towns share the same main name, and a town’s main name might even
appear in another town’s descriptive terms. We make two assumptions
about the usage of town names that allow us to define rules to resolve
these ambiguous cases.

The first assumption is that the author of a document mentioning a
town name intends to talk about a single town of this name, not about
several towns of that name. That is, someone mentioning Frankfurt
intends to talk about either one of the two towns in Germany of that
name. This assumption is called single source of discourse [1]. Even
if this assumption fails, it only introduces a negligible error to a geo-
graphic search engine. Thus, in the rare case where a document dis-
cusses why “neither town named Frankfurt has a strong soccer team”,
it might be acceptable to only assign this page to one of the two towns.

The second assumption is that the author most likely meant the
largest town with that name. There are for examples two towns with
the name Göttingen, a larger city and a tiny village, situated about 150
km apart. One expects that there are more pages about the larger of
the two towns. The page will therefore be assigned to the city, not the
village, unless there are other strong indications. As before, it can be
argued that the failure of this hypothesis only introduces a marginal
error, especially when the difference in size is huge.

Our strategy consists of the following steps. First, a metric is used
to evaluate matches between town names and terms. Second, we write
out the town with the best match, and then delete its terms from the
term set. Finally, we start over to find additional matches on the re-
duced term set. There are several measures for the quality of a match
between a town name and a set of terms. The actual implementation
of the algorithms is omitted, since it is tailored to Germany’s admin-
istrative geography and to the databases available to us. The general
strategy however is broad enough to be adapted to various countries
and data sets.

4.5.1 Measuring Geo Matching
The degree to which a town name can be matched with a set of

retrieved terms can be measured in various ways. None of them per-
forms well on its own, but in combination they prove adequate for
deciding the best of several possible matches.

One simple measure is the number of matched terms, i.e., the num-
ber of terms in the town name that are contained in the set of terms
from the web page. A similar measure is the fraction of matched
terms, i.e., the fraction of terms in the town name that were found in
the page. For any of the above, one can find examples where they
work really well and ones where they fail. Some other types of tech-
niques are stronger. If a numeric marker such as a zip code is found,
then this will usually resolve any ambiguity. Another approach is
based on looking for nearby towns. If we find both Frankfurt and
Offenbach, we can be pretty certain that the page intends to talk

man word for or.

about Frankfurt am Main.3 In our application we employed a simpli-
fied version, using Germany’s administrative hierarchy as an indica-
tor of distance. This measure can be looked up from a table quickly,
without ever having to compute an actual distance.

4.5.2 The Matching Strategy
Since the implementation of our matching algorithm, called BB-

First, is very specific to Germany, we will not show it in full detail but
rather sketch the underlying strategy. The algorithm is called BB-first
because it extracts the best of the big towns first. It starts with the set
of all strong terms found in the document, called found-strong,
and the set of all German towns, and proceeds as sketched in Table 1.

1. Group towns into several categories
according to their size.

2. Start with the category of the largest
towns.

3. Determine the subset of all towns from this

category that contain at least one term in
found-strong.

4. Rank them according to a mix of the measures
described in Section 4.5.1.

5. Add the best matched town to the result.
6. Remove all terms found in this town name

from the set found-strong.
7. Start this algorithm over at Step 3, as long

as there are new results.
8. If there are no new results, repeat the

algorithm for the next category down.

Table 1: Basic steps of the BB-First algorithm

In our implementation, we measured the size of towns only by sort-
ing them into villages and cities, thus running the algorithm only with
these two categories. The algorithm can be directly traced to the un-
derlying assumptions. It clearly prefers large towns over small ones.
It also assumes a single sense of discourse, since every strong term
can cause at most one town to be matched before it is removed from
found-strong. The extracted towns receive a certainty value, es-
timated with the same measures we used to determine how well towns
were matched with the set of terms.

The results of this algorithm, i.e., the matched towns, are then fi-
nally mapped into our quad-tree based footprint structure with integer
amplitudes. Note that cities are not mapped to a single tile but to a
larger area of a few kilometers squared. Each tile in the grid receives
as amplitude the sum over the certainties of towns that map to this
tile. Applying this procedure to every document results in an initial
geo coding of our web crawl that can be processed further during the
next step. In this initial coding, each page that contains a geographic
marker has an associated non-empty geographic footprint. In our set
of 31 million pages, about 17 million had non-empty footprints based
on page content, represented in an average of 137 bytes after com-
pression. About 5.7 million pages had (separate) non-empty foot-
prints based on extraction of markers from their URLs, represented in
an average of 38 bytes since there are fewer extracted markers.

4.6 Geo Propagation
After applying the above techniques, and excluding whois entries,

slightly more than half of all web documents have a non-empty geo-
graphic footprint associated with them. This is not unexpected, since
not every document contains a geographic reference in its text. On
the other hand, many of the pages that did have a footprint were not
particularly valuable in terms of their actual content. For example, it
seems that many sites return geographic information such as contact

3The city of Offenbach is a direct neighbor of Frankfurt am Main, and
about 700km from the other Frankfurt.

addresses in separate pages from the actual content that a user might
be looking for. These issues can be overcome by geo propagation, a
technique that extends the basic radius-one, radius-two (co-citation),
and intra-site hypotheses from Web information retrieval to the geo-
graphic realm.

According to the radius-one hypothesis, two web pages that are
linked are more likely to be similar than a random pair of pages [10].
This assumption can be extended to geographic footprints. If one page
has a geographic footprint, then a page it is linked to is more likely to
be relevant to the same or a similar region than a random page. The
radius-two hypothesis about pages that are co-cited can be extended
similarly. The intra-site hypothesis states that two pages in the same
site are also more likely to be similar. For documents from the same
sub-domain, host, or directory within a site, even stronger statements
can be made. This can also be extended to geographic properties.
For Germany, it is particularly useful since there exists a law that any
de site must have a page with the full contact address of the owner
no more than two clicks from the start page. Thus, at least one page
in any given site by law should provide rich geographic information
which is supposed to apply to the entire site.

Geo propagation uses the above geographic hypotheses to propa-
gate geographic footprints from one page to another. The idea is that
if two pages are related in any of the above manners, they should
inherit some dampened version of each others geographic footprint.
We modeled the “inheritance” by simply adding the entire footprint
of one page to the other, tile by tile, with some dampening factor α,
0 < α < 1. The exact value of α depends on the relationship between
two pages. If two pages are in the same directory for example, α will
be larger than if they are only within the same site.

Note that this process does not converge, and has to be handled with
care. If geo propagation is performed too often, every single docu-
ment could end up with a footprint spanning the entire country. In
practice, one or two steps seem to give most of the benefit, and proper
dampening factors plus lossy compression (simplification) prevents
footprint sizes from getting out of hand. This results in an increased
number of pages with non-zero footprints and an increased number of
non-zero tiles therein.

4.6.1 Geo Propagation in our Prototype
Based on these general ideas, we implemented several forms of geo

propagation. Starting out with about 17 million footprints, we sepa-
rately performed forward and backward propagation across links as
well as between co-cited pages. Thus, if page A has a footprint mA

and links to a page B with a footprint mB , then we transmit mA to
B and compute a new footprint of the form mB + αmA for B. This
is implemented using two ingredients: (1) our optimized implementa-
tion of footprint operations based on quad-tree structures described in
Subsection 4.1, and (2) an I/O-efficient implementation for footprint
propagation along links that resembles a single round of the Pagerank
implementation in [6]. Footprints are sorted on disk by destination
page and then aggregated into the footprint of the destination page.
Propagation was also performed within sites. Finally, resulting foot-
prints need to be normalized. In the end, we obtained about 28.4
million pages with non-empty footprints, for a page coverage of more
than 90%. We also separately stored 490,000 footprints that apply to
entire sites. This amounts to about 60% of all sites, which is smaller
than expected, due to the large number of parked single-page sites.
The site’s footprints can be added into pages’ footprints or used sepa-
rately during query processing.

5. GEOGRAPHIC SEARCH
Geographic search engines allow users to focus a search on a spe-

cific geographic area by adding a query footprint to the set of key-
words. There are a number of possible interface for specifying the
query footprint and displaying search results, and we discuss here
only some basic approaches. In particular, the area of interest could be

automatically extracted from a keyword query, by looking for terms
that match a city or other geographic term and replacing it by a suit-
able query footprint. The automatic identification of queries that are
geographical in nature is discussed in [17]. Or alternatively, users
could use an interactive map for this purpose. In a mobile envi-
ronment, the current location of the user could be determined from
the networking infrastructure and translated into a footprint. Results
could be shown as lists or displayed on an interactive map, and addi-
tional geographic browsing operations may be supported. Note that a
query footprint should not be seen as a simple filter for keyword-based
results, but as a part of the ranking function. We will now describe
the actual query processing in two passes, first on an abstract level
and later in terms of our actual current implementation.

5.1 Basic Geographic Query Execution
We now outline the differences between geographic and conven-

tional web search engines on an abstract level. In a nutshell, a con-
ventional search engine works as follows: (i) The user inputs a set of
search terms. (ii) The engine determines a set of pages that contain
all the search terms, by using the inverted index. (iii) It then uses the
frequencies, contexts, and positions of the term occurrences in these
pages, together with other measures such as link structure, to rank
the results. This is typically done concurrently with the second step.
At first glance, the query processing in our geographic search engine
works in a very similar way: (i) The user inputs search terms and a
query region that is converted into a query footprint. (ii) The engine
then uses the keywords and the query footprint to determine the set of
pages that are in the intersection of the inverted lists and whose foot-
print has a nonempty intersection with the query footprint. (iii) The
engine then uses the keywords and query footprint, plus other mea-
sures such as link structure, to rank the results.
Thus, the engine uses both keywords and query footprint, to retrieve
candidates results during the second and third steps. In our case, the
first step is simply a question of interface design. The second step
is also fairly similar to conventional engines, at least on a high level,
except that now only those pages survive that contain all search terms
and have a non-empty intersection. The final ranking is a little differ-
ent, since it has to merge two unrelated ranking measures, importance
and geographic proximity.

5.2 Geographic Ranking
We now describe in detail how we rank pages based on both terms

and geographic footprints. The user of a geographic search engine
wants top results to satisfy two criteria: they need to be relevant as
well as close to the query footprint. One approach would be to simply
use the query footprint as a filter, removing all results “outside” the
query area, and then use the standard ranking. At the other end of
the spectrum, we could use the search terms as a filter, and rank all
documents in the intersection of the inverted list by their distance to
the center of the query area.

We decided on a general framework that includes these two cases as
well as the continuum in between, allowing users to select their own
preferences. First, they can choose different shapes for the query foot-
print as shown at the top of Figure 1. If a user prefers a sharp cutoff at
a distance of say 10 km, she selects the footprint on the left, while the
query footprint on the right models a more gradual approach. During
the ranking phase, we compute a geographic score for each page in
the intersection of the inverted lists of the query terms, based, e.g.,
on the volume of the intersection or the vector product between query
and document footprint; see the bottom of Figure 1. If the score is
zero, the document is discarded. Second, she can choose the rela-
tive weight of term-based and geographic components in the ranking.
Thus, the total score of a document under the ranking function will
be a weighted sum of its term-based score, its geographic score, and
maybe an additional measure such as Pagerank. Both query footprint
shape and relative weighting of the scores can be provided by the user
through simple sliders, allowing interactive reordering of results.

Figure 1: An illustration of footprints in a single spatial dimension. At the
top, we have a query footprint with a distance threshold (left), and a footprint
for a query that gives a lower score for documents that are farther away (right).
At the bottom, we show an intersection between a query footprint and a docu-
ment footprint.

5.3 Efficient Geographic Query Processing
Given this ranking approach, we now describe query processing

in more detail. Figure 2 shows the example of a query with three
search terms. After the query is issued, the inverted lists for the three
terms are loaded into memory (shown here only as document IDs),
and their intersection is computed. For any document in the intersec-
tion, there are two lookups. First, we maintain an in-memory table of
conservatively approximated document footprints, obtained by lossy-
compressing the footprint structures down to a size of at most 100 to
200 bytes each. We lookup in this table to check if the intersection
between the query footprint and the document footprint is nonempty;
if so, we compute an approximation of the geographic score of the
document. Next, we perform a lookup into an in-memory table of
Pagerank values to compute a final approximate document score.

Figure 2: Organization of index structures, lookup tables, and geographic
footprints in a scalable geographic engine.

After traversing the inverted lists and determining, say, the top-
50 results, we can perform a more precise computation of their geo-
graphic scores by fetching footprints from disk. There are a number
of other performance optimizations in search engines, such as index
compression, caching, and pruning techniques [18], that are omitted
here. By integrating these, we achieve query throughput comparable
to that of a conventional non-geographic engine.

When compressed to 100 or 200 bytes, several million page foot-
prints can be kept in memory by each node of the search engine clus-
ter, a realistic number for large engines. In our prototype, we use
a cluster of 7 Intel-based machines with reasonably large disks and
main memories for our 31 million pages to sustain rates of a few
queries per second.

6. CONCLUSION
This paper outlined design and implementation of a crawl-based

geographic search engine for the German web domain. We described
in detail how to extract geographic footprints from crawled pages
through a geo coding process consisting of geo extraction, geo match-
ing, and geo propagation, and discussed ranking and query process-
ing in geographic search engines. Our prototype should be available
online soon. One open issue for the near future is an appropriate eval-
uation of the quality of our footprints and query results.

Beyond this, there are many exciting open problems for future re-
search in this area. On the most general level, many aspects of Web
search and information retrieval, such as ranking functions, catego-
rization, link analysis, crawling strategies, query processing, and in-
terfaces, need to be reevaluated and adapted for the purpose of ge-
ographic search. We are particularly interested in the following di-
rections. First, we are working on automatically identifying and ex-
ploiting terms such as “Oktoberfest” that are not listed in geographic
databases but clearly indicate a particular location, through the use of
data mining techniques. Second, we are looking at optimized query
processing algorithms for geographic search engines. Third, we are
studying focused crawling strategies [5] that can efficiently fetch pages
relevant to geographic areas that run across many top-level domains.
Finally, we are interested in geographic mining of the web.

Acknowledgement: We thank Thomas Brinkhoff for cooperation
on earlier work [19] leading up to this project, and for continued feed-
back and support.

7. REFERENCES
[1] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where: geotagging web

content. In Proceedings of the 27th SIGIR, pages 273–280, 2004.
[2] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating

aggregate queries about web pages via random walks. In Proc. of 26th Int. Conf. on
Very Large Data Bases, September 2000.

[3] DCMI Usage Board. Dublin Core Qualifiers. Recommendation of the DCMI,
Dublin Core Metadata Initiative, Jul 2000.

[4] O. Buyukkokten, J. Cho, H. Garcia-Molina, L. Gravano, and N. Shivakumar.
Exploiting Geographical Location Information of Web Pages. In WebDB, 1999.

[5] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach
to topic-specific web resource discovery. In Proc. of the 8th Int. World Wide Web
Conference, May 1999.

[6] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques for computing pagerank. In
Proc. of the 11th Int. Conf. on Information and Knowledge Management, 2002.

[7] Open GIS Consortium. http://www.opengis.org.
[8] A. Daviel. April 1999. http://geotags.com.
[9] A. Daviel. Geographic registration of HTML documents. IETF Draft, July 2003.

geotags.com/geo/draft-daviel-html-geo-tag-06.html
[10] B. Davison. Topical locality in the web. In Proc. of the 23rd Annual Int. Conf. on

Research and Development in Information Retrieval, July 2000.
[11] J. Ding, L. Gravano, and N. Shivakumar. Computing geographical scopes of web

resources. In Proc. of the 26th VLDB, pages 545–556, September 2000.
[12] Divine inc. Northern light geosearch. Last accessed February 2003.
[13] M. Egenhofer. Toward the semantic geospatial web. In Proc. of the 10th ACM GIS,

pages 1–4, Nov 2002.
[14] Eventax GmbH. http://www.umkreisfinder.de.
[15] Google Inc. Google Local Search, 2003.
[16] L. Gravano. Geosearch: A geographically-aware search engine. 2003.

http://geosearch.cs.columbia.edu.
[17] L. Gravano, V. Hatzivassiloglou, and R. Lichtenstein. Categorizing web queries

according to geographical locality. In Proc. of the 12th CIKM, 2003.
[18] X. Long and T. Suel. Optimized query execution in large search engines with

global page ordering. In Proc. of the Int. Conf. on Very Large Data Bases, 2003.
[19] A. Markowetz, T. Brinkhoff, and B. Seeger. Exploiting the internet as a geospatial

database. In Workshop on the Next Generation Geospatial Information, Oct 2003.
Also presented at the 3rd Int. Workshop on Web Dynamics, 2004.

[20] A. Markowetz, Y. Chen, T. Suel, X. Long, and B. Seeger. Design and
Implementation of a Geographic Web Search Engine. Technical Report
TR-CIS-2005-03, CIS Department, Polytechnic University, February 2005.

[21] K. McCurley. Geospatial mapping and navigation of the web. In Proc. of the 10th
World Wide Web Conference, pages 221–229, May 2001.

[22] Räber Information Management GmbH. http://www.search.ch.
[23] V. Shkapenyuk and T. Suel. Design and implementation of a high-performance

distributed web crawler. In Proc. of the Int. Conf. on Data Engineering, 2002.
[24] Yahoo! inc. Yahoo Local Search, 2004. http://local.yahoo.com.
[25] M. Zook. Old Hierarchies or New Networks of Centrality? The Global Geography

of the Internet Content Market. American Behavioral Scientist, 44(10), June 2001.

Using Bloom Filters to Refine Web Search Results ∗

Navendu Jain
†

Department of Computer
Sciences

University of Texas at Austin
Austin, TX, 78712

nav@cs.utexas.edu

Mike Dahlin
Department of Computer

Sciences
University of Texas at Austin

Austin, TX, 78712

dahlin@cs.utexas.edu

Renu Tewari
IBM Almaden Research

Center
650 Harry Road

San Jose, CA, 95111

tewarir@us.ibm.com

ABSTRACT
Search engines have primarily focused on presenting the most
relevant pages to the user quickly. A less well explored aspect
of improving the search experience is to remove or group all
near-duplicate documents in the results presented to the user.
In this paper, we apply a Bloom filter based similarity detec-
tion technique to address this issue by refining the search
results presented to the user. First, we present and analyze
our technique for finding similar documents using content-
defined chunking and Bloom filters, and demonstrate its ef-
fectiveness in compactly representing and quickly matching
pages for similarity testing. Later, we demonstrate how a
number of results of popular and random search queries re-
trieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized.

1. INTRODUCTION
Enterprise and web search has become a ubiquitous part

of the web experience. Numerous studies have shown that
the ad-hoc distribution of information on the web has re-
sulted in a high degree of content aliasing (i.e., the same
data contained in pages from different URLs) [14] and which
adversely affects the performance of search engines [6]. The
initial study by Broder et al., in 1997 [7], and the later one
by Fetterly et al. [11], shows that around 29.2% of data is
common across pages in a sample of 150 million pages. This
common data when presented to the user on a search query
degrades user-experience by repeating the same information
on every click.

Similar data can be grouped or eliminated to improve the
search experience. Similarity based grouping is also useful
for organizing the results presented by meta-crawlers (e.g.,
vivisimo, metacrawler, dogpile, copernic). The findings by
searchenginejournal.com [2] show a significant overlap of
search results returned by Google and Yahoo search engines—
the top 20 keyword searches from Google had about 40%
identical or similar pages to the Yahoo results. Sometimes
search results may appear different purely due to the restruc-
turing and reformatting of data. For example, one site may
format a document into multiple web pages, with the top
level page only containing a fraction of the document along
with a “next” link to follow to the remaining part, while an-

∗This work was supported in part by the Texas Advanced
Technology Program, the National Science Foundation (CNS-
0411026), and an IBM Faculty Partnership Award.
†This work was done during an internship at IBM Almaden.

Copyright is held by the author/owner(s).
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

other site may have the entire document in the same web
page. An effective similarity detection technique should find
these “contained” documents and label them as similar.

Although improving search results by identifying near-
duplicates had been proposed for Altavista [6], we found
that popular search engines, Google, Yahoo, MSN, even to-
day have a significant fraction of near-duplicates in their
top results1. For example, consider the results of the query
“emacs manual” using the Google search engine. We focus
on the top 20 results (i.e., first 2 pages) as they represent
the results most likely to be viewed by the user. Four of
the results, www.delorie.com/gnu/docs/emacs/emacs toc.html,

www.cs.utah.edu/dept/old/texinfo/emacs19/emacs toc.html, www.
dc.urkuamk.fi/docs/gnu/emacs/emacs toc.html, and
www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.html,
on the first page (top-10 results), were highly similar—in fact,
they had nearly identical content but different page headers,
disclaimers, and logo images. For this particular query, on
the whole, 7 out of 20 documents were redundant (3 identical
pairs and 4 similar to one top page document). Similar results
were found using Yahoo, MSN2, and A93 search engines.

In this paper, we study the current state of popular search
engines and evaluate the application of a Bloom filter based
near-duplicate detection technique on search results. We
demonstrate, using multiple search engines, how a number
of results (ranging from 7% to 60%) on search queries are
similar and can be eliminated or re-organized. Later, we
explore the use of Bloom filters for finding similar objects
and demonstrate their effectiveness in compactly representing
and quickly matching pages for similarity testing. Although
Bloom filters have been extensively used for set membership
checks, they have not been analyzed for similarity detection
between text documents. Finally, we apply our Bloom filter
based technique to effectively remove similar search results
and improve user experience. Our evaluation of search results
shows that the occurrence of near-duplicates is strongly cor-
related to: i) the relevance of the document and ii) the popu-
larity of the query. Documents that are considered more rel-
evant and have a higher rank also have more near-duplicates
compared to less relevant documents. Similarly, results from
the more popular queries have more near-duplicates com-
pared to the less popular ones.

Our similarity matcher can be deployed as a filter over

1Google does have a patent [17] for near-duplicate detection
although it is not clear which approach they use.
2Results for a recently popular query, “ohio court battle”
from both Google and MSN search had a similar behavior,
with 10 and 4 out of the top 20 results being identical resp.
3A9 states that it uses a Google back-end for part of its
search.

any search engine’s result set. The overhead of integrating
our similarity detection algorithm with search engines only
associates about 0.4% extra bytes per document and pro-
vides fast matching on the order of milliseconds as described
later in section 3. Note that we focus on one main aspect of
similarity—text content. This might not completely capture
the human-judgement notion of similarity in all cases. How-
ever, our technique can be easily extended to include link
structure based similarity measures by comparing Bloom fil-
ters generated from hyperlinks embedded in web pages.

The rest of the paper is organized as follows. Similarity
detection using Bloom filters is described and analyzed in
Section 2. Section 3 evaluates and compares our similarity
technique to improve search results from multiple engines and
for different workloads. Finally, Section 4 covers related work
and we conclude with Section 5.

2. SIMILARITY DETECTION USING BLOOM
FILTERS

Our similarity detection algorithm proceeds in three steps
as follows. First, we use content-defined chunking (CDC) to
extract document features that are resilient to modifications.
Second, we use these features as set elements for generating
Bloom filters4. Third, we compare the Bloom filters to detect
near-duplicate documents above a certain similarity thresh-
old (say 70%). We start with an overview of Bloom filters and
CDCs, and later present and analyze the similarity detection
technique for refining web search results.

2.1 Bloom Filter Overview
A Bloom filter of a set U is implemented as an array of

m bits [4]. Each element u (u ∈ U) of the set is hashed
using k independent hash functions h1, . . . , hk. Each hash
function hi(u) for 1 ≤ i ≤ k maps to one bit in the
array {1 . . . m}. Thus, when an element is added to the set,
it sets k bits, each bit corresponding to a hash function, in
the Bloom filter array to 1. If a bit was already set it stays
1. For set membership checks, Bloom filters may yield a
false positive, where it may appear that an element v is in
U even though it is not. From the analysis in [8], given
n = |U | and the Bloom filter size m, the optimal value of
k that minimizes the false positive probability, pk, where p

denotes that probability that a given bit is set in the Bloom
filter, is k = m

n
ln 2. Previously, Bloom filters have primarily

been used for finding set-membership [8].

2.2 Content-defined Chunking Overview
To compute the Bloom filter of a document, we first need

to split it into a set of elements. Observe that splitting a doc-
ument using a fixed block size makes it very susceptible to
modifications, thereby, making it useless for similarity com-
parison. For effective similarity detection, we need a mecha-
nism that is more resilient to changes in the document. CDC
splits a document into variable-sized blocks whose bound-
aries are determined by its Rabin fingerprint matching a pre-
determined marker value [18]. The number of bits in the
Rabin fingerprint that are used to match the marker deter-
mine the expected chunk size. For example, given a marker
0x78 and an expected chunk size of 2k, a rolling (overlapping
sequence) 48-byte fingerprint is computed. If the lower k bits
of the fingerprint equal 0x78, a new chunk boundary is set.
Since the chunk boundaries are content-based, any modifica-
tions should affect only a couple of neighboring chunks and

4Within a search engine context, the CDCs and the Bloom
filters of the documents can be computed offline and stored.

not the entire document. CDC has been used in LBFS [15],
REBL [13] and other systems for redundancy elimination.

2.3 Bloom Filters for Similarity Testing
Observe that we can view each document to be a set in

Bloom filter parlance whose elements are the CDCs that it is
composed of5. Given that Bloom filters compactly represent
a set, they can also be used to approximately match two sets.
Bloom filters, however, cannot be used for exact matching
as they have a finite false-match probability but they are
naturally suited for similarity matching.

For finding similar documents, we compare the Bloom fil-
ter of one with that of the other. In case the two documents
share a large number of 1’s (bit-wise AND) they are marked
as similar. In this case, the bit-wise AND can also be per-
ceived as the dot product of the two bit vectors. If the set
bits in the Bloom filter of a document are a complete sub-
set of that of another filter then it is highly probable that
the document is included in the other. Web pages are typ-
ically composed of fragments, either static ones (e.g., logo
images), or dynamic (e.g., personalized product promotions,
local weather) [19]. When targeting pages for a similarity
based “grouping”, the test for similarity should be on the
fragment of interest and not the entire page.

Bloom filters, when applied to similarity detection, have
several advantages. First, the compactness of Bloom filters
is very attractive for storage and transmission whenever we
want to minimize the meta-data overheads. Second, Bloom
filters enable fast comparison as matching is a bitwise-AND
operation. Third, since Bloom filters are a complete repre-
sentation of a set rather than a deterministic sample (e.g.,
shingling), they can determine inclusions effectively.

To demonstrate the effectiveness of Bloom filters for sim-
ilarity detection, consider, for example, the pages from the
Money/CNN web server (money.cnn.com). We crawled 103
MB of data from the site that resulted in 1753 documents.
We compared the top-level page marsh ceo/index.html with
all the other pages from the site. For each document, we con-
verted it into a canonical representation as described later
in Section 3. The CDCs of the pages were computed us-
ing an expected and maximum chunk size of 256 bytes and
64 KB respectively. The corresponding Bloom filter was of
size 256 bytes. Figure 1 shows that two other copies of the
page one with the URI /2004/10/25/news/fortune500/marsh\

ceo/index.htm and another one with a dynamic URI /2004/

10/25/news/fortune500/marsh ceo/index.htm?cnn=yes matched
with all set bits in the Bloom filter of the original document.

As another example, we crawled around 20 MB of data
(590 documents) from the ibm web site (www.ibm.com). We
compared the page /investor/corpgovernance/index.phtml with
all the other crawled pages from the site. The chunk sizes
were chosen as above. Figure 2 shows that two other pages
with the URIs /investor/corpgovernance/cgcoi.phtml and /investor/

corpgovernance/cgblaws.phtml appeared similar, matching in
53% and 69% of the bits in the Bloom filter, respectively.

To further illustrate that Bloom filters can differentiate
between multiple similar documents, we extracted a technical
documentation file ‘foo’ (say) (of size 17 KB) incrementally
from a CVS archive, generating 20 different versions, with
‘foo’ being the original, ‘foo.1’ being the first version (with
a change of 415 bytes from ‘foo’) and ‘foo.19’ being the last.
As shown in Figure 3, the Bloom filter for ’foo’ matched the
most (98%) with the closest version ‘foo.1’.

5For multisets, we make each CDC unique before Bloom filter
generation to differentiate multiple copies of the same CDC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Fr
ac

tio
n

of
 1

’s
 m

at
ch

ed
 in

 th
e

A
N

D
 o

ut
pu

ts

Web documents in money.cnn.com Source Tree

Document Similarity using Bloom Filter: marsh_ceo/index.html

marsh_ceo/index.html

marsh_ceo/index.htm

marsh_ceo/index.htm?cnn=yes

Figure 1: Comparison of the doc-

ument marsh ceo/index.html with all

pages from the money.cnn.com web site

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 1

’s
 m

at
ch

ed
 in

 th
e

A
N

D
 o

ut
pu

ts

Web documents in www.ibm.com Source Tree

Document Similarity using Bloom Filter: investor/corpgovernance/index.phtml

investor/corpgovernance/index.phtml

investor/corpgovernance/cgblaws.phtml

investor/corpgovernance/cgcoi.phtml

Figure 2: Comparison of the document

investor/corpgovernance/index.phtml

with pages from www.ibm.com

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 1
’s

 m
at

ch
ed

 in
 th

e
A

N
D

 o
ut

pu
ts

foo versions

File Similarity using Bloom Filter: CVS Repository Benchmark

foo.1

Figure 3: Comparison of the origi-

nal file ‘foo’ with later versions ‘foo.1’,

‘foo.2’ · · · ‘foo.19’

2.3.1 Analysis
The main consideration when using Bloom filters for sim-

ilarity detection is the false match probability of the above
algorithm as a function of similarity between the source and a
candidate document. Extending the analysis for membership
testing in [4] to similarity detection, we proceed to determine
the expected number of inferred matches between the two
sets. Let A and B be the two sets being compared for simi-
larity. Let m denote the number of bits (size) in the Bloom
filter. For simplicity, assume that both sets have the same
number of elements. Let n denote the number of elements in
both sets A and B i.e., |A| = |B| = n. As before, k denotes
the number of hash functions. The probability that a bit is
set by a hash function hi for 1 ≤ i ≤ k is 1

m
. A bit can be

set by any of the k hash functions for each of the n elements.
Therefore, the probability that a bit is not set by any hash
function for any element is (1− 1

m
)nk. Thus, the probability,

p, that a given bit is set in the Bloom filter of A is given by:

p =
“

1 −
`

1 −
1

m

´

nk”

≈ 1 − e
−

nk

m (1)

For an element to be considered a member of the set, all
the corresponding k bits should be set. Thus, the probability
of a false match, i.e., an outside element is inferred as being
in set A, is pk. Let C denote the intersection of sets A and
B and c denote its cardinality, i.e., C = A∩B and |C| = c.

For similarity comparison, let us take each element in set
B and check if it belongs to the Bloom filter of the given set
A. We should find that the c common elements will definitely
match and a few of the other (n − c) may also match due to
the false match probability. By Linearity of Expectation, the
expected number of elements of B inferred to have matched
with A is

E[# of inferred matches] = (c) + (n − c)pk

To minimize the false matches, this expected number should
be as close to c as possible. For that (n−c)pk should be close
to 0, i.e., pk should approach 0. This happens to be the same
as minimizing the probability of a false positive. Expanding
p and under asymptotic analysis, it reduces to minimizing

(1 − e−
nk

m)k. Using the same analysis for minimizing the
false positive rate given in [8], the minima obtained after dif-
ferentiation is when k = m

n
ln 2. Thus, the expected number

of inferred matches for this value of k becomes

E[# of inferred matches] = c + (n − c)(0.6185)
m

n

Thus, the expected number of bits set corresponding to
inferred matches is

E[# of matched bits] = m
h

1 −
“

1 −
1

m

”k

`

c + (n−c)(0.6185)
m

n

´

i

Under the assumption of perfectly random hash functions,
the expected number of total bits set in the Bloom filter of

the source set A, is mp. The ratio, then, of the expected
number of matched bits corresponding to inferred matches in
A ∩B to the expected total number of bits set in the Bloom
filter of A is:

E[# of matched bits]

E[# total bits set]
=

“

1 − e−
k

m
(c + (n−c)(0.6185)

m

n)
”

`

1 − e−
nk

m

´

Observe that this ratio equals 1 when all the elements
match, i.e., c = n. If there are no matching elements, i.e.,

c = 0, the ratio = 2(1 − (0.5)(0.6185)
m

n). For m = n, this
evaluates to 0.6973, i.e., 69% of matching bits may be false.
For larger values, m = 2n, 4n, 8n, 10n, 11n, the corresponding
ratios are 0.4658, 0.1929, 0.0295, 0.0113, 0.0070 respectively.
Thus, for m = 11n, on an average, less than 1% of the bits
set may match incorrectly. The expected ratio of matching
bits is highly correlated to the expected ratio of matching
elements. Thus, if a large fraction of the bits match, then it’s
highly likely that a large fraction of the elements are common.

2.4 Discussion
Previous work on document similarity has mostly been

based on shingling or super fingerprints. Using this method,
for each object, all the k consecutive words of a document
(called k-shingles) are hashed using Rabin fingerprint [18]
to create a set of fingerprints (also called features or pre-
images). These fingerprints are then sampled to compute a
super-fingerprint of the document. Many variants have been
proposed that use different techniques on how the shingle fin-
gerprints are sampled (min-hashing, Modm, Mins etc.) and
matched [7, 6, 5]. While Modm selects all fingerprints whose
value modulo m is zero; Mins selects the set of s fingerprints
with the smallest value. The min-hashing approach further
refines the sampling to be the min values of say 84 random
min-wise independent permutations (or hashes) of the set of
all shingle fingerprints. This results in a fixed size sample of
84 fingerprints that is the resulting feature vector. To fur-
ther simplify matching, these 84 fingerprints can be grouped
as 6 “super-shingles” by concatenating 14 adjacent finger-
prints [11]. In [13] these are called super-fingerprints. A pair
of objects are then considered similar if either all or a large
fraction of the values in the super-fingerprints match.

Our Bloom filter based similarity detection differs from the
shingling technique in several ways. It should be noted, how-
ever, that the variants of shingling discussed above improve
upon the original approach and we provide a comparison of
our technique with these variants wherever applicable. First,
shingling (Modm, Mins) computes document similarity us-
ing the intersection of the two feature sets. In our approach,
it requires only the bit-wise AND of the two Bloom filters
(e.g., two 128 bit vectors). Next, shingling has a higher com-
putational overhead as it first segments the document into
k-word shingles (k = 5 in [11]) resulting in shingle set size

of about S − k + 1, where S is the document size. Later, it
computes the image (value) of each shingle by applying set
(say H) of min-wise independent hash functions (|H|=84 as
used in [11]) and then for each function, selecting the shingle
corresponding to the minimum image. On the other hand,
we apply a set of independent hash functions (typically less
than 8) to the chunk set of size on average ⌈S

c
⌉ where c is the

expected chunk size (e.g., c = 256 bytes for S = 8 KB docu-
ment). Third, the size of the feature set (number of shingles)
depends on the sampling technique in shingling. For example,
in Modm, even some large documents might have very few
features whereas small documents might have zero features.
Some shingling variants (e.g., Mins, Mod2i) aim to select
roughly a constant number of features. Our CDC based ap-
proach only varies the chunk size c, to determine the number
of chunks as a trade-off between performance and fine-grained
matching. We leave the empirical comparison with shingling
as future work.

In general, a compact Bloom filter is easier to attach as a
document tag and can be compared simply by matching the
bits. Thus, Bloom filter based matching is more suitable for
meta crawlers and can be added on to existing search engines
without any significant changes.

3. EXPERIMENTAL EVALUATION
In this section, we evaluate Bloom filter-based similar-

ity detection using several types of query results obtained
from querying different search engines using the keywords
posted on Google Zeitgeist www.google.com/press/zeitgeist.

html, Yahoo Buzz buzz.yahoo.com, and MSN Search Insider
www.imagine-msn.com/insider.

3.1 Methodology
We have implemented our similarity detection module us-

ing C and Perl. The code for content defined chunking is
based on the CDC implementation of LBFS [15]. The exper-
imental testbed used a 933 MHz Intel Pentium III worksta-
tion with 512 MB of RAM running Linux kernel 2.4.22. The
three commercial search engines used in our evaluation are
Google www.google.com, Yahoo Search www.yahoo.com, and
MSN Search www.msnsearch.com. The Google search results
were obtained using the GoogleAPI [1], for each of the search
queries, the API was called to return the top 1000 search re-
sults. Although we requested 1000 results, the API, due to
some internal errors, always returned less than 1000 entries
varying from 481 to 897.

For each search result, the document from the correspond-
ing URL was fetched from the original web server to compute
its Bloom filter. Each document was converted into a canon-
ical form by removing all the HTML markups and tags, bul-
lets and numberings such as “a.1”, extra white space, colons,
replacing dashes, single-quotes and double-quotes with single
space, and converting all the text to lower case to make the
comparison case insensitive. In many cases, due to server un-
availability, incorrect document links, page not found errors,
and network timeouts, the entire set of requested documents
could not always be retrieved.

3.1.1 Size of the Bloom Filter
As we discussed in the section 2, the fraction of bits that

match incorrectly depends on the size of the Bloom filter.
For a 97% accurate match, the number of bits in the Bloom
filter should be 8x the number of elements (chunks) in the
set (document). When applying CDC to each document, we
use the expected chunk size of 256 bytes, while limiting the
maximum chunk size to 64 KB. For an average document

of size 8 KB, this results in around 32 chunks. The Bloom
filter is set to be 8x this value i.e., 256 bits. To accommodate
large documents, we set the maximum document size to 64
KB (corresponding to the maximum chunk size). Therefore,
the Bloom filter size is set to be 8x the expected number of
chunks (256 for document size 64 KB) i.e., 2048 bits or 256
bytes, which is a 3.2% and 0.4% overhead for document size
of 8 KB and 64 KB respectively.

Example. When we applied the Bloom filter based matcher
to the “emacs manual” query (Section 1), we found that the
page www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.

html matched the other three, www.delorie.com/gnu/docs/emacs/
emacs toc.html, www.cs.utah.edu/dept/old/texinfo/emacs19/emacs
toc.html, and www.dc.turkuamk.fi/docs/gnu/emacs/emacs toc.

html, with 74%, 81% and 95% of the Bloom filter bits match-
ing, respectively. A 70% matching threshold would have iden-
tified and grouped all these 4 pages together.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

of
 D

up
lic

at
e

D
oc

um
en

ts

Number of Top Search Results Retrieved

Near-Duplicate Results for "emacs manual" search on Google

50% Similar
60% Similar
70% Similar
80% Similar
90% Similar

Figure 4: “emacs manual” query search results (Google)

3.2 Effect of the Degree of Similarity
In this section, we evaluate how the degree of similarity

affects the number of documents that are marked similar.
The degree of similarity is the percentage of the document
data that matches (e.g., a 100% degree of similarity is an
identical document). Intuitively, the higher the degree of
similarity, the lower the number of documents that should
match. Moreover, the number of documents that are similar
depends on the total number of documents retrieved by the
query. Although, we initially expected a linear behavior, we
observed that the higher ranked results (the top 10 to 20
results) were also the ones that were more duplicated.

Using GoogleAPI, we retrieved 493 results for the “emacs
manual” query. To determine the number of documents that
are similar among the set of retrieved documents, we use a
union-find data structure for clustering Bloom filters of the
documents based on similarity. Figure 4 shows that for 493
documents retrieved, the number of document clusters were
56, 220, 317, 328, 340, when the degree of similarity was
50, 60, 70, 80, 90%, respectively. Each cluster represents a
set of similar documents (or a single document if no similar
ones are found). We assume that a document belongs to
a cluster if it is similar to a document in the cluster, i.e.,
we assume that similarity is transitive for high values of the
degree of similarity (as in [9]). The fraction of duplicate
documents as shown in figure 4, decreases from 88% to 31%
as the degree of similarity increases from 50% to 90%. As
the number of retrieved queries increase from 10 to 493, the
fraction of duplicate documents initially decrease and then
increase forming a minima around 250 results. The decrease
was due to the larger aliasing of “better” ranked documents.
However, as the number of results increase, the initial set
of documents get repeated more frequently, increasing the
number of duplicates. Similar results were obtained for a
number of other queries that we evaluated.

3.3 Effect of the Search Query Popularity
To get a representative collection of the types of queries

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for Popular search queries on Google

"jon stewart crossfire" query
"electoral college" query
"day of the dead" query

Figure 5: Search results for the top 3

queries on Google

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for Medium-Popular search queries on Google

"republican national convention" query
"national hurricane center" query

"indian larry" query

Figure 6: Search results for 3 medium-

popular queries on Google

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for Random search queries on Google

"olympics 2004 doping" query
"hawking black hole bet" query

"x prize spaceship" query

Figure 7: Search results for 3 random

queries on Google

performed on search engines, we selected samples from Google
Zeitgeist (Nov. 2004) of three different query popularities: i)
Most Popular, ii) Medium-Popular, and iii) Random.

For most-popular search queries, the three queries selected
in order were—“jon stewart crossfire”(TP1), “electoral col-
lege”(TP2) and “day of the dead”(TP3). We computed the
number of duplicates having 70% similarity (atleast 70% of
the bits in the filter matched) in the search results. Figure 5
shows the corresponding number of duplicates for a maximum
of 870 search results from the Google search API. The TP1
query had the maximum fraction of near-duplicates, 44.3%,
while the other two TP2 and TP3 had 29.7% and 24.3%, re-
spectively. Observe that the most popular query TP1was the
one with the most duplicates.

For the medium popular queries, we selected three queries
from the list “Google Top 10 Gaining Queries” for the week
ending Aug. 30, 2004 on the Google Zeitgeist—“indian larry”
(MP1), “national hurricane center”(MP2) and “republican
national convention”(MP3). Figure 6 shows the correspond-
ing search results having 70% similarity for a maximum of
880 documents from the Google search engine. The fraction
of near-duplicates among 880 search results ranged from 16%
for MP1 to 28% for MP2.

For a non-popular query sample, we selected three queries
at random—“olympics 2004 doping”, “hawking black hole
bet”, and “x prize spaceship”. The Google API retrieved only
about 360 results for the first two queries and 320 results for
the third query. Figure 7 shows the number of near-duplicate
documents in the search results corresponding to the three
queries. The fraction of near-duplicates in all these queries
were in the same range, around 18%.

As we observed earlier, as the popularity of queries de-
crease so do the number of duplicate results. The most pop-
ular queries had the largest number of near-duplicate results,
the medium ones fewer, and the random queries the lowest.

3.4 Behavior of different search engines
The previous experiments all compared the results from

the Google search engine. We next evaluate the behavior of
all three search engines, Google, Yahoo and MSN search in re-
turning near-duplicate documents for the 10 popular queries
featured on their respective web sites. To our knowledge, Ya-
hoo and MSN search do not provide an API similar to the
GoogleAPI for doing automated retrieval of search results.
Therefore, we manually made HTTP requests to the URLs
corresponding to the first 50 search results for a query.

We plot minimum, average and maximum number of near-
duplicate (atleast 70% similar) search results in the 10 pop-
ular queries. The three whiskers on each vertical bar in Fig-
ures 8,9,10 represent min., avg., and max. in order. Figure 8
shows the results for Google, with average number of near-
duplicates ranging from 7% to 23%. Figure 9 shows near-
duplicates in Yahoo results ranging from 12% to 25%. Fig-

ure 10 shows the results for MSN, where the near-duplicates
range from 18% to 26%. Comparing the earlier “emacs man-
ual” query, MSN had 32% near duplicates while Yahoo had
22%. These experiments support our hypothesis that current
search engines return a significant number of near-duplicates.
However, these results do not in any way suggest that any
particular search engine performs better than the others.

3.5 Analyzing Response Times
In this section, we analyze the response times for perform-

ing similarity comparisons using Bloom filters. The timings
include (a) the (offline) computation time to compute the
document CDC hashes and generating the Bloom filter, and
(b) the (online) matching time to determine similarity using
bitwise AND on Bloom filters and time for insertions and
unions in a union-find data structure for clustering.

Exp. Chunk Sizes 256 Bytes 512 Bytes 2 KB 8 KB
File Size (ms) (ms) (ms) (ms)

10 KB 0.3 0.3 0.2 0.2
100 KB 4 3 3 2
1 MB 29 27 26 24
10 MB 405 321 267 259

Table 1: CDC hash computation time for different files

and expected chunk sizes

of chunks k = 2 k = 4 k = 8
Document Size (n) (ms) (ms) (ms)

10 KB 35 11 12 14
100 KB 309 118 120 126
1 MB 2959 961 1042 1198
10 MB 30463 11792 11960 12860

Table 2: Time (ms) for Bloom filter generation for dif-

ferent document sizes (expected chunk size 256 bytes)

Bloom Filter Size 100 300 625 1250 2500 5000
(Bits)

Time (µsec) 1.9 2.4 2.9 3.9 6.2 10.7

Table 3: Time (microseconds) for computing the bitwise

AND of Bloom filters for different sizes

Table 1 shows the CDC hash computation times for a
complete document (of size 10 KB, 100 KB, 1 MB, 10 MB)
for different expected chunk sizes (256 bytes, 512 bytes, 2
KB, 8 KB). The Bloom filter generation times are shown in
Table 2 for different values (2, 4, 8) of the number of hash
functions (k) and different number of chunks (n). Although
the Bloom filter generation times appear high relative to the
CDC times, it is more an artifact of the implementation of
the Bloom filter code in Perl instead of C and not due to any
inherent complexity in the Bloom filter code. A preliminary
implementation in C reduced the Bloom filter generation time
by an order of magnitude.

For the matching time overhead, Table 3 shows the pair-
wise matching time for two Bloom filters for different filter

 0

 20

 40

 60

 80

 100

 10 100

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for 10 popular queries on Google

10 popular GOOGLE queries

Figure 8: Search results for 10 popular

queries on Google

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for 10 popular queries on Yahoo

10 popular Yahoo queries

Figure 9: Search results for 10 popular

queries on Yahoo Search

 0

 5

 10

 15

 20

 0 10 20 30 40 50

N
um

be
r o

f N
ea

r-
D

up
lic

at
e

D
oc

um
en

ts
 (7

0%
 s

im
ila

r)

Number of Top Search Results Retrieved

Near-Duplicate Results for 10 popular queries on MSN

10 popular MSN queries

Figure 10: Search results for 10 popu-

lar queries on MSN Search

No. of Results 10 20 40 80 160 320
Search Query

“emacs manual” 1 4 15 66 286 1233
“ohio court battle” 1 7 24 98 369 1426

“hawking black hole bet” 1 6 23 88 364 1407

Table 4: Matching and Clustering time (in ms)

sizes ranging from 100 bits to 5000 bits. The overall match-
ing and clustering time for different query requests is shown
in Table 4. Overall, using untuned Perl and C code, for clus-
tering 80 results each of size 10 KB for the “emacs manual”
query would take around 80*0.3 ms + 80* 14 ms + 66ms =
1210 ms. However, the Bloom filters can be computed and
stored apriori reducing the time to 66 ms.

4. RELATED WORK
The problem of near-duplicate detection consists of two

major components: (a) extracting document representations
aka features (e.g., shingles using Rabin fingerprints [18], super-
shingles [11], super-fingerprints [13]), and (b) computing the
similarity between the feature sets. As discussed in Sec-
tion 2, many variants have been proposed that use different
techniques on how the shingle fingerprints are sampled (e.g.,
min-hashing, Modm, Mins) and matched [7, 6, 5]. Google’s
patent for near-duplicate detection uses another shingling
variant to compute fingerprints from the shingles [17].

Our similar detection algorithm uses CDC [15] for com-
puting document features and then applies Bloom filters for
similarity testing. In contrast to existing approaches, our
technique is simple to implement, incurs only about 0.4%
extra bytes per document, and performs faster matching us-
ing only bit-wise AND operations. Bloom filters have been
proposed to estimate the cardinality of set intersection in [8]
but have not been applied for near-duplicate elimination in
web search. We recently learned about Bloom filter replace-
ments [16] which we will explore in the future.

Page and site similarity has been extensively studied for
web data in various contexts, from syntactic clustering of web
data [7] and its applications for filtering near duplicates in
search engines [6] to storage space and bandwidth reduction
for web crawlers and search engines. In [9], replica identifi-
cation was also proposed for organizing web search results.
Fetterly et al. examined the amount of textual changes in
individual web pages over time in the PageTurner study [12]
and later investigated the temporal evolution of clusters of
near-duplicate pages [11]. Bharat and Broder investigated
the problem of identifying mirrored host pairs on the web
[3]. Dasu et al. used min hashing and sketches to identify
fields having similar values in database tables [10].

5. CONCLUSIONS
In this paper, we applied a Bloom filter based similarity

detection technique to refine the search results presented to

the user. Bloom filters compactly represent the entire docu-
ment and can be used for quick matching. We demonstrated
how a number of results of popular and random search queries
retrieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized.

6. ACKNOWLEDGMENTS
We thank Rezaul Chowdhury, Vijaya Ramachandran, Srid-

har Rajagopalan, Madhukar Korupolu, and the anonymous
reviewers for giving us valuable comments.

7. REFERENCES
[1] Google web apis (beta), http://www.google.com/apis.
[2] Yahoo results getting more similar to google http:

// www. searchenginejournal. com/ index. php? p= 584&c= 1 .
[3] K. Bharat and A. Broder. Mirror, mirror on the web: a

study of host pairs with replicated content. Comput.
Networks, 31(11-16):1579–1590, 1999.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[5] A. Z. Broder. On the resemblance and containment of
documents. In SEQUENCES, 1997.

[6] A. Z. Broder. Identifying and filtering near-duplicate
documents. In COM, pages 1–10, 2000.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In WWW’97.

[8] A. Z. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. In Allerton’02.

[9] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding
replicated web collections. SIGMOD Rec., 2000.

[10] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structure; or, how to
build a data quality browser. In SIGMOD, 2002.

[11] D. Fetterly, M. Manasse, and M. Najork. On the
evolution of clusters of near-duplicate web pages. In
LA-WEB, 2003.

[12] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A
large-scale study of the evolution of web pages. In
WWW, 2003.

[13] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M.
Tracey. Redundancy elimination within large
collections of files. In USENIX Annual Technical
Conference, General Track, pages 59–72, 2004.

[14] J. C. Mogul, Y.-M. Chan, and T. Kelly. Design,
implementation, and evaluation of duplicate transfer
detection in HTTP. In NSDI, pages 43–56, 2004.

[15] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In SOSP, 2001.

[16] R. Pagh, A. Pagh, and S. S. Rao. An optimal bloom
filter replacement. In SODA, 2005.

[17] W. Pugh and M. Henzinger. Detecting duplicate and
near-duplicate files, US Patent # 6658423.

[18] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Harvard University, 1981.

[19] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis.
Automatic detection of fragments in dynamically
generated web pages. In WWW, 2004.

JXP: Global Authority Scores in a P2P Network ∗

Josiane Xavier Parreira
Max-Planck Institute for Computer Science

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

jparreir@mpi-sb.mpg.de

Gerhard Weikum
Max-Planck Institute for Computer Science

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

weikum@mpi-sb.mpg.de

ABSTRACT
This document presents the JXP algorithm for dynami-
cally and collaboratively computing PageRank-style author-
ity scores of Web pages distributed in a P2P network. In
the architecture that we pursue, every peer crawls and in-
dexes Web fragments at its discretion, driven by the the-
matic profile or overlay neighborhood of the peer. The JXP
algorithm runs at every peer, and is initialized by a local
authority computation on the basis of the locally available
Web fragment. Peers collaborate by periodically “meeting”
with other peers in the network. Whenever two peers meet
they exchange their local information and use this new infor-
mation to improve their local authority scores. Even though
only local computations are performed, the JXP scores ap-
proximate the global importance of pages in the entire net-
work. The storage demand of each peer is linear in the
number of Web pages and the locally stored Web fragment.
Experiments show the quality and practical viability of the
JXP algorithm.

1. INTRODUCTION
This paper is motivated by efforts towards building a peer-

to-peer (P2P) Web search engine. P2P networks [26, 23,
22] have proven to be a scalable alternative to traditional
client/server systems. However, the characteristics of such
networks, namely, no central processing and high dynam-
ics (peers constantly joining and leaving the network), pose
a challenge when designing a new search engine for a P2P
network. We assume that every peer has a full-fledged Web
search engine and can crawl and index interesting Web frag-
ments at its discretion, driven by thematic profiles of the
user or the neighborhood in some form of “semantic” overlay
network. Peers collaborate on difficult queries that cannot
be satisfactorily answered with the locally available index
alone (using query routing strategies [14, 8, 4], but they are

∗Partially supported by the EU within the 6th Framework
Programme under contract 001907 “Dynamically Evolving,
Large Scale Information Systems” (DELIS).

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

autonomous in terms of their crawling strategies and what
data they keep in their local indexes).

In the context of Internet search engines, link-based rank-
ing algorithms that assign authority scores to pages, based
on their “importance” on the Web, have been proven to
make the search more effective [5, 18]. For instance, Google
[2] uses PageRank, an Eigenvector-based algorithm that de-
termines the importance of a page based on the importance
of the pages that point to it. The PageRank computation
is quite expensive as it involves iteratively computing the
principal Eigenvector of a matrix derived from the Web link
graph. An alternative but equivalent view of PageRank is
that it computes stationary probabilities of a Markov chain
that corresponds to a random walk on the Web. Recent
work has made progress on efficiently computing PageRank
scores [17, 16, 6, 12], but the high storage demand of the
– sparse but nonetheless huge - underlying matrix seems
to limit this kind of link analysis to a central server with
very large memory. The most relevant prior work on dis-
tributed PageRank computation is [27], but this method as-
sumes that sites compute local PageRank values based on
the data that they originally host, thus strongly relying on
the assumption that sites have disjoint fragments of the Web
graph and are relatively reliable servers.

In this document we propose the JXP1, an algorithm
for dynamically computing, in a decentralized P2P manner,
global authority scores when the Web graph is spread across
many autonomous peers. The peers’ graph fragments may
overlap arbitrarily, and peers are (a priori) unaware of other
peers’ fragments.

The main idea of the JXP algorithm is as follows. Each
peer computes the authority scores of the pages that it has
in its local index, by locally running the standard PageR-
ank algorithm. To avoid confusion with the true, global
PageRank values, we refer to these local scores as the (peer-
specific) PageWeight scores of the pages known by the peer.
Note that a page may be known and indexed by multiple
peers, and these may have different PageWeights for that
same page. A peer gradually increases its knowledge about
the rest of the network by meeting with other, randomly
chosen, peers and exchanging information. To improve the
initial PageWeight scores and approximating the global au-
thority of pages, a peer uses what it learns from the other,
randomly met, peers, combined with its own local informa-
tion, for recomputing the PageWeight scores. Although the
computations are strictly local, our goal is towards a notion

1JXP is an acronym for juxtaposed approximate PageRank,
and also happens to be the initials of the first author.

of importance of the pages in the whole web graph. This
process, in principle, runs forever, and our experiments in-
dicate that the resulting JXP scores quickly converge to the
true, global PageRank scores.

When two peers meet they temporarily form the union of
their Web graph fragments; for representing the unknown
part of the Web graph (which is spread across many further
peers) a state-lumping technique for Markov chains is used.
After recomputing PageWeights, only the resulting author-
ity scores of each peer’s pages of interest are kept. Techni-
cally, the computation involves some difficulties because of
the need for proper normalization with partial knowledge of
the Web graph; another complication is that the graphs of
two peers may have radically different sizes and may arbi-
trarily overlap. It is important to emphasize that peers do
not accumulate the graph fragments that they learn about
when meeting other peers. So we ensure that the storage
requirements are low, linear in the number of pages of inter-
est and the local index size, and the PageRank computation
is scalable, as the algorithm always runs on relative small
graphs, independent of the number of peers in the network.

The locally recomputed PageWeights already reflect the
importance of a page in the entire network, but different
peers may have very different views, e.g., in terms of the
size of their local graphs. Therefore, the JXP algorithm can
optionally normalize authority scores based on PeerWeights
that reflect the reputation and trust of peers.

The rest of the document is organized as follows. Sec-
tion 2 briefly discusses related work. A quick review of the
standard PageRank algorithm is presented in Section 3. In
Section 4 we present the JXP algorithm for computing au-
thority scores. Section 5 shows preliminary experimental
results of the algorithm. Section 6 concludes this paper and
presents ideas for future work.

2. RELATED WORK
Link-based authority ranking has received great attention

in the literature, starting with the seminal work of Brin
and Page [5] and Kleinberg [18]. Good surveys of the many
improvements and variations are given in [10] and [19].

In [27] Wang and DeWitt presented a distributed search
engine framework, in which the authority score of each page
is computed by performing the PageRank algorithm at the
Web server that is the responsible host for the page, based
only on the intra-server links. They also assign authority
scores for each server in the network, based on the inter-
server links, and then approximate global PageRank values
by combining local page authority scores and server author-
ity values. This work bears relationships to the work by
Haveliwala et al. [17] that postulates a block structure of
the link matrix and exploits this structure for faster con-
vergence of the global PageRank computation. Our idea is
related to the approach of Wang and DeWitt in the sense
that we also use local page scores and peer scores, but our al-
gorithm does not require any particular distribution of the
pages among the sites whereas the method by Wang and
DeWitt relies on the fact that the graph fragments of the
servers are disjoint. In particular, the JXP algorithm can
work in scenarios where peers are completely autonomous
and crawl and index Web data at their discretion, resulting
in arbitrarily overlapping graph fragments.

Chen et al. [11] proposed a way of approximating the
PageRank value of a page locally, by expanding a small

subgraph around the page of interest, placing an estimated
PageRank at the boundary nodes of the subgraph, and run-
ning the standard algorithm. In a P2P scenario, this algo-
rithm would require the peers to query other peers about
pages that have links to their local nodes, and pages that
point to pages that point to local pages, and so on. This
would be a significant burden for a highly dynamic P2P
network. The JXP algorithm, on the other hand, requires
much less interaction among peers.

Other techniques for approximating PageRank-style au-
thority scores with partial knowledge of the global graph
use state-lumping techniques from the stationary analysis
of large Markov chains [20, 12]. These techniques have been
developed for the purpose of incremental updates to author-
ity scores when only small parts of the graph have changed.
Dynamic computation in a P2P network is not an issue in
this prior work. Another work related to this topic is the
one by Broder and Lempel [6], where they have presented
a graph aggregation method in which pages are partitioned
into hosts and the stationary distribution is computed in
a two-step approach, combining the stationary distribution
inside the host and the stationary distribution inter-hosts.

A storage-efficient approach to computing authority scores
is the OPIC algorithm developed by Abiteboul et al. [3].
This method avoids having the entire link graph in one site,
which, albeit sparse, is very large and usually exceeds the
available main memory size. It does so by randomly (or
otherwise fairly) visiting Web pages in a long-running crawl
process and performing a small step of the PageRank power
iteration (the numeric technique for computing the princi-
pal Eigenvector) for the page and its successors upon each
such visit. The bookkeeping for tracking the gradually ap-
proximated authority of all pages is carried out at a central
site, the Web-warehouse server. This is not a P2P algorithm
either.

In [24], Sankaralingam et al. presented a P2P algorithm
in which the PageRank computation is performed at the
network level, with peers constantly updating the scores of
their local pages and sending these updated values through
the network. Shi et al. [25] also compute PageRank at the
network level, but they reduce the communication among
peers by distributing the pages among the peers according
to some load-sharing function. In contrast to these P2P-
style approaches, our JXP algorithm performs the actual
computations locally at each peer, and thus needs a much
smaller number of messages.

3. REVIEW OF PAGERANK
The basic idea of PageRank is that if page p has a link

to page q then the author of p is implicitly endorsing, i.e.,
giving some importance to page q. How much p contributes
to the importance of q is proportional to the importance of
p itself.

This recursive definition of importance can be described
by the stationary distribution of a Markov chain that de-
scribes a random walk over the graph, where we start at
an arbitrary page and in each step choose a random outgo-
ing edge from the current page. To ensure the ergodicity of
this Markov chain (i.e., the existence of stationary page-visit
probabilities), additional random jumps to uniformly chosen
target pages are allowed with small probability α. Formally,
the PageRank of a page q is defined as:

PR(q) = α× 1/N + (1− α)×
∑

p|p→q

PR(p)/out(p) (1)

where N is the total number of pages in the link graph,
PR(p) is the PageRank score of the page p, out(p) is the
outdegree of p, the sum ranges over all link predecessors of
q, and α is the random jump probability, with 0 < α < 1
and usually set to a value like 0.15.

PageRank values are usually computed by initializing a
PageRank vector with uniform values 1/N , and then apply-
ing a power iteration method, with the previous iteration’s
values substituted in the right-hand side of the above equa-
tion for evaluating the left-hand side. This iteration step is
repeated until sufficient convergence, i.e., until the PageR-
ank scores of the high-authority pages of interest exhibit
only minor changes.

4. THE JXP ALGORITHM
The goal of the JXP algorithm is to approximate global

authority scores by performing local computations only, with
low storage costs, and a moderate number of interactions
among peers. JXP runs on every peer in the network, where
each peer stores only its own local fragment of the global
graph. The algorithm does not assume any particular as-
signment of pages to peers, and overlaps among the graph
fragments of the peers are allowed.

The JXP algorithm has three components that are de-
scribed in the subsequent subsections:

1. the local PageWeight computation based on an ex-
tended local graph,

2. the interaction with other peers, chosen at random,
and

3. optional considerations on the normalization of the re-
sulting PageWeights, from an individual peer’s view-
point, by taking into accout the PeerWeights, the rel-
ative authority or trust of the peers.

4.1 Local PageWeight Computation
For the local approximation of the global graph, as viewed

from a peer with partial knowledge of the link structure, we
construct an extended local graph. There are two different
cases to consider: initial PageWeight computations by a peer
that is just by itself, and PageWeight refinements when two
peers meet. In the first case, we add to the local graph a
special node, that we call the world node, representing the
part of the global graph that is not stored at and not known
to the peer. This is an application of the state-lumping tech-
niques used in the analysis of large Markov models [20]. In
the second case, when two peers meet we form the union
of the two local graphs and extend them by a world node.
We discuss the graph merging for meeting peers in Subsec-
tion 4.2. In both cases, the local PageWeight scores are
then computed by running the PageRank power iteration
algorithm on this extended local graph. Figure 1 depicts a
peer’s local graph with the additional world node.

The world node has special features, regarding its own
PageWeight and how it is connected to the local graph. As
it represents all the pages that are not stored at the peer,
we take all the links from local pages to external pages and
make them point to the world node. In the same way, as

W

Figure 1: Extended local graph of a peer

the peer learns about external links that point to one of the
local pages, we assign these links to the world node. (This
is when the peer meets with another peer, see Subsection
4.2.) For a better aproximation of the total authority score
mass that is received from external pages, we weigh every
link from the world node based on how much of the author-
ity score is received from the original page that owns the
link. Another special feature of the world node is that it
contains a self-loop link, that represents links from external
pages pointing to other external pages. The PageWeight
of the world node is equivalent to the sum of PageWeights
of the external pages that it represents. During the local
PageWeight computation the probability of a random jump
to the world node is also set proportional to the number of
pages it represents.

Let Internal = {int1, int2, . . . , intn} be the set of local
pages and External = {ext1, ext2, · · · , ext(N−n)} the set
of external pages. As peers gradually learn about external
pages, we also define Known as a subset from External
that contains pages that the peer has learned about and
that have links to one of the pages in Internal. Then the
PageWeight of the world node W and the weights of a link
from the world node W to some local node a ∈ Internal
can be expressed as:

PageWeight(W) =
∑

i∈External

PageWeight(i)

= 1−
∑

∀j∈Internal

PageWeight(j)
(2)

weight(W → a) =
1

PageWeight(W)

×
∑

i∈Known & i→a

PageWeight(i)

Outdegree(i)

(3)

When the local PageWeight computation on the extended
local graph terminates, the PageWeights of pages learned
from other peers are also stored at the local peer, as they can
be used for better estimation of the weights of links from the
world node before the next local evaluation of PageWeights.
We also estimate a PageWeight score for the pages that are
still not known by the peer, based on an estimation of the
total number of the pages in the graph. Following the same
formulation above, let Unknown = {ukwn1, ukwn2, . . . ,
uknwm}, where m = N − (size(Internal) + size(Known)).

The PageWeights of the unknown pages are defined as

PageWeight(ukwni) = (1− (
∑

i∈Internal

PageWeight(i)

+
∑

j∈Known

PageWeight(j)))× 1

m

(4)

for all pages ukwni in Unknown.
Before the execution of the local PageWeight algorithm,

an initialization procedure, described in Algorithm 1, is per-
formed. This procedure estimates the size of the global
graph, creates the world node and attaches it to the local
graph, sets an initial PageWeight scores (1/N for all pages
on the local graph, and (N − n)/N for the world node),
and runs the PageRank power iteration algorithm on the
extended local graph, to improve the previous scores.

Algorithm 1 Initial PageWeight Computation

1: input: local graph G and est. size of global graph N
2: n ← size(G)
3: Create world node W
4: PageWeight(p|p ∈ G)← 1/N
5: PageWeight(W)← (N − n)/N
6: add W to G
7: run PageRank power iteration on G
8: Update(PageWeights)

4.2 Peer Meetings
Algorithm 2 shows the pseudo code of the PageWeight

algorithm. It starts with the peer choosing another peer
in the network at random to exchange information. Once
the peers have exchanged their local knowledge, it is time
for them to combine both local and external information.
It is important to point out that this process runs at both
peers independently of each other. So we fully preserve the
autonomy of peers and asynchronous nature of communica-
tion and computation in a P2P network.

Algorithm 2 The JXP Algorithm

1: input: local graph G, world node W , known pages KP
2: repeat
3: Contact a RandomPeer in the network and exchange

information
4: extG← local graph of RandomPeer
5: extW ← world node of RandomPeer
6: extKP ← list of known pages of RandomPeer
7: KP ← combinePageLists(KP, extKP)
8: mergedG← combineGraphs(G, extG)
9: mergedW ← combineWorldNodes(W, extW)

10: add mergedW to mergedG
11: run PageRank power iteration on mergedG
12: Update(PageWeights)
13: Update(W)
14: Discard(extG, extW, extKP, mergedG, mergedW)

The lists of known pages are combined by averaging the
PageWeight scores of the pages from both lists. Pages that
were unknown to the peer until the current iteration are
added to the local list of known pages. Local graphs are com-
bined by simply forming the union of nodes and connecting
nodes by the known links between them. The PageWeight
computation will always yield a correct result even if there
is no link between the graphs, because of the world node
and the corresponding random jump probabilities.

Combining the world nodes of the two meeting peers con-
sists of merging their list of outgoing links, removing links
that originaly come from a page that is already represented
in the merged graph, and adjusting the PageWeight of the

combined world node to reflect the sum of PageWeights of
pages that do not belong to the combined graph. The new
world node that results from this merging is then connected
to the merged graph and the PageRank power iteration algo-
rithm is again performed, yielding updated PageWeight val-
ues. The graphs are then disconnected and the local world
node is recreated from the merged world node, by keeping
only the links that point to a page in the local graph. The
PageWeight of the world node is also recomputed. The ex-
tended graph, world node, and list of pages that belong to
the other peer are then discarded. Figure 2 illustrates the
process of combining and disconnecting local graphs and
world nodes.

W node:

G → C

J → E

A

B

D

E

WC

W node:

K → E

L → G

F

G

WE

A → F

E → G G → C

F → A

W node:

J → E

K → E

L → G

A

B

D

E

W
C

F G

E → B

W node:

G → C

J → E

F → A

F → E

A

B

D

E

WC W node:

K → E

L → G

A → F

C → E

F

G

WE

A → F

E → G G → C

E → B

Peer X Peer Y

Peer X Peer Y

Merged Graph

&

Merged World
Node

Figure 2: Illustration of the combining and discon-
necting steps.

4.3 Considering PeerWeights
Two meeting peers may have fairly different characteris-

tics in terms of their local index sizes, knowledge or aware-
ness of the global graph characteristics (e.g., because one
peer has already met many other peers, whereas the other
peer just joined the P2P network), and trustworthiness or
recognition by other peers. Thus, when we combine the
two local graphs it could make sense to treat the two peers
with different weights. The JXP algorithm can optionally
take PeerWeights into account. To this end, it weighs all
edges in the merged graph as follows: the weight of an
edge p → q that has been known to both peers is set to
PeerWeight1 ·weight1(p→ q)+PeerWeight2 ·weight2(p→
q) where the subscripts 1 and 2 refer to the two meeting
peers. This gives higher weight to the view of the more

authoritative, knowledgable, or credible peer.
For computing PeerWeights we have a number of options.

The simplest approach is to construct a peer graph with
peers as nodes and edges between two peers if there is a
link between two pages that are locally indexed by the two
peers. This graph would be gradually constructed as peers
meet over time; but given that it is orders of magnitude
smaller than the Web graph, the peers’ local information
about this peer graph could be easily disseminated in the
P2P network so that peers learn the full peer graph more
quickly. An alternative, which we would actually prefer, is
to compute PeerWeights on the basis of the peers’ behavior
and trustworthiness or recognition in the P2P community.
This would serve to discriminate “good” peers from “bad”,
i.e., selfish or even malicious, peers. Recently, various ap-
proaches have been proposed in the literature for monitoring
and tagging peers, see e.g., [15, 21, 7]. The JXP framework
can easily incorporate such techniques, and we are currently
investigating the implementation issues.

5. EXPERIMENTS
We evaluated the performance of the PageWeight algo-

rithm on two different datasets: a synthetic generated data-
set, and subsets of the Amazon.com dataset. The synthetic
web graphs were generated using the “recursive matrix”(R-
MAT) model [9], a powerful tool that can, given a few pa-
rameters, quickly generate realistic web graphs, with the
power law degree distribution property. The Amazon.com
dataset contains information about approximately 126,000
products (mostly books) offered by Amazon.com. The data
was obtained in February 2005, through a Web Service pro-
vided by Amazon.com [1], and it is equivalent to a partial
crawl of the corresponding web site. The graphs were cre-
ated by considering the products as a node in the graph. For
each product, pointers to similar recommended products are
available in the dataset. These pointers define the edges in
our graphs.

5.1 Setup
After creating the graphs, we distributed the nodes into

the peers. Nodes are assigned to peers either at random,
allowing some overlap among the local graphs, or simulating
a crawler in each peer, starting with a random seed page
and following the links and fetching the next nodes, in a
breadth-first approach, up to a certain predefined depth.

The performance of the algorithm is evaluated by com-
paring the top-k ranking of the pages given by the JXP al-
gorithm at each peer against the global top-k ranking of the
pages given by the PageRank computation in the complete
web graph. For this comparison we use Spearman’s footrule
distance [13], defined as F (σ1, σ2) =

∑k
i=1 |σ1(i) − σ2(i)|

where σ1(i) and σ2(i) are the positions of the page i in the
first and second ranking. In case a page is present in one of
the top-k rankings and does not appear in the second top-k
ranking, its position in the latter ranking is considered to
be k + 1. We normalized the Spearman’s footrule distance,
to obtain values between 0 and 1, with 0 meaning that the
rankings are identical, and 1 meaning that the rankings have
no pages in common.

5.2 Results
We tested our algorithm on a subset of the Amazon.com

dataset containing books from the category “Computers &

Number of Footrule Linear Error Known
Meetings Distance (×10−5) Pages

0 0.5773 7.82 579.4
5 0.5772 7.20 10403.3
10 0.4710 6.50 10595
20 0.3618 5.33 10595
50 0.1169 2.12 10595
90 0.0553 0.99 10595

Table 1: Average results for “Computers & Inter-
net” data.

Internet”, which contains 10,595 pages and 42,548 links. For
comparison, we also tested JXP on a synthetic generated
graph with 2,036 pages and 8,477 links. Results are shown
in Figure 3, where the x-axis corresponds to the number
of meetings a peer performed, and each line on the graph
represents a different peer. For all the cases we chose the
top-k level to be 100 2.

Besides the Spearman’s footrule distance, we also mea-
sured, after each meeting, the total number of pages known
by the peer, and the linear score error, that we defined
as being the average of the absolute difference between the
PageWeight score and the global PageRank score of all known
pages. Table 1 shows the average of the observed values,
after a certain number of meetings, on the “Computers &
Internet” subset, for the case when pages are randomly dis-
tributed among peers. The table clearly shows that both
Spearman’s footrule distance and the linear score error quickly
decrease with the number of meetings 3.

Based on these results we can conclude that, as the num-
ber of meetings among peers increases, the distance between
the PageWeight scores and the PageRank scores, as well as
the rankings produced by them, decreases at a high rate.
Thus, PageWeight provides a good approximation to the
global PageRank scores of the pages.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented the JXP algorithm for dynam-

ically computing authority scores of pages distributed in a
P2P network. The algorithm runs in a completely decen-
tralized manner, with every peer running the algorithm in-
dependently from the other peers in the network. The algo-
rithm requires that peers meet randomly and exchange their
local graph fragments, but the overall long-running process
does not require any peer to keep more information other
than its own local graph fragment and the PageWeights
of the pages of interest. The computations themselves are
strictly local, yet we can approximate the global importance
of a page in the whole graph with acceptable accuracy. Our
experiments, albeit preliminary, indicate that the algorithm
performs very well, converges fairly quickly, and incurs low
overhead.

Future work includes more comprehensive experimenta-
tion with larger graphs and a larger number of peers. We
expect the algorithm to scale up well as the number of peers
increase without increasing the local data volume and local

2We also measured different top-k levels and obtained sim-
ilar results.
3The same behavior was observed for the other tested
graphs, but these results are omitted for space reasons.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
S

pe
ar

m
an

s
fo

ot
ru

le
 d

is
ta

nc
e

at
 T

op
-1

00 Subset "Computers & Internet"
10595 nodes - 20 peers

Pages randomly distributed among peers

Number of Meetings

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S
pe

ar
m

an
s

fo
ot

ru
le

 d
is

ta
nc

e
at

 T
op

-1
00 Subset "Computers & Internet"

10595 nodes - 20 peers
Peers performing independent crawls

Number of Meetings

(b)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

S
pe

ar
m

an
s

fo
ot

ru
le

 d
is

ta
nc

e
at

 T
op

-1
00 Synthetic Graph

2036 nodes - 20 peers
Pages randomly distributed among peers

Number of Meetings

(c)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S
pe

ar
m

an
s

fo
ot

ru
le

 d
is

ta
nc

e
at

 T
op

-1
00 Synthetic Graph

2036 nodes - 20 peers
Peers performing independent crawls

Number of Meetings

(d)

Figure 3: Preliminary results. Figures 3(a) and 3(b) show the results for the Amazon.com subset “Computers
& Internet”. In 3(c) and 3(d) the results for the synthetic generated web graph are shown.

computational cost. We also aim at providing a mathemat-
ical proof for the convergence of the algorithm. Moreover,
we plan to extend and explore the algorithm in different
scenarios; for instance, we want to test the case that a peer
chooses another peer not at random but according to some
criteria based on “semantic” relationships between the local
interest profiles. We expect that in a semantic overlay net-
work, the PageWeights will converge to the global PageRank
scores with even fewer interactions, reducing the number of
meetings needed for a good approximation.

7. REFERENCES
[1] http://www.amazon.com/gp/aws/landing.html.

[2] http://www.google.com.

[3] S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. In WWW
Conf., pages 280–290. ACM Press, 2003.

[4] M. Bender, S. Michel, G. Weikum, and C. Zimmer.
Bookmark-driven query routing in peer-to-peer web
search. In Workshop on Peer-to-Peer Information
Retrieval, 2004.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW Conf.,
1998.

[6] A. Z. Broder, R. Lempel, F. Maghoul, and
J. Pedersen. Efficient pagerank approximation via
graph aggregation. In WWW Conf. on Alternate track
papers & posters, pages 484–485. ACM Press, 2004.

[7] E. Buchmann and K. Böhm. Fairnet - how to counter
free riding in peer-to-peer data structures., 2004.

[8] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
SIGIR, pages 21–28. ACM Press, 1995.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SIAM Data
Mining, 2004.

[10] S. Chakrabarti. Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan-Kauffman,
2002.

[11] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for
estimating pagerank values. In CIKM, pages 381–389.
ACM Press, 2004.

[12] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution. In Workshop on
Algorithms for the Web, 2001.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Comparing

top k lists. In SIAM Discrete Algorithms, 2003.

[14] N. Fuhr. A decision-theoretic approach to database
selection in networked ir. ACM Trans. Inf. Syst.,
17(3):229–249, 1999.

[15] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In VLDB, pages
576–587, 2004.

[16] T. H. Haveliwala. Efficient computation of PageRank.
Technical report, Stanford University, 1999.

[17] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for
computing pagerank. Technical report, Stanford
University, 2003.

[18] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In SIAM Discrete
Algorithms, pages 668–677, 1998.

[19] A. N. Langville and C. D. Meyer. Deeper inside
pagerank. Internet Mathematics, 1(3):335–400, 2004.

[20] A. N. Langville and C. D. Meyer. Updating pagerank
with iterative aggregation. In WWW Conf. on
Alternate track papers & posters, pages 392–393. ACM
Press, 2004.

[21] N. Ntarmos and P. Triantafillou. Seal: Managing
acesses and data in peer-to-peer data sharing
networks. In HDMS, 2004.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
Technical Report TR-00-010, Berkeley, CA, 2000.

[23] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In IFIP/ACM
Middleware, pages 329–350, 2001.

[24] K. Sankaralingam, S. Sethumadhavan, and J. C.
Browne. Distributed Pagerank for P2P Systems. In
HPDC, pages 58–68, June 2003.

[25] S. Shi, J. Yu, G. Yang, and D. Wang. Distributed page
ranking in structured p2p networks. In ICPP, 2003.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM, pages 149–160. ACM Press, 2001.

[27] Y. Wang and D. J. DeWitt. Computing pagerank in a
distributed internet search system. In VLDB, 2004.

On the role of composition in XQuery

Christoph Koch
Lehrstuhl für Informationssysteme

Universität des Saarlandes
Saarbrücken, Germany

koch@cs.uni-sb.de

ABSTRACT
Nonrecursive XQuery is known to be hard for nondetermin-
istic exponential time. Thus it is commonly believed that
any algorithm for evaluating XQuery has to require expo-
nential amounts of working memory and doubly exponential
time in the worst case. In this paper we present a property –
the lack of a certain form of composition – that virtually all
real-world XQueries have and that allows for query evalua-
tion in singly exponential time and polynomial space. Still,
we are able to show for an important special case – our non-
recursive XQuery fragment restricted to atomic value equal-
ity – that the composition-free language is just as expressive
as the language with composition. Thus, under widely-held
complexity-theoretic assumptions, the composition-free lan-
guage is an exponentially less succinct version of the lan-
guage with composition.

1. INTRODUCTION
XQuery is the principal data transformation query lan-

guage for XML. Full XQuery is Turing-complete, but queries
without recursion are guaranteed to terminate in straightfor-
ward functional implementations of the XQuery language.
Recursion in XQuery is rarely used in practice (see also [15]);
recursive XML transformations are usually implemented in
XSLT. It was shown in [7] that nonrecursive XQuery is
NEXPTIME-hard. As a consequence, it is commonly be-
lieved that any query evaluation algorithm for nonrecursive
XQuery must consume doubly exponential time and expo-
nential space for query evaluation in the worst case (cf. e.g.
[6]). This is by an exponential factor worse than the com-
plexity of relational algebra or calculus [11]. The paper [7]
also introduced a clean fragment of nonrecursive XQuery
called Core XQuery that was shown to be the expressive
counterpart of nested relational algebra [5] (or similar lan-
guages such as complex value algebra without powerset [1]
or monad algebra [12]) for XML.

In this paper we present a syntactic property – the lack
of a certain form of composition – that virtually all real-
world XQueries have and which renders composition-free
Core XQuery just as hard as relational algebra.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

By composition, informally, we refer to the use of data
value construction (rather than selection using XPath) any-
where except for the construction part of an XQuery (that
is, in a for-let-where-return (FLWR) construct, anywhere
except for the return clause). For example, the query

<books_2004>

{ for $x in /bib/book where year=2004 return

<book>

{$x/title}

<authors>

{ for $y in $x/author return

<author> {$y/lastname} </author>

}

</authors>

</book>

}

</books_2004>

is a composition-free query (so nesting queries, e.g., FLWR-
statements in their return clauses, is not a problem) while

<books>

{ let $x := <a>{ for $w in /bib/book

return {$w} }

for $y in $x/b return $y/*

}

</books>

is not composition-free because it uses a let-expression that
constructs a tree as an intermediate result. The equivalent
query

<books>

{ for $y in (for $w in /bib/book

return {$w})

return $y/*}

}

</books>

is still not composition-free because the “in”-expression of
the outer for-loop contains a for-loop. However, there is an
equivalent composition-free query,

<books>

{ for $w in /bib/book return $w }

</books>

The technical contributions of this paper are as follows.

• It is shown that composition-free Core XQuery can be
evaluated in polynomial space and thus also in singly
exponential time. In fact, composition-free nonrecur-
sive XQuery is PSPACE-complete.

With composition [7]:
with negation without negation

deep equality in EXPSPACE; TA[2O(n), O(n)]-hard

equality on atomic values TA[2O(n), O(n)]-complete NEXPTIME-complete

Without composition:
with negation without negation

deep equality PSPACE-complete NP-complete
equality on atomic values PSPACE-complete NP-complete

Table 1: Summary of results on query/combined complexity of Core XQuery.

• We also show that composition-free nonrecursive XQuery
without negation is NP-complete.

• Still, we are able to show for an important special
case – equality is restricted to atomic values – that
composition-free Core XQuery is just as expressive as
Core XQuery with composition. Thus, under the usual
complexity-theoretic assumptions, the composition-free
language is an exponentially less succinct version of the
language with composition.

An overview of the complexity results of this paper – to-
gether with the results from [7] is given in Table 1. Since the
variables in composition-free XQuery range only over sub-
trees of the input tree, supporting deep value equality has
no influence on the complexity of queries, differently from
the case of Core XQuery with composition.

Nonrecursive composition-free XQuery is an important
class of queries, and indeed, most practical XQueries be-
long to this class. (For instance, only a handful of the
XML Query Use Case queries [15] employ composition.)
Composition-free (Core) XQuery is also popular among im-
plementors of limited prototype XQuery engines, e.g. [8].
Our preliminary expressiveness results show that restricting
oneself to implementing composition-free Core XQuery does
not cause a loss of generality, at least if equality checking is
limited to atomic value equality. The expressiveness result
also gives a partial explanation for why practical XQueries
tend to be composition-free, as observed above. Writing
more succinct queries takes an effort, and apparently does
not pay off for many queries.

Note that other functional languages such as monad al-
gebra [12] do not seem to have natural “composition-free”
fragments that remain expressive.

A major motivation of this work is to define simple but
relevant fragments of XQuery suitable for research prototype
implementations and theoretical study (see also [4] for an-
other attempt towards this goal). Indeed, composition-free
Core XQuery may allow for special, efficient implementa-
tion techniques because all variables only range over nodes
in the input tree (never over nodes from intermediate query
results).

The structure of this paper is as follows. In Section 2, we
introduce a clean fragment of nonrecursive XQuery, Core
XQuery , that will be the language studied in the remainder
of the paper. In Section 3 we introduce composition-free
Core XQuery. In Section 4, we prove the PSPACE- and NP-
completeness results for the complexity of composition-free
Core XQuery. Finally, in Section 5, we prove the expressive-
ness result that composition-free Core XQuery captures full
Core XQuery with “child” and atomic equality.

We assume basic complexity classes such as TC0, NC1,
LOGSPACE, NP, PSPACE, and NEXPTIME known and
refer to [6] for the relevant complexity-theoretic background.

By TA[2O(n), O(n)], we denote the class of all problems
solvable by alternating Turing machines in linear exponen-
tial time with a linear number of alternations (see [6] for
definitions). Closure and hardness are under LOGSPACE-
reductions for NP, PSPACE, and NEXPTIME and under
LOGLIN-reductions (that is, LOGSPACE-reductions whose

output is linear) for TA[2O(n), O(n)].
We use the now standard notions of data, query, and com-

bined complexity introduced by Vardi [13].

2. CORE XQUERY
We consider the fragment of XQuery with abstract syntax

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in query return query

| if cond then query

| (let var := 〈a〉query〈/a〉) query

cond ::= var = var | query

where a denotes the XML tags, axis the XPath axes “child”
and “descendant”, var a set of XQuery variables $x, $x1,
$x2, . . . , $y, $z, . . . with a distinguished root variable (which
is the unique free variable in the query), and ν a node test
(either a tag name or “*”). We refer to this fragment as
Core XQuery , or XQ for short.

For simplicity, we will work with pure node-labeled un-
ranked ordered trees, and by atomic values, we will refer to
leaves (or equivalently, their labels).

XQuery supports several forms of equality. We will not
try to use the same syntax (=, eq, or deep equal) as in
the current standards proposal – it is not clear whether the
syntax has stabilized. Throughout this paper, equality is by
value (that is, by value as a tree rather than by the yield of
strings at leaf nodes of the tree). We will write =deep and
=atomic for deep and atomic equality, respectively. We will
use = for statements that apply to both forms of equality.

Our only other divergence from XQuery syntax is that we
assume if-expressions of the form “if φ then α” rather than
“if φ then α else β”. Of course, our if-expressions can be
considered as a shortcut for “if φ then α else ()” and else-
branches can be simulated using negation, “if not(φ) then β”.

We define the semantics of an XQ expression α with k free
variables using a function [[α]]k – given in Figure 1 – that
takes a k-tuple of trees as input. On input tree t, query
Q evaluates to [[Q]]1(t). The symbol] in Figure 1 denotes
list concatenation, li the i-th element of list l, <t

doc is the

[[()]]k(~e) := []

[[〈a〉α〈/a〉]]k(~e) := [〈a〉[[α]]k(~e)〈/a〉]

[[α β]]k(~e) := [[α]]k(~e)] [[β]]k(~e)

[[for $xk+1 in α

return β]]k(~e) := let l = [[α]]k(~e);

return
]

1≤i≤|l|

[[β]]k+1(~e, li)

[[(let $xk+1 := α) β]]k(~e) := let l = [[α]]k(~e);

return [[β]]k+1(~e, l1)

[[$xi]]k(t1, . . . , tk) := [ti]

[[$xi/χ :: ν]]k(t1, . . . , tk) := list of nodes v of tree ti s.t.

χti(rootti , v) ∧ labti

ν (v)

in order <ti

doc

[[if φ then α]]k(~e) := if [[φ]]k(~e) then [[α]]k(~e) else []

[[$xi = $xj]]k(t1, . . . , tk) := if ti = tj then [〈yes/〉] else []

Figure 1: Semantics of Core XQuery.

depth-first left-to-right traversal order through tree t, χt is
the axis relation χ on t, labt

∗ is true on all nodes of t, and
labt

a, for a a tag name, is true on those nodes of t labeled a.
All XQ queries evaluate to lists of nodes. However, we as-
sume that XQ variables always bind to single nodes rather
than lists; our fragment assures this. This semantics is
(observationally) consistent with XQuery as currently un-
dergoing standardization through the W3C [14] restricted
to Core XQuery.

In our definition of the syntax of Core XQuery, we have
been economical with operators introduced. Since condi-
tions are true iff they evaluate to a nonempty collection,

true := 〈a/〉

φ or ψ := φ ψ

φ and ψ := if φ then ψ

some $x in α satisfies φ := for $x in α return φ

Using deep equality, we can define negation,

not φ :=
�

() =deep if φ then 〈b/〉
�

.

Conditions “every $x in α satisfies φ” can be defined us-
ing “not” and “some”. We will use the shortcut 〈a/〉 for
〈a〉()〈/a〉. It is clear that

Proposition 2.1. Let X be a set of operations and axes.

• Each XQ [=deep, not, every,X] query can be translated
in LOGLIN into an equivalent XQ [=deep,X] query.

• Each XQ [and, or, some,X] query can be translated in
LOGLIN into an equivalent XQ [X] query.

Previous results on XQ
The following results on the complexity and expressive power
of XQ have been established in [7].

Proposition 2.2 ([7]). W.r.t. combined complexity,

• XQ [=deep, all axes] is in EXPSPACE;

• XQ [=atomic, all axes, not] is in TA[2O(n), O(n)]; and

• XQ [=atomic, all axes] is in NEXPTIME.

Proposition 2.3 ([7]). W.r.t. query complexity,

• XQ [=deep, child] is TA[2O(n), O(n)]-hard;

• XQ [=atomic, child, not] is TA[2O(n), O(n)]-hard; and

• XQ [=atomic, child] is NEXPTIME-hard.

Proposition 2.4 ([7]). W.r.t. data complexity,
XQ [=deep, all axes] is

• LOGSPACE-complete under NC1-reductions if the XML
input is given as a DOM tree and

• in TC0 if the XML input is given as a character string.

It has been shown that many query languages for complex
values that were developed earlier, such as nested relational
algebra [5], complex value algebra without powerset [1], and
monad algebra [12], share the same expressive power. Core
XQuery is an interesting fragment of XQuery because it cap-
tures precisely this degree of expressiveness, which is com-
monly deemed “right” for nested, deeply structured data.

Proposition 2.5 ([7]). XQ[=, child] captures – up to
data representation issues – monad algebra on lists [12].

That is, there are fixed mappings “V2T” (from complex
values to trees), “T2V” (from trees to complex values), “M2X”
(from monad algebra on lists to XQ), and “X2M” (from XQ
to monad algebra on lists), s.t. for XQ query Q and tree T ,

X2M(Q)(T2V(T)) = T2V(Q(T))

and for monad algebra query Q and complex value V ,

M2X(Q)(V2T(V)) = V2T(Q(V)).

The “representation issues” are that the mappings “V2T”
and “T2V” are needed. However these are independent from
the mappings between the queries.

Proposition 2.5 holds for = being either atomic or deep
value equality. From Proposition 2.5 it also follows that
XQ [=, child] is a conservative extension of relational algebra
up to representation issues in the spirit of [10], just like
monad algebra [12].

3. COMPOSITION-FREE XQ
Composition-free Core XQuery, XQ−[not], now is the frag-

ment of Core XQuery obtained by the grammar

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in var/axis :: ν return query

| if cond then query

cond ::= var = var | var = 〈a/〉 | true

| some var in var/axis :: ν satisfies cond

| cond and cond | cond or cond

| not cond

The keyword “every” can again be obtained from “some”
and “not”. Testing whether condition $x/χ :: ν (where χ is

an axis and ν is a node test) can be matched is of course
possible as “some $y in $x/χ :: ν satisfies “$y = $y”. Pos-
itive composition-free Core XQuery XQ− is again obtained
by removing negation “not” from the language.

For our expressiveness proof below, we will use a variant
of XQ− with less syntax, i.e. in which conditions are defined
using the usual query operations rather than “some”, “and”,
and “or”.

Let XQ∼ denote the XQ queries

• which do not contain “let”-expressions,

• for which for each expression “for $x in α return β”,
α is of the form $x/ν, and

• which in addition support conditions $x = 〈a/〉.

XQ∼ and XQ− are expressively equivalent.

Proposition 3.1. XQ∼ = XQ−.

Proof Sketch. ⇒: For a mapping from XQ∼ to XQ−,
we define an appropriate translation function f that we use
to rewrite all maximal if-conditions (i.e., conditions of if-
expressions that are not subexpressions of if-expressions):

f(α β) := f(α) or f(β)

f(for $y in $x/ν return α) := some $y in $x/ν

satisfies f(α)

f(if φ then α) := f(φ) and f(α)

f(not φ) := not f(φ)

f(〈a〉α〈/a〉) := true

On all other kinds of expressions, f is the identity.
⇐: For a mapping from XQ− to XQ∼, we only need

to eliminate “true”, “some”, “and”, and “or” using their
definitions from Section 2. 2

Example 3.2. It is easy to verify that the query

<result>

{ for $x in $root/a return

if not(for $y in $x/b return

if $y/c then ($y/d $y/e))

then $x/f }

</result>

is XQ∼. The corresponding XQ− query is

<result>

{ for $x in $root/a return

if not(some $y in $x/b satisfies

($y/c and ($y/d or $y/e)))

then $x/f }

</result> 2

The mappings from the proof of Proposition 3.1 can be
implemented efficiently, thus our complexity results estab-
lished below will hold for both XQ− and XQ∼.

4. COMPLEXITY RESULTS FOR XQ−

We now provide our complexity characterization of com-
position-free Core XQuery.

As announced in the introduction, the query evaluation
problem for XQ− is in polynomial space w.r.t. combined
complexity.

Proposition 4.1. XQ−[=deep, all axes, not] is in space
O(|Q| · log |t|), where |Q| is the size of the query and |t| is
the size of the data tree.

Proof Sketch. It is easy to check that by definition of the
fragment, XQuery variables always range exclusively over
nodes of the input tree. This can be verified by checking
the invariant that each variable is introduced using a “for”-
statement over a collection defined by an expression $x/ν,
starting at the root node of the input tree.

Thus there is a straightforward algorithm – direct nested-
loop based evaluation – for XQ− queries that only takes
memory to store a pointer into the input tree (taking space
log |t|) for each of the O(|Q|) variables in the query. 2

For the remaining results, we study decision problems and
thus Boolean queries. Since valid XML query results have
to consist of at least a root node, we say that a Boolean
(XQ−) query 〈a〉α〈/a〉 returns true iff the root node of the
result tree has at least one child.

Proposition 4.2. XQ−[=atomic, child, not] is PSPACE-
hard w.r.t. query complexity.

Proof Sketch. The problem is PSPACE-hard already with
respect to query complexity (i.e., when the input tree is
fixed). The proof is a minor variation of the standard proof
of the PSPACE-hardness of the relational calculus (cf. [11]),
and is by reduction from the Quantified Boolean Formula
evaluation problem (QBF). We illustrate it with an exam-
ple, which should be easy to generalize. Consider the QBF
∀x∃y(x ⇔ y), which is true. This formula can be phrased
as the query

〈a〉

{ if every $x in $root/* satisfies

(some $y in $root/* satisfies

(not $x=“t” or $y=“t”) and

(not $y=“t” or $x=“t”))

then 〈yes/〉}

〈/a〉

over the fixed data tree consisting of a root node with two
children, one with string value “t” and the other with string
value “f”. (Of course, “every $x in Q satisfies φ” is the same
as “not(some $x in Q satisfies not(φ))”) 2

While negation and universal quantification were redun-
dant in XQ [=deep], and excluding them did not reduce the
complexity of the language [7], it is interesting to consider
the case of XQ− without negation.

Proposition 4.3. XQ−[=deep, all axes] is in NP w.r.t.
combined complexity.

Proof Sketch. If the result of the query is to be nonempty,
a node has to be written at a certain for-depth k (so the
subexpression responsible for the node has up to k free
XQuery variables). We can guess the value assignments
of these and then check the conditions (this includes axes,
node-tests, and if-conditions) along the for-loops up to depth
k in polynomial time. (Note that negation only applies to
conditions that contain XPath, but no XQuery.) 2

Proposition 4.4. XQ−[=atomic, child] is NP-hard w.r.t.
query complexity.

Proof Sketch. This follows immediately from the NP-
hardness of conjunctive (relational) queries [2], and a proof
can be given e.g. by reduction from 3-Colorability: The fixed
data tree consists of a root node and three children, which
are labeled “red”, “green”, and “blue”, respectively.

Given a graph G = (V,E) with V = {v1, . . . , vm} and

E = {{vi(1,1), vi(1,2)}, . . . , {vi(n,1), vi(n,2)}}

(1 ≤ i(·, ·) ≤ m), we construct the query

<result>
{ for $x1 in $root/* return

. . .

for $xm−1 in $root/* return
for $xm in $root/* return
if (not $xi(1,1) =atomic $xi(1,2)) and ... and

(not $xi(n,1) =atomic $xi(n,2)) then
<yes/>

}
</result>

It is easy to verify that indeed this query computes “yes”
nodes precisely if G is 3-colorable. Obviously, the query can
be computed from G in logarithmic space. 2

5. EXPRESSIVENESS OF XQ−

In this final section, we show that surprisingly, for an im-
portant case (atomic equality and “child” as the only sup-
ported axis), composition-free Core XQuery is actually just
as expressive as full Core XQuery. This is true even though
XQ− is in PSPACE and XQ is hard for TA[2O(n), O(n)].
Thus under commonly-held complexity theoretic assump-
tions, XQ is exponentially more succinct than XQ−.

We use the shortcut (〈a〉α〈/a〉)/χ::ν for $x/χ::ν such that
$x has been defined using “let” as (〈a〉α〈/a〉). Below, “dos”
is a shortcut for the “descendant-or-self” axis; it will be
redundant because $x/dos::ν is equivalent to

(if $x/self::ν then $x) $x//ν.

Lemma 5.1. Let a be a label, χ an axis, ν a nodetest, and
α an XQ∼[=atomic, child, descendant, self, dos, not] expres-
sion. Then there is an XQ∼[=atomic, child, descendant, self,
dos, not] expression equivalent to (〈a〉α〈/a〉)/χ::ν.

Proof Sketch. Rules to rewrite each such expression

(〈a〉α〈/a〉)/χ::ν

into an equivalent XQ∼[=atomic, child, descendant, self, not]
expression are easy to specify:

(〈a〉 α 〈/a〉)/ν ` α/self::ν

(〈a〉 α 〈/a〉)/self::b ` ()

(〈a〉 α 〈/a〉)/self::a ` 〈a〉 α 〈/a〉

(〈b〉 α 〈/b〉)/self::* ` 〈b〉 α 〈/b〉

(〈a〉 α 〈/a〉)//ν ` α/dos::ν

(〈a〉 α 〈/a〉)/dos::∗ ` 〈a〉 α 〈/a〉 (α//∗)

(〈a〉 α 〈/a〉)/dos::a ` 〈a〉 α 〈/a〉 (α//a)

(〈a〉 α 〈/a〉)/dos::b ` α//b

()/χ::ν ` ()

(α β)/χ::ν ` (α/χ::ν) (β/χ::ν)

(for $x in α return β)/χ::ν ` for $x in α

return (β/χ::ν)

(if φ then α)/χ::ν ` if φ then (α/χ::ν)

($x/χ::ν)/χ′::ν′ ` for $y in $x/χ::ν

return $y/χ′::ν′

(Note that ($x/χ::ν)/χ′::ν′ in the final rule is really equiv-
alent to the for-expression on the right-hand side of that
rule, and is in general not equivalent to $x/χ::ν/χ′::ν′, as
the former may produce duplicates if both χ and χ′ are “de-
scendant”.) 2

Theorem 5.2. XQ∼[=atomic, child, desc, self, not]
captures the XQ [=atomic, child, desc, self, not] queries.

Proof Sketch. We first replace each expression of the form
“(let $x := 〈a〉α〈/a〉) β” by an expression β′ := β[$x ⇒
〈a〉α〈/a〉] obtained by substituting each occurrence of vari-
able $x in β by 〈a〉α〈/a〉.

We now need to consider where such a replacement of a
variable $x by an expression 〈a〉α〈/a〉 can occur:

1. Inside an equality $x =atomic α (with α either a vari-
able or a constant 〈b/〉).

To rewrite $x with 〈a〉α〈/a〉, we may assume that α
is (); otherwise, we could not type 〈a〉α〈/a〉 to be an
atomic value. Thus we obtain 〈a/〉 =atomic α, which is
XQ∼. Conditions 〈a/〉 =atomic 〈a/〉 and 〈a/〉 =atomic

〈b/〉 are rewritten into “true” and “not(true)”, respec-
tively.

2. Inside an expression $x or $x/χ::ν (either in the “in”-
expression of a for-loop or as an expression construct-
ing “output”).

Here rewriting may lead to expressions of the form
(〈a〉α〈/a〉)/χ::ν, which is not XQ syntax. We can elim-
inate such expressions using Lemma 5.1.

Now the query obtained is already an XQ∼ query if in
all expressions “for $x in α return β”, α is of the form $z
or $z/χ::ν. Otherwise, we apply the rewrite rules from Fig-
ure 2. This may again produce expressions (〈a〉α〈/a〉)/χ::ν,
by rule (2). We eliminate such cases again using Lemma 5.1.

It can be verified that the rewrite system thus specified
indeed maps any XQ [=atomic, child, desc, self, not] query to
an equivalent XQ∼[=atomic, child, desc, self, not] query. An
example mapping to XQ∼ illustrating our rewrite system is
given in Figure 3. 2

Acknowledgments
I thank Dan Olteanu and Stefanie Scherzinger for their com-
ments on an earlier version of the paper.

6. REFERENCES
[1] S. Abiteboul and C. Beeri. “The Power of Languages

for the Manipulation of Complex Values”. VLDB J.,
4(4):727–794, 1995.

[2] A. K. Chandra and P. M. Merlin. “Optimal
Implementation of Conjunctive Queries in Relational
Data Bases”. In Conference Record of the Ninth
Annual ACM Symposium on Theory of Computing
(STOC’77), pages 77–90, Boulder, CO, USA, May
1977.

for $x in () return α ` () (1)

for $x in (〈a〉 α 〈/a〉) return β ` β[$x ⇒ (〈a〉 α 〈/a〉)] (2)

for $x in (α β) return γ ` (for $x in α return γ) (for $x in β return γ) (3)

for $y in (for $x in α return β) return γ ` for $x in α return for $y in β return γ (4)

for $x in (if φ then α) return β ` for $x in α return if φ then β (5)

for $y in $x return α ` α[$y ⇒ $x] (6)

Figure 2: Rewrite rules for translating for-expressions to XQ∼.

(let $x := 〈a〉{ for $w in $root/* return 〈b〉{$w}〈/b〉 }〈/a〉) for $y in $x/b return $y/∗
elim.let

`

for $y in (〈a〉{ for $w in $root/* return (〈b〉{$w}〈/b〉) }〈/a〉)/b return $y/∗
Lem. 5.1

`

for $y in (for $w in $root/* return (〈b〉{$w}〈/b〉)) return $y/∗
4

`

for $w in $root/* return for $y in (〈b〉{$w}〈/b〉) return $y/∗
2

`

for $w in $root/* return (〈b〉{$w}〈/b〉)/∗
Lem. 5.1

`

for $w in $root/* return $w

Figure 3: Example rewriting.

[3] G. Gottlob, C. Koch, and R. Pichler. “Efficient
Algorithms for Processing XPath Queries”. In Proc.
VLDB 2002, pages 95–106, Hong Kong, China, 2002.

[4] J. Hidders, J. Paredaens, R. Verkammen, and
S. Demeyer. “A Light but Formal Introduction to
XQuery”. In Proc. XSYM, pages 5–20, 2004.

[5] G. Jaeschke and H.-J. Schek. “Remarks on the
Algebra of Non First Normal Form Relations”. In
Proc. PODS’82, pages 124–138, 1982.

[6] D. S. Johnson. “A Catalog of Complexity Classes”. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 1, chapter 2, pages 67–161.
Elsevier Science Publishers B.V., 1990.

[7] C. Koch. “On the Complexity of Nonrecursive XQuery
and Functional Query Languages on Complex
Values”. In Proc. PODS’05, 2005.

[8] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “Schema-based Scheduling of Event
Processors and Buffer Minimization for Queries on
Structured Data Streams”. In Proc. VLDB 2004,
Toronto, Canada, 2004.

[9] A. Marian and J. Siméon. “Projecting XML
Documents”. In Proc. VLDB 2003, pages 213–224,
2003.

[10] J. Paredaens and D. Van Gucht. “Possibilities and
Limitations of Using Flat Operators in Nested Algebra
Expressions”. In Proc. PODS, pages 29–38, 1988.

[11] L. J. Stockmeyer. The Complexity of Decision
Problems in Automata Theory. PhD thesis, Dept.
Electrical Engineering, MIT, Cambridge, Mass., USA,
1974.

[12] V. Tannen, P. Buneman, and L. Wong. “Naturally
Embedded Query Languages”. In Proc. of the 4th
International Conference on Database Theory (ICDT),
pages 140–154, 1992.

[13] M. Y. Vardi. “The Complexity of Relational Query
Languages”. In Proc. 14th Annual ACM Symposium

on Theory of Computing (STOC’82), pages 137–146,
San Francisco, CA USA, May 1982.

[14] World Wide Web Consortium. “XQuery 1.0 and
XPath 2.0 Formal Semantics. W3C Working Draft
(Aug. 16th 2002), 2002.
http://www.w3.org/TR/query-algebra/.

[15] “XML Query Use Cases. W3C Working Draft 02 May
2003”, 2003.
http://www.w3.org/TR/xmlquery-use-cases/.

An Empirical Evaluation of Simple DTD-Conscious
Compression Techniques

James Cheney
University of Edinburgh

Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

1. INTRODUCTION
The term “XML compression” has been used to describe

techniques addressing several different (though related) prob-
lems, all relevant to Web data management:

1. minimum-length coding for efficient XML document
storage and transmission [13, 5, 10, 1];

2. compact binary formats for efficient (streaming) XML
message processing and transmission [8, 9]; and

3. storage techniques for efficient XML database query
processing [11, 17, 3, 2].

To avoid ambiguity, in this paper, the term “XML compres-
sion” is used in the first (and, we believe, original and most
accurate) sense exclusively. We will compare our proposed
techniques only with other approaches that address problem
(1), not problems (2) or (3).

Since XML markup often displays a high degree of redun-
dancy, ordinary text compressors (gzip [7], bzip2 [15], etc.)
are frequently used for XML storage and transmission. Text
compressors perform adequately for archiving XML files in
many situations; however, they are blind to the underlying
structure of the XML document so may miss compression
opportunities. Because of this, researchers have studied, and
companies have marketed, XML compression tools.

In previous work [5], we developed a streaming XML-
conscious compressor xmlppm, and showed that it provides
compression superior to other contemporary text and XML-
conscious compression techniques (including XMill [13]).

The purpose of this paper is to investigate whether DTD
information can be used to improve compression in xmlppm

enough to justify the added implementation effort. We con-
sider the minimum-length coding problem for valid XML:
Given a data source producing XML conforming to a DTD,
find the smallest possible encoding. We assume both sender
and receiver have access to identical copies of the DTD.

It appears to be common sense that a DTD, XML Schema,
or RELAX/NG schema should be useful in helping to com-
press conforming XML documents, and many of the above

Eighth International Workshop on the Web and Databases (WebDB 2005)
June 16–17, 2005, Baltimore, Maryland, USA
Copyright 2005 held by the author.

approaches exploit or require an XML Schema. However,
we are aware of no rigorous experimental validation of DTD
or schema-conscious XML compression in comparison with
competitive DTD-unconscious XML compression techniques.

We choose to focus on DTDs exclusively (rather than
XML Schema or RELAX/NG schemas) for several reasons:
DTDs are simpler, more established, and more widely adopted;
DTD parsing is built-in to most XML parsers; DTD valida-
tion is easier to implement than for the other approaches;
and substantial compression improvements turn out to be
possible using DTDs only. Nevertheless, XML Schema and
RELAX/NG schemas can provide much more detailed infor-
mation about documents, especially about their text con-
tent. We view generalizing our results to more powerful
schema systems as an important future direction.

Because xmlppm already compresses both XML structure
and text very well, and because of the complexity of the
underlying PPM algorithms, it is easy to generate ideas for
DTD-based compression that work well “on paper” but are
either incompatible with xmlppm or do not improve compres-
sion relative to xmlppm. In this paper we describe dtdppm,
a version of xmlppm that simultaneously validates and com-
presses XML relative to a DTD. Our main contribution is
the development of four simple DTD-based optimizations
that techniques that do work well with xmlppm: ignorable
whitespace stripping, symbol table reuse, element symbol pre-
diction, and bitmap-based attribute list coding. These simple
techniques are validated by experiments showing substantial
compression benefits for a variety of real data sources.

The structure of the rest of the paper is as follows. Section
2 reviews xmlppm. Section 3 presents the DTD-conscious
compression techniques used in dtdppm. Section 4 presents
experimental results, and Section 5 discusses the results.
Section 6 concludes.

2. BACKGROUND
In previous work, we developed xmlppm [5, 4], an algo-

rithm for XML compression based on Prediction by Partial
Match (PPM) [6], one of the most advanced known text
compression techniques. PPM compression builds a statis-
tical model of the data seen so far, and uses it to generate a
probability distribution predicting the next symbol; the ac-
tual symbol is transmitted using arithmetic coding relative
to this distribution. In xmlppm, an XML file is first parsed
using a SAX parser to generate a stream of SAX events.
Each event is encoded using a bytecode representation called
ESAX. The ESAX bytecodes are encoded using one of sev-
eral “multiplexed” PPM compressors, for elements, charac-

<?xml version="1.0"?>
<e a="foo">
 <e2> bar </e2>
 ...
</e>
<!-- Comment -->

Elements

Attributes

Text

Misc

Arithmetic
Coder

XML Bits

0010...XML Bytecoder

ProbabilitiesXML Bytecode

Figure 1: xmlppm architecture

ters, attributes, and miscellaneous symbols. The encoder
and decoder states are in lockstep so that the decoder al-
ways knows which model to use for the next symbol. The
architecture of xmlppm is shown in Figure 1.

This XML-conscious, multiplexed modeling approach of-
fers several benefits over simply using PPM compression di-
rectly on XML text. First, xmlppm tokenizes element and
attribute names, so less time is spent on low-level PPM
compression. Second, text, element, and attribute content
in XML have different statistical characteristics, so using
different models for each kind of data improves compres-
sion. Third, xmlppm uses its knowledge of the structure of
XML documents to influence the underlying statistical mod-
els and improve compression. Specifically, the element, at-
tribute and text PPM models are given “hints” about the
surrounding XML element context. (The paper [5] gives full
details.)

PPM techniques are among the most advanced known text
compression techniques, and many XML documents consist
primarily of unstructured text, so it is not surprising that
using PPM leads to improved XML compression. However,
this level of performance comes at a cost. In the origi-
nal reported experiments [5], the implementation of xmlppm
was very slow (ranging from 5–40 times slower than bzip2).
Since then, the speed of xmlppm has been improved consid-
erably by incorporating Shkarin’s highly optimized PPMII
implementation of PPM [16]. The most recent version of
xmlppm [4] is still about a factor of 5–10 slower than gzip,
but is generally as fast as or faster than bzip2, while pro-
viding better compression.

Table 1 compares gzip, bzip2, the current implementa-
tion of xmlppm, and dtdppm on the corpus used in [5]. The
experimental setup is described in Section 4. The XML
column lists the size of the input files in bytes; the other
columns measure compression rate in bits per input charac-
ter (bpc) for each compressor. Times are in seconds. The
final column % shows the percentage change in compres-
sion rate or execution time for dtdppm vs. xmlppm (that is,
((X −D)/X)%, where X is the rate/time for xmlppm and D
the rate/time for dtdppm). The results are discussed further
in Section 4.1.

3. COMPRESSION TECHNIQUES
We modified the current version of xmlppm to read in and

validate its input relative to a DTD: the resulting DTD-
conscious compressor is called dtdppm. In dtdppm, the DTD
validation state is available for use during compression, so
DTD-specific optimizations are possible. We have imple-
mented four DTD-based optimizations: ignorable whites-
pace stripping, symbol table reuse, element symbol predic-
tion, and bitmap-based attribute list coding.

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

elts 113181 0.622 0.416 0.375 0.327 13%
pcc1 51647 0.557 0.444 0.301 0.229 24%
pcc2 262669 0.320 0.183 0.145 0.123 15%
pcc3 186857 0.374 0.227 0.167 0.144 14%
play1 251898 2.160 1.549 1.449 1.453 −0.21%
play2 136841 2.141 1.630 1.473 1.464 0.62%
play3 279703 2.267 1.647 1.569 1.566 0.18%
sprot 10268 2.056 2.048 1.692 1.430 16%
stats1 669347 0.798 0.369 0.294 0.282 4.2%
stats2 616094 0.750 0.338 0.272 0.258 5.3%
tal1 734590 0.313 0.123 0.117 0.102 13%
tal2 510111 0.322 0.151 0.127 0.107 16%
tal3 251698 0.330 0.198 0.152 0.125 18%
tpc 287992 1.476 1.101 1.007 0.980 2.6%
tree 6704 1.734 1.494 1.104 0.715 35%
w3c1 220794 1.888 1.464 1.302 1.275 2.0%
w3c2 196233 1.947 1.534 1.365 1.338 2.0%
w3c3 201849 2.139 1.722 1.530 1.471 3.8%
w3c4 104938 1.804 1.521 1.333 1.280 4.0%
w3c5 247465 1.823 1.435 1.336 1.287 3.7%
weblog 2304 2.160 2.559 1.747 1.420 18%
total 5343183 1.035 0.701 0.625 0.603 3.6%
time(s) 0.61 2.38 1.89 2.50 −32%

Table 1: XMLPPM corpus

3.1 Ignorable whitespace stripping
Much of the whitespace in an XML document is irrele-

vant to the data being represented: for example, whites-
pace is often used only as a visual cue to the document’s
hierarchical structure. We call this whitespace ignorable.
Our implementation attempts to drop ignorable whitespace
whenever possible. PPM algorithms typically use up to 10
of the most recent characters as context to predict the next
symbol. Compressing long sequences of whitespace flushes
the context, so the model is unprepared for whatever comes
next. Therefore, though it may seem trivial, whitespace
stripping is crucial for good PPM compression performance
because it helps prevent PPM models from losing track of
context.

It is not generally safe to drop whitespace in the absence
of a DTD, since whitespace is significant in some elements
(e.g., <xsl:text>). However, in the presence of a DTD,
whitespace can usually be safely ignored whenever it occurs
inside an element whose content model does not mention
#PCDATA. dtdppm tests for this whenever character data is en-
countered, and ignorable whitespace is dropped. When doc-
uments with ignored whitespace are decompressed, dtdppm
optionally inserts newlines and indentation so that the re-
sulting document will be human-readable rather than one
long line.

Nevertheless, there may be documents with whitespace
that is ignorable by our definition but which users wish to
preserve, so whitespace stripping is optional.

3.2 Symbol table reuse
In xmlppm, element and attribute tags (and some other

kinds of symbols) are replaced by symbol table references.
However, in the absence of a DTD, the symbol table needs
to be built dynamically by the encoder and decoder, so the
text for each symbol is sent when it is first encountered in
the document. In dtdppm, the DTD is available to both
encoder and decoder, and it is not necessary to transmit the

symbols inline. Instead, both encoder and decoder can refer
to a symbol table built from the DTD.

The savings from this optimization are not dramatic, since
the DTD may be much smaller then the document; however,
symbol table reuse is important in a situation in which many
small documents are to be compressed, especially since or-
dinary compression techniques are less effective for smaller
documents.

3.3 Element symbol prediction
In the absence of a DTD, any element tag can, in principle,

occur anywhere in the document. However, in valid XML,
elements may have regular expression content models

<!ELEMENT foo (bar,(baz|bar)*)>

that constrain the children of the element. For highly struc-
tured data, frequently there is only one possible next element
symbol; this can be determined by inspecting the state of the
DTD validator. When this is the case, the dtdppm encoder
omits the element bytecode since the decoder can infer the
next element symbol from context. Similarly, it is possible
to test whether the remaining content model is empty. In
this case, the “end-element” bytecode that would ordinar-
ily be sent is omitted because the decoder can infer it from
context.

This technique may seem trivial since it does not do any-
thing special other than to omit symbols that can be pre-
dicted from context. However, more sophisticated tech-
niques seem to interact badly with PPM. For example, in
approaches like those of Levene and Wood [12] or XCom-
prez [10], element content sequences are encoded in a more
sophisticated way that is dependent on the remaining reg-
ular expression content model. We experimented with a
simple form of this approach in dtdppm, but found that it
does not help much relative to ordinary xmlppm compression.
This is because PPM compresses byte-aligned text, so us-
ing non-byte-aligned encodings for element symbols confuses
the underlying PPM model. Nevertheless, this is definitely
an area where improvement may be possible. Combining so-
phisticated regular expression coding techniques with PPM
compression is a challenge left for future work.

3.4 Bitmap-based attribute list encoding
Attribute list declarations

<!ATTLIST elt att1 TYPE1 DFLT1 att2 TYPE2 DFLT2 ...>

are one of the most complicated features of DTDs. Attribute
values can have one of several types TYPE:

CDATA Arbitrary text
ID Globally unique, can’t be FIXED

IDREF(S) Must refer to an ID

NMTOKEN(S) Must be a name token
ENTITY(IES) Must be a declared ENTITY

NOTATION (v1| · · · |vn) Enumerated, declared NOTATION

(v1| · · · |vn) Enumerated type
Attribute types IDREF, NMTOKEN, and ENTITY can be plural.
Attributes can also have several default specifications DFLT:

"dflt" Default value is "dflt"

#FIXED "dflt" Must be present and equal "dflt"
#REQUIRED Value must be present
#IMPLIED May be absent, no default

In XML, the order of attribute-value pairs is irrelevant; thus,
we may rearrange the attribute list if doing so improves

compression. In dtdppm, we encode attribute lists by send-
ing a (byte-aligned) bitmap indicating which attributes are
present, then sending the attribute values. Default and type
constraints are used to avoid sending redundant information.

The details of the encoding are as follows. First, the at-
tribute list is scanned in order to build a bit vector. This bit
vector says which attribute values are going to be sent next.
#FIXED and #REQUIRED attributes are not included, since
they must be present in a valid document. For #IMPLIED

attributes, 1 indicates present, 0 absent. For attributes with
a default value, 1 indicates that the value is non-default, 0
otherwise. Subsequently, the values of #REQUIRED attributes
and other attributes whose bitmap value is 1 are trans-
mitted. The values of attributes with enumerated types
(v0| · · · |vn) are encoded as bytecodes 0, . . . , n.

For example, given

<!ATTLIST elt att1 CDATA #FIXED "foo"

att2 (x|y|z) #REQUIRED

att3 CDATA #IMPLIED

att4 NMTOKEN "bar">

the encoding of the attribute list of

<elt att1="foo" att2="y" att4="baz">

is 40 01 ’b’ ’a’ ’z’ 00. The top two bits of the first byte
(4016 = 010000002) code the absence of att3 and (non-
default) presence of att4; 01 codes enumerated value y; and
the non-default value baz of att4 is transmitted as a null-
terminated string.

There are many possible variations on this theme. We
initially tried two simpler ideas, based on adjacency lists
and vector representations of attribute lists, each of which
worked well for some examples but not for others; the bitmap
approach combines the advantages of the two approaches.

4. EVALUATION
The design of a corpus for testing compression techniques

can be a subtle issue, because of the possibility of accidental
bias towards one or another kind of data. So far, no stan-
dard corpus for XML compression (let alone DTD/schema-
conscious compression) has emerged. Desirable characteris-
tics of test data include that the data (and DTDs) be freely
available online, that there are nontrivial amounts of data
(whole documents instead of short examples), that the data
is actually valid relative to the DTD, and finally, that the
data be “realistic” (i.e., not random or arbitrary). Obvi-
ously many of these criteria are subjective. Unfortunately,
it is not easy to find data sources having all these charac-
teristics.

We have evaluated dtdppm on five corpora:

• The XMLPPM corpus [5]

• Short documents (NewsML)

• Medium structured application data (MusicXML)

• Medium flat datasets (UW XML repository)

• Large datasets (DBLP, Medline, PSD, XMark)

We are aware of other collections of valid XML, such as
the Niagara experimental data1 but have not had time to
experiment with these other sources.
1http://www.cs.wisc.edu/niagara/data.html

Our experiments were performed on an AMD Athlon 64
3000+ (1.8Ghz clock speed) with 512MB RAM, running Red
Hat Fedora Core 3. We report compression in bits per char-
acter (relative to the original XML input) and total compres-
sion time for gzip, bzip2, xmlppm, and dtdppm for each data
source. (For PPM techniques decompression takes the same
time as compression.) The PPM models used by xmlppm

and dtdppm are order 5 models with 1MB of working mem-
ory per model (for a total of 4MB). We also benchmarked
the current version of XMill2, and found that, as in [5], it
compresses no better than bzip2 but runs up to three times
faster. Because of limited space, these results are omitted.

In addition, we compared the effectiveness of the individ-
ual compression techniques, and found that no single tech-
nique was dominant. Space limits preclude a full discussion.

4.1 The XMLPPM corpus
For comparison with previous work, we evaluated the per-

formance of dtdppm using the same data3 used by [5]. This
corpus contains XML files ranging from small (1KB) to large
(700KB), and including both highly textual data and highly
structured data. DTDs for each file were either constructed
by hand or obtained online. Some errors and inaccuracies
in existing DTDs were corrected.

The realism of this benchmark is debatable; its chief virtue
is variety. Also, results for this benchmark may be skewed
since we constructed some of the DTDs ourselves (with com-
pression in mind), rather than using given DTDs.

Nevertheless, the results (Table 1) do indicate that DTD-
conscious compression can be worthwhile for a variety of
kinds of XML. In particular, small XML fragments (sprot,
from SwissPROT; tree, from Penn Treebank; and weblog,
a web log excerpt) exhibit substantial improvements of 16–
35%, and large, highly-structured files (elts, periodic table
data; pcc1-3, formal proofs; tal1-3, typed assembly lan-
guage files) improve 13–24%. On the other hand, exam-
ples with a lot of text or very regular structure (play1-3,
Shakespeare plays; stats1-2, baseball statistics; tpc, TPC
benchmark data; w3c1-5, W3C standards) did not compress
significantly better (0-5% improvement); one example com-
presses 0.14% worse. For these examples, xmlppm already
compresses regular structure well and the DTDs provide no
information that would help improve text compression. As
with most of our examples, dtdppm ran slightly slower than
xmlppm.

4.2 Short documents
NewsML4 is an XML dialect designed for news articles

from press services (e.g. Reuters). The 80KB NewsML
DTD defines a NewsML document as some metadata and
uses XHTML for the article content (another 56KB). We ob-
tained the DTD and a collection of 246 example NewsML ar-
ticles, ranging from 6.5–18.2KB (average size 11.2KB). The
compression results for the NewsML data are summarized in
Table 2. The “NewsML” line shows the compression rates
over the entire corpus; the “time” line shows the total com-
pression time.

These results suggest that NewsML documents benefit
substantially from DTD-conscious compression, largely, we
believe, due to symbol table reuse. Both xmlppm and dtdppm

2http://www.cs.washington.edu/homes/suciu/XMILL/
3available at http://xmlppm.sourceforge.net/
4http://www.newsml.org

gzip bzip2 xmlppm dtdppm change
(bpc) (bpc) (bpc) (bpc) %

NewsML 2.292 2.241 1.982 1.484 25%
time(s) 0.38 2.19 1.54 6.11 −300%
MusicXML 0.304 0.216 0.223 0.127 43%
time(s) 0.10 1.78 0.57 0.77 −35%

Table 2: NewsML and MusicXML results

are considerably slower than bzip2 in this case; reparsing
the 136KB of DTD files accounts for roughly 55% of dtdppm
running time. This overhead could be alleviated by special-
izing the compressor to the DTD.

4.3 Medium structured application data
XML is becoming a widespread format for storing appli-

cation data: for example, recent versions of popular office
suites either store application data as XML directly, or offer
the ability to export data in XML. However, standard DTDs
for such data are not always available, stable, or heeded.

MusicXML5 is an XML dialect for representing music.
MusicXML documents can be translated to a sheet music
PDF file of either all parts or a single part, as well as to
a MIDI file that can be played directly on a synthesizer or
further processed using sequencing software. We obtained
the MusicXML DTD files (106KB total) and 18 example
MusicXML files ranging from 8.8–230KB (101KB average),
each corresponding to one or two sheets of a musical score.
The compression results for MusicXML are shown in Ta-
ble 2. The best compression is obtained by dtdppm; the
average improvement is 43%. Note that plain xmlppm gener-
ally compresses MusicXML slightly worse than bzip2, but
both xmlppm and dtdppm are slightly faster.

The MusicXML web page claims that gzip-compressed
MusicXML documents are only about twice as large as equiv-
alent documents in MuseData, a custom format. Since dtdppm
compresses MusicXML 58% better than gzip on average,
this suggests dtdppm is competitive with a hand-coded bi-
nary format.

4.4 Medium flat datasets
XML is sometimes used to export, or publish, the data in

a relational table or database, often with some added struc-
ture. The UW XML repository6 includes several example
XML data sources, many of which consist of a flat sequence
of elements with identical structure. Unfortunately, many of
these examples do not possess DTDs, or are not valid. We
chose several medium-sized examples that do have DTDs
and are valid to evaluate dtdppm for such data.

This situation seems to offer great promise, since the DTD
tells us almost everything we need to know about the struc-
ture of the data: only a few details (such as the number of
rows) need to be filled in. However, data with very regular
structure already compresses very well using plain XML-
conscious compression techniques, because the DTD only
tells the compressor things it learns quickly for itself. As
a result, the amount of improvement that can be expected
for such data is limited. On the other hand, many of the
medium-sized files make liberal use of whitespace for read-
ability. As a result, some improvement to compression re-

5http://www.recordare.com/xml.html
6http://www.cs.washington.edu/research/xmldatasets/

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

321gone 24442 2.213 2.228 1.884 1.741 7.5%
cornell 30979 1.026 0.954 0.880 0.732 17%
ebay 35472 2.480 2.580 2.189 2.103 3.9%
reed 283582 0.533 0.332 0.327 0.274 16%
SigRec 478337 1.363 0.812 0.802 0.745 7.1%
ubid 20246 1.494 1.515 1.296 1.114 14%
wash 3068693 0.525 0.317 0.390 0.275 30%
yahoo 25347 1.971 1.903 1.620 1.470 9.3%
total 3967098 0.673 0.431 0.477 0.372 22%
time(s) 0.28 3.21 1.17 1.65 −41%

Table 3: Medium flat file benchmark results

sulting from whitespace stripping is to be expected.
The experimental results are shown in Table 3. In a few

examples (reed, wash, course information; cornell, person-
nel records; ubid, auction data), dtdppm achieves a substan-
tial improvement because of whitespace stripping, improv-
ing compression substantially (14–30%). For the other ex-
amples (321gone, ebay, yahoo, auction data; SigRec, bib-
liographic records) improvement was in the more modest
4–9% range. Overall compression improved 22% relative to
xmlppm (mostly because of wash). For this dataset, bzip2

compressed better than xmlppm, but dtdppm performed best
overall. Perhaps surprisingly, both xmlppm and dtdppm were
2–2.5 times as fast as bzip2.

4.5 Large datasets
Another increasingly common scenario is the use of XML

as a format for serializing large databases. Examples in-
clude scientific databases like SwissPROT/UniPROT and
the Georgetown Protein Sequence Database and bibliographic
databases like DBLP and Medline. These databases are typ-
ically made available on the Web and updated at intervals
ranging from daily to yearly. Because of their size, scalable
and effective compression is very important.

Another large dataset example is the data generated by
XMark. The XMark benchmark [14] has been proposed as
a means for comparing the performance of XML databases.
It consists of a DTD for auction data and a data generator
which generates a random valid document of size propor-
tional to a given “scaling factor”.

In Table 4, we present the results of compressing four
large datasets: xmark is an example XMark file7, medline
is one part of the PubMed database8, psd is a file from
the Georgetown Protein Sequence Database, and dblp is an
XML serialization of the DBLP database. The psd and dblp

examples were obtained from the UW XML repository.
The results vary. For xmark, dtdppm and xmlppm compress

7.7% worse than bzip2. This is the only example in the pa-
per for which dtdppm is not competitive (i.e., within 1% of
the best). For other examples, dtdppm’s compression is com-
petitive or best. However, xmark data may not be a realistic
compression benchmark because it is randomly generated.
The DTDs for these documents do not provide many oppor-
tunities to predict a unique next symbol, so the behavior
of dtdppm is essentially the same as xmlppm. Also, all of
these documents use whitespace only trivially (i.e., each el-
ement tag is on its own line, but there is no indenting), so

7http://www.xml-benchmark.org
8http://www.ncbi.nlm.nih.gov/

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

xmark 116MB 2.616 1.754 1.888 1.889 −0.02%
time(s) 13.4 46.3 39.1 39.5 −0.8%
medline 127MB 1.278 0.888 0.841 0.838 0.4%
time 7.5 65.1 32.3 33.0 −2.2%
psd 717MB 1.209 0.857 0.867 0.846 2.5%
time 33.9 389.7 169.3 170.0 −0.4%
dblp 103MB 1.479 0.963 0.940 0.947 −0.8%
time(s) 6.9 48.8 27.3 28.2 −3.2%

Table 4: Large benchmark results

whitespace stripping has little effect. Compression time is
also similar to xmlppm in most cases, although interestingly
dtdppm and xmlppm are generally 15–60% faster than bzip2.

5. DISCUSSION
There are several lessons that can be learned from our

experiments. DTD-conscious compression (as embodied in
dtdppm) is very effective for small messages, highly-structured
documents, or documents with large amounts of formatting
whitespace. For large datasets, dtdppm does not compress
significantly better than xmlppm; however, both xmlppm and
dtdppm compress as well as or better than bzip2 but 30-50%
faster. xmlppm will probably never be as fast as gzip, but
xmlppm and dtdppm compress significantly better than gzip

while staying within an order of magnitude of gzip’s speed.
Another observation is that DTDs can be well- or ill-

suited for compression. For example, in stats2 (baseball
statistics), the DTD says that each player element has a
sequence of optional sub-elements (e?

1, . . . , e
?
n), but the ac-

tual data exhibits only two instances of this content model.
Similarly, common content models like (e1| · · · |en)∗ do not
provide any information that helps dtdppm. Finding ways to
take advantage of such content models is an important area
for future work, especially since the same kind of techniques
may be useful for compressing regular expression-typed text
in XML Schema.

Another problem is that XML’s data model is ordered,
whereas many data sources (e.g. relation fields, semistruc-
tured data trees, or BibTeX records) are conceptually un-
ordered. DTDs cannot express unordered content models
efficiently so the content model (e1| · · · |en)∗ is often used as
an approximation. Other schema systems such as ASN.1,
RELAX/NG and XML Schema do provide unordered con-
tent models, but it is not obvious how to compress with
respect to such content models effectively. One possibility is
to sort content in unordered content models so as to place
it in a normal form, as with attribute lists; however, this
transformation is non-streaming.

XML encourages a structured approach to data manage-
ment, but this approach is usually followed only up to a
point. A typical example of the use of low-level character
data formats is the use of date strings Mar 15 17:55 instead
of XML markup

<date><month>Mar</month><day>15</day>

<time><hour>17</hour><min>55</min></date>

The former representation is briefer and more human-readable,
but xmlppm will likely compress the latter much better. XML
Schema’s datatypes (especially dates) may be useful for im-
proving compression for this kind of data.

6. RELATED WORK
Liefke and Suciu’s XMill [13] is probably the best known

XML compressor. One interesting aspect of XMill is that
it allows user-defined container specifications using XPath
expressions to define containers and to specify datatype-
specific compressors. This can significantly improve com-
pression, but may require nontrivial user effort. It is pos-
sible that XMill could be made schema-conscious by auto-
matically generating specifications from schemas.

Levene and Wood [12] propose DTD-based encodings for
XML data in which the encoding is dependent on the cur-
rent content model. For example, content matching r|s is
encoded by sending 0 if the content matches r, or 1 if it
matches s, then encoding the content relative to r or s re-
spectively. This encoding has not been implemented as far
as we know; also, although Levene and Wood prove an op-
timality result, it rests on very strong assumptions (data
must conform to a nonrecursive DTD and be generated by
independent random choices). This is a step in the right
direction, but more theoretical understanding is needed.

Jeuring and Hagg [10] have developed XComprez, which
compresses valid XML using an encoding similar to that
of Levene and Wood. They use a powerful experimental
programming language called Generic Haskell in which the
compressor constitutes approximately 650 lines of code (in
contrast to 4300 lines of C++ code for xmlppm and 9000 lines
for dtdppm). It is not yet clear whether this approach scales
to large XML documents, but advanced programming tools
like Generic Haskell may make it easier to rapidly prototype
compression techniques prior to full-scale implementation.

SCMPPM [1] is an XMLPPM variant that uses a sepa-
rate PPM model to compress the text content under each
element. It achieves reported improvements of 20% over
plain XMLPPM when compressing large TREC datasets.
However, it has not been evaluated on other data, so this
result must be taken with a grain of salt.

7. FUTURE WORK
As stated in the introduction, we view dtdppm as the first

step in a logical progression to RELAX/NG- and XML sche-
ma-conscious compression tools. In particular, RELAX/NG
seems like a logical next step because it is not much more
complicated than DTD yet supports datatypes for text con-
tent. As for XML Schema, we are intrigued by the possibility
of compressing text relative to arbitrary regular expressions.
However, we suspect that obvious ways of doing this will not
be as effective as plain PPM or xmlppm; instead, we intend
to find a way to combine PPM and regular expression-based
modeling. If such an approach can be found, we believe it
will also help with element content compression.

Finally, the prototype implementation9 has a few bugs
that need to be fixed, and several worthwhile optimizations
appear possible (particularly pre-compiling or specializing
dtdppm to a DTD).

8. CONCLUSIONS
The purpose of this paper was to determine whether DTD-

conscious compression techniques offer enough benefits, rel-
ative to state-or-the-art XML compression, to be worth the
(nontrivial) implementation effort needed. We implemented

9http://xmlppm.sourceforge.net/dtdppm

a validating compressor, dtdppm, which reads in a DTD
and XML document and simultaneously validates and com-
presses it. In addition, dtdppm performs several optimiza-
tions on the encoding which are only possible in the presence
of a DTD. Put together, these optimizations can improve
compression by up to 43% over xmlppm. While dtdppm can
be very effective for small or highly-structured documents, it
may not compress unstructured, mostly-text, or large doc-
uments significantly better than xmlppm. Nevertheless, we
found xmlppm and dtdppm compress large documents as well
as bzip2 but significantly (15-60%) faster.

We believe that this is the first comprehensive assessment
of a DTD-conscious XML compression tool.

9. REFERENCES
[1] J. Adiego, P. de la Fuente, and G. Navarro. Merging

prediction by partial matching with structural contexts
model. In Proc. 2004 IEEE Data Compression Conference
(DCC’04), page 522, 2004.

[2] Peter Buneman, Byron Choi, Wenfei Fan, Robert
Hutchison, Robert Mann, and Stratis Viglas. Vectorizing
and querying large XML repositories. In Proc. 21st Int.
Conference on Data Engineering (ICDE 2005), 2005. To
appear.

[3] Peter Buneman, Martin Grohe, and Christoph Koch. Path
queries on compressed XML. In Int. Conference on Very
Large Data Bases (VLDB’03), pages 141–152, 2003.

[4] J. Cheney. xmlppm, version 0.98.2.
http://xmlppm.sourceforge.net/.

[5] James Cheney. Compressing XML with multiplexed
hierarchical models. In Proc. 2001 IEEE Data Compression
Conference (DCC 2001), pages 163–172. IEEE, 2001.

[6] J. G. Cleary and I. H. Witten. Data compression using
adaptive coding and partial string matching. IEEE Trans.
Comm., COM-32(4):396–402, 1984.

[7] J.-L. Gailly. gzip, version 1.2.4. http://www.gzip.org/.
[8] Marc Girardot and Neel Sundaresan. Millau: An encoding

format for efficient representation and exchange of XML
over the web. Computer Networks, 33(1–6):747–765, 2000.

[9] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto
Onizuka, and Dan Suciu. Processing XML streams with
deterministic automata and stream indexes. Transactions
on Database Systems, 29(4), December 2004.

[10] Johan Jeuring and Paul Hagg. Generic programming for
XML tools. Technical Report UU-CS-2002-023, Utrecht
University, 2002.

[11] W.Y. Lam, W. Ng, P.T. Wood, and M. Levene. XCQ: XML
compression and querying system. In Proc. 12th Int.
Conference on the World Wide Web (WWW 2003), 2003.

[12] M. Levene and P. T. Wood. XML structure compression. In
Proc. 2nd Int. Workshop on Web Dynamics, 2002.

[13] Hartmut Liefke and Dan Suciu. XMill: An efficient
compressor for XML data. In SIGMOD ’00: Proc. 2000
ACM SIGMOD international conference on management
of data, pages 153–164. ACM Press, 2000.

[14] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
benchmark project. Technical Report INS-R0103, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, The
Netherlands, 2001.

[15] J. Seward. bzip2, version 0.9.5d.
http://sources.redhat.com/bzip2/.

[16] Dmitry Shkarin. PPM: One step to practicality. In Proc.
12th IEEE Data Compression Conference, pages 202–211,
2002.

[17] P. M. Tolani and J. R. Haritsa. XGRIND: A query-friendly
XML compressor. In Proc. 18th Int. Conference on Data
Engineering (ICDE’02), pages 225–234. IEEE, 2002.

Towards a Query Language for Multihierarchical XML:
Revisiting XPath

Ionut E. Iacob
∗

Department of Computer Science
University of Kentucky

Lexington, KY, USA

eiaco0@cs.uky.edu

Alex Dekhtyar
†

Department of Computer Science
University of Kentucky

Lexington, KY, USA

dekhtyar@cs.uky.edu

ABSTRACT
In recent years it has been argued that when XML encodings be-
come complex, DOM trees are no longer adequate for query pro-
cessing. Alternative representations of XML documents, such as
multi-colored trees [7] have been proposed as a replacement for
DOM trees for complex markup. In this paper we consider the
use of Generalized Ordered-Descendant Directed Acyclic Graphs
(GODDAGs) for the purpose of storing and querying complex do-
cument-centric XML. GODDAGs are designed to store multihier-
archical XML markup over the shared PCDATA content. They sup-
port representation of overlapping markup, which otherwise can-
not be represented easily in DOM. We describe how the seman-
tics of XPath axes can be modified to define path expressions over
GODDAG, and enhance it with the facilities to traverse and query
overlapping markup. We provide efficient algorithms for axis eval-
uation over GODDAG and describe the implementation of the query
processor based on our definitions and algorithms.

1. INTRODUCTION
XML has become a popular approach to storage and transfer of

diverse data because of its simplicity and transparency, as well
as because of wide availability of (free) tools for working with
it. Availability of open-source XML-related standards allows soft-
ware developers build XML-enabled applications in a straightfor-
ward manner: XML files are parsed using a combination of SAX
and DOM parsers, constructed memory-resident DOM trees are ac-
cessed from applications via DOM API calls. More complex XML
management tasks involve the use of XPath and/or XQuery expres-
sions for querying the content of DOM trees and XSLT for con-
verting the content/structure of the tree, usually, for the purpose of
visualizing the data. For simple XML data, XPath/XQuery over
DOM Trees provide efficient and convenient way for querying.

∗Work supported, in part, by the NEH grant RZ-20887-02.
†Work supported, in part, by the NSF grant ITR-0219924 and the
NSF grant ITR-0325063.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland, USA.
.

Figure 1: A fragment of a letter detailing the proposed Civil
Rights Program to the members of President Eisenhower’s
Cabinet.

However, straightforward approaches to organizing XML for query-
ing might yield unsatisfactory solutions when complex markup is
considered. In [7] Jagadish et al. observed that querying XML data
in the presence of several hierarchies for encoding features of the
same objects can be done more efficiently if alternative data struc-
tures are used in place of a set of independent DOM trees, one for
each of the hierarchies. Jagadish et al. proposed a data structure
called multi-colored tree (MCT) for storing such markup and dis-
cussed efficient query evaluation strategies.

The approach of [7] was designed with data-centric XML in
mind. The multicolored tree structure is built on top of individ-
ual XML nodes. This allows hierarchies of different “colors” to
share content of some of the nodes. When document-centric XML
is considered, however, there is an additional dimension, not cap-
tured by MCTs: the sharing of information in the hierarchies oc-
curs at the level of content, rather than XML elements. Indeed,
typically, document-centric XML documents are built by starting
with a text and introducing various markup on top of it. When
more than one hierarchy is used to encode features of a text, often
the scopes of different markup elements overlap. This is illustrated
on the following example.

EXAMPLE 1. Consider a fragment of [8], shown in Figure 1.
We describe two markup hierarchies for this document. First hi-
erarchy describes, using elements <p> (paragraph), <sentence>
and <w> (word), the structure of the text of the document. Our sec-
ond hierarchy uses elements <page> and <line> to describe the
physical layout of the text. The (somewhat simplified) correspond-
ing XML encodings of this fragment are shown in Figures 2.(a) and
2.(b). Examination of the scopes of the XML elements in these fig-
ures reveals numerous overlapping conflicts. In particular, we men-
tion the conflict between the scope of the <page no="1"> element
and the content of both <p> and <sentence no="14"> elements.
Similarly, the <w> element around the word "fundamental" over-

laps both <line no="1"> and <line no="2"> elements of <page
no="2">. Overall, even this simple fragment, described using just
two hierarchies contains six pairs of elements with overlapping
content.

Overlap in content of elements means that the markup presented
in Figure 2 cannot be stored in a single XML document/DOM tree
in a straightforward manner. As they lack facilities to store over-
lapping markup, it also cannot be stored in a single MCT. At the
same time, storing each hierarchy in a separate DOM tree is ineffi-
cient from the perspective of query processing. For example, a user
query

Find all sentences completely or partially located
on page 1, which contain the word “charges”

requires navigation through both text structure and physical loca-
tion markup. Similar to the cases considered in [7], executing such
a query as a join is inefficient. To make matters worse, the full an-
swer to this query must include sentence number 14, only partially
located on page 1. This means that the abovementioned query is
not expressible in XPath (or XQuery, for that matter) over the set
of the two encodings in Figure 21.

In [9], Sperberg-McQueen and Huitfeldt have introduced Gener-
alized Ordered-Descendant Directed Acyclic Graphs (GODDAGs),
a data structure for storing concurrent/ multihierarchical markup.
A GODDAG combines DOM trees of individual XML hierarchies
together by “tying” them at the top, root level, and at the bottom,
content level. In [9], Sperberg-McQueen cite the need for appropri-
ate mechanisms for building GODDAGs and querying data stored
in them. The former problem had been addressed in [6]. In this
paper, we adopt GODDAG (formally described in Section 2) as the
data structure for storing concurrent markup. We then proceed to:
(i) define the semantics of XPath axes over multiple hierarchies in
GODDAG structures (Section 3); (ii) enhance XPath syntax and
semantics with constructs for capturing overlapping markup (Sec-
tion 3); (iii) develop and implement algorithms for axis evaluation
over GODDAG2 and conduct a preliminary study of the efficiency
of enhanced XPath over GODDAG as the means of querying mul-
tihierarchical, overlapping markup (Section 4).

This paper describes the first steps toward a query language for
document-centric XML data with overlapping hierarchies. We give
an extension of XPath, as a navigational language through a data
structure that we consider appropriate for representing multihierar-
chical markup. The next step, currently under development, would
be to use this XPath extension in an XQuery language extension for
querying multihierarchical XML documents.

2. DATA STRUCTURE FOR OVERLAPPING
HIERARCHIES

We identify three basic principles for choosing a data structure
for overlapping hierarchies: (i) we want to preserve individual hier-
archies inside the complete document representation, (ii) we want
to easily navigate from one structure to another, and (iii) we want
to capture relationships between elements in different hierarchies.

Is is a fact that complex queries are likely to be expensive ([3,
2]). In [7] it is pointed out that, even for complex hierarchies, a
tree-like structure is desirable due its relative navigation simplicity.
1We note that it is possible to represent the desired query in XQuery
by modifying the representation in Figure 2 in a number of ways,
e.g., with ID/IDREF attributes, or with <leaf> elements represent-
ing GODDAG leafs described elsewhere in the paper.
2Due to the lack of space we will not present the algorithms here.
The details can be found in [5].

We start by introducing concurrent markup hierarchies and dis-
tributed XML documents. A concurrent markup hierarchy (CMH)
is a collection of schema definitions (DTDs, XSchemas, etc. . .)
that share a single (root) element name, and only it3. Individual
schemas are called hierarchies. Given a CMH C = 〈T1, . . . , Tk〉,
a distributed XML document (DXD) D over C is a collection of
XML documents (d1, . . . , dk), one for each hierarchy of C, such
that all documents have the same PCDATA content4 Individual
documents di are called components of D. They are not expected
to be valid w.r.t. their schema Ti, but must contain markup only
from Ti. This separation of markup in a DXD addresses principle
(i) above: each document preserves the structure of the specific en-
coding. Two XML documents in Figure 2 show us an example of
a DXD with two document components: d1 on top (correspond-
ing to a “text” hierarchy), and d2 at the bottom (corresponding to
a “physical layout” hierarchy). As clear from this example, DXDs
can incorporate within them overlapping markup.

Representing DXD components as individual independent DOM
trees is inconvenient, as illustrated in [7]. Instead, we use a struc-
ture called General Ordered-Descendant Directed Acyclic Graph
(GODDAG), originally introduced by Sperberg-McQueen and Huit-
feldt in [9] precisely for the purpose of storing concurrent markup.
Informally, a GODDAG for a distributed XML document D can
be thought of as the graph that unites the DOM trees of individ-
ual components of D, by merging the root node and the text (PC-
DATA). Because of possible overlap in the scopes of XML ele-
ments (text nodes) from different component documents, the un-
derlying content of the document is stored not in text nodes, but
in a special new type of node called leaf node. In a GODDAG,
leaf nodes are children of the text nodes, and they represent a con-
secutive sequence of content characters that is not broken by an
XML tag from any of the components of the distributed XML doc-
ument. While each component of D will has its own text nodes
in a GODDAG, the leaf nodes will be shared among all of them.
As a consequence, leaf nodes have multiple parents: one in each
component of D.

The GODDAG for the DXD in Figure 2 is illustrated in Figure
3. In the figure, nodes in the “text” hierarchy are on the top part,
whereas nodes for the “physical layout” hierarchy are at the bottom.
Leaf nodes are represented in the middle as rectangles correspond-
ing to the PCDATA they cover. Element nodes are explicitly drawn
with names and attribute values. Text nodes are symbolized by T in
a circle. To easily identify the nodes, we put a unique label next to
each node. Note here, for example, that the word “fundamental” is
broken into two leaf nodes: L12:“funda” and L13:“mental”. This
allows us to represent the content of the appropriate <w> element
(116) in the first hierarchy as {L12, L13}, while including L12 and
L13 in the scope of two different <line> elements (29 and 211
respectively).

To define GODDAG formally, we need to introduce some nota-
tion. For an XML document d we let root(d) denote the root ele-
ment of d and nodes(d) – the set of all nodes in DOM of d. For a
node x ∈ nodes(d) we let string(x) be the PCDATA content of x
(as defined in XPath [1]). We also set start, end : nodes(d) → N
to return the offset positions in string(root(d)) of start tag and
end tag respectively for a node x ∈ nodes(d). If x is a text node,
then start(x), end(x) denote the start offset and end offset respec-
tively. For a distributed document D we let leaves(D) represent

3Namespaces can be used to distinguish elements from different
hierarchies with the same name, but this fact is not important for
the scope of this paper.
4The order of characters in the PCDATA content of all documents
must be the same.

<doc id="CP56483">
...
<p>
<sentence no ="13"> <w>Where</w> <w>there</w> are

<w>charges</w> that by one means of another the vote
is being denied, we must find out all of the
facts -- the extent, the methods, the results.

</sentence>
<sentence no="14">The same is true of substantial

<w>charges</w> that unwarranted economic of other
pressures are being applied to deny
<w>fundamental</w> <w>rights</w> <w>safeguarded</w>
by the Constitution and laws of the United States.

</sentence>
</p>
...</doc>

<doc id="CP56483">
...
<page no="1">
<line no="31"Where there are charges that by

one means of another the vote</line>
<line no="32">is being denied, we must find out

all of the facts -- the extent, the</line>
<line no="33">methods, the results. The same is true of

substantial chargers that</line>
</page>
<page no="2">
<line no="1">unwarranted economic of other pressures are

being applied to deny funda</line>
<line no="2">mental rights safeguarded

by the Constitution and laws of the United</line>
<line no="3"> States.
...
</page> ...</doc>

(a) (b)

Figure 2: Encoding of the fragment from Figure 1: (a) text structure, (b) physical location.

the set of all leaf nodes in D and we extend the domain of functions
string, start, and end over the leaves(D) set. For leaf nodes
these functions are defined in the same way as for text nodes.

DEFINITION 1. Let D = (d1, . . . , dk) be a distributed XML
document. A GODDAG of D is a directed acyclic graph (N, E)
where the sets of nodes N and edges E are defined as follows:
• N = ∪k

i=1nodes(di) ∪ leaves(D)
• E = ∪k

i=1{(x, y)|x, y ∈ nodes(di)∧
x is the parent of y}∪

∪k
i=1{(x, y)|x ∈ nodes(di) is a text node,

y ∈ leaves(D)∧
start(x) ≤ start(y) < end(y) ≤ end(x)}

The GODDAG data structure solves nicely the problem of navi-
gation between CMH structures (principle (ii)): all hierarchies are
connected via the common root node and common leaf nodes. The
data structure also captures relationships among features in differ-
ent structures. For instance, in the GODDAG in Figure 3, we can
find all sentences partially or totally located on page 1: from <page

no="1"> (node 21) we navigate down and find all leaf nodes it con-
tains (leaves L1 to L10); then we navigate up in the other hierarchy
and find all <sentence> ancestors for these leaf nodes (nodes 13
and 14). In fact, as we show below, the semantics of all standard re-
lationships between elements from different hierarchies (ancestor,
descendant, overlapping, following, preceding) can be expressed in
terms of relationship between the corresponding leaf nodes.

3. QUERYING DISTRIBUTED XML DOC-
UMENTS

XPath is a language for addressing parts of an XML document. It
is intensively used as part of some XML query languages (XQuery),
and can be used itself to query XML documents. In fact, in XQuery
queries, XPath expressions are responsible for traversing the un-
derlying XML document model (DOM tree) to discover requested
XML nodes.

We argue in [5] that even simple queries are hard to express in
XPath over representations of concurrent hierarchies that involve
markup fragmentation or empty elements to overcome markup con-
flicts. In this section we show that when distributed XML docu-
ments are represented in GODDAG structures, we can express such
queries as path expressions in straightforward ways. In addition,
we show that individual components of path expressions (we con-

T TTTT TTTT

T

TT TTT T

0

Where there are charges ... vote is ... the methods ... results. The ... charges that unwarranted ... fundamental ... United States.

<w> <w> <w> <w>

<sentence no="13">
<sentence no="14">

<p>

<line no="31"> <line no="32"> <line no="33"> <line no="1"> <line no="2"> <line no="3">

<page no="1"> <page no="2">

<doc id="CP56483">

13

1614 17

15 18

12

11

111

115

112
110

23

19

22

25

24

21

26 29

21027 212 214

118

116

117

213

28

211

L1 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15L2 L3

<w>
113

114

Figure 3: A GODDAG for the distributed document DXD in
Figure 2

centrate on axes) have natural semantics over GODDAG, a seman-
tics that specializes to XPath over DOM semantics when single-
component documents are considered. We start by discussing how
individual XPath axes can be defined in GODDAGs then we intro-
duce formal definitions of XPath components over GODDAG.

3.1 Path Expressions Over GODDAG
Recall that XPath uses a tree of nodes model to represent an

XML document. There are seven types of nodes, the root node (a
unique node in an XML document), element, text, attribute, names-
pace, processing-instruction, and comment nodes. The main syn-
tactical construction of XPath is expression. An expression oper-
ates on a context node and manipulates objects of four kinds: node-
set, boolean, string, and numeric.

The instrument for addressing sets of nodes in a document is the
location path composed of one or more steps. Each step consists
of an axis, a nodetest and zero or more predicates. An axis de-
termines the direction of traversal from the current (context) node,
while nodetests and predicates filter nodes that do not match them.
A location path syntax can be summarized as follows (comprehen-
sive syntax is given in [1]):

locationPath := step1/step2/.../stepn

step := axis::node-test predicate*

predicate := [expression]

d1
d2

root

p s

descendant following

w

Figure 4: Descendant and following axes in GODDAG.

The main syntactical construction for a step evaluation is axis: for
each node in the current context node set an axis is evaluated to a
set of nodes according to the respective axis definition. The set of
nodes from axis evaluation is filtered by the node-test (basically a
node type test or a name test for element nodes) and expression re-
sult (evaluated to true or false) in the context of each node of axis
evaluation set (axis plays the selection role, node-test and predi-
cate play the filtering role). XPath uses 13 axes to address nodes
in a document: ancestor, ancestor-or-self, attribute, child, descen-
dant, descendant-or-self, following, following-sibling, namespace,
parent, preceding, preceding-sibling, and self.

We illustrate the problem of definition of XPath axes over a
GODDAG in the following examples. In the context of our exam-
ple from Figures 1 and 2, consider the query “Find all sentences
completely inside page 1”. If <page> and <sentence> markup
were in the same hierarchy, we would have expressed this query
using the following XPath expression:

//page[attribute::no="1"]/descendant::sentence

But in our GODDAG (Figure 3), they are not. Yet, the representa-
tion mechanism should not affect our understanding of the relation-
ship between pages and sentences. By definition of the descendant
axis, a <sentence> node is a descendent of a <page> node if it is
located in the <page> node’s subtree. However, we can describe a
descendant relationship in a different way:

a node x is a descendant of node y iff the content range
of x is completely included in the content range of y.

When considered over DOM trees, these two definitions are (al-
most) equivalent. The key difference between them is that while
the former definition is DOM-specific, the latter is not. In Figure 4
we show the latter definition applied to GODDAG. Here, two com-
ponents d1 and d2 of a DXD are shown. Node p in component d1

has content that subsumes completely the content of node s from
component d2. By applying the definition above, we can state that
s is a descendant of p in the given DXD. Similarly, because the an-
cestor relationship is the inverse of the descendant, we can use the
same idea to state that p is an ancestor of s in the DXD.

We can use similar intuition to redefine following and preceding
axes. Indeed, a node x follows a node y iff the entire PCDATA
content of x is located after the entire PCDATA content of y in a
DOM tree. This statement is, again, independent on the DOM tree
structure (as opposed to the definition of the following axis, which
relies on the document order), and therefore can be transferred to
GODDAG, as illustrated in the Figure 4. Node w of component d2

has content that lies after the content of node p, hence, we can state
the w follows p and, conversely, p precedes w.

d1
d2

root

p s

preceding−overlapping

following−overlapping

overlapping

Figure 5: Axes for overlap in GODDAG.

At the same time, not all axes can be redefined in such a way,
in particular, child and parent cannot transcend the boundaries of
a single component in a way descendant and ancestor do. This
is because unlike the notion of descendant, childhood-parenthood
relations are tied to tree structures: a node x is a child of a node
y iff there is an edge from y to x. Similarly, preceding-sibling
and following-sibling axes rely on the existence of edges between
the nodes in the DOM tree, not just on the position of the content.
These axes, as well as self will not be extended beyond individual
components of the distributed document.

One more observation can be made. Given a node x of a DOM
tree, the five axes ancestor, descendant, self, preceding and follow-
ing partition the entire DOM tree into five disjoint sets of nodes:
that is, every node in the DOM tree will belong to exactly one of
these axes as traversed from x. This property, however, does not
hold in GODDAG: as shown in Section 2, there are GODDAG
nodes with overlapping content (See Figure 5). Traversing the
GODDAG using any of the five axes above will never yield any
node that overlaps the context node in content. At the same time,
as have been illustrated, queries over GODDAG require comput-
ing overlap. To accommodate for this need, we consider enhanc-
ing XPath with three new axes: preceding-overlapping, following-
overlapping and overlapping. Intuitive meaning of these axes, as
illustrated in Figure 5 is quite straightforward: x is in the result
of applying preceding-overlapping axis to y iff x and y overlap in
scope and x starts before y. In this case, y will be in the result
of following-overlapping applied to x. The overlapping axis is the
union of preceding-overlapping and following-overlapping.

We can now proceed to give formal definitions to XPath compo-
nents over GODDAG, including the enhances apparatus to support
markup overlap.

3.2 XPath over GODDAG
Let D be a distributed XML document over a concurrent XML

hierarchy C = 〈T1, . . . , Tk〉. We define 11 new XPath axes, over
the distributed document D, in the context of a node x ∈ nodes(D):
xancestor, xdescendant, xancestor-or-self, xdescendant-or-self, xfol-
lowing, xpreceding, following-overlapping, preceding-overlapping,
overlapping, xancestor-or-overlapping, and xdescendant-or-over-
lapping. The first six axes are versions of the corresponding XPath
axes extended to GODDAG. The remaining five axes do not have
analogs in XPath.

Xancestor/xdescendant axes are defined using superset/ subset
relation on the content of the nodes, represented via a set of leaf
nodes in the GODDAG. To define xfollowing and xpreceding axes,
we use the relative positions of nodes in the GODDAG. However,
we observe that there is no total document order over a GODDAG:
overlapping markup will be incomparable.

DEFINITION 2. The following new axes are defined:

1. xancestor ::= ancestor(x) ∪
{y ∈ nodes(D−docD(x))| start(y) ≤ start(x) ≤ end(x) ≤
end(y)}.

2. xdescendant ::= descendant(x) ∪ {y ∈ nodes(D −
docD(x))| start(x) ≤ start(y) ≤ end(y) ≤ end(x)}.

3. xancestor−or−self ::= xancestor(x) ∪ {x}.

4. xdescendant−or−self ::= xdescendant(x) ∪ {x}.

5. xfollowing ::= following(x) ∪
{y ∈ nodes(D − docD(x))| start(y) ≥ end(x)}.

6. xpreceding ::= preceding(x) ∪
{y ∈ nodes(D − docD(x))| end(y) ≤ start(x)}.

7. following−overlapping ::= {y ∈ nodes(D)| start(x) <
start(y) < end(x) < end(y)}.

8. preceding−overlapping ::= {y ∈ nodes(D)| start(y) <
start(x) < end(y) < end(x)}.

9. overlapping ::= following−overlapping(x)
∪ preceeding−overlapping(x)}.

10. xancestor−or−overlapping ::= xancestor(x) ∪
overlapping(x).

11. xdescendant−or−overlapping ::= xdescendant(x) ∪
overlapping(x).

We give some examples of the extended axes for the GODDAG
shown in Figure 3. (we use node labels to identify nodes in the
graph)

(A) xdescendant(21) = {22, 24, 26, 23, 25, 27, 14, 16, 17, 19,
110, 13, 15, 18, 12, 112, 114, 113}. Note 21 corresponds to the <page
no="1"> markup. The xdescendants of this node are all its descen-
dants in the “physical layout” component (lines 31, 32 and 33 and
corresponding text nodes) as well as the contents of sentence 13
(nodes 12,13,15,18 and the corresponding text nodes). In addition,
parts of sentence 14 (node 113 and text nodes 112 and 114) also
are xdescendants of 21. At the same time, sentence 14 itself is not
an xdescendant of page 1.

(B) following−overlapping(26) = {111, 115}
Node 26 represents <line no="33"> markup from page 1. The
scope of its content is leaf nodes L7—L10. The scope of node
111 (<sentence no="14"> is L8—L15: because it starts after the
scope of node 26 starts and ends after the scope of node 26 ends,
it belongs to the result of evaluation of the following-overlapping
axis. Incidently, text node 115 also overlaps node 26 on the right,
thus it is added to the result as well.

Remark. We note that Definition 2 allows a node x to be both
an xdescendant and an xancestor of a node y: if start(x) =
start(y), end(x) = end(y) and they are in different documents.

Proposed axes allow us to express queries to multihierarchical
(distributed) documents in a straightforward manner. Consider, for
example, the following queries:

(Q1): Find all sentences completely located on page 2;
(Q2): Find all words located on two lines;
(Q3): Find all sentences completely or partially located on
page 1 of the document, that contain the word “charges”;
(Q4): Find all occurrences of the word “Constitution” after
page 1.
Table 1 shows the path expressions for these queries.

The algorithms for evaluation of the newly defined axes are given
in [5].

4. EXPERIMENTAL RESULTS
We have fully implemented in Java an extension of XPath lan-

guage that includes all the axes described in Definition 2. We
call this processor GOXPath. GOXPath is a main-memory proces-
sor: all queries are processed over the memory-resident GODDAG
structure, without addressing persistent storage. In this section we
describe our preliminary study of the efficiency of this processor.

We report the results of four tests. The goals of the experiments
were: (a) to compare the evaluation of extended XPath axes over
documents with 2, 3, 4, 5, and 6 hierarchies; (b) to compare evalu-
ation of axes over multihierarchical documents with different sizes
(ranging from 5,000 nodes up to 500,000 nodes); (c) to compare
evaluation of queries of different lengths; (d) to compare GOX-
Path performance with the execution of equivalent XPath queries
(in terms of number of nodes manipulated) by Xalan5 and Dom4j6

processors. We emphasize that the goal of part (d) was not to prove
that GOXPath is faster than certain XPath processors. Rather we
want to show that on similar workloads GOXPath exhibits compa-
rable performance. The tests were run on a Dell GX240 PC with
1.4Ghz Pentium 4 processor and 256 Mb main memory. The data
input for the first two experiments was a distributed XML docu-
ment obtained by multiplying the XML samples shown in Figure 2
enhanced with more markup when more than two hierarchies were
used. The documents sizes ranged from 2MB up to 40MB on disk.
Each query was evaluated four times, the average time was plotted.

In the first experiment we used 5 documents with 2, 3, 4, 5, and
6 hierarchies and of approximately 50, 55, 60, 65, and 70 thou-
sand of nodes respectively. On these document instances we eval-
uated two queries, /descendant::page/xdescendant::*, and
/descendant::page/overlapping::*, and the graphs of run-
ning time are shown in Figure 6 (a). The experimental results sug-
gest that GOXPath performances are not significantly influenced
by the number of hierarchies, but rather by the number of nodes
that are manipulated (in the case of xdescendant axis the number
of nodes slightly increases with the number of hierarchies, whereas
for overlapping the number of nodes is approximately the same).

In the second experiment we studied the exaluation of extended
axes for documents of different size (we used two hierarchies in
this experiment). We ran two queries, /descendant::page/
xdescendant::* and /descendant::page/overlapping::*,
on documents of 5 up to 5,000 thousand nodes. The experimental
results in Figure 6 (b) suggest linear dependence of axis evaluation
on document size [5].

In the third experiment we tested GOXPath performance on queries
of different length. We used two sets of eight queries each. Each
query in the first set had the prefix /descendant::page//, and
continued with 1 up to 8 overlapping::* location steps. Simi-
larly, each query in the second set had a prefix /descendant::page/,
and continued with 1, up to 8 xdescendant-or-self::* loca-
tion steps (note that approximately the same number of nodes were

5http://xml.apache.org/xalan-j/
6http://www.dom4j.org

Query Path Expression
Q1 /xdescendant::page[@no="2"]/xdescendant::sentence
Q2 /xdescendant::word[overlapping::line]
Q3 /xdescendant::page[@no="1"]/xdescendant-or-overlapping::sentence[descendant::w[string(.)="charges"]]
Q4 /xdescendant::page[@no="1"]/xfollowing::w[string(.)="Constitution"]

Table 1: Using newly defined axes to express queries over multihierarchical XML documents.

2 2.5 3 3.5 4 4.5 5 5.5 6
500

550

600

650

700

750

800

850

900

950

1000

T
im

e
[m

s]

Number of Hierarchies

XDESCENDANT and OVERLAPPING axes evaluation on different number of hierarchies

overlapping
xdescendant

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

T
im

e
[m

s]

Document size [Thousand nodes]

XDESCENDANT and OVERLAPPING axes evaluation on different document sizes

xdescendant
overlapping

(a) (b)

1 2 3 4 5 6 7 8
500

1000

1500

2000

2500

3000

3500

4000

T
im

e
[m

s]

Query size [number of location steps]

XDESCENDANT and OVERLAPPING axes evaluation on different query sizes

overlapping
xdescendant

1 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
[m

s]

DESCENDANT axis evaluation on different query length and different processors

Query size [number of location steps]

GOXPath
Xalan
Dom4j

(c) (d)

Figure 6: Experimental results.

processed at each step). The results shown in Figure 6 (c) clearly
indicate linear dependence of query evaluation time on query size.

Finally, the last experiment compared the running time of GOX-
Path and XPath processors (Xalan and Dom4j) on workloads of
comparable size (similar queries and the same number of nodes to
be processed). We used documents with approximately 50 thou-
sand nodes, two hierarchies for GOXPath, and markup fragmenta-
tion for Xalan and Dom4j. The same three queries were evaluated
by each processor: /descendant::page/descendant::*, and
the same as the preceding but ending with four, respectively eight
descendant::* location steps. The test results are shown in Fig-
ure 6 (d) and demonstrate that GOXPath has similar performances
as Xalan and Dom4j.

The experiments conducted here are preliminary and a more ex-
tensive testing is currently underway. But even these experiments
show that our XPath implementation over GODDAG is efficient
enough to be used in practice (and in fact, it is used as part of a
larger suite of tools)[4].

5. REFERENCES
[1] XML Path Language (XPath) (Version 1.0).

http://www.w3.org/TR/xpath, Nov 1999.
[2] G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query

evaluation. In Proceedings of PODS, San Diego, CA., pages 179–190,
June 2003.

[3] G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation:
Improving time and space eficiency. In Proceedings of ICDE’03,
Bangalore, India., pages 379–390, Mar 2003.

[4] I. E. Iacob and A. Dekhtyar. A framework for processing complex
document-centric XML with overlapping structures. In ACM
SIGMOD Conference, 2005. Demo, accepted.

[5] I. E. Iacob and A. Dekhtyar. Queries over Overlapping XML
Structures. Technical Report TR 438-05, U. of Kentucky, CS Dept.,
March 2005.
http://dblab.csr.uky.edu/∼eiaco0/publications/TR438-05.pdf.

[6] I. E. Iacob, A. Dekhtyar, and K. Kaneko. Parsing Concurrent XML. In
Proceedings WIDM, pages 23–30, November 2004.

[7] H. V. Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Srivastava,
and N. Wiwatwattana. Colorful XML: one hierarchy isn’t enough. In
Proceedings SIGMOD, pages 251–262. ACM Press, 2004.

[8] M. M. Rabb. The civil rights program - letter and statement by the
attourney general. The Dwight D. Eisenhower Library, Abilene, KS,
http://www.eisenhower.utexas.edu/dl/Civil Rights Civil
Rights Act/CivilRightsActfiles.html, April 10 1956.

[9] C. M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data
Structure for Overlapping Hierarchies. In DDEP/PODDP, Munich,
pages 139–160, Sept. 2000.

Indexing Schemes for Efficient Aggregate Computation
over Structural Joins

Priya Mandawat
Dept of Computer Science

University of California, Riverside

pmandawa@cs.ucr.edu

Vassilis J. Tsotras
∗

Dept of Computer Science
University of California, Riverside

tsotras@cs.ucr.edu

ABSTRACT
With the increasing popularity of XML as a standard for
data representation and exchange, efficient XML query pro-
cessing has become a necessity. One popular approach en-
codes the hierarchical structure of XML data through a
node numbering scheme, thus reducing typical queries to
special forms (structural, path, twig) of containment joins.
In this paper we consider how using an index can facilitate
the computation of (exact) aggregates over structural joins.
Consider for example, counting how many times item nodes
appear under store nodes in a chain-store database. One
straightforward solution would be to actually compute the
result of the structural join (store//item) and count all
such occurrences. However, this requires time proportional
to the join computation (which with appropriate buffering
is O(n) where n is the total number of store and item el-
ements in the database). Instead, we propose the Aggrega-
tion B-tree (aB-tree), a balanced index specifically designed
for computing aggregate queries such as count, sum, min,
max, average. The efficiency of this structure arises from
the manner in which it maintains pre-computed partially ag-
gregated results. The overall aggregate is then computed
following specific paths of the tree and accumulating par-
tial values, resulting in an overall O(log n) time complexity.
Since the aB-tree is an index built on the sorted element
lists, it can also be used to perform efficient structural joins
by skipping elements that do not participate in the join.

1. INTRODUCTION
The increasing popularity of XML as a format for data ex-

change and representation has naturally created a demand
for efficient query processing on XML documents. The hi-
erarchical structure of XML data is commonly captured
through a node numbering scheme [8, 11, 9], thus reducing
typical queries to special forms of containment joins, with
structural joins (e.g., store//item) being the basic building
block. A number of structural join algorithms that answer
these queries by an exhaustive enumeration of such pairs
have been developed. The algorithm proposed in [8] takes
as input two ordered lists, one with the ancestor elements
and one with the descendants and computes the join with
one pass over the two lists (using appropriate buffering).

∗This research was partially supported by NSF grant IIS-
0339032, UC MICRO and Lotus Interworks.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005)
June 16-17, 2005, Baltimore, Maryland

Recently, index methods [2, 3], have also been proposed to
improve the performance of structural joins by skipping el-
ements that do not participate in the structural join result.

However, there are queries where the user may desire ag-
gregated data instead of a simple enumeration of the result
set. For example, consider the query min(store//item/

@price) which finds the minimum price of an item over all
stores. The straightforward method to address such queries
would be to perform the structural join and then compute
the aggregate value over the result set. This however is inef-
ficient since computing the aggregate should not require an
exhaustive enumeration of all structural join pairs. In this
paper, we examine how indexing methods can be used to
speed up aggregate queries over structural joins. There is
recent work on estimating the size of the result set [6, 7, 1],
however the objective of this paper is to address the needs
of applications that require exact aggregate computations.

More related to our work is [4], where the XA-tree has
been proposed that uses Tree-Join algorithms to handle ag-
gregate queries over structural joins. Even though this is
an improvement over the straightforward approach, it does
not take advantage of the containment property in XML
documents. For example, to address a query of the form
count(store//item) the join performance depends on (i)
the number of ancestor (store) elements that contain at
least one descendant (item) element and (ii) the size of the
query set (which for a structural join is the ancestor element
list). Each such store element has an entry in the XA-tree
and needs to be searched and individually aggregated i.e.
this method ignores the fact that in the XML document,
ancestor (store) elements may recursively contain other an-
cestor (store) elements, in which case, one could avoid in-
dividually aggregating all ancestors. Thus, the worst case
complexity of this algorithm remains O(n).

A commonly used numbering scheme assigns a (start, end)
value pair to each element in the XML document by doing
a depth-first traversal of the document (the pre-order visit
assigns the start, while the post-order visit assigns the end).
An important property of this encoding is (1) either the
interval of a node d is completely contained in the interval
of another node a (i.e. a.start < d.start < d.end < a.end)
in which case a is an ancestor of d (2) or the intervals of
two nodes are disjoint in which case they do not have an
ancestor-descendant relationship. The interval of an element
can thus be used to test the containment property i.e. if a
node is the ancestor/descendant of another node.

In this paper, we propose computing aggregates over struc-
tural joins using the aB-tree, a balanced index built on the

start values associated with the elements of an ancestor list.
We devise an algorithm that uses the aB-tree structure and
exploits the containment property of the XML document
to calculate the overall aggregate by accumulating partially
aggregated values only along specific paths of the tree, with
a worst case O(log n) I/O complexity. In the aB-tree, each
pair of consecutive start values is treated as an interval and
stores the pre-computed partially aggregated value of all the
intervals in the sub-tree rooted at it. Storing pre-computed
partially aggregates values over intervals has been proposed
in the SB-tree [10] for temporal aggregations. Our structure,
however, is different from the SB-tree in (i) that it indexes
only start values (ii) the manner in which the aggregates
are computed and maintained. This is due to the fact that,
in temporal aggregation, the aggregate value for an interval
includes only values that span the entire interval whereas in
XML aggregation it includes all the values contained in the
interval. The contributions of the paper can be summarized
as follows:

1. We propose the aB-tree, a data structure that supports
efficient computation of aggregation queries.

2. We devise an algorithm for the efficient computation
of aggregation functions such as count, sum, min, max
and average by taking advantage of the containment
property of XML documents.

3. Through an extensive experimental evaluation that com-
pares our approach with previous ones, we demon-
strate that the aB-tree significantly out-performs ex-
isting techniques.

The rest of this paper is structured as follows: In section 2 we
formally define the problem while section 3 describes the aB-
tree. Section 4 presents the results of our experimentation
and section 5 concludes the paper.

2. PROBLEM DEFINITION
Consider two element lists A and D corresponding to the

ancestor and descendant query elements respectively and an
attribute whose value we denote as val. We define the Ag-
gregate Structural Join to be a function f(A‡D,val), where
’‡’ denotes the parent-child relationship (i.e. A/D) or the
ancestor-descendant relationship (i.e. A//D) and f is an
operator performing one of the following functions:
Count: The number of Ai‡Dj pairs
Sum/Min/Max/Avg: The sum/min/max/avg of vals over
all the Ai‡Dj pairs
Furthermore, we define a Range Aggregate Structural Join,
f(A‡D,val,Q), to be an aggregate structural join reduced
over some range Q=(s,e). For example, count(store[state
=’California’]//item) where California corresponds to a
range over the whole state-space. In the special case where
the range Q covers the entire XML document, the Range
Aggregate Structural Join reduces to an Aggregate Struc-
tural Join.

3. THE AB-TREE
Given a list of ancestor elements A and a list of descen-

dant elements D, the aB-tree is a B-tree built on the start
values of all the ancestor elements Ai in A, that have at least
one element Dj from list D as a descendant. Each pair of
consecutive values in the tree is treated as an interval and

each non-leaf interval in the aB-tree has an aggregate value
for all the intervals below it associated with it. The leaf
intervals store values for the individual Ais. The following
is a detailed description of the aB-tree index structure:

3.1 The Data Structure

• It is a balanced B-tree.

• Any node other than the root node has at least db/2e
and at most b element intervals.

• If an internal node N has j intervals N.I1, N.I2,...,
N.Ij , then it has j − 1 keys stored in ascending order.
The j-th key, denoted N.kj , represents the end of the
jth interval and the start of the j + 1th interval. Each
interval N.Ij has a pointer N.pj to a child node. The
keys in the child nodes must conform to the following
search property: each key in the sub-tree rooted at
N.pj must be strictly less than the j-th key N.kj of
N.Ij and each key in the sub-tree rooted at N.pj+1

must be strictly greater than N.kj . Each interval N.Ij

also has a value N.vj associated with it that is an
aggregate over the sub-tree rooted at it.

• A leaf node is identical to an internal node except that:
(i) it does not have a child pointer associated with it,
and, (ii) the value N.vi associated with its ith interval
N.Ii = (N.ki−1, N.ki) corresponds to the aggregate
value of the ancestor element with start value N.ki−1.

• The root node is allowed to have a minimum of two
intervals.

The following is a recursive interpretation for element in-
tervals in the aB-tree nodes. Suppose node N contains a
total of j element intervals. Consider the ith element inter-
val N.Ii. The start position of N.Ii (denoted by start(N.Ii))
is specified as follows:
(i) If i > 1 then start(N.Ii) = N.ki−1

(ii) If i = 0 and N has no parent node in the aB-tree, then
start(N.Ii) = 0
(iii) If i = 0 and N has a parent node N ′ such that N ′.pk =
N , then start(N.Ii) = start(N ′.Ik)
The end position of N.Ii (denoted by end(N.Ii)) is specified
as follows:
(i) If i < j then end(N.Ii) = N.ki

(ii) If i = j and N has no parent node in the aB-tree, then
end(N.Ii) = ∞
(iii) If i = j and N has a parent node N ′ such that N ′.pk,
then end(N.Ii) = end(N ′.Ik)

We will consider the example of the XML document tree
shown in Figure 1, for the rest of this paper. Let A and D
be the ancestor and descendant element tags respectively,
and p be the attribute to be aggregated in our queries.

3.2 Building the aB-tree
The aB-tree on an ancestor list is created by repeatedly in-

serting elements from this list. For each ancestor in the list,
along with the start value s we also maintain a pre-computed
aggregate value v. The value v, for a particular ancestor, is
the count of the descendants or the sum/min/max of the
descendant attribute values to be aggregated, for that par-
ticular ancestor, and is computed directly from the XML
document tree. Figure 2 shows the < s, v > list for the A

Figure 1: A sample XML document

elements in the sample XML tree in Figure 1. In this list,
value v corresponds to the Count aggregate, i.e., it counts
the number of descendants (elements D) for the ancestor
element having start value s. For example, the A element
in the XML document with numbering (24,33) has two D
elements as descendants, namely (25,32) and (27,28), and
hence has < s, v >=< 24, 2 >.

The function insert(N, < s, v >) below, inserts the <
s, v > pair for an ancestor element into the sub-tree rooted
at node N and updates the aggregate values along the path
of insertion to reflect the effect of the insertion. The manner
in which the update is done depends on the type of aggre-
gation being performed. We use function agg(x, y) to de-
note the aggregation of values x, y. For example, with Sum
and Count, agg(x, y) = x + y, while for Min, agg(x, y) =
Min(x, y), etc. The procedure for insertion follows:

Insert(N, < s, v >)
for each interval N.Ii ε N

if (s is contained in N.Ii)
if (N is a leaf)

(i) The first i− 1 intervals of N stay the same;
i.e., N.kj , N.pj and N.vj remain unchanged
for all j < i
(ii) Starting from the i + 1th interval, each interval
is moved one position to the right; hence, N.kj−1

becomes N.kj , N.pj becomes N.pj+1 and N.vj

becomes N.vj+1 for j > i
(iii) N.ki = s and N.vi = v
(iv)if overflow occurs, invoke split(N) (defined later)

else
(i)N.vi = agg(v , N.vi)
(ii)Insert(N.pi, < s, v >)

endif
endif

end for

Node N is initialized to be the tree root. For any node N ,
let the ith interval of N contain s, i.e. N.ki−1 < s < N.ki.

If node N is a leaf, then entry s is inserted into its correct
location (i.e. the ith position) in N . Insertion of s would
split the ith interval into two (which will become the new ith

and the i + 1th intervals). To make space for the additional
interval created we move all old intervals (and their associ-
ated values and pointers) starting from the i + 1th, to the
right and insert the newly created interval. If an overflow
occurs due to the additional interval, the split procedure is
invoked.

Figure 2: The aB-trees created using the < s, v > list
shown, before and after the insertion of the element
< 24, 2 >

If node N is not a leaf node, then the partial aggregate
value stored in N.Ii is simply updated with v and the insert
function is recursively called on its ith child.

Figure 2 shows an example with the insertion of the entry
< 24, 2 > into the already existing tree containing all pre-
vious entries. We execute insert(N2, < 24, 2 >) on the tree
and find that s=18 is contained in N0.I3 = [12,∞). Since N0

is not a leaf node, we increment the aggregate value N0.v3

by 2 and invoke insert(N2, < 24, 2 >). Now since N3 is a
leaf node, < 24, 2 > gets inserted in its correct location in
N3. The result is shown in the tree on the right.

3.3 Node Splitting
When a new element in inserted into the tree it is pos-

sible that the leaf node into which it is inserted is already
full. This would require splitting of the leaf node into two
nodes both of which must now be children of the same par-
ent, causing a split in the parent interval. If the parent was
also already full this splitting of the interval will cause it to
overflow. Splitting could hence recursively propagate up the
tree. The node splitting algorithm for the aB-tree is similar
with the SB-tree [10], however the manner in which the ag-
gregate values are updated when a split occurs is different
due to reasons mentioned previously. Formally, suppose that
an overflowing node N contains m intervals, where m = b+1.
In the following, we define the procedure split(N), which re-
organizes the tree to deal with the overflow at the node N
as follows:
Split(N)

1. Split N into N1 and N2 such that:
(i) N1 contains the first dm/2e intervals of N ; that
is, N1 contains keys N.k1, ..., N.kdm/2e−1, aggregate
values N.v1, ..., N.vdm/2e and if N is not a leaf, child
pointers N.p1, ..., N.pdm/2e.
(ii) N2 contains the remaining intervals of N ; that
is, N2 contains N.kdm/2e+1, ..., N.km, aggregate values
N.vdm/2e+1, ..., N.vm and if N is not a leaf, child point-
ers N.pdm/2e+1, ..., N.pm.

2. If N is the root node
(i) Create a new root node N ′ with two intervals that
point to N1 and N2. Set N ′.k1=N.kdm/2e, N ′.p1 =
N1, N ′.v1=agg(N.v1, ..., N.vdm/2e) and N ′.p2 = N2,
N ′.v2=agg(N.vdm/2e+1, ..., N.vm)
else // N is not the root node,
(i) suppose N has a parent node N ′ with N ′.pj = N
(ii) Split the jth interval of N ′ into two and have them
point to N1 and N2. Specifically:
a) The first j− 1 intervals of N ′ stay the same; hence,
N ′.ki, N ′.pi and N ′.vi remain unchanged for all i < j.
b) Starting from the j+1th, each interval is moved one

Figure 3: The aB-tree of the < s, v > list in Figure
2 after the insertion of the last pair < 26, 1 > which
causes a split that propagates up to the root

position to the right; that is N ′.ki−1 becomes N ′.ki,
N ′.pi becomes N ′.pi+1 and N ′.vi becomes N ′.vi+1, for
all i > j.

3. Set N ′.kj = N.kdm/2e, N ′.pj = N1, N ′.pj+1 = N2 and
N ′.vj = agg(N.v1, ..., N.vdm/2e), N ′.vj+1=
agg(N.vdm/2e+1, ..., N.vm)

4. N ′ overflows, call split(N ′)

where agg(N.v1, ..., N.vdm/2e) =
agg(N.v1, agg(N.v2, agg(...agg(N.vdm/2e−1, N.vdm/2e)...))).
Figure 3 shows an example of a split. We invoke insert(N0, <
26, 1 >) on the final tree in Figure 2 which recursively calls
insert(N3, < 26, 1 >). Insertion of < 26, 1 > in node N3

makes it overflow, so we split it into N3 and N ′
3 and we

also split the third interval of N0 to accommodate N ′
3. This

causes N0 to overflow so we further split N0 into N0 and N ′
0

and create a new root N . N0 and N ′
0 become the children

of this new root. Figure 3 shows the resultant tree.
Note that deletion can also be supported dynamically on

the aB-tree in a way similar to the B-tree deletion with an
additional chore of aggregate maintenance. However, we
omit the details due to lack of space.

3.4 Range Aggregate Structural Join (RASJoin)
In this section, we give an algorithm (RAS Join) that de-

scribes how the aB-tree can used to compute aggregates over
a range Q. The initial value of the overall aggregate v, is
based on the type of aggregation.
For Sum and Count v=0
For Avg v=< 0, 0 >
For Min and Max v=null

RAS Join(N, Q, v)
for each interval N.Ii ε N

if (N.Ii ∩Q 6= φ)
if (N.Ii ⊆ Q)

then v = agg(v, N.vi) (1)
else

if (N is not a leaf and N.Ii ∩Q 6= φ)
then RAS Join(N.pi, Q, v) (2)

else if (N is a leaf and N.ki−1 is contained in Q)
then v = agg(v, N.vi) (3)

end if
end if

end for

There are three types of intervals on each level of the aB-
tree: Intervals that are completely contained in Q, intervals
that intersect Q, and, intervals that are disjoint from Q. The

last category is not processed since it does not participate
in the aggregation.

For any node N , if the interval N.Ii is completely con-
tained within the queried interval, line 1 in the algorithm
aggregates the value of that interval N.vi with the current
aggregate v. Note that the algorithm does not go further
down that path because the values of all the elements in the
sub-tree below (that must be included in the aggregation,
by the containment property) have been accounted for, by
the aggregate value N.vi.

Line 2 deals with an internal node N whose interval N.Ii

intersects Q but is not completely contained in it. Note that
since Q is a continuous range, there can be only two such
intervals on each level, one overlapping with the left end of Q
and the other with the right end. We thus recursively invoke
RAS Join on the ith child of node N to find and include
children that should be part of the aggregate, i.e. children
that lie in the overlapping region. As a result, the algorithm
traverses down the height of the tree only along the two
extreme paths. Any node outside the region bounded by
these two paths need not be checked because it cannot have
intervals that intersect with Q. Any node within the region
bounded by these two paths need not be examined either,
because all its values have been accounted for by an ancestor
interval that was completely contained in Q.

Line 3 handles the specific case in which the value associ-
ated with the rightmost leaf interval of the tree intersecting
with the query range is included in the aggregation. Recall
that the leaf intervals have values for the individual Ais asso-
ciated with them. For example, for the query count(A//D,
[17,22]) on the sample document above, the ancestor [18,22]
must be part of the aggregate, but would not satisfy the first
two if conditions since the interval [18,24] in the aB-tree is
neither contained [17,22] nor is a non-leaf interval. All leaf
intervals other than the rightmost, that should be included
in the aggregate, satisfy the condition on line 1 and need not
be considered explicitly. As further example, Table 1 shows
aggregate values for various sample ranges.

Range Count Sum
[2, 9] 3 13

[1, 34] 9 42
[10, 23] 3 6
[11, 16] 2 6
[24, 33] 3 23

Table 1: The aggregate values for queries
count(A//D,Q) and sum(A//D,p,Q) for sample
ranges Q on the tree in Figure 1

3.5 Complexity Analysis
The number of disk accesses performed by both the Insert

and the RAS Join routines, is O(h) for an aB-tree of height
h. Insertion, without splitting requires a single pass down
the tree; an insertion that causes splitting may require, in
the worst case, another pass up to the root. The RAS Join
traverses the tree down the two extreme paths intersecting
the edges of the given range. Thus, the I/O complexity for
both insertions and aggregate range queries is O(logbn) (b is
the branching factor and n is the total number of elements
in the tree).

The space required is proportional to the number of pos-
sible ancestor-descendant combinations i.e. O(t2) where t is

the number of element tags in the XML document. How-
ever, in practice, not all tag combinations occur as ancestor-
descendant edges in a document. For the purpose of aggre-
gate querying, one can choose to build an aB-tree on those
combinations that are more frequent.

4. EXPERIMENTAL RESULTS
We implemented the aB-tree structure and performed ex-

periments to compare its performance with the XA-tree [4].
The experiments were conducted using a Mobile Intel Pen-
tium 1.5 Ghz Processor with 512MB RAM, running Linux.
The number of I/Os is used as the performance metric in-
dicator. We used both synthetically generated data as well
as real data (the NASA dataset from University of Wash-
ington [5]). The majority of the presented results utilize the
synthetic datasets because of the flexibility to manipulate
parameters and thus examine their effect on the indexing
methods. Due to lack of space we only present one ex-
periment with real datasets (fig. 5); nevertheless, all real
datasets displayed similar trends.

The synthetic datasets were generated in the form of an-
cestor and descendant element lists with controlled struc-
tural and join characteristics. For our purposes, the nesting
level of the generated data is not important as we use semi-
processed data with the number of Djs for each Ai being
pre-computed. The sizes of the element lists vary from 1 to
20 MB. The parameter values used are specified within each
experiment.

The experiments compared the performance of the (i)
Range Aggregate Structural Join (RASJ) Algorithm using
the aB-tree data structure and (ii) the TJ-h algorithm us-
ing the XA-tree data structure. We also compared against
the straightforward approach that first computes a struc-
tural join (using an index). Our results show that for the
aggregate computation the indexed structural join performs
substantially worse. This agrees also with the findings of
[4], where the TJ-h algorithm was compared with an in-
dexed structural join using a XR-tree and showed that TJ-h
performs significantly better. Hence for brevity, the follow-
ing figures show only the comparative performance between
the aB-tree and the XA-tree. We varied the following pa-
rameters for our experiments:

• Varying the Ancestor Join Ratio (AJR): The
ancestor join ratio is the percentage of ancestor el-
ements in the XML document that contain at least
one descendant element. For the purpose of answer-
ing aggregate queries on XML documents, only those
ancestors are that have at least one descendant ele-
ment are inserted into the aB-tree and the XA-tree
(as those that have no descendant do not contribute
to the aggregate). Thus, increasing the AJR increases
the number of elements in the trees and consequently
the number of pages and the number of I/Os. The fol-
lowing parameters were used for the this experiment:
QueryRange=[100,4000000], b=100, Buffer Size=500.
Table 2 shows the I/O performance. The aB-tree dras-
tically improves performance. Figure 4 depicts the
AJR variation of the two methods in logarithmic scale.

• Space Comparison: Both the aB-tree and the XA-
tree use linear space (O(n)). In practice, the aB-tree
uses less space because an interval can be represented

Ratio No of tags TJ − h RASJ

1% 104 208 5
10% 105 2022 5
30% 3 ∗ 105 6076 5
50% 5 ∗ 105 10110 5
80% 8 ∗ 105 16158 5

100% 106 20202 5

Table 2: Ancestor Join Ratio vs I/Os

Figure 4: Variation of Ancestor Join Ratio

by a single key, while in the XA-tree, an interval stores
both start and end values. For the above experiments
(i.e., varying the ancestor ratio), the aB-tree space var-
ied as: 0.12, 1.23, 3.69, 6.14, 9.82, 12.23 MBs, while
the corresponding values for the XA-tree were: 0.17,
1.62, 4.89, 8.14, 13.02, 16.28 MBs.

• Varying the Branching Factor(b): The branch-
ing factor b is the maximum number of intervals that
can be held by a node in the tree. Reducing b re-
duces the number of ancestor elements per node (page)
and hence increases the number of pages in the tree.
The following parameters were used for the this exper-
iment: QueryRange[1,4000000], Buffer Size=10, AJR
=100%. Table 3 shows the results for the variation of
b.

BF TJ − h RASJ
10 22433 9
15 14347 9
20 10550 7
25 8347 7
50 4161 5

100 2041 5
200 1013 5

Table 3: Branching Factor vs I/Os

• Varying the Range of the Query: The range of
the query indicates the number of ancestor elements
that participate in the aggregation. The following pa-
rameters were used for this experiment: b=25, Buffer
Size=400, AJR=100%. The results for varying query
ranges appear in Table 4.

As is seen from the experimental results with synthetic data-
sets, the RASJ Algorithm drastically out-performs the TJ-
h join algorithm in all cases. The fundamental reason is
that the Range Aggregate Query Algorithm is only required to
traverse the height of the aB-tree to perform the aggregation
whereas the TJ-h algorithm needs to visit each node in the
XA-tree that participates in the aggregation. Moreover, the

QueryRange TJ − h RASJ
[1− 4, 000, 000] 8346 4

[3000− 3, 000, 000] 6272 7
[200, 000− 2, 000, 000] 4138 7
[100, 000− 1, 000, 000] 1864 7

[500, 000− 900, 000] 833 7
[799, 000− 800, 000] 9 5
[799, 990− 800, 000] 2 4

Table 4: Query Range vs I/Os

Figure 5: Various sample queries using the NASA
dataset

performance of RASJ remains almost unaffected, (i) as the
number of nodes in the index trees increase (either due to
the increase in the ancestor join ratio or due to a decrease
in the branching factor), or, (ii) as the number of ancestor
elements participating in the aggregation increases (due to
increase in the query range). In contrast the I/Os required
by TJ-h join algorithm increases significantly in all these
cases. This is because our approach depends on the height
of the index tree (which increases only as a logarithm of the
number of ancestors) whereas the TJ-h algorithm depends
linearly on the number of ancestor nodes.

The only case where the performance of TJ-h is compa-
rable or better than RASJ is for very small query ranges
(see Table 4). This is because, for small query ranges the
number of nodes to be checked by TJ-h is comparable to
the height of the tree and thus the I/Os are similar. For
the special case where no a//d pair exists in the given query
range, TJ-h could perform better than RASJ because it may
detect that no a//d pair will be found before reaching the
leaf level (since the intervals in its nodes are not continuous
and leave out portions that have no a//d pairs). Instead,
RASJ would have to go to the leaf level for queries ranges
whose start/end keys are not found in the tree. However,
because RASJ is only a traversal down the height of the tree
along the two extreme paths, the difference even in such in-
frequent cases, will not be significant, making RASJ a much
more robust solution.

Finally, Figure 5 presents experimental results over a sam-
ple NASA real dataset. The dataset was 23MB with 476646
elements and a maximum depth of 8. The element lists were
generated by parsing the document and using the previously
described numbering scheme. We experimented with differ-
ent combinations of ancestor descendant pairs. The results
agree with our findings from the synthetic datasets, i.e., the
RASJ performs again significantly better.

5. CONCLUSIONS AND FUTURE WORK
In this paper we examined how the evaluation of aggregate

structural joins can be expedited by the use of an index. We
proposed the Aggregation B-tree, which is a balanced index
built on the start values of the ancestor elements, especially
designed to address aggregate range queries. Each pair of
consecutive start values in the aB-tree is treated as an in-
terval and stores a pre-computed partially aggregated value
that accounts for the aggregate values of the sub-tree rooted
at it. We devised an algorithm (RASJ) that exploits these
pre-computed partial aggregates to obtain results for range
aggregate queries in O(log n) time, where n is the num-
ber of ancestor elements in the aB-tree. An experimental
evaluation showed drastic improvements over the previous
approaches. An advantage of our approach is that in addi-
tion to the aggregate computations, the aB-tree can also be
used as an index to expedite traditional structural joins.

As future work we plan to explore how our technique can
be extended to handle aggregate queries over path and twig
joins.

Acknowledgements: We would like to thank Marios
Hadjieleftheriou for providing us with his implementation
of the SB-tree and Zografoula Vagena for her XML data
generator and many helpful comments.

6. REFERENCES
[1] Z. Chen, H. Jagadish, F. Korn, N. Koudas,

S. Muthukrishnan, N. R, and D. Srivastava. Counting
twig matches in a tree. In 17th International
Conference on Data Engineering, April 2001.

[2] S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and
C. Zaniolo. Efficient structural joins on indexed xml
documents. In VLDB, pages 263–274, 2002.

[3] H.Jiang, H.Lu, W.Wang, and B.C.Ooi. Xr-tree:
Indexing xml data for efficient structural joins. In
Proceedings of ICDE, pages 253–263, 2003.

[4] K. Liu and F. Lochovsky. Efficient computation of
aggregate structural joins. In Proceedings of the 4th
International Conference on Web Information Systems
Engineering, December 2003.

[5] U. of Washington.
http://www.cs.washington.edu/research/xmldatasets/.

[6] N. Polyzotis, M. Garofalakis, and Y. Ioannidis.
Selectivity estimation for xml twigs. In 20th
International Conference on Data Engineering, Apr
2004.

[7] C. Sartiani. A framework for estimating xml query
cardinality. In WebDB, June 2003.

[8] D. Srivastava, S. Al-Khalifa, H. Jagadish, N. Koudas,
J. Patel, and Y. Wu. Structural joins: A primitive for
effcient xml query pattern matching. In ICDE
Proceedings, pages 141–152, 2002.

[9] I. Tatarinov, E. Viglas, K. Beyer,
J. Shanmugasundaram, and E. Shekita. Storing and
querying ordered xml using a relational database
system. In SIGMOD Conference, June 2002.

[10] J. Yang and J. Widom. Incremental computation of
temporal aggregates. In VLDB, pages 262–283,
October 2003.

[11] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On supporting containment queries in
relational database management systems. In SIGMOD
Conference, May 2001.

An Evaluation and Comparison of Current Peer-to-Peer
Full-Text Keyword Search Techniques∗

Ming Zhong Justin Moore Kai Shen
Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

{zhong,jmoore,kshen}@cs.rochester.edu

Amy L. Murphy
School of Informatics
University of Lugano

Lugano, CH-6904, Switzerland

amy.murphy@unisi.ch

ABSTRACT
Current peer-to-peer (p2p) full-text keyword search tech-
niques fall into the following categories: document-based
partitioning, keyword-based partitioning, hybrid indexing,
and semantic search. This paper provides a performance
evaluation and comparison of these p2p full-text keyword
search techniques on a dataset with 3.7 million web pages
and 6.8 million search queries. Our evaluation results can
serve as a guide for choosing the most suitable p2p full-text
keyword search technique based on given system parame-
ters, such as network size, the number of documents, and
the number of queries per second.

1. INTRODUCTION
The capability to locate desired documents using full-

text keyword search is essential for large-scale p2p networks.
Centralized search engines can be employed in p2p networks
and provide look-up service. Although these systems may
provide a high level of scalability and availability, a p2p key-
word search system may be preferable due to its robustness,
low maintenance cost, and data freshness.

A large number of p2p keyword search systems have been
proposed, including those using document-based partition-
ing [10, 11], keyword-based partitioning [9, 12, 16, 21], hy-
brid indexing [23], and semantic search [8, 13, 24]. How-
ever, there is still no comprehensive understanding on the
tradeoffs between these four types of techniques under dif-
ferent system environments. In this paper, we provide an
evaluation and comparison of existing p2p keyword search
techniques on 3.7 million web pages and 6.8 million real web
queries. To further project the performance of current p2p
keyword search techniques on very large datasets, we lin-
early scale our evaluation results to 109 web pages. Our
results suggest that there is no absolute best choice among
current p2p keyword search techniques. More importantly,
our results can serve as a guide for a user to make her choice
based on specific system parameters, such as network size,
the number of documents, and the query throughput.

Most current performance evaluation results for p2p key-
word search systems [8, 9, 13, 16, 21, 23, 24] are based
on datasets with less than 530,000 web pages and 100,000

∗This work was supported in part by NSF grants CCR-
0306473, ITR/IIS-0312925, and NSF CAREER Award
CCF-0448413.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

queries, which are an order of magnitude smaller than our
datasets. The only exception we are aware of is Li et al.’s
work [12], which uses 1.7 million web pages and 81,000
queries to evaluate the feasibility of keyword-based parti-
tioning. However, they did not give specific evaluation re-
sults on the communication cost and search latency on their
datasets. In addition, there is no previous performance com-
parison for all four types of existing p2p keyword search
techniques on the same dataset.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our performance evaluation
framework and technical background. Sections 3 to 6 evalu-
ate each of the four types of p2p keyword search techniques
and explore directions to improve the search quality or to
reduce the overhead of current p2p keyword search systems.
Section 7 compares current p2p keyword search techniques
by scaling our simulation results to 109 web pages and Sec-
tion 8 concludes this paper.

2. EVALUATION SETUP
In our evaluation framework, a search finds the page IDs

of several (e.g., 20) most relevant web pages since most users
are only interested in the most relevant web pages. A com-
plete search system may also retrieve the page URLs and
digests based on the page IDs found. This step could be ef-
ficiently supported by using any distributed hash table (e.g.,
Chord [20] or CAN [15]) and we do not examine that in our
performance evaluation.

Our evaluation dataset contains 3.7 million web pages and
6.8 million web queries. The web pages are crawled based on
URL listings of the Open Directory Project [6]. The queries
are from a partial query log at the Ask Jeeves search en-
gine [1] over the week of 01/06/2002–01/12/2002 and there
are an average of 2.54 terms per query. The web pages
are pre-processed by using the stopword list of the SMART
software package [19] and removing the HTML tags. In ad-
dition, we restrict the vocabulary to be the 253,334 words
that appear in our query log. After preprocessing, the aver-
age number of distinct words per page is approximately 114.
In our implementation, each web page is associated with an
8-byte page ID, which is computed by using its URL as a
key to the MD5 hash algorithm. Each page ID in the in-
verted list of term A is associated with its term frequency
of A (the number of occurrences of A in the page), which is
stored as a short integer (2 bytes). Thus each entry of an
inverted list is 10 bytes.

We evaluate the performance of p2p keyword search tech-
niques in terms of four metrics: total storage consumption,
communication cost, search latency, and search quality. Here

communication cost measures the average number of bytes
that needs to be sent over the network in order to return
the top 20 most relevant page IDs for a query. Search la-
tency is the time for a p2p keyword search system to return
the top 20 most relevant results. Search quality is defined
as the overlapping percentage between the search results of
a centralized keyword search and those of a p2p keyword
search. Ideally, p2p keyword search should return exactly
the same result as the centralized keyword search with mod-
erate search latency and communication cost.

In order to estimate search latency based on the com-
munication cost, we make the following assumptions. We
assume that the latency for each link in the p2p overlay is
40ms and the maximum Internet bandwidth consumption
of a p2p keyword search system is 1 Gbps, which is approx-
imately 0.26% of the US Internet backbone bandwidth in
2002 (381.90 Gbps as reported by TeleGeography [25]). We
assume that the maximum available network bandwidth per
query is 1.5 Mbps — the bandwidth of a T1 link.

We use the Vector Space Model (VSM) to rank the rele-
vance of web pages to a query. In VSM [3], the similarity
between two pages is measured by the inner product of their
corresponding page vectors, which is typically computed by
using variants of the TF.IDF term weighting scheme [18].
We are aware that some term weighting schemes, such as
Okapi [17], are reported to have better performance than
the standard term weighting scheme. However, it is not
our goal to explore the performance of centralized keyword
search systems with different term weighting schemes.

3. DOCUMENT-BASED PARTITIONING
In document-based partitioning, the web pages are di-

vided among the nodes, and each node maintains local in-
verted lists of the web pages it has been assigned. A query
is broadcast to all nodes, and each node returns the k most
highly ranked web pages in its local inverted lists.

In our evaluation, the web pages are randomly distributed
among the overlay nodes. Assuming the availability of an
overlay multicast management protocol [2], the query broad-
cast and result aggregation are done through a pre-constructed
broadcast/aggregation tree with depth log n for a network
with n nodes. Only the top 20 most highly ranked pages
from each node are considered. Each node in the aggrega-
tion tree merges its local query result with the results from
its children and returns the top 20 pages to its parent. Thus
the size of the results returned from each node is constant.

According to the VSM page ranking algorithm, the com-
putation of term weights requires some global statistics (e.g.,
the popularity of terms), which can only be estimated locally
based on the partition at each node. Therefore, the query re-
sults of document-based partitioning may be different from
the results of the centralized search, which is based on accu-
rate global statistics. We evaluate the quality degradation
of document-based partitioning using our dataset. Figure
1(A) presents the results on networks with different sizes.

The total storage consumption of document-based par-
titioning is d · W · i, where d is the total number of web
pages, W is the average number of distinct terms per page,
and i is size of an inverted list entry. For our dataset,
d = 3720390, W = 114, i = 10bytes. Therefore, the to-
tal storage requirement of document-based partitioning is
3720390 × 114 × 10 ≈ 4.24 GB.

A message of query results (containing 20 page IDs and
their relevance scores) has 20×10 = 200 bytes. Assume each
message has an additional overhead of 100 bytes. Thus the

total communication cost for a query is 300× (n− 1) bytes,
which grows linearly with the network size.

The search latency of document-based partitioning is dom-
inated by the network broadcast and aggregation time under
the assumption that the local search at each node and the
merging of search results can be done efficiently (otherwise
no efficient p2p keyword search could be possible at all). The
network broadcast and aggregation time is 2 × log n × 0.04
seconds since the tree depth is log n.

4. KEYWORD-BASED PARTITIONING
For keyword-based partitioning, each node maintains the

complete inverted lists of some keywords. A query with
k ≥ 1 keywords needs to contact k nodes and requires that
the inverted lists of k−1 keywords be sent over the network.

The baseline keyword-based partitioning randomly dis-
tributes the inverted lists of keywords over network nodes
and always sends the smallest inverted list over the network
when computing the intersection of inverted lists. Hence a
k-word query visits k nodes sequentially in the ascending
order of the inverted list sizes, which aims to minimize the
network communication overhead of the set intersections.

Unlike document-based partitioning, there is no quality
degradation when using keyword-based partitioning. The
total storage consumption of the baseline keyword-based
partitioning is identical to that of document-based parti-
tioning, though some optimization techniques (e.g. caching,
pre-computation) may lead to extra storage consumption.

In the evaluation of keyword-based partitioning, we use a
Chord [20] ring to organize nodes into an overlay, where the
inverted list of a term x is stored in the overlay by using x as
a hash key. Given a query term A, the inverted list of A can
be found within log n × 0.04 seconds in a Chord ring with
n nodes since the network diameter is log n and the average
latency per link is 40ms in our settings.

For a k-keyword query, the search latency T is as follows.

T = TlinkLatency + Ttransmission (1)

TlinkLatency ≤ (k +1)× log n×0.04 seconds is the total net-
work link latency for a k-keyword query since a k-keyword
query needs to go through k+1 node-to-node trips and each
trip takes at most log n × 0.04 seconds in a Chord with n
nodes. Ttransmission, the time to send the inverted lists over
the network, is C

B
, where C is the communication cost of the

query and B = 1.5 Mbps is the available network bandwidth
per query in our evaluation settings. For very large datasets,
Ttransmission becomes the dominant factor of the search la-
tency of keyword-based partitioning. Note that we do not
consider the local computation time since it is usually small
and negligible compared with TlinkLatency and Ttransmission.

Figure 1(B) shows the distribution of the communication
cost per query for the baseline keyword-based partitioning,
where the average communication cost per query is 96.61 KB
and the maximum cost is 18.65 MB. Given that the average
number of terms per query is 2.54, the average search latency
of the baseline keyword-based partitioning can be computed
based on Equation (1):

T = ((2.54 + 1) × log n × 0.04) +

(

96.61 × 1000 × 8

1.5 × 106

)

= (0.14 × log n) + (0.52) sec.

(2)

The communication cost of the baseline keyword-based
partitioning can be reduced by the following techniques with-
out compromising the quality: Bloom filters, pre-computation,

128 256 512 1024 2048 4096
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

Network size (in number of nodes)

S
ea

rc
h

Q
ua

lit
y

(A) document−based partitioning

10 20 30 40 50 60 70 80 90100
0%

10%

20%

30%

40%

50%

60%

70%

80%

pr
op

or
tio

n
of

 w
eb

 q
ue

rie
s

The communication cost (in 10 kilobytes)

(B) The baseline keyword−based partitioning

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

pr
op

or
tio

n
of

 w
eb

 q
ue

rie
s

The communication cost (in 10 kilobytes)

(C) Using Bloom filters

4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

Per−node disk cache size (in megabytes)

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (D) Caching the search results

10 20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

1

% of extra storage needed

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (E) Using pre−computation

128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Network Size (in number of nodes)

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (F) Using query log mining

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

The number of partitions per keyword

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (G) Using incremental set intersection

10 20 40 80 160 320 640
0

0.01

0.02

0.03

% of extra storage needed

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (H) Combing all techniques together

Figure 1: The evaluation results for document-based partitioning and keyword-based partitioning.

caching, query log mining, incremental set intersection, and
other techniques. We discuss these techniques in the remain-
der of this section. During our discussion, the communica-
tion cost ratio, c, is defined as the average ratio of reduced
communication cost to the communication cost of the base-
line keyword-based partitioning. Hence the new network
transmission time Ttransmission is c times that of the base-
line keyword-based partitioning and TlinkLatency remains al-
most unchanged. Based on Equation(2), we have the new
search latency:

T (c) = (0.14 × log n) + (0.52 × c) sec. (3)

4.1 Bloom Filters
Li et al. [12] and Reynold and Vahdat [16] suggest to use

Bloom filters [4] as a compact representation of sets. By us-
ing Bloom filters, the communication overhead for set inter-
sections is significantly reduced at the cost of a small prob-
ability of false positives. Given two sets A, B with |A| < |B|
and each element in the sets having i bytes. The number
of bits, m, in a Bloom filter that minimizes the communi-
cation cost for computing A

⋂

B can be determined by the
following equation from Reynold and Vahdat [16].

m = |A| · log0.6185

(

2.081

i
·
|A|

|B|

)

(4)

We implemented Bloom filters on our dataset based on Equa-
tion (4), where i = 64 for our system. Figure 1(C) shows the
distribution of per-query communication cost of our imple-
mentation of Bloom filters, where the communication ratio
is 0.137. Hence the search latency is reduced to (0.14 ×
log n) + (0.137 × 0.52) seconds according to Equation (3).

4.2 Caching
Previous research [12, 16] has suggested that the commu-

nication cost for set intersections can be reduced by caching
the sets or their Bloom filters received at each node. Our
experiments show that it is more helpful for each node to
directly cache its search results. LFU policy is used in our
cache implementation. Figure 1(D) presents the communi-

cation cost ratio of our cache implementation with different
cache sizes. The new search latency can be easily calculated
based on Equation (3).

4.3 Pre-Computation
Gnawali as well as others [9, 12] suggest to use pre-computation,

which computes and stores the intersection results of the in-
verted lists of popular query keywords in advance. Here we
pre-compute the intersections of the most frequently used
keyword pairs, keyword triplets, and keyword quartets in
the query log. Figure 1(E) illustrates how pre-computation
saves communication cost at the expense of extra storage
consumption.

4.4 Query Log Mining
We propose to use query log mining, which explores a

better way to distribute inverted lists over the nodes than
the uniformly random scheme used by the baseline keyword-
based partitioning. Our query log mining clusters keywords
into similar-sized groups based on their correlations. By dis-
tributing each group of keywords to a node, the intersection
of the inverted lists of keywords within the same group does
not incur any network communication.

We represent our query log as a weighted graph, where
each node represents a query term and the weight of an edge
(u, v) is the number of queries that contain both u, v. By us-
ing the chaco [5] package recursively, the graph is partitioned
into groups with nearly balanced storage consumption such
that the words in the same group tend to be highly corre-
lated. A sampled group on a 4096-node network includes
the following words: san ca diego francisco puerto tx austin
rico antonio earthquake jose juan vallarta lucas rican luis
cabo fransisco bernardino.

Figure 1(F) illustrates how our query log mining results
help to reduce the communication cost ratios for networks
with different number of nodes (keyword groups).

4.5 Other Techniques
Based on the assumption that users are only interested

in the most relevant results of a search, incremental set in-
tersection reduces the communication cost by only retriev-

ing the top k most relevant web pages. Variants of Fagin’s
algorithm [7] has been used in some p2p keyword search
systems [21] to achieve incremental set intersection.

Figure 1(G) presents the communication cost ratios when
different values of the number of partitions per keyword, are
used for our dataset.

As suggested by Gnawali and Li et al. [9, 12], other com-
pression methods, such as compressed Bloom filters [14] and
gap compression [26], may also be used to reduce the com-
munication cost. However, these methods only lead to slight
improvement in our experiment.

4.6 Combine Them Together
Figure 1(H) presents the communication cost ratios after

using Bloom filters, pre-computation, caching (256 MB per
node), query log mining, and incremental set intersection
(with 3 partitions per keyword) together on 4096-node net-
works. The ratios in Figure 1(H) are larger than the product
of the ratios in Figure 1(C) to 1(G) since the performances
of these techniques are not completely orthogonal. Given
the communication cost ratios, the search latency can be
easily calculated based on Equation (3).

5. HYBRID INDEXING
Hybrid indexing [23] saves the communication cost of keyword-

based partitioning by associating each page ID in an inverted
list with some metadata of the corresponding web page.

A naive approach is to associate each page ID in an in-
verted list with a complete term list of the corresponding
web page. This way the intersection of the inverted lists for
multiple keyword search can be done locally with no com-
munication needed. Let L be the average size of the term
lists of web pages. Let l be the average size of the entries
in the original inverted lists. The above naive approach re-
quires L

l
+ 1 times the storage consumption of the original

inverted lists, which may be as high as several hundreds and
thus is prohibitive for very large datasets.

10 20 30 40 50 60 70
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

t, the number of search results to be considered

T
he

 o
ve

rla
pp

in
g

pe
rc

en
ta

ge

The search quality of hybrid indexing

With no query expansion
With query expansion

Figure 2: The search quality of hybrid indexing on our

dataset. The quality is measured by the overlapping per-

centage between the top t search results of the hybrid

indexing and those of centralized search.

The hybrid indexing approach proposed by Tang et al. [23]
uses VSM [3] to identify the top k terms (with k highest term
weights) in a document and only publishes the term list of
the document to the inverted lists of these top terms. Briefly

speaking, the inverted list of a term, x, only contains those
page IDs that have x as their top terms. This approach may
degrade the quality of the search results since if the terms
of a query are not among the top terms of a document then
the query cannot find this document. In their approach,
classical IR algorithms and query expansion are used to im-
prove search quality. Query expansion works by expanding
the query with new relevant terms extracted from the best
matched pages to the original query. For the details of query
expansion, please refer to [23].

The total storage consumption of hybrid indexing is 1 +
k
W

·L
l

times that of the standard keyword-based partitioning.
Here L is the average size of the term lists of web pages. l
is the average size of the entries in an inverted list. k is the
number of top terms under which a web page is published.
W is the the average number of distinct terms per page.
Let k = 20 and each entry of a term list consists of a 4-
byte term ID and a 2-byte term frequency. Hence the total
storage consumption of hybrid indexing on our dataset is
1 + k

W
· L

l
= 1 + 20

114
× 6×114

10
= 13 times that of the baseline

keyword-based partitioning.
The communication cost of hybrid indexing on our dataset

is 7.5 KB per query, which is independent of the dataset size.
For hybrid indexing, distributed hash tables (DHT) are

necessary for storing and finding the inverted list of a term
x by using x as a hash key. Let D denote the network
diameter of the underlying DHT. If query expansion is not
used, then a hybrid indexing search contacts the inverted
list of a query term (or all inverted lists of query terms in
parallel) and retrieve the search results. Hence the search
latency of hybrid indexing is 2×D × 0.04 seconds. If query
expansion is used, then a hybrid indexing search consists of
two searches: one for the original query and the other for
the expanded query. Hence the search latency is 4×D×0.04
seconds if query expansion is used.

Figure 2 studies the search quality of hybrid indexing,
where each web page is published under its top 20 terms.
As suggested by Tang et al. [23], the query expansion in
Figure 2 is based on the 10 most relevant terms in the top
10 best matched pages to the original query.

6. SEMANTIC SEARCH
Semantic search [8, 13, 24] use classical IR algorithms

(e.g., Latent Semantic Indexing) to map web pages and
queries to points in a semantic space with reduced dimen-
sionality (typically between 50 and 350). For each query,
semantic search returns the top a few closest points to the
query point in the multi-dimensional semantic space, where
the closeness between points A, B is typically measured by
the dot product of vectors ~A, ~B. As a result, semantic search
can be characterized as nearest neighbor search in multi-
dimensional semantic space.

Here we evaluate the performance of pSearch, the seman-
tic search system proposed by Tang et al. [24] on our dataset.
In our evaluation, we use LSI matrices with dimensionality
200, which are computed by applying the SVDPACK soft-
ware package [22] to a term-document matrix that consists of
38457 web pages uniformly sampled from our dataset. The
LSI matrices fold web pages or queries (253334-dimensional
vectors) into 200-dimensional vectors, which form a seman-
tic space. In our evaluation, the storage consumption of
a web page in the semantic space is 8 + (200 × 4) = 808
bytes since each 200-dimensional vector (200 × 4 bytes) is
associated with its corresponding page ID (8 bytes).

One of the key obstacles to semantic search is the mis-

12 45 8 10 20 25 40 50
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p, the number of partitions

T
he

 o
ve

rla
pp

in
g

pe
rc

en
ta

ge

The search quality of pSearch

k=20
k=40
k=80
k=160
k=320

Figure 3: The quality of pSearch on our dataset. The

quality is measured by the overlapping percentage be-

tween the top 20 search results of pSearch and the top

20 results of centralized semantic search.

match between the dimensionality of the semantic space (50
to 350) and the effective dimensionality of the p2p overlay
hash space, which is at most 2.3 ln n for a CAN network
with n nodes [24]. The dimension reduction technique used
in pSearch is called rolling-index, which partitions a seman-
tic space into p subspaces (each has m dimensions). Hence
p × m is equal to the dimensionality of the semantic space,
which is 200 in our evaluation. Another constraint is that m
has to be less than or equal to the effective dimensionality of
the underlying CAN network. Otherwise a m-dimensional
subspace cannot be efficiently implemented on the CAN net-
work hash space. Given that the maximum effective dimen-
sionality of a CAN network with n nodes is b2.3 ln nc [24],
we have m ≤ b2.3 ln nc and p ≥ d 200

2.3 ln n
e.

In rolling-indexing, each point is stored at p places (one
for each semantic subspace) in the CAN hash space. For
each query, p parallel searches are performed (one for each
subspace) and each of them returns the top k points (and
their page IDs) found in its corresponding semantic sub-
space. The query-initiating node merges the results and
only returns the top 20 page IDs as the final result.

As we can see from Figure 3, the search quality increases
when k (the number of the retrieved points from each se-
mantic subspace) grows. The search quality increases when
p (the number of semantic subspaces) gets smaller since a
small p means that each subspace has high dimensionality
and their closest points to the query are more likely to be
among the global closest points. However, p has a lower
bound of d 200

2.3 ln n
e as we explained before. Specifically, p

must be at least 10 for a 6000-node CAN, which leads to
87.64% search quality if 160 points are retrieved from each
semantic subspace.

Let i denote the number of bytes needed for storing a point
in each semantic subspace. Let d denote the total number of
documents in the system. The total storage consumption of
pSearch is d · p · i. If p = 10 (for 6000-node CAN networks),
then the total storage requirement of pSearch on our dataset
is 3720390 × 10 × 808 ≈ 30.06 GB, which is 7.09 times the
storage requirement of document-based partitioning or the
baseline keyword-based partitioning.

The communication cost of pSearch is p·k·i bytes, which is
independent of the dataset size. If we choose p = 10 and k =

160 (lead to 87.64% search quality), then the communication
cost per query is 10 × 160 × 808 ≈ 1.29 MB.

According to Equation (1), the search latency of pSearch
on a CAN network with n nodes is

T = TlinkLatency+Ttransmission = (2×n
1

d ×0.04)+
p · k · i · 8

1.5 × 106
sec.

where d is b2.3 ln nc, p = d 200
2.3 ln n

e, and i = 808. Note that
k, the number of the retrieved points from each semantic
subspace, is decided based on the desired search quality since
the quality increases as k grows.

7. PERFORMANCE COMPARISON
In order to project the performance of current p2p key-

word search techniques on very large datasets, we scale our
evaluation results to 109 web pages as shown in Table 1.

Table 2 summarizes the advantages and constraints of the
four types of p2p full-text keyword search techniques that
we considered in this paper.

Document-based partitioning is desirable for a large set of
documents since its communication cost is independent of
the dataset size and its storage consumption is small com-
pared with other p2p keyword search techniques. However,
document-based partitioning requires that the network size
and the total number of queries per second must be small.
For example, if we assume that each node can handle up
to 100 queries per second and the assumptions in Section 2
hold, then document-based partitioning can support up to
4167 nodes and 100 queries per second in total. Generally
speaking, the communication cost of document-based parti-
tioning grows linearly with the network size. The number of
queries received by each node per second is exactly the num-
ber of queries going into the whole system each second since
document-based partitioning broadcasts each query to ev-
ery node. Hence the query throughput of document-based
partitioning is bounded by the query throughput of each
node.

Keyword-based partitioning (optimized as described in
Section 4) is the only known p2p keyword search technique
with no quality degradation. Keyword-based partitioning
is suitable for large-sized networks since the communica-
tion cost of keyword-based partitioning is independent of the
network size. However, the communication cost of keyword-
based partitioning grows linearly with the number of docu-
ments in the system. Hence a user should choose keyword-
based partitioning when she prefers no quality degradation
or when the total number of documents in the system is
not too large. Specifically, if we require that the total net-
work bandwidth consumption is bounded by 1 Gbps and the
average search latency is less than 10 seconds, then keyword-
based partitioning can support up to 108 web pages and 1000
queries per second in total.

Hybrid indexing has small communication cost per query
(7.5 KB), which is independent of the total number of docu-
ments and network size. This small per-query communica-
tion cost is also very helpful when a large number of queries
go into the system each second. However, these advantages
are achieved at the cost of 10%–50% quality degradation and
significant extra storage consumption (13 times under our
settings). When quality degradation and extra storage con-
sumption are acceptable, hybrid indexing is a good choice.

Semantic search favors large-sized networks because large-
scale networks have high effective dimensionalities and thus
lead to small dimension mismatch between the semantic
space and the overlay hash space. For instance, for a 6000-

Techniques Total storage C, comm. cost per query Latency Quality

Document-based partitioning 1139.67GB 0.3 × (n − 1)KB 2 × log n × 0.04 seconds 75% to 95% (varies with n)
Keyword-based partitioning 2963.10GB 905.82KB to 1221.78KB (0.14 × log n) + 4.82 seconds 100.00%
(160% extra precomputation storage (varies with n) to
and 256 MB per-node cache are used) (0.14 × log n) + 6.52 seconds
Hybrid Indexing (with query expansion 14815.70 GB 7.5KB 4 × log n × 0.04 seconds 86.05%
and the top 20 results in consideration) (independent of n)
Semantic Search (n = 6000,k = 160) 8080.26GB 1290KB 7.59 seconds 87.64%

Table 1: The scaled performance of p2p full-text keyword search techniques on a n-node network with 109 pages.

Techniques Advantages Constraints

Document-based 1. Suitable for a large number of documents 1. Requires small network size
partitioning 2. Relatively small storage consumption 2. Requires small number of queries per second in total

3. Has moderate quality degradation
Keyword-based 1. No quality degradation 1. The communication cost grows linearly
partitioning 2. Suitable for large-sized networks with the total number of documents

2. Relatively high communication cost
3. Requires moderate extra storage consumption

compared with document-based partitioning
Hybrid Indexing 1. Suitable for large-sized networks 1. Has quality degradation

2. Suitable for a large number of documents 2. Requires significant extra storage consumption
3. Suitable for a large number of queries per second than document-based partitioning

Semantic Search 1. Favors large-sized networks 1. Requires moderate extra storage than document-based partitioning
2. Can do concept-based search 2. Has moderate quality degradation

3. Relatively high communication cost
4. Its underlying IR techniques, e.g., LSI, may have scalability problems

Table 2: The advantages and constraints of current p2p full-text keyword search techniques.

node network, semantic search has 87.64% quality with 1.29 MB
communication cost per query and 8080GB total storage
consumption. When the network size grows to 36 million
nodes, semantic search can achieve 91.22% quality with
322.50 KB communication cost per query and 4040GB total
storage consumption. In addition, semantic search can find
those web pages with similar concepts to the query terms,
though they may not have exactly the same term. For exam-
ple, semantic search can retrieve documents containing the
term “automobiles” for queries containing the term “cars”.
In summary, semantic search is suitable for large-scale net-
works or concept-based queries.

8. CONCLUSION
This paper provides a performance evaluation and com-

parison of current p2p full-text keyword search techniques
on a dataset of 3.7 million web pages and 6.8 million queries.
Our dataset is an order of magnitude larger than the datasets
employed in most previous studies (up to 528,543 web pages
and 100,000 queries). To further project the performance of
current p2p keyword search techniques on very large datasets,
we linearly scale our evaluation results to 109 web pages.
Our evaluation results can serve as a guide for a user to
choose p2p keyword search techniques based on specific sys-
tem parameters, such as network size, the number of docu-
ments, and the query throughput.

9. REFERENCES
[1] Ask Jeeves Search. http://www.ask.com.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. In Proc. of ACM SIGCOMM,
pages 205–217, 2002.

[3] M. Berry, Z. Drmac, and E. R. Jessup. Matrices, Vector Spaces,
and Information Retrieval. SIAM Review, 41(2):335–362, 1999.

[4] B. H. Bloom. Space/time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[5] http://www.cs.sandia.gov/ bahendr/chaco.html.

[6] The Open Directory Project. http://www.dmoz.com.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In Proc. of ACM Symp. on
Principles of Database Systems, 2001.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to Rule
Them All: Multidimensional Queries in P2P Systems. In Proc.
of WebDB’04, 2004.

[9] O. D. Gnawali. A Keyword-Set Search System for Peer-to-Peer
Networks. Master’s thesis, Dept. of Computer Science,
Massachusetts Institute of Technology, June 2002.

[10] Gnutella. http://www.gnutella.com.

[11] KaZaA. http://kazaa.com.

[12] J. Li, T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. On the Feasibility of Peer-to-Peer Web Indexing and
Search. In Proc. of IPTPS’03, 2003.

[13] M. Li, W. Lee, and A. Sivasubramaniam. Semantic Small
World: An Overlay Network for Peer-to-Peer Search. In Proc.
of IEEE ICNP, 2004.

[14] M. Mitzenmacher. Compressed Bloom Filters. In Proc. of 20th
ACM PODC, 2001.

[15] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server
Selection. In Proc. of IEEE INFOCOM, New York, NY, June
2002.

[16] P. Reynold and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. In Proc. of Middleware’03, 2003.

[17] S. E. Robertson, S. Walker, S. Jones, M. HancockBeaulieu, and
M. Gatford. Okapi at TREC-3. In TREC-3, 1994.

[18] G. Salton and C. Buckley. Term-weighting Approaches in
Automatic Text Retrieval. Information Processing and
Management, 24(5):513–523, 1988.

[19] SMART. ftp://ftp.cs.cornell.edu/pub/smart.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of ACM
SIGCOMM, pages 149–160, San Diego, CA, Aug. 2001.

[21] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi,
X. Long, and K. Shanmugasunderam. ODISSEA: A
Peer-to-Peer Architecture for Scalable Web Search And
Information Retrieval. In Proc. of WebDB’03, 2003.

[22] SVDPACK. http://www.netlib.org/svdpack/index.html.

[23] C. Tang, S. Dwarkadas, and Z. Xu. Hybrid Global-Local
Indexing for Efficient Peer-to-Peer Information Retrieval. In
Proc. of the First USENIX/ACM NSDI, San Franscisco, CA,
Mar. 2004.

[24] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks. In
Proc. of ACM SIGCOMM, 2003.

[25] Global Internet Geography 2003. TeleGeography, Inc.

[26] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. 1999.

Efficient Engines for Keyword Proximity Search

Benny Kimelfeld
The Selim and Rachel Benin School of

Engineering and Computer Science
The Hebrew University of Jerusalem

Edmond J. Safra Campus
Jerusalem 91904, Israel

bennyk@cs.huji.ac.il

Yehoshua Sagiv
The Selim and Rachel Benin School of

Engineering and Computer Science
The Hebrew University of Jerusalem

Edmond J. Safra Campus
Jerusalem 91904, Israel

sagiv@cs.huji.ac.il

ABSTRACT
This paper presents a formal framework for investigating
keyword proximity search. Within this framework, three
variants of keyword proximity search are defined. For each
variant, there are algorithms for enumerating all the results
in an arbitrary order, in the exact order and in an approx-
imate order. The algorithms for enumerating in the exact
order make the inevitable assumption that the size of the
query (i.e., the number of keywords) is fixed, but the other
algorithms do not make this assumption. All the algorithms
are provably efficient, that is, run with polynomial delay.
The algorithms for enumerating in an approximate order
are provably correct for a natural notion of approximation
that is defined in this paper.

1. INTRODUCTION
The World-Wide Web is a catalyst for the amalgamation

of two data-extraction paradigms: Information retrieval and
database querying. An early work that combined the two
paradigms is proximity search in databases [10]. More re-
cently, several approaches (e.g., [1, 3, 5, 6, 13, 14, 15, 18])
have been proposed for combining querying and keyword
searching when extracting information from either relational
or XML data. A key concept underlying all these techniques
is reduced subtrees. Formally, a keyword search is posed as a
set of keywords K. A result of a keyword search is a subtree
T of the given data graph G, such that T is reduced with
respect to the given set of keywords K; that is, T contains
K, but no proper subtree of T contains K.

DBXplorer [1], BANKS [3] and DISCOVER [14] are three
systems that support keyword search in relational databases.
In these systems, a database is (or can be) viewed as a data
graph G that has tuples and keywords as nodes. Two tuples
are connected by an edge if they can be joined using a foreign
key; a tuple t and a keyword k are connected if t contains k.
Thus, a result of a keyword search is a subtree of G that is
reduced with respect to K. Ranking of results is based on
the notion of keyword proximity; that is, a smaller reduced
subtree has a higher rank.

The above systems use two different approaches for pro-
ducing reduced subtrees. DBXplorer and DISCOVER are
similar in the sense that they find all reduced subtrees by

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

constructing join expressions (called candidate networks in
DISCOVER and join trees in DBXplorer) and then evalu-
ating those expressions according to their size, starting with
the smallest expression. Thus, the results are produced in
the order of increasing size.

BANKS uses a different approach—a graph-search algo-
rithm (called backward expanding search) is applied directly
to the data graph. In this approach, weights can be assigned
to the nodes and edges of the data graph.

Neither approach is optimal. Generating all join expres-
sions is quick if the schema is small and simple. In general,
however, there could be many join expressions that yield
empty results for the database at hand.

The approach of BANKS is a heuristics for generating
all reduced subtrees. It may generate duplicate results and
backtracking is required to eliminate them. Furthermore,
the actual order of the generated results is not the exact
order determined by the weights. No formal statement is
made in [3] regarding by how much the actual order can
deviate from the required order.

In [13], the approach of DISCOVER is extended with
information-retrieval techniques for ranking. XKeyword [15]
is a tool that generates, from a given XML document, de-
scriptive fragments containing the given keywords. These
fragments are obtained from reduced subtrees of the docu-
ment graph. Generating the reduced subtrees is based on
an adaptation of the method that is used in DISCOVER.

The work of [5] investigates the problem of finding seman-
tic relationships among nodes of XML documents and gives
efficient solutions for tree documents. XSearch [6] combines
the approach of [5] with information-retrieval techniques.
In [18], it is shown that an efficient algorithm for generating
reduced subtrees is needed for finding semantically related
nodes of graph documents (i.e., XML documents that may
have ID references).

In [21], it is argued that a result of a Web search should
be more than a single page, since frequently the keywords
specified by the user are spread over several pages. Thus,
they use heuristics for generating reduced subtrees (of the
Web graph) in increasing size. But the actual order is sub-
optimal (i.e., not the exact order) and the time complexity
is, in the worst case, exponential in the size of the diameter
of the graph that embeds the generated subtrees.

In summary, algorithms for enumerating reduced subtrees
are needed in different types of search engines. Existing sys-
tems have implemented heuristics that may perform well in
practice. From a theoretical point of view, however, there

are two open problems. The first is efficiency. More pre-
cisely, is it possible to enumerate reduced subtrees efficiently
either in an arbitrary order or in the exact order? In the
case of the exact order, a known NP-complete [9] problem
implies that enumeration cannot be done efficiently if the
set of keywords K has an unbounded size. However, there
is still the possibility of finding algorithms that are more
efficient than the above heuristics if K has a fixed size. The
second open problem is approximations. What is a suitable
notion of enumerating in an approximate order and can it
be done efficiently?

In this paper, we describe a formal framework and give
complexity results for the problem of enumerating reduced
subtrees. The formal framework clearly identifies three vari-
ants of this problem. One variant deals with directed sub-
trees and two deal with undirected subtrees. Note, for exam-
ple, that BANKS generates directed subtrees whereas DBX-
plorer and DISCOVER generate undirected subtrees.

For each of the three variants, the following results hold.
First, reduced subtrees can be enumerated efficiently if no
order is imposed. Second, if the set of keywords K has
a fixed size, then reduced subtrees can be enumerated ef-
ficiently in increasing size (or weight). Third, we define a
formal notion of enumerating reduced subtrees in an approx-
imate order and show that approximate enumeration can be
done efficiently, even if the size of K is not fixed.

We derived the last two results by discovering intricate
relationships that hold between enumerations of reduced
subtrees and Steiner-tree optimization problems. The lat-
ter have been investigated extensively over many years and
there is a wealth of results about them. We found that
these results can be used to develop efficient algorithms for
enumerating reduced subtrees.

To summarize, we show that there are efficient algorithms
for several variants of keyword proximity search, where re-
sults are either ranked, unranked or approximately ranked.
Our algorithms are both provably efficient and provably ap-
proximate. In comparison, earlier work (e.g., [1, 3, 13, 14,
15, 21]) used heuristics for developing such algorithms.

This paper is organized as follows. Section 2 defines ba-
sic concepts and notations. Section 3 describes the formal
framework. The main results are described Sections 4. We
conclude in Section 5.

2. DATA GRAPHS
A data graph G consists of a set V(G) of nodes and a

set E(G) of edges. There are two types of nodes: struc-
tural nodes and keywords. A node is either structural or
a keyword, but not both. We use S(G) to denote the set
of structural nodes of G, and K(G) to denote the set of
keywords of G. Unless explicitly stated otherwise, edges
are directed, i.e., an edge is a pair (n1, n2) of nodes. Key-
words have only incoming edges, while structural nodes may
have both incoming and outgoing edges. Hence, no edge
can connect two keywords. These restrictions mean that
E(G) ⊆ S(G) × V(G). The edges of a data graph G may
have weights. The weight function wG assigns a positive
weight wG(e) to every edge e ∈ E(G). The weight of the
data graph G, denoted w(G), is the sum of the weights of
all the edges of G (i.e., w(G) =

P

e∈E(G) wG(e)).

A data graph is rooted if it contains some node r, such
that all the nodes of G are reachable from r through a di-
rected path. The node r is called a root of G. (Note that a

gov

continent

organization

name

country

Monarchy

Belgium

name

country gov

Monarchy

Netherlands

name

Brussels

city

hq

Figure 1: A data graph G1.

rooted data-graph may have several roots.) A data graph is
connected if its underlying undirected graph is connected.

As an example, consider the data graph G1 depicted in
Figure 1. (G1 is a subgraph of the Mondial1 XML database.)
In this graph, filled circles represent structural nodes and
keywords are written in italic font. Note that the keyword
Monarchy appears twice in this figure; in the actual data
graph, however, the keyword Monarchy is represented by a
single node that has two incoming edges. Also note that the
structural nodes of G1 have labels, but in this paper we do
not use them. The data graph G1 is rooted and the node
labeled with continent is the only root.

We use two types of data trees. A rooted tree is a rooted
data graph, such that there is only one root and for every
node u, there is a unique path from the root to u. An
undirected tree is a connected data graph that contains no
cycles, even when ignoring the directions of the edges.

We say that G′ is a subgraph of the data graph G, denoted
G′ ⊆ G, if V(G′) ⊆ V(G) and E(G′) ⊆ E(G). Rooted and
undirected subtrees are special cases of subgraphs.

3. KEYWORD PROXIMITY SEARCH

3.1 The Framework
In this section, we describe a framework for keyword prox-

imity search. A query is simply a finite set of keywords K.
The result of applying the query K to a data graph G con-
sists of subgraphs of G that contain all the keywords of K.
However, such a subgraph is not necessarily a meaningful an-
swer, since an answer should typically have some additional
properties. One important property is connectivity. In some
cases, e.g., [1, 13, 14, 15, 18, 21], connectivity is defined in
an undirected manner, while in other cases, e.g., [3, 18], con-
nectivity is defined in a directed manner. We consider both
types of connectivity and use the following definition.

Definition 1 (K-Subgraphs). Let K be a query. A
rooted K-subgraph of a data graph G is a rooted subgraph F ,
such that K ⊆ K(F). Similarly, an undirected K-subgraph
of G is a connected subgraph F , such that K ⊆ K(F).

A K-subgraph may include information that is irrelevant
to the given query. For example, the original data graph
G is usually a K-subgraph, but it is rarely a meaningful

1http://www.dbis.informatik.uni-goettingen.de/Mondial/

Netherlands

F3

gov gov
countrycountry

namename

Belgium

Monarchy

Netherlands

F2

name
country

city
country

Netherlands

name
hq
organization

Belgium

F1

continentname
country country

name

Belgium

Figure 2: Fragments of G1.

answer. Therefore, meaningful answers should be reduced
K-subgraphs, as defined next.

Definition 2 (Reduced K-Subgraphs). Let G be a
data graph. A rooted (respectively, undirected) K-subgraph
F is reduced if no proper subgraph of F is also a rooted
(respectively, undirected) K-subgraph of G.

We use the following terminology. A reduced rooted K-
subgraph is called a rooted K-fragment. Similarly, a reduced
undirected K-subgraph is called an undirected K-fragment.

As an example, consider the graph G1 of Figure 1 and the
subtrees F1, F2 and F3 of G1 depicted in Figure 2. Let K
be the query {Belgium,Netherlands}. The subtrees F1, F2

and F3 are all K-fragments. The fragment F1 is rooted (its
root is the node labeled with continent). The fragments
F2 and F3 are undirected, but not rooted. Note that in F3

the keyword Monarchy is needed to maintain connectivity.
Some systems (e.g., [1, 13, 14, 15, 21]) use undirected

connectivity, but require all keywords to appear in the leaves
(i.e., F3 is deemed an inappropriate result). Therefore, we
introduce a third type of fragments. Formally, an undirected
K-fragment F is a strong K-fragment if the subgraph of
F that is induced by S(F) (i.e., the structural nodes) is
connected. Note that F2 is a strong fragment, but F3 is not.

The following proposition shows that K-fragments are
trees with some additional properties. Note that the state-
ment about rooted K-fragments follows from the fact that,
in data graphs, keywords have only incoming edges.

Proposition 1. For a data graph G:

• If F is a rooted K-fragment, then F is a rooted tree,
such that K is the set of all keywords of F , i.e., K =
K(F), and K is also the set of all the leaves of F .

• If F is an undirected K-fragment, then F is an undi-
rected tree, such that K ⊆ K(F) and K includes all
the leaves of F .

• If F is a strong K-fragment, then F is an undirected
tree, such that K = K(F) and K is also the set of all
the leaves of F .

Note that a rooted K-fragment is also a strong K-fragment
and a strong K-fragment is also an undirected K-fragment.

The three types of K-fragments lead to three types of
keyword proximity search. First, keyword rooted-proximity

search (KRPS) has the goal of generating all the rooted K-
fragments for a given data graph G and a query K. Second,
keyword undirected-proximity search (KUPS) has the goal of
generating all the undirected K-fragments. Third, keyword
strong-proximity search (KSPS) has the goal of generating
all the strong K-fragments. The output of these searches
can be exponential in the size of the input (i.e., the data
graph G and the query K).

It has already been observed (e.g., [3, 21]) that the above
search problems generalize Steiner-tree optimization prob-
lems. A Steiner tree is a minimal-weight subtree, of a given
graph G, that contains a given set of nodes K. KRPS gener-
alizes the problem of finding a directed Steiner tree. KUPS
generalizes the problem of finding an undirected Steiner tree.
KSPS generalizes the problem of finding a group Steiner
tree, which is a Steiner tree that contains at least one node
from each set Si, where S1, ..., Sk is a given collection of sets
of nodes. In Section 4, we show that the connection between
algorithms for keyword proximity search and algorithms for
Steiner-tree optimization problems is, in fact, much closer
than has been previously realized.

The above framework can model a wide range of keyword-
search paradigms. It includes the various types of keyword
search in relational databases and XML [1, 3, 13, 14, 15],
the “information unit” Web search of [21] and the seman-
tic search of [5, 6, 18]. Moreover, it is applicable to both
document-centric and data-centric environments. For ex-
ample, when modeling an XML document, the text below
an element can be represented by creating a keyword node
for each word. The weight of the edge leading to a keyword
node can be determined by various information-retrieval fac-
tors, such as tf/idf. Note that when applying our framework
to XML, a search result can be a reduced subtree that is
not necessarily a complete subtree of the given XML doc-
ument, as opposed to the approach taken in INEX [8] and
XRANK [11].

3.2 Search Engines
In this paper, an algorithm for a keyword proximity search

is called a search engine. Specifically, we consider KRPS
engines, KUPS engines and KSPS engines.

In this section, we describe how to measure the quality
of a search engine. We investigate two aspects of quality.
The first aspect deals with efficiency of time and space. The
second aspect takes into consideration the ranking order of
the results.

3.2.1 Efficiency of Search Engines
Polynomial-time complexity is not a suitable yardstick of

efficiency when analyzing a search engine, since the output
size could be exponential in the input size. In [17], sev-
eral definitions of efficiency for enumeration algorithms are
discussed. The weakest definition is polynomial total time,
that is, the running time is polynomial in the combined size
of the input and the output. Typically, however, a search
engine is required to generate results as soon as possible,
since users usually expect to get the results incrementally
(i.e., in pages) rather than to get them all at once, at the
end of the computation. Therefore, a more suitable (and
stronger) definition of time complexity is polynomial delay,
that is, the time between generating two successive results
is polynomial in the input size.

For characterizing space efficiency, we only measure the

space used to store intermediate results (i.e., the amount of
space needed to write the output is ignored). Preferably,
a search engine should only use polynomial space, that is,
polynomial in the input size. Linearly incremental polyno-
mial space means that the space needed for generating the
first i results is bounded by i times a polynomial in the input
size. Note that if an algorithm runs with polynomial delay,
then it uses at most linearly incremental polynomial space.

In the next section, we will show that the KRPS, KUPS
and KSPS problems have search engines that run with poly-
nomial delay and use polynomial space, even if the size of the
query is not fixed. However, these problems become harder
if the results have to be produced according to a ranking
order.

3.2.2 Ordering the Results
Presenting search results in a ranking order is highly de-

sirable. It may even be crucial when many results are likely
to exist. We take the common approach (e.g., [14, 3, 15, 1])
that the ranking of results, in a keyword proximity search,
should be inversely proportional to their weight; in particu-
lar, the minimal-weight result should be first.

Consider a search engine E. For a given query K and
a data graph G, we use E1(G, K), . . . , En(G, K) to denote
the actual order of the K-fragments as they are produced
by E. We use O1(G, K), . . . , On(G, K) to denote the same
K-fragments, but according to the ranking order, that is,
the order of increasing weight.

A search engine E is optimal if it enumerates the search
results by increasing weight. In other words, E is opti-
mal if for all queries K and data graphs G, it holds that
w(Ei(G, K)) ≤ w(Ej(G, K)) whenever i ≤ j.

In general, it is intractable to achieve both polynomial
delay and optimality. Therefore, we propose the notion of a
search engine that produces results in an approximate order.
We say that a search engine is C-competitive if the weight of
its ith result is at most C times the weight of the ith result
of an optimal search engine. Formally, the search engine E
is C-competitive if for all queries K and data graphs G, it
holds that w(Ei(G, K)) ≤ Cw(Oi(G, K)) for all 1 ≤ i ≤ n.
Note that C may be a function of G and K.

Finally, we say that a search engine is C-optimal if when-
ever one result precedes another result, then the ratio of
the first to the second is no more than C. Formally, a
search engine is C-optimal if for all queries K and data
graphs G, it holds that w(Ei(G, K)) ≤ Cw(Ej(G, K)) for
all 1 ≤ i ≤ j ≤ n.

A search engine can be C-competitive without being C-
optimal. The converse, however, cannot happen.

Proposition 2. A C-optimal search engine is also C-
competitive.

4. SEARCH ENGINES
In this section, we describe our results about search en-

gines. Due to space limitations, full details of the algorithms
cannot be given here and will be described in future papers.

4.1 Efficient Search Engines
If we allow search engines to produce results in an arbi-

trary order, then all three types of keyword proximity search
can be done with polynomial delay while using only poly-
nomial space. This result is stated in the next theorem.

l. . .

m

k

Figure 3: A data graph G2.

Note that a straightforward corollary of this result is that
there are KRPS, KUPS and KSPS engines that are optimal
and run in polynomial total time (but not with polynomial
delay).

Theorem 1. There are three engines, for KRPS, KUPS
and KSPS, respectively, that run with polynomial delay and
use polynomial space.

The hard part of the above theorem is the KRPS engine.
Not only is it difficult to come up with an efficient algorithm,
it is also subtle to analyze the complexity of that algorithm.

The KUPS and the KSPS engines are obtained by recur-
sive enumerations of K-fragments as follows. Given a query
K, we choose a keyword k ∈ K and recursively enumerate
all the undirected (respectively, strong) (K\{k})-fragments.
To achieve polynomial delay (rather than just polynomial
total time), each of the generated (K \ {k})-fragments is
completed to a K-fragment while the recursion is going on.
This approach, however, cannot be used in the KRPS en-
gine. The reason is that some graphs have only a few rooted
K-fragments but exponentially many rooted K ′-fragments
for some subset K ′ ⊂ K. For example, consider the directed
graph G2 depicted in Figure 3. G2 contains exactly one
rooted {k, l, m}-fragment, but it has exponentially many (in
the size of G2) rooted {k, l}-fragments. Hence, the desired
complexity will not be achieved by the recursion described
above, and a more elaborate recursion is needed.

4.2 Efficient and Optimal Search Engines
The three variants of keyword proximity search are un-

likely to have optimal search engines that run with polyno-
mial delay, unless P=NP. This follows from the fact that it is
NP-complete [9] just to determine whether there is a Steiner
tree that has a size of at most m. Hence, even the minimal
K-fragment (i.e., the first result) is hard to find. However,
if K has a fixed size, finding a minimal K-fragment is solv-
able in polynomial time. (This was proved in [7] for the
undirected case, and that approach can be extended to the
directed and the strong cases.)

In practice, queries are small and are assumed to have a
fixed size. Under this assumption, the question is whether
the tractability of finding a minimal K-fragment implies the
existence of a search engine that is both efficient and opti-
mal. The positive answer is given by the following theorem.

Theorem 2. If queries are of fixed size, then there are
KRPS, KUPS and KSPS optimal search engines that run
with polynomial delay.

The proof of this theorem is rather intricate. We briefly
describe the optimal KRPS engine. The other two engines
are created using a similar approach, but the details are
largely different. The starting point is the general technique
of Lawler [20] (that extended that of Yen [23]) for reducing
enumeration problems to optimization problems.

A straightforward application of Lawler’s technique, in the
directed case, yields a hard optimization problem (i.e., find-
ing a minimal rooted K-fragment that includes a given set
of edges). We developed a special encoding of data graphs
that yielded a tractable version of this optimization problem
(i.e., only special sets of edges have to be considered). We
solved this tractable version by reducing it to the problem
of finding rooted Steiner trees. (For KUPS and KSPS the
reductions are to the undirected Steiner-tree problem and
to the group Steiner-tree problem, respectively.)

For finding Steiner trees, we used the algorithm of [9] as a
basis. However, that algorithm finds only undirected Steiner
trees and hence is inappropriate for KRPS and KSPS en-
gines. We were able to modify this algorithm for solving
the directed Steiner-tree problem and the group Steiner-tree
problem. We implemented the algorithm and tested its per-
formance on the Mondial XML database. We found that
this algorithm has an inherent inefficiency, since it computes
and stores the shortest path between every pair of nodes in
the data graph. (Specifically, doing so for the the Mondial
XML database required 3.5GB of memory.) Thus, we had
to modify the algorithm so that it will not compute short-
est paths for all pairs of nodes. In doing so, we reduced
the space requirement and improved the running time from
O(|E(G)||V(G)|) to O(|E(G)| log |V(G)|).

4.2.1 A KRPS Engine for DAGs
For the special case of acyclic data graphs, we can ob-

tain an optimal KRPS engine with superior performance
compared to the one described above. This is achieved by
adapting the approach of [16] (which is not related to Steiner
trees). In the previous KRPS engine, every delay is polyno-
mial, but the degree depends on the size of the query (which
is assumed to be fixed). The KRPS engine that we devel-
oped for acyclic data graphs requires an initialization step
that is exponential in the size of the query (and polynomial
in the size of the data graph). However, after the initial-
ization is over, the delay between successive results is linear
in the size of both the query and the data graph. Conse-
quently, this engine can also be used for larger queries, if a
slow initialization is allowed. This result is summarized in
the following theorem.

Theorem 3. For acyclic data graphs, KRPS has an op-
timal search engine that runs with O(m) delay following an
O(mnk) initialization step, where k is the size of the query,
and n and m are the number of nodes and edges in the data
graph, respectively.

4.3 Approximately Optimal Search Engines
As mentioned earlier, it is unlikely that there are opti-

mal search engines that run with polynomial delay, as far as
queries of unbounded size are concerned. We have already
shown that if the polynomial-delay requirement is relaxed
to polynomial total time, then it is possible to obtain opti-
mal search engines. If, however, one insists on a polynomial
delay for queries of unbounded size, then the best that can
be expected is an enumeration of search results in an ap-
proximate order.

Obviously, approximating keyword proximity searches is
at least as hard as approximating Steiner trees. More pre-
cisely, if there is a C-optimal search engine that runs with
polynomial delay, then there is a C-approximation of the
corresponding Steiner-tree. Surprisingly, the converse is also

true, as formulated in the following theorem.

Theorem 4. Suppose that the directed (respectively, undi-
rected, group) Steiner-tree problem has a C-approximation
algorithm. Then KRPS (respectively, KUPS, KSPS) has a
(C + 1)-optimal engine that runs with polynomial delay.

The proof of this theorem shows that approximation algo-
rithms for the three Steiner-tree problems can be used to
construct (C + 1)-optimal KRPS, KUPS and KSPS engines
that run with polynomial delay. The details are beyond the
scope of this paper.

4.4 Performance Analysis
Several complexity results for search engines are implied

by the above theorems and they are given in Table 1. The
top part describes both KRPS and KSPS engines, and the
bottom part describes KUPS engines. The first column gives
the approximation ratio and the second column gives the
time delay between successive search results. In this table,
n and m denote the number of nodes and the number of
edges, respectively, in the data graph. The size of the query
(i.e., number of keywords) is k. The number of nodes in the
ith search result is ni. The approximation ratio is either
a constant or determined by the positive integer j that is
supplied by the user; in the third line of the top part, it
also depends on k. Note that Table 1 gives only some of the
results that could be obtained from the vast literature on
approximation algorithms for Steiner trees.

The first line in both parts (where the approximation ra-
tio is ∞) is for the algorithms of Theorem 1 that enumerate
in an arbitrary order. The second line is for the algorithms
of Theorem 2 that enumerate in the exact order (hence, the
approximation ratio is 1). The rest of the lines are for algo-
rithms that enumerate in an approximate order, as implied
by Theorem 4. The complexity result in the third line of the
top part follows from [4]. The complexity results in the last
three lines of the bottom part follow from [19], [24] and [22],
respectively.

We can also use the results of [2] and [12] to obtain a
randomized O(log2 |k| log ∆ log log ∆)-optimal KSPS engine
that runs with polynomial delay, where ∆ is the diameter
of the data graph. Note that it is often reasonable to as-
sume that graphs have small diameters, as suggested by the
“small-world phenomenon.”

Note that for KUPS, a constant approximation ratio is
realizable. While the 3-optimal KUPS engine is relatively
fast, the delay substantially grows when approaching the
approximation ratio 2 + ln 3

2
(≈ 2.55).

From [12], it follows that it is unlikely to find either a
KRPS or a KSPS engine that runs with polynomial delay
and has an approximation ratio that is better than a poly-
logarithmic function of the query size. This shows that the
undirected version of keyword proximity search is inherently
easier than either the directed or the strong version.

5. CONCLUSION
The framework of this paper comprises three types of key-

word proximity search. For each type, there are algorithms
for generating results in an arbitrary order, in the exact or-
der (for queries of fixed size) and in an approximate order.
Earlier papers (with the exception of [18]) considered just
one of the three types (e.g., KRPS in [3] and KSPS in [1,
14, 21]) and used heuristics for generating search results.

KRPS/KSPS Engines
Approximation Ratio Delay

∞ O (mk(ni + ni+1))
1 O

�

ni(3
kn + 2km log n

�

j(j − 1)k
1

j + 1 O(nin
jk2j)

KUPS Engines
Approximation Ratio Delay

∞ O (mk(ni + ni+1))
1 O

�

ni(3
kn + 2km log n

�

3 O (ni(n log n + m))
17
6

O
�

nin
3
�

1 +
�

1 + 1
blog

2
jc+1

�

�

1 + ln 3
2

�

O(nj)

Table 1: Time complexities of the search engines.

In comparison, our algorithms are both provably efficient
(i.e., run with polynomial delay) and provably approximate
(i.e., C-optimal).

One benefit of our approach is the ability to tune a search
engine for a specific combination of efficiency and approxi-
mation, using the wealth of results about Steiner trees. An-
other benefit is the range of recall-precision tradeoffs given
by the three types of keyword proximity search.

Our results can be easily extended in several ways. First,
our algorithms can support the type of visualization that is
done in XKeyword [15], where nodes are extended to include
their neighborhoods. Second, we can also include labels in
the search, either by treating labels just as keywords or by
using labels as meta data, following the approach of [5, 6,
18]. Third, the KRPS, KUPS and KSPS optimal engines as
well as the KRPS approximate engines can be extended so
that nodes (and not just edges) may have weights, as done
in BANKS [3]. It is an open problem whether the same can
be done for the KUPS and KSPS approximate engines.

In future work, we plan to implement our framework and
enhance its efficiency by developing indexing techniques.

6. ACKNOWLEDGMENTS
The authors thank Yair Bartal for helpful discussions.

This work was supported by the Israel Science Foundation
(Grant No. 96/01).

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:

enabling keyword search over relational databases. In
SIGMOD Conference, page 627, 2002.

[2] Y. Bartal and M. Mendel. Multi-embedding and path
approximation of metric spaces. In SODA, pages
424–433, 2003.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440,
2002.

[4] M. Charikar, C. Chekuri, T. Y. Cheung, Z. Dai,
A. Goel, S. Guha, and M. Li. Approximation
algorithms for directed steiner problems. In SODA,
pages 192–200, 1998.

[5] S. Cohen, Y. Kanza, and Y. Sagiv. Generating
relations from XML documents. In ICDT, pages

285–299, 2003.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In
VLDB, pages 45–56, 2003.

[7] S.E. Dreyfus and R.A. Wagner. The Steiner problem
in graphs. Networks, 1:195–207, 1972.

[8] Norbert Fuhr, Mounia Lalmas, and Saadia Malik,
editors. INitiative for the Evaluation of XML Retrieval
(INEX). Proceedings of the Second INEX Workshop.
Dagstuhl, Germany, December 15–17, 2003, March
2004.

[9] M. R. Garey, R. L. Graham, and D. S. Johnson. The
complexity of computing Steiner minimal trees. Siam,
32:835–859, 1977.

[10] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity search in databases.
In VLDB, pages 26–37, 1998.

[11] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, pages
16–27, 2003.

[12] E. Halperin and R. Krauthgamer. Polylogarithmic
inapproximability. In STOC, pages 585–594, 2003.

[13] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In HDMS, 2003.

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[15] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In ICDE,
pages 367–378, 2003.

[16] V. M. Jiménez and A. Marzal. Computing the K
shortest paths: A new algorithm and an experimental
comparison. In Algorithm Engineering, pages 15–29,
1999.

[17] D.S. Johnson, M. Yannakakis, and C.H.
Papadimitriou. On generating all maximal
independent sets. Information Processing Letters,
27:119–123, 1988.

[18] B. Kimelfeld. Interconnection semantics for XML.
Master’s thesis, Hebrew University, 2004.

[19] L. Kou, G. Markowsky, and L. Berman. A fast
algorithm for Steiner trees. Acta Inf., 15:141–145,
1981.

[20] E. L. Lawler. A procedure for computing the k best
solutions to discrete optimization problems and its
application to the shortest path problem. Management
Science, 18:401–405, 1972.

[21] Wen-Syan Li, K. Selçuk Candan, Quoc Vu, and
Divyakant Agrawal. Retrieving and organizing web
pages by “information unit”. In WWW, pages
230–244, 2001.

[22] G. Robins and A. Zelikovsky. Improved Steiner tree
approximation in graphs. In SODA, pages 770–779,
2000.

[23] J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17:712–716, 1971.

[24] A. Zelikovsky. An 11/6-approximation algorithm for
the network steiner problem. Algorithmica,
9(5):463–470, 1993.

Freshness-Aware Scheduling of Continuous Queries
in the Dynamic Web ∗

Mohamed A. Sharaf, Alexandros Labrinidis, Panos K. Chrysanthis, Kirk Pruhs
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

{msharaf, labrinid, panos, kirk}@cs.pitt.edu

ABSTRACT
The dynamics of the Web and the demand for new, active ser-
vices are imposing new requirements on Web servers. One such
new service is the processing of continuous queries whose output
data stream can be used to support the personalization of individual
user’s web pages. In this paper, we are proposing a new schedul-
ing policy for continuous queries with the objective of maximiz-
ing the freshness of the output data stream and hence the QoD of
such new services. The proposed Freshness-Aware Scheduling of
Multiple Continuous Queries (FAS-MCQ) policy decides the exe-
cution order of continuous queries based on each query’s properties
(i.e., cost and selectivity) as well the properties of the input update
streams (i.e., variability of updates). Our experimental results have
shown that FAS-MCQ can increase freshness by up to 50% com-
pared to existing scheduling policies used in Web servers.

1. INTRODUCTION
Web databases and HTML/XML documents scattered all over

the World Wide Web provide immeasurable amount of information
which is continuously growing and updated. To keep up with the
Web dynamics, a search engine frequently crawls the web looking
for updates. Then, it propagates the stream of updates to itsinternal
databases and indexes.

The problem of propagating updates gets more complicated when
the Web server provides users with the service of registering con-
tinuous queries. A continuous query is a standing query whose
execution is triggered every time a new update arrives [18].For
example, a user might register a query to monitor news related to
the NFL. Thus, as new sports articles arrive to the server, all the
NFL related ones have to be propagated to that user. As such, the
arrival of new updates triggers the execution of a set of correspond-
ing queries, since portions of the new updates may be relevant to
the query. The output of such a frequent execution of a continuous
query is what we call anoutput data stream (see Figure 1).

An output data stream can be used, for example to continuously
update a user’s personalized Web page where a user logs on and
monitors updates as they arrive. It can also be used to send email
notifications to the user when new results are available [6, 17].

As the amount of updates on the input data streams increases and
the number of registered queries becomes high, advanced query

∗This work is supported in part byNSF ITR Medium Award (ANI-0325353).
The first author is supported in part by the Andrew Mellon Predoctoral
Fellowship.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

processing techniques are needed to efficiently synchronize the re-
sults of the continuous queries with the available updates.That is
particularly important when the search engine deploys a continuous
monitoring scheme instead of traditional crawlers [16].

Efficientscheduling of updates is one such query processing tech-
nique, which successfully improves theQuality of Data (QoD) pro-
vided by interactive systems. In this paper, we are focusingon
scheduling continuous queries for improving QoD in the interac-
tive dynamic Web. QoD can be measured in different ways, one
of which is freshness. The objective of our work is to improve the
freshness of the continuous data streams resulting from continu-
ous query execution as opposed to the freshness of the underlying
databases [7, 8], derived views [10] or caches [15]. In this respect,
our work can be regarded as complementary to the current workon
the processing of continuous queries, which considers onlyQuality
of Service metrics like response time and throughput (e.g.,[6, 17,
2, 4, 1]).

Specifically, the contribution of this paper is proposing a policy
for Freshness-Aware Scheduling of Multiple Continuous Queries
(FAS-MCQ). FAS-MCQ has the following salient features:

1. It exploits the variability of the processing costs of different
continuous queries registered at the Web server.

2. It utilizes the divergence in the arrival patterns and frequen-
cies of updates streamed from different remote data sources.

3. It considers the impact ofselectivity on the freshness of a
Web output data stream.

To illustrate the last point on the impact of selectivity, let us as-
sume a continuous query which is used to project the number of
trades on a certain stock if its price exceeds $60. Further, assume
that there is a 50% chance that this stock’s price exceeds $60. With
the arrival of a new update, if the new price is greater than $60 then
a new update is added to the continuous output data stream. Oth-
erwise, the update is discarded and nothing is added to the output
data stream. So, in this particular example, the arrival of anew
update renders the continuous output data stream stale withproba-
bility 50%. FAS-MCQ exploits the probability of staleness in order
to maximize the overall QoD.

As our experimental results have shown, FAS-MCQ can increase
freshness by up to 50% compared to existing scheduling policies
used in Web servers. FAS-MCQ achieves this improvement by de-
ciding the execution order of continuous queries based on individ-
ual query properties (i.e., cost and selectivity) as well asproperties
of the update streams (i.e., variability of updates).

The rest of this paper is organized as follows. Section 2 provides
the system model. In Section 3, we define our freshness-basedQoD

Input
Data

Streams

Output Data
Stream D1

1 2 3

Scheduler

Continuous Query Q2

1 2 3

Output Data
Stream D2

Continuous Query Q1

Figure 1: A Web server hosting multiple continuous queries

metrics. Our proposed policy for improving freshness is presented
in Section 4. Section 5 describes our simulation testbed, whereas
Section 6 discusses our experiments and results. Section 7 surveys
related work. We conclude in Section 8.

2. SYSTEM MODEL
We assume a Web server where users register multiple continu-

ous queries over multiple input data streams (as shown in Figure 1).
Data streams consist of updates of remote data sources that are ei-
ther continuously pushed to the Web server or frequently pulled
by the Web server through crawlers. Each updateui is associated
with a timestamp ti. This timestamp is either assigned by the data
source or by the Web server. In the former case, the timestamp
reflects the time when the update took place, whereas in the latter
case, it represents the arrival time of the update at the Web server.

In this work, we assume single-stream queries where each query
is defined over a single data stream. However, data streams can be
shared by multiple queries, in which case each query will operate
on its own copy of the data stream. Queries can also be shared
among multiple users, in which case the results will be shared
among them. Improving the QoD in the context of multi-stream
queries as well shared queries or operators is part of our future
work.

A single-stream query plan can be conceptualized as a data flow
diagram [3, 1] (Figure 1): a sequence of nodes and edges, where
the nodes are operators that process data and the edges represent
the flow of data from one operator to another. A queryQ starts at a
leaf node and ends at aroot node (Or). An edge from operatorO1

to operatorO2 means that the output of operatorO1 is an input to
operatorO2. Additionally, each operator has its own input queue
where data is buffered for processing.

As a new update arrives at a queryQ, it passes through the se-
quence of operators ofQ. An update is processed until it either
produces an output or until it is discarded by some predicatein the
query. An update produces an output only when it satisfies allthe
predicates in the query.

In a query, each operatorOx is associated with two values:

• processing cost (cx), and

• selectivity or productivity (sx).

Recall that in traditional database systems, an operator with selec-
tivity sx producessx tuples after processing one tuple forcx time
units.sx is typically less than or equal to 1 for operators like filters.
Selectivity expresses the behavior or power of a filter. Additionally,
for a queryQi, we define three parameters

1. total cost (Ci),

2. total selectivity or total productivity (Si), and

3. average cost (Cavg

i
).

Specifically, for a queryQi that is composed of a single stream
of operators<O1, O2, O3, ...,Or >, Ci, Si andC

avg

i
are defined

as follows:

Ci = c1 + c2 + ... + cr

Si = s1 × s2 × ... × sr

C
avg

i = c1 + c2 × s1 + c3 × s2 × s1 + ... + cr × sr−1 × ...× s1

The average cost is computed as follows. An update starts going
through the chain of operators withO1, which has a cost ofc1.
With a “probability” of s1 (equal to the selectivity of operatorO1)
the update will not be filtered out, and as such continue on to the
next operator,O2, which has a cost ofc2. Moving along, with a
“probability” of s2 the update will not be filtered out, and as such
continue on to the next operator,O3, which has a cost ofc3. Up
until now, on average, the cost will beCavg = c1 + c2 × s1 +
c3 × s2 × s1. This is generalized in the formula forC

avg

i above as
in [19].

In the rest of the paper, we use lower-case symbols to refer to
operators’ parameters and upper-case ones for queries’ parameters.

3. FRESHNESS OF WEB DATA STREAMS
In this section, we describe our proposed metric for measuring

the quality of output Web data streams. Our metric is based on
the freshness of data and is similar to the ones previously used in
[7, 10, 15, 8, 11]. However, it is adapted to consider the nature of
continuous queries and input/output Web data streams.

3.1 Average Freshness for Single Streams
In our system, the output of each continuous queryQ is a data

streamD. The arrival of new updates at the input queue ofQ might
lead to appending a new tuple toD. Specifically, let us assume that
at timet the length ofD is |Dt | and there is a single update at the
input queue; also with timestampt. Further, assume thatQ finishes
processing that update at timet′. If the tuple satisfies all the query’s
predicates, then| Dt′ |=|D | +1, otherwise,| Dt′ |=|D |. In the
former case, the output data streamD is consideredstale during
the interval[t, t′] as the new update occurred at timet and it took
until time t′ to append the update to the output data stream. In the
latter case,D is consideredfresh during the interval[t, t′] because
the arrival of a new update has been discarded byQ. Obviously, if
there is no pending update at the input queue ofD, thenD would
also be consideredfresh.

Formally, to define freshness, we consider each output data stream
D as an object andF (D, t) is the freshness of objectD at timet

which is defined as follows:

F (D, t) =

1 if ∀u ∈ It, σ(u) is false
0 if ∃u ∈ It, σ(u) is true

(1)

whereIt is the set of input queues inQ at timet andσ(u) is the
result of applyingQ’s predicates on updateu.

To measure the freshness of a data streamD over an entire dis-
crete observation period from timetx to time ty , we have that:

F (D) =
1

ty − tx

ty
X

i=tx

F (D, t) (2)

3.2 Average Freshness for Multiple Streams
Having measured the average freshness for single streams, we

proceed to compute the average freshness over all theM data streams
maintained by the Web server. If the freshness for each stream,Di,
is given byF (Di) using Equation 2, then the average freshness
over all data streams will be:

F =
1

M

M
X

i=1

F (Di) (3)

3.3 Fairness in Freshness
Ideally, all data streams in the system should experience perfect

freshness. However, this is not always achievable. Especially when
the Web server is loaded, we can have data streams with freshness
that is less than perfect, because of a “back-log” of updatesthat
cannot be processed in time [10]. In such a case, it is desirable to
maximize the average freshness in addition to minimizing the vari-
ance in freshness among different data streams. Minimizingthe
variance reflects the system’sfairness in handling different contin-
uous queries.

In this paper, we are measuring fairness as in [14]. Specifically,
we compute the average freshness of each output Web data stream.
Then, we measure fairness asthe standard deviation of freshness
measured for each data stream. A high value for the standard de-
viation indicates that some classes of data streams received unfair
service compared to others. That is, they were stale for a longer
intervals compared to other data streams. A low value for thestan-
dard deviation indicates that the difference in service (freshness)
among different data streams is negligible, and, as such, the Web
server handled all streams in a fair manner.

4. FRESHNESS-AWARE SCHEDULING OF
MULTIPLE CONTINUOUS QUERIES

In this section we describe our proposed policy forFreshness-
Aware Scheduling of Multiple Continuous Queries (FAS-MCQ). Cur-
rent work on scheduling the execution of multiple continuous queries
focuses on QoS metrics [2, 4, 1] and exploitsselectivity to improve
the provided QoS. Previous work on synchronizing database up-
dates exploited theamount (frequency) of updates to improve the
provided QoD [7, 15, 8]. In contrast, our proposal,FAS-MCQ, ex-
ploits both selectivity and amount of updates to improve theQoD,
i.e., freshness, of output Web data streams.

4.1 Scheduling without Selectivity
Assume two queriesQ1 andQ2, with output Web data streams

D1 andD2. Each query is composed of a set of operators, each
operator has a certain cost, and the selectivity of each operator is
one. Hence, we can calculate for each queryQi its total costCi

as shown in Section 2. Moreover, assume that there areN1 and
N2 pending updates for queriesQ1 andQ2 respectively. Finally,
assume that the current wait time for the update at the head ofQ1 ’s
queue isW1, similarly, the current wait time for the update at the
head ofQ2 ’s queue isW2.

Next, we compare two policiesX andY . Under policyX , query
Q1 is executed before queryQ2, whereas under policyY , queryQ2

is executed before queryQ1.
Under policyX , where queryQ1 is executed before queryQ2,

the total loss in freshness,LX , (i.e., the period of time whereQ1

andQ2 are stale) can be computed as follows:

LX = LX,1 + LX,2 (4)

whereLX,1 andLX,2 are the staleness periods experienced byQ1

andQ2 respectively.
SinceQ1 will remain stale until all its pending updates are pro-

cessed, thenLX,1 is computed as follows:

LX,1 = W1 + (N1C1)

whereW1 is the current loss in freshness and(N1×C1) is the time
required until applying all the pending updates.

Similarly, LX,2 is computed as follows:

LX,2 = (W2 + N1C1) + (N2C2)

whereW2 is the current loss in freshness plus the extra amount of
time (N1 × C1) whereQ2 will be waiting for Q1 to finish execu-
tion.

By substitution in Equation 4, we get

LX = W1 + (N1C1) + (W2 + N1C1) + (N2C2) (5)

Similarly, under policyY in which Q2 is scheduled beforeQ1,
we have that the total loss in freshness,LY will be:

LY = (W1 + N2C2) + (N1C1) + W2 + (N2C2) (6)

In order forLX to be less thanLY , the following inequality must
be satisfied:

N1C1 < N2C2 (7)

The left-hand side of Inequality 7 shows the total loss in fresh-
ness incurred byQ2 whenQ1 is executed first. Similarly, the right-
hand side shows the total loss in freshness incurred byQ1 when
Q2 is executed first. Hence, the inequality implies that between the
two alternative execution orders, we select the one that minimizes
the total loss in freshness.

4.2 Scheduling with Selectivity
Assume the same setting as in the previous section. However,

assume that the productivity of each queryQi is Si which is com-
puted as in Section 2. The objective when scheduling with selec-
tivity is the same as before: we want to minimize the total loss in
freshness. Recall from Inequality 7 that the objective of minimiz-
ing the total loss is equivalent to selecting for execution the query
that minimizes the loss in freshness incurred by the other query. In
the presence of selectivity, we will apply the same concept.

We first compute for each output data streamDi its staleness
probability (Pi) given the current status of the input data stream.
This is equivalent to computing the probability that at least one
of the pending updates will satisfyQi ’s predicates. Hence,Pi =
1−(1−Si)

Ni , where(1−Si)
Ni is the probability that all pending

updates do not satisfyQi ’s predicates.
Now, if Q2 is executed beforeQ1, then the loss in freshness

incurred byQ1 only due to the impact of processingQ2 first is
computed as:

LQ1
= P1 × N2 × C

avg

2

whereN2 × C
avg

2 is the expected time thatQ1 will be waiting for
Q2 to finish execution andP1 is the probability thatD1 is stale
in the first place. For example, in the extreme case ofS1 = 0, if
Q2 is executed beforeQ1, it will not increase the staleness ofD1

since all the updates will not satisfyQ1. However, atS1 = 1, if
Q2 is executed beforeQ1, then the staleness ofD1 will increase by
N2 × C

avg

2 with probability one.
Similarly, if Q1 is executed beforeQ2, then the loss in freshness

incurred byQ2 only due to processingQ1 first is computed as:

LQ2
= P2 × N1 × C

avg

1

In order forLQ2
to be less thanLQ1

, then the following inequal-
ity must be satisfied:

N1C
avg

1

P1
<

N2C
avg

2

P2
(8)

Thus, in our proposed policy, each queryQi is assigned a priority
valueVi which is the product of its staleness probability and the
reciprocal of the product of its expected cost and the numberof its
pending updates. Formally,

Vi =
1− (1− Si)

Ni

NiC
avg

i

(9)

4.3 The FAS-MCQ Scheduler
The FAS-MCQ schedulerselects for execution the query with the

highest priority value at eachscheduling point. A scheduling point
is reached when: (1) a query finishes processing an input update,
or (2) when a new update arrives at the system.

In the second case, the scheduler has to decide whether to resume
executing the current query or preempt it. A query is preempted if a
new update has arrived at a query with priority higher than the one
currently executing. Thus, we need to recompute the priority of the
currently executing query based on the position of the processed
update along the query operators. For example, if the processed
update is at the input queue of some operatorOx along the query,
then the current priority of the query is computed as:

1 − (1 − Sx)

Cavg
x

whereSx andCavg

x are the expected productivity and expected cost
of the segment of operators starting atOx all the way to the root. If
Ox has been processing the tuple forδx time units, then the current
priority is computed as above by replacingcx with cx − δx.

4.4 Discussion
It should be noted that under our policy, the priority of a query

increases as the processing of an update advances. For instance, let
us assume that a query has just been selected for execution. At that
moment, the priority of the query is equal to the priority of its leaf
node or leaf operator. After the leaf finishes processing theupdate,
the priority of the next operator, sayOx, is computed as shown
earlier. Intuitively,Sx andCavg

x are greater thanS andCavg of
the leaf operator because the remaining processing cost decreases
and the expected productivity might increase too. Additionally, Nx

is equal to one and our priority function monotonically decreases
with the increase inN . Thus, overall, the priority ofOx is higher
than that of the leaf node. Similarly, the priority of each operator
in the query is higher than the priority of the operator preceding it.
As such, a queryQi is never preempted unless a new update arrives
and that new update triggers the execution of a query with a higher
priority thanQi.

Also note that under our priority function (Equation 9),FAS-
MCQ behaves as follows:

1. If all queries have the same number of pending tuples and
the same selectivity, then FAS-MCQ selects for execution
the query with the lowest cost.

2. If all queries have the same cost and the same selectivity,then
FAS-MCQ selects for execution the query with less pending
tuples.

3. If all queries have the same cost and the same number of
pending tuples, then FAS-MCQ selects for execution the query
with high staleness probability.

In case (1),FAS-MCQ behaves like theShortest Remaining Pro-
cessing Time policy. In case (2),FAS-MCQ gives lower priority to
the query with high frequency of updates. The intuition is that when
the frequency of updates is high, it will take a long time to establish
the freshness of the output Web data stream. This will block other
queries from executing and will increase the staleness of their out-
put Web data streams. In case (3),FAS-MCQ gives lower priority
to queries with low selectivity as there is a low probabilitythat the
pending updates will “survive” the filtering of the query operators
and thus be appended to the output Web data stream.

5. EVALUATION TESTBED
We have conducted several experiments to compare the perfor-

mance of our proposed scheduling policy and its sensitivityto dif-
ferent parameters. Specifically, we compared the performance of
our proposedFAS-MCQ policy to a two-level scheduling scheme
from Aurora where Round Robin is used to schedule queries and
pipelining is used to process updates within the query. Collectively,
we refer to the Aurora scheme in our experiments asRR. In addi-
tion, we considered a FCFS policy where updates are processed
according to their arrival times. Finally, we adapted the Shortest
Remaining Processing Time (SRPT) policy, where the priority of a
query is the reciprocal of its total cost (i.e.,1/C). The SRPT policy
has been shown to work very well for scheduling requests at a Web
server when the performance metric is response time [9].

Queries: We simulated a Web server that hosts 250 registered
continuous queries. The structure of the query is adapted from [5,
13] where each query consists of three operators: two predicates
and one projection. All operators that belong to the same query
have the same cost, which is uniformly selected from three possible
classes of costs. The cost of an operator in classi is equal to:2i

time units, wherei is 0, 1, or 2.

Selectivities: In any query, the selectivity of the projection is set
to 1, while the two predicates have the same value for selectivity,
which is uniformly selected from the range [0.1, 1.0].

Streams: The number of input data streams is set to 10 and
the length of each stream is set to 10K tuples. Initially, we gener-
ate the updates for each stream according to a Poisson distribution,
with its mean inter-arrival time set according to the simulated sys-
tem utilization (or load). For a utilization of 1.0, the inter-arrival
time is equal to the exact time required for executing the queries
in the system, whereas for lower utilizations, the mean inter-arrival
time is increased proportionally. To generate a back-log ofupdates
[10], we have a parameterB which controls the number ofbursty
streams. A bursty stream is created by adapting the initially gen-
erated Poisson stream using two parameters:burst probability (p)
andburst length (l). Specifically, we traverse the Poisson stream
and at each entry/update we toss a coin, if the tossing resultis less
than thep, then the arrival timeAb of that update is the beginning
of a new burst. Then, the arrival times of each of the nextl updates
are adjusted so that the new arrival time,A′

i, of an updateui is set
to (Ai − Ab) ∗ p, whereAi is the arrival time computed originally
under the Poisson distribution. We have conducted several exper-
iments with different settings of thep, l andB parameters. Due
to lack of space, we will present the simulation results where p is
equal to 0.5,l is equal to 50 updates andB is in the range [0, 10]
with the default being 5.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

sh
ne

ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RR
FCFS
SRPT
FAS-MCQ

Figure 2: freshness vs. load (selectivity=1.0)

6. EXPERIMENTS

6.1 Impact of Utilization
In this experiment, the selectivity for all operators is setto 1,

whereas the processing costs are variable and are generatedas de-
scribed earlier. Figure 2 depicts the average total freshness over all
output Web data streams as the load at the Web server increases.
In this experiment 5 out of the 10 input data streams are bursty.
The figure shows that, in general, the freshness of the outputWeb
data streams decreases with increasing load. It also shows that the
FAS-MCQ policy provides the highest freshness all the time.The
freshness provided by SRPT is equal to that of FAS-MCQ for uti-
lizations up to 0.5. After that point, with increasing utilization,
queues start building up. That is when FAS-MCQ gives higher
priority to queries with shorter queues and low processing cost in
order to maximize the overall freshness of data, thus outperform-
ing SRPT. At 95% utilization, FAS-MCQ has 22% higher fresh-
ness than SRPT. If we report QoD as staleness (i.e., the opposite of
freshness [15]), then FAS-MCQ is 41% better than SRPT, with just
a 20% overall average staleness.

6.2 Impact of Bursts
The setting for this experiment is the same as the previous one.

However, the utilization at all points is set to the default value of
90%. In Figure 3, we plot the average total freshness as the number
of input data streams that are bursty increases. At a value of0, all
the arrivals follow a Poisson distribution with no bursts, whereas at
10, all input data streams are bursty as described in Section5.

Figure 3 shows how the total average freshness decreases when
the number of bursty data streams increases. It also shows that
FAS-MCQ provides the highest freshness compared to the other
policies. Notice the relation between FAS-MCQ and SRPT: as the
number of bursty streams increases, the difference in freshness pro-
vided by FAS-MCQ compared to SRPT increases up until there are
5 bursty streams. At that point, FAS-MCQ has 20% higher fresh-
ness than SRPT. At the same time, FAS-MCQ has 1.8 the freshness
of the RR policy and 3.6 the freshness of the FCFS policy.

After there are 7 bursty input streams, the performance of the
FAS-MCQ and SRPT policies get closer. The explanation is that at
a lower number of bursty streams, FAS-MCQ has a better chanceto
find a query with a short queue of pending updates to schedule for
execution. As the number of bursty streams increases, the chance
of finding such a query decreases, and as such, SPRT is performing
reasonably well. At 10 bursty streams, FAS-MCQ has only 16%
higher freshness than SRPT.

Number of Bursty Streams (B)

0 1 2 3 4 5 6 7 8 9 10

F
re

sh
ne

ss

0.0

0.2

0.4

0.6

0.8

1.0

RR
FCFS
SRPT
FAS-MCQ

Figure 3: freshness vs. number of bursty streams

6.3 Impact of Selectivity
In this experiment, the cost for all operators is set to 1 timeunit.

However, the selectivity is chosen uniformly from the range[0.0,
1.0]. Figure 4 depicts how the freshness decreases with increasing
load at the Web server. The figure also shows that FAS-MCQ still
provides the highest freshness, as it considers the probability that an
update will affect the freshness of the corresponding data stream.
That is opposite to SRPT which will give a higher priority to a
query with low selectivity since a low selectivity will provide a low
value forCavg. Hence, SRPT will spend time executing queries
that will only append fewer updates to their corresponding output
data streams.

In this experiment, RR behaves better than SRPT at high utiliza-
tions. At a 95% utilization, FAS-MCQ gives 50% higher freshness
than RR and 63% higher than SRPT.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

sh
ne

ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RR
FCFS
SRPT
FAS-MCQ

Figure 4: freshness vs. load (variable selectivity)

Figure 5 shows the standard deviation of freshness for the same
experiment setting. The figure shows that for all policies, the devia-
tion increases with increasing load where some output data streams
are stale for longer times compared to other data streams. However,
FAS-MCQ provides the lowest standard deviation for most values
of utilization. As the utilization approaches 1 (i.e., whenthe Web
server is about to reach its capacity), the fairness provided by FAS-
MCQ gets closer to that of FCFS. Thus, FAS-MCQ is at least as
fair as FCFS, even at very high utilizations.

However, the FCFS policy behaves poorly if we look beyond
fairness and into the average total freshness: as shown in Figure 4,
FAS-MCQ provides 96% higher average freshness compared to
FCFS, despite having the same fairness.

Server Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 F

re
sh

ne
ss

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RR
FCFS
SRPT
FAS-MCQ

Figure 5: standard deviation of freshness

7. RELATED WORK
The work in [7, 8] provides policies for crawling the Web in

order to refresh a local database. The authors make the observation
that a data item that is updated more often should be synchronized
less often. In this paper, we utilize the same observation, however,
[7, 8] assumes that updates follow a mathematical model, whereas
we make our decision based on the current status of the Web server
queues (i.e., the number of pending updates). The same observation
has been exploited in [15] for refreshing distributed caches and in
[12] for multi-casting updates.

The work in [10] studies the problem of propagating the up-
dates to derived views. It proposes a scheduling policy for applying
the updates that considers the divergence in the computation costs
of different views. Similarly, our proposedFAS-MCQ considers
the different processing costs of the registered multiple continuous
queries. Moreover,FAS-MCQ generalizes the work in [10] by con-
sidering updates that are streamed from multiple data sources as
opposed to a single data source.

Improving the QoS of multiple continuous queries has been the
focus of many research efforts. For example, multi-query optimiza-
tion has been exploited in [6] to improve the system throughput in
an Internet environment and in [13] for improving the throughput
of a data stream management system. Multi-query schedulinghas
been exploited by Aurora to achieve better response time or to sat-
isfy application-specified QoS requirements [2]. The work in [1]
employs a scheduler for minimizing the memory utilization.To the
best of our knowledge, none of the above work provided techniques
for improving the QoD provided by continuous queries.

8. CONCLUSIONS
Motivated by the need to support active Web services which in-

volved the processing of update streams by continuous queries, in
this paper we studied the different aspects that affect the QoD of
these services. In particular, we focused on the freshness of the
output data stream and identified that both the properties ofqueries,
i.e., cost and selectivity, as well as the properties of the input up-
date streams, i.e., variability of updates, have a significant impact
on freshness. For this reason, we have proposed and experimen-
tally evaluated a new scheduling policy for continuous queries that
exploits all of these aspects to maximize the freshness of the output
data stream. Our proposed Freshness-Aware Scheduling of Multi-
ple Continuous Queries (FAS-MCQ) policy can increase freshness
by up to 50% compared to existing scheduling policies used inWeb
servers. Our next step is to study the problem when MCQ plans in-
clude shared operators as well as join operators.

Acknowledgments: We would like to thank the anonymous re-
viewers for their thoughtful and constructive comments.

9. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:

Operator scheduling for memory minimization in data
stream systems. InSIGMOD, 2003.

[2] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator scheduling in a
data stream manager. InVLDB, 2003.

[3] D. Carney, U. Getintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: A new class of data management
applications. InVLDB, 2002.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
V. R. S. Madden, F. Reiss, and M. A. Shah. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In
CIDR, 2003.

[5] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and
evaluation of alternative selection placement strategiesin
optimizing continuous queries. InICDE, 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. .Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
SIGMOD, 2000.

[7] J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. InSIGMOD, 2000.

[8] J. Cho and H. Garcia-Molina. Effective page refresh policies
for web crawlers.ACM Transactions on Database Systems,
28(4):390–426, 2003.

[9] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agarwal. Size based scheduling to improve web
performance.Transactions on Computer Systems,
21(2):207–233, 2003.

[10] A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the web. In
VLDB, 2001.

[11] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff
between performance and data freshness in database-driven
web servers.VLDB J., 13(3):240–255, 2004.

[12] W. Lam and H. Garcia-Molina. Multicasting a changing
repository. InICDE, 2003.

[13] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
SIGMOD, 2002.

[14] M. Mehta and D. J. DeWitt. Dynamic memory allocation for
multiple-query workloads. InVLDB, 1993.

[15] C. Olston and J. Widom. Best-effort cache synchronization
with source cooperation. InSIGMOD, 2002.

[16] S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring
the dynamic web to respond to continuous queries. InWWW,
2003.

[17] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F.
Naughton, and D. Maier. Architecting a network query
engine for producing partial results. InWebDB, 2002.

[18] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. In
SIGMOD, 1992.

[19] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling
for improving interactive query performance.VLDB, 2001.

Vague Content and Structure (VCAS) Retrieval for
Document-centric XML Collections

Shaorong Liu, Wesley W. Chu and Ruzan Shahinian
UCLA Computer Science Department, Los Angeles, CA, USA 90095

{sliu, wwc, ruzan}@cs.ucla.edu
ABSTRACT
Querying document-centric XML collections with structure
conditions improves retrieval precisions. The structures of such
XML collections, however, are often too complex for users to
fully grasp. Thus, for queries regarding such collections, it is
more appropriate to retrieve answers that approximately match
the structure and content conditions in these queries, a process
also known as vague content and structure (VCAS) retrieval.
Most existing XML engines, however, only support content-only
(CO) retrieval and/or strict content and structure (SCAS) retrieval.
To remedy these shortcomings, we propose an approach for
VCAS retrieval using existing XML engines. Our approach first
decomposes a VCAS query into a SCAS sub-query and a CO sub-
query, then uses existing XML engines to retrieve SCAS results
and CO results for the decomposed sub-queries, and finally
combines results from both retrievals to produce approximate
results for the original query. Further, to improve retrieval
precision, we propose two similarity metrics to adjust the scores
of CO retrieval results by their relevancies to the path condition
for the original query target. We evaluate our VCAS retrieval
approach through extensive experiments with the INEX 04 XML
collection and VCAS query sets. The experimental results
demonstrate the effectiveness of our VCAS retrieval approach.

1. INTRODUCTION
The increasing use of the eXtensible Markup Language (XML) in
scientific data repositories, digital libraries and web applications
has increased the need for effective retrieving of information from
these XML repositories. The INitiative for the Evaluation of XML
retrieval (INEX) [1], for example, was established in April 2002
and has prompted researchers worldwide to promote the
evaluation of effective XML retrieval.
XML information can be retrieved by means of either content-
only (CO) or content-and-structure (CAS) queries. CO queries,
similar to keyword searches in text retrieval, contain only content
related conditions. CAS queries contain both content and structure
conditions, in which users specify not only what a result should
be about (via content conditions) but also what that result is (via
structural constraints). Thus, CAS queries are more expressive
and have better retrieval precision as demonstrated in past
research [10, 11, 13]. Specifying exact structural constraints in
queries for document-centric XML collections, however, is not an
easy task. Such collections are usually marked up with a large
variety of tags. For example, there are about 170 different tags in
the INEX document collection. Thus, it is often difficult for users
to completely grasp the structure properties of such collections
and specify the exact structural constraints in queries. Therefore,

for queries regarding such collections, it is more appropriate to
retrieve answers that approximately match the structure and
content conditions in these queries, a process also known as vague
content and structure (VCAS) retrieval. For example, suppose a
user is looking for article sections about “internet security.” The
VCAS retrieval may return article paragraphs about “internet
security” to the user, even though they do not strictly satisfy the
query’s structural constraint (i.e., article sections).
Most existing XML engines, however, only support content only
retrieval and/or strict content and structure (SCAS) retrieval. In
SCAS retrieval, a query’s content conditions can be loosely
interpreted, but the query target’s structural constraint must be
processed strictly. A query target is a special node in the query’s
structure conditions, whose matching elements in XML
collections are returned as results. For example, suppose a user is
interested in article sections about “internet security.” The SCAS
retrieval will not return article paragraphs to the user even though
they are relevant to “internet security.” Thus, compared to the
SCAS retrieval, the new feature in the VCAS retrieval is the
approximate processing of a query target’s structural constraint.
This introduces two challenges to VCAS retrieval: 1) how to
extend existing XML engines to derive results that approximately
satisfy a query target’s structure condition; and 2) how to measure
the relevancy of a result to a query target’s structural constraint.
Many existing approaches to XML VCAS retrieval can be
classified into two categories: 1) content-only approaches (e.g.,
[12]); and 2) relaxation-based approaches [1, 2]. The former
approaches transform a VCAS query into a CO query by ignoring
structural constraints; and such approaches are simple because
XML engines can be directly used for the VCAS retrieval without
any extensions. Such approaches, however, lose the precision
benefits that can be derived from XML structures. The latter
approaches relax a query’s structural constraints and then retrieve
the SCAS results for the relaxed queries, which are approximate
answers to the original query. Such approaches are systematic and
efficient, but they may miss relevant answers due to its strict
structural relaxation semantics.
To remedy these problems, in this paper, we propose a general
approach that extends existing XML engines for CO and SCAS
retrieval to support effective VCAS retrieval. Our approach
combines the simplicity advantage provided by CO retrieval and
the precision advantage rendered by SCAS retrieval. Our retrieval
process consists of three steps:

• Decomposition. We decompose a VCAS query into a CO
sub-query and a SCAS sub-query such that both sub-queries
can be processed by existing XML engines.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Database (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

• Retrieval. We use existing XML engines to retrieve CO and
SCAS results for the two sub-queries.

• Combination. Results from the SCAS retrieval are answer to
one part of the original query and results from the CO
retrieval are approximate answers to the remaining part of the
original query. Thus, results from both retrievals can be
combined to produce approximate answers to the original
query.

To improve retrieval precision, we adjust the score of a CO sub-
query result by the relevancy of the result to the path condition
for the query target, which is measured by target path similarity.
We propose two metrics to compute the target path similarity.
To empirically evaluate the effectiveness of the proposed VCAS
retrieval approach, we conduct extensive experiments on the
INEX 04 document collection with all the 33 queries in the VCAS
task. We use the INEX 04 VCAS relevance assessments as the
“gold standard” to evaluate our experimental results.
The rest of the paper is organized as follows. Section 2 introduces
the XML data model, query language and VCAS retrieval task. In
Section 3, we present our XML VCAS retrieval approach and the
similarity metrics. We describe our experimental studies in
Section 4. Section 5 overviews related works and Section 6
concludes the paper.

2. BACKGROUND
2.1 XML Data Model
We model an XML document as an ordered, labeled tree where
each element (attribute) is represented as a node and each
element-to-sub-element (element-to-attribute) relationship is
represented as an edge between the corresponding nodes. We
represent each node as a triple (id, label, <text>), where id
uniquely identifies the node, label is the name of the
corresponding element or attribute, and text is the corresponding
element’s textual content or attribute’s value. Text is optional
because not every element contains textual content. We consider
an attribute as a special sub-element of an element and a reference
IDREF as a special type of value.
For example, Figure 1 shows a tree representation of a sample
XML document collection. Each circle represents a node with the
node id inside the circle and label beside the circle. To distinguish
text nodes from element (attribute) nodes, the text of a node is
linked to the node with a dotted line.
We now introduce the definition for label path, which is useful
for describing the group representation of an XML tree in Section
3. A label path for a node v in an XML tree is a sequence of
slash-separated labels of the nodes on the path from the root node

to v. For example, node 6 in Figure 1 can be reached from the root
node through the path: node 0 -> 1 -> 5 -> 6. Thus, the label path
for node 6 is: /articles/article/body/section.
2.2 Query Language
We use a content-oriented XPath-like query language called
Narrowed Extended XPath I (NEXI) [14], which is introduced by
INEX. NEXI is based on a subset of XPath path expressions [1]
with an extension of about functions. The syntax of NEXI is:

path1[abouts1]//…//pathn[aboutsn]

where each path is a sequence of nodes connected by either
parent-to-child (“/”) or ancestor-to-descendant (“//”) axes; each
abouts is a Boolean combination of about functions.
An about function, in the format of about(path, cont),
requires that a certain context (i.e., path) should be relevant to a
specific content description (i.e., cont). Given an about
function α, we use α.path and α.cont to represent its path
and cont parameters respectively. About functions have non-
Boolean semantics and thus they are the bases for result ranking.
With the introduction of the NEXI query format, now let us look
at a sample query in the NEXI format. For example, suppose a
user is searching for information on ‘route planning’ in articles
that give an overview of intelligent transportation systems. Since
‘route planning’ is only one aspect of an intelligent transportation
system, the user limits the search on ‘route planning’ to document
components, such as section. Thus she formulates her
information needs in the following NEXI query Q1.

Q1: //article[about(.//title, overview) and
about(., intelligent transportation system)]
//body///section[about(., route planning)]

With the description of the NEXI query format, we now introduce
some notations and terminologies, which are useful for describing
our VCAS retrieval methodology in Section 3.
Given a NEXI query Q in the format of path1[abouts1]
//…//pathn[aboutsn], we call the last node on pathn, whose
matches are returned as results, the query target. For example, in
Q1, node section is the query target. Further, we define target
content condition, denoted as Ct(Q), to be the union of the
content descriptions in aboutsn. For instance, ‘route planning’ is
Q1’s target content condition. Finally, we call path1, …, pathn-1
the support paths and pathn the target path. We represent the
target path in a query Q as Pt(Q). Support paths and the target
path provide different structural hints to a search engine: support
paths indicate where to search and a target path suggests what to
return. For example, in Q1, //article is the support path and
//body//section is the target path.

articles 0

1 article

2

3 4 title abstract

front_matter 5

6 section

…overview

Intelligent transportation systems…

7 paragraph

body

Figure 1: A tree representation of sample XML document collections.

8

9

section

paragraph

.. route planning…

10

11

article

front_matter

12 title

14 body

15

16

Intelligent transportation systems…

17

18

appendix

paragraph 13 abstract

overview…

section

paragraph .. route
planning…

.. route
planning…

Intelligent
transportation

2.3 VCAS Retrieval
Specifying structure conditions in a CAS query is not an easy
task, in particular for document-centric XML collections with a
large variety of tag names. When users specify structural
constraints in queries, they often have only a limited knowledge
of the structure properties of such collections. In such cases, if we
process a query’s structure conditions strictly, we may miss
results that are not in rigid conformance with the structural
constraints, but are highly relevant to users’ information needs.
Thus, XML vague content and structure (VCAS) retrieval is
introduced. The goal of VCAS retrieval is to help users with
limited structural knowledge make the maximum utilization of
XML structures for more precise retrieval. In VCAS retrieval,
both the structure and content conditions can be processed
approximately. Thus, the relevancy of a result is judged based on
whether it satisfies a user’s information needs, but not on whether
it strictly conforms to the structural constraints of the query. For
example, for the sample query Q1, a user may judge XML nodes
4, 9 and 18 in Figure 1 to be relevant, although these nodes do not
exactly match the structure conditions in Q1.

3. PROCESSING VCAS QUERIES
In this section, we present a general approach to XML VCAS
retrieval, which consists of three steps: decomposition, retrieval
and combinations.

3.1 Decomposition
Given a VCAS query Q, in principle, both its support paths and
target path can be approximately processed. In this paper, we
assume that users are strict in their search contexts but flexible in
returning answers. Therefore, we process support paths strictly
and the target path approximately.
With this assumption, our decomposition strategy is to decompose
a VCAS query Q into two sub-queries: a CO sub-query, Qco,
consisting of the target content condition and a SCAS sub-query,
Qscas, consisting of support paths and all the about functions
associated with these paths. Thus, we can use existing XML
engines to perform CO and SCAS retrievals on the decomposed
sub-queries respectively to collect XML nodes that approximately
satisfy the target path and that strictly conform to the support
paths. The following illustrates our decomposition process:
Q: path1[abouts1]//…//pathn[aboutsn]
Qco: //*[about(.,Ct(Q))], where Ct(Q) is the target
content condition in Q.
Qscas: path1[abouts1]//…// pathn-1[aboutsn-1]
For example, the sample query Q1 in Section 2.2 is decomposed
into the following two sub-queries:
Q1co: //*[about(., route planning)]
Q1scas: //article[about(.//title, overview) and
about(., intelligent transportation system)]
Q1co searches for all the XML nodes relevant to ‘route planning’;
and Q1scas searches for article nodes relevant to ‘intelligent
transportation system’ with a descendant node title about
‘overview’.

3.2 Retrieval
After the query decomposition step, we use an existing XML IR
engine to process the CO sub-query using CO retrieval and the
SCAS sub-query using SCAS retrieval. We use our XML IR

engine [8] to perform both retrievals. Our VCAS retrieval
approach, however, can be used by any XML IR engine. In the
following, we first overview our ranking model, and then describe
how we apply this model to rank the CO and SCAS retrieval
results.

3.2.1 Ranking model
The ranking model used in our XML IR engine is called the
extended vector space model. This mode measures the relevancy
of an XML node v to an about function α, where v satisfies the
path condition in α. The model consists of two components:
weighted term frequency (tfw) and inverse element frequency (ief).
Weighted term frequency. Given a term t and an XML node v,
suppose there are m different descendant nodes of v, say v1’, v2’,
…, vm’, that contain term t in their texts. Let pi (1 ≤ i ≤ m) be the
path from node v to node vi’ and w(pi) be the weight of path pi,
then the weighted term frequency of term t in node v, denoted as
tfw(v, t), is:

(,) (',) ()
1

m
tf v t tf v t w pw iii

= ∗∑
=

That is, the weighted term frequency of a term t in an XML node
v is the sum of the frequencies of t in the text of vi

’ adjusted by the
weight of the path from v to vi. The weight of a path is the product
of the weights of all the nodes on the path, where the weight of a
node is user configurable.
Inverse element frequency. The inverse element frequency of a
term t in an about function α, denoted as ief(t, α), is:

1(,) log
2

N
ief t

N
α =

where N1 is the number of XML nodes that satisfy the path
condition in the about function α, i.e., α.path; and N2 is the
number of XML nodes that satisfy α.path and contain t in texts.
Relevancy score function. The relevancy score of an XML node v
to an about function α, denoted as score(v, α), is the sum of all
the query terms’ weighted frequencies in node v adjusted by their
corresponding inverse element frequencies. That is,

(,) (,) (,)score v tf v t ief tw
t cont

α α
α

= ∗∑
∈ .

The extended vector space model is effective in measuring the
relevancy scores of XML nodes to about functions in SCAS
queries [8]. Relevant nodes to such about functions, however,
usually are of relatively similar sizes because these nodes must
satisfy the path conditions of the about functions. For example,
all the relevant nodes to the about function about(//title,
overview) are title nodes. This, however, may not be the
case for the about function in a CO sub-query Qco. The path
condition of the about function in Qco is a wildcard, which is so
general that all XML nodes are exact matches to the path
condition. Thus, nodes relevant to the about function in Qco are
of varying sizes. The larger a node, the less specific it is to an
about function. Thus, to compute the relevancy of an XML node
v to an about function α either in a CO or a SCAS sub-query, we
modify the score function in (3) to:

(,) (,)(,)
log (). 2

tf v t ief twscore v
wsize vt cont
∗ α

α = ∑
∈α

 (3)

 (4)

 (1)

 (2)

where wsize(v) is the weighted size of a node v. Given an XML
node v, suppose v has r different child nodes v1, v2, .., vr. Let
size(v) be the number of terms in the text in node v, then wsize(v)
is recursively defined as follows:

() () (() ())
1

r
wsize v size v wsize v w vi ii

= + ∗∑
=

That is, the weighted size of a node v is the text size of node v
plus the sum of the weighted size of its child node vi adjusted by
their corresponding weights.

3.2.2 CO retrieval
An XML node v is relevant to a CO sub-query Qco if either the
text of v or that of any descendant node of v satisfies the content
condition in Qco. For example, for the CO sub-query Q1co, the text
of nodes 4, 9 and 18 satisfy the content condition, i.e., route
planning. Thus, nodes 4, 9 and 18 as well as their ancestor
nodes (i.e., nodes 1, 2, 5, 8, 10 and17) are relevant to Q1co.
A CO sub-query Qco contains only one about function. Thus, the
relevancy score of an XML node v to Qco, denoted as score (v,
Qco), is the relevancy score of v to the about function in Qco,
which can be calculated using (4).
3.2.3 SCAS retrieval
An XML node v is relevant to a SCAS sub-query Qscas if it
strictly conforms to the structure conditions in Qscas and
approximately satisfies the content conditions in Qscas. For
example, nodes 1 and 10 in Figure 1 are relevant to Qscas. This is
because both nodes strictly conform to the structure conditions:
both are article nodes with a descendant node title. For
example, node 1 has a descendant node title (i.e., node 3). Also
both article nodes are about ‘intelligent transportation system’
and both title nodes are on ‘overview’.
During query processing, if an XML node v is a match to a query
node with an about function α, then the relevancy score of v to α
is calculated using (4). The relevancy score of a SCAS result v to
Qscas, denoted as score(v, Qscas), is the sum of all the relevancy
scores of the corresponding nodes to the about functions in
Qscas. For example, there are two about functions in Q1scas:
α1: about(//article, intelligent transportation
system)
α2: about(//article//title, overview)
The relevancy score of a SCAS result, say node 1 in Figure 1, to
Q1scas is the relevancy score of node 1 to α1 plus the relevancy
score of node 3 to α2.

3.3 Combination
After the retrieval step, we have two lists of results: one list of
results from the CO retrieval, Rco, and another list of results from
the SCAS retrieval, Rscas. Each result is a pair of (v, s), where v is
an XML node and s is the score indicating the relevancy of v to a
sub-query. For example, for the sample query Q1, we have two
result lists, R1co and R1scas, one for each of its sub-queries. R1co =
{(v4, s4), (v9, s9), (v18, s18), (v1, s1), (v2, s2), (v5, s5), (v8, s8), (v10,
s10), (v17, s17)} and R1scas = {(v1, s1), (v10, s10)}, where vi denotes
node i in Figure 1 and si is the score for vi.
Results from the SCAS retrieval are answers to one part of the
original query and results from the CO retrieval are approximate
answers to the remaining part of the original query. Thus, results
from both retrievals can be combined to produce approximate

answers to the original query. To do so, we focus on results from
the CO retrieval because they are the nodes “matching” the
original query’s target. For each CO result vco, let vscas be a SCAS
result such that vco and vscas are in the same document, then the
relevancy of vco to a query Q, denoted as score(vco, Q), is:

tscore(,) = f(, p) score(,) + score(,)scasco co cov v v v∗ co scasQ (Q) Q Q

where f(vco, Pt(Q)) is a target path similarity with a value between
0 and 1 that measures how well an XML node vco satisfies the
target path in Q, i.e., Pt(Q).
For example, for the sample query Q1, node 4 in Figure 1 is a
result for its CO sub-query Q1co. Node 1 in Figure 1 is a result for
the SCAS sub-query Q1co, which is in the same document as Node
1. Thus, the relevancy of node 4 (i.e., v4) to Q1 can be computed
using (6). That is, score(v4, Q1) = f(v4, Pt(Q))*score (v4, Q1co) +
score(v1, Q1scas) = f(v4, Pt(Q1))*s4 + s1, where s1 and s4 are
computed using (4).
The target path similarity, f(vco, Pt(Q)), is the key in the
combination step. If the label path of an XML node vco is an
exact match to Pt(Q), then f(vco, Pt(Q)) =1. It’s often the case that
the label path of a CO retrieval result vco may not be an exact
match to a query target path. In such cases, we compute the target
path similarity for a CO retrieval result vco to be the maximum
similarity between vco and an XML target node vt where vt is an
exact match to Pt(Q), denoted as sim(vco, vt). That is,

f (, P ()) max{sim(,) | is an exact match to P ()}t tv v v vco co t t=Q Q

For example, the target path similarity for node 4 (i.e., v4) is the
maximum of sim(v4 , v6) and sim(v4 , v8) since both nodes v6 and
v8 match Q1’s target path exactly.
For a given query Q and an XML data tree D, there are usually
many nodes in D whose label paths match the target path in Q
exactly. For example, there are about 65470 different nodes in the
INEX collection that exactly match the target path in Q1. Thus, to
reduce computations, we cluster XML nodes in D with the same
label paths into groups similar to DataGuides[7]. For example,
Figure 2 is a group representation of the XML data tree in Figure
1. Each rectangle represents a group with its identifier and label
next to the rectangle. The numbers inside each rectangle are the
identifiers of the nodes in Figure 1.

In such a group representation, each group represents a unique
label path in D. Thus, we can reduce the computations of (7) by
measuring the target path similarity of a node vco to be the
maximum similarity between the group which vco belongs to, gco,
and a target group gt , i.e., a group whose label path is an exact
match to Pt(Q). That is,

Figure 2: A group representation of the XML tree in Figure 1.

0

1, 10

2, 11 5, 14 17

7, 9, 16

6, 8, 15 18 3, 12 4, 13

g2: front_matter g5: body

 g6: section

g7: paragraph g3: title g4: abstract

 g8: appendix

 g1: article

g0: articles

g9: paragraph

 (5) (6)

 (7)

f (, P ()) max{sim(,) | is an exact match to P ()}t tv g g gco co t t=Q Q

For example, the target path similarity of node 4 (i.e., v4) is
sim(g4, g6) since node v4 is inside group g4, and all the nodes that
are exact matches to Pt (Q), i.e. node 6 and 8, are in group g6.
In the following, we introduce two methods to compute group
similarities by considering groups’ path and content aspects.

3.3.1 Path similarity
The similarity between a group gco and a target group gt, sim(gco,
gt), can be computed based on the similarity between their
corresponding label paths. Let pgco and pgt

 be the label path of

group gco and gt respectively. The greater number of common
prefix nodes these two paths share, the more similar the two
groups are. Thus, sim(gco, gt) is:

| p p |
sim(,)

| p | | p | | p p |
g gco tg gco t

g g g gco cot t

∩
=

+ − ∩

where | pgco ∩ pgt
| represents the number of common prefixing

nodes between pgco and pgt
; | pgco | and | pgt

| denote the

number of nodes on the paths pgco and pgt
. The denominator in

(9) is used for the normalization purpose such that sim(gco, gt) = 1
when gco = gt.

3.3.2 Content similarity
For document-centric XML collections, the path similarity may
not be very accurate in estimating group similarity. For example,
given three paths p1: /article/body/section/title, p2:
/article/body/section and p3: /article/body/section
/paragraph, p1 is as similar to p2 as p3 to p2 according to (9). If a
user is looking for a section regarding specific content, then
according to (9), a title will have the same target path similarity
as a paragraph. Compared to a title, a paragraph, however,
is a better approximation for a section. This is because the
content of a paragraph is much closer to that of a section than
the content of a title to that of a section.
This motivates us to measure the similarity between two groups
based on their corresponding content. We describe the content of
a group gi via a N-vector ig = (tfi1, tfi2, …, tfiN), where N is the
total number of distinct terms in an XML collection and tfik (1 ≤ k
≤ N) represents the frequency of term tfik in group gi. With this
vector representation of a group’s content, the content similarity
between two groups, gco and gt, can be estimated via the cosine of
their corresponding content vectors:

sim(,)
g gco t

g gco t
g g g gco co t t

=

For example, using (10), we find that the similarity between a
section group and a section’s title group in the INEX
document collection is 0.4196, while the similarity between the
section group and a section’s paragraph group is 0.991.

4. EXPERIMENTAL STUDIES
4.1 Experimental Dataset
We use the INEX 04 dataset and all the 33 VCAS queries to
evaluate the effectiveness of our VCAS retrieval methodology.
The INEX 04 dataset, around 500MByte in size, consists of over
12,000 computer science articles from 21 IEEE Computer Society
journals. The documents are marked with about 170 different
tags. A document contains 1532 elements on average and an
element has an average depth of 6.9.
4.2 Test Runs
The following four runs are used to study the effectiveness of our
VCAS retrieval methodology. All the experiments use the same
node weight configurations: uniform weights. That is, w(v) =1 for
any node v in the dataset.

• CO run. In this run, we ignore the structure conditions in a
query and use the query’s content conditions to perform CO
retrieval. This run is used as the baseline for testing the
effectiveness of our VCAS retrieval methodology.

• VCAS-1 run. In this run, we perform the VCAS retrieval with
f=1 for all results. The run is used as a base line to compare the
effectiveness of the path similarity and content similarity metric.

• VCAS-path run. In this run, we perform the VCAS retrieval
using the path similarity in (8) as the target path similarity.

• VCAS-cont run. In this run, we perform the VCAS retrieval
using the content similarity in (9) as the target path similarity.

4.3 Result Evaluation and Analysis
To evaluate the relevancy of an XML document component to a
query topic, the relevance assessment working group in INEX has
proposed a two-dimension relevancy metric (exhaustiveness,
specificity). Exhaustiveness measures the extent to which the
document component discusses the topic of request and specificity
measures the extent to which the document component focuses on
the topic of request. This two-dimension metric is then quantized
to a single relevancy value between 0 and 1. In this paper, we use
two of the most frequently used quantization methods: strict and
generalized. A relevancy value is either 0 or 1 with a strict
quantization; while it could be 0, 0.25, 0.5, 0.75 or 1 with a
generalized quantization.
In our experiments, we use the INEX relevance assessment set
version 3.0 and compute each run’s mean average precision
(MAP) using INEX on-line evaluation tools. Table 1 presents
mean average precisions over all of the 33 query topics using both
strict and generalized quantization methods. The corresponding
ranks compared to all the 51 official submissions returned by
other INEX participating systems are also included.

Strict Generalized Run MAP Rank MAP Rank
CO 0.064 11 0.0716 7

VCAS-1
0.0844

(+31.88%)
5 0.0878

(+22.63%)
5

VCAS-path
0.0886

(+38.44%)
4 0.0887

(+23.88%)
5

VCAS-
semanticst

0.0946
(+47.81%)

4 0.094
(+31.28%)

5

Table 1: Results over all the 33 VCAS topics in INEX 04.

 (8)

 (9)

 (10)

From Table 1, we note that our VCAS retrieval approach
significantly outperforms the CO approach. The VCAS-1 run
outperforms the CO run by 31.88% using the strict quantization
metric. This is because the CO approach ignores XML structures
for simplicity but loses the precision benefit provided by XML
structures. Further, by comparing the VCAS-1 run with the VCAS-
path and VCAS-cont runs, we note that similarity measures further
improve our VCAS retrieval precisions. Also, the content
similarity provides more precision improvement than the path
similarity for the INEX VCAS retrieval task. We note that the
mean average precisions of our VCAS retrieval approach are
relatively high compared to all the 51 official INEX submissions.
For example, the mean average precision of the VCAS-cont run
ranks top 4 (5) using the strict (generalized) quantization method.
We have also observed similar results using other quantization
methods.

5. RELATED WORKS
There is a large body of work on XML information retrieval
(e.g.,[3-6, 8-13]), most of which focuses on effective XML CO
retrieval and SCAS retrieval. For example, Sigurbjörnsson et al
propose a general methodology for processing content-oriented
XPath queries [11]. The key difference between [11] and our
methodology is that: [11] focuses on extending IR engines
designed for CO retrieval to support SCAS retrieval; while our
methodology extends XML engines designed for CO and SCAS
retrievals to support VCAS retrieval.
XML VCAS retrieval is a new task in INEX 04. Many teams
within the INEX initiative conducted VCAS retrievals by
ignoring the query structure conditions (e.g., [12]). In [9], S. Geva
proposed a VCAS retrieval approach by decomposing a query
into multiple sub-queries, where each sub-query contains one
structure filter and one content filter. An XML element is a result
for a sub-query if it satisfies the content filter, but does not
necessarily have to satisfy the structure filter. Results from
different sub-queries are merged and sorted by the number of
filters they satisfy. This approach is simple and effective. Our
work differs [9] in two aspects: the query decomposition
strategies are different; and two similarity metrics are proposed to
measure the relevancy of a VCAS result to a query target path for
improving retrieval precision. No such measure is used in [9].
Query relaxation is also related with XML VCAS retrieval. S.
Amer-Yahia et al have some seminal studies on XML query
relaxation in [1, 2]. They model a XML query as a tree and relax
node and/or edge constraints on the query tree to derive
approximate answers. Algorithms have been proposed to
efficiently derive top-k approximate answers. Our work differs
from [1, 2] in that while they focus more on the efficiency aspect,
we focus on the effectiveness (i.e., retrieval precision) aspect.

6. CONCLUSION
In this paper, we propose an approach for processing XML vague
content and structure (VCAS) retrieval. A content and structure
(CAS) query consists of two parts, i.e., support and target, where
each part contains both path and content conditions. To derive
approximate answers to a query, we decompose a query into two
sub-queries: one sub-query consisting of support path and content
conditions (a SCAS sub-query) and another sub-query consisting
of the target content condition (a CO sub-query). We then process
the SCAS sub-query by SCAS retrieval and the CO sub-query by

CO retrieval. Results from both retrievals are combined to
produce approximate results to the original query. To improve
retrieval precision, we adjust the score of a CO retrieval result by
the relevancy of the result to the target path condition of the
original query, which is measured by target path similarity. We
propose a path similarity and a content similarity metric to
compute the target path similarity. We evaluate our VCAS
retrieval approach and the similarity metrics through extensive
experiments on the INEX 04 dataset and all the 33 VCAS queries.
Our experimental results demonstrated that: 1) our VCAS
retrieval approach, by taking advantage of XML structures,
significantly outperforms the content-only approach; and 2) the
path and content similarity metrics are effective in estimating the
relevance of CO sub-query results to a query target path
constraint. Therefore, they can be used to further improve the
accuracy of the ranking of the retrieved results.

REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivasava. Tree pattern

relaxation. In EDBT, 2002.
[2] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.

FleXPath: Flexible Structure and Full-Text Querying for
XML. In SIGMOD, 2004.

[3] R. Baeza-Yates, N. Fuhr, and Y. Maarek. Second Edition of
the XML and IR Workshop. In SIGIR Forum, 2002.

[4] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A.
Soffer. Searching XML Documents via XML Fragments. In
SIGIR, 2003.

[5] D. Carmel, A. Soffer, and Y. Maarek. XML and Information
Retrieval. Workshop Report. In SIGIR Forum, Fall 2000.

[6] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik (eds.)
INitiative for the Evaluation of XML Retrieval (INEX).
Proceedings of the Third INEX Workshop, 2004.

[7] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In VLDB, 1997.

[8] S. Liu, Q. Zou, and W. W. Chu. Configurable Indexing and
Ranking for XML Information Retrieval. In SIGIR, 2004.

[9] S. Geva. GPX – Gardens Point XML Information Retrieval
at INEX 2004. In [6].

[10] T. Schlieder and H. Meuss H. Querying and Ranking XML
Documents. In Journal of American Society for Information
Science and Technology, Volume 53 (6) pp. 489-503, 2002.

[11] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Processing
Content-Oriented XPath Queries. In CIKM, 2004.

[12] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. The
University of Amsterdam at INEX 04. In [6]

[13] A. Trotman. Searching structured documents. Information
Processing and Management, 40:619-632, 2004.

[14] A. Trotman and B. Sigurbjörnsson. Narrowed Extended
XPath I (NEXI). In [6].

[15] INitiative for the Evaluation of XML Retrieval.
http://qmir.dcs.qmul.ac.uk/INEX.

[16] XPath. http://www.w3.org/TR/xpath

On the Expressive Power of Node Construction in XQuery

Wim Le Page Jan Hidders Philippe Michiels
∗

Jan Paredaens Roel Vercammen
∗

University of Antwerp
Middelheimlaan 1

B-2020 Antwerp, Belgium

{wim.lepage, jan.hidders, philippe.michiels, jan.paredaens, roel.vercammen}@ua.ac.be

ABSTRACT
In the relational model it has been shown that the flat rela-
tional algebra has the same expressive power as the nested
relational algebra, as far as queries over flat relations and
with flat results are concerned [6]. Hence, for each query
that uses the nested relational model and that, with a flat
table as input always has a flat table as output, there exists
an equivalent flat query that only uses the flat relational
model. In analogy, we study a related flat-flat problem
for XQuery: for each expression containing operations that
construct new nodes and whose XML result contains only
original nodes, there exists an equivalent “flat” expression
in XQuery that does not construct new nodes.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.3
[Database Management]: Languages—Query languages

Keywords
XQuery,XML,Expressive power

1. INTRODUCTION
As XQuery [1] is becoming the standard language for query-
ing XML documents, it is important to study the proper-
ties of this powerful query language. In XQuery, a query
can have a result containing nodes not occurring in the in-
put. These new nodes are constructed during the evalua-
tion of the expression. Nevertheless, it is still possible that
only original nodes occur in the final result. We call such
expressions node-conservative. For example, the query in
Example 1.1 creates new nodes not occuring in the result.
In this example we perform a join and a projection of two
XML documents in XQuery.

In this paper we show that for each deterministic node-
conservative expression there exists an expression without
node construction that essentially always returns the same
store and result sequence. For example, the query in Ex-
ample 1.1 can be rewritten to the query shown in Exam-
ple 1.2. In this work we will show how to generate auto-

∗Philippe Michiels and Roel Vercammen are supported by
IWT – Institute for the Encouragement of Innovation by
Science and Technology Flanders, grant numbers 31016 and
31581.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

Example 1.1 Node-Conservative Expression

The following XQuery expression

let $jointtable :=
element {"table"}{

for $b1 in doc("table.xml")/table/row
for $b2 in doc("table2.xml")/table/row
where $b1/a = $b2/a
return element{"row"}{$b1/*,$b2/*} }

return
for $b in $jointtable/row/b return string($b)

has the result sequence "one","two"when given the input
documents table.xml and table2.xml which look as follows
<table> <table>
<row><a>1one</row> <row><a>1<c>red</c></row>
<row><a>2two</row> <row><a>2<c>blue</c></row>
<row><a>3three</row> </table>
</table>

matically equivalent constructor-free expressions for node-
conservative expressions. This result gives an indication of
the expressive power of the node construction. Furthermore
it can be interesting for query optimization, since optimizing
node construction can be hard. For example, in [3] a trans-
lation fom a subset if XQuery to SQL is given, where the
construction of new elements yields SQL statements with
special numbering operations which are relatively hard to
optimize.

Example 1.2 Constructor-Free Expression

The following XQuery expression

for $b1 in doc("table.xml")/table/row
for $b2 in doc("table2.xml")/table/row
where $b1/a = $b2/a
return

for $b in ($b1/*, $b2/*)/b return string($b)

is equivalent to the query of Example 1.1 and does not con-
tain node constructors.

The work in this paper was inspired by simular results for
the nested relational algebra [6, 7]. In [6] it is shown that
each nested algebra expression that has a flat relation as
output when applied to a flat relation, is equivalent to a
flat algebra expression. In [7] a very direct proof is given
of this fact using a simulation technique. Other work stud-
ied the effect of adding object creation to query languages
on the expressive power of these languages. For example,
in [2] the effect of object identity on the power of query

languages is studied and a notion of determinate transfor-
mations is introduced as a generalization of the standard
domain-preserving transformations. However, obvious ex-
tensions of complete database programming languages with
object creation are not complete for determinate transfor-
mations. In [8] this mismatch is solved by introducing the
notion of constructive transformations, a special kind of de-
terminate transformations which are precisely the transfor-
mations that can be expressed by these obvious extensions.

This paper is structured as follows. In Section 2 we dis-
cuss LiXQuery, which we will use as a formal model for
XQuery and for proving our theorems. Section 3 contains
the theorem and proof for the elimination of node construc-
tion in expressions that do not contain newly constructed
nodes in their results. Finally, the conclusion of this work
is presented in Section 4.

2. LIXQUERY
We use LiXQuery [4, 5] as a basis for studying the expres-
sive power of node construction in XQuery. LiXQuery is a
sublanguage of XQuery that has a semantics that is consis-
tent with that of XQuery, has the same expressive power
as XQuery and has a compact and well defined syntax and
semantics. The LiXQuery language was designed with the
audience of researchers investigating the expressive power
of XQuery in mind. The XQuery features that are omitted
in LiXQuery are only those that are not essential from a
theoretical perspective. We claim that the results that we
show for LiXQuery also hold for XQuery.

LiXQuery has only a few built-in functions and no prim-
itive data-types, order by clause, namespaces, comments,
programming instructions and entities. Furthermore it ig-
nores typing and only provides descendant-or-self and
child as navigational axes. The other navigational axes
can be simulated using these 2 axes. Although the features
that LiXQuery lacks, are important for practical purposes,
they are not relevant to our problem. Note that LiXQuery
does support recursive functions, positional predicates and
atomic values, which are essential in our approach.

We define LQE as the set of LiXQuery expressions. In
LiXQuery, expressions are evaluated against an XML store
and an evaluation environment. The XML store contains
the fragments that are created as intermediate results, as
well as the entire web. The store that only contains the
entire web is called the initial XML store. The evaluation
environment essentially contains mapping information for
function names, variable names and the context item (in-
cluding context position in the context sequence and the
context sequence size). Formally, the XML store is a 6-
tuple1 St = (V, E,�, ν, σ, δ) where: V is the set of available
nodes; (V, E) forms an acyclic directed graph to represent
the tree-structures; � defines a total order over the nodes
in V ; ν labels element and attribute nodes with their node
name; σ labels the attribute and text nodes with their string
value; δ is a partial function that uniquely associates with
an URI or a file name, a document node.

1This tuple is the same as in [5] except that the sibling order
< is replaced by the document order �.

The environment in LiXQuery is denoted by a tuple Env =
(a, b, v, x, k, m) where a is a partial function that maps a
function name to its formal argument; b is a partial function
that maps a function name to the body of the function;
v is a partial function that maps variable names to their
values; x is an item of St and indicates the context item or
x is undefined; k is an integer denoting the position of the
context item in the context sequence or k is undefined; m
is an integer denoting the size of the context sequence, or
m is undefined.

The result of an expression evaluated against an XML store
and environment is a (possibly expanded) XML store (re-
sult store) and a sequence of one or more items over the
result store (result sequence). Items in the result sequence
can either be atomic values or nodes. The semantics of a
LiXQuery expression is defined by statements of the form
St, Env ` e ⇒ St′, v, which state that when e is evaluated
against a store St and an environment Env then St′ is the
result store and v is the result sequence over St. We derive
such statement by using inference rules, which are given
in [5].

We denote the empty sequence by 〈〉, non-empty sequences
by, for example, 〈1, 2, 3〉 and the concatenation of two se-
quences l1 and l2 by l1 ◦ l2. Last but not least, each node
has a unique identity. It is important to note that atomic
values do not have an identity.

3. ELIMINATING NODE CONSTRUCTION
We will show that some XQuery expressions that contain
node constructors can be simulated by another XQuery ex-
pression that does not use node construction.

3.1 Node Conservative Expressions
Clearly an expression cannot be simulated by an expression
without constructors if it returns newly created nodes, so
we introduce the notion of node conservative expressions.

Definition 1. A node-conservative expression (NCE) is
an expression e ∈ LQE such that for all stores St and en-
vironments Env it holds that if St, Env ` e ⇒ St′, v then
all nodes in v are nodes in St.

In Example 1.1 we considered a join and a projection of
two XML documents in LiXQuery. This expression is an
example of a NCE.

Another restriction we make is that we only consider de-
terministic expressions. Node creation is a source of non-
determinism in LiXQuery (and XQuery) because the frag-
ment that is created by a constructor is placed at an arbi-
trary position in document order between the already ex-
isting trees in the store. Since node construction is the only
source of non-determinism in LiXQuery, it is clear that we
cannot simulate that there are many possible results with-
out it. This is however not a fundamental feature of XQuery
so we ignore non-deterministic expressions.

Definition 2. An expression e ∈ LQE is said to be deter-
ministic if for every store St and environment Env it holds
that if St, Env ` e ⇒ St′, v and St, Env ` e ⇒ St′′, w then
v = w.

Note that this is a very strict definition of determinism
which, in fact, only allows node-conservative expressions.
We could have allowed multiple results that were equiva-
lent up to isomorphism over the nodes, but this would make
things unnecessarily complex.

Next to restricting the types of expressions we consider we
also allow a simulation to differ in its semantics from the
the original in two ways. The first is that a simulation may
have a defined result where the original does not. Note that
we still require that whenever an expression has a defined
result then the simulation has the same defined result, but
not necessarily the reverse. We conjecture that the theorem
also holds when we also require the reverse but proving this
would add a lot of overhead to this paper without adding
much extra insight in the expressive power of node construc-
tion.

The second way in which the semantics of a simulation dif-
fers from that of the original is that resulting stores only
have to be the same up to garbage collection, i.e., after re-
moving the trees that are not reachable by the δ function
(the fn:doc() function) or contain nodes from the result
sequence. If we denote the store that results from garbage
collection on a store St and a result sequence v as [St]v then
this leads to the following definition:

Definition 3. Given two expression e, e′ ∈ LQE we say
that e′ is a simulation of e if for all stores St and envi-
ronments Env with undefined x, k and m it holds that if
St, Env ` e ⇒ St′, v then there exists a store St′′ such that
St, Env ` e′ ⇒ St′′, v and [St′′]v = [St′]v.

We use this definition for the following theorem, which is
the main result of this paper:

Theorem 1. For every deterministic node-conservative2

expression e ∈ LQE there exists a simulation e′ ∈ LQE
that does not contain constructors.

3.2 Outline of the Simulation
Our goal is to transform an expression into a semi-equivalent
expression which does not use node constructions. We are
going to eliminate the construction by simulating it. To
simulate construction we will need to simulate the store, be-
cause it is there that the information concerning the newly
constructed nodes will reside. In short, the simulation per-
forms the following steps:

1. We use a few special variables in the environment to
encode a part of the store. This part will contain the
newly created nodes but also parts of the old store
that are retrieved with the doc() function;

2. Whenever a doc() call occurs in the original expres-
sion, the simulation will add the encoding of the docu-
ment tree to the simulated store on the condition that
it is not already there;

3. Accessing nodes in the store is simulated by accessing
the encoded store;

2Since every deterministic expression is also node-
conservative we can strictly speaking drop the second re-
quirement.

4. Nodes are simulated by node identifiers which are num-
bers that refer to the encoded nodes in the store;

5. In order to be able to distinguish encoded atomic val-
ues from node identifiers within sequences, we let the
normal atomic values be preceded by a 0 and the node
identifiers by a 1. Note that this means that in the
simulation, a sequence will be twice as long and every
item that was at position i will now be at position 2i;

6. Finally, the simulation replaces the node identifiers
with the corresponding nodes from the store. If the
original expression is indeed a deterministic node con-
servative expression, the result – and thus also the
result of the simulation – will contain no newly con-
structed nodes. Consequently, this last step is always
possible if the original expression is node conservative.

The transformation of an expression to a constructor-free
expression that simulates it, is expressed by a transfor-
mation function. A transformation function is a function
ε : LQE → LQE. The commuting diagram in Figure 1
illustrates what should hold for such a transformation func-
tion ε for it to be correct. We show this by induction on the
subexpressions e′′ of an expression e.

(St, Env)
τ−−−−−→ (cSt, dEnv)

e′′
??y ε(e′′)

??y
(St′, v)

τ ′
−−−−−→ (cSt, bv)

Figure 1: This diagram depicts the relations be-
tween the several components in the translation.

On the left-hand side we see that starting from a store St
and an environment Env, the evaluation of the expression
e′′, which may add new nodes to St, will result in a new
store St′ ⊇ St and a result v. On the right-hand side we see

that starting from a store cSt and an environment dEnv, the
evaluation of the transformed constructor-free expression

ε(e′′), which will not add new nodes to cSt, will result in the

same store cSt and a result bv.

At the top of the diagram we see the encoding τ which
encodes a store St dEnv ⊆ St into sequences of atomic values

that are bound to special variables in the environment dEnv.
Moreover, τ replaces the values of all variables in Env with
sequences of atomic values and the bodies of all functions
are transformed by ε to constructor-free expressions. At
the bottom of the diagram we see the encoding τ ′ which
encodes a store Stbv ⊆ St′ and the value v as a sequence of
atomic values bv.

When we use this schema to show by induction that we
can correctly translate an expression e to a constructor-
free expression ε(e) it will hold for the evaluation of the

subexpression e′′ that cSt is the store against which e is
evaluated. Moreover, if during the evaluation of e nodes
where created before the evaluation of e′′ then (1) these
nodes have been added to St and (2) in the evaluation of

ε(e) they were added to the encoded store in dEnv. So it will

hold that St = cSt∪St dEnv. Obviously it has to be shown by
induction that this remains true after the evaluation of e′′

so it has to be shown that St′ = cSt∪Stbv. An overview of all
these relationships between the involved stores is illustrated
in Figure 2.

St

StEnv

St St '

St v

Figure 2: The stores cSt, St dEnv, St, Stbv and St′

3.3 Encoding the Store and Environment
Before we describe how to translate LiXQuery expressions
into their constructor-less simulations, we first have to look
into the encodings of the store and environment based on
their formal semantics.

We first describe how to encode a store in sequences of
atomic values. We will define this given an injective func-
tion id : V → N that provides the unique node identifier for
each node and which will be used to represent the nodes in
the encoding.

Definition 4. Given an XML store St = (V, E,�, ν, σ, δ)
and an injective function id : V → N then we call a tuple of
XML values (V̂ , Ê, δ̂) a store encoding of St under id if

– V̂ = 〈id(v1), t1, n1, s1〉 ◦ . . . ◦ 〈id(vk), tk, nk, sk〉
where (1) {v1, . . . , vk} = V , (2) v1 � . . . � vk, (3) ti

equals "text", "doc", "attr" or "elem" if vi is a text
node, a document node, an attribute node or an ele-
ment node, respectively, (4) nk is ν(vk) if it is defined
and "" otherwise, and (5) sk is σ(vk) if it is defined
and "" otherwise,

– Ê = 〈id(v1), id(v′
1)〉 ◦ . . . ◦ 〈id(vm), id(v′

m)〉
where {(v1, v

′
1), . . . , (vm, v′

m)} = E,

– δ̂ = 〈s1, id(v1)〉 ◦ . . . ◦ 〈sp, id(vp)〉
where δ = {(s1, v1), . . . , (sp, vp)}.

Note that a store encoding is not uniquely determined given
St and id because we can choose the order in Ê and δ̂.

We have to encode sequences of atomic values and nodes
as sequences of atomic values. When we directly replace
each node v with id(v) we cannot always tell if a number
represents itself or encodes a node identifer. Therefore we
let atomic values that encode themselves be preceded by 0

and atomic values that are node identifiers be preceded by
1. For illustration consider the examples in Example 3.1.

Example 3.1 Encoded values

Given a function id = {(v1, 5), (v2, 3)}:

value value encoding

〈5〉 〈0, 5〉
〈v1〉 〈1, 5〉
〈5, v1, "string", v2〉 〈0, 5, 1, 5, 0, "string", 1, 3〉

Definition 5. Given an XML value v = 〈x1, . . . , xk〉 over
a store St = (V, E,�, ν, σ, δ) and an injective function id :
V → N, we call an XML value ṽ the value encoding of
v under id if ṽ = 〈m1, x̂1〉 ◦ . . . ◦ 〈mk, x̂k〉 where mi = 1
and x̂i = id(xk) if xk is a node and mi = 0 and x̂i = xi

otherwise.

Note that the encoding of value v is written as ṽ and not
as v̂ to distinguish it from the v̂ in the commuting diagram
in Figure 1 which encodes both a store and a value.

We now proceed with formalizing the the τ relationship in
Figure 1. Recall that the relations in this diagram hold by
induction on the subexpressions e′′ of a simulated expres-

sion e. The resulting store cSt is the store against which e
is evaluated, because all nodes that are created by e′′ are

in ε(e′′) encoded in dEnv. We will refer to the part of St

encoded in dEnv as St dEnv. Since St dEnv describes the part
of St that is retrieved or created by preceding evaluations

it holds that St = cSt ∪ St dEnv where cSt ∩ St dEnv contains
the documents that were retrieved with the doc() function
before e′′ was evaluated (see Figure 2).

Definition 6. Given a store St = (V, E,�, ν, σ, δ), an
environment Env = (a, b, v, x, k, m) over this store and a

transformation function ε we call a pair (cSt, dEnv) with

store cSt and environment dEnv = (â, b̂, v̂, x̂, k̂, m̂) a store-
environment encoding of St and Env under tr if there is a
store St dEnv and an injective function id : V dEnv → N such
that

– St = cSt ∪ St dEnv,

– all nodes in values of variables in Env are in St dEnv

– â = a,

– b̂ = {(s, tr(y))|(s, y) ∈ b},
– in v̂ (1) all variable names s bound by v are bound

to the value encoding of v(s) under id, (2) the vari-

ables tau:E, tau:V and tau:delta contain V̂ , Ê and
δ̂, respectively, where (V̂ , Ê, δ̂) is the store encoding
of St dEnv under id and (3) the variables tau:x, tau:k
and tau:m contain value encodings of x, k and m, re-
spectively, under id, and

– x̂, k̂ and m̂ are all undefined.

In turn, we now define the τ ′ encoding in Figure 1. Here
we refer to the part of the store that is encoded in the
environment as Stbv. Since Stbv describes the part of St that
is retrieved or created by preceding evaluations it must hold

that St′ = cSt∪Stbv where cSt′ ∩Stbv contains the documents
that were retrieved with the doc() function before or during
e′′ was evaluated (see Figure 2).

Definition 7. Given a store St′ = (V, E,�, ν, σ, δ) and a

value v over this store then a pair (cSt, bv) with a store cSt and
an XML value bv is called a store-value encoding of St and v
if there is a store Stbv and an injective function id : Vbv → N
such that (1) St′ = cSt ∪ Stbv, (2) all nodes in v are in Stbv
and (3) v̂ = 〈|V |〉 ◦ V̂ ◦ 〈|E|〉 ◦ Ê ◦ 〈|δ|〉 ◦ δ̂ ◦ ṽ where (V̂ , Ê, δ̂)
is the store encoding of Stbv under id, and ṽ is the value
encoding of v under id.

Based on this input/output encoding we can give the for-
mal meaning of the diagram in Figure 1 and define when a
transformation function defines a correct simulation.

Definition 8. A transformation function ε is said to be
a correct transformation if it holds for every store St and

environment Env that if St, Env ` e ⇒ St′, v and (cSt, dEnv)
is store-environment encoding of St and Env under tr then

it holds that cSt, dEnv ` ε(e) ⇒ cSt, bv where (cSt, bv) is a store-
value encoding of St′ and v.

3.4 A Correct Transformation Function
In this section we construct a transformation function ε :
LQE → LQE and show that the following theorem holds.

Theorem 2. The transformation function ε is a correct
transformation function.

The result of ε(e) is defined by induction upon the structure
of e. Because of space limitations we will only show some
typical translations for some types of LiXQuery expressions.
Helper functions will be defined in the eps namespace which
is assumed to be distinct from all the used namespaces in
e.

We begin with the translation of the name() function. Here
and in the following we will assume the existence of the func-
tions eps:V(), eps:E(), eps:delta() and eps:val() which

respectively extract bV , bE, bδ, and ev from a store-value encod-
ing. For computing the store-value encoding give V̂ , Ê, δ̂
and ṽ we assume the existence of a function eps:stValEnc()

with formal arguments $V, $E, $delta and $val. We also
introduce the shorthand

let $eps:V, E, delta, val := getStVal($eps:res)

to denote

let $eps:V := eps:V($eps:res)
let $eps:E := eps:E($eps:res)
let $eps:delta := eps:delta($eps:res)
let $eps:val := eps:val($eps:res)

The translation of the name() function is defined as follows:

ε(name(e′)) =
let $eps:res := ε(e′)
let $eps:V, E, delta, val := getStVal($eps:res)
return eps:epsStValEnc($eps:V, $eps:E, $eps:delta,

eps:nu($eps:val[2], $eps:V))

The function eps:nu() returns the name of the specified

node using the information encoded in bV .

The doc() function loads new documents into our encoded
store.

ε(doc(e)) = let $eps:res := ε(e)
return eps:doc($eps:res)

Here the function eps:doc() checks if the document is al-
ready in the encoded store by comparing the URI’s tot the

URI’s already present in bδ. If this is the case it just re-

turns the associated simulated node id as found in bδ, else
the eps:doc() function compares the real document node
obtained with the given URI, to the real documents ob-

tained via the URI’s that are already present in bδ. If this

is the case, only a new entry is added to bδ linking the new
URI to the node identifier of the encoded document. If
the document is not present in bδ the document is encoded.
First a document node is added to the encoded store and
with the resulting node identifier a new entry is added in bδ.
Then, also using this identifier, the nodes of the document

are encoded and added after this document node in bV . The
eps:doc() function finally returns a store-value encoding
containing the (new) node identifier as the result sequence
and the (updated) store, environment and delta.

The for-expression is the most fundamental type of expres-
sion in LiXQuery. In it’s translation we assume a num-
ber x that is unique for each for-expression that has to be
translated. This is used to define for every for-expression a
unique function eps:forx(). The parameter varsx repre-
sent all free variables in e′. Recursion is used here to simu-
late the iteration over a sequence where the resulting store
of the previous step is passed on to the following step. The
translation of the for-expression is then defined as follows.

ε(for $s at $s′ in e return e′) =
let $eps:res := ε(e)
let $eps:V,E,delta,val := getStVal($eps:res)
return eps:forx(1, $eps:val, $eps:V, $eps:E,

$eps:delta, varsx)

with eps:forx() defined as follows:

declare function eps:forx($eps:pos, $eps:seq,
$tau:V, $tau:E, $tau:delta, varsx) {

let $s := $eps:seq[$eps:pos*2-1], $eps:seq[$eps:pos*2]
let $s’ := $eps:pos
let $eps:res1 := ε(e′)
let $eps:V1,E1,delta1,val1 := getStVal($eps:res1)
let $eps:res2 := eps:forx($eps:pos+1, $eps:seq,

$eps:V1, $eps:E1, $eps:delta1, varsx)
let $eps:V2,E2,delta2,val2 := getStVal($eps:res2)
return $eps:stValEnc($eps:V2, $eps:E2, $eps:delta2,

($eps:val1, $eps:val2))
}
The translation of node comparison expressions is done by
extracting the information of identity and position con-
tained in the store-value encoding.

ε(e’ is e’’) =
let $eps:res := ε(e’)
let $tau:V,E,delta,val1 := getStVal($eps:res1)
let $eps:res2 := ε(e’’)
let $tau:V2,E2,delta2,val2 := getStVal($eps:res2)
return $eps:stValEnc($tau:V2, $tau:E2, $tau:delta2,

(0, $tau:val1[2] = $tau:val2[2]))

The translation of a construction operator extends the en-
coded store which is a crucial part of the simulation. To
illustrate this we give the translation the element construc-
tion.

ε(element {e′}{e′′}) =
let $eps:res := ε(e′)
let $tau:V,E,delta,val1 := getStVal($eps:res)
let $eps:res2 := ε(e′′)
let $V2,E2,delta2,val2 := getStVal($eps:res2)
return eps:addElem(V2, E2, delta2, $tau:val1, val2)

with eps:addElem() declared as follows.

declare function eps:addElem($V $E, $delta,
$nameEnc, $chEnc) {

let $res1 := eps:addElemNode($nameEnc[2], $V, $E)
let $V1,E1,delta1,val1 := getStVal($res1)
let $res2 := eps:addChl($val1, $chEnc, V1, E1)
let $V2,E2,delta2,val2 := getStVal($res2)
return $eps:stValEnc($V2, $E2, $delta, $val1)

}

Here the function eps:addElemNode($name, $V, $E) adds
a new element node with name $name and returns a store-
value encoding with the new store and the new node identi-
fier. The function eps:addChl($parEnc, $chEnc, $V, $E)

makes deep copies for all the nodes encoded in chEnc, adds
these under the node encoded in $parEnc and returns a
store-value encoding with the new store and the parent
node. The function uses recursion in the same way as the
translation of the for-expression, in order to be able to iter-
ate with side-effects on the store.

3.5 Creating a Constructor-Free Expression
We now sketch how to create constructor-free semi-equivalent
expressions for deterministic (node-conservative) ones, i.e.,
how to generate the expression e′ of Theorem 1, based on
ε(e), which is working on an encoding of (St, Env). We
do so by showing how encoding (St, Env) and afterwards
decoding results St′, v can be done for node-conservative
expressions.

The expression ε(e) will be evaluated against (St, dEnv),

where dEnv contains the encoded store and environment.
We construct St dEnv in such a way that it contains exactly
all trees of St for which a node occurs in the variable bind-
ings of Env. Assuming that we can have a sequence that
is the concatenation of all variable bindings in Env, we can
write an expression to create a new sequence $roots that,
starting from the former sequence, filters out the nodes, ap-
plies the root function to each node and finally sorts this
result by document order by applying a self-axis step. Since
the roots of all trees that have to be in St dEnv are now in
document order in $roots, we can write another expression
that creates the encoded store St dEnv starting from an empty
encoded store, by simply traversing through the trees under

the nodes in $roots and extending St dEnv = (bV , bE, bδ), rep-
resented by the variables $tau:V, $tau:E and $tau:delta

in the environment dEnv). If this traversal is done in depth-
first, left-to-right manner, we visit all nodes of St that will
be encoded in St dEnv in document order. Node identifiers
can then be chosen in such a way that they correspond
to the position in St dEnv. Starting from Env, we can now

create the encoded environment dEnv by replacing all ex-
pressions in b by the simulations ε(b), adding the variables
for the encoded store and environment to the function sig-
natures in a, replacing all sequences in the variable bindings
with their encoded sequences, and finally, adding the vari-
ables $tau:V,$tau:E and $tau:delta to v. Since all nodes
that occur in Env are encoded in St dEnv and node identi-
fiers were assigned based on the position of nodes within
the forest under $roots, we can easily obtain the encoded
sequences for the variable bindings.

The result of the evaluation of ε(e) is the store St and a
store-value encoding Stbv. Based on this we can create the
result sequence the original expression returned if it was

a node-conservative expression. In that case the encoded
result sequence will only contain encoded nodes of which the
real counterparts were available in the initial XML store St.
Therefore we can loop over encoded items in Stbv. Encodings
of atomic values are simply replaced by the atomic values
itself. For every encoded node we first determine whether
it was originally in St dEnv. This can be done by storing
(during the encoding phase) all nodes and their chosen node
identifiers as pairs in a variable. If the node identifier occurs
in this variable then it is an original node and we can easily
return the corresponding node. If the root of the encoded
node is an encoded document node that is associated to
a URI in the variable $tau:delta then we can obtain the
original document root node by a simple doc function call,
else it is a newly created node and hence this expression is
not a node-conservative expression. By using the position
of the encoded node relative to the encoded root node, we
can determine the position of the corresponding real node in
the document tree and hence we replace the encoded node
by the real node in the result sequence.

4. CONCLUSION
In this paper, we showed that deterministic XQuery expres-
sions, always yielding a result with only nodes from the in-
put store, can be rewritten to equivalent expressions that do
not contain node constructors. In further research, we plan
to investigate whether a similar result can also be obtained
for non-recursive XQuery. Furthermore, we intend to inves-
tigate how this result can be used to optimize queries by
removing or postponing node creation operations in query
evaluation plans. Finally, we want to examine whether this
result can be used for rewriting let expressions in non-
recursive XQuery without using XQuery functions. This is
not trivial, since simple variable substitution would result
in multiple creation of the nodes on the right-hand side of
the variable assignment.

5. REFERENCES
[1] XML query (XQuery). http://www.w3.org/XML/Query.

[2] S. Abiteboul and P. C. Kanellakis. Object identity as a
query language primitive. Journal of the ACM, 45:798–842,
September 1998.

[3] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL hosts.
In Proceedings of the 30th Int’l Conference on Very Large
Databases (VLDB 2004), August/September 2004 2004.

[4] J. Hidders, J. Paredaens, P. Michiels, and R. Vercammen.
LiXQuery: A formal foundation for XQuery research.
SIGMOD Record, September 2005.

[5] J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer.
A light but formal introduction to XQuery. In Proceedings
of the Second International XML Database Symposium
(XSym 2004), Toronto, Canada, 2004. Springer.

[6] J. Paredaens and D. Van Gucht. Converting nested algebra
expressions into flat algebra expressions. ACM Transactions
on Database Systems (TODS), 17:65–93, 1992.

[7] J. Van den Bussche. Simulation of the nested relational
algebra by the flat relational algebra, with an application to
the complexity of evaluating powerset algebra expressions.
Theoretical Computer Science, 254:363–377, 2001.

[8] J. Van den Bussche, D. Van Gucht, M. Andries, and
M. Gyssens. On the completeness of object-creating
database transformation languages. Journal of the ACM,
44:272–319, March 1997.

Indexing for XML Siblings

SungRan Cho
L3S, University of Hannover

scho@l3s.de

ABSTRACT
Efficient querying XML documents is an increasingly impor-
tant issue considering the fact that XML becomes the de facto
standard for data representation and exchange over the Web,
and XML data in diverse data sources and applications is grow-
ing rapidly in size. Given the importance of XPath based query
access, Grust proposed R-tree index, we refer to aswhole-tree
indexes (WI). Such index, however, has a very high cost for the
following-sibling and preceding-sibling axes. In this paper we
develop a family of index structures, which we refer to assplit-
tree indexes (SI), to address this problem, in which (i) XML
data is horizontally split by a simple, yet efficient criteria, and
(ii) the split value is associated with tree labeling. Whilethe SI
is straightforward to construct, it incurs the overlap problem be-
tween bounding boxes. We resolve this problem by designing
thetransformed split-tree indexes (TSI). We also study the most
promising existing method of constructing R-tree, the Hilbert
tree, so that we take advantage of its benefit for XML siblings.
Lastly, we experimentally demonstrate the benefits of the TSI
for siblings over the WI using benchmark data sets.

1. INTRODUCTION
With the advent of XML as the de facto standard for data rep-

resentation and exchange over the Web, querying XML docu-
ments has become more important. In this context, XML query
evaluation engines need to be able to efficiently identify the el-
ements along each location step in the XPath query. Several
index structures for XML documents have been proposed [4,
5, 9, 10, 13, 15], in a way to efficiently querying XML docu-
ments.

As XML documents are modeled by a tree structure, a num-
bering scheme, labeling tree elements, allows for managingthe
hierarchy of XML data. For example, each element has the
position, a pair of its beginning and end locations in a depth

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

first search. In general, the numbering approach has the bene-
fit of easily determining the ancestor-descendant relationship in
a tree. In this respect, R-tree index using node’s preorder and
postorder, we refer to aswhole-tree indexes (WI), has been pro-
posed in [5]. Such index, however, does not consider issues re-
lated to the costs of the preceding-sibling and following-sibling
axes.

In this paper, we discuss index techniques to reduce the cost
of performing XML siblings. This also addresses an issue of
what efficient packing for XML tree data is. An efficient pack-
ing method for a tree is not only to group together data elements
which are close in a tree, but also to reduce dead space result-
ing in false positives (no data in indexed space). The packing
method of the WI, taking a whole tree, may cover considerable
dead space, which influences querying XML siblings. We de-
sign thesplit-tree index (SI) to address the problem, in which
(i) an XML tree is horizontally split by a simple, but efficient
criteria, and (ii) the split value is associated with tree labeling.
The SI uses standard R-tree index lookup algorithms to match
elements along XPath location steps.

Since data trees are indexed separately in the SI, bounding
boxes representing data elements may overlap, which impacts
the performance. We resolve this problem by developing the
transformed split-tree index (TSI), in which all elements are
transformed into new dimensions. To take advantage of the
semantics of the index structure, we develop index lookup for
XPath axes in the TSI.

We next consider the most promising existing method of con-
structing R-tree for XML siblings, the Hilbert tree, which pre-
serves data locality well in dimensions. While the WI, SI, and
TSI use the preorder to cluster node elements, the Hilbert R-
tree uses the Hilbert ordering generated from node’s positional
numbers in a tree. It is shown in our experiment that the Hilbert
R-tree has an even page access across all XPath axes.

Finally, we perform an experimental comparison between the
WI, SI, TSI, and Hilbert R-tree. Using the XMark benchmark
data set, we demonstrate that the index lookup costs in the TSI
is superior to the WI for siblings and comparable to other axes
in the WI.

This paper is organized as follows. Section 2 presents some
background material along with the structure of our indexes
(WI, SI, and TSI) and motivates our indexes (SI and TSI). In
Section 3, we present the split criteria of a tree as the base of
building the SI. In Section 4, we design a new index TSI by en-
hancing SI and presents the index lookup for the TSI. Section5

i (9,2,1)

a

b

ec

f g

(1,1,−)

(2,9,1)

(3,15,2) (7,10,2)(4,12,2)d

h
(8,11,7)(6,13,4)(5,14,4)

j

k
(12,7,10)

l
(11,8,10)

m
(13,6,10)

o

n(10,5,9) (14,3,9)

(15,4,14)

Figure 1: XML data tree encoded with Ln, Rn, PLn

describes the Hilbert R-tree for XML tree. The benefits of SI,
TSI, and Hilbert indexes over WI are evaluated experimentally
in Section 6. We present related work in Section 7 and conclude
in Section 8.

2. BACKGROUND
We assume familiarity with XML and XPath expressions.

Here, we review the encodings used on XML nodes to facili-
tate matching of XPath axes.

2.1 Whole-Tree Indexes: WI
A preorder and a postorder numbering of nodes (see, e.g., [9,

5]) in an (ordered, tree-structured) XML document suffice to
reconstruct the XML document unambiguously.

In this paper, we use an encoding scheme,Ln and Rn, for
nodes in XML documents that has the same effect as preorder
and postorder.Ln is the rank at which the node is encountered
in a left to right depth first search (DFS) of the XML data tree,
andRn is the rank at which the node is encountered in aright
to left DFS. In order to handle level sensitive matching, such
as child and parent axes (matching nodes one level apart), and
following-sibling and preceding-sibling axes (matching nodes
with the same parent), the parent node’sLn, written asPLn is
associated with each node. Thus each XML element node is
labeled with three numbers:Ln, Rn, andPLn. These numbers
become coordinates in multi-dimensions. Figure 1 is an exam-
ple of XML data tree where each node is encoded withLn, Rn,
andPLn.

The whole-tree index (WI) is obtained by the R-tree index
on the (Ln, Rn, PLn) dimensions, in which XML data is loaded
usingLn ordering.

2.2 Matching XPath Location Steps on WI
XML nodes are packed in abounding box which denotes the

set of leaf pages rooted at a non-leaf index page entry. Non-leaf
pages in the index structure maintain the low and high ranges,
represented in (B Lnlow, B Rnlow, B PLnlow, B Lnhigh, B Rnhigh,
B PLnhigh). Given a query nodeQLn,Rn,PLn and a non-leaf index
page, let us review the conditions, for matching XPath location
steps along eight XPath axes (i.e., descendant, child, ancestor,
parent, preceding, following, preceding-sibling, and following-
sibling).

• descendant:(B Lnhigh > QLn) & (B Rnhigh > QRn).

Axes Leaf Axes Leaf

ancestor 3.15 descendant 1.16
parent 1 child 1.11

preceding 846 preceding-sibling 7.56
following 847 following-sibling 166.9

Table 1: Leaf page accesses

• child: (B Lnhigh > QLn) & (B Rnhigh > QRn) &
(B PLnlow ≤ QLn ≤ B PLnhigh).

• ancestor: (B Lnlow < QLn) & (Rnlow < QRn).

• parent: (B Lnlow < QLn) & (Rnlow < QRn) &
(B Lnlow ≤ QPLn ≤ B Lnhigh).

• preceding: (B Lnlow < QLn) & (B Rnhigh > QRn).

• following: (B Lnhigh > QLn) & (B Rnlow < QRn).

• preceding-sibling: (B Lnlow < QLn) & (B Rnhigh > QRn)
& (B PLnlow ≤ QPLn ≤ B PLnhigh).

• following-sibling: (B Lnhigh > QLn) & (B Rnlow < QRn)
& (B PLnlow ≤ QPLn ≤ B PLnhigh).

2.3 Motivation
We first ran theXMark benchmark dataset (seehttp://

monetdb.cwi.nl/xml/) with 10 MBytes dataset and a page
capacity of 100 nodes to observe the number of page accesses
for sibling axes in the WI. We counted the number of leaf page
accesses of the index tree needed to find the results while ex-
ploring XPath axes. The leaf page access results for XPath lo-
cation steps are given in Table 1.

As observed in Table 1, the WI has a high cost of the following-
sibling and preceding-sibling, on the average 166 page accesses
for the following-sibling and 7 page accesses for the preceding-
sibling. However the ancestor, parent, child, and descendant
axes rather do well (on the average between 1 and 3 page ac-
cesses). For preceding and following axes, a node has (on the
average) half of the document preceding and following it, re-
spectively. The experiment results motivate us to propose anew
indexing technique that can reduce the cost of XML siblings.
Next we would like to discuss a question of why the costs of
the preceding-sibling and following-sibling axes are not sym-
metric. One reason for this is that false positives (due to R-tree
bounding boxes) of following-sibling axis, is much higher than
those in other axes.

3. SPLIT-TREE INDEXES: SI
In this section, we discuss a split strategy for XML data tree

as the base of obtaining thesplit-tree indexes (SI).

3.1 An Horizontal Split Strategy
An XML data tree is split using node’sLn andRn. A key

of the split strategy isα whereα can be the total number of
nodes in a tree, the maximum level of a tree, or etc. Since the
value of α is still an open issue, we don’t specify the value
of α in this paper. Instead we will study the costs of XPath

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a

Rn

Ln

b

d

c
f

g

e
h

i

j

l

k

m
n

o

19

19

N+LN−L
(a) Split on (Ln,Rn) dimensions

18
17
16

19

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a

b

c

d

gf

e

h

i

j

k l m
n

o

N−L

Rn’

Ln’

N+L

(b) (Ln′,Rn′) representation

Figure 2: (Ln,Rn) and (Ln′,Rn′) dimensions

axes with varyingα (experiment results provide more details in
Section 6).

XML data nodes on the (Ln, Rn, PLn) dimensions are divided
on the center of the lineRn = −Ln + α, and in effect the
data tree is split horizontally. For example, Figure 2 (a) isa 2-
dimensional representation of the data tree of Figure 1, wherex

andy axes representLn andRn, respectively. It shows that the
dimensions are divided by the lineRn = −Ln+(N− L), where
N is the total number of nodes andL is the maximum level in
the tree. The property of the split regions in this example isthat
all leaf nodes and some intermediate nodes in the data tree lie
above the lineRn = −Ln+ (N− L), which might be dense (we
refer to as anupper region), and some intermediate nodes lie
under the line, which might be sparse (we refer to as alower
region).

3.2 Designing SI
The split-tree index (SI) is constructed by indexing XML

data nodes in the upper and lower regions separately. The sep-
arate packing reduces long thin boundary boxes, produced by
WI, that may contain dead space (space which is indexed but
does not have data). As for index lookup, the SI uses the same
WI lookup algorithms (see Section 2.2) to identify the desired
elements along an XPath axis from a specified element.

Since we pack each region separately, we obtain the overlap
between bounding boxes at each region of the tree. For exam-
ple, Figure 2 (a) where the pack capacity is four nodes, shows
an overlap area highlighted in a shaded rectangle. Due to over-
lap, multiple paths from the root downwards on the SI may need
to be traversed, which results in increasing page accesses.We
address this problem by designing the TSI next.

4. TRANSFORMED SI: TSI
In this section we design a family of transformed split-tree

indexes (TSI) to avoid possible overlap in the SI.

4.1 Coordinate Transformation
New coordinates of nodes are determined by their origins. A

node elementn with coordinates (Ln, Rn, PLn) is transformed
into n′=(Ln′, Rn′, PLn′), such that

Ln
′ = Ln

Rn
′ = Ln + Rn

PLn
′ = PLn

The original coordinates are extended with in theRn direction
with respect toLn. Thus the new dimensions, (Ln

′, Rn′, PLn′),
are at mostN × L × N larger than the original dimensions,
whereN is the total number of nodes andL is the maximum
level in the tree. More importantly this result does not break
the hierarchy of a tree represented in multi-dimensions. Fig-
ure 2 (b) shows the tree on (Ln

′, Rn′) dimensions transformed
from the data tree of Figure 2 (a). In the transformed dimen-
sions, without allowing overlap, TSI is constructed in manner
of building SI whose packing is based onLn ordering.

4.2 Matching XPath Location Steps on TSI
We discuss the conditions for matching XPath location steps

along XPath axes on (Ln′,Rn′,PLn′) dimensions. First, we present
a comparison of XPath axes crossed on between (Ln,Rn) and
(Ln′,Rn′) dimensions, which is shown in Figure 3. This sug-
gests the new conditions for XPath axes in the TSI. Given a
query nodeQLn′,Rn′,PLn′ and a non-leaf index page represented
in (B Ln′low,B Rn′low,B PLn′low, B Ln′high,B Rn′high, B PLn′high), we
develop the conditions for XPath location steps along eightXPath
axes (more details are provided in Appendix).

• descendant: (B Rn
′

high − B Ln
′

low > QRn′ − QLn′) &
(B Ln

′

high > QLn′) & (B Rn
′

high > QRn′).

ancestor

(1) (Ln,Rn)

descendant

following

preceding

Rn

Ln

ancestor

descendantpreceding

following

(2) (Ln’,Rn’)

Ln’

Rn’

Figure 3: XPath conditions on (Ln,Rn) and (Ln′,Rn′)

• child: (B Rn
′

high − B Ln
′

low > QRn′ − QLn′) &
(B Ln

′

high > QLn′) & (B Rn
′

high > QRn′) &
(B PLn

′

low ≤ QLn′ ≤ B PLn
′

high).

• ancestor: (B Rn
′

low − B Ln
′

high < QRn′ − QLn′) &
(B Ln

′

low < QLn′) & (B Rn
′

low < QRn′).

• parent: (B Rn′low − B Ln′high < QRn′ − QLn′) &
(B Ln

′

low < QLn′) & (B Rn
′

low < QRn′) &
(B Ln

′

low ≤ QPLn′ ≤ B Ln
′

high).

• preceding: (B Rn′high − B Ln′low > QRn′ − QLn′) &
(B Ln

′

low < QLn′).

• following: (B Rn
′

low − B Ln
′

high < QRn′ − QLn′) &
(B Ln′high > QLn′).

• preceding-sibling: (B Rn
′

high − B Ln
′

low > QRn′ − QLn′)
& (B Ln

′

low < QLn′) & (B PLn
′

low ≤ QPLn′ ≤ B PLn
′

high).

• following-sibling: (B Rn
′

low − B Ln
′

high < QRn′ − QLn′) &
(B Ln

′

high > QLn′) & (B PLn
′

low ≤ QPLn′ ≤ B PLn
′

high).

5. USING HILBERT R-TREE
In this section, we present the Hilbert R-tree for XML sib-

lings. The Hilbert curve is a space filling curve that visits all the
points ink-dimensional space exactly once and never crosses
itself. The order has been used to arrange data elements in
many applications such as image processing, CAD, and etc.
The reason that the Hilbert ordering preserves spatial locality is
to map points which are close together ink-dimensional space
into points that also close together in one-dimensional space. In
[7], the Hilbert R-tree is constructed in manner to index smaller
regions of space so that search can be focused on the relevant
regions. It thus minimizes the resulting page boundaries.

In order to build Hilbert R-tree for XML data, we first gener-
ate the Hilbert values of data nodes in (Ln, Rn, PLn) dimensions
and then load the data into the index using the Hilbert order-
ing. The same index lookup algorithm for XPath location steps,
described in Section 2.2, is used. Consequently, from our ex-
periment, the resulting costs across all XPath axes (exceptfor
the following and preceding axes) are almost even (this result
is explained in next section).

α l-region u-region

N 16,447 152,757
N-L/2 9,439 159,765
N-L 5,613 163,591
N-2L 2,203 163,591
N-4L 472 168,732
N-8L 82 169,122

Table 2: Node counts at each region

6. EXPERIMENTS
In this section, we present the result of the evaluation of our

index. We conducted experiment using the XMark benchmark
dataset. The size of the XMark is about 10 MBytes and the
packing size is 100 nodes. In our experiment, we compare WI,
SI, TSI, and Hilbert indexes.

We used six XPath navigation axes for query, i.e., child, par-
ent, ancestor, descendant, following-sibling and preceding-sibling
axes. The results of following and preceding are excluded be-
cause the costs of those axes are the same on WI, SI, TSI, and
Hilbert indexes. We also observed our evaluation with varying
the value ofα (the split value of a tree).

The leaf and non-leaf page access results for six axes over
WI, SI, TSI, and Hilbert are given in Figure 5 (a) and (b), re-
spectively, in which the value ofα is chosen asN −L/2 for SI
and TSI. From the plot (a), the SI, TSI and Hilbert indexes out-
perform the WI for the following-sibling and preceding-sibling
axes. The number of leaf page accesses is roughly the same
for the following-sibling and preceding-sibling axes between SI
and TSI. When compared to WI, the following-sibling and pre-
ceding axes are about 3.5 times and 1.5 times cheaper respec-
tively in the SI and TSI, whereas those are about 20 times and
1.1 times cheaper respectively in the Hilbert. More importantly
the Hilbert has the symmetric results between the preceding-
sibling and following-sibling axes due to its packing property.
As for other axes, the number of page access in the SI and TSI
is slightly higher than that in WI index (about 1.2 times larger
for ancestor, child, descendant and 1.8 times for parent). This
is expected in the split R-tree, since nodes that are close inthe
hierarchy, may be split and then packed separately. The Hilbert
is between 3 and 8 times larger than the WI for other axes.
From our results, the overlap affects the results of the descen-
dant and child axes, but it nearly does for other axes. The TSI
has a saving of 50% over the SI for the descendant and child
axes. The number of non-leaf page accesses between WI and
TSI is roughly the same, except for the following-sibling which
is 36% cheaper in the TSI.

Next we measured the cost of executing XPath navigation
axes with varying the value ofα in the TSI. Associating with
α, the number of nodes in the lower and upper regions is given
in Table 2, whereN is the total number of nodes andL is the
maximum level of the tree. As one decreases the value ofα,
the number of leaf page accesses of the preceding-sibling and
following-sibling axes increases, but that of the parent, ances-
tor, child, descendant axes decreases. For example, in our ex-
periment, whenα is N − 8L, in the TSI the ancestor, parent,
descendant and child axes are up to 1.6 times smaller than when
α is N − L/2. However, the preceding-sibling and following-

0

20

40

60

80

100

120

140

160

180

WI SI, N-L/2 TSI,N-L/2 Hilbert

Index Type

P
ag

e
ac

ce
ss

es

Ancestor

Parent

Descendant

Child

Preceding-sibling

Following-sibling

 (a) Leaf

0

1

2

3

4

5

6

WI SI, N-L/2 TSI,N-L/2 Hilbert

Index Type

P
ag

e
ac

ce
ss

es

Ancestor

Parent

Descendant

Child

Preceding-sibling

Following-sibling

(b) Non-Leaf

Figure 4: WI, SI, TSI, and Hilbert

sibling axes are about 1.5 times and 3.5 times larger respec-
tively with α of N − 8L. The result graph is shown in Figure 5
(a). The number of non-leaf page accesses is approximately the
same with varyingα, which is given in Figure 5 (b).

7. RELATED WORK
In this section, we primarily discuss the core problems in tree

structured data. Research on indices for a tree-structureddata
is mainly divided into two classes: (i) a numbering based index,
which assigns meaningful numbers to tree nodes as identifiers;
(ii) a prefix based index for paths.

Recently index techniques using tree labeling have become a
focus of research in efficiently answering XPath queries. One
classical numbering based index is the level-based index (LBI)
structure in [11], which decomposes the data into several lev-
els indicating their nesting (i.e., descendant nodes are nested)
and indexes the data at each level separately. Li et al. [9] pro-
posed more flexible numbering scheme using a pair of pre-
order and postorder to efficiently process regular path expres-
sion queries. Wang et al. [13] developed ViST, a dynamic in-
dexing method for XML documents, by representing both XML
data and queries in structure encoded sequences. Cohen et al.
[3] proposed a dynamic labeling scheme, which is useful for
maintenance of index.

There are several proposals for prefix based indexing [8, 4,
16]. In [8], an identifier of an ancestor is a prefix of the iden-
tifiers of its descendants. The problem with this method is
that as the length of identifiers increases, the cost increases.
In [4], paths which are sequences of element tags are encoded
as strings and are indexed. Deschler et al. [16] proposed MASS
(a multiple axis storage structure) indexing structure that sup-
ports XPath querying and XML document updates.

8. CONCLUSION
In this paper we have considered the problem of construct-

ing an efficient R-tree index for XPath siblings. The main idea
has been to group together XML data which are close to each
other in the hierarchy as well as to contain less dead space.
In this context, we developed TSI, which is constructed over
a horizontally split tree. We also considered an existing R-tree

technique, the Hilbert tree, in order to take advantage of its clus-
tering method for siblings. Our preliminary experiment results
demonstrate the benefits of our techniques for siblings overthe
WI.

9. REFERENCES
[1] M. Altinel and M. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
Proc. of VLDB, Cairo, Egypt, 53–64, 2000.

[2] J. Clark and S. DeRose. XML path language (XPath)
version 1.0 w3c recommendation, Technical Report
REC-xpath-19991116, World Wide Web Consortium,
1999.

[3] E. Cohen, H. Kaplan and T. Milo. Labeling dynamic
XML trees, InProc. of PODS, 271–281, 2002.

[4] B.F. Copper, N. Sample, M.J. Franklin, G.R. Hjaltason
and M. Shadmon. A fast index for semistructured data, In
Proc. of VLDB, Rome, Italy, 341–350, 2001.

[5] T. Grust. Accelerating XPath location steps, InProc. of
SIGMOD, 2002.

[6] A. Guttman. R-trees: a dynamic index structure for
spatial searching, InProc. of SIGMOD, 45–47, 1984.

[7] I. Kamel and C. Faloutsos, Hilbert r-tree: an improved
r-tree using fractals, InProc. of VLDB, Santiago, Chile,
500–509, 1994.

[8] W.E. Kimber. HyTime and SGML: understanding the
HyTime HYQ query language, Technical Report Version
1.1 IBM Corporation, 1993.

[9] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions, InProc. of VLDB, Rome, Italy,
361–370, 2001.

[10] T. Milo and D. Suciu. Index structure for path
expressions, InProc. of ICDT, Jerusalem, Israel,
271–295, 1999.

[11] K.V. Ravikanth, D. Agrawal, A.E. Abbadi, A.K. Singh
and T. Smith. Indexing hierarchical data, Univ. of
California, CS-Tr-9514, 1995.

[12] H. Wang and X. Meng. On the sequencing of tree
structures for XML indexing, Preceding of the

0

20

40

60

80

100

120

140

160

180

N N-L/2 N-L N-2L N-4L N-8L

TSI

P
ag

e
ac

ce
ss

es

Ancestor

Parent

Descendant

Child

Preceding-sibling

Following-sibling

 (a) Leaf

0

1

2

3

4

5

6

N N-L/2 N-L N-2L N-4L N-8L

TSI

P
ag

e
ac

ce
ss

es

Ancestor

Parent

Descendant

Child

Preceding-sibling

Following-sibling

 (b) Non-Leaf

Figure 5: TSI

International Conference on Data Engineering, Tokyo,
Japan, 2005.

[13] H. Wang, S. Park, W. Fan and P. Yu. ViST: a dynamic
index method for querying XML data by tree structures,
In Proc. of SIGMOD, San Diego, USA, 2003.

[14] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler. Extensible Markup Language (XML) 1.0 second
edition W3C recommendation. Technical Report
REC-xml-20001006 WWW Consortium, October 2000.

[15] J. Zobel, A. Moffat and R. Sacks-Davis. An efficient
indexing technique for full text database systems, In
Proc. of VLDB, Vancouver, Canada, 352–362, 1992.

[16] K. Deschler and E. Rundensteiner. MASS: A multi-axis
storage structure for large XML documents, InProc. of
CIKM, Louisiana, USA, 2003.

APPENDIX
The constraints with page boundary are:

B Ln
′

low ≤ Ln
′ ≤ B Ln

′

high, B Rn
′

low ≤ Rn
′ ≤ B Rn

′

high. (1)

The following equations are obtained from equation 1.

B Rn′low+B Ln′low ≤ Rn′ + Ln′ ≤ B Rn′high+B Ln′high,

B Rn
′

low − B Ln
′

high ≤ Rn
′ − Ln

′ ≤ B Rn
′

high − B Ln
′

low. (2)

Condition for descendant:

• Combined with query:

Ln
′

> QLn′ , Rn
′

> QRn′ ≡ Ln
′

> QLn′ , Rn
′ − Ln

′

> QRn′ − QLn′ . (3)

• Combined with bounding box (by Equation 1, 2, and 3):

– (B Rn
′

high − B Ln
′

low > QRn′ − QLn′) & (B Ln
′

high >

QLn′).
– Ln

′ > QLn′ , Rn
′ − QRn′ + QLn′ > Ln

′ ⇒ QRn′ < Rn
′.

• The result condition is:

(B Rn
′

high − B Ln
′

low > QRn′ − QLn′) & (B Ln
′

high > QLn′)
& (B Rn

′

high > QRn′).

Condition for ancestor:

• Combined with query:

Ln
′

< QLn′ , Rn
′

< QRn′ ≡ Ln
′

> QLn′ , Rn
′ − Ln

′

< QRn′ − QLn′ . (4)

• Combined with bounding box (by Equation 1, 2, and 4):

– (B Rn
′

low − B Ln
′

high < QRn′ − QLn′) &
(B Ln′low < QLn′).

– Ln′ < QLn′ , Rn
′ − QRn′ + QLn′ < Ln′ ⇒ QRn′ > Rn′.

• The result condition is:

(B Rn′low − B Ln′high < QRn′ − QLn′) & (B Ln′low < QLn′)
& (B Rn

′

low < QRn′).

Condition for preceding:

• Combined with query:

Ln
′

< QLn′ , Rn
′

> QRn′ ≡ Ln
′

< QLn′ , Rn
′ − Ln

′

> QRn′ − QLn′ . (5)

• The result condition after combined with bounding box
(by Equation 1, 2, and 4) is:

(B Rn
′

high − B Ln
′

low > QRn′ − QLn′) & (B Ln
′

low < QLn′).

Condition for following:

• Combined with query:

Ln
′

> QLn′ , Rn
′

< QRn′ ≡ Ln
′

> QLn′ , Rn
′ − Ln

′

< QRn′ − QLn′ . (6)

• The result condition after combined with bounding box
(by Equation 1, 2, and 6) is:

(B Rn
′

low − B Ln
′

high < QRn′ − QLn′) & (B Ln
′

high > QLn′).

XFrag: A Query Processing Framework for Fragmented
XML Data

Sujoe Bose and Leonidas Fegaras
University of Texas at Arlington, CSE

416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

{bose,fegaras}@cse.uta.edu

ABSTRACT
Data fragmentation offers various attractive alternatives to
organizing and managing data, and presents interesting char-
acteristics that may be exploited for efficient processing.
XML, being inherently hierarchical and semi-structured, is
an ideal candidate to reap the benefits offered by data frag-
mentation. However, fragmenting XML data and handling
queries on fragmented XML are fraught with challenges:
seamless XML fragmentation and processing models are re-
quired for deft handling of query execution on inter-connected
and inter-related XML fragments, without the need of recon-
structing the entire document in memory. Recent research
has studied some of the challenges and has provided some in-
sight on the data representation, and on the rather intuitive
approaches for processing fragmented XML. In this paper,
we provide a novel pipelined framework, called XFrag, for
processing XQueries on XML fragments to achieve process-
ing and memory efficiency. Moreover, we show that this
model is suitable for low-bandwidth mobile environments
by accounting for their intrinsic idiosyncrasies, without sac-
rificing accuracy and efficiency. We provide experimental
results showing the memory savings achieved by our frame-
work using the XMark benchmark.

1. INTRODUCTION
The widespread adoption of XML has rendered it as the

language of choice for communication between collaborating
systems. XML is also being studied as a data storage format
and is being used by various systems for data management
and query processing on native XML data [1, 2]. XQuery
has become the language of choice for querying stored XML
data, but recently we have seen systems, such as XSM [25],
XRQL [4], and FluXQuery [3], that support XQuery pro-
cessing on streamed XML data as well. XML data, being
inherently hierarchical and semi-structured, poses an over-
whelming overhead on critical runtime factors, such as mem-
ory requirements and processing efficiency. Given that most

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

of queries on large XML documents are selective in nature,
queries may benefit from fragmenting the XML document
so that processing in parts would require less memory and
processing power. There are several other reasons for frag-
menting data. In a realtime sensor-based system, data is
continuously generated from sensors and it disseminated in
fragments as and when it occurs. Furthermore, streaming
changes to data may pose less overhead by sending only
fragments corresponding to the change, rather than send-
ing the entire document with the change. Moreover, given
the current shift from pull-based to push-based broadcast
models, fragmentation of data provides several benefits: it
is possible to prioritize data fragments so that high prior-
ity fragments of data may be scheduled ahead of the low
priority ones. Also it is possible to associate quality of ser-
vice parameters on the data fragments to meet delivery con-
straints. With the proliferation of mobile devices and with
the quest for information on the move, servers disseminate
data over low-bandwidth and error-prone environments. As
the intermittent connectivity of mobile clients makes infea-
sible to deliver huge datasets, fragments may be a better
choice for data delivery. Moreover it is easier to synchronize
on smaller fragments because transmitting changes to data
requires only sending the fragments that correspond to the
change, without having to send the entire document.

The hallmark of our framework is the support for pro-
cessing fragments rather than documents, especially in the
presence of continuous updates to the document. This helps
in optimizing the bandwidth and processing requirements
by transmitting and processing only the update fragments
without its entire unchanged context. Another area that
benefits from a fragmented XML data model, is the inclu-
sion of temporal extents on the XML dataset to capture the
historical context of the transmitted data. In the new breed
of event driven applications, as presented in XCQL [23],
which require implicit temporal association, transmission in
fragments provides seamless integration of temporal context
within the data model and constructs for performing histor-
ical and window queries with temporal extents. In data
distribution systems, fragmentation of data items is preva-
lent, because collaborating systems, geographically and log-
ically dispersed, require different aspects of the data. Fur-
thermore, system efficiency is facilitated by useful work in
processing the required data and by ignoring the rest.

Unfortunately, processing fragments instead of whole XML
documents is fraught with challenges. It requires not only
knowledge of the locational context of fragments, which al-

lows us to navigate from fragment to fragment during query
processing, but also caching some of the fragments when
necessary, since not all fragments may be available at the
same time. Also, due to changes to fragments and to the
intermittent connectivity of mobile clients, fragments may
arrive in any order, and may be repeated or updated. In
this paper, we address these challenges and provide a ro-
bust framework to process the fragments as and when they
arrive without losing the overall context, resulting in lower
memory footprints and faster response time.

Our previous work [18, 16] has concentrated on modeling
and management of fragmented XML data and has proposed
simple methods to handle the challenges present in such rep-
resentation. One common way is to suspend fragments until
their contained data arrives for continuing execution. This
causes a serious challenge on the memory requirements, as
fragments may arrive in any order. In addition, waiting for
a fragment to come with complete information necessary for
execution would result in blocking.

In this paper, we propose a novel pipelined execution
framework for processing XQueries on streamed XML frag-
ments. The fragments are processed as and when they ar-
rive, and their inter-dependencies and hence their effect on
the query results are resolved pro-actively. Our motivation
to process the fragments as soon as possible is to conserve
memory by discarding fragments that will not contribute
to the result. Moreover, fragments that do not actively con-
tribute to the result, but due to their relationship with other
fragments affect the result, as in the case of fragments in-
volved in query predicates, are kept in memory as long as
necessary.

Unlike traditional applications of the pipelined process-
ing model, query processing of fragmented data using the
pipelined model of execution provides new challenges: since
queries could span across fragments, we must factor the rela-
tive references between fragments while executing the query
predicates and projections. Additionally, queries on XML
data could operate on any level of the XML document, and
hence the query predicates and projections traverse multi-
ple fragments, which may arrive at arbitrary times in the
fragmented XML stream. Also, the ability to construct new
elements as part of the result XML, the presence of accumu-
lation operators, and the out of order arrival of XML frag-
ments, add additional challenges to the processing frame-
work. Note that, we assume that the query clients, such
as low-power hand-held devices, have limited memory and
processing capacity that make it impossible to reconstruct
the entire XML data before processing the queries.

The rest of the paper is organized as follows. Section 2
presents the related work in the area of XML stream query
processing. Section 3 explains our framework by providing
a model for XML fragments and for tag structures, which
define the structural makeup of fragments. Section 4 de-
scribes in detail the pipeline model of processing fragments
and the formal representation of the translation and process-
ing framework used in XFrag. Finally, Section 6 presents ex-
perimental results from our implementation and shows the
memory saving achieved in our framework.

2. RELATED WORK
Several recent efforts have focused on addressing frame-

works for continuous processing of data streams [5, 8, 9, 21],
however to the best of our knowledge, there is no work done

Figure 1: Sample Stock Fragments

in stream query processing of fragmented XML data. The
Tribeca [13] data stream processing system provides lan-
guage constructs to perform aggregation operations, as well
as multiplexing and window constructs to perform stream
synchronization, but it is restricted to relational data. Other
efforts concentrating on windowed stream processing, such
as StreamQuel [20], CQL [17], also address relational data
only and provide SQL-like constructs to process streaming
data. The COUGAR [11] system proposes the use of ADTs
in object-relational database systems to model streams with
associated functions to perform operations on the stream
data. Several efforts have addressed the stream processing of
XML data using XPath expressions [5, 7, 9]. A transducer-
based XQuery processor for streaming XML data has been
proposed in [25]. An alternative to transducer-based pro-
cessing is a compositional XQuery processor based on SAX
events, defined in [15]. An alternative fragmented XML pro-
cessing model, suitable for pull-based web-service applica-
tions, is presented in Active XML [26]. In Xstream [24],
the advantages of a semantics-based fragmentation of XML
data for efficient transmission over a wireless medium are
highlighted.

3. OUR FRAGMENTED DATA MODEL
In our framework, the basic stream components transmit-

ted by a server are fragments, each with its own ID. To be
able to relate fragments with each other, we derive the con-
cept of holes and fillers as detailed in our earlier work [18].
A hole represents a placeholder into which another rooted
subtree (a fragment), called a filler, could be positioned to
complete the tree. The filler can in turn have holes in it,
which will be filled by other fillers, and so on. An example
set of XML fragments is shown in figure 1.

Our framework makes use of the structural summary of
XML data, called the Tag Structure, which defines the struc-
ture of data and provides information about fragmentation.
This information is used when compiling XQuery expres-
sions into plans that operate on the XML fragments and
when deciding which fragments to keep in memory. More-
over, the Tag Structure is used in expanding wild-card path
selections in queries to optimize query execution. The Tag
Structure is itself structurally a valid XML fragment that
conforms to the following simple recursive DTD:

<!DOCTYPE tagStructure [
<!ELEMENT tag (tag*)>

<!ATTLIST tag type (filler | embedded) #REQUIRED>
<!ATTLIST tag id CDATA #REQUIRED>
<!ATTLIST tag name CDATA #REQUIRED>]>

A tag corresponds to an XML tagged element and is qual-
ified by a unique id, a name (the element tagname), and

Figure 2: Processing Example

a type. A filler type implies that this element will arrive
in a separate filler fragment, as opposed to the embedded
type, which implies that this element is embedded within
its parent element (inside the same fragment). Since the
tag structure is a very important piece of information to the
client for handling the input stream data, we require that it
be streamed before the actual data.

4. THE XFRAG PIPELINE
Each XQuery primitive in an input query corresponds to

an XFrag operator, which operates on an XML subtree at
a particular level in the original XML document. For ex-
ample, a path step in an XPath expression corresponds to
a path operator that operates on the elements in the XML
document having the same tag value and it corresponds to
the same subtree level as that of the operator. Moreover,
an XPath predicate expression maps to a condition opera-
tor, which may in turn reference path operators to perform
predicate evaluation. As each fragment corresponds to a
particular level in the original XML document, it is nec-
essary to associate each operator with the fragments that
will process. We use the Tag Structure to associate oper-
ators with the tag structure id (tsid) of the subtree that
corresponds to the execution context of the operator. Each
fragment is identified by the tsid of the subtree that belongs
to in the original XML document, and hence each opera-
tor will process the fragment only if the tsids match. In the
event that they do not match, the fragment is simply passed
on to the subsequent operator in the query tree.

4.1 Fragment Relationships
As fragments in the original document may arrive in any

order and query expressions may contain predicates at any
level in the XML tree, it is necessary to keep track of the
parent-child links between the various fragments, so that if
a particular fragment does not pass the predicate evaluation
at a particular level in the XML document, the correspond-
ing descendant fragments must not be rendered as part of
the output. We use the filler-id and hole-id information in
the fragments to keep track of the fragment relationships.
We maintain the fragment links in an association table at
each operator to record the parent-child relationships seen
in fragments processed by the operator. Moreover, each en-
try is tagged by a value of true, false, undecided (⊥), or a
result fragment. While the former three values are possi-
ble in intermediate operators that do not produce a result,
the latter is possible when the operator is the terminal op-
erator in the query tree branch. Fragments corresponding
to intermediate operators are discarded after recording the

parent-child link relationships, thereby conserving memory.
This link information corresponds to a small part of the ac-
tual data in the XML fragment, the rest of which is not
relevant in producing the result.

4.2 Ancestor Inquiry
When a fragment is processed by an operator, it needs

to verify if the predecessor operator has excluded its parent
fragment due to either predicate failure or due to exclusion
of its ancestor. For this reason, each operator maintains
both a successor operator list and a pointer to the prede-
cessor operator, using the former to hand-over fragments
for processing by successor operators, and the latter to re-
solve fragment relationships and predicate criteria. When
the predecessor inquiry is made to determine the eligibility
of a particular fragment, one of four conditions may arise.
(1) The parent fragment may not have arrived at the prede-
cessor and hence there is no entry in the association table
of the predecessor. In this case, the fragment is tagged with
an undecided value. (2) The parent fragment had arrived
at the predecessor and is tagged with an undecided value.
In this case too the fragment with an undecided value is
recorded. (3) The parent fragment had arrived at the pre-
decessor and is tagged with a value of true, which implies
that the parent fragment or its ancestor have passed all pred-
icate expressions. In this case the fragment is tagged with
a value of true, it is a potential candidate for output, de-
pending on whether this operator is the result producer or
is an intermediary in the query tree. (Note that the predi-
cate evaluation follows the existential semantics of XQuery.)
The last case is when the parent fragment had arrived and
is tagged with a value of false. In this case, the fragment is
also tagged with the value of false.

4.3 Descendant Trigger
As fragments may be waiting on operators to decide on

their ancestor eligibility, they must be triggered when an an-
cestor condition is evaluated. Moreover, the predicate eval-
uation of a fragment may depend on child tags embedded in
the fragment or child fragments that may arrive at a later
point in time. In order to account for these dependencies,
we introduce a recursive trigger invocation on the successor
operators. Whenever a fragment is marked as true (or false)
in a particular operator, other fragments that are waiting
with an undecided value in successor operators may now be
triggered to be rendered with a value of true (or false), and,
subsequently, either produced (or not produced) as output.
Similarly, condition operators will trigger their parent oper-
ators when a condition evaluates to true for at least one of

R([[stream(url) path]]δ, β, ts) → {(β′, ts′) | ts′ ← ts(url), β′ ← ρurl
s,p,ω,t

(t = ts′/@tsid, s = R([[path]]δ, β
′, ts′)}

R([[/A path]]δ, β, ts) → {(β′, ts′) | ts′ ← ts/tag[@name = “A”],

β′ ← µA
s,p,ω,t

(t = (isfiller(ts′)?ts′/@tsid : β.tsid), p = β,

s = R([[path]]δ, β
′, ts′))}

R([[/@A]]δ, β, ts) → { (β′, ts) | β′ ← µ@A
s,p,ω,t

(t = ts.tsid, p = β, s = {}) }
R([[/ ∗ path]]δ, β, ts) → { (β′, ts′) | ts′ ← ts/tag, β′ ← µts′/@name

s,p,ω,t
(t = (isfiller(t′)?t′.tsid : β.tsid),

p = β, s = R([[path]]δ, β
′, ts′))}

R([[//A path]]δ, β, ts) → R([[/A path]]δ, β, ts) ∪R([[/ ∗ //A path]]δ, β, ts)

R([[/A[e] path]]δ, β, ts) → { (β′, ts′) | ts′ ← ts/tag[@name = “A”],

β′ ← µA,c
s,p,ω,t

(t = (isfiller(t′)?t′.tsid : β.tsid), p = β,

s = R([[path]]δ, β
′, ts′), c = R([[e]]δ, β

′, ts′))}
R([[e1 op e2]]δ, β, ts) → { (β′, ts) | β′ ← σlhs,rhs,op

s,p,ω,t (t = ts/@tsid, p = β, s = {},
lhs = R([[e1]]δ, β, ts), rhs = R([[e2]]δ, β, ts)) }

R([[“text”]]δ, β, ts) → { (β′, ts) | β′ ← Ctext
s,p,ω,t(t = ts, p = β, s = {}) }

R([[<A>e]]δ, β, ts) → { (β′, ts′) | id ← genTsid(), ts′ ← <tag name=“A” id=“id”>ts</tag>,

β′ ← θ
A

s,p,ω,t(t = ts′/@tsid, p = β, s = R([[path]]δ, β
′, ts′)) }

Figure 3: XFrag Query Translation

the child tags or fragments.

4.4 XFrag Pipeline Processing Example
As an example, consider the stock stream, which produces

fragments corresponding to values and ratings of stocks,
with sample fragments as shown in Figure 1. The stock
stream is described by the following tag structure:

<tag stream="stock">
<tag id="1" name="stock" filler="true">

<tag id="2" name="rating" filler="true"/>
<tag id="4" name="symbol"/>
<tag id="5" name="name"/>
<tag id="3" name="value" filler="true"/>

</tag> </tag>

Query 1: stream("stock.xml")
/stock[rating >= "hold"]/value

The XFrag pipeline corresponding to the above query is de-
picted in Figure 2. When a “stock” fragment with tsid 1,
filler id 7 and hole ids 8 and 9, arrives at the operator with
tsid 1, the association table is updated with this information
as shown in figure 2(a). Moreover, the fragment 7 is tagged
with an undecided value, as the condition has not been eval-
uated yet for this fragment. Note that, at this point, the
“stock” filler may be discarded as it is no more needed to
produce the result and the hole filler association is already
captured. This results in memory conservation on the fly,
as we discard fragments, if they are no more needed to be
retained. When the “value” fragment corresponding to the
“stock” filler arrives, the operator with tsid 3 updates its
association table with the value of its expression, but does
not output the value, as the inquiry on the predecessor oper-
ator returns an undecided value. The “value” filler may also
be discarded at that point conserving memory, as the result
value, which is a subset of the fragment, is already captured
in the association table. When the “rating” fragment cor-
responding to the “stock” filler arrives, the operator with
tsid 2 updates its association table and returns the value of

“hold”, as there is no condition for it to wait. The condition
operator now determines that this value matches the criteria
for filler id 8 and hence triggers the parent “stock” operator
with the id 8 as true. The “stock” operator updates its as-
sociation table for the parent filler 7 as true and triggers its
successor “value” operator, which causes the value of “12”
to be output.

5. XFRAG FORMAL SEMANTICS

5.1 Query Translation Function
The translation of XQuery expressions into the XFrag op-

erator pipeline is depicted in Figure 3. The translation func-
tion R, is a mapping from XQuery expression and the tag
structure to an XFrag operator tree. Every operator is a
specialization of the basic operator type β, which is charac-
terized by a successor operator list s, a predecessor p, an as-
sociation table ω, and the tag structure corresponding to the
operator. The stream extraction operator ρ reads fragments
from a stream, identified by url, and forwards them to the
successors. Path expressions are mapped to the path pro-
jection operator µ. Wild-card and descendant path expres-
sions are translated into a set of path projection operators
by performing a wild-card projection and recursive descent
on the tag structure. Predicate expressions are translated
into condition operators and element construction into the
construction operator θ. Since element construction adds
a new tag element into the result set, the tag structure is
extended with a tag equal to the element tag and a new tsid
generated to identify the tag. A FLWR expression, which
binds an expression to a variable, extends the environment
δ, with a binding entry that relates the variable name to the
XFrag operator sub-tree corresponding to the bound expres-
sion. The bindings added in the environment are referenced
at the point where a variable is used in other expressions.
Using the translation rules, the query used in the stock ex-
ample is converted into the XFrag operator tree:

ρstock.xml
s,p,ω,t0

(µstock
s,p,ω,t1

(σ(≥,µrating
s,p,ω,t2

, Chold),µvalue
s,p,ω,t3

))

5.2 Fragment Processing Function
The semantics of fragment handling by the various oper-

ators in XFrag is shown in Figure 4. For brevity, we have
not included the semantics for all the operators, but have
presented those that are used in our example. There are
three basic functions defined for each operator in XFrag.
The process function P takes a fragment and produces a set
of output fragments. The inquiry function I takes a filler
id and returns the value recorded in the association table of
the operator and in any conditional expression, if present.
The trigger function T takes a filler id and returns a set of
fragments as output. The process function performs an in-
quiry on the association table, and, depending on the result
of the inquiry and on whether it is an intermediate opera-
tor, triggers successors to output any fragments waiting to
be resolved. The operators corresponding to the FLWR ex-
pressions, not presented, requires special mention. While
the operator corresponding to the “FOR” expression pro-
duces result fragments as and when a fragment is available
on the return clause, the “LET” expression, on the other
hand, collects fragments from the return clause until all the
siblings are present and then produces the result.

6. EXPERIMENTAL RESULTS
We have implemented the XFrag framework in Java and

have modeled the operator types as individual classes. All
operators are made to derive from the common fragment
operator that provides the basic components of the XFrag
pipeline operator and the supporting functions. We have
ran tests using the XMark benchmark [22] on a Pentium
III processor running Microsoft Windows 2000 with 512MB
RAM. We have used the following 3 queries on the generated
auction XML document and compared the results with the
Qizx XQuery processor [10].

Query 1: doc("auction.xml")/site/open_auctions//

increase

Query 2: doc("auction.xml")/site/open_auctions/

open_auction[initial > "10"]/bidder

Query 3: doc("auction.xml")/site/open_auctions/

open_auction/bidder[increase > "200"]

The memory profiling was done using the EclipseProfiler
plugin for the Eclipse IDE and the results are summarized
in Figure 5, using a generated auction XML document of size
23.3MB. For XFrag, the auction document was fragmented
into fillers and holes, producing a file of size 27.3MB, and the
resulting filler fragments were processed sequentially. Note
that the running time for XFrag was about twice as much
as for Qizx, however, our main focus was the memory con-
sumption to suit processing using devices with less mem-
ory. While the Qizx XQuery processor took almost the same
amount of memory to run all of the three queries, topping
about 60MB of heap space usage, the XFrag framework took
a maximum of 10MB of heap space. Moreover, for the first
Query, it took a constant amount of memory of about 2MB,
as there were no conditional expressions to be evaluated and
hence fragments were output as they arrived without wait-
ing on other related fragments. For Queries 2 and 3, the
association tables were populated with the hole filler links,

Figure 5: Comparison of Heap space usage for XFrag

and Qizx

and the fragment values suspended until a matching condi-
tion signals the output to be flushed. While Query 2 had an
initial increase compared to Query 3, which had a smoother
increase, they both consumed the same amount of memory
towards the end of the stream. Since Query 2 had to keep
track of the filler-hole links from the “open auction” fillers
to the corresponding “bidder” fragments that occur later in
the fragmented XML auction data, the memory consump-
tion increased initially and then sustained when the “bidder”
fragments arrived producing continuous output. However,
Query 3 did not have to maintain these links as there is
no condition expression present except in the “bidder” frag-
ments only. In both Query 2 and 3, the overhead in memory
consumption is due to the growth in the association table
entries, however the huge advantage gained in the aggressive
flushing of fragments eclipses the association table overhead.

7. CONCLUSION AND FUTURE PLANS
We have presented the XFrag framework to process frag-

ments of XML data without having to wait for the entire
XML document to be received and materialized. The frag-
ments are processed as and when they occur and any inter-
dependencies are pro-actively resolved, resulting in memory
conservation. As future work we envision several optimiza-
tion techniques that may be added to further improve on the
memory usage. A possible candidate for this improvement
is the association table, which may be aggressively purged
to remove links that will not be needed during the course
of the query processing on fragments. Moreover, to improve
the running time of XFrag, instead of scheduling the ‘pro-
cess’, ‘inquire’ and ‘trigger’ operation for each fragment, we
could schedule these operations across a group of fragments,
as not all fragments will result in triggering other fragments
downline. However, there is a tradeoff between the schedul-
ing frequency and the memory consumption as now more
fragments may be held in memory before they can be trig-
gered and flushed.

Acknowledgments: This work is supported in part by
the National Science Foundation under the grant IIS-0307460.

8. REFERENCES
[1] C. Beeri and Y. Tzaban. SAL: An Algebra for

Semistructured Data and XML. In WebDB’99,
Philadelphia, Pennsylvania, pages 37–42, June 1999.

P[[ρurl
s,p,ω,t

({})]]δ → { r | f ← read(url), r ← P[[s(f)]]δ} (R1)

P[[µpath,c
s,p,ω,t

(f)]]δ → { r | f/@tsid 6= t, r ← P[[s(f)]]δ}
S P[[c(f)]]δ

S
{ r | fid ← f/@tsid,fid = t, i ← I[[µpath,c

s,p,ω,t
(f/@id)]]δ,

ω ← ω ◦ (fid, f/hole/@id, (i?true : (s = φ?f/path : ⊥))),
r ← (s = φ?(i?(f/path, fid) : {}) : (P[[s(f)]]δ ∪ (i?T [[s(fid)]]δ : {})))} (R2)

P[[σlhs,rhs,op
s,p,ω,t (f)]]δ → { r | fl ← P[[lhs(f)]]δ, fr ← P[[rhs(f)]]δ, op(fl, fr),

fidp ←M(fl, fr), r ← T [[p(fidp)]]δ} (R3)

P[[{β1, β2, . . . , βn}({f1, f2, . . . , fm})]]δ → S
1≤j≤m

1≤i≤n

P[[βi(fj)]]δ (R4)

I[[βs,p,ω,t(fid)]]δ → ∨/{ e.v | e ← p.ω, hid ← e.hids, hid = fid} (R5)

I[[µpath,c
s,p,ω,t

(fid)]]δ → I[[βs,p,ω,t(fid)]]δ ∧ (c = φ ? true : I[[c(fid)]]δ) (R6)

I[[{β1, β2, . . . , βn}(fid)]]δ → W
1≤i≤n

I[[βi(fid)]]δ (R7)

T [[βs,p,ω,t(fid)]]δ → { (e.fid, e.v) | I[[β(fid)]]δ, s = φ, e ← ω,fid = e.fid} S
{ T [[s(hid)]]δ | I[[β(fid)]]δ, s 6= φ, e ← ω,fid = e.fid, hid ← e.hids} (R8)

T [[{β1, β2, . . . , βn}(fid)]]δ → S
1≤i≤n

T [[βi(fid)]]δ (R9)

Figure 4: The XFrag Processing Model

[2] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. In ACM SIGMOD 2000, pages 379–390, 2000.

[3] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
FluXQuery: An Optimizing XQuery Processor for
Streaming XML Data. In VLDB 2004, pages 1309–1312.

[4] D. Florescu, et al. The BEA/XQRL Streaming XQuery
Processor. In VLDB 2003.

[5] A. Gupta and D. Suciu. Stream Processing of XPath
Queries with Predicates. In SIGMOD 2003, pp 419–430.

[6] Z. Ives, A. Levy, and D. Weld. Efficient Evaluation of
Regular Path Expressions on Streaming XML Data.
Technical Report, University of Washington, 2000,
UW-CSE-2000-05-02.

[7] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski, “Streaming xpath
processing with forward and backward axes.” in ICDE,
2003, pp. 455–466.

[8] D. Olteanu, T. Furche, and F. Bry. An Efficient Single-Pass
Query Evaluator for XML Data Streams. In SAC 2004,
March 2004, Nicosia, Cyprus.

[9] F. Peng and S. Chawathe. XPath Queries on Streaming
Data. In SIGMOD 2003, pp 431-442.

[10] Qizx/Open. At http://www.xfra.net/qizxopen.
[11] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor

database systems. In Proceedings of the Second
International Conference on Mobile Data Management
2001, pages 3–14.

[12] L. Golab and M. T. zsu. Issues in data stream
management. In SIGMOD Rec., 32(2):5–14, 2003.

[13] M. Sullivan and A. Heybey. Tribeca: A system for
managing large databases of network traffic. In the
USENIX Annual Technical Conference 1998 pages 13–24.

[14] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream Systems. In
PODS 2002, pages 1–16.

[15] L. Fegaras. The Joy of SAX. In XIME-P 2004, pages

51–65. June 2004.
[16] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query

Processing of Streamed XML Data. In CIKM 2002, pages
126–133. November 2002.

[17] J. Widom. CQL: A Language for Continuous Queries over
Streams and Relations. In the 9th International Workshop
on Data Base Programming Languages (DBPL), Potsdam,
Germany, September 2003.

[18] S. Bose, L. Fegaras, D. Levine, and V. Chaluvadi. A Query
Algebra for Fragmented XML Stream Data. In the 9th
International Workshop on Data Base Programming
Languages (DBPL), Potsdam, Germany, September 2003.

[19] R. Motwani, et al. Query Processing, Approximation, and
Resource Management in a Data Stream Management
System. In the 1st Biennial Conference on Innovative Data
Systems Research (CIDR), January 2003.

[20] S. Chandrasekaran, et al. TelegraphCQ: Continuous Data
flow Processing for an Uncertain World. In Proceedings of
Conference on Innovative Data Systems, pages 269–280,
2003.

[21] D. Carney, et al. Monitoring streams—A New Class of Data
Management Applications. In VLDB 2002, pages 215–226.

[22] A. Schmidt, F. Vaas, M. L. Kersten, M. J. Carey,
I. Manolescu and R. Busse. XMark: A Benchmark for XML
Data Management. In VLDB 2002, pages 974–985, 2002.

[23] S. Bose, L. Fegaras. Data Stream Management for
Historical XML Data. In SIGMOD 2004, pages 239–250,
June 2004.

[24] E. Wang, et al. Efficient Management of XML Contents
over Wireless Environment by Xstream. In ACM-SAC
2004, pages 1122–1127, March 2004.

[25] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou,
“A transducer-based xml query processor.” in VLDB, 2002,
pp. 227–238.

[26] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy Evaluation for Active XML.
In SIGMOD 2004, pages 227–238, June 2004.

Analysis of User Web Traffic with
A Focus on Search Activities

Feng Qiu
University of California
Los Angeles, CA 90095

fqiu@cs.ucla.edu

Zhenyu Liu
University of California
Los Angeles, CA 90095

vicliu@cs.ucla.edu

Junghoo Cho
University of California
Los Angeles, CA 90095

cho@cs.ucla.edu

ABSTRACT
Although search engines are playing an increasingly important role
in users’ Web access, our understanding is still limited regarding
the magnitude of search-engine influence. For example, how many
times do people start browsing the Web from a search engine? How
much percentage of Web traffic is incurred as a result of search? To
what extent does a search engine like Google extend the scope of
Websites that users can reach? To study these issues, in this paper
we analyze a real Web access trace collected over a period of two
and half months from the UCLA Computer Science Department.
Our study indicates that search engines influence about 13.6% of
the users’ Web traffic directly and indirectly. In addition, our study
provides realistic estimates for certain key parameters used for Web
modelling.

1. INTRODUCTION
Since its arrival in the early 90’s, the World-Wide Web has be-

come an integral part of our daily life. According to recent studies,
people access the Web for a variety of reasons and spend increas-
ingly more time surfing the Web. For example, [1] shows that a
typical Internet user spends more than 3 hours per week online and
tends to spend progressively less time in front of the TV partly due
to increased “surfing” time.

This research is motivated by our desire to understand how peo-
ple access the information on the Web. Even though the Web has
become one of the primary sources of information, our understand-
ing is still limited regarding how the Web is currently used and how
much it influences people. In particular, we are interested in the
impact of search engines on people’s browsing pattern of the Web.
According to recent studies [2], search engines play an increas-
ingly important role in users’ Web access, and if users heavily rely
on search engines in discovering and accessing Web pages, search
engines may introduce significant bias to the users’ perception of
the Web [3].

The main goal of this paper is to quantitatively measure the po-
tential influence of search engines and the general access pattern
of users by analyzing a real Web access trace generated from the
users’ daily usage. For this purpose, we have collected all HTTP
packets originating from the UCLA Computer Science Department
from May 15th 2004 until July 31st 2004 and analyze it to answer
the following questions:

• Search-engine impact: How much of a user’s access to the
Web is “influenced” by search engines? For example, how
many times do people start browsing the Web by going to

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.
.

a search engine and issuing a query? How many times do
people start from a “random” Web site? How much do search
engines expand the “scope” of Websites that users visit?

• General user behavior: How many different sites do people
visit when they surf the Web? How much time do people
spend on a single page on average? How many links do peo-
ple follow before they jump to a “random” page?

The answers to the above questions will provide valuable in-
sights on how the Web is accessed by the users. Our study will also
provide realistic estimates for some of the key parameters used for
Web modeling. For example, the number of clicks before a ran-
dom jump is one of the core parameters used for the random-surfer
model and PageRank computation [4].

The rest of the paper is organized as follows. In Section 2 we
describe the dataset used for our analysis. In Section 3 we report
our findings on the influence of search engines on the users’ Web
access. In Section 4 we report our other findings on the general
user behavior on the Web. Related work is reviewed in Section 5
and Section 6 concludes the paper.

2. DESCRIPTION OF DATASET
In this section we first describe how we collect our HTTP access

trace and discuss the necessary cleaning procedures we apply to it
to eliminate “noise.”

2.1 HTTP access trace

Figure 1: Network topology of UCLA CS Department

We have captured all HTTP Requests and Responses coming
to/leaving from the UCLA Computer Science Department for the
period of two and a half months. As we show in Figure 1, the CS
department has roughly 750 machines connected through a 100Mbps
LAN, which is then connected to the Internet through the depart-
ment router. Since all packets that go to/come from outside ma-
chines pass this router, we can easily capture all HTTP packets

by installing a packet recorder at the router. Given the large vol-
ume of traffic, we recorded only the relevant HTTP headers (e.g.,
Request-URL, Referer, User-Agent, etc.) in the packets, discarding
the actual content.

Statistics Value

Collection period May 15th – July 31st, 2004
of local IPs 749
of remote IPs 66,372
of requests 2,157,887
size of our trace (in bytes) 50GB

Table 1: Statistics on our dataset

To help the reader assess the scale of our HTTP trace, we report a
few statistics of our dataset in Table 1. In brief, our dataset contains
2,157,887 HTTP Requests generated by 749 machines inside of our
department while they access 66,372 outside servers over a period
of two and a half months.1

2.2 Data cleaning
The goal of this paper is to understand the user behavior on the

Web. Unfortunately, a significant fraction of our HTTP trace was
due to various activities that are not directly relevant to user be-
havior (e.g., download traffic generated by Web crawlers). In this
section, we describe three main filtering criteria that we use in order
to remove the “non-user” traffic from our dataset.

• Crawler traffic: There are a few Web crawlers running in
our department for a number of research projects. The traffic
from these crawlers are clearly irrelevant to user behavior,
but it constituted more than half of our collected data. We
filter out this crawler traffic by discarding all packets coming
from/going to a few machines where the crawlers run.

• Non-textual traffic: Users typically consider everything within
a Web page (both text and images) as a single Web page;
they do not consider images on a page as a completely sep-
arate unit from the surrounding HTML page. However, the
browser issues multiple HTTP Requests to fetch embedded
images, so if we simply count the number of HTTP Requests
issued by browsers, there is a mismatch between what users
see (one Web page) and what we count (say, five HTTP Re-
quests). This mismatch is particularly problematic when a
Web page contains many small icons or advertising banners.

To avoid this mismatch, we decide to limit our analysis only
to text documents (e.g., HTML, PDF, PS), because most non-
textual objects are embedded in an HTML page and are per-
ceived as a part of the page. That is, we keep only the HTTP
Requests that retrieve textual documents. This filtering is
done by checking the Content-Type field of the response for
each request and keeping only those whose Content-Type
value is “text/html,” “text/pdf,” etc.

• Non-browser traffic: A number of computer programs gen-
erate HTTP Requests that do not directly reflect the users’
browsing behavior. For example, a BitTorrent client — a dis-
tributed content dissemination system [5] — generates fre-
quent HTTP Requests to its neighbors to check their avail-
ability and to download files. Again, since our focus is on
users’ Web browsing behaviors, we eliminate the traffic from
these clients by checking the User-Agent field of the requests
and retaining only those requests from well-known browsers,
such as “Mozilla.”

1The reported numbers are after we apply filtering steps described
in the next section.

Other than described above, we also eliminate certain obvious
noises, like requests to URLs in wrong formats. Figure 2 shows
the fraction of our original trace that is filtered out by each cri-
terion described above. The crawler filtering is most significant;
more than 60% of the traffic is discarded by this criterion. After the
three filtering, we are left with 5.3% of the original trace, which is
2,157,887 HTTP Requests.

Others (including
non−browser traffic)

Non−textual traffic

Relevant traffic

Crawler traffic

Figure 2: Fraction of discarded HTTP Requests

3. SEARCH ENGINE INFLUENCE
Based on the dataset described in the previous section, we now

investigate how much search engines influence Web users. Search-
engine influence can be seen from two different perspectives.

• Help users visit more sites: URLs of Web sites and/or pages
are often hard to remember. Bookmarks or Favorites are used
to maintain a user’s favorite URLs, but they quickly become
unmanageable as the list grows larger. Given this difficulty,
users often use a search engine as an “extended bookmark”;
they access pages by typing keywords (which are easier to
remember) to a search engine instead of typing URLs. In
this regard, search engines “expand” the set of pages that
users can visit compared to the set of pages users have to
remember or bookmark.

How much do search engines expand the set of pages that a
user visits? Is there overlap between the pages that users re-
member and visit directly and the ones that they visit through
search engines?

• Directing user traffic to particular sites: Among billions of
pages available on the Web, search engines direct users to a
particular set of pages by picking and presenting a handful of
pages in their search results given a query. Therefore, search
engines “drive” a certain fraction of user traffic to the set of
their selected sites. What fraction of user traffic is driven by
search engines? How often do users randomly browse the
Web and how often do they rely on search engines?

In order to answers the above questions, we first formalize “search-
engine influence” by introducing the notion of a referer tree2 in
Section 3.1. We then present the statistics collected from our dataset
in Section 3.2.

3.1 Influence, referer tree, and user
We assume that a user’s visit to page p2 is “influenced” by page

p1 if the user arrives at p2 by following a link (or pressing a button)
in p1. This “link-click” information can be easily obtained from
the Referer field in the HTTP Request headers. We illustrate the
meaning of this field using a simple example.

Example 1 A user wants to visit the American Airlines homepage,
but he does not remember its exact URL. To visit the page, the user
first goes to the Google homepage (Figure 3(a)) by typing its URL
2In this paper, we use the misspelled word “referer” instead of the correct spelling
“referrer” because of its usage in the standard HTTP protocol [6, 7].

www.google.com in the address bar of a browser. He then issues
the query “American Airlines,” for which Google returns the page
in Figure 3(b). The user clicks on the first link and arrives at the
American Airlines homepage (Figure 3(c)). From this homepage
he further reaches other pages.

Figure 3: An example to illustrate the meaning of the Referer
field

In this scenario, note that the user arrives at the first Google page
(Figure 3(a)) directly without following a link. In this case, the Ref-
erer field of the corresponding HTTP Request is left empty, indicat-
ing that the user either directly typed the URL or used a bookmark
entry. In contrast, the user arrives at the second and third pages
(Figures 3(b) and (c)) by clicking a link or pressing a button. In
these cases the Referer fields contain the URL of the immediately
proceeding pages. For example, the Referer field of the second page
request contains the URL of the first page, www.google.com. 2

In summary, by looking at the existence and the value of the
Referer field, we can tell whether and what links the user followed
to arrive the page.

Figure 4: The referer tree for Example 1

Referer tree Using the Referer field information, we can con-
struct a referer tree, where the nodes are the pages visited by a user
and the edge from node p1 to node p2 means that the user followed
a link from p1 to p2. In Figure 4 we show an example referer tree
corresponding to the scenario described in Example 1. Note that
the root of a referer tree represents a page visited directly by the
user without following a link.

Given a referer tree, search-engine influence may be measured
in one of the following ways:

• Direct children only: We consider that a search engine influ-
ences only the visits to the direct children of a search node
(e.g., visit to www.aa.com node in Figure 4). This interpreta-
tion is reasonable in the sense that the search engine cannot
control the links that its direct children present to the user.

• All descendants: We consider that all descendants of a search
node are under search-engine influence. This interpretation

is also reasonable because if the search engine did not pro-
vide the link to its direct children, the user wouldn’t have
arrived at any of their descendants.

In the next section, we estimate search engine influence under
both interpretations.

Users In order to analyze users’ Web browsing behaviors, we
need to associate every HTTP Request with an individual user. In
general, automatic user identification of an HTTP Request is a very
complex task [8]. Fortunately, the usage pattern of our department
machines allows us to use a simple heuristic for this task with rea-
sonably high accuracy: we assume that each IP corresponds to one
user, because all faculty members and most students have their own
workstations that they primarily use for accessing the Internet.

The only concern is that some IP addresses might correspond
to server machines, not workstations. On one hand, some of the
servers are time shared; multiple users may simultaneously access
the Web from a server, so the requests from one server represent
the aggregate behaviors of multiple users, not the behavior of a
single user. On the other hand, many servers are primarily used
for computational tasks and practically no user uses them to access
the Web. Therefore, if we count the requests from these servers in
computing user statistics, the results may be biased.

To avoid these problems, we rely on the fact that more than 90%
of user workstations run Windows or Mac operating systems, and
consider only the requests from those machines when we try to
measure the behavior of individual users.

3.2 Results of search-engine influence
We now report our results on search-engine influence. We notice

that more than 95% of the search activities from our department
goes to three major search engines: Google, Yahoo! Search and
MSN Search. For this reason, we primarily focus on the influence
of these three search engines in the rest of this section.

Search-engine-directed traffic In Figure 5, we show the fraction
of traffic to search engine home pages (e.g, the first level nodes in
Figure 4), to search engine result pages (e.g., the second level nodes
in Figure 4), to their direct children (e.g., the third level nodes in
Figure 4) and their descendants. Roughly, 1.0% of the user traffic
goes to search engine home pages, and 5.7% are search requests.
2.1% of the user traffic goes to the direct children of search re-
quests, with additional 4.8% to their descendants. (For this set
of reported statistics, we have excluded the set of search-engine-
home-page loading requests that do not lead to any further traffic,
since such requests are most likely results of setting search engines
as the default loading page of a Web browser.) Overall, 13.6% of
user traffic is under the direct and indirect influence of search en-
gines. Interestingly, these results imply that many of our users is-
sue queries to search engines but do not click on links in the result
pages.

Traffic to search engine home pages (1.0%)
Traffic to search engine result pages (5.7%)
Traffic to direct children (2.1%)
Traffic to descendents (4.8%)

Non−search engine traffic (86.4%)

Figure 5: Search-engine traffic size

We can also assess the search-engine influence by measuring
how many times people start surfing the Web from search engines.
Given that the root node of a referer tree is where a user starts his
surfing, we can measure this number by counting the number of
search-engine-rooted referer trees. Our dataset contains a total of

380,453 referer trees, out of which 25,758 are rooted at search en-
gines. Thus, we estimate that in about 6.8% of the time our users
start surfing the Web from search engines.

Helping users visit more sites We now discuss how much search
engines expand the set of sites that a particular user visits. This
“site expansion” by search engines can be viewed in two ways:
(1) search engine increase the number of “starting points” from
which users can browse further (by providing new links in its search
results.) (2) search engine increase the total number of sites that the
user eventually visits. We may estimate these two effects of search
engines as follows:

• Seed-set expansion: We refer to the set of Web sites from
which a user starts his Web surfing as the seed set of the user.
Given this definition, the regular seed set of a user corre-
sponds to the root nodes of her referer trees (except when the
root node is a search engine). The search-engine seed set cor-
responds to the direct children of search engine nodes.That
is, the set of sites that search engines refer to, from which the
user starts browsing. We can measure the seed set expansion
by search engines simply by comparing these two seed sets.

• Visit-set expansion: We refer to the set of sites that a user
eventually visits as the visit set of the user. The search-engine
visit set is the set of all descendants of search-engine nodes.
The regular visit set is all the nodes in the referer trees except
the search-engine descendants. Again, by comparing these
two sets, we can measure the visit set expansion by search
engines.

In Figure 6, we first plot the seed set expansion effect by search
engines. In the figure, the horizontal axis corresponds to time and
the vertical axis shows the sizes of the regular seed set, the search-
engine seed set and the overlap between them after the given time
interval. For example, after six weeks, an average user has 188.2
sites in his regular seed set and 56.7 sites in the search-engine seed
set, with an overlap of 15.6 sites. We observe that the relative ra-
tio of this overlap roughly remains constant over the period of 10
weeks, which is about 8% of the regular seed set. We also observe
that search engines consistently expands the size of the seed set by
22% over this period of time.

2 4 6 8 10

50

100

150

200

250

N
um

be
r

of
 w

eb
si

te
s

Number of weeks

188.2

56.7

15.6

y

Regular Seed Set

Search Engine Seed Set

Overlap

x

Figure 6: Search-Engine Seed Set Expansion

In Figure 7, we show a similar graph for the visit-set expansion.
The meaning of the two axes of this graph is similar to the previous
one. After six weeks, a user visits a total of 246.0 sites without
using search engines and 72.4 sites starting from search engines,
with an overlap of 23.0 sites. Similarly to the previous seed-set
results, the relative size of the overlap roughly remains constant at
a level of 9% of the regular visit set. Overall, search engines help
an average user visit 20% more sites and the sites that users visit
through search engines seem quite distinct from the sites that users
visit from random surfing.

2 4 6 8 10

50

100

150

200

250

300

350

Number of weeks

N
um

be
r

of
 w

eb
si

te
s

246.0

72.4

23.0

Regular Visit Set

Overlap

x

y

Search Engine Visit Set

Figure 7: Search-Engine Visit Set Expansion

4. USER ACCESS STATISTICS
In this section we try to measure users’ general behaviors in surf-

ing the Web. In particular, in Section 4.1 we investigate how an av-
erage user follows hyperlinks during Web browsing. In Section 4.2
we investigate how much time people spend per page and how long
they stay online in “one sitting.”

4.1 Referrer tree statistics
Hyperlinks are considered a core structural component on the

Web. It is generally believed that hyperlinks play a significant role
in guiding people to particular Web sites. Since users’ actions of
following links are fully captured by referer trees, we now analyze
the characteristics of the referer trees in our trace to understand the
our users’ clicking behavior.

In particular, we are interested in the size, depth and branching
factor of the referer trees. The size of a referer tree measures how
many pages a user visits by following links before she jumps to a
new page. The depth shows how deeply a user follows hyperlinks
before she stops exploring further. The branching factor indicates
how many links on a page a user typically clicks on.

In Figure 8, we show the distributions of these three properties.
In the graphs, the horizontal axis corresponds to the size, depth
and branching factor of refer trees, respectively. The vertical axis
shows the number of referer trees with the given characteristics.3

All graphs in this section are plotted in a log-log scale.
From the graphs, we first see that all distributions closely fit

power-law curves; the graphs are straight lines in the log-log scale.
Also from Figure 8(a), we observe that 173,762 out of 380,453 ref-
erer trees have a single node. That is, 45% of the time, users jump
to a completely new page after visiting just one page. Finally, given
the mean of each distribution4 we estimate that a typical Web user
visits 5 pages by following hyperlinks, clicking on 3 links per page,
but going down no more than 3 links deep.

4.2 Session statistics
We now report statistics on the following characteristics of user

behavior: (1) How many pages and sites do people visit once they
start surfing the Web? (2) How much time do they stay online in
one sitting? (3) How many times do they jump to new pages while
they surf the Web? In order to answer these questions, we first
introduce the notion of a session.

Definition of session Informally, a session refers to the set of
pages that a user accesses in one “sitting.” A traditional defini-
tion for the session is based on time-out. That is, after a user starts
visiting Web pages, if there is a certain period of inactivity, say 10
minutes, then the current session expires and a new session starts.

3More precisely, because branching factors are characteristics of individual nodes not
of trees, Figure 8(c) shows the number of nodes with the given branching factor.
4In computing the average branching factor, we exclude the leaf nodes in the tree for
which users did not click any links.

N
um

be
r

of
 r

ef
er

er
 tr

ee
s

(a) Size distribution (avg:5.67)

Referer tree size

100.5 10 101.5 102 102.5 103

10

102

103

104

105

N
um

be
r

of
 r

ef
er

er
 tr

ee
s

(b) Depth distribution (avg: 2.52)

Referer tree depth

100.5 10 101.5 102 102.5

101

102

103

104

105

N
um

be
r

of
 n

od
es

Node branching factor

(c) Branching factor distribution (avg: 2.95)

100.5 10 101.5 102 102.5 103 103.5

10

102

103

104

105

Figure 8: Referer tree characteristics

The main weakness of this definition is the difficulty in choosing a
good time-out value. On one hand, if the time-out is set too short,
the pages that a user browses in one sitting may be broken into mul-
tiple sessions, especially if the user reads a long online article. On
the other hand, if the time-out is set too long, the pages that the user
accesses in multiple sittings may be combined into one session. To
remedy this shortcoming, we decide to extend the traditional defi-
nition using the referer-tree information.

The basic idea for our extended definition is that even if a user
accesses a page after a certain period of inactivity, if the user clicks
on a link on a previously accessed page to access a new page, it
strongly hints that the user was actually reading the previous page.
Based on this intuition, we put the accesses to page p1 and p2 into
one session

• if they are accessed within a short time interval τ or
• if p2 is accessed by following a link in p1.

For example, consider Figure 9 that shows a sequence of pages
accessed by a user. The relative spacing between the pages rep-
resent the time interval elapsed between the accesses. The curved
arrows at the top represent that the user followed a link in the first
page to the second. In this example, (p1, p2, p3), (p4, p5), and (p6,
p7, p8) are put into the same sessions because they are accessed
within time τ . In addition, p3 and p4 are put into the same session
because p4 is accessed by following a link in p3. Overall, pages p1

through p5 are put into one session and pages p6 through p8 are put
into another session.

We believe that it is safe to use a small threshold τ value under
our extended definition, because as long as the users follow a link
to reach from one page to another, these two pages are put into one
session, even if the access interval is longer than τ . For this reason,
we use a relative small value for τ , 5 minutes, for our analysis.

1 32 6 7 84 5
P P P P PP PP

ττ τ τ ττ τ

session 1 session 2

time

Figure 9: An example of our method of identifying sessions

Number of Web sites and pages per session Based on the ses-
sion definition given above, we first report how many Web pages
and sites a user visits in one session. In Figures 10 and 11 we
present the distributions for Web pages and Web sites per session,
respectively. The horizontal axis corresponds to the number of
pages (or sites) per session, and the vertical axis shows the num-
ber of sessions that have the given number of pages (or sites). The
average numbers are 21.79 for Web pages and 5.08 for Web sites,

which means that a typical user visits about 22 pages in 5 Web sites
in one sitting. The graph for Web pages closely fits a power-law
curve, while the graph for Web sites does not exhibit a close fit.

N
um

be
r

of
 s

es
si

on
s

Number of pages per session

102

10

10 102

103

103

104

104

105

x

y = 44668x
−1.51

y

Figure 10: Number of pages per session (Avg:21.79)

Number of Web sites per session

N
um

be
r

of
 s

es
si

on
s

10

102

100.5 102 101.5 102.510

103

104

105

x

y

Figure 11: Number of Web sites per session (Avg:5.08)

Session length and average time per page Another interesting
statistics is how much time a user spends online once she starts
surfing the Web and how much time she spends reading each page.
One issue in measuring these numbers is how to account for the
time spent on the last page of a session. Because there is no sub-
sequent page access, we do not know when the user stops reading
the page. As a rough approximation, we assume that the time spent
on the last page is equal to the average time spent on a Web page.
Based this assumption, we present the session length distribution in
Figure 12 and the average time per page distribution in Figure 13.

The graphs have a large number of outliers, but the general trends
fit well to power-law curves. On average, a typical Web user spends
about 2 hours per session and 5 minutes per page.

Number of referer trees per session Finally, we report within a
session, how many times a user stops following links and jumps to
a random page (by typing in a new URL or selecting a bookmark).
Note that whenever the user jumps to a new page, a new referer
tree is initiated. Thus we can learn how many times a user jumps
to a random page in a session by counting how many referer trees
the session contains. We present the number-of-referer-trees-per-
session distribution in Figure 14. Again, the curve fits well to a

N
um

be
r

of
 s

es
si

on
s

Time spent in each session

102

10 102

10

103

103

104

104

105

x

y

Figure 12: Session length in time (units in minutes)

N
um

be
r

of
 p

ag
es

Time spent on each page

102

10

10 102 103

103

104

104

105

105

x

y

y = 977237x
−1.47

Figure 13: Time spent on each page (units in seconds)

power-law curve. The mean of the distribution is 3.83, meaning
that people make about 3 random jumps per session on average.

Number of referer trees per session

N
um

be
r

of
 s

es
si

on
s

100.5 10 101.5 102 102.5

102

10

103

103

104

105

y

x

y = 50119x
−1.68

Figure 14: Number of referer trees per session (Avg:3.83)

5. RELATED WORK
Researchers have studied cognitive and behavioral aspects of

user’s Web search activities in the past [9, 10, 11, 12, 13, 14]. In
these studies the main focus is how various subjective factors such
as users’ information need, knowledge, expertise and past experi-
ences affect users’ search behavior. Researchers also attempt to
build cognitive or behavioral models (e.g. state transition graphs)
to explain such behavior. In contrast, our study mainly focuses on
quantifying the influence of Web search in people’s daily Web ac-
cess.

Our work is also related to earlier studies on how users surf the
Web by following static links [15, 16, 17]. Compared to these stud-
ies we emphasize more on users’ search behavior.

There has also been extensive research in general characteristic
of Web queries [18, 19, 20]. A rather comprehensive review of
such studies can be found in [21]. While these works mainly fo-
cus on reporting the statistics of Web queries by inspecting search
engine logs, in this paper we are more concerned about the impact
of search activities by studying Web search in a larger context of
user’s overall Web access.

6. CONCLUSION
In this paper, we tried to provide a quantitative picture on how

users access the information on the Web using a 2.5-month Web

trace data collected form the UCLA Computer Science Depart-
ment.

We summarize some of our main findings as follows:
• We find that about 13.6% of all Web traffic is under the direct

or indirect influence of search engines. In addition, search
engines help users reach 20% more sites by presenting them
in search results, that may be otherwise unreachable by the
users.

• A typical Web user follows 5 links before she jumps to a new
page, spending 5 minutes per page. In one sitting, she visits
22 pages residing on 5 Web sites.

One limitation of our study is that our observation was made on
a potentially-biased user population. Therefore, some of the char-
acteristics that we observed may not be generalizable to the entire
Web user population. It will be an interesting future work to see
how some of our observations may change when our quantification
methods are applied to a larger and more general dataset.

7. ACKNOWLEDGEMENT
This material is based upon work supported partially by the Na-

tional Science Foundation under Grant No. 0347993. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of NSF.

8. REFERENCES
[1] SIQSS: Internet and society study, detailed report.

http://www.stanford.edu/group/siqss/Press Release/internetStudy.html, 2000.
[2] Brian Morrissey. Search guiding more Web activity.

http://www.clickz.com/news/article.php/2108921, 2003.
[3] J. Cho and S. Roy. Impact of Web search engines on page popularity. In Proc.

of WWW ’04, 2004.
[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search

engine. In Proc. of WWW ’98, 1998.
[5] BitTorrent. http://bittorrent.com/.
[6] World Wide Web Consortium. Hypertext Transfer Protocol - HTTP/1.1.

www.w3.org/Protocols/ rfc2616/rfc2616.html, 1999.
[7] World Wide Web Consortium. HTML 4.01 specification.

www.w3.org/TR/html4/, 1999.
[8] P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web, chapter

Modeling and Understanding Human Behavior on the Web. WILEY, 2003.
[9] C. Hoelscher. How Internet experts search for information on the Web. In Proc.

of WebNet ’98, 1998.
[10] C. Holscher and G. Strube. Web search behavior of Internet experts and

newbies. In Proc. of WWW ’99, 1999.
[11] C.W. Choo and B. Detlor. Information seeking on the Web: An integrated

model of browsing and searching. First Monday, 5(2), 2000.
[12] R. Navarro-Prieto, M. Scaife, and Y. Rogers. Cognitive strategies in web

searching. In Proc. of the 5th Conf. on Human Factors & the Web, 1999.
[13] A. Broder. A taxonomy of Web search. SIGIR Forum, 36(2), 2002.
[14] D.E. Rose and D. Levinson. Understanding user goals in Web search. In Proc.

of WWW ’04, 2004.
[15] L.D. Catledge and J. Pitkow. Characterizing browsing strategies in the

World-Wide Web. Comp. Networks ISDN Syst., 27:1065–1073.
[16] L. Tauscher and S. Greenberg. Revisitation patterns in World Wide Web

navigation. 1997.
[17] A. Cockburn and B. McKenzie. What do Web users do? an empirical analysis

of Web use. Int. J. Human Computer Studies, 54:903 – 922.
[18] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very

large Web search engine query log. SIGIR Forum, 33(1):6 – 12, 1999.
[19] B.J. Jansen, A. Spink, and T Saracevic. Real life, real users, and real needs: A

study and analysis of user queries on the Web. Information Processing and
Management, 36(2):207 – 227, 2000.

[20] A. Spink, B.J. Jansen, D. Wolfram, and T. Saracevic. From E-Sex to
E-Commerce: Web search changes. IEEE Computer, 35(3):107 – 109, 2002.

[21] B.J. Jansen and U. Pooch. A review of Web searching studies and a framework
for future research. JASIST, 52(3):235 – 246, 2001.

Processing Top-N Queries in P2P-based Web Integration
Systems with Probabilistic Guarantees

Katja Hose Marcel Karnstedt Kai-Uwe Sattler Daniel Zinn

Department of Computer Science and Automation, TU Ilmenau
P.O. Box 100565, D-98684 Ilmenau, Germany

ABSTRACT
Efficient query processing in P2P-based Web integration systems
poses a variety of challenges resulting from the strict decentraliza-
tion and limited knowledge. As a special problem in this context
we consider the evaluation of top-N queries on structured data.
Due to the characteristics of large-scaled P2P systems it is nearly
impossible to guarantee complete and exact query answers with-
out exhaustive search, which usually ends in flooding the network.
In this paper, we address this problem by presenting an approach
relying on histogram-based routing filters. These allow for reduc-
ing the number of queried peers as well as for giving probabilistic
guarantees concerning the goodness of the answer.

1. INTRODUCTION
Schema-based Peer-to-Peer (P2P) systems, also called Peer Data

Management Systems (PDMS) are a natural extension of federated
database systems which are studied since the early eighties. PDMS
add features of the P2P paradigm (namely autonomous peers with
equal rights and opportunities, self-organization as well as avoiding
global knowledge) to the virtual data integration approach result-
ing in the following characteristics: each peer can provide its own
database with its own schema, can answer queries, and is linked
to a small number of neighbors via mappings representing schema
correspondences.

Though, PDMS are surely not a replacement for enterprise data
integration solutions, they are a promising approach for loosely-
coupled scenarios at Internet-scale, such as Web integration sys-
tems. However, the expected advantages like robustness, scalability
and self-organization come not for free: In a large-scale, highly dy-
namic P2P system it is nearly impossible to guarantee a complete
and exact query answer. The reasons for this are among others
possibly incomplete or incorrect mappings, data heterogeneities,
incomplete information about data placement and distribution and
the impracticality of an exhaustive flooding. Therefore, best ef-
fort query techniques such as similarity selection and join, nearest
neighbor search and particularly top-N operators are most appro-
priate. By “best effort” we mean, that we do not aim for exact
results or guarantees but instead try to find the best possible solu-
tion wrt. the available local knowledge. However, even if we relax
exactness or completeness requirements we still need estimations
or predictions about the error rate. For a top-N query this means
for example that we can give a probabilistic guarantee thatx per-
cent of the retrieved objects are among the topN objects which we
would get if we had asked all peers in the system.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005)
June 16-17, 2005, Baltimore, Maryland

Consider a scenario from the scientific domain where a virtual
astronomical observatory is built by integrating individual peers
(observatories) offering data about sky observations. We assume
XML as the underlying data format and XQuery as the common
query language. A typical query in this scenario would ask for as-
tronomical objects that match a condition to a certain degree. For
instance a researcher could query for objects next to a certain point
in space defined by a set of coordinates or objects with an average
brightness “similar” to a predefined one.Thus, we can describe the
pattern of such queries as follows:

for $i in fn:doc("doc.xml")/ path
order by rank ($i/ path) limit N return ...

whererank is a ranking function defining an order on the elements
andlimit restricts the result set to the firstN elements returned
by order by . The ranking function can be defined simply by ex-
ploiting the order of the attribute values or even using the euclidian
distance, e.g., for coordinate values. An example from the above
mentioned scenario is the following query asking for the 10 stars
closest to a given sky position:

for $s in fn:doc("sky.xml")//objects
order by distance($s/rascension,

$s/declination, 160, 20)
limit 10 return ...

In order to allow an efficient evaluation such queries should be
treated using a special top-N operatorσ̂N

rank(E) whereE denotes
a set of elements. This operator returns theN highest ranked el-
ements fromE. The implementation of this operator as well as
strategies for processing in a PDMS are the subjects of our work
and are described in the following sections.

2. RELATED WORK
Several approaches and efficient strategies for top-N query pro-

cessing have been developed concerning classical RDBMS. As in-
troduced in [5, 3] one promising approach is to use existing data
structures (i.e. indexes) and statistics (i.e. histograms) for mapping
a top-N query into a traditional selection query. The aim is to de-
termine a tight n-dimensional rectangle that contains all the top-N
tuples for a given query but as few additional tuples as possible
thereby dealing with histogram bucket boundaries instead of single
tuple values. The algorithm is based on finding a minimal score
that is sent along with the query as selection predicate guarantee-
ing at least k elements that are ranked higher. Another approach
that tries to quantify the risk of restarting a query probabilistically
is presented in [8], but the authors only deal with the problem of
determining an optimal selection cutoff value.

TPUT [4] is an algorithm that was designed for efficiently cal-
culating top-N aggregate queries in distributed networks. This

algorithm represents an enhanced version of theThreshold Algo-
rithm (TA) that was independently developed by multiple groups
[9, 11]. Further variants of TA have been developed for multimedia
repositories [6], distributed preference queries over web-accessible
databases [12], and ranking query results of structured databases
[1]. Another work [13] that is based on TA introduces a family of
approximate top-N algorithms that probabilistically try to predict
when it is safe to drop candidate items and to prune the index scans
that are an integral part of TA. All these algorithms, however, need
several round-trips in order to retrieve the final result whereas our
approach tries to ask each peer only once.

The algorithms presented in [2] try to improve top-N query pro-
cessing by dynamically collecting query statistics that allow for
better routing when the query is issued the next time. The first
time, however, all peers have to participate in processing the query
while several round-trips are required in order to retrieve the final
result. This often leads to situations where peer have to wait for
each other.

3. EVALUATING TOP-N QUERIES

3.1 Classification
Evaluating top-N queries provides four different main approach-

es each describing one main principle and thus one general class of
more detailed processing techniques. Without loss of generality we
assume a tree view on all peers established at the query initiating
peer, the so called peer or query tree.

1. Naive top-N : collectN (if possible) data elements from each
available peer, sort and evaluate at initiator.

2. Partial top-N : same as naive strategy, but combine and prune
results at peers passed on the way back to the initiator.

3. Globally optimized Top-N : minimize the set of queried peers
before actually querying them – based on global information,
e.g., using a global index structure.

4. Locally optimized Top-N : also minimize the set of queried
peers, but decide at each involved peer again which peers to
discard, based on locally available information.

Class 1 and 2 algorithms promise poor efficiency. The problem
with strategies of class 3 is their need for global information. Global
knowledge may not be achievable, because peers do not provide
information about all their data. Furthermore, maintenance and
building tasks are expensive and top-N queries over the attribute(s)
not indexed require flooding the network or an index rebuild (e.g.,
re-hash). In this work we focus on class 4 approaches, based on
knowledge gained from feedback of processed queries. We alter-
natively call this class locally pruned top-N , because at each peer
again we prune the set of possible query paths using only locally
available information.

3.2 Histograms and Routing Filters
In order to be able to prune query paths locally we need informa-

tion about the data distribution at each peer. Approaches based on
local index structures have been shown to be suitable ([7]) and we
adopted them to our needs of schema and instance level informa-
tion in previous works. The developed data structures do not sim-
ply index on pre-selected attributes, rather they collect information
about all attributes occurring with high frequencies, thus we call
them routing filters. Because histograms are successfully used in
a wide variety of optimization and estimation techniques we de-
cided to integrate them into the filters in order to approximate data
distribution on instance level.

At each peer for each established connection to a neighborneigh
one separate filter is maintained, which includes schema and in-
stance level information for all peers reachable by queryingneigh
(that is, all peers “behind”neigh). Routing filters are built and
maintained using a query feedback approach, thus they are empty
when a peer joins and grow as time passes by according to the re-
ceived query results. If they are not limited to a certain horizon
around the owning peer (e.g., by using a hop count [7]) and if we
assume that no peer leaves the network, they will finally converge
to global knowledge wrt. the query workload.

Histograms approximate data distributions by partitioning a sort
parameter into intervals (buckets). An approximated source param-
eter value (we focus on frequencies) is stored for each bucket. A
wide variety of histograms has been developed. We useV-Optimal
histograms, which partition the sort parameter in such a manner
that the variance of source parameter values, i.e., frequencies, within
each bucket is minimized [10]. The value domain is approximated
by a continuous distribution in the bucket range. Note that our algo-
rithms do not depend on the optimality of V-Optimal histograms.
The only thing they rely on is a characteristical value describing
the error of the assumed frequency distribution in each bucket. V-
Optimal histograms lead to good approximations.

As routing filters and types of histogram are not focus of this
work, we omit details. In Figure 1 we picture routing filters ex-
emplarily. In that figure simple histograms on attribute ‘x’ for two
neighbors of the filter owning peer are depicted. In the next section
we will show how to exploit the routing filters’ information for op-
timizing top-N query processing and how to provide probabilistic
guarantees for the result.

x x
average frequency maximal error

. . .

fr
eq

ue
nc

y

l1 ≤ x ≤ u1
l2 ≤ x ≤ u2 l8 ≤ x ≤ u8

l1 ≤ x ≤ u1
l8 ≤ x ≤ u8

. . .
u7 + 1 = l8 u7 + 1 = l8

u2u1 u4 u7u3 u8 l1 u8l1 u7

u1 + 1 = l2

u5 u6 u3u2u1 u5u4

neighbor 1 neighbor 2

u6

Figure 1: Histograms of routing filters on ‘x’ for two neighbors

3.3 Histograms and Probabilities
Routing filters combine information about schema and instance

level. What is important for optimizing the evaluation of top-N
queries is the approximation on instance level provided by the his-
tograms, therefore in the following we focus on these histograms.
Moreover, due to the lack of space, we concentrate on the evalua-
tion of only nearest neighbor queries as a prominent representative
of top-N queries. The proposed algorithm draws conclusions about
the frequency distribution based on the average frequency and the
maximum absolute error per bucket. In this subsection we will
at first introduce a notation before describing the main algorithm.
For simplicity we only consider discrete sort parameters and one-
dimensional histograms. Continuous values can either be regarded
as special case where values have to be discretized before they can
be processed alike or similar algorithms can be developed that are
optimized for dealing with such sort parameters. The proposed
methodology as described in the following can also be used with
multi-dimensional histograms. Evaluating top-N queries based on
ranking functions defined over more than one attribute, we have
to revert to multi-dimensional histograms. The introduced calcula-
tions and approximations hold in analogy.

Notation & BasicsGivenn data values, represented by function
R : {1..N} → N, we can determine the frequencyF (k) for any
sort parameter valuek with F (k) = |{e|R(e) = k}|. F ’s domain
is now being partitioned into buckets that can have different sizes.

Several statistical information is assigned to these buckets in order
to approximate the original functionF . Let bucketBi be defined
asBi = {li, . . . , ui}, whereli specifies the lower andui the up-
per boundary. For each bucket the average frequencyh and the
maximum absolute errore are defined as follows:

hi :=

Pui
k=li

F (k)

ui − li + 1
, ei := max

k=li..ui

{|F (k)− hi|}

For the rest of this paper we will use the termsT andBi for
symbolizing intervals and buckets as well as for referring to the
corresponding set of elements. Considering an arbitrary interval of
interestT , T ⊆ Bi andcard(T) :=

P
t∈T F (t) the following

boundary can be identified for the minimum cardinality:
cardmin = (1)

max{|T | · dhi − eie, |Bi| · hi − (|Bi \ T | · bhi + eic)}

A boundary for the maximum cardinality can be defined in anal-
ogy. Considering subsetsT that are not necessarily limited to one
bucket, similar equations can be defined. For any bucketBj that is
partly included inT , card(T∩Bj) minimum and maximum values
can be determined. For any bucketBj that is completely included
in T , we can exactly determine the cardinality viacard(Bj) =
|Bj | · hj . By summing up these valuescard(T) can be restricted
by minimum and maximum values but usually not determined ex-
actly. However, assuming a probability distribution forF (i) in
“cut” buckets, a probability distribution forcard(T) can be calcu-
lated. Based on this distribution our top-N algorithm that is defined
in the following provides probabilistic guarantees.

Specification for Top-N Query Algorithm Our main algorithm
takes the following input parameters: the queried valueX, the top-
numberN , a valueMin (“missed”), two probabilitiesP C

in (C for
“correct”) andP OP (OP for “one pass”), and a distancedist (not
provided to, but determined by the initiating peer). It always returns
an (N+2) tupleRes := (dataN , M, P)1, which complies with the
following statements: With a probability of minimumP, P ≥ P C

in,
the algorithm missed at mostM data items – that is the globally
correct top-N result based on all data in the network contains at
mostM data items that are not returned by our algorithm. With
a minimum probability ofP OP , M is equal to or less thanMin.
Thus,P OP represents a parameter adjusting the probability of hav-
ing to re-initiate a query. We handleP OP as an internal system
parameter, in our first tests we setP OP = 0.9. When re-initiating,
P OP must be shifted accordingly. Our algorithm tries to minimize
costs by minimizing the number of peers involved for processing
the query – with respect to the (probabilistic) boundaries mentioned
above.

Problem statement and the algorithm’s specification are related
as follows: A user initiates a query and provides a required qual-
ity guarantee thatx percent of the retrieved objects are among the
real top-N objects (“real” symbolizes the result we would get if all
peers are queried). We reflectx to the valueMin := N − x · N .
AdjustingP C

in provides an additional possibility to affect the accu-
racy of the retrieved result and therefore the performance of query
processing. The algorithm guarantees by a probability ofP C

in that
the returned result includes at leastx percentage of the globally
correct result. If not specified, the default value isP C

in = 1. P C
in

defines the maximum acceptable uncertainness when evaluating the
histograms and deciding which peers to discard.

Synopsis for Top-N Query Algorithm In general, all peers ex-
ecute the following steps:

1. determine the set of neighbors that promises the lowest ex-
ecution costs while adhering to the provided quality limits

1Given that the domain ofR includes at leastN values

2. distribute the quality limits among the peers to query
3. forward the query with adopted quality limits to the deter-

mined subset of peers
4. wait for answers, combine local data and results, set resulting

guarantees, return a combined answer to the querying peer
Figure 2 summarizes these steps in an algorithmic form. The inter-
esting details are how to determine the subset of peers to query and
how to distribute the required restrictions among these neighbors.

Input : N : number,X: queried value,Min: number,
P C

in: probability,P OP : probability,dist: number

1 if initiating peerthen dist = calc-dist(N, X, Min, P OP); fi
2 A, dist, P C

L , ML = calc-neighs(N, X, Min, P C
in, dist);

3 P C
ch, Mch = distribute-missed(P C

in, Min, P C
L , ML);

4 foreachpeera ∈ A do /* in parallel! */
5 Rch, Ma

ch, P C,a
ch = a →process-query(N, X, Mch, P C

ch, P OP , dist);
6 done
7 RL, ML, P C

L = combine(RL, ML, P C
L , Rch, Ma

ch, P C,a
ch);

8 if initiating peerthen ML = adjust-missed(RL, ML, dist); fi
9 send-answer(RL, ML, P C

L);

Figure 2: Procedureprocess-query
At first, the query initiating peer determines an initial distance

dist. In order to do so, the locally available histograms are regarded
as a view on the global data distribution. Thus, the global range of
the queried attribute is expected to equal the maximal range com-
bined over all neighbor histograms and the local data.dist reflects
the smallest range around the queried pointX in which at least
N − Min elements are expected by a probability ofP OP . This
interval is determined using a sub-algorithm calledcalc-dist and is
provided to all subsequently queried peers and used by them for
evaluating possible subsets of peers. This is applicable because
we assume the initiating peer having gathered global knowledge in
the queried attribute’s histogram wrt. the established peer tree, and
therefore simplifies the following explanations. Different assump-
tions, e.g., exploiting limited knowledge, result in having to calcu-
latedist repeatedly at each peer and come along with some minor
algorithmic modifications. Because each queried peer always re-
turningN elements (if available, all the same if these values lie in
interval [X − dist, X + dist] or not), the algorithm works with
eachdist, even if it is 0 or randomly chosen. As we will see, the
problem is that we will hardly discard any peers when choosing
it too large – in general choosing it too low will result in missing
more top elements and having to decrease the returned guarantee
value accordingly in order to match the algorithm’s specification.
Whether probabilityP C

in holds or not when pruning query paths is
only tested in intervaldist, thus we should choose it appropriately.

In the next paragraphs we will briefly describe each of the sub-
routines called in Figure 2.

Procedure calc-dist An interval I is iteratively and symmetri-
cally widened starting withI = [X]. In an iteration stepd =
0, 1, . . . , max{maxi{ui}−X, X−mini{li}}, it is tested whether
the probability that at leastN − Min data items lie within the in-
tervalI := [X − d, X + d] is greater than or equal toP OP . If so,
d is returned. Note that the algorithm always ends.

Procedure calc-neighs The difficult part is to find all possible
subsets of neighbors at each involved peer that fulfill the algo-
rithm’s specification in respect toMin and P C

in. For each con-
sidered subsetA′ of all peersA the probabilityp that the peers in
A \A′ provide at mostMin values inside intervalI is determined.
If p ≥ P C

in holds we may decide to query only the peers fromA′.
If the final result is completely included inI, discarding these peers
does not violate the probabilistic limits. This can only be checked
at the initiating peer after the final result is received. If any element

of the result is not included in[X−dist−1, X+dist+1] we have
to adjust the returnedML in order to adhere to the specification of
our algorithm, which is done callingadjust-missed.

Proceduredistribute-missed The algorithm allows for missing
up toMin relevant data items indist, thus we have to guarantee:

P

„
globally discarded peers provide less than or
equal toMin values in[X − dist, X + dist]

«
≥ P C

in

(2)
Enforcing equation 2 and handling final result elements from out-
sidedist accordingly our algorithm works correct as specified.

As the algorithm allows each participating peer to discard some
of its neighbors, we have to “distribute” the allowed overall error. If
we prune a query path we discard a single set of peersAi. Assume
all globally discarded sets areA := {Ai|∀i 6= j : Ai ∩ Aj =
∅; i, j = 1, . . . , v}, wherev is the number of totally pruned query
paths, andMD is the set of all possible corresponding distributions
of M , MD := {{Mi|Mi ≥ 0 ∧

P
i Mi = M ; i = 1, . . . , v}}.

LetPM (Ai), respectivelyP≤M (Ai), denote the probability that all
peers fromAi have exactly, respectively at most,M values in[X−
dist, X + dist]. Assuming that the missed values are distributed
independently from the peers the following equation holds:

PM (
[
i

Ai) =
X

Md∈MD

Y
Mi∈Md

PMi(Ai) (3)

With respect to a certain distributionM ′
d of Min, equation 4 can

be used to estimatep when distributing data items and probabilities
over several peers:

p = P≤M (
[
i

Ai) ≥
Y

Mi∈M′
d

P≤Mi(Ai) ≥ P C
in (4)

The right unequal sign exactly is what the algorithm guarantees.
We omit the simple proof for the left unequal sign – listing the in-
cluded factors and summands the principle of proof gets evident.
Thus, by ensuring that the product ofP≤Mi(Ai) forall i is greater
than or equal toP C

in and that the sum of allMi is not greater than
Min, we can guarantee that equation 2 holds and the result com-
plies with our algorithm’s specification. Another interesting point
is which distributions ofMin to consider. In our basic version we
distributeMin uniformly over all queried peers, more sophisticated
approaches could weight this distribution according to the amount
of elements expected from each peer. Based on these considera-
tions, our algorithm determines possibleMin andP C

in parameters
for forwarding the query to neighbored peers.

While we are currently passing one value forMin andP C
in to

neighbored peers, an improved algorithm can pass a whole proba-
bility distribution of possibleMin values. Then it would be possi-
ble to use the exact equation 3 rather than the approximation 4.

Procedureadjust-missed As we have mentioned above we have
to adjust the missed value that is returned if any elemente of the
final result does not lie inside the interval[X−dist−1, X+dist+
1]. In case we discarded at least one peer, we could have missed
one “better” (closer toX) elemente′ in [X−dist−1, X+dist+1]
for each elemente. This is due to the fact that all tests whether to
discard a peer or not are only applied to the interval[X−dist, X+
dist]. Therefore, we adjustM by:
M = max{ML, |result items outside[X − dist− 1, X + dist +
1]|}.

Calculating Probabilities Finally, we give a brief look at how to
calculateP≤M (Ai), P≥M (Ai) respectively. The performance and
correctness of the whole processing strategy strongly depends on
these calculations, as we will show in Section 4. Following from

P≤M (Ai) = 1− P≥M+1(Ai)

we only need to implement one of these functions. LetI denote
the interval of interest. First of all, we can calculate the exact val-

ues for all buckets that are completely included inI. After that,
we could calculate minima and maxima of all subsets of buckets
that are ‘cut’ viaI. The overall minimum/maximum is the sum of
all these minima/maxima plus the exact values determined before.
The crucial question is how to determine a probability distribution
for all values in between one arbitrary interval[min, max]. This
may be handled by assuming for instance uniformly distributed or
normally distributed frequencies. When assuming normally dis-
tributed values we can revert to the variance in a bucket in order
to approximateP≤M (Ai). For simplicity, in our first implementa-
tion we simply store the variance for each bucket. Naturally, this
increases the space needed by the histograms which could be used
to improve their accuracy – in order to bypass this disadvantage we
could as well approximate the variance using the stored maximal
error (and vise versa), but we will in general be limited to only use
a rule of thumb for this purpose. Corresponding investigations are
part of our ongoing work.

P≤M (Ai) can now be calculated using the individual distribu-
tions for F (k) for all k ∈ I on all peers∈ Ai as separate ran-
dom variables, which requires computing the convolution between
them and therefore mostly depends on solving complex integrals.
[13] gives interesting approximations and equations of how to com-
pute the convolution for uniform, Poisson and arbitrary distribu-
tions. Due to the lack of space we for our part assume normal
distributions, and thus can easily calculate an approximated proba-
bility distribution for card(I). The sum ofn N(µj , σ

2
j), normally

distributed random variables,N(µ, σ2) := N(
P

n µj ,
P

n σ2
j), is

normally distributed, too. We only have to truncate the resulting
probability distribution in between[min, max]. If FN(µ,σ2) de-
notes the cumulative distribution function for aN(µ, σ2) normally
distributed random variable,P≤M (Ai) can be approximated as:

P≤M (Ai) =

8><>:
0 , min > M
1 , max ≤ M

F
N(µ,σ2)(M)−F

N(µ,σ2 (min)

F
N(µ,σ2)(max)−F

N(µ,σ2 (min))
, else

(5)

3.4 Pruning Query Paths
The main intuition behind our method is to prune query paths

based on probabilistically guaranteed assumptions in order to op-
timize processing costs. During the introduction of our algorithms
we indicated when and where any query path is pruned, but we
did not mention how costs are integrated. This is done by sort-
ing all subsets of directly connected peers according to their costs,
starting with the cheapest one (which only includes the local peer).
Running through this list, the algorithm stops investigating further
subsets when the first set matching the probabilistic conditions is
found.

Our prototype algorithm implements a greedy philosophy: each
peer tries to discard as many neighbors as possible. This early
pruning results in discarding larger subtrees than pruning in later
phases of processing. In the current stage of development our im-
plementation only considers the number of queried peers as cost
factor. Intuitively, these cost calculations should be extended to
take into consideration, e.g., the number of messages, bandwidth,
data volume, hops or whatever measure is suitable for expressing
costs. This also includes lowering the amount of elements returned
by each peer belowN , but we have to keep in mind that this goes
along with algorithmic modifications and in our current implemen-
tation ensures correctness (even when unexpected peer failures oc-
cur). A more sophisticated approach could try to deduce trade-offs
between the costs for one subset and the achievable percentage of
the global top-N result. In this case the system, or the user in
an interactive way, may decide which trade-off to choose, rather

than restrict the processing to minimal costs. This strategy reflects
Quality-of-Service approaches but is not the focus of this paper.

Example Figure 3 shows how our algorithm processes a query
issued at peer1 with the following parameters: queried valueX =
5, number of queried top itemsN = 5, the number of allowed
missed valuesM = 2 (for illustration M symbolizesMin). We
assume a considered distancedist = 2 and probabilityP C

in = 1.

Figure 3: Example for applying algorithm
At first peer1 forwards the query to its neighbors2 and3 dis-

tributingM equally among them, both peers are acting likewise but
do not forward the query to peers5, 7 and8. 5 and8 are pruned be-
cause peers2 and3 are allowed to miss one data item each. Peer7
can be pruned because it has no data item in the interval of interest
defined byX anddist. After having merged, ranked and pruned
the received neighbor and local results, peers2 and3 send their
results to peer1 which acts likewise and provides the final result.

4. EVALUATION
In this section we will analyze and interpret the results that we

gained running some experiments. We use a simple simulation en-
vironment that allows for using routing filters based on histograms
as index structures. A bundle of extended tests will follow in fu-
ture work. For each bucket we store the average frequency, the
variance, and the maximum error between average and value fre-
quencies. For simplicity but without loss of generality we assume
global bucket boundaries for all histograms. Note that this is no re-
quirement for our algorithm. Using this simple environment we are
able to evaluate our algorithm by comparing the processed results
and the number of queried peers. The number of resulting mes-
sages and generated data volume is not analyzed in the following
due to a strong correlation with the number of queried peers.

4.1 Experiments
Our experiments will show the quality of the guarantees given

by our algorithm and the performance benefit of pruning. We dis-
tinguish between (i) probabilistic guarantee and (ii) specified cor-
rectness in terms of the ratio1− Min

N
running from 0 (Min = N)

to 1 (Min = 0), i.e., with a probabilistic guarantee ofp the result
misses onlyMin result items in comparison to the global top-N
result. What we will evaluate in particular includes:

• The quality of our probabilistic guarantees using histograms.
• The benefit of pruning using histograms.
• The impacts of frequency distribution and network structure.
• The influence of user parameters (P C

in, N , Min) on query
results and guaranteed correctness (defined as1− Mout

N
).

Not in the focus of this work but part of our future work is evaluat-
ing the impact of dynamics and filter maintenance strategies.

Impact of value frequency distribution within each bucket
In our first experiments we investigated the impact of the approx-
imated distribution within each bucket, i.e., what happens if the
actual frequency distribution does not comply with a normal dis-
tribution. The results shown in figures 4 (left) and 5 (left) repre-
sent the average of several test runs withN = 100 andP C

in = 0.6
where each run queries another target valueX of the same attribute.
The P2P network forms a tree of 100 peers with each peer (except

leaf nodes) having 4 children. Our astronomical test data is dis-
tributed arbitrarily among all peers. Both figures show thatP C

out

gets higher with increasing specified correctness. This is due to
the fact that with higher specified correctness the algorithm has to
ask more peers. Doing so the probability of missing any data items
decreases which is represented by increasingP C

out.
Figure 4 (left) shows the results of queries where only those

buckets are queried whose value frequency distributions more or
less comply with a normal distribution. As we have expected, our
algorithm works fine in such situations since this is exactly what
it assumes for each bucket. The guaranteed correctness that the
algorithm gives for its result is always lower than theactual cor-
rectnessthat we define as the ratio|RG∩RP |

|RP |
, whereRG represents

the global andRP the query result. This means that the algorithm
always gives right guarantees. Both lines are situated above the
straight line representing the specified correctness. This means that
the result is always even better than demanded by the user.

Figure 5 (left) shows what happens when querying buckets whose
actual frequency distributions do not at all comply with the as-
sumed normal distribution. Both guaranteed and actual correctness
often have lower values than the specified correctness. This ob-
viously leads to incorrect query results in terms of having missed
more values of the global top-N result than specified by the user
and guaranteed by the algorithm. Since our algorithm is based on
assuming a normal distribution this is not astonishing. Combining
this basic approach with other distributions should lead to better
results which we will investigate in future work.

Influence of N In further tests we analyzed the influence of the
number of queried valuesN on the result quality. All tests were
run on the same network structure and with the same parameters as
our first ones. Instead of varying the specified correctness we set
the specifiedMin value toN

2
in order to have an equal correctness

ratio for all test runs. As revealed by figure 4 (right) we expected
the quality to decrease with higherN , our approach works well
with smallN . For largerN , however, the guaranteed correctness is
higher than the actual correctness. This is due to the fact that with
increasingN our approach has to combine more and more random
variables. Therefore, small estimation errors for each variable re-
sult in a rather large overall error depending on the size ofN . Since
the reason for issuing top-N queries is retrieving only a few result
items out of many, this can be regarded as a minor restriction of our
approach. In order to increase the performance of our algorithm for
largerN we could increase the number of buckets per histogram.
Due to limited space we do not investigate this aspect of the optimal
number of buckets any further.

Influence of P C
in Specifying the value ofP C

in the user tries to
minimize execution costs by taking the risk of retrieving a result
that misses more thanMin data items of the global result. Thus,
the higherP C

in (i.e., the smaller the risk) the higher should be the
number of queried peers, since asking more peers minimizes the
risk of missing any result items. Exactly this is shown by the tests
whose results are presented in figure 4 (middle), where the only
differences to the preceding tests are varyingP C

in and settingN to
100 andMin to 25, i.e., setting the specified correctness to 0.75.

Influence of network structure In order to show that our ap-
proach does not only work with one special network structure, we
created other network trees. The results for a tree with an arbi-
trary number of neighbors between 0 and 6 is presented in figure
5 (middle). Because of all parameters being set to the same val-
ues as in our first tests and the test data being distributed arbitrarily
among all peers, the differences in figures 4 (left) and 5 (middle)
must be due to the network structure. Since the curve progression
in both figures does not differ in any remarkable manner, we can

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
specified Correctness

actual correctness
guaranteed correctness

specified correctness
Out PCorr

In PCorr
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pe
er

s/
10

0

specified ProbCorrect

queried peers
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N/(value range)*100, 1 percent representing 167 values

actual correctness
guaranteed correctness

specified correctness
Out PCorr

In PCorr

Figure 4: (left): Querying buckets with overall normal value frequency distribution, (middle): Influence of P C
in on the number of

queried peers, (right): Influence ofN on guaranteed correctness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
specified Correctness

actual correctness
guaranteed correctness

specified correctness
Out PCorr

In PCorr
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
specified Correctness

actual correctness
guaranteed correctness

specified correctness
Out PCorr

In PCorr
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
er

s/
10

0

specified Correctness

queried peers Search Tree
queried peers Search Tree 8% Random

queried peers Search Tree 25% Random

queried peers Random Distribution

Figure 5: (left): Querying buckets with non-normal value frequency distribution, (middle): Influence of peer tree structure on
guaranteed correctness, (right): Influence ofP C

in and data distribution on the number of queried peers

reason that the network structure does not influence quality or per-
formance of our approach. Future work will consider more general
network structures including cycles and dynamics.

Influence of data distribution on the number of queried peers
There are two extreme cases concerning data distribution: (i) every
peer has relevant data and (ii) we have a search tree where we can
answer queries by asking a minimum number of peers. Figure 5
(right) shows the number of peers with varying specified correct-
ness. The upper line originates from the same test run as depicted
in figure 4 (left) where all peers had relevant data, so that with a
specified correctness of 1 andP C

in = 1 all peers had to be asked.
The curves of all other test scenarios should lie in between the two
corresponding curves. Figure 5 (right) proves this by showing the
curves of two scenarios based on the search tree mentioned above
but with a few per cent of randomly distributed data.

5. CONCLUSION AND OUTLOOK
Querying structured data in large-scale Web integration systems

is often feasible only by applying best effort techniques such as
top-N queries. In this paper, we have presented an approach for
processing such queries in a schema-based P2P integration system.
We have shown that we can reduce the number of asked peers by
relaxing exactness requirements but are still able to guarantee a
required percentage of the complete result by a certain probability.

However, the approach presented in this paper represents only
a first step. There are two major directions for our ongoing work.
First, so far we have considered only one-dimensional histograms
and simple rank functions. Though, in principle the approach can
be easily extended to multidimensional histograms there are still
some open issues. We encountered additional open aspects of the
proposed method, i.e., assumed frequency distribution and its im-
pacts, which we plan to investigate more detailedly. Second, we
have assumed that each participating peer already owns histograms
for all of its neighbors and the queried attributes. In P2P environ-
ments we expect limited knowledge and high dynamics. This could
be handled by modifying our algorithm and combining it with an
incremental processing strategy and gossiping approaches for ap-
proximating global knowledge. In parallel, we will optimize the

query feedback strategy and apply extended cost calculations.

6. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated

ranking of database query results. InCIDR, 2003.
[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden.

Progressive distributed top k retrieval in peer-to-peer
networks. InICDE’05, 2005.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection
queries over relational databases: Mapping strategies and
performance evaluation.ACM TODS, Vol. 27, No. 2, 2002.

[4] P. Cao and Z. Wang. Efficient top-k query calculation in
distributed networks. InPODC ’04, pages 206–215, 2004.

[5] S. Chaudhuri and L. Gravano. Evaluating top-k selection
queries. InVLDB’99, pages 397–410, 1999.

[6] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing
queries over multimedia repositories.IEEE TKDE,
16(8):992–1009, 2004.

[7] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In22nd Int. Conf. on Distributed
Computing Systems, pages 23–32, July 2002.

[8] D. Donjerkovic and R. Ramakrishnan. Probabilistic
optimization of top n queries. InVLDB’99, pages 411–422,
1999.

[9] U. Güntzer, W.-T. Balke, and W. Kiessling. Optimizing
multi-feature queries for image databases. InVLDB 2000,
pages 419–428, 2000.

[10] Y. E. Ioannidis and V. Poosala. Balancing histogram
optimality and practicality for query result size estimation. In
ACM SIGMOD’95, pages 233–244. ACM Press, 1995.

[11] A. Lotem, M. Naor, and R. Fagin. Optimal aggregation
algorithms for middleware. InPODS’01, Mar. 03 2001.

[12] A. Marian, N. Bruno, and L. Gravano. Evaluating top-
queries over web-accessible databases.ACM TODS’04,
29(2):319–362, 2004.

[13] M. Theobald, G. Weikum, and R. Schenkel. Top-k query
evaluation with probabilistic guarantees. InVLDB 2004,
pages 648–659, 2004.

Context-Sensitive Keyword Search and Ranking for XML
Chavdar Botev

Cornell University
cbotev@cs.cornell.edu

 Jayavel Shanmugasundaram
Cornell University
jai@cs.cornell.edu

1. INTRODUCTION
Traditionally, keyword-search-based information retrieval (IR)
has focused on “flat” documents, which either do not have any
inherent structure or have structure that is not exploited by the IR
system. Thus, even if users wanted to search over only specific
sub-sets and/or sub-parts of the documents, they still had to search
over the entire document collection. In contrast, many emerging
XML document collections have a hierarchical structure with
semantic tags, which allows users to specify the context of their
search more precisely.
As an illustration, consider a large and heterogeneous XML
digital library that contains content ranging from Shakespeare's
plays to scientific papers. A user who is interested in learning
more about Shakespeare’s plays can limit the scope of her search
to just the relevant plays by specifying the following XPath
query: //Play[author = ‘William Shakespeare’]. Thus, if she were
to issue a keyword search query for the words “speech” and
“process”, she would only get XML element results in
Shakespeare’s plays that contain the keywords (such as a relevant
<speech> element), and would not get XML elements about (say)
voice recognition systems.
In this paper, we refer to this notion of restricting the search
context as context-sensitive search. Supporting context-sensitive
search introduces the following two challenges. The first
challenge is to efficiently find search results in the search context
without having to touch irrelevant content. In the example above,
if Shakespeare’s plays constitute only 0.1% of the entire content
of the digital library, an efficient context-sensitive search
implementation should not process the remaining 99.9%. The
second challenge is to effectively rank keyword search queries
evaluated in a search context. For example, in the popular TF-
IDF scoring method, the IDF component represents the inverse
document frequency of the query keywords in the entire
document collection. However, using this IDF value directly for
context-sensitive search can produce very unintuitive results.
As an illustration, consider the keyword search query for the
words “speech” and “process” over Shakespeare’s plays in XML
[20]. We obtained the top 10 results from the query using one of
the TF-IDF based XML ranking algorithms [1] published in the
literature. We then took a heterogeneous XML collection
consisting of IEEE INEX 2003 documents [11] (containing
scientific papers) and Shakespeare’s plays in XML, limited the
search context to Shakespeare’s plays, evaluated the same

keyword search query and obtained the top 10 results using the
same ranking algorithm. From the user’s point of view, these are
semantically identical queries. However, 9 of the top 10 results in
the first set of results were not present in the second set!
This wide variation in results can be explained as follows. It turns
out that “speech” is very frequent in Shakespeare’s plays (low
IDF) but not in the entire collection (high IDF), while “process” is
relatively frequent in the entire collection (low IDF) but not in
Shakespeare’s plays (high IDF). Consequently, the first
experiment emphasized results that contained “process”, while the
second emphasized results that contained “speech”. From the
user’s point of view, the first experiment is likely to return more
meaningful results because “process” – and not “speech” – is the
more uncommon word in the search context (Shakespeare’s
plays). Thus, the results of the second experiment are heavily
skewed by elements that are not even in the search context.
In general, it is desirable for context-sensitive search results to be
ranked as though the user query was evaluated over the search
context in isolation (in our example, we desire that the second
experiment should return the same results as the first experiment).
We call this context-sensitive ranking (a similar concept is also
referred as query-sensitive scoring in [7]).
In this paper, we present the design, implementation and
evaluation of a system that addresses the above issues central to
context-sensitive search. We make the following contributions:
1) We present enhanced inverted list structures and query

evaluation algorithms that enable the efficient evaluation of
context-sensitive keyword-search queries, without having to
touch content irrelevant to the search context.

2) We develop a framework that allows for efficient context-
sensitive ranking. We note that, unlike [7], our goal is not to
develop new ranking algorithms for context-sensitive search.
Rather, our goal is to provide a framework that will enable
existing ranking methods to be used for context-sensitive
ranking.

We also quantitatively evaluate the performance of our inverted
list data structure and context-sensitive ranking based on existing
XML ranking algorithms.

2. SYSTEM MODEL AND ARCHITECTURE
2.1 Model
We represent a collection of XML documents as a forest of trees
G = (N, E), where N is the set of XML element nodes and E is the
set of containment edges relating vertices. Node u is a parent of a
node v if there is an edge (u, v) ∈ E. Node u is an ancestor of a
node v if there is a sequence of one or more containment edges

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases
(WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

that lead from u to v. The predicate contains(v, k) is true iff the
vertex v directly or indirectly (through sub-elements) contains the
keyword k, where k can be an element name, attribute name,
attribute value, or other textual content. The granularity of query
results is at the level of XML elements since returning specific
elements (such as <speech>) usually gives more context
information than returning the entire document ([1][5][8][21]).

2.2 System Architecture
Figure 1 shows our system architecture. The user query consists of
two parts: (1) the keyword search query, and (2) the search context.
Given a specification of the search context, the Context Evaluator
returns a set of XML element IDs I such that the descendants of I
define the search context. The search context consists of all the
elements in the sub-trees rooted at the elements from the specification
value. The Query Engine takes in the set of IDs I and the user
keyword-search query, and ranks the elements in the search context
with respect to the query. In producing the ranked query results, the
Query Engine uses Index Structures and a Ranking Module. The
latter is extensible with respect to various ranking functions.
For ease of exposition, we assume simple disjunctive queries (i.e.,
queries using only the ‘or’ operator) in this paper. The search
context for these queries is specified using XPath. We use a
standard XPath evaluator leveraging the work in [22].
The focus of this paper is on the Index Structures and Query
Engine components. In the following section, we address three
main challenges in designing these components. First, we show
how to efficiently limit the search results to only those elements
that occur in the search context. Second, we design a framework
that supports context-sensitive ranking, i.e., ranking as though the
query was evaluated over the search context in isolation. Third,
we present an efficient evaluation algorithm that integrates these
two solutions.

3. INDEXING AND QUERY EVALUATION
We first define the problem of context-sensitive ranking. We then
describe our index structures, our ranking framework, and its
integration with the query engine.

3.1 Context-Sensitive Ranking
Consider a set of XML elements E, a ranking algorithm R, and a
keyword-search query Q. We define RankResE,R,Q to be the set of
pairs (e, s), where e ∈ E and s is the score (rank) of e with respect
to the query Q obtained using the ranking algorithm R. Intuitively,
RankResE,R,Q is the ranked results that we would have obtained if
E was a stand-alone collection and the query results were ranked
using R. Now, consider a context-sensitive search system S that
uses the ranking algorithm R and is operational over an element
collection E. Consider a user query (Q, SC), where Q is the
keyword-search query, and SC ⊆ E is the set of elements that constitute
the user-specified search context. We define CRankResS,E,SC,R,Q to be the
set of pairs (e, s) returned by S for the user query (Q, SC), where e ∈ SC
and s is the score of e obtained using R in the SC.
We say that a system S supports context-sensitive ranking with
respect to a ranking algorithm R iff for every set of XML
elements E and for every user query (Q, SC) (where SC ⊆ E),

RankResSC,R,Q = CRankResS,E,SC,R,Q. In other words, the ranked
results produced by S for a user query (Q, SC) are exactly the
same as the ranked results produced in a stand-alone collection SC
(using the ranking algorithm R). Thus, the system S provides users
with the abstraction of working with a personalized document
collection defined by the search context (SC), even though the
search context may be part of a large heterogeneous collection (E)
in the system. This will avoid ranking anomalies such as the one
reported in the introduction.
We note that our focus is not on the design of new ranking
algorithms R. Rather, our goal is to develop a general framework
so that many existing ranking algorithms can be embedded in our
system while still supporting context-sensitive ranking.

3.2 Index Structure
Our main goal is to enable the efficient evaluation of context-
specific queries. A naïve strategy is to evaluate the user query
over all the elements in the index, and check whether each
element is present in the search context. This approach, however,
is likely to be very inefficient when the search context is only a
very small fraction of the entire collection.
We now propose an index structure that addresses the above
issues by extending the inverted list index structure [18]. Two key
modifications need to be made to make the inverted list applicable
for context-sensitive XML keyword search. First, we need to
capture the XML hierarchy in the inverted list entries so that
nested elements that contain the query keywords can be returned
as results; for this part, we build upon prior published work in this
area [8][13]. Second, we need to structure the inverted list so that
entries that do not belong to the search context can be easily
skipped; this will enable the efficient evaluation of context-
specific queries. We consider each in turn.

3.2.1 Capturing XML Hierarchy in Inverted Lists
A simple way to structure the inverted list is to store for each
keyword the IDs of all elements that directly or indirectly contain
the keyword. The downside of this approach is the associated
space overhead. We need to store the IDs of the elements that
directly contain the keyword and the IDs of their ancestors,
because the ancestors too indirectly contain the keyword and
should be returned as query results [8].
To address this space (and performance) overhead, Guo et al. [8]
and Lee et al. [13] propose an encoding for element IDs called
Dewey IDs. Each element is assigned a number that represents its
relative position among its siblings in the XML document tree. The

Context Evaluator

Query Engine

Index Structures

Ranking
Module

Ranked
Results

Ranked Context-
Sensitive Search

Search Context

Search
Keywords

Figure 1: System Architecture

path vector of the numbers from the root to an element uniquely
identifies the latter. For example, the top element will be assigned
Dewey ID 1; its children will be assigned 1.1, 1.2, …, etc.
Thus, ancestor-descendant relationships are implicitly captured
and the inverted lists only need to store the IDs of the elements
that directly contain the keyword. Figure 2 shows a fragment of
the inverted list index using Dewey IDs for the words “Hamlet”
and “palace” (ignore the page boundaries and B+-trees for now –
they are used for context-sensitive search, discussed next). For
each keyword, the entries contain the IDs of the XML elements
that directly contain the keyword and other information such as
the TF for the elements.

3.2.2 Efficiently Limiting the Search Context
To limit efficiently the search context SC for a query Q, we need
to skip over the entries in the inverted list that do not belong to the
search context. Also, recall from the system architecture that the
Context Evaluator returns element IDs and all descendants of
these elements constitute the search context; thus, we also need to
identify the descendants efficiently.
It turns out that both of these problems can be addressed elegantly
by building a B+-tree index on each inverted list based on the
Dewey ID. Since the inverted lists are sorted based on the Dewey
ID, the inverted lists can serve as the leaf level of the B+-tree; this
avoids having to replicate the inverted list in the B+-tree, and
leads to large space savings. Figure 2 shows this a sample index
organization with fan-out 2.
The B+-tree index can be used to efficiently skip over irrelevant
entries as follows. Assume that the Context Evaluator returns a
list of Dewey IDs d1, …, dn that define the search context. We
first start with d1 (say 6.2) and probe the B+-tree of the relevant
keyword inverted list to determine the smallest ID in the inverted
list that is greater than or equal to d1 in lexicographic order (6.2 in
our example). We then start sequentially scanning the inverted list
entries from that point onwards. Since all descendants of d1 are
clustered immediately after d1 in the inverted list (as they share a
common prefix), this scan will return all the descendant entries of
d1 (6.2, 6.2.1, 6.2.3). The scan will be stopped as soon as an entry
is encountered whose prefix is not d1 (and hence not a descendant
of d1). The same process is repeated for d2, …, dn. Note how all
possible descendants of d1 (e.g., 6.2.2,6.2.2.1, etc.) are not
explicitly enumerated but only the descendants that appear in a
relevant inverted list are retrieved.

3.3 Ranking Module
There are three important aspects that we consider in the design of
the Ranking Module. First, it should support context-sensitive
ranking, whereby only the elements that belong to the search
context contribute to the ranks of the query results. Second, the
Ranking Module should provide an extensible framework that
supports a general class of ranking functions so that many existing
(and possibly new) ranking schemes developed for non-context-
sensitive ranking of XML results can be directly applied to the
context-sensitive ranking problem. Finally, the Ranking Module
should enable tight integration with the Query Engine so that
context-specific ranking can be done efficiently.
In the following discussion, we will focus on TF-IDF based ranking
methods since they are one of the most popular scoring methods
used in IR. Furthermore, these scoring methods are well suited for
presentation of the concepts of context-sensitive ranking. Indeed, the
IDF value depends on the search context: it is the number of search
context elements that contain a query keyword. Thus, such ranking
methods can dynamically adapt based on whether the query
keywords are frequent or rare in the search context (irrespective of
whether they are frequent or rare in the entire collection). We note
that the TF component depends on the content of an element and is
usually independent of the context.

3.3.1 Modeling XML Ranking Functions
Given a user keyword search query k1, …, kn, issued over a search
context SC, most TF-IDF based XML ranking methods [1][5][21]
can be characterized as a function R(Ck1, …, Ckn, Ek1,e, …, Ekn,e)
that takes in the following parameters for each element e ∈ SC
and returns the score for e.

• Ck1, …, Ckn: Each Cki contains scoring information based on a
query keyword ki and the search context SC (e.g. the IDF for ki)

• Ek1,e, …, Ekn,e: Each Eki,e contains scoring information based on
a keyword ki the element e, and its descendants (e.g. TF of the
keyword ki with respect to e).

As an illustration, consider the XXL search engine [21] that uses
the TF-IDF ranking method. The Ckj parameters are the element
frequency values for the keyword kj: Ckj = <number of elements
containing kj>/<number of elements in the search context> =
1/idf(kj). The Ekj,e parameters contain the normalized TF for the
keyword kj with respect to the element e: Ekj,e = <number of
occurrences of kj in e>/<maximum term occurrences in e>. The
overall-score function R combines the Ckj and the Ekj,e parameters
using the cosine similarity: R(Ck1, …, Ckn, Ek1,e, …, Ekn,e) =

∑
×

×
= nj

jjkjekj

Qe
QktfkidfCE

,..,1
22

,

||||||||
),()()/(

, where ||⋅||2 denotes the L2

measure. The XSearch [1] and XIRQL [5] ranking methods can
be similarly captured using the above framework.

3.3.2 Integration with the Index and Query Engine
For efficient query evaluation, our query processing algorithm
(described in Section 3.4) relies on two fundamental principles:
(1) During the evaluation of a keyword search query k1, …, kn,
only the inverted list entries for the keywords k1, …, kn, that occur
in the search context are accessed. No other inverted list entries

Context B+tree

ID: 3.4
TF: 1

ID: 3.5
TF: 1

6.2

ID: 1.1
TF: 5

… …
…

ID:3.5
|TF: 2

ID: 6.2
TF: 3

ID: 6.2.3
TF: 2

ID: 9.1.1
TF: 10

6.2.3

ID: 21.1
TF: 5

6.2.3

Hamlet

palace
ID: 3.6
TF: 1

ID: 11.1.6
TF: 1

ID:6.2.1
TF: 3

Legend:
 Page
 boundary

Figure 2: Inverted List Structure

are accessed, nor is the actual text content of an element accessed
during query processing; (2) Query evaluation occurs in a single
pass over the query keyword inverted lists (although a pre-
processing pass is also used – details are in Section 3.4). Thus,
once an index entry is accessed, it is not accessed again.
The above observations suggest that the ranking function
parameter values should (1) be computed solely from the query
keyword index entries in the search context, and (2) should be
accumulated in a single pass over these index entries. We now
formalize these notions. Consider the computation of a Ckj
parameter. It can be computed using a function FCkj that works
like an accumulator: FCkj: Dom(Ckj) × InvListEntry → Dom(Ckj),
where Dom(Ckj) is the domain of the values of Ckj. On each
invocation, it takes in the current value of Ckj and the current
index entry, and creates the new value of Ckj. When the last entry
is processed, the result is the final value of the Ckj parameter. For
example, consider the case of computing the IDF of the keyword
kj. The initial value of Ckj is 0, and each invocation of the FCkj
function simply increments the current value of Ckj by one over
the number of elements in the search context. The IDF is the
reciprocal of the final value of Ckj after processing all entries in
the inverted list for kj that occur in the search context.
Now, consider the computation of a Ekj,e parameter. Ekj,e is computed
by the repeated application of the function FEkj: Dom(Ekj,e) × Node ×
Node × InvListEntry → Dom(Ekj,e). The function works like an
accumulator and takes in the current value of Ekj,e (first parameter),
the current search context element e (second parameter), a descendant
of e containing directly kj (third parameter), and the index entry
corresponding to the descendant (fourth parameter), and uses these
arguments to compute the new value of the Ekj,e parameter. This
function captures the intuition that only information in the inverted
list corresponding to an element’s descendants is used to compute
element-specific ranking information. For example, in XXL, the FEkj
function updates the TF of the keyword kj with respect to the current
search context element e.

3.4 Query Engine
We now describe how the Query Engine can efficiently support
context-sensitive ranking for any ranking algorithm that can be
characterized in terms of the R, FCkj, and FEkj functions (by efficient,
we mean linear in the number of index entries in the search context).
Our query-processing algorithm builds upon the work in [8] and
extends it using a two-phase algorithm for context-sensitive search and
ranking. In the first (pre-processing) phase, it computes context-
sensitive information that is used for ranking (i.e., the Cki or IDF
values) by making a pass over the relevant parts of the query keyword
inverted lists. In the second (regular) phase, it makes another pass over
the same inverted list entries, and finds the top-k ranked query results.
The pre-processing phase is necessary because the regular phase
cannot compute the overall rank of an element without the
appropriate context-sensitive values. Thus, the regular phase
cannot just keep track of the top-k results using a result heap since
the score cannot be computed until the very end. Consequently,
all elements should be retained and scored, which will be
expensive. We note that the overhead of an extra phase is minimal
since the first phase will bring all the relevant disk resident entries

into memory; thus, the second phase, which accesses the very
same entries, has practically no overhead (see Section 4).
Figure 3 shows the query evaluation algorithm. The pre-
processing phase (lines 02–09) works as follows. For each the
search context ID cidj, and for each query keyword ki, it identifies
the entries in the inverted list for ki that are descendants of cidj. It
does this by probing the context B+-tree for keyword ki using cidj,
and scanning the inverted list for ki from that point onwards. The

01. procedure EvaluateQuery (k1, k2, …, kn, cid1, …, cidm, N)
 // k1 … kn are query keywords, cid1 … cidm define search context,
 // N is the # query results invList[ki] is inverted list for ki,
 // btree[ki] is context B+-tree for ki

 // Pre-processing phase: compute Ckis
02. for (each cidj) {
03. for (each ki) {
04. ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos);
05. curEntry = invList[ki].nextEntry;
06. while (cidj is a prefix of curEntry.deweyID) {
07. Cki = FCki(Cki, curEntry);
08. invList[ki].nextEntry;
09.} } }

 // Regular phase; compute top-N query results
10. resultHeap = empty; deweyStack = empty;
11. for (each cidj) {
12. for (each ki) {
13. ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos);
14. curEntry[ki] = invList[ki].nextEntry;
15. }
16. while (∃ki such that cidj is a prefix of curEntry[ki]) {
 // Get the next inverted list entry with the smallest DeweyID
17. find ki such that curEntry[ki].deweyID is the smallest deweyID;

 // Find the longest common prefix between deweyStack
 // and currentEntry.deweyId
18. find largest lcp such that

deweyStack[p] = curEntry[ki].deweyId[p], 1 <= p <= lcp

 // Pop non-matching deweyStack entries
 // (their descendants have been fully processed)
19. while (deweyStack.size > lcp) {
20. sEntry = deweyStack.pop();
21. score = R(Ck1, …, Ckm, sEntry.Ek1, …, sEntry.Ekm);
22. if score among top N seen so far,
 add (deweyStack.deweyID, score) to resultHeap;
23. }

 // Push new ancestors (non-matching part of
 //currentEntry.deweyId) to deweyStack
24. for (all i such that lcp < i <= currDeweyIdLen)
25. { deweyStack.push(deweyStackEntry); }

 // Accumulate inverted list score information
26. for (each deweyStack entry sEntry) {
27. sEntry.Cki = FEki(sEntry.Cki, sEntry.deweyID,
 currentEntry.deweyID, currentEntry);
28. } } // End of looping over all inverted lists

29. Pop entries of deweyStack in context cidj, and add to result heap
 (similar to lines 19-23)
30. } // End of processing cidj
31. return resultHeap

Figure 3: Query Algorithm

context-sensitive information Cki is accumulated for each entry.
The second phase (lines 10-31) computes the top-k query results
using the context-sensitive information Cki. For efficiency, it
maintains a stack of Dewey IDs, the DeweyStack. Using the
DeweyStack, we can keep track of the score information of both the
elements in the inverted lists and their ancestors (since the ancestors
also indirectly contain the query keywords; note that this dependence
is explicitly captured by the FEki function). The scoring information
for the ancestors is updated while a descendant is being processed.
This can be achieved using the DeweyStack because all ancestors and
descendants are clustered in the B+-tree.
The algorithm for the second phase works as follows. For each
cidj, the relevant index entries for all the query keywords are
scanned in parallel until the end of the current context (lines 16 -
28). The smallest ID from these lists is chosen (line 17). Based on
it, the algorithm identifies the entries in the DeweyStack whose
descendants have been fully processed; these entries are popped
out of the stack, their ranks are computed using the function R,
and they are added to the result heap if they are among the top-k
results so far (lines 19-23). The ancestors of the current smallest
ID are then pushed onto the stack (lines 24-25), and the score
information of all these ancestors is updated based on the current
index entry (using function FEki). This process is repeated until
all of the relevant entries from the inverted list are processed.
As an illustration, consider the keyword query ‘Hamlet palace’ over
the search context defined by the ID 3 using the index in Figure 2.
The first phase computes Cki’s (IDFs) by accessing the relevant
entries: 3.4 and 3.5 for “Hamlet”, and 3.5 and 3.6 for “palace”. Then,
in the second phase, the relevant entries are merged. First, the entry
3.4 is processed because it has the smallest DeweyID (Figure 4a).
The stack state keeps track of the current score (TF value) for both
3.4 and all of its ancestors (3, in our case). The next entry processed
is 3.5 from the first inverted list. Since the largest common prefix
with the DeweyStack entry is 3, we can conclude that all descendants
of 3 in the stack (3.4) do not have any further descendants in the
search context. Thus, 3.4 is popped from the stack and is added to the
result heap if it is one of the current top-k results (Figure 4b). Next,
3.5 from the first inverted list is pushed onto the stack (Figure 4c),
and then 3.5 from the second list is used to update the TF values in
the stack (Figure 4d). The algorithm then reads in 3.6, pops out 3.5,
and continues in a similar manner.

4. EXPERIMENTAL RESULTS
We have implemented the system framework and algorithms
described in the previous sections using C++. Using this framework,
we have implemented context-sensitive versions of the following:
XXL [21], XSEarch [1], and XIRQL [5]. We indexed a
heterogeneous XML collection consisting of Shakespeare’s plays

[20], INEX IEEE articles [11], and SIGMOD Record in XML [19].
The size of the entire collection was 521MB, and the size of the
inverted lists was 719MB. The space overhead for the context B+-
trees to enable context-sensitive search was just 12MB. Our
experiments were performed on a Pentium IV 2.2GHz processor with
1GB of RAM running Windows XP. When measuring performance,
we used a cold operating system cache.
We performed two types of experiments. The first type measured
the performance benefits of using context B+-trees to skip over
irrelevant entries in the inverted lists. The second type of
experiment measured how much context-sensitive ranking can
influence the ranks of query results.
For the first set of experiments, we compared the performance of
the following three implementations: (1) a baseline naïve
approach that scans all the entries in the inverted lists, including
those that do not belong to the search context (Naïve), (2) the
algorithm in Section 3.4, but without using the pre-processing
phase to compute the context-sensitive Cki (IDF) values (CSS), (3)
the full context-sensitive search and ranking algorithm described
in Section 3.4 (CSSR). CSS only supports context-sensitive search,
but does not support context-sensitive ranking. Thus, the
performance difference between CSSR and CSS quantifies the
performance overhead of context-sensitive ranking.
Figure 5 shows the performance results when the size of the search
context (the percentage of the total number of elements that are in the
search context) is varied. This suggests that context-sensitive search
offers significant performance benefits (by up to a factor of 5) over
Naïve. The latter does not skip over irrelevant entries in the inverted
list. In contrast, CSS and CSSR show consistently better performance
with smaller context sizes because they only have to scan the relevant
portions of the inverted lists. We expect this difference to be even
bigger for larger databases or more selective keywords.
Interestingly, there is practically no overhead for CSSR as
compared to CSS, even though CSSR makes two passes over the
relevant entries. The reason is that the first pass of CSSR brings
all the relevant entries into memory; hence, the second scan has
no measurable overhead. This suggests that context-sensitive
ranking adds no measurable overhead.
The second experiment compared two lists of ranked results
produced by the same ranking algorithm. The first list was the top-10
results when the IDF value was computed using the entire collection.
The second set was the top-10 results produced when the IDF value
was computed using only the search context elements (which is
ideally what the user would like to see). The difference between these
two lists is thus a measure of how much context-sensitive ranking is
likely to change what the user sees in the top ranked results.
Table 2 shows the scaled Spearman Footrule Distance [2] as a measure
of the difference for the XXL, XSEarch and XIRQL ranking methods
for some search contexts and keywords where there are high variations
in the IDF values. The scaled Footrule distance measure produces
values in the range [0, 1], where 0 means identical results and 1 means
that the ranked lists do not have common elements. As shown, some
query keywords such as “process speech” have almost no common
results in the two lists, while others have more common results.
In summary, the experiments show that context-sensitive ranking

Push Pop Push Update
4 (1, 0) 5 (1, 0) 5 (1, 2)
3 (1, 0) 3 (1, 0) 3 (2, 0) 3 (2, 2)

ID (E1, E2) ID (E1, E2) ID (E1, E2) ID (E1, E2)
(a) (b) (c) (d)

Figure 4 The DeweyStack Transition

can significantly influence ranked results with negligible
performance overhead.

5. RELATED WORK
There has been a lot of recent work on keyword search over XML.
Some of these, like [3], [10], [24] and the SGML indexing techniques
in [13], do not consider the issue of ranking. Various scoring methods
for semi-structured document collections have been proposed
[1][4][5][8][16][17][21][23]. However, unlike the present paper, none
of the above addresses the issue of context-sensitive ranking and its
tight integration with context-sensitive search.
Grabs and Schek [7] propose a context-sensitive scoring method for
the INEX collection. Their definition of context uses predefined
categories (element nodes of the same type). Our work is
complementary to the above work in that we do not propose a
specific scoring method but develop a general framework whereby
multiple scoring methods, including that in [7], can be incorporated.
Our focus is thus on developing the underlying system architecture,
efficient inverted lists and query evaluation using these inverted lists,
which are not considered in [7]. We also support a more flexible
search context specification based on XPath without restrictions on
the search context. Halverson et al. [9] and Kaushik et al. [15] discuss
inverted lists with B+-trees in the context of structural joins, but do
not consider context-sensitive ranking. Jacobson et al. [12] propose
techniques for context-sensitive search over LDAP repositories but
they focus on efficiently evaluating the context expression and not on
evaluating keyword-search queries or ranking results.

6. CONCLUSIONS
We have defined the problem of context-sensitive ranking and
studied its integration with context-sensitive search. We have
proposed a general ranking framework whereby a large class of
existing TF-IDF based ranking algorithms can be directly adapted for
context-sensitive ranking. We have also proposed efficient index
structures and query evaluation strategies for evaluating and ranking
context-sensitive queries. In the future, we plan a user evaluation
study to quantify the retrieval benefits of context-sensitive ranking.

7. REFERENCES
[1] Cohen, S., J. Mamou, Y. Kanza, Y. Sagiv. XSEARCH: A Semantic

Search Engine for XML. VLDB 2003.
[2] Diaconis, P., R. L. Graham. “Spearman’s Footrule as a Measure of

Disarray”. J. of the Royal Society of Statistics, series B39 (1977).

[3] Florescu, D., Kossmann, D., Manolescu, I. Integrating Keyword
Search into XML Query Processing. WWW 2000.

[4] Fuhr, N., T. Rölleke. A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems. TOIS, 15 (1),
1997.

[5] Fuhr, N., Großjohann, K. XIRQL: A Language for Information
Retrieval in XML Documents. SIGIR 2001.

[6] Goldman R., N. Shivakumar, S. Venkatasubramanian, H. Garcia-
Molina. Proximity Search in Databases. VLDB 1998.

[7] Grabs, T., H.-J. Schek. “PowerDB-XML: A Platform for Data-
Centric and Document-Centric XML Processing”. XSym 2003,
Berlin, Germany.

[8] Guo, L, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. SIGMOD 2003.

[9] Halverson, A. et al. Mixed mode XML query processing. In VLDB,
2003.

[10] Hristidis, V., Y. Papakonstantinou, A. Balmin. Keyword Proximity
Search on XML Graphs. ICDE 2003

[11] INEX 2003. http://inex.is.informatik.uni-duisburg.de:2003/
[12] Jacobson, G., B. Krishnamurthy, D. Srivastava, D. Suciu. Focusing

Search in Hierarchical Structures with Directory Sets. CIKM 1998.
[13] Lee, Y., S.-J. Yoo, K. Yoon, P. B. Berra. Index Structures for

Structured Documents. Digital Libraries Conf., 1996.
[14] Luk, R., et al. A Survey of Search Engines for XML Documents.

SIGIR Workshop on XML and IR, 2000.
[15] Kaushik, R., R. Krishnamurthy, J. Naughton, R. Ramakrishnan. On the

Integration of Structure Indexes and Inverted Lists. SIGMOD 2004.
[16] Myaeng, S., D.H. Jang, M.S. Kim, and Z.C. Zhoo. A Flexible Model

for Retrieval of SGML Documents. SIGIR 1998.
[17] Navarro, G., Baeza-Yates, R. Proximal Nodes: A Model to Query

Document Database by Content and Structure. Information Systems, 1997.
[18] Salton, G. Automatic Text Processing: The Transformation, Analysis

and Retrieval of Information by Computer. Addison Wesley, 1989.
[19] SIGMOD Record in XML. http://www.acm.org/sigmod/record/xml/

XMLSigmodRecordNov2002.zip
[20] Shakespeare’s Plays in XML. http://www.oasis-open.org/cover/

bosakShakespeare200.html
[21] Theobald, A., Weikum, G. The Index-Based XXL Search Engine for

Querying XML Data with Relevance Ranking. EDBT 2002.
[22] Yoshikawa, M., T. Amagasa, T. Shimura, S. Uemura. XRel: A Path-

Based Approach to Storage and Retrieval of XML Documents Using
Relational Databases. ACM TOIT 1(1), 2001.

[23] Yu, C., Qi, H., Jagadish, H. Integration of IR into an XML Database.
INEX Workshop, 2002.

[24] C. Zhang, J. Naugthon, D. DeWitt, Q. Luo, G. Lohman. “On
Supporting Containment Queries in Relational Database
Management Systems”. SIGMOD 2001

Table 1 Effect of the Context-Sensitive Ranking

Query Context XXL XSEarch XIRQL
process speech shakesp 0.81 0.81 1
join complexity inex/tk 1 0.81 0.02
Sigmod opportunities inex/tk 0.59 0.19 0.8
itemsets statistics inex/tk 1 0.51 0.13
relational decomposition inex/tk 1 0.32 0.16

Figure 5 Context Size vs. Query Time

Constructing Maintainable Semantic Mappings in XQuery

Gang Qian
Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

qiangang@seu.edu.cn

Yisheng Dong
Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

ysdong@seu.edu.cn

ABSTRACT
Semantic mapping is one of the important components underlying
the data sharing systems. As is known, constructing and maintain-
ing such mappings both are necessary yet extremely hard process-
es. While many current works focus on seeking automatic tech-
niques to solve such problems, the mapping itself is still left as an
undecorated expression, and in practice it is still inevitable for the
user to directly deal with such troublesome expressions. In this
paper we address such problems by proposing a flexible and
maintainable mapping model, where atomic mapping and combi-
nation operators are the main components. Conceptually, to con-
struct global mapping for the whole target schema, we first con-
struct the atomic mappings for each single target schema element,
and then combine them using the operators. We represent such
combined mappings as mapping trees, which can be incrementally
constructed, and can be locally maintained. Also, we outline the
main issues in combining our work with the current automatic
techniques, and analyze the maintainability of the mapping tree.
Though our discussion is applicable to other models, this paper
limits the attention to the XML model and the XQuery language.

1. INTRODUCTION
Semantic mapping is one of the important components under-

lying the data sharing (e.g., data integration and data exchange)
systems. For example, the mappings may be used to translate the
user query over the target (mediated) schema into queries over the
source schemas (e.g., [8]), or translate the data resided at different
sources into the target database. To enable data sharing, the user
has to first construct the semantic mappings between the target
and the source schemas. Also, as the application requirements or
the schemas change, the user has to maintain and modify the early
constructed mappings.

As is known, constructing and maintaining such mappings both
are extremely labor-intensive and error-prone processes. Trying to
provide automated support, much recent literature has extensively
studied the techniques like schema matching, mapping discovery
and mapping adaptation. Given a pair of schemas, the technique
of schema matching focuses on discovering semantic correspond-
ences (matches) between schema elements (e.g., [11, 6, 18, 5]).
Taking these matches as input, the tools like Clio [3] then are
employed to further discover and generate the candidate semantic

mappings between the schemas, e.g., in the form of a naive SQL
or XQuery expression [10, 13]. When the schemas evolve, the
technology of mapping adaptation is responsible for adjusting the
mappings constructed originally and keeping them as consistent
as possible [19].

Despite this progress, however, it is still inevitable for the user
to directly construct and maintain the mappings. In practice there
are many factors that may require to modifying and maintaining
the mappings. For example, mapping construction is usually a
process of repeated refinement. In most case, only semantically
valid and partial mappings the automated techniques can discover.
To obtain the desired one, the user may need to further refine the
discovered mappings, or completely reconstructed it in the cases
beyond the intelligence of the automated techniques. A detailed
motivation appears in Section 2.

As the automated techniques could not completely solve these
mapping problems, we are inspired to explore other complement-
ary ways to alleviate the burden on the user. Currently, schema
mappings are mainly represented as (query) expressions, which
are troublesome for the user to deal with. In dynamic environment
like the Web, schemas and application requirements may change
frequently. We believe that a maintainable mapping represent-
ation would be more suitable than the undecorated expression.
Further, as large, complicated schemas become prevalent on the
Web, it may be more feasible to incrementally construct the
whole schema mappings, e.g., starting with simple mappings, and
then gluing them to formulate the globe ones.

In terms of the above observations, in this paper we propose a
flexible and maintainable mapping model, where atomic mapping
and combination operators are the main components. Specifically,
we limit our attention to the XML model and the mappings
expressed in XQuery, though our discussion is also applicable to
others. In our model, two atomic mappings (say M1 and M2) may
be combined using the Nest, the Join or the Merge operator, and
the resulting mapping is called combined mapping (say M3). We
say that the combined mapping M3 is maintainable, which means
that it can be combined again with others, possibly using another
combination operator, and it is also possible to reset the operator
of connecting M1 and M2, or recover M1 and M2 from M3.

With our model, to construct global mapping for the whole
target schema, we begin to construct the atomic mappings for
each single target schema element, and then incrementally
combine them using the operators. Such flexibility in mapping
construction makes our model adapt well to complicated
applications. We represent the combined mapping as a mapping
tree. To maintain and modify the schema mapping, we only need
to adjust the corresponding nodes of the mapping tree, while other

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland

nodes and their relationships are reused. Note that our approach
would not replace, but rather complement existing techniques to
assist the user to manage the schema mappings. We analyze the
maintainability of the mapping tree, and outline the main issues in
combining our work with the current automatic techniques.

2. A MOTIVATING EXAMPLE
We start with a common example of sharing book information

and illustrate the practical requirement for a flexible, maintainable
mapping representation model. Suppose there is an online shop
that wants to collect data from other sources. Figure 1 shows the
schemas T of the shop and S1 and S2 of its two sources, which
serve as our running example for discussing schema-to-schema
mappings throughout the paper.

We model nested schemas as tree structures, where each tree
edge denotes the structural constraint, the non-tree edge like r1 of
S1 indicates the referential constraint, and the multiplicity label
associated with the tree edge represents the cardinality constraint.
In the source (of) S1, books are grouped by year, and then
categorized by the styles such as novel. The source S2 provides
reviews of books. We suppose that the book is identified by its
title. Note that it is uncertain that every novel instance of S1
must have corresponding reviews in S2.

Using XQuery, we give an example of mapping expression as
follows, which relates the source schemas S1 and S2 and the
target schema T, and indicates the correspondences between
schema elements, e.g., the novel of S1 and the book of T.
<shop>
for s in doc(“S1”)//books, $n in $bs//novel $b
return <book>

{$n/title, $bs/year}
<ca “n
for $a in doc(“S1”)//author

te>{ ovel”}</cate>{

where n/aid=$a/id $
return <author>

{$a/name, $a/intro}
</author>}
… … … … … …
</book>

</shop>

Figure 2. An example mapping expression

In practice, there are many cases where the mappings have to
be modified and maintained. First, constructing the mappings may
well be a repeated refinement process, especially for complicated
applications. For example, to construct the above mapping, the
user at the beginning might have related the book elements of S2
and T. In another case, if the referential constraint r1 of S1 did not
hold, then the above mapping may need to be refined to define the
target author instances by the aid of novel, while for those
authors not stored in S1, the related target attributes like name

may be filled with null values or Skolem functions. Second, when
the application requirements or the schemas change, the mappings
need to be maintained accordingly. For example, for some reason
the shop may want to constraint the schema element review by
“+”. Again, the shop may want to alter to share reviews from
other more economy sources.

The undecorated expression is troublesome for the user to deal
with. In contrast, we propose to represent the schema mapping as
a combined formulation, where atomic mappings and combina-
tion operators are the main constituents. The atomic mapping
defines the local view of a single schema element. Using the
combination operator, two atomic mappings can be connected,
and the result is a combined mapping, which can be further
combined with other combined or atomic mappings.

Example 2.1 For the single target elements book and title, we
respectively construct the atomic mappings as follows.

Mbook(): for 1 in doc(“S1”)//novel $n
return <book></book>

Mtitle: for $n2 in doc(“S1”)//novel, $t1 in $n2/title
return $t1

Using the Nest operator (see Section 3), we combine Mbook()
with Mtitle and obtain the mapping Mbook(title) as follows.

for $n1 in doc(“S1”)//novel
return <book>{

for $n2 in doc(“S1”)//novel, $t1 in $n2/title
where $n1=$n2
return $t1}
</book>

The above combined mapping represents a more significant
view, where the initially separate title instances returned by
Mtitle, now is structurally nested within the paper instances.
Continuing to apply the operators in the same way, other instances
also can be nested within the returned paper instances. �

A mapping should be semantically valid, i.e., conforming to the
constraints contained in the target schema. Intuitively, ignoring its
contexts (i.e., the associated constraints), we think of the single
schema element as the simplest form of schema. Then the atomic
mapping represents the semantic relationship between the source
schemas and the simplest target schema. As the atomic mappings
are combined, the separated schema elements are stitched up, and
the ignored contexts are recovered. Thus, to construct the global
mappings for the whole target schema, we begin to construct the
atomic mappings for each single target schema element, and then
combine them together by applying the operators.

The combined mapping possesses a tree structure, where the
node contains a cluster of atomic mappings, and the edge denotes
the applied operator. Figure 3.a shows an example of the mapping
tree. We can insert other atomic mappings into the mapping tree

Figure 1. The target schema T (left), source schema S1 (middle) and S2 (right)

r1

record

books

novel

title

year

nameaid id intro

authors

author

* *

*

+

*+

*
shop

book

title author year review

name intro who comm

*

coun
?

cate

reviews

book

review

reviewer comm

title

*

*

cate

and construct the global mapping equaling to the one shown in
Figure 2. Besides such flexibility, compared to the naive mapping
expression, the combined mapping is also maintainable. For
example, we can update the operator type to reflect the change of
the cardinality constraint. Also, we can modify locally the atomic
mappings contained in the mapping tree, while other parts are
remained and reused.

3. MAPPING COMBINATION
Atomic mapping. We consider the FLWR [17] expression and
define atomic mapping as a restricted query formulation. In
contrast with the usual XQuery expression, which may contain
arbitrary nested queries, an atomic mapping consists of only one
FOR, one RETURN and one optional WHERE clauses, and,
specifically, has the following general form.

for $v in SP1

where φ
1(), $v2 in SP2($v1), ……, $vn in SPn($vn-1)

return () | constant | SPn+1($vj) | <tag></tag>

Here, SP is a simple path expression with no branching
predicates, and SP1() indicates that SP1 must start at a schema
root, while SPk($vk-1) denotes that SPk is relative to the variable
$vk-1. The filter φ is a conditional expression w.r.t. the variables of
the atomic mapping. The RETURN clause indicates that the atomic
mapping may be empty, constant, copy, or constructor type.

In Example 2.1, the atomic mapping Mtitle is copy type, and
Mpaper() is constructor type, while the following atomic mapping
Mcate-text is constant type.

Mcate-text: for $n4 in doc(“S1”)//novel
return “novel”

Mreview(): for $b1 in doc(“S2”)//book, $r1 in $b1/review
return <review></review>

We refer to $vk (1 ≤ k ≤ n) as the F-variable of the atomic
mapping, and $vn as the primary F-variable (PFV) and others as
the prefix F-variable. Besides binding tuples of instances, the F-
variables may also be used to filter the binding tuples, copy the
source fragments, or connect with other mappings. In the latter
case, as will be seen in Section 4, the prefix F-variables such as
$n2 in Mtitle may be inserted dynamically. In other words, the
user only needs to construct Mtitle as follows.

for $t in doc(“S1”)//novel/title return $t

In combining mappings, the F-variables sharing the same name
will be renamed.

Combination operator. In the following, M1 and M2 denote
atomic mappings with the general forms. We define a few basic
operators to combine M1 and M2. The resulting mapping is called
combined mapping, denoted by M3. Different from mapping (or
query) composition [7], where one query can be answered directly
using the results of another query, combining two mappings is a
“parallel” connection, which includes joining the bound sources
instances and combining the constructed target instances.

Mbook()

The bound sources are related by combination path, which is a
comparison expression w.r.t. the F-variables of M1 and M2, e.g.,
$n1=$n2 in Example 2.1. In Section 4 we will discuss how to
discover such combination paths in combining the mappings.

The operators are responsible for structurally relating the target
instances returned by M1 and M2. At the same time, we respective-
ly use the Nest, Join and Merge operator types to capture the
cardinality constraints contained in the target schema. Note that
[13] shows the techniques of generating mappings in the case of
referential constraints, which also apply our context and are omit-
ted here. We use the following example to explain the intuition
behind the combination operators, while a bit more rigorous for-
malism will be given when defining the combined mappings.

Example 3.1 As another example, we use the Nest operator to
combine Mbook() with Mreview(), and get a combined mapping as
follows.
for $n1 in doc(“S1”)//novel
return <book>{

for $b1 in doc(“S2”)//book, $r1 in $b1/review
where $n1/title=$b1/title
return <review></review>}
</book>

The above mapping indicates that for each novel, there will
be a new book instance returned, no matter whether there are
corresponding reviews in the source S2. In other words, the Nest
operator captures the outer-join relationship between the binding
tuples of the combined atomic mappings. With the constraints in
the schemas of Figure 1, it is valid to apply the Nest operator to
combine Mbook() with Mreview(). However, in the shop schema,
when the cardinality constraint “*” of review is replaced with
“+”, those books with no reviews should be filtered out. The Nest
operator cannot satisfy such requirement. Instead, we use the Join
operator to combine Mbook() with Mreview(), and get a combined
mapping as follows.
for $n1 in doc(“S1”)//novel
let $v:= for $b1 in doc(“S2”)//book, $r1 in $b1/review

where $n1/title=$b1/title
return <review></review>

where count($v)>0
return <book>{$v}</book> �

Let ψ denote the combination path. For both the Nest and the
Join operators, we constrain M1 to be constructor type. Figure 4
respectively shows the resulting combined mapping M3, which
specifies that the target instances returned by M2 would be nested
within those returned by M1. Syntactically, for the Nest operator,
the resulting mapping M3 is obtained by nesting M1 within the
RETURN clause of M2, while for the Join operator, M3 is obtained
by introducing a new LET-variable $v to bind the sequences
returned by M2, and a condition count($v)>0 to filter out those
unsatisfied binding tuples.

Figure 3. The global mapping between the target and
the source schemas is represented as a mapping tree.

(i) (Nest, $n1=$n2) (iii) (Nest, $n1/title=$b1/title)

Mtitle

Mcate-text

Mreview()

Mwho()

Mcate()

(i) (iii) (ii)

(v) (iv)

 In addition, the application may need to express the “product”
relationship between the binding tuples of M1 and M2. When the
target schema is a default XML view over the relational database
[15], for example, the flattened instances may be required to be
returned. We use the Merge operator to satisfy such demands. In
this case, if M1 is constant or copy type, then M2 must be empty
type; if M1 is constructor type, then M2 must also be constructor
type and with the same <tag>. For the latter Figure 4 shows the
general form of the resulting combined mapping M3, where the
returned instances are merged.

Combined mapping. In defining the above operators, we
present the combined mapping M3 as an equivalent expression.
Now, to define the general combined mappings, we first model M3
as a mapping tree. Specifically, the atomic mapping is considered
as a node. If M1 and M2 are combined using the Nest or the Join
operator, then M2 is a child node of M1, and the edge is labeled
with (Op, ψ). If they are combined using the Merge operator, then
the nodes are united into one, which contains both M1 and M2, and
is associated with ψ.

For example, the following mapping tree T1 corresponds to the
combined mapping Mbook(title) (see Example 2.1), while the tree
T2 means a combined mapping obtained by combining Mauthor()
with Mname() using the Nest operator.

Being a query, the atomic mapping returns a forest of data
(DOM) tree. Specifically, for each binding tuple t, if the filter φ
holds, then the atomic mapping will construct a data tree d. In this
case we also say that t→d holds. Corresponding to the types, the
data tree d may be an empty node, a text node, a copied subtree,
or an element node. The Nest operator applied between Mbook()
and Mtitle indicates that, for each binding tuple t (t→d holds) of
Mbook(), if there are n binding tuples tn (tn→dn holds) of Mtitle
satisfying the combination path (i.e., $n1=$n2), then the com-
bined mapping tree T1 will return the data tree d with dn (n≥0)
nested within its root node. In our running example, n=1.

Further, we use the Nest operator to combine the Mbook() of T1

with the Mauthor() of T2, which means inserting T2 into the root of
T1. Figure 5 shows the obtained mapping tree T3, where the new
edge “(iii)” is associated with the applied operator and combina-
tion path. In another case, we first combine M’book() (see Figure
5) with the Mauthor() contained in T2, and obtain a mapping tree
(say T’4). Then we use the Merge operator to combine the
Mbook() contained in T1 with the M’book() contained in T’4,
which means merging the root nodes of T1 and T’4. The obtained
mapping tree T4 is shown in Figure 5.

Let t1 and t2 respectively denote the binding tuples of Mbook()
and M’book(), and let d1 and d2 respectively denote the data trees
returned by T1 and T’4. The Merge operator applied above
indicates that, for each pair of the binding tuples (t1, t2), where
both t1→d1 and t2→d2 hold, if the combination path holds, then
the mapping tree T4 will return a data tree which merges the root
nodes of d1 and d2. Intuitively, the mapping tree T4 defines
flattening author instances.

As can be seen, in a general mapping tree, each node contains
atomic mappings, which are combined using the Merge operator,
and each edge corresponds to the Nest or the Join operator, which
relates the atomic mappings contained in the parent and in the
child nodes. Note that there are no the possibilities where both the
Nest and the Join operators are simultaneously applied in the
same edge, since the atomic mappings contained in the same node
contribute to the same target instances. But now the combination
path may be a conjunctive formulation.

Let a node in the mapping tree contain i atomic mappings. We
can define the semantics of the general mapping tree in terms of
the tuple (t1, t2, …, ti), where each ti denotes the binding tuple of
the corresponding atomic mapping. We omit the details here. In
terms of the rules of formulating the combined mapping M3 as
shown in Figure 4, we write the equivalent mapping expression
for the mapping tree T3 as follows.
for $n1 in doc(“S1”)//novel
return <book>{

for n2 in doc(“S1”)//novel, $t1 in $n2/title $
where $n1=$n2 return $t1}{
for $a1 in doc(“S1”)//author
where $n1/aid=$a1/id return <author>… … …</author>}
</book>

Using the normalization rules such as shown in [8], the above
mapping may be minimized into the expression fragment of the

(i) (Nest, $n1=$n2)

(ii) (Nest, $a1=$a2) (i)

Mtitle

Mbook()

T1

(ii)

Mauthor()

Mname T2

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
where φ1
return <tag>

for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ2 and ψ
return exp </tag>

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
let $v:= for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)

where φ2 and ψ
return exp

where count($v)>0 and φ1
return <tag>{$v}</tag>
for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ1 and φ2 and ψ
return <tag></tag>

Figure 4. The Nest, Join and Merge operators

(i)

Mtitle

Mbook()

(ii)

Mauthor()

Mname

(iii)

T3

Mau
for $a1 in doc(“S1”)//author return <author></author>

thor():

M’b
for $a3 in doc(“S1”)//author return <book></book>

ook():

(i) (Nest, $n1=$n2) (ii) (Nest, $a1=$a2) (iv) (Nest, $a3=$a1)
(iii) (Nest, $n1/aid=$a1/id) (v) (Merge, $n1/aid=$a3/id)

(i)

Mtitle

(ii)

Mauthor()

Mname

(iv)

Mbook() M’book() (v)

T4

Figure 5. Constructing the general mapping tree

one in Figure 2. The ways to construct the mapping tree are mul-
tiple. Alternatively, for example, to obtain the mapping tree T4,
we can first merge T1 with M’book(), and then insert T2. We
believe that such flexibility would be popular in constructing the
global mapping, especially for the complicated applications. Note
that the sibling nodes are order sensitive in the mapping tree.

4. AUTOMATED SUPPORT
Besides the flexibility, the combined mapping is also maintain-

able. In this section we further combine our work with the current
automated techniques. Specifically, we show how to generate the
atomic mappings and discover the combination paths. Also, we
analyze the maintainability of the combined mappings.

Given the target and the source schemas, the atomic mappings
are first generated in terms of the matches produced by a tool of
schema matching (e.g., LSD [6]). Interestingly, due to the main-
tainability of the combined mapping, our model does not require
that all the produced matches should be desired. Next, keeping the
target schema in mind, the user incrementally combine the atomic
mappings using the operators, i.e., inserting and merging the
mapping trees. In this process, a tool may be used to suggest the
candidate combination paths.

Maintainability. As motivated in Section 2, the requirements
of modifying and maintaining the mappings may result from the
way of incrementally constructing the mappings, the refinement
of the mappings, or the evolution of the schemas. With our
mapping model, they are all reduced to maintaining the mapping
trees, e.g., inserting and merging subtrees. In the mapping trees,
the atomic mapping may be related through the combination paths
with other atomic mappings contained in the same, parent, or
child nodes. As the modifications occur in the mapping tree, these
combination paths would need to be discovered or adjusted, while
other parts of the mapping trees would be remained and reused.

Modifying the combination operators (Nest and Join) will not
affect the combination paths that relate the atomic mappings. For
example, consider the Example 3.1 and the mapping tree in Figure
3, if in the target schema the cardinality constraint “*” of
review is replaced with “+”, then we only need to modify the
operator type in the edge “(iii)” from Nest to Join.

On the other hand, for the following modifications, we find out
those pairs of atomic mappings (M1, M2) between which the com-
bination paths would need to be discovered or adjusted. In the
following, S represents the set of (M1, M2), Tr corresponds to the
mapping trees and r is its root node, and atoms(n) denotes the set
of atomic mappings contained in the node n of the mapping tree.
We also use p and ci to respectively denote the parent and the
children nodes of the node n.

Inserting Tr1 into the node n of Tr2.
S←(M1, M2), where M1∈atoms(r1) and M2∈atoms(n).

Merging Tr1 into the node n of Tr2.
S←(M1, M2), where M1∈atoms(r1) and M2∈atoms(n) ∪
atoms(p) ∪ atoms(ci).

Updating the atomic mapping M contained in the node n.
S←(M1, M2), where M1∈{M} and M2∈atoms(n) ∪
atoms(p) ∪ atoms(ci) − {M}.

Removing the atomic mapping M from the node n.
S←(M1, M2), where M1, M2∈atoms(n) ∪ atoms(p) ∪
atoms(ci) − {M} and M1 ≠ M2.

Consider the mapping tree T4 shown in Figure 5. The atomic
mappings M’book() and Mauthor() contained in the tree are
related by the combination path $a3=$a1. The modification of
removing M’book() from the root of T4 would affect the atomic
mapping pairs {(Mbook(), Mtitle), (Mbook(), Mauthor())},
which are respectively taken to discover the candidate
combination paths (discussed in a moment). Guided by these
candidate paths, the user then may adjust the above path to
$n1/aid=$a1/id.

Note that such adjustment is not additionally introduced by our
mapping model. In contrast, such maintainability inherent in our
model provides the opportunities for automating the process of
mapping maintenance, be it caused by schema evolution, mapping
refinement, or other factors. In our going work, we are developing
methods to assign priorities to the discovered combination paths,
and to heuristically reduce the amount of the potentially affected
atomic mapping pairs. Additionally, our first experiment in the
book domain shows that there are averaged 1.2 atomic mappings
contained in each node of the mapping trees.

Schema matching. Schema matching [6, 18, 5] produces a set
of semantic correspondences (matches) between the elements of
the schemas, from which atomic mappings can be generated. For
example, a 1-1 match would specify that the element name in S2
match who in the shop schema T. Then, an atomic mapping Mwho
could be generated via specifying its PFV (see section 3) by the
element name. As to complex type (e.g., 1-n) matches, several at-
omic mappings may be generated, which then are combined using
the operators. In practical mapping construction, it is often the
case where the matches initially used to obtain the mappings are
not the desired. Fortunately, as shown above, our model is able to
make it local to update the corresponding atomic mappings.

Discovering combination path. Combination path ψ is used to
relate the bound source instances of the atomic mappings, and can
be heuristically discovered in terms of the semantic relationships
between the source schema elements. As presented in [10, 13, 19],
such relationships are captured by the structural, user and logical
associations, which respectively describe a set of associated
schema elements.

Consider the source schema S1. For example, the elements
such as novel and title are in a structural association, while
the elements such as novel, title, author and name are in a
logical association. To relate the novel with the book reviews, the
user may explicitly relate the title elements. Then the elements
such as novel and title of S1, and book and title of S2
are in a user association.

Let e1 and e2 respectively denote the source schema elements
specifying the PFVs of the atomic mappings M1 and M2. If the
elements e1 and e2 are in a structural association, then ψ may be
formulated in terms of their common path. Consider to combine
the atomic mappings Mbook() and Mtitle. Their PFVs (i.e., $n1
and $t1, see Example 2.1) are respectively specified by the ele-
ments novel and title of S1, which are in a structural asso-
ciation. In terms of the common element, i.e., novel, the path
$n1=$n2 is generated, where, as a prefix F-variable, $n2 may
be dynamically inserted into Mtitle, if it does not exist.

If e1 and e2 are in a structural but in a user association, then ψ
may be formulated with the path assigned by the user. Lastly, if
they are neither in a structural nor in a user, but in a logical
association, then ψ may be formulated in terms of the referential
path between the schema elements e1 and e2. For example, the
combination path, $n1/aid=$a1/id, of relating Mbook() and
Mauthor() is generated in terms of the logical relationship
between the elements novel and author. In a similar way, the
prefix F-variables can also be introduced dynamically, if they are
not defined in constructing the atomic mappings.

5. RELATED WORK
Schema mappings are extensively used in many modern applic-

ations such as the data integration and data exchange systems. To
alleviate the burden on the user for constructing and maintaining
such semantic mapping, many efforts have been made to pursue
maximum automatic support, which can be classified into works
on schema matching and mapping discovery. The former focuses
on discovering semantic correspondences between the elements of
a pair of schemas (e.g., [11, 6, 18, 5], see also [14] for a recent
survey). Among these, [18, 5] discussed how to obtain complex
type matches, based on the domain ontology and the multi-
matcher mechanism. Under the assumption that the desired
matches have been given, [10, 13] proposed to further discover
candidate schema-to-schema mappings. In their approach, the
matches are related using the chase technique [1, 12] to search the
semantic relationships between the source or target schema ele-
ments. In terms of such semantic relationship, [19] proposed to
compute the matches affected by schema evolution, and then re-
employ the mapping discovery system to adjust the mappings.

In contrast, we propose a flexible and maintainable model to
represent XML mappings. We think that the global mapping can
be constructed in a piecemeal fashion, where, to some extent, the
partial mappings resemble subgoals in datalog programs. Also,
the XML-QL language [4] allow for defining partial mappings.
Yet we provide a richer scheme for combining the results of the
different partial mappings. In our model, mappings are considered
as the first-class citizens that can be operated. Such idea also was
used in [2, 9] to deal with the management of meta data. Yet the
subjects these works focused on are not the mappings but the
matches between the schema elements. Additionally, there have
been many GUI-style tools developed to assist the user to
construct the mappings (queries) in XQuery, where the queries are
formulated in terms of the syntax ingredients such as the FOR,
LET, WHERE and RETURN blocks [16]. Differently, our mapping
model is based on the semantic relationships between mappings to
be connected.

6. CONCLUSION
Semantic mappings are key for enabling a variety of data

sharing scenarios. This paper described the flexible and maintain-
able mapping model, where the atomic mapping and the combi-
nation operator are the main components. Conceptually, to con-
struct the global mapping for the whole target schema, we first
construct the local atomic mappings for the single target schema
element, and then combine them using the operators. We repre-
sented the combined mappings as the mapping trees. Then the
mapping problem is reduced to the problem of constructing and
maintaining the mapping trees. We analyzed the maintainability

of the mapping tree, and presented how to combine our work with
the current automated techniques.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their

insightful comments.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. A. Bernstein. Applying Model Management to Classical

Meta Data Problems. In Proc. of CIDR, 2003.
[3] Clio. http://www.cs.toronto.edu/db/clio/
[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.

Suciu. A Query Language for XML. In proc. of WWW, 1999.
[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P.

Domingos. iMAP: Discovering Complex Semantic Matches
between Database Schemas. In proc. of SIGMOD, 2004.

[6] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine learning approach. In
proc. of SIGMOD, 2001.

[7] J. Madhavan and A. Halevy. Composing mappings among
data sources. In Proc. of VLDB, 2003.

[8] I. Manolescu, D. Florescu, and D. Kossman. Answering
XML Queries on Heterogeneous Data Sources. In proc. of
VLDB, 2001.

[9] S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A
Programming Platform for Generic Model Management. In
proc. of SIGMOD, 2003.

[10] R. Miller, L. Haas, and M. Hernández. Schema Mapping as
Query Discovery. In Proc. of VLDB, 2000.

[11] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In proc. of VLDB, 1998.

[12] L. Popa and T. Val. An Equational Chase for Path-
Conjunctive Queries, Constraints, and Views. In proc. of
ICDT, 1999.

[13] L. Popa, Y. Velegrakis, R Miller, M. A. Hernandez, and R.
Fagin. Translating Web Data. In Proc. of VLDB, 2002.

[14] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4): 334–
350, 2001.

[15] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
proc. of VLDB, 2001.

[16] Stylus Studio. http://www.stylusstudio.com
[17] XQuery. http://www.w3.org/XML/Query
[18] L. Xu and D Embley. Using domain ontologies to discover

direct and indirect matches for schema elements. In Proc. of
the Semantic Integration Workshop at ISWC, 2003.

[19] Y. Velegrakis, R. J. Miller, and L. Popa. Preserving mapping
consistency under schema changes. The VLDB Journal,
13(3): 274-293, 2004.

The Framework of an XML Semantic Caching System

Wanhong Xu

Center for Computational Genomics
Department of Electrical Engineering and Computer Science

Case Western Reserve University, Cleveland, OH
Wanhong.Xu@case.edu

ABSTRACT
As a simple XML query language but with enough expressive
power, XPath has become very popular. To expedite evalu-
ation of XPath queries, we consider the problem of caching
results of popular XPath queries to answer queries.

Existing semantic caching systems can answer queries that
have been already cached, but can’t combine cached results
of multiple XPath queries to answer new queries. In this pa-
per, we describe the architecture of a new semantic caching
system, and mainly introduce the novel framework of this
system. We show that our framework can represent cached
XML data by a set of XPath queries, and the cached data
can be used to answer new queries that may not be cached.
We also consider incrementally maintaining the cached XML
data in our system. The results suggest that our caching
system is practical and has better answerability.

1. INTRODUCTION
Recently, more and more data are represented and exchanged
as XML documents over Internet. XPath [9], recommended
by W3C, is a simple but popular language to navigate XML
documents and extract information from them, and to be
used as sub-languages of other XML query languages such
as XQuery [6].

There has been a lot of work to speedup evaluation of XPath
queries, including, index techniques [8], structural join algo-
rithms [2] and minimization of XPath queries [3, 15, 11].
Recently, the problem of answering queries using cached re-
sults in XML world has begun to attract more attention
since it has been proven that the caching technique can im-
prove performance significantly in traditional client-server
databases, distributed databases and Web-based informa-
tion systems. This problem has been discussed for query
optimization [5] and semantic caching [7, 1, 12, 16].

We begin by giving some examples in the semantic caching
scenario to describe motivation of studying this problem.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

Motivation Examples: Consider the following XML doc-
ument t stored in an XML server, which partially describes
enzyme information of a biological pathway:

<Pathway name = “PA1”>
<Reaction name = “RE1”>

<Enzymes>
<Protein name = “PR1” EC# =“1.0.0.1”/>
<RNA name = “RN1”/>

</Enzymes>
</Reaction>
<Reaction name = “RE2”>

<RNA name = “RN2”>
</Reaction>

</Pathway>

Let’s assume that a client issues to the server an XPath
query v :

//RNA

which retrieves all RNA elements. Suppose the client caches
the result of v. When the client issues another XPath query
p :

/Reaction/RNA

which retrieves RNA subelements of all Reaction elements.
We know that the result of p is included in the cached re-
sult, i.e., the result of v. But, we can’t compute p’s result by
using the cached result because we don’t know which RNA
elements in cached result belong to the result of p. In fact,
the cached result of v can only be used to answer the same
query as v. However, if we can store extra information, for
example, the paths from the root of XML document t to
each RNA subelement, then the cached result of v can be
used to answer p. The cached result with path information,
denoted as t′, is given as follows:

<Pathway>
<Reaction>

<Enzymes>
<RNA name = “RN1”/>

</Enzymes>
</Reaction>
<Reaction>

<RNA name = “RN2”>
</Reaction>

</Pathway>

t′ is still an XML document. We can get the same result of
evaluating p over t′ as that of evaluating p over t. Hence,

storing extra information can improve the answerability of
cached results.

In this paper, we introduce a framework to represent the
cached XML document, discuss how to decide that the cached
information is enough to answer a query, and how to incre-
mentally maintain the cached XML document.

2. PRELIMINARIES
2.1 Trees and Tree Patterns
Generally, an XML database consists of a set of XML docu-
ments. We model the whole XML database as an unordered
rooted node-labelled tree (called XML tree) over an infi-
nite alphabet Σ (A virtual root node might be introduced to
connect all XML documents if necessary). In this XML tree,
each internal node’s label corresponds to an XML element
or attribute name, and each leaf node’s label corresponds to
a data value. In addition, we assume that each node has a
unique node identifier. An XML tree is shown in Fig. 1 (a)
as an instance. We let TΣ be the set including all possible
XML trees over Σ. Formally, we have:

Definition 2.1. An XML database is a tree t〈Vt, Et, rt〉
over Σ called XML tree, where

• Vt is the node set and Et is the edge set;

• rt ∈ Vt is the root of t;

• Each node n in Vt has a label from Σ(denoted as n.label)
and a unique node identifier (denoted as n.id).

Given an XML tree t〈Vt, Et, rt〉, the size of t is defined as
the cardinality of Vt, and we also say that t′〈Vt′ , Et′ , rt′〉 is
a subtree of t if Vt′ ⊆ Vt and Et′ = (Vt′ × Vt′) ∩ Et. If t′

includes the root of t, t′ is also called as the rooted subtree
of t.

In this paper, we discuss a fragment of XPath queries de-
noted as XP {/,//,∗,[]}, as in [13]. This fragment consists of
label tests, child axes(/), descendant axes(//), branches([])
and wildcards(*). It can be recursively represented by the
following grammar:

xp → l| ∗ |xp/xp|xp//xp|xp[xp]

where l is a node label from Σ. As said in [13], any XPath

query from XP {/,//,∗,[]} can be trivially represented as a
labelled tree(called tree pattern) with the same semantics.

Definition 2.2. A tree pattern p is a tree 〈Vp, Ep, rp, op〉
over Σ ∪ {‘*’}, where Vp is the node set and Ep is the edge
set, and:

• Each node n in Vp has a label from Σ ∪ {‘*’}, denoted
as n.label;

• Each edge e in Ep has a label from {‘/’,‘//’}, denoted
as e.label. The edge with label ‘/′ is called child edge,
otherwise called descendent edge;

Figure 1: (a)An XML tree t; (b)A pattern p.

• rp, op ∈ Vp are the root and output node of p respec-
tively.

For example, an XPath query a[∗/b]/c//d from XP {/,//,∗,[]}

is represented as a tree pattern shown in Fig. 1(b), where
the dark node is the output node. Without loss of generality,
we refer to tree patterns as patterns in the rest of this paper.

We now define an embedding (also called pattern match)
from a pattern to an XML tree as follows:

Definition 2.3. Given an XML tree t〈Vt, Et, rt〉 and a
pattern p〈Vp, Ep, rp, op〉, an embedding from p to t is a func-
tion e : Vp → Vt, with following properties:

• Root preserving: e(rp) = rt;

• Label preserving: ∀n ∈ Vp, if n.label 6= ‘*’, n.label =
e(n).label;

• Structure preserving: ∀e = (n1, n2) ∈ Ep, if e.label =
‘/’, e(n2) is a child of e(n1) in t; otherwise, e(n2) is a
descendent of e(n1) in t.

The embedding maps the output node op of p to a node n in
t. We say that the node n is the result of this embedding. As
an example, dashed lines between Fig. 1(a) and (b) shows an
embedding, and its result is the node with id = 8. Actually,
there could be more than one embedding from p to t. We
define the result of p over t, denoted as p(t), as the union of
results of all embeddings, i.e.,

∪e∈EB{e(op)}

where EB is the set including all embeddings from p to t.

For a given XML tree t, we also consider evaluating a set
of patterns S = {p1, p2, ..., pn} over t. The result, denoted
as S(t), is the union of the result of evaluating each pi in S
over t, formally defined as:

S(t) = ∪pi∈Spi(t)

2.2 Containment of Tree Patterns
For any two patterns p1 and p2, p1 is said to be contained in
p2(denoted as p1 v p2) iff ∀t ∈ TΣ p1(t) ⊆ p2(t). Similarly,

we also say that a pattern p is contained in a pattern set
S(denoted as p v S) iff ∀t ∈ TΣ p(t) ⊆ S(t), and a pattern
set S1 is contained in a pattern set S2(denoted as S1 v S2)
iff ∀t ∈ TΣ S1(t) ⊆ S2(t).

It’s easy to show that S1 v S2 iff ∀pi ∈ S1 pi v S2. However,
it’s not always true that p v S implies ∃p′ ∈ S s.t. p v p′.

3. SYSTEM OVERVIEW
In this section, we describe the architecture of our caching
system, which is designed to work with XML web services
and improve their performance.

Generally, web services are running at web servers and they
act as bridges between clients and XML servers. When web
services got service requests from clients, they would issue
a series of XML queries to XML servers and return the cor-
responding results to clients.

The caching system runs as an independent application in
the web server. Its architecture is shown in Fig. 2. This
system intercepts all XML queries issued by web services,
and tries to answer them by using local cached XML data
instead of submitting them to the XML database server. It
consists of several components. Next, We describe them one
by one.

The Cache stores cached XML data with a semantic scheme.
This semantic scheme consists of a set of patterns, and de-
scribes current cached XML data. The cached data is or-
ganized as an XML tree, which is a rooted subtree of the
XML tree exported by the XML database server, more de-
tails given in Section 4.1.

When received an XML query, the Query Manager decides
whether the cached XML tree can totally answer this query
according to current semantic scheme or not, i.e., we can
get the same result of evaluating this query over the cached
XML tree as that of running it on the server, further dis-
cussed in Section 4.2. The Index built on the semantic
scheme is used to speed-up the decision. If yes, the Query
Manager will run this query against the local cached XML
tree; otherwise submit it to the server.

The Replacement Manager employs replacement strategies
(like LRU) to clear out less queried or expired data and
incorporate new data. Specific details about how to incre-
mentally maintain the cached XML tree will be given in
Section 4.3.

4. FORMAL FRAMEWORK
We next introduce our formal framework and discuss how
to represent, query and maintain the XML data cached in
our caching system.

4.1 Representing the Cached XML Data
We discuss our representation of the cached XML informa-
tion in this subsection. The main idea is that the cached
XML information is represented by a set of patterns S, and
this representation must satisfy two requirements: one is
that the cached XML data must be a rooted sub-tree of the
XML tree exported by the XML database server; the other

Figure 2: System Architecture

one is that the cached XML tree must totally answer any
pattern in S, i.e, for any pattern p ∈ S, we can get the same
result of evaluating this pattern p over the cached XML tree
as that of evaluating p over the exported XML tree of the
server.

We will describe this representation, satisfying the above
two requirements, by defining the XML tree to be cached
for a pattern set S. We formalize the representation for one
pattern first, and then extend it to a pattern set later.

Before introducing the representation, we define the embed-
ding node set of a pattern p over an exported XML tree t.
This set includes all nodes in t mapped from nodes in p by
an embedding between p and t. Hence, nodes in this set
may be queried or accessed in the evaluation of p over t.
Formally, we have:

Definition 4.1. Given an exported XML tree t and a
pattern p〈Vp, Ep, rp, op〉, an embedding node set of p over
t, denoted as ENS(p, t), is ∪e∈EB(∪vi∈Vp{e(vi).id}) where
EB is the set including all possible embeddings from p to t
and e is an embedding.

Example 4.2. In Fig. 3, there are only two embeddings
from pattern p1 shown in (a) to an XML tree t shown in (b).
The dashed lines represent one embedding, and it maps nodes
in p1 to nodes with id = 1, 2 and 8 respectively in t. The
dotted lines represent the other one, and it maps nodes in p1

to the nodes with id = 1, 3 and 8 respectively in t. So, the
embedding node set for p1 is the union of nodes mapped by
these two embeddings, i.e., {1, 2, 8} ∪ {1, 2, 3} = {1, 2, 3, 8}.

We next generally define a materialized tree for any node
set N over an exported XML tree t.

Figure 3: (a)Pattern p1 (b)The exported XML tree
t (c) Pattern p2 (d) The XML tree tp1

represented
by p1 (e)Pattern p3 (f)The XML tree tp2

represented
by p2

Definition 4.3. Given an exported XML tree t〈Vt, Et, rt〉
and a set of nodes N ⊆ Vt, we say that a rooted subtree
t′〈Vt′ , Et′ , rt′〉 of t is a materialized tree for N over t if
N ⊆ Vt′ .

However, there are maybe more than one materialized trees
for a set of nodes N over an exported XML tree t. We are
only interested in those with the minimum size. We say t′

is the minimal materialized tree(MMT) for N over t if
t′ is a materialized tree for N over t and any materialized
tree t′′ for N over t has larger size than t′.

Example 4.4. In Fig. 3, let’s assume that a node set
N = {1, 2, 8}. Both XML trees shown in (d) and (f) re-
spectively are materialized trees for N over the XML tree
shown in (b). But, the XML tree shown in (f) is a minimal
materialized tree of N , and the XML tree shown in (d) is
not.

Not only minimal materialized trees have the smallest sizes,
but also they have very good properties shown in the fol-
lowing lemma.

Lemma 4.5. Given an exported XML tree t and a set of
tree nodes N , t′, which is a minimized materialized tree for
N over t, has the following properties:

• For any materialized tree t′′ for N over t, t′ is a rooted
subtree of t′′;

• t′ is unique, i.e., any other minimized materialized tree
is identical to t′.

We say that the XML tree represented by a pattern p over
an exported XML tree t is the minimal materialized tree for
the node set ENS(p, t) over t, denoted as tp.

Next, we generalize the above definitions to a pattern set
S = {p1, p2, ..., pn}. Given an exported XML tree t, we say
that the embedding node set for S, denoted as ENS(S, t),
is the union of the embedding node set for each pi ∈ S, i.e.,

∪pi∈SENS(pi, t)

and the XML tree represented by this pattern set S, de-
noted as tS , is the minimal materialized tree for the node
set ENS(S, t) over t.

Our representation satisfies the two requirements listed in
the beginning of this subsection. The first one is obvious,
and the second one is guaranteed by the following theorem.

Theorem 1. Given an exported XML tree t and a pattern
set S, the XML tree tS represented by S can totally answer
any pattern pi in S, i.e., pi(t) = pi(tS).

4.2 Querying the Cached XML Tree
Given an XML tree t exported by the XML database server
and a set of tree pattern S, we cache tS in the web server. We
want to use this tS to answer patterns issued by clients. But,
we need to assure that tS can totally answer them, before
evaluating them against tS . From Theorem 1, we know that
tS can totally answer those patterns included in S. However,
tS can totally answer more patterns not only in S. This is
the advantage of our framework. In this subsection, we will
discuss the problem how to decide whether tS can totally
answer a pattern p(maybe not in S) or not. The basic idea
is to check whether tp (represented by p) is a rooted subtree
of tS or not. We have the following result:

Lemma 4.6. Given an exported XML tree t, a pattern p
and a pattern set S, tS can totally answer p if tp is a rooted
subtree of tS.

From the above lemma, our problem is reduced to decide
whether or not tp is a rooted subtree of tS . We can fur-
ther reduce our problem to decide whether ENS(p, t) ⊆
ENS(S, t) or not in our next result.

Lemma 4.7. Given an exported XML tree t〈Vt, Et, rt〉 and
two node set N(⊆ Vt) and N ′(⊆ Vt), the minimal materi-
alized tree for N over t is a rooted subtree of the minimal
materialized tree for N ′ over t if N ⊆ N ′.

Hence, tp is a rooted subtree of tS if ENS(p, t) ⊆ ENS(S, t).
However, there could be some patterns that tS can totally
answer but their embedding node sets are not included in
ENS(S, t). The following is an example.

Example 4.8. In Fig. 3, the exported XML tree t is
shown in (b), and two patterns p1 and p2 are shown in (a)
and (c) separately. We have that ENS(p1, t) = {1, 2, 3, 8}

and ENS(p2, t) = {1, 2, 5, 8}. The XML trees tp1
and tp2

represented by p1 and p2 are shown in (d) and (f) respec-
tively. Assume we cache tp1

and want to answer p2. Al-
though ENS(p2, t) 6⊆ ENS(p1, t) due to the node with id =
5 in ENS(p2, t), tp2

is a rooted subtree of tp1
, i.e., tp1

can
totally answer p2. The reason is that if a rooted subtree of
t has the node with id = 8 from t, then it will also have
node with id = 5 because the node with id = 5 is an ancestor
of node with id = 8 in t. Hence, the node with id = 5 is
redundant for ENS(p2, t) in representing an XML tree.

Furthermore, for a given pattern p, the nodes in ENS(p, t)
mapped from the internal nodes of p are redundant to rep-
resent an XML tree. The following definitions and lemmas
are given to deal with this case.

Definition 4.9. Given an XML tree t and a tree pattern
p〈Vp, Ep, rp, op〉, an embedding leaf node set ELNS(p, t)
is defined as ∪e∈EB(∪

vi∈V
leaf
p

{e(vi).id}), where EB is a set

including all possible embeddings from p to t and V leaf
p ⊆ Vp

includes all leaf nodes of p.

In above example, both embedding leaf node sets for pat-
terns p1 and p2 over the exported XML tree t are {1, 2, 8}.

For an exported XML tree t, we similarly define that the
embedding leaf node set for a pattern set S, denoted as
ELNS(S, t), is the union of the embedding leaf node set for
each pi ∈ S, i.e., ∪pi∈SELNS(pi, t). We have the following
results:

Lemma 4.10. Let t be an exported XML tree. For a given
pattern p and a pattern set S, the following hold:

• The minimal materialized tree for ENS(p, t) over t
(i.e., tp) is identical to the minimal materialized tree
for ELNS(p, t) over t.

• The minimal materialized tree for ENS(S, t) over t
(i.e., tS) is identical to the minimal materialized tree
for ELNS(S, t) over t.

Following Lemma 4.6, 4.7 and 4.10, we easily have that tp

is a rooted subtree of tS if ELNS(p, t) ⊆ ELNS(S, t).

So far, we reduce the problem of deciding whether tS can to-
tally answer p or not to the problem that whether ELNS(p, t)
⊆ ELNS(S, t) or not. We next consider how to decide
ELNS(p, t) ⊆ ELNS(S, t).

We denote a pattern p〈Vp, Ep, rp, op〉 as p op , where op ∈ Vp

is the output node. We also can choose any node in Vp as the
output node of p. For example, the pattern p with a node v1

instead of op as the output node can be denoted as p v1
. For

a pattern p, we introduce a tree pattern set(TPS) including
all patterns by choosing each node in p as the output node,
and this pattern set can be formally defined as ∪vi∈Vp{p vi}
and denoted as TPSp. If we only choose leaf nodes in p as
the output node to build the set, we denote it as TPSleaf

p .

Example 4.11. In Fig. 3, the pattern p1 shown in (a)
has one leaf node with label ‘b’ as its output node. This
pattern has another leaf node with label ‘c’. If we choose it
as output node, we can have another pattern p3 shown in
(e). Hence, the pattern set TPSleaf

p1
for p1 is {p1, p3}.

Our next result shows that the node set ELNS(p, t) is equal
to the result of evaluating the pattern set TPSleaf

p over t.

Lemma 4.12. Given an XML tree t and a pattern p,
ELNS(p, t) = TPSleaf

p (t)

For a pattern set S, we similarly define a pattern set TPSleaf
S

as ∪pi∈STPSleaf
pi

. From the above lemma, we can easily

have ELNS(S, t) = TPSleaf
S (t).

By combining all above lemmas, we finally have the following
conclusion:

Theorem 2. Given an exported XML tree t, a pattern p
and a pattern set S, tS can totally answer p if TPSleaf

p v

TPSleaf
S .

Hence, we reduce the problem deciding whether tS can to-
tally answer p or not to the containment problem between
two pattern sets TPSleaf

p and TPSleaf
S . We will discuss the

complexity of this problem and corresponding algorithms in
Section 5.

4.3 Incremental Maintenance of the Cached
XML Tree

When the XML data represented by some patterns in our
caching system are expired or less queried by clients, we
need to consider clearing out them and incorporating new
data. In this subsection, we discuss how to incrementally
maintain the cached XML tree when a pattern is added to
or removed from the semantic scheme, which is a pattern
set.

Given an XML tree t exported by the server, let’s assume
we already have tS for a pattern set S. When we want to
add a pattern p to S, our problem is how to get tS∪{p} from
tS . The idea is that we acquire tp from server first, and then
merge tp to tS .

We can get tp by pruning all nodes in t whose descendants
don’t include any node in ELNS(p, t). The merge of tp and
tS works as follows: We assume that tS has nodes e1, ..., ek

as its children, and tp has nodes n1, ..., nl as its children. For
each node ei(1 ≤ i ≤ k), if there is a node nj(1 ≤ j ≤ l) that
has the same id as ei, we recursively merge the subtree of tp,
which is rooted at nj and includes all its descendants, to the
subtree of tS , which is rooted at ei and all its descendants;
otherwise, we put the subtree rooted at nj under the root
tS as its new subtree. We have the following result about
this merged tree:

Lemma 4.13. Given a pattern p and a pattern set S, the
tree merged from tp and tS is the minimal materialized tree
for ELNS(S ∪ {p}, t), i.e., tS∪{p}.

When we remove a pattern p from S, our problem is how to
get tS\{p}. We only need to compute ELNS(S\{p}, t). Sim-
ilar to acquire tp, we can get tS\{p} by pruning all nodes in
tS whose descendants don’t include any node in ELNS(S \
{p}, t).

5. COMPLEXITY
Obviously, incrementally maintaining the cached XML tree
can be solved polynomially. In this section, we mainly dis-
cuss the complexity of deciding containment between two
pattern sets.

The complexity of the pattern (not pattern set) containment
problem has been well studied [13] and also for its three sub-
classes, which only use two of the three features: ‘//’, ‘[]’and
‘*’in addition to ‘/’. The problem is in co-NP complete [13]

for XP {/,//,[],∗} and in P for its three subclasses [3, 14, 15].

[13] showed that the containment problem between one pat-
tern and one pattern set can be reduced to that between
two patterns. Hence, the containment problem between two
pattern sets is still in coNP-complete. Furthermore, in case
that all patterns in two pattern sets don’t include ‘//’or
‘*’, the pattern set containment problem can be decided in
polynomial time. However, when patterns have ‘//’, ‘*’ but
no ‘[]’, this problem between two pattern sets is in coNP-
complete even though this problem between two patterns is
in P.

The only heuristic polynomial-time algorithm to decide con-
tainment between two patterns is to find a homomorphism
between them. This algorithm is practical and sound for
patterns, and also complete for its three subclasses. Based
on this algorithm, we can also give a heuristic algorithm
to decide containment between two pattern sets: for two
pattern sets S1 and S2, this algorithm reports S1 v S2 if
∀pi

1 ∈ S1 ∃pj
2 ∈ S2 s.t. pi

1 v pj
2. We also use finding homo-

morphisms algorithm to decide pi
1 v pj

2.

6. RELATED WORK
Semantic Caching has been studied a lot in the relational
model [4, 10]. Recently, semantic caching has attracted
moderate attentions in XML world [7, 16, 5, 1, 12]. In
[7], Chen et al consider using cached results of previous
XQuery queries to answer new queries. In [16], Yang et
al consider mining frequent tree patterns to cache their re-
sults for answering new queries. In both works, only queries,
whose results have already been cached, can be answered.
In [5], Balmin et al consider using pre-computed results of
XPath queries also with data values, full paths, or node ref-
erences to speedup processing of XPath queries. However,
this work rules out the combination of results of multiple
XPath queries in evaluating XPath queries. The most sim-
ilar work to ours is [1, 12]. They consider prefix-selection
queries that can also be represented as a tree. However,
those queries don’t support the important feature of XPath
language: descendant axes, and also have strong constraints
on structures of query trees, for example, two siblings must
have different labels in a query tree.

7. CONCLUSION

This paper has introduced a novel framework for a new se-
mantic caching system. The proposed framework offers the
representation system of cached XML data, the algorithms
to decide whether a new query can be totally answer by
cached XML data or not, and to incrementally maintain
cached XML data.

8. REFERENCES
[1] S. Abiteboul, L. Segoufin, and V. Vianu. Representing

and querying xml with incomplete information. In
PODS, 2001.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, and Y. Wu. Structural joins: a
primitive for efficient xml query pattern matching. In
ICDE, pages 141–152, 2002.

[3] S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries. In
SIGMOD, 2001.

[4] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
Scalable template-based query containment checking
for web semantic caches. In ICDE, pages 493–504,
2003.

[5] A. Balmin, F. Ozcan, K. S. Beyer, R. J. Cochrane,
and H. Pirahesh. A framework for using materialized
xpath views in xml query processing. In VLDB, pages
60–71, 2004.

[6] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Simeon. Xquery 1.0: An
xml query language, November 2003.

[7] L. Chen and E. A. Rundensteiner. Ace-xq: A
cache-aware xquery answering system. In WebDB,
pages 31–36, 2002.

[8] Y. Chen, S. B. Davidson, and Y. Zheng. Blas: An
efficient xpath processing system. In SIGMOD, pages
47–58, 2004.

[9] J. Clark. Xml path language (xpath).

[10] S. Dar, M. J. Franklin, and B. Jonsson. Semantic data
caching and replacement. In VLDB, pages 330–341,
1996.

[11] S. Flesca, F. Furfaro, and E. Masciari. On the
minimization of xpath queries. In VLDB, pages
153–164, 2003.

[12] V. Hristidis and M. Petropoulos. Semantic caching of
xml databases. In WebDB, pages 25–30, 2002.

[13] G. Miklau and D. Suciu. Containment and equivalence
for an xpath fragment. In PODS, pages 65–76, 2002.

[14] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, pages 277–295, 1999.

[15] P. T. Wood. Minimizing simple xpath expressions. In
WebDB, pages 13–18, 2001.

[16] L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining
of xml query patterns for caching. In VLDB, pages
69–80, 2003.

A Data Model and Query Language to Explore Enhanced
Links and Paths in Life Science Sources

George Mihaila
IBM T.J. Watson Research Center���������	�
������������������	���

Felix Naumann
Humboldt-Universität zu Berlin����������
���������������������� !�"�
�#���$	�������%�'&�$

Louiqa Raschid
University of Maryland�
�����(��	����)�	���
���"���&%�*$�&	

Maria Esther Vidal
Universidad Simón Bolı́var��+���&��
������&����"����,�'+
$

ABSTRACT
-/.10�2�34.10651.87:9!3�;<.19<0�;<9,3�=	>�?@;<9<34;�A�B�C@>�?@9%.1DEB�=�?�CFA�0�C4G�=�DHA�.10I2�0�=�JK58L
9<G�M	9�NPOQ=�JR9<S
9�?�TK;<>�?�?@9<0�CU3�.VDEB�519WB�X�Y�3�.V;<A�5Q51.10�2Z.1DEB�519<DE9<0�CFA�L
C@.1=�0�3,A�?@9[0�=�C\?@.1;]X^.V0_9<.8C@X�9�?%?@9<B�?@9<3�9<0�CFA�C@.1=�0`=�?%3�9<DHA�0�C@.V;�3<N%a�X�.13
B�A�B�9�?KB�?@=	B�=�3�9<3bC@X�9Ec�dfe g:h�ij7k?FA�DE9�JR=�?@2UA�0�GUC@=�=	513KC@=`A�3�3�.V3lCb3�;<.8L
9�0�C@.13lC@34.V069]m�B�51=�?@.10�MbA�0�GQ9�m�B�51=�.1C@.10�MKC@X�9%2�0�=�JK5V9<G�M	9%C@X)A�C�3�X�=	>�5kG
n 96;<A�B�C@>�?@9�Go.10p51.10�2�3<N

1. INTRODUCTIONq 06A n >�0�G�A�0�;<9%=�7�rs9 n L'A�;<;�9<3�3�. n 519 n .1=�LfDE=	519<;<>�5VA�?�G�A�CFA[3�=�>�?@;<9<3
;�=	0�CFA�.10tG�A�CFA[A n =	>�C�3�;�.V9�0�C@.8u�;!9<0�C@.8C@.19<3<T�3�>�;FXvA�34M	9<0�9<3<T�3�9�w�>�9<0�;<9<3<T
B�?@=�C@9<.10�3jA�0)Gx;�.1CFA�C@.1=	0�3<NRa�X�963�=�>�?@;<9�3jX�A�S	9IS	A�?�Y�.V0�M`G�9<M�?@9<9�3j=�7
=�S
9]?@5kA�B_.106C@X�9�.1?�;<=	0�C@9<0�CyA�0)GIC@X�9�Y6A�?@9!?@.1;]X�58Y6.10�C@9]?@;<=	0�0�9<;�C@9<G6C@=
9<A�;FXz=�C@X�9�?�N_{\m�B�9]?@.VDE9�0�CjB�?@=�C@=�;<=	5136C@=H?@9�C�?@.19<S
9_?@9�5V9�S	A�0�C6G�A�CFA
= n�| 9<;�C@3o}"G�A�CFAW.10�C@9<M�?FA�C@.1=	0Zw�>�9�?@.19<3F~69�m�B�51=�?@9HD_>�58C@.1B�519E3�=	>�?@;<9<3
A�0)GHC�?FA�S	9�?@3�9QC@X�9j51.V0�2�3KA�0)GHC@X�9IB�A�C@X�3I}�.10�7:=�?@DHA�5158YU;<=	0�;�A�C@9<0�A�L
C@.1=�0�3E=�7j51.10�2�3F~tC@X�?@=�>�M�XZC@X�9<3�9x3�=�>�?@;<9<3<N�r�X�.15V9o3�>�;FX�0�A�S�.1M	A�L
C@.1=�0)A�5�w�>�9�?@.19<3KA�?@96;�?@.8C@.V;<A�54C@=^3�;<.19<0�C@.1u�;I9�m�B�51=�?FA�C@.1=	0/T�C@X�9]YUA�513�=
B�=�3�9v3�.VM�0�.8u);<A�0�Cb5V.1DE.8CFA�C@.1=�0�3bA�0�Go;FX)A�51519<0�M	9<3<N
a�X�9[2
9�Yt51.1DE.1CFA�C@.1=	0`.13\C@X)A�C!;�>�?�?@9<0�C%B�X�Y�3�.1;�A�5�51.10�2t.1DEB�519<DE9<0�L

CFA�C@.1=	0�3^A�?@9U.10�X�9]?@9<0�C@51Y�B�=�=�?_JK.1C@Xs?@9�3�B�9<;�C^C@= n =�C@X�3lY�0�CFA�;�C@.1;
?@9�B�?@9<3�9<0�CFA�C@.V=�0�A�0)G�3�9<DHA�0�C@.1;t2�0�=�JK5V9<G�M	9�N�r�9^.1515V>�3lC�?FA�C@9_>�3lL
.10�M�A�0�9�m�A�DEB�519	N��v�b�k��.13_Ap3�=	>�?@;<9EC@X)A�C_X)A�3_2�0�=�JK519�G�M	9H=	0
X�>�DHA�0�M	9<0�9<3HA�0�G�M�9<0�9�C@.1;WG�.13�=�?FG�9]?@3<N�{,A�;FX�9<0�C�?�Y�.10��v�b�k�
DHA<Y�X�A�S	9^51.10�2�3QC@=x9�0�C�?@.19<36.10�D^>�51C@.1B�5V9_=�C@X�9�?63�=	>�?@;<9<3<N_r�X�.1519
C@X�9�?@9Q.13�3�.1M�0�.8u);�A�0�CK2�0�=�JK5V9<G�M	9QA�0�GU;<>�?FA�C@.1=	0U9���=�?�CKA�3�3�=�;<.VA�C@9�G
JK.8C@X�C@X�9H;�?@9<A�C@.1=	0Z=�7b9�A�;]X�=�7KC@X�9<3�9o51.10�2�3<T\C@X�.V3_2�0�=�JK519�G�M�9o.13
0�=�C!9�m�B�51.1;<.8C@58Y`;�A�B�C@>�?@9<G^.10^C@X�9K51.10�2�N q 515�5V.10�2�3,A�B�B�9�A�?!C@=6=�;<;�>�?
A�CRC@X�9b519<S	9<5�=�74C@X�9j�t�K���Z9<0�C�?�Y�Ny�*0HAI5VA�C@9�?�3�9<;]C@.V=�04T�JR9QG�.V3�;�>�3�3
DHA�0�Y�9]m�A�DEB�519<3H=�7v3�B�9�;<.8u);W3�> n Lf9<519<DE9<0�C@3`JK.8C@X�.10�C@X�9z�v�b�k�
9�0�C�?�YoC@X)A�C6A�?@9^A�;�C@>�A�5158Y�A�3�3�=�;<.VA�C@9�G�JK.8C@XWC@X�9t51.V0�2���C@X�.13I.13IA�G�L
G�.8C@.V=�0)A�5y2�0�=�JK519�G�M�9IC@X)A�Cj.13K>�3�9�7�>�54C@=`C@X�963�;<.19<0�C@.13lC�NK��.1DE.15VA�?@58Y�T
3�>�B�B�=�3�9HJR9H;<=	0�3�.kG�9�?tC*J�=W=�?^DE=�?@9H5V.10�2�367k?@=	D��t�K����9<0�C�?@.19<3
C@=t3@A<YHB�?@=�C@9<.10�3R.10p���`�k�<����������N!a�X�9�3�9Q51.10�2�3[G�=v0�=�C[9�m�B�5V.1;<.8C@58Y
3�B�9�;<.87�YWC@X�9t>�0�G�9�?@58Y�.10�M`?@9<5VA�C@.V=�0�3�X�.VB�C@X)A�CI519�GpC@=EC@X�9t;�?@9�A�C@.1=�0

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

=�7%C@X�.V3b51.10�2pA�0)Gp=�0�9tDHA�YxA�3�3�>�DE96C@X)A�CbC@X�9v51.10�2�3b;�A�B�C@>�?@96C@X�9
3@A�DE9E?@9<5VA�C@.V=�0�3�X�.VB/N�OQ=�J�9<S	9�?�T,Ap3�;<.19<0�C@.13lC^JKX�=W9]m�A�DE.10�9<3vC@X�9
�t�K�k��A�0)G����`�k�<�������/�s9�0�C�?@.19<36DHA<YW;�=	0�;�5V>�G�9tC@X)A�CQC@X�9_?@9�5kA�L
C@.1=	0�3�X�.1B�3[C@X)A�CbX)A�S
9 n 9<9�0x;�A�B�C@>�?@9<GxA�?@9vw�>�.1C@9vG�.8��9�?@9<0�C�N
-4.10�2�3 n 9�C*JR9<9<0U9<0�C�?@.19<3�.10EC@X�9b3�=	>�?@;�9<3KA�?@9j;�?@9�A�C@9<GH7�=�?[DHA�0�Y

G�.8��9�?@9�0�Ct?@9�A�3�=	0�3<N��!.V=�51=	M	.13lC@3H;�A�B�C@>�?@9E0�9�J�G�.13�;<=�S
9�?@.19<3^=�7jA�0
9�m�B�9�?@.1DE9<0�C[=�?K3lC@>)G�YH>�3�.10�M^51.10�2�3<T�JKX�9�?@9<A�3bG�A�CFA_;<>�?FA�C@=�?@3bA�G�G
51.10�2�3oC@=ZA�>�M	DE9<0�C�TKC@=�;<=	DEB�519�C@9�=�?xC@=�DHA�2
9�;<=	0�3�.V3lC@9�0�CoC@X�9
2�0�=�JK519�G�M�9^;�A�B�C@>�?@9�G�A�DE=	0�MoD_>�58C@.1B�519v3�=	>�?@;<9<3<Nt �=�?69�m�A�DEB�5V9�T
Ao?@9<3�>�58C6?@9<B�=�?�C@9�G�.10�AoB�A�B�9�?v.10���¡�¢)£z¤�¥�DHA<Y�5V9<A	G�Ao;<>�?FA�L
C@=�?vC@=o.V0�3�9�?�C_Ao51.10�2W7�?@=�D¦ApG�A�CFAx9<0�C�?�Y�.10�3@A<YZ�v�K���§C@=oC@X�.13
;<.8CFA�C@.1=�0W.V0���¡�¢�£�¤�¥\N q 51M	=�?@.1C@X�DE3K.V0�3�9�?�Cj5V.10�2�3bA�>�C@=	DHA�C@.1;�A�5158Y
JKX�9�0�G�.13�;<=�S
9�?@.10�M�3�.VDE.15VA�?@.8C@.19<3xA�DE=	0�M�C*JR=�G�A�CFA�.8C@9<DE3<TK9	N M�N1T
C@=`?@9<B�?@9<3�9<0�Cb3�9�w�>�9<0�;<963�.1DE.V5VA�?@.1C'Yx7�=	5151=�JK.10�MxAE��- q ��a¨3�9�A�?@;]X/N
a�X�>�3<T�C@X�9p3�.1DEB�519p>�0�5VA n 9<519�GZB�X�Y�3�.1;�A�5b51.V0�2�3`C@X)A�CUA�?@9W.10�>�3�9
C@=�G�A<YsA�?@9U.V0�3�>�©E;�.V9�0�C_C@=W?@9<B�?@9<3�9�0�C_3�> n C@519oA�0)G�G�.1S
9]?@3�9H?@9�5kA�L
C@.1=	0�3�X�.1B�3<N
�*0�C@X�.V3p?@9�3�9�A�?@;FX4TIJR9sB�?@=�B�=	3�9�C@X�9�c�dfe g:h�iW7�?FA�DE9]J�=�?@2¨A�0)G

DE9�C@X�=�G�=	51=�M�Y�A�0�GpC@=�=	513IC@=xA�3�3�.13lCv3�;<.19<0�C@.V3lC@36.10�9�m�B�51=�?@.10�MxA�0)G
9�m�B�51=�.1C@.10�MoC@X�9_2�0�=�JK519�G�M�9^C@X)A�Cv3�X�=	>�5VG n 9`;<A�B�C@>�?@9�G�.V0�51.10�2�3<N
a�=_G�=v3�=6J�9jD^>�3lCRA�;�;<=	DEB�5V.13�XEC@X�9K7:=�515V=�JK.10�MtC@X�?@9<9b= n�| 9�;�C@.1S
9<3<N
�*0UC@X�.13KB)A�B�9�?�T�JR9vA	G�G�?@9<3�3[C@X�9ju�?@3lCKC*JR=`= n�| 9<;]C@.VS	9<3<N

ªs« 9<S
9<51=�BEAvG�A�CFAIDE=�G�9<5�C@X)A�C!;�A�0`?@9<B�?@9<3�9�0�C,3�=�>�?@;<9<3<T�G�A�CFA
= n�| 9<;�C@3IA�0)GpC@X�9_9<0�X)A�0�;<9�GW3�9<DHA�0�C@.V;t51.10�2�3^}Fc�dfe g:h�i�¬*~ n 9]L
C*J�9�9<0WG�A�CFA_= n�| 9<;�C@3<N

ªs« 9<S
9<51=�BEA6w�>�9�?�Yt5VA�0�M	>)A�M	9bA�0�G`w�>�9�?�Y_9<S�A�51>)A�C@.1=	0`9<0�M	.10�9
7:=�?o3�;<.19<0�C@.13lC@3UC@=�DE9�A�0�.V0�M�7�>�5158Y�9�m�B�5V=�?@9pC@X�9<3�9W3�9�DHA�0�C@.8L
;�A�5158Yx9�0�X)A�0�;<9<Gsc�dfe g:h�i�¬�A�0)GUB)A�C@X�3<N

ªs« 9<S
9<51=�Bx}�DHA�;FX�.10�9�L'A�3�3�.13lC@9�G)~4C@9�;]X�0�.Vw�>�9<3yC@=j9�m�C�?FA�;�C�T	M	9<0�L
9�?FA�C@9vA�0)Go5VA n 9<5�9�m�.13lC@.10�M`51.10�2�3[C@=`;�?@9<A�C@9Uc�dfe g:h�i�¬@N

rs9 n ?@.19��YH?@9<S�.19�J¨?@9<5VA�C@9�Go?@9�3�9�A�?@;FX4N[®R5V9<A�?@58YxC@X�9�?@96.13bD_>�;FX
?@9<5VA�C@9<GzJ�=�?@2�.10z2�0�=�JK5V9<G�M	9`?@9�B�?@9<3�9<0�CFA�C@.V=�04NE¯ « �A�0)G�°6±p-
a�=�B�.1;�±pA�B�3HB�?@=�S�.kG�9pAz?@.1;FX�;�=	0�;�9<B�C@>�A�5K7�?FA�DE9]J�=�?@2ZA�0)G�9�m�L
B�?@9�3�3�.VS	9pw�>�9�?�Y�5VA�0�M�>)A�M	9<3`C@X�A�C`;<A�0 n 9pA�B�B�51.19�GsC@=�?@9<B�?@9<3�9�0�C
C@X�9xc�dfe g:h�iI7�?FA�DE9]J�=�?@2�N6²Q0�C@=�51=	M	.19<3IA�513�=oB�?@=�S�.VG�9^A`7�?FA�DE9�J�=�?@2
C@=K;�A�B�C@>�?@9%C@X�9%3�9<DHA�0�C@.1;<34=�7�51.V0�2�3<N%²Q>�?4= n�| 9�;�C@.1S
9R.106C@X�.13�B�A�B�9�?
.13QC@=H7:=�;<>�36=	0�C@X�9t3�.VDEB�519t7k?FA�DE9�JR=�?@2W0�9�9�G�9�Gp7�=�?oc�dfe g:h�i�¬bA�0)G
J�9[9]m�B�9�;�C\C@=Q7�?@9�9<58Y^9�m�B�5V=�.8C%.kG�9�A�3%7�?@=�DPC@X�9R?@.1;FX�9�?%7k?FA�DE9�JR=�?@2�3<N
a�X�9[C@X�?@9<9[DHA | =�?!?@9<B�=	3�.8C@=�?@.19<3<T�³I®��R�]T «I« ��´vA�0�G`{,�R�\X)A�S
9

?@9<;<9�0�C@58Y_DHA	G�9R3�.1M	0�.1u�;�A�0�C!9���=�?�C@3\C@=IB�?@=�S�.VG�9�.10�C@9�M�?FA�C@9<G`A�;<;�9<3�3
C@=HC@X�9vDHA�0�Yp9�0�C�?@.19<3QA�0�G�51.10�2�3 n 9]C*J�9�9<0�9<0�C�?@.V9�3jC@X)A�CI9�m�.13lC6.10
C@X�9Q3�=	>�?@;�9<3[C@X)A�C[C@X�9�YUDHA�0�A�M	9�N,{%m�A�DEB�519<3[.10�;<51>)G�96{,-4.10�2�µ8¶�·"T
¯b9�7"��9�wIA�0�G_-/=�;<>�3@-/.10�2vA�Cy³6®��R�F�	-/.10�2 « ��µ ¸�·"T�A�0�G6�*0�C@9<M�?F¹vµ º�·"N

a�X�9<3�9bB�?@= | 9<;�C@3!7:=�;<>�3�=	0EB�?@=�S�.VG�.10�M6>�0�.8u�9�GEA�;<;�9<3�3RC@=6C@X�9K51.10�2�3
n >�CvG�=x0�=�CvA�C�C@9<DEB�CjC@=x9<0�X)A�0�;<9^C@X�9_?@9<B�?@9<3�9<0�CFA�C@.1=	0�A�0�G�C@X�9
3�9�DHA�0�C@.1;<3K=�7\51.10�2�3<N
a�X�9�?@9vA�?@9Q=�C@X�9]?jB�?@= | 9<;�C@3[C@X)A�C[CFA�?@M�9�CjA�0)GH9<0�X)A�0�;<9I3�B�9<;�.1u�;

51.10�2�3<N� �=�?`9]m�A�DEB�519	T%C@X�9�� « �[���\?@=�CF{!® B�?@= | 9�;�CWµ ��Tb¶�¸�·j.13^A
?@9�3�=	>�?@;�9^C@=o51.10�2�� « �¨;]X�A�.10�3QJK.8C@X���JK.13�3��\?@=�Cv;<=�G�9<3vA�0�G�{!®
0�>�D n 9�?@3<N4rs9Q9]m�B�9�;�CRC@X�A�CRC@X�9�?@9jJK.1515 n 9jDHA�0�Y`3�>�;FXH9���=�?�C@3�C@=
9�0�X)A�0�;<9^3�B�9<;<.8u);`51.10�2�3<N`²Q>�?Uc�e g�h�it7�?FA�DE9�J�=�?@2�.V36M�9<0�9]?@.V;`A�0)G
;<A�0W.10WB�?@.10�;�.VB�519 n 9tA�B�B�51.19�GxC@=HA�0�Yo9<0�X)A�0�;<9�Gp51.10�2���JR96J�=	>�5VG
=�7b;<=	>�?@3�9U0�9<9�G�C@=�G�9<S
9<51=	BsC@X�9EDHA�;FX�.10�9]?�YzC@=W.10�C@9�?@B�?@9]C_3�>�;]X
9�0�X)A�0�;<9<Go51.10�2�3bA�0)GHC�?FA�0�3�5kA�C@96C@=`=	>�?`c�dfe g:h�iQ7k?FA�DE9�JR=�?@2�N
¯b9<;<9�0�CEJR=�?@2Z.10Pµ ��Tv¶	¶]·IB�?@9�3�9<0�CH3�=	B�X�.13lC@.V;<A�C@9�G�w�>�9]?�Y�5VA�0�L

M�>)A�M	9<3,C@=69�m�B�51=�?@9K2�0�=�JK519�G�M�9K.V0E.10�C@9�?@;<=�0�0�9<;�C@9�GEG�A�CFAI3�=	>�?@;<9<3<T
n 9]Y�=	0�Gp3�.VDEB�519t0�A�S�.1M	A�C@.1=	0�A�5%w�>�9�?@.19<3<NQ �=�?I9�m�A�DEB�519	T�C@X�9t�*�[±
« �[¸��j?FA�B�XP{\m�C@9<0)G�9�?W3�>�B�B�=�?�C@3W;<=�DEB�519�m¨w�>�9]?@.V9�3W=	0P5VA�?@M�9
= n�| 9<;�CxM�?FA�B�X�3oA�0�G�;�A�0�G�.13�;<=�S
9�?oA�3�3�=�;<.VA�C@.V=�0�3W.1DEB�=�?�CFA�0�CUC@=
3lY�3lC@9<DE3 n .1=�5V=�M�Y�Tb9	N M�N1TIA�;�?@=�3�3xM	9�0�=	DE9�;<=�DEB)A�?@.V3�=�0�3<N�a�X�9<3�9
B�?@= | 9<;�C@3K;�A�0 n 9Q9]m�C@9�0)G�9<GEC@=^A�;<;�=	DEDE=�G�A�C@9jC@X�9Q9<0�X)A�0�;<9�GH3�9�L
DHA�0�C@.V;�3[=�7\C@X�9Ec�d'e g:h�ij7�?FA�DE9]J�=�?@2�N
a�X�9_B�A�B�9�?Q.13I=�?@M	A�0�.
	<9<GzA�3Q7:=�5V51=�JK3��v��9<;�C@.1=	0z¸�T�G�9<3�;�?@. n 9<3QA

3�.1DEB�5V9vDE=�G�9<5/7�=�?j51.17�9_3�;�.V9�0�;<9v3�=	>�?@;<9<3QA�0)GoB�?@9<3�9<0�C@3K9�m�A�DEB�519<3
=�7%9<0�X�A�0�;<9�Gx51.10�2�3<N��'0���9�;	N)º�T)J�96B�?@9<3�9<0�CKC@X�9vG�A�CFA`DE=�G�9�5/7�=�?
C@X�9oc�d'e g:h�ij7�?FA�DE9]J�=�?@2xA�0�Gp.V0W��9<;	N��T�J�9H}�.10�7:=�?@DHA�5158Y�~KB�?@9<3�9<0�C
C@X�9�w�>�9]?�Y65VA�0�M�>)A�M	9	N,��9<;	N��K;<=	0�3�.kG�9�?@3yC@X�9,3�9<DHA�0�C@.1;<3�=�7�w�>�9�?@.19<3
A�0)GW��9<;	N�`G�9�3�;�?@. n 9<3[C@X�9I3lC@9<B�3K=�7,w�>�9�?�YH9�S	A�5V>�A�C@.1=	0/N

2. MODELING LIFE SCIENCES SOURCESr�9_u�?@3lCtG�9<3�;�?@. n 9EAU3�.1DEB�519`DE=�G�9�5y7:=�?t51.87:9E3�;<.19<0�;<9E3�=	>�?@;<9<3<N
a�X�9�DE=�G�9�5
J[A�3\u�?@3lC\B�?@9<3�9�0�C@9<Gt.10xµ ¹�T���·�JKX�9�?@9!JR9�.10�S	9<3lC@.1M
A�C@9<G
.10�C@9�?@9<3lC@.10�MEDE9�C�?@.1;<3�C@=`;FX)A�?FA�;�C@9�?@.
	<9v51.87:9v3�;<.19<0�;�963�=	>�?@;�9<3<N

2.1 A Simple Model for Life Science Sources-/.87:9`3�;<.19<0�;<9`3�=�>�?@;<9<36DHA<Y n 9_DE=�G�9<519�G�A�CQC@X�?@9<9_5V9�S
9<513��QC@X�9
B�X�Y�3�.1;�A�5\519<S
9<5�T�C@X�9t= n�| 9<;]C6519<S
9<5%A�0)GpC@X�9t=	0�C@=	51=�M�Y�519<S
9<5�Nta�X�9
B�X�Y�3�.1;�A�5�5V9�S
9<5�;<=�?�?@9<3�B�=�0)G�3yC@=jC@X�9�A�;�C@>�A�5�G�A�CFAb3�=	>�?@;<9<3,A�0�GvC@X�9
51.10�2�3KC@X)A�Cj9]m�.13lC n 9�C*JR9<9<0pC@X�9<DpN q 0p9�m�A�DEB�5196=�7,G�A�CFA`3�=	>�?@;<9<3
A�0)Gx51.10�2�3[.13b3�X�=�JK0p.10p y.1M�N4¶	N

(Protein)

PubMed (Publication)

OMIM (Gene)

Nucleotide
(Sequence)

Protein

���������������! #"%$����'&(�*)+��,-/.102$���3547698+:�,�;�,<"%$=���'&(�?>
@ ,�ACBD4E$����'�?>�-F$=ACB��GA��<"H&����?AI;J�LKF&5MNA%;���;J���?>'O

a�X�9_3�=�>�?@;<9�3IA�?@9tAE3�> n 3�9�Cj=�7,3�=	>�?@;<9<3IA�CQC@X�9t³QA�C@.1=	0�A�5%®R9�0�L
C@9]?`7:=�?H�R.1=�C@9<;FX�0�=	51=	M�YZ�*0�7�=�?@DHA�C@.V=�0�}�³6®��R�l~_A�0�G�;�A�0 n 9pA�;�L
;�9<3�3�9�G�A�C ���
�(PFQSR�R'T�T(T,�f���������f���<�R�f�����,�VU���+ Npa�X�9`3�=�>�?@;<9<3vA�?@9
��¡�¢�£�¤�¥\T������/�)¤��LW\TYXt¡IZ�[�¤������k¥4¤�T�A�0)GH�v�b�k��}�0�=�C!A�0`³6®��R�
3�=�>�?@;<9�~]N�a�X�9tB�X�Y�3�.1;�A�54519<S	9<54.13bDE=�G�9<519�G n YxA^G�.8?@9<;�C@9�G]\=^�_a`cbFc
d `cegf�h�T�JKX�9�?@9Q0�=�G�9<3,?@9<B�?@9�3�9<0�C[G�A�CFA63�=	>�?@;�9<3[A�0�GE9�G�M�9<3!?@9<B�?@9�L
3�9�0�C,AbB�X�Y�3�.1;�A�5�51.10�2 n 9�C'J�9<9<0tC*JR=IG�A�CFAj3�=�>�?@;<9<3<N q G�A�CFAj= n�| 9<;�C
.10o=	0�9IG�A�CFAt3�=	>�?@;<96DHA<YHX)A�S
9IAt51.V0�2EC@=^=	0�9I=�?bDE=�?@9IG�A�CFA_= n L
| 9<;�C@3U.10�A�0�=�C@X�9]?xG�A�CFA�3�=�>�?@;<9�TK9	N M�N1TjA�M	9<0�9�A�3�3�=�;<.VA�C@9�G�JK.1C@X
AWG�.13�9�A�3�9U.10��t�K����51.10�2�3tC@=WD_>�58C@.1B�519`;<.8CFA�C@.V=�0�3_.V0Z��¡�¢�£�¤�¥\N
q 0ji�kGl�ccbnm d `cegf�hxA�3�3�X�=�JK0U.10x y.1M�N�¸I?@9<B�?@9�3�9<0�C@3RC@X�9jG�A�CFAt= n L
| 9<;�C@3%=�7�C@X�9R3�=�>�?@;<9<3!A�0�GtC@X�9�= n�| 9<;]C!51.10�2�3 n 9�C'J�9<9�0_C@X�9R= n�| 9<;�C@3<N
a�X�>�3<Ty9�A�;]Xs51.10�2�.10zC@X�9!\=^�_a`Sb]c d `ceof�h�;�=�?�?@9<3�B�=�0)G�36C@=WAU;<=	58L
519<;]C@.V=�0W=�7\= n�| 9<;�Cj51.V0�2�3b=�7yC@X�9!ipkGl�ccbnm d `Segf�h�T�9�A�;FXpM	=�.10�M`7�?@=�D

AUG�A�CFAU= n�| 9<;]C6.10z=�0�9^3�=�>�?@;<9_C@=xA�0�=�C@X�9�?6= n�| 9<;�C�T4.V0�C@X�9_3@A�DE9
=�?tAoG�.8��9�?@9<0�C63�=�>�?@;<9�N^³j=�C@9_C@X�A�C651.10�2�36.10q\=^�_a`cbFc d `cegf?hz;�A�0
n 9 n .8L'G�.8?@9<;�C@.1=�0)A�5�}:C@X�=	>�M	X`0�=�CRA�58J[A<Y�3R3lY�DEDE9�C�?@.1;�~yA�0)Gr\�^�_a`cbFc
d `Segf�hpDHA�Y n 96;]Y�;�5V.1;	N

i

NucleotideProtein

PubMed

OMIMgb c d e f h

j k l m n o p q r s t u

v w x y z

a

�����=������sI�t +A<u9vHwn�?&(;x)+��,-/.y02$��x3�47698t:+,;�,z"%$����'&(�?>
{ ��;�.�:�,�;�,|MNA%;��'���?> @ u9vHwn�?&(;J>'O7,ACB�}~��AC�H>

a�X�96=�0�C@=	51=	M�Yp519<S
9<5/;<=�0�3�.13lC@3j=�7%;<5VA�3�3�9<3_}�9<0�C@.8C*YU;<5VA�3�3�9<3<T);<=	0�L
;<9<B�C@3v=�?_=	0�C@=	51=	M�Ys;<5VA�3�3�9<3F~vC@X�A�C_A�?@9H.1DEB�519<DE9<0�C@9�G n Y�=�0�9E=�?
DE=�?@9bB�X�Y�3�.1;�A�5)G�A�CFA63�=�>�?@;<9<3R=�?[B�=�3�3�. n 58YEB)A�?�C@3R=�7�G�A�CFAt3�=�>�?@;<9�3
=�7I\�^�_a`cbFc d `cegf�h�N% �=�?�9�m�A�DEB�5V9�T<C@X�9%;<5VA�3�3/�������Y�S�����^DHA�Y n 9,.VD`L
B�519<DE9�0�C@9<G n Y`C@X�9IG�A�CFAv3�=	>�?@;�9v��¡�¢)£�¤�¥%N q 3�=�>�?@;<9I=�7~\�^�_a`cbFc
d `Segf�h�C'Y�B�.1;�A�5158YWB�?@=�S�.VG�9<3jAE>�0�.kw�>�9t.VG�9<0�C@.1u�9�?b7:=�?I9�A�;FXW=�7,C@X�9
9<0�C@.8C@.19<3`=�?`= n�| 9<;�C@3E.10�i�kGl�ccbnm d `Segf�h�A�0)G�.10�;<51>)G�9<3EA�C�C�?@. n >�C@9
S�A�51>�9<3KC@X)A�CQ;FX)A�?FA�;�C@9]?@.�	�9tC@X�9<DpN[ayA n 519H¶vB�?@=�S�.kG�9<3jAHDHA�B�B�.V0�M
7�?@=�D C@X�9,51=�M	.1;�A�5�;<5VA�3�3�9<3�C@=K3�=	DE9%B�X�Y�3�.1;�A�5
G�A�CFA[3�=�>�?@;<9<34=�7�3�=	DE9
\=^'_?`SbFc d `ceof�h�N

�I�a�/��� ����������/�C�%�I�
���c�J���c�'�c������� �/�I I¡H�����c¢ �c£o¤V¥ ¦��/¦'§g¤V§g¨�§g©V�

�Iª« I�9�����c¢ �c£o¤V¥ ¦��F���c�J�'�c���c�C¦'§g¤V§g¨�§g©V�
�/�/ I¬

=® £o¤2�c¥ �7�°¯'� �/�I %¡H±�²n³�´�µo¶ ·N¦�§o¤V§n¨'§n©��
����¥ =® £o¤
¸n¹/¶ º2º2±�²�³'´

�I¥ ¤V§g¤V¥ £g�9��»S� �/�% I¡H±�¼�½J¾�µg¿
�C�% I¡HÀ�³�³'Á

Â ,vCÃ��!���N ÅÄN$=>J>J��vCÃ��+ÆÇ,-C-C�GA��50V�'$=ÈÉuxA%;n$=Ã�$���Êj47Ã�,>J>���>
;�$jÄt.IÊH>J�G&(,�Ãp:+,;�,|"%$=�H��&���>x$0ÌË/ÍaÎ%ÏJÐ'ÑzÒEÏJÓ�Ô%Õ

2.2 Enhancing Links Among Data Entriesrs9jB�?@9<3�9�0�C�9�m�A�DEB�519<3,C@=^.15151>�3lC�?FA�C@9jC@X)A�CRC@X�9jC@X�9Q3�.1DEB�519j>�0�L
5VA n 9<519�G�B�X�Y�3�.1;�A�5\51.10�2�3IC@X)A�CvA�?@9_.10�>�3�9tC@=�G�A<Y�A�?@9^.V0�3�>�©E;�.V9�0�C
C@=^?@9<B�?@9<3�9<0�CbG�.1S
9]?@3�9I?@9<5VA�C@.1=	0�3�X�.1B�3<N
®R=	0�3�.VG�9�?QAH���`�k�<�������/��9<0�C�?�YHJK.8C@XWA^51.10�2EC@=EA�0��t�K����9<0�L

C�?�Y��,.1C^.13_.15151>�3lC�?FA�C@9<GZ.10� y.1M�N%º�N��*0�C@X�9H)A�C_3lC�?@>�;�C@>�?@9H=�7KC@X�9
���`�k�<�������/��9<0�C�?�Y�T�C@X�.13[51.10�2U.V3[?@9<B�?@9<3�9<0�C@9�G n YH9�D n 9�G�G�.10�M^A�0
�t�K�k��� « A�3RAvC@=�B�Lf519<S
9<5�A�C�C�?@. n >�C@9j=�74C@X�9j9�0�C�?�Y�T
A�0�GEC@X�9j9�0�C�?�Y
DHA<Yp.10�;�5V>�G�9tA�0�OQaK±p-�X�Y�B�9�?@51.10�2UC@=HC@X�9^�t�K���¨9<0�C�?�Y�NI��>�;FX
A_51.10�2E0�9<.8C@X�9�?R?@9<B�?@9<3�9�0�C@3!C@X�9Q3�> n Lf9<519<DE9<0�C!=�74C@X�9v���^���<�<�������
9<0�C�?�Y�C@=�JKX�.1;FX�C@X�9U5V.10�2�?@9�7:9]?@3<TR0�=�?`C@X�9U3�> n Lf9<519<DE9<0�C_=�7bC@X�9
�t�K�k�§9<0�C�?�YxC@=EJKX�.1;FX�C@X�9_51.10�2xB�=	.10�C@3<T�0�=�?IG�=�9<3Q.1CQ?@9<B�?@9<3�9�0�C
C@X�9%?@9�A�3�=	0vC@=b.10�3�9�?�CyC@X�.1345V.10�2�Ny�R.1=	51=	M�.13lC@3,9]m�A�DE.10�.10�M[C@X�9����`�k�nÖ
�������/�E9<0�C�?�YI?@9�51Yv=�0tC@X�9<.8?\9�m�B�9�?@.19<0�;<9�A�0)Gv;�A�0t.10�7:9]?\C@X�9<3�9!5V.10�2
B�?@=�B�9�?�C@.19<3EA�7�C@9�?HApC@.1DE9�Lf;<=�0�3�>�DE.10�Mp9�m�A�DE.10)A�C@.1=	04N�±pA�;FX�.10�9�3
A�0�GzA�51M	=�?@.8C@X�DE3t;<A�0�0�=�C6B�9]?�7:=�?@D 3�>�;]XzA�0�A�58Y�3�.13_A�CIC@X�9^0�9<;<9�3lL
3@A�?�Y^519<S
9<5�=�74G�9]CFA�.15)A�0)G^B�?@9<;<.13�.1=	04N%�'0^C@X�.13%B)A�?�C@.1;<>�5VA�?!;�A�3�9	T�C@X�9
c�dfe g:h�i^3�X�=�>�5VGz0�=�Ct=�?@.1M�.V0�A�C@9E7�?@=�D C@X�9o���^���<�������/��9<0�C�?�Y��y.10�L
3lC@9�A�GEC@X�9p×�?@9�A�5
×_=�?@.VM�.10U.13,C@X�9j®[®!L « ����{ q ��{�A�C�C�?@. n >�C@9[JK.8C@X�.10
C@X)A�C^9�0�C�?�Y�Npa�X�9zc�dfe g:h�i`3�X�=�>�5VG�A�513�=�0�=�Ct?@9<B�?@9<3�9<0�C_A�M�9<0�9]?@.V;
?@9<5VA�C@.1=�0�3�X�.1B/�K.1C^3�X�=�>�5VG n 9o5VA n 9�5V9<G�A�3EA*b�e�_�¬ge	e�?@9�5kA�C@.1=	0�3�X�.1B4T
C@9<5151.10�M^X�>�DHA�0�3RA�0�GUDHA�;]X�.V0�9<3!C@X�A�C«m�h�cpf�`S^�m'c]g:h�g:h!Øn_)c]¬�m�g�^�h�g�¬
i�h=^'Ù,h�mV^+b�e�_�¬<cEm�h�c9Ú�g:¬�cce�¬�c[B�=	.10�C@9�GUC@= n YEC@X�9Uc�d'e g:h�i�N

Swiss-Prot entry

OMIM entry

Swiss-Prot entry
Swiss-Prot entry

Swiss-Prot entry Original link (weak semantics)

CC DISEASE ...

OS homo sapiens

...

causal

Enhanced link (explicit semantics)

�������������%� Â .��qM�AC.H,�AC&(�?B Ñ������	��
�0V��$IÈ " { ��>J>��Ä«��$�;�;�$
uxÆ 8gÆ

r�9_0�=�C@9tC@X)A�CIG�9�C@9]?@DE.V0�.10�M`C@X�9_3�9<DHA�0�C@.1;<3QA�0)GW5VA n 9�5V36=�76c�d
e g�h�i]3^7�=�?H3�=	DE9UB�X�Y�3�.1;�A�5K51.10�2 n 9]C*J�9�9<0ZC'J�=�3�=	>�?@;<9<3EDHA<Y�0�=�C
n 9U3lC�?FA�.1M�X�C�7�=�?�J�A�?FG/T�A�0�Gs3�;<.19<0�C@.V3lC@3^DHA�Y�0�=�CEA�58J�A�Y�3t?@9�A�;FXZA
;�=	0�3�9�0�3�>�3bA�3bC@=^C@X�96G�9�3�.1?@9<Gx3�9<DHA�0�C@.1;<3<N%³j9<S
9�?�C@X�9<519<3�3<T�JR9 n 9�L
51.19<S
9pC@X�A�CEC@X�9x3�.1M	0�.1u�;�A�0�CoA�;]C@.VS�.8C*Y�?@9<5VA�C@9�G�C@=�=�0�C@=	51=	M�.V9�3U7�=�?
C@X�9_51.87:9^3�;<.19<0�;<9�3<TyA�0)GpC@X�9v?@9<3�>�58C@.10�MoA	G�S	A�0�;<9�3Q.10�9<3lCFA n 5V.13�X�.V0�M
;�=	0�C�?@=	51519�G�S
=�;<A n >�5VA�?@.19<3HC@=�G�9<3�;]?@. n 9p7�>�0�;�C@.1=	0)A�51.1C'Y�A�0)G�?@9<5VA�L
C@.1=�0�3�X�.1B�3oA�DE=	0�Ms;<=	0�;<9<B�C@3<T[9	N M�N1T[C@X�9]�6² ²Q0�C@=�5V=�M�Y µ ��·QA�0)G
�6² q µ ��·�JK.1515�;<=	0�C�?@. n >�C@9KC@=�J�A�?FG�3!C@X�9K3�>�;<;�9<3�3�=�7/=�>�?R?@9�3�9�A�?@;FX4N
®R=�0�3�.VG�9]?�C@X�9%B�X�Y�3�.1;�A�5	51.10�2j7k?@=	D�C@X�9%=�?@.1M�.V0v3�=�>�?@;<9��EW/���������

C@=`C@X�96CFA�?@M	9]CI3�=	>�?@;<9^�t�K����.1515V>�3lC�?FA�C@9�GW.10� y.1M�N=��Nba�X�9vB�X�Y�3�.8L
;<A�5�51.10�2I.10�3lCFA�0�;<9�3 n 9�C*JR9<9<0��EW��:�������`A�0)G_�t�K�k�z9<0�C�?@.19<3�;�=�?�?@9�L
3�B�=�0)G�3yC@=jC*JR=6G�.13lC@.10�;]Cjc�d'e g:h�i�¬�JK.1C@X`G�.8��9�?@9<0�C\3�9<DHA�0�C@.V;�3<N%�R=�C@X
c�dfe g:h�i�¬!=�?@.1M	.10)A�C@9I.10UC@X�9j3@A�DE9Q3�> n Lf9<519<DE9<0�CR=�7��EW��:��������N!²Q0�9
c�dfe g:h�i_X)A�3jC@X�9tDE9�A�0�.V0�M�g�¬9b�e�_�¬ge	e���^�`xÚ�g:¬�cce�¬�cIA�0)GpC@X�9_CFA�?@M�9�C
3�> n Lf9<519<DE9<0�C^.V0��t�K��� .V3o®�-/�*³Q�l® q -4 \{ q a��Q¯j{R��N%a�X�9x3�9<;�L
=�0)G�c�dfe g:h�i[X)A�3,C@X�9bDE9<A�0�.10�M Ú�c]¬gbn`]g�kFc]¬���c]h�cgm�g�btÚ�c��<c�bnm�¬,A�0)G^C@X�9
CFA�?@M	9�CK3�> n Lf9<519<DE9<0�C!.10p�v�K����.13K± q � �%�*³«�_N��*0EC@X�.13�9�m�A�DEB�519	T
C@X�9K=�?@.1M	.10)A�5�B�X�Y�3�.1;�A�5)51.10�2_=�7�C@X�9t\�^�_a`cbFc d `cegf?hU.13R;<5VA�3�3�.8u�9�GHA�3
C'J�=�c�d'e g�h�i�¬@T�JKX�=�3�9_CFA�?@M�9�CI3�> n Lf9<519<DE9<0�Cj.10z�t�K���§.13QG�.8��9�?@9<0�C�T
A�0)GoJKX�9�?@9IC@X�9jC*J�=Wc�d'e g:h�i�¬RX�A�S
96G�.8��9�?@9�0�CbDE9�A�0�.10�M�N

Swiss-Prot entry

OMIM entry

Swiss-Prot entry
Swiss-Prot entry

UniProt entry

Original links (weak semantics)

DR

OS homo sapiens

...

describes

genetic defect

Enhanced links (explicit semantics)

CLINICAL FEATURES

MAPPINGDR

is causal

for disease

���������������tMNAC.�,�A�&��GA��|,]} �GAC�j02��$IÈ��rAC��Ä«�'$;x;�$qu Èz�GÈ
;n$ Ä«��$HB��C&(� Â { $1Ñ���������
 � { ��;�. :r�"! �a����AI; Â ,�����a;�"H�Hv#�
MNÃ���È��?A%;�>x�GADu Èz� È

³j9�m�C�T�;<=	0�3�.kG�9�?\C@X�9!51.V0�267�?@=	D C@X�9R=�?@.1M	.10^3�=�>�?@;<9��EW��:�����/�^C@=
C@X�9ICFA�?@M�9�Cb3�=	>�?@;�9%$^� .10W y.1M�N=��N!a�X�.13bB�X�Y�3�.V;<A�5/5V.10�2o;�A�B�C@>�?@9<3
C@X�?@9<9_c�d'e g�h�i�¬@T�JKX�9�?@9KC@X�9K=�?@.VM�.10U3�> n Lf9<519<DE9<0�C!A�0�G_C@X�9KDE9�A�0�.10�M
=�7yC@X�9jC@X�?@9<9Hc�dfe g:h�i�¬R.13bG�.8��9�?@9<0�C�N,a�X�9QCFA�?@M�9�Cb.V3[C@X�9E�6²§9<0�C�?�Y�N
a�X�9`u�?@3lCxc�dfe g:h�i_X�A�3vDE9�A�0�.10�M�h?e�¬'&"¬�_k)('bFc�e:e _�e
e�`Ue
^Jb�e�m�g�^�hWA�0)G
C@X�9!=�?@.1M	.10^3�> n Lf9<519<DE9<0�C/.10*�EW��:�����/�_.13%� �Q�[®�{!-4-+�Q- q ¯vN�a�X�9
3�9�;<=	0�G c�dfe g:h�iEX�A�3vC@X�9HDE9�A�0�.10�M]h�e�¬-, ^	eVccbn_�e
e�`.�g_�h=bnm�g�^�h�A�0)G
C@X�9^=�?@.VM�.10�3�> n Lf9<519<DE9<0�CQ.10/�EW��:�������s.13v±W²I-4 ��Q³6® A�0)GpC@X�9
C@X�.8?FG c�dfe g:h�i�X)A�3xDE9�A�0�.10�M|f?e'`gm�g�b�g f?e�m'c]¬zg�hÇk�g ^	e
^���g�b�e	e~f�`S^JbFc]¬F¬
A�0)GoC@X�9I=�?@.1M�.V0W3�> n Lf9<519<DE9<0�C[.100�ÌW�����������.13b�R�l²I-��%¯b²6®jN
 y.10�A�5158Y�T	J�9[;�=	0�3�.VG�9�?%C@X�9�;�A�3�9�JKX�9�?@9�G�.8��9�?@9<0�C%B�X�Y�3�.1;�A�5�51.10�2�3

n 9]C*J�9�9<0 G�.8��9�?@9<0�CzG�A�CFA�3�=	>�?@;<9<3sA�B�B�9�A�?zC@=�X�A�S
9sC@X�9�3@A�DE9
DE9<A�0�.10�M�Nba�X�9]?@9_A�?@9_3�.8mxB�X�Y�3�.V;<A�5y51.10�2�3b.V0pC@X�9 \=^�_a`cbFc d `Segf�h�T
9<A�;FXx=�?@.1M�.V0�A�C@.10�M^.V0UC@X�9j3@A�DE9Q3�> n Lf9<519<DE9<0�CR=�7��EW��:�����/��N!a�X�9
CFA�?@M	9�Co=�7v9<A�;FX�51.V0�2�.13UA�G�A�CFA�9<0�C�?�YZ.10�=	0�9W=�7v3�.8m�G�.8��9�?@9<0�C
B�?@=�C@9<.10zG�A�CFAU3�=�>�?@;<9<3<T4�*0�C@9�?o�\?@=�TH�\7�A�DpT\��± q ¯,aQTI�%¯b²6���la[{[T
�%¯b�*³IaK��T�A�0�G6a��c�Q¯j q ±W����C@X�9,5V.10�2�3�A�?@9,.15V51>�3lC�?FA�C@9�Gv.10v y.VM�N'��N

Swiss-Prot entry

GO entry
Swiss-Prot entry

Swiss-Prot entry
UniProt entry

SUBCELLULAR

OS homo sapiens

...

has molecular

function

Enhanced links (explicit semantics)

MOLFUNC

has (sub)cell-

ular location

BIOLPROC
participates in

biological process

Original link (weak semantics)

�����=�����21%� MNAC.�,�A�&��GA���,Ç}~�GAC� 0V�'$=È3�rAC�GÄ«��$�;j;n$)!u
;�$]Ä«��$%BC�C&(� Â .����a�]Ñ���������
 � { ��;J.y:r�"! �a����AI;Ìu9�'���=�GA�"H��v#�
M�ÃL�È]��AI;J>x��A��rAC��Ä«�'$;

r�X�.V519IC@X�9IB�X�Y�3�.1;�A�5�51.10�2�3bA�?@9 n 9�C'J�9<9<0xG�.8��9�?@9<0�CK3�=�>�?@;<9<3<T�C@X�9]Y
9�A�;]XWX�A�S	9vC@X�96DE9�A�0�.10�M�b�^�hmVe�g:h�¬7eU¬�ccØn_�c]h=bFc^¬@g4��h=e�m _a`�c]NQa�X�.13
9�m�A�DEB�519p=�7v3�.8m�B�X�Y�3�.V;<A�5b5V.10�2�3HB�?@=�G�>�;�.V0�MsB�=�C@9�0�C@.VA�5V58Y�3�.1mPc�d
e g:h�i]3<T�A�5V5[=�7QJKX�.V;FXZA�?@9p9<w�>�.1S	A�5V9�0�CtJK.8C@XZ?@9�3�B�9<;�C`C@=�DE9�A�0�.10�M
.13IA`7�?@9<w�>�9<0�CQ=�;�;<>�?�?@9<0�;<9t.V0�51.87:9_3�;<.19<0�;<9t3�=	>�?@;<9<3<T n 9<;�A�>�3�9vC@X�9
;<=�0�C@9�0�C@3[=�7%3�=	>�?@;<9<3K=�S
9�?@5VA�BWA�0)GHC@X�9I3�=�>�?@;<9<3jA�?@9I?@.1;FX�58YU.10�C@9]?�L
;<=�0�0�9�;�C@9�G/N¨a�X�.13UDE=�C@.1S	A�C@9<3E=	>�?U?@9�3�9�A�?@;FX�=	0�AsG�A�CFA�DE=�G�9�5
C@X)A�C`;�A�0�3�B�9�;<.87�Y�C@X�9U9�w�>�.1S�A�519<0�;<9o=�7Ec�dfe g:h�i]3^C@X)A�CEA�?@9o=�7bC@X�9
3@A�DE9651.10�2EC'Y�B�9�N

Swiss-Prot entry

InterPro entry
Swiss-Prot entry

Swiss-Prot entry
UniProt entry

...

OS homo sapiens

...

Combined enhanced link

(explicit semantics)

...

contains a

sequence signature

Multiple original links

Pfam entry

SMART entry

PROSITE entry

PRINTS entry

TIGRFAMS entry

�����=�����65%��MNAC.�,�A�&��GA�� , }~�GA�� 02��$IÈ7��AC�GÄ«��$�;y;�$ "H�98
Ä«��$�;��?�GA :+,;�,j"%$=���'&(�?>

3. THE DATA MODEL�*0HC@X�.13[3�9<;]C@.V=�0xJ�9j7:=�?@DHA�51.�	�9IC@X�9I51.87:963�;<.19<0�;<9<3KM�?FA�B�X�3[.V0�C�?@=�L
G�>�;<9�Gx.10xC@X�96B�?@9<S�.1=	>�3j3�9�;�C@.1=	04N[a�X�9vG�A�CFA`DE=�G�9<5�J�9v;<=�0�3�.VG�9]?
.13K;<=	DEB�?@.V3�9<Go=�7\C@X�?@9<9IM�?FA�B�X�3<T�JKX�.V;FXx;<A�B�C@>�?@9IC@X�9IS�A�?@.1=�>�3bA n L
3lC�?FA�;]C@.V=�0x519<S
9�5V3��%C@X�9�i�h�mV^	e
^��;: d `Segf�h_A�C[C@X�9Q51=�M	.1;�A�5/519<S
9<5/A�0)G
C@X�9]\=^�_a`Sb]c d `Segf�h�A�0)G�i�kGl�ccbnm d `ceof�h�A�C`C@X�9xB�X�Y�3�.1;�A�5[5V9�S
9<5�N
a�X�.136.13vA�0z9�m�C@9<0�3�.1=�0z=�7[=	>�?6B�?@9<S�.1=	>�3IJ�=�?@2W=	0�DE=�G�9<51.10�MU5V.87�9
3�;<.19<0�;<9v3�=	>�?@;�9<3vµ ¹�T=��·fN
q 0]i�hmV^�e
^��;: d `cegf�hI.13,AQM�?FA�B�Xp}V�=<�>@?Q~]T	JKX�9]?@9���.13,AI3�9�C,=�7

51=	M�.V;<A�5y;<5VA�3�3�9<3^}�9	N M�NVT)B�?@=�C@9�.V0/T)M�9<0�9	T�;<.8CFA�C@.1=	0)~bA�0)GA>B? .13QA^3�9]C
=�7,51.10�2HC*Y�B�9<3 n 9�C'J�9<9<0W51=�M	.1;�A�5�;<5VA�3�3�9<3<N q 51.10�2HC*Y�B�96.13QA^C�?@.1B�5V9
}V�.CD<FE	<���G<~\JKX�9�?@9��.CR.13!C@X�9K=�?@.1M	.10U;<5VA�3�3<T���G[.V3,C@X�9[CFA�?@M�9�C�;�5kA�3�3
A�0�GHEb.13HA�5VA n 9�5K7k?@=	D A�3�9�CE=�7I51.10�2�5VA n 9�5V3I>[N� �=�?`9�m�A�DEB�519
}�;<.8CFA�C@.1=�04T�Ú�c]¬gbn`]g�kFc]¬)JQc�h�eLK�g�^�`'iM�]T�M�9<0�9�~�.13KA^51.10�2`C'Y�B�9 n 9�C*JR9<9<0
;<.8CFA�C@.1=�0�3pA�0)G�M�9<0�9�3<NPrs9W0�=�C@9WC@X)A�CxA�CoC@X�.13U3lCFA�M	9�J�9�=	0�58Y
;<=�0�3�.VG�9�?�A63�.VDEB�519b5VA n 9<5�C@=6;�A�B�C@>�?@9[C@X�9b3�9�DHA�0�C@.1;<3!=�7yAI51.10�2���.10
7:>�C@>�?@9[J�=�?@2^J�9b9�m�B�9<;�C,C@=v;<=	0�3�.VG�9�?!C@X�9K>�3�9K=�74=	0�C@=�5V=�M	.19<3RJK.8C@X
C@X�9�.1?K?@.1;FX�9�?b3�9<DHA�0�C@.1;<3<N
q \=^�_a`Sb]c d `Segf�hW.V3`A�M�?FA�B�X�}�N�<�>�O�~]T,JKX�9�?@9�N¨.V3`A�3�9]CE=�7

3�=	>�?@;<9<3IJKX�.V;FX�3lC@=�?@9^.10�3lCFA�0�;�9<36=�7!51=	M	.1;�A�5!;�5kA�3�3�9<3tA�0�G/> O .136A
3�9�C[=�7y3�=�>�?@;<9I51.10�2�3RJKX�.1;]XU.1DEB�519<DE9<0�C!5V.10�2^C*Y�B�9<3<N,{,A�;FXo3�=�>�?@;<9
P 3lC@=�?@9<3R.10�3lCFA�0�;�9<3R=�7/Av3�.10�M	519j51=�M	.1;�A�5�;�5kA�3�3<T�G�9<0�=�C@9�GRQ O } P ~]N q
3�=	>�?@;<9651.10�2U.V00>SN�.13QAtC�?@.VB�519E} P C<�E	< P G�~R3�>�;FXoC@X�A�CKC@X�9]?@9I9�m�.13lC@3
Ap51.10�2�C*Y�B�9p}TQ O } P C ~U<�E	<�Q O } P G ~�~6.10V>@?vN5�Q.1S
9�0�AxC*Y�B�9�G�5V.10�2

}�9�N M�N1T/Ú�c]¬gbn`Fg�kFc]¬�Jjc�h�e;K�g�^�`'iM��~ n 9�C*JR9<9<0p;�5kA�3�3«�.Cv}�9�N M�N1T);<.8CFA�C@.1=�0�~
A�0)G�;<5VA�3�3 � G }�9	N M�NVT!M	9�0�9�~]TRAWB)A�.8?^=�7j3�=	>�?@;�9<3p}�N C <FN G ~6JKX�9�?@9
N�Cj}��,> n ±x9�G�~%;<=�0�CFA�.10�3!= n�| 9<;�C@3!=�7�C@X�9K51=	M�.1;�A�5�;<5VA�3�3p�.CRA�0)GIN G
}T�j0�.L�Q9<0�9�~t;<=�0�CFA�.10�3E= n�| 9<;�C@3E=�7bCFA�?@M�9�CE51=	M�.1;�A�5b;<5VA�3�3+� G T!;�A�0
.1DEB�5V9�DE9<0�C�C@X�.13�C'Y�B�9�G65V.10�2�Ny³Q=�C@9,C@X)A�CyC@X�9!3�9�C%=�7�.VDEB�519<DE9<0�C@9�G
51.10�2`C'Y�B�9<3<T�9	N M�N1T�}��%> n ±x9�G�Ú�c]¬gbn`]g k]c]¬)JQc�h?e;K�g�^�`'iM�]T �Q0�.L�Q9<0�9�~!.13
DHA�G�9EB�> n 51.1; n YzC@X�9E3�=	>�?@;�9<3<N�a�X�>�3<T �%> n ±x9<G�JK.V515RC'Y�B�.1;�A�5158Y
A�G�S
9]?�C@.V3�9,C@X)A�Cy.8CyX�A�3y51.10�2�3�=�7�C@X�.134C*Y�B�9	N4�'7�C@X�9%?@9<S
9]?@3�9!51.10�2�3yA�?@9
3lC@=�?@9�G n Y��j0�.L�Q9<0�9	T/.1CQC@=�=oJK.1515RA�G�S
9�?�C@.13�9tC@X�9^51.10�2�Nvrs9_0�=�C@9
C@X�A�CKC@X�9Q5V.10�2�3 n 9�C'J�9<9�0oC@X�96= n�| 9<;�C@3KDHA<YU0�=�C n 963lY�DEDE9�C�?@.1;	N
q 0�i�kGl�ccbnm d `Segf�hU.13IAEM�?FA�B�X�} � <F>��R~]T)JKX�9�?@9 � .136AE3�9�CI=�7

= n�| 9<;�C@3_A�0�G > � .13vAx3�9�Cv=�7[51.10�2�3 n 9�C*JR9<9<0z= n�| 9<;�C@3<NUa�X�9�?@9`.13
A�513�=oA`DHA�B�B�.V0�M%Q � � ��� N�G�9�u�0�.10�M^7�=�?Q9�A�;FXp= n�| 9�;�C«��T�C@X�9
3�=�>�?@;<9-Q � } �	~bJKX�9�?@9x�U.V36B�X�Y�3�.1;�A�5151Y�3lC@=�?@9�G/N q M�.VS	9<0�= n�| 9<;�C
=�7%;<5VA�3�3��.Cb.V0x3�=	>�?@;�9�N@Cb;�A�0pX)A�S
96A_5V.10�2UJK.8C@XWA^5VA n 9<5�E�}�9	N M�NVT
G�9<3�;�?@. n 9<3@�R9�X)A�S�.V=�?]²j7F~yC@=6A�0�=�C@X�9]?!= n�| 9<;�C,=�7);<5VA�3�3~� G .V0_3�=	>�?@;<9
N GQ=	0�58Yx.87yC@X�9�?@96.13jA_3�=	>�?@;�965V.10�2z}�N�CD<�E	<UN G<~�.10'>�O4N
�'0^A�G�G�.1C@.1=�0^J�9�X�A�S
9�AQ51.10�26;�=	0�;<A�C@9<0�A�C@.1=	0`DHA�C�?@.8m�>�>�JKX�.1;]X

3�B�9�;<.8u)9<3/C@X�9%DE9�A�0�.10�M�7�>�5�;<=	0�;�A�C@9<0�A�C@.1=	0�3y=�7�51.10�2bC*Y�B�9<3��/.87/} EL�CD<�EL��G�~
.13tAxB�A�.8?t.V0 >�>[TyC@X�9<0zC@X�9^CFA�?@M�9�Ct;<5VA�3�3t=�7�EL� C .13vC@X�9`3@A�DE9`A�3
C@X�9_=�?@.1M	.10�;<5VA�3�36=�7SEL��GvA�0�GWC@X�9_;�=	0�;<A�C@9<0�A�C@.1=	0z=�7SEL�CjJK.1C@X/EL��G
.13bDE9�A�0�.10�M�7�>�5�N\rs9Q0�=�C@9IC@X�A�CK7:=�?b0�=�J�J�96=	0�58Yx;<=�0�3�.VG�9]?jB�A�.8?@3
=�7%51.V0�2�3<N
r�9HA�?@9H0�=�J ?@9�A�G�Y�C@=W.V0�C@9<M�?FA�C@9EC@X�9E=�0�C@=	51=	M�Y�T\3�=	>�?@;<9UA�0)G

= n�| 9<;�CjM�?FA�B�X�3K.10�C@=EA^3�.10�M�519	T)>�0�.8u)9�GUG�A�CFA^DE=�G�9�5"N
�_¤�����W��V�����%W ¶�N
	�����������������������! #"$��&%('*)+�-,�./��0&12%

354�6�798:798<;�7>=(7>8 O 7>?#7@8 � 7BA O 7>A � 7>8C8CD+E ��&FBHG
I 6 'J)K�L)�$�M"@NPO$% �Q)9)�$)
I 8 '*)R�-)�&�M"@NR% '*S�TU% �WV>$%)@X
I 8Y; '*)R�L)9&�M"@N+% 'JS�T#��Z�1[&)@X
I = 'J)+�-)�&�\">NR)�"Q0�FBO9$)
I 8 O '*)+�-)�&�M"@NR% '*S�TQ)+V>$� E 9&S])�"Q0�FBO9$)@X
I ? 'J)+�-)�$�M"@NP"WV_^`9O&�_)@X
I 8 � 'J)K�L)�$�:"@NR% 'JS�TH)PV>&� E 9$S]"[VJ^$>O&��)@X
I A O '*)R�- #��1�12'JS[aRN9FB"� = ��" 6 X
I A � '*)+�L b�`1�12'*S[aRN�FB"Q ? ��" = X
I 8C8 'J)R�-)�$�M"@N:1[��'*F�)P"@N+% '*S�TU�_Z�1�$)`c

4. THE QUERY LANGUAGEr�9,G�9�u�0�9yC@X�9jc�dfe g:h�i%w�>�9�?�Yj5VA�0�M�>)A�M	9�A�3�A�?@9<M�>�5VA�?�9�m�B�?@9<3�3�.1=�0
=�S
9]?EC@X�9pA�51B�X)A n 9�C+�ed >�JKX�9�?@9p9�A�;]X�;<5VA�3�3H=�;<;<>�?�?@9<0�;�9p;�A�0
=�B�C@.1=	0�A�5158Y n 9UA�0�0�=�CFA�C@9�G�JK.8C@X�AWB�?@9�G�.1;�A�C@9U9]m�B�?@9<3�3�.1=	0/Nsa�X�9
�!³I �3�B�9<;<.8u);<A�C@.1=	0p=�7\C@X�9I5VA�0�M	>�A�M�963lY�0�CFA�mo.13KM	.1S
9�0x.10W y.1M�N���N
a�X�9j?@9<3�>�58C[C@=^A�5V5/w�>�9]?@.V9�3[A�?@9jB)A�C@X�3�.10UC@X�97\�^�_a`cbFc d `cegf�hv=�?

C@X�9ri�kGl�ccbnm d `ceof�h�T�JKX�9�?@96At0�=�G�9Q.V0HC@X�9QM�?FA�B�Xo.13bA�513�=EAtB)A�C@X4N
��=	DE9I=�7\C@X�9I>�3�9<3K=�7yC@X�9vw�>�9�?�YH5VA�0�M	>�A�M	9tA�?@9vA�3K7:=	5151=�JK3��

ª �lG�9<0�C@.87�Y�3�=	>�?@;<9<3t.V0zC@X�9!\=^'_?`SbFc d `ceof�hoC@X)A�Ct.1DEB�519<DE9�0�C
AvM	.1S
9<0U;<5VA�3�3��, �=�?[9�m�A�DEB�519	T�C@=6u)0)GE3�=�>�?@;<9<3!C@X)A�C�.VDEB�519�L
DE9<0�Cv;<5VA�3�3gf*B�> n 51.1;�A�C@.V=�0j×�T%=�0�9H;�A�0�3�> n DE.8CvC@X�9Hw�>�9�?�Y
h Cji P

���
�
�	��������� N

ª �lG�9<0�C@.87�Y�3�=	>�?@;<9<3t.V0zC@X�9!\=^'_?`SbFc d `ceof�hoC@X)A�Ct.1DEB�519<DE9�0�C
AWM	.1S
9<0�51.10�2�C*Y�B�9(� q 0s9�m�A�DEB�5V9H.13`AW3�=�>�?@;<9UC@X)A�C_;<=�0�L
CFA�.10�3 f�`S^�m'c]g:h�¬Nm�h�e�m e�`�cQe g:h�i
ccÚ7mV^ e�hWc]hm `F:^g:h�m�h�c+kKc��g\�ccØ
Ú�e�mVe(koe�¬<c]N q 3�3�>�DE.10�MQAQ51.V0�2tC'Y�B�9I} P������
$���� T�e g�h�i
ccÚ�l=^Qm�h)d
m `F:�nFh2kbc��g\�ccØ�T ��$	����$	(�$����	��o ~`.10 >@?vN�a�X�9pw�>�9]?�Y h G i
P�������$���� e g:h�i
ccÚ�l�^Qm[h�m `U:QnFh�kKc��g\�c�ØW?@9�C�?@.19<S
9�3�A�5V5_3�=	>�?@;<9<3
C@X)A�C,;<=	0�CFA�.10EB�?@=�C@9<.10`9<0�C�?@.19<3%C@X)A�CRA�?@9K5V.10�2
9�G_C@=6A�0E9<0�C�?�Y
.10xC@X�9Q¯j9�7���9�wHG�A�CFA n A�3�9	N

ª �lG�9<0�C@.87�Y�B)A�C@X�3H.V0�C@X�9|\=^'_?`SbFc d `Segf�hs>�3�.10�M�JK.15VG�;<A�?FG�3��
a�X�9x3lY�D n =	513
p$q�A�0�Grp$s�A�?@9oJK.V5VG�;�A�?FG�3UDHA�C@;]X�.10�M�A�0�Y

t�u �`v@w x y z 4J{ t�u �`vBw|z D�{} t�u �$vBw~z } { t�u �`v@w} t�u �$vBw t�u �`v@w
}�� q
}�� s
}�� �`v@�

� �`v>� x y �\���H�@�9���H�U���������H�9���@���Q�
}�� ����� � �H���`�

�������H�9���@���Q��x y �`�U����w
} z�� { �\�Q����� �@���Q��z@� {�\�Q����� �@���Q��x y z 4J{ �\�Q����� �@���Q��z D�{} �\�Q����� �>���Q�|z9�H��� { �\�Q����� �@���Q�} �\�Q����� �>���Q�|z>�Qv { �\�Q����� �@���Q�} z>���H� { �\�Q����� �@���Q�}�� ���`���
}�� ���`�������!�C�H� u �

��� x y z�y { } z��y { } z&� { } z&� {} z&� { } z&� { } z>�$�Q���>�H����� {

�����=�H�'�¡ I� Â .���"IÊ�AI;�, 8q$�0 ;J.��g¢x���a��Ê*} ,�AH�=��,��

;<5VA�3�3tA�0�G�A�0�Y�5V.10�2pC*Y�B�9t?@9�3�B�9<;�C@.1S
9<58Y�N_ �=�?v9]m�A�DEB�519	T�C@=
?@9�C�?@.19<S
9UA�515RC@X�9U3�=�>�?@;<9�3^51.10�2
9�G�C@=pC@X�9+�,> n ±x9�Gs3�=�>�?@;<9
n YsA�0�Ys51.10�2�C*Y�B�9	T%=�0�9U;�A�0�J[?@.8C@9xA�w�>�9]?�Y�3�>�;]XZA�3tC@X�9
7:=	5151=�JK.10�M��
hL£ i P	
�����
�������	��� µ1¬g^�_a`Sb]c i f��,> n ±x9�G?×�·Cp s p q �

ª �lG�9�0�C@.87kYEB)A�C@X�3[.10UC@X�97\�^�_a`cbFc d `cegf�htC@X�A�C[3@A�C@.13l7�YoA_B�A�C@X
?@9<M	>�5kA�?y9�m�B�?@9<3�3�.1=	0H�� �=�?�9�m�A�DEB�519yC@X�9,w�>�9�?�Y h-¤ i P	
�����
�������	���
}�Ú�c]¬gbn`]g�kFc]¬-¥HÚ�c]¬gbn`]g k]c]¬ Ú�c]¬gbn`]g k]c]¬*~[?@9�C�?@.19<S
9<3bA�515y3�=�>�?@;<9�3
C@X)A�CR;<=	0�CFA�.V0U;<5VA�3�3�9�3b;�=	0�0�9<;�C@9�G n YE=�0�9Q=�?�C*JR=rÚ
c]¬nbn`Fg�kFc]¬
5V.10�2�3K3lCFA�?�C@.V0�M^7�?@=�D 3�=	>�?@;�9<3K;<=	0�CFA�.10�.V0�M`B�> n 51.1;�A�C@.1=�0�3<N

ª �lG�9�0�C@.87kYHB)A�C@X�3[.10xC@X�9ripkGl�ccbnm d `Segf�h_C@X)A�CK3@A�C@.13l7�YxA^B�A�C@X
?@9<M	>�5kA�?y9�m�B�?@9<3�3�.1=	06C@X)A�C4;<A�0v.10�;<51>)G�9%3�=	>�?@;�9�¦�= n�| 9<;�C\B�?@9�G�L
.V;<A�C@9<3��� �=�?49�m�A�DEB�519%C@X�9,w�>�9�?�Y h!§ i P

�����
�	�����	��� µ�e�_am�h�^�`
i fl´	=�X�0p��DE.8C@X×tA�0�G�m�g�m"eVcR;<=	0�CFA�.10�3
f*;�A�0�;<9�?�×�·�Ú
c]¬nbn`Fg�kFc]¬
P�������$���� µ8¬g^�_a`cbFc i ×	¯b9�7"��9�wY×�·vJ�=�>�5VG�?@9]C�?@.V9�S
9�B�> n 51.1;�A�L
C@.V=�0�3IJ[?@.8C�C@9<0 n Yz��DE.1C@X�JKX�=�3�9`C@.8C@5V9^;<=	0�CFA�.10�3vC@X�9^C@9�?@D
f*;�A�0�;<9�?�×HA�0)GHJKX�.1;]XpG�9<3�;�?@. n 96¯b9�7"��9�wEB�?@=�C@9<.10�3<N

5. QUERY LANGUAGE EVALUATION�*0�C@>�.1C@.1S
9�51Y�T�A^w�>�9�?�YU;�A�0 n 969<S�A�51>)A�C@9�Go.10xu�S
9I3lC@9<B�3<N
"%;��a- �©¨U{,0�>�DE9�?FA�C@9_3�.VDEB�519^B)A�C@Xz9]m�B�?@9<3�3�.1=	0�36DHA�C@;FX�.10�MHC@X�9
?@9<M�>�5VA�?%B�A�C@Xv9�m�B�?@9<3�3�.1=�0 h }:C@X�9RB�?@9�G�.1;�A�C@9R9�m�B�?@9�3�3�.V=�0�3\A�?@9R;�A�?�L
?@.19�Gz=�S
9]?]~]NH �=�?v9]m�A�DEB�519	T/C@X�9^w�>�9�?�Y h i P
	�����
�	�����	��� }�Ú�c�d
¬gbn`]g k]c]¬#¥HÚ
c]¬nbn`Fg�kFc]¬EÚ�c]¬gbn`Fg�kFc]¬*~K.13K9�m�B)A�0)G�9<GxA�3[7�=	5151=�JK3��

P

�����
�	�����	��� Ú�c]¬gbn`]g�kFc]¬
P

�����
�	�����	��� Ú�c]¬gbn`]g�kFc]¬EÚ
c]¬nbn`Fg�kFc]¬

"%;��a- sY¨E �=�?69�A�;]X�3�>�;FXz3�.1DEB�5V9tB)A�C@Xz9]m�B�?@9<3�3�.1=	0gª
T4.10�3�9�?�C-p s
.10 n 9�C*JR9<9<0�9�A�;]X�B�A�.8?^=�7b;<=	0�3�9<;<>�C@.1S
9H;<5VA�3�3`5VA n 9<513`A�0)G«p$q .10
n 9�C'J�9<9<0x9�A�;FXWB)A�.1?b=�7%;<=	0�3�9<;<>�C@.1S
9v51.10�2U5VA n 9<513KC@=E= n CFA�.10¬ªQfN!�'7
C@X�9E3�.1DEB�5V9EB�A�C@Xs9]m�B�?@9<3�3�.1=	0�9<0�G�36JK.8C@X�Ap51.V0�2z5VA n 9<5�T,A�B�B�9�0)G
C@X�9#p q 3lY�D n =	5/A�C[C@X�969<0�G/N,a�X�.13[Y�.19<5VG�3[C@X�9Q7�=	5151=�JK.V0�M��

P

�����
�	�����	��� Ú�c]¬gbn`]g�kFc]¬+p q
P

�����
�	�����	��� Ú�c]¬gbn`]g�kFc]¬+p$qDÚ�c]¬gbn`]g k]c]¬Rp&q

"%;��a- �Y¨Ka%Y�B�9�;]X�9<;]2E9<A�;FX~ªQ��%S
9�?@.87�YU.87y9�A�;]XHC�?@.1B�519I=�7\;<=	0�3�9<;<>�L
C@.1S
9�3lY�D n =�513\=�7)C@X�9�7:=�?@D¯® C E C ®<¸j;<=�?�?@9<3�B�=	0�G�3\C@=6A�0`A�;�C@>�A�5�5V.10�2

C'Y�B�9U}�®LC <�E�C<�® G�~�� >@?�A�0)Gp.87,9�A�;FXWC�?@.VB�519_=�7!;�=	0�3�9�;<>�C@.1S
9v3lY�D`L
n =�513t=�7�C@X�9_7:=�?@D E C ® C E G ;<=�?�?@9�3�B�=	0)G�36C@=WAoB�A�.8?U} E C <FE G ~�� > >KN
q 513�=�T�.87\C@X�9�?@9tA�?@9tJK.15VG�;�A�?FG�3<T�?@9<B�5VA�;<9Lp q n YpA�515yB�=	3�3�. n 519t;<5VA�3�3
A�0)G«p$s n Y�A�515�B�=	3�3�. n 519o5V.10�2zC*Y�B�9<3vC@X)A�C_?@9�3�>�58C`.10�S�A�51.VGsB)A�C@X
9]m�B�?@9<3�3�.1=	0�3_}"A�;<;<=�?FG�.10�M^C@=^C@X�9QC*Y�B�9<;FX�9�;]2�.10�Mt?@>�519<3bA n =�S
9�~]N
��>�B�B�=	3�9KC@X)A�C�>B?�3�B�9�;<.8u)9<3�C@X�A�C P	
�����
�������	��� ;<A�0U=	0�58YHG�9�L

3�;]?@. n 9 P

�����	�	�����	��� T P�������$���� =�? U�$���$ T)A�0)G >�>�.10�;<51>)G�9<3I}�Ú�c�d
¬gbn`Fg�kFc]¬@TFÚ�c]¬gbn`]g k]c]¬*~]NRa�X�.13K3lC@9<BxY�.19<5VG�3[C@X�9j7:=	5151=�JK.10�M��
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ P

�����	�	�����	���
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ P�������$����
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ U�$���$
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ P

�����	�	�����	��� Ú
c]¬nbn`Fg�kFc]¬ P

�����
�	�����	���
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ P

�����	�	�����	��� Ú
c]¬nbn`Fg�kFc]¬ P�������$����
P	
�����
�������	��� Ú�c]¬gbn`Fg�kFc]¬ P

�����	�	�����	��� Ú
c]¬nbn`Fg�kFc]¬ U�$���$

"I;��a- �C¨� �=�?E9�A�;]X�S	A�5V.VG ª u�0)G�A�515[C@X�9xA�;�C@>�A�56¬g^�_a`cbFcxf?e�m�h
.10�3lCFA�0�;�9<3QDHA�C@;]X�.V0�M
ª .10pC@X�9x\�^�_a`cbFc d `cegf?h`C@X�A�CjA�513�=U3@A�C@.13l7�Y
A�515IC@X�9�3�=	>�?@;<9�B�?@9�G�.1;�A�C@9<3<N q 3�=�>�?@;<9�B)A�C@X�.10�3lCFA�0�;<9�.10�C@X�9
\�^�_a`cbFc d `Segf�hx.13_3@A�.kG�C@=WDHA�C@;]X�Ax3�.1DEB�519EB)A�C@Xs9�m�B�?@9�3�3�.V=�0�.87
C@X�9�?@9b9�m�.V3lC@3RA6DHA�B�B�.10�MI7�?@=�D�C@X�9j3�9]C�=�74A�5V5)C@X�9K3�=	>�?@;�9<3�.10EC@X�.13
B�A�C@XH.10�3lCFA�0�;<9bC@=tC@X�9j;<5VA�3�3[5kA n 9<513�.10EC@X�9QB�A�C@XE9�m�B�?@9<3�3�.1=	04N! �=�?
A_B)A�?�C@.1;<>�5VA�?Ì\=^�_a`cbFc d `cegf�h�T�C@X�.13K3lC@9<Bo;<=	>�5kGUY�.19<5VGI�
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬v��¡/¢�£�¤�¥
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬t���^�������������
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬ �ÌW���$_¤�W�¤
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬v��¡/¢�£�¤�¥<Ú�c]¬gbn`Fg�kFc]¬_��¡/¢�£�¤�¥
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬v��¡/¢�£�¤�¥<Ú�c]¬gbn`Fg�kFc]¬^���^�������������
��¡�¢�£�¤�¥*Ú�c]¬gbn`]g k]c]¬v��¡/¢�£�¤�¥<Ú�c]¬gbn`Fg�kFc]¬��ÌW���$_¤�W�¤

"I;��a- 1<¨v �=�?j9�A�;]X�3�=	>�?@;<9tB)A�C@X/T)9<S�A�51>�A�C@9_AEw�>�9�?�Yo9<S	A�51>)A�C@.1=�0
B�5VA�0s}:7�=�?KC@X�.13KB)A�C@X�~�A�M	A�.10�3lCbC@X�9�i�kGl�ccbnm d `Segf�h�N

6. QUERY EVALUATIONr�9KB�?@=�S�.kG�9KA63�2
9�C@;FX`=�7�C@X�9[3lC@9�B�3!7�=�?�w�>�9�?�Yt9<S�A�51>)A�C@.V=�04N\r�9
C@X�9<0�B�?@=�S�.VG�9`A n ?@.19�7RG�9�3�;�?@.1B�C@.1=	0�=�7N\ d \�c�e'`cboh�TyA�0�A�51M	=�?@.8C@X�D
C@=Uu)0�G�¬g^�_a`cbFctf?e�m�h�¬j.V0�C@X�9�\=^�_a`cbFc d `ceof�h�N`r�9_C@X�9�0�G�.V3�;�>�3�3
A�0�A�.1S
9�9<S�A�51>)A�C@.V=�0�=�7vC@X�9�¬g^�_a`cbFc+f?e'm�h�¬UA�M	A�.10�3lCoC@X�9 i�kGl�ccbnm
d `cegf�h�} � <�> � ~ n Y�A�DE9�G�.VA�C@=�?xA�;<;<9�3�3�.V0�M�>�C@.15V.8C@.19<3x{R��9�A�?@;FX4T
{, �9�C@;FXWA�0)Gx{,-4.10�2U;�>�?�?@9<0�C@58YU3�>�B�B�=�?�C@9�G n YHC@X�9Q³6®��R�FN

6.1 Query Evaluation Stages
¶�N��!A�51.VG�A�C@9UC@X�9xw�>�9�?�Y�A�M
A�.V0�3lC >B? A�0)G > >KN�a�X�.13`;�=�?�?@9�L
3�B�=	0�G�3[C@=H��C@9<B�3I¶�T�¸�T�A�0�Gxº^=�7,��9�;	N=��N

¸�NK y.10)G`A�5154¬g^�_a`cbFc~f?e�m�h�¬�.V0`C@X�9«\=^�_a`Sb]c d `cegf�h�T�}�N@<�>SO�~�C@X)A�C
3@A�C@.13l7kY�C@X�9Hw�>�9�?�Y��yC@X�.13v.13^��C@9<B|��NUr�9HG�9<3�;]?@. n 9UA�0s9�m�L
X)A�>�3lC@.1S
9I3�9<A�?@;FX�A�51M	=�?@.1C@X�D \ d \�c�e'`cboh^0�9�m�C�N

º�NK{%5V.1DE.10)A�C@9EDE9�A�0�.10�M	519<3�3E¬g^�_a`cbFcÌf?e'm�h�¬I>�3�.V0�M�> >KNx��;�.V9�0�L
C@.13lC@3_DHA<Y�7:>�?�C@X�9�?t9<51.1DE.10)A�C@9�¬g^�_a`Sb]cEf?e�m�h�¬IC@X�A�C_A�?@9H0�=�C
=�7!.10�C@9�?@9<3lCQC@=EC@X�9<DpT)9	N M�NVT�C@X�9�YWG�=U0�=�CQ>�3�9_G�A�CFA`7k?@=	D A
3�B�9<;<.8u�;o3�=�>�?@;<9H.10sC@X�9HB)A�C@X4N�a�X�9�YsDHA<YzA�513�=�?FA�0�2�C@X�9
¬g^�_a`cbFc9f?e�m�h�¬ n A�3�9�G�=�0�G�=	DHA�.10�3�B�9<;<.8u);U;�?@.8C@9�?@.VA�Nz³Q=�C@9
C@X)A�C^C@X�.V3_3lC@9<B�.1DEB�?@=�S
9<3t9�©E;<.19<0�;�Y�A�0)G�>�3�9�7�>�510�9�3�3 n >�C
G�=�9�3`0�=�CE.1DEB)A�;]C^C@X�9U3�9<DHA�0�C@.1;<3<��.1C`.V3^0�=�C`.V0�;<51>)G�9�G�.V0
��9�;	N=��N

��NK{%S	A�5V>�A�C@9,9�A�;FX`¬g^�_a`cbFc�f?e�m�h�=	06C@X�9«i�kGl�c�bnm d `Segf�hI} � <F>��,~]T
3lCFA�?�C@.10�MoJK.8C@X�C@X�9_X�.1M	X�9�3lCI?FA�0�2
9�G�¬n^'_?`SbFctf?e�m�h�Ntr�9^G�9�L
3�;�?@. n 9�A[0�A�.1S
9%9<S�A�51>)A�C@.V=�0v3lC�?FA�C@9<M�Y6C@X)A�C�A�3�3�>�DE9<34C@X�9%DE9�L
G�.VA�C@=�?_X)A�3tA|Ú
c�b�g�¬Fg ^�hq`g_�eVcQC@=WG�9]C@9�?@DE.10�9^C@X�9E5V.10�2�C'Y�B�9
=�7%51.10�2�3[.10xC@X�9ri�kGl�ccbnm d `cegf�h�N

��N�¯j9�C@>�?@0W?@9<3�>�58C@3IC@=oC@X�9^>�3�9�?�N_a�X�.136DHA<YW.10�;<51>)G�9^C@X�9r^�k<d
l�ccbnm�¬IA�0)G�5V.10�2�36=�7[AUB)A�C@Xz.10�C@X�9zi�kGl�ccbnm d `cegf?ho=�?v=	0�58Y
C@X�9|mVe�`T��cgm+^�kGl�ccbnm�¬`?@9�A�;]X�9�G�A�51=�0�M�B)A�C@X�3H=�7vC@X�9�ipkGl�ccbnm
d `cegf?h�N

6.2 SGSearch
\ d \�cce�`cboh^.13bA�0o9�m�C@9<0�3�.1=	0o=�7%A_3�9�A�?@;FXWA�51M�=�?@.8C@X�D�B�?@9<3�9<0�C@9�G

.10 µ ��·fN a�X�9�9�m�C@9<0�3�.V=�0 .13xC@=Z;<=�0�3�.VG�9�?�5VA n 9<519�G¨51.10�2�3p.10�C@X�9
\=^'_?`SbFc d `ceof�h��IC@X�9W=�?@.1M	.10)A�56A�51M�=�?@.8C@X�D =	0�51Y�;<=�0�3�.VG�9�?@9<G�>�0�L
5VA n 9<519�GZ51.V0�2�3<N�\ d \�cce�`cbohz.13 n A�3�9�G�=	0�AzG�9�C@9�?@DE.10�.13lC@.1;Hu)0�.8C@9
3lCFA�C@9jA�>�C@=	DHA�C@=	0p} « q ~\C@X�A�C%?@9<;<=�M	0�.
	<9�3[AQ?@9<M	>�5VA�?�9]m�B�?@9<3�3�.1=	0
}"w�>�9�?�Y h�� ~]N%a�X�9KA�51M	=�?@.8C@X�D B�9�?�7:=�?@DE3,A�0^9]m�X�A�>�3lC@.VS	9 n ?@9�A�G�C@X�L
u�?@3lCH3�9<A�?@;FX�=�76A�515jB�A�C@X�3`C@X)A�CH3@A�C@.13l7�YZC@X�9Ww�>�9]?�Y�N1\ d \�cce�`Sboh
A�3�3�>�DE9<3EC@X)A�C h�� .13H3�9<DHA�0�C@.1;�A�5151Y�;<=�?�?@9<;�C�Tb.�N 9�NVT[C@X�9W=�?@.1M	.10�A�5
w�>�9�?�Y�X�A�3 n 9<9<0z?@9�J[?@.8C�C@9<0�A�3tG�9<3�;�?@. n 9�G�.10���9<;	NC�UC@=p.10�;�5V>�G�9
A�51540�9<9�G�9�GUJK.15VGx;�A�?FGx;<5VA�3�3b5VA n 9<513<T©p q T�A�0)GU51.V0�2o5VA n 9<513<T(p s N
��>�B�B�=�3�9 « q .13�C@X�9!A�>�C@=�DHA�C@=	06C@X�A�C/?@9<;<=	M�0�.
	<9<3yC@X�9,?@9�M	>�5VA�?

9�m�B�?@9�3�3�.V=�0Zw�>�9�?�Y h � N�a�X�9 « q .V3t?@9<B�?@9�3�9<0�C@9�G n Y�Ap3�9�C^=�7
C�?FA�0�3�.8C@.V=�0�3<T,JKX�9�?@9xApC�?FA�0�3�.8C@.1=	0�.13EA5��L"C@>�B�519+� i }lg:T �]T�c]T �p`�c�Úx~]T
A�0�G^JKX�9�?@9�T�g�?@9�B�?@9<3�9<0�C@3,C@X�9K.10�.8C@.VA�5�3lCFA�C@9b=�7I�]T �y?@9<B�?@9<3�9�0�C@3,C@X�9
u)0�A�5�3lCFA�C@9[=�7�]T
A�0)Gpc�;�=�?�?@9<3�B�=�0)G�3\C@=bC@X�9�5VA n 9�5�=�7���N�³Q=�C@9!C@X)A�C
c��*� � >KT4.�N 9	N1T[c n 9<51=�0�M	3IC@=UC@X�9t3�9�Cv=�7R;<5VA�3�3v5VA n 9<5136=�?v5V.10�2
5VA n 9<513<N	��`@ccÚK?@9�B�?@9<3�9<0�C@3!AIB�?@9�G�.1;�A�C@9K9�m�B�?@9�3�3�.V=�0EC@= n 9b3@A�C@.13lu)9�G
n YvAK3�=	>�?@;�9RC@X)A�C\.1DEB�519<DE9<0�C@34Ab;<5VA�3�3,=�? n Y6= n�| 9�;�C@3\.10^Ab3�=	>�?@;�9	N
 �=�?_3�.1DEB�5V.1;<.8C'Y�JR9EG�=x0�=�CtG�.13�;<>�3�3���`@ccÚ`.10zC@X�.13v3�9<;�C@.1=�04NUa�X�9
3lCFA�C@9vg�}:?@9<3�B�9<;]C@.VS	9<58Y ��~yDHA<Y n 9KA`¬�mVe�`om\¬�mVe�m'cj}:?@9<3�B�9<;]C@.VS	9<58Y�c]h=Ú
¬�mVe�m'c�~[=�7\C@X�9 « q N
a�X�9%9�m�X�A�>�3lC@.1S
9,A�5VM�=�?@.8C@X�D \ d \�cce�`cboh�;<=	DEB�?@.13�9<3/C'J�=KB�X�A�3�9<3��

}"A
~ kn_�g�e
Ú f?e�m�h�A�0)G�} n ~tf`]g:h�m�f?e�m�h�N��'0sB�X�A�3�9]kn_�g�e
Ú f?e�m�h�T%7:=�?
9�A�;]XsS�.13�.8C@9�GzC�?FA�0�3�.8C@.1=	0z��
 i }lg�T �FT:c]T ��`@ccÚ�~]T�\ d \�cce�`Sboh�A�0�0�=�CFA�C@9�3
9�A�;]XEC�?FA�0�3@A�;�C@.1=�0UJK.8C@XUA63�9�C~��
� ®������[ªJ�=��� Q��H;<=�?�?@9<3�B�=	0�G�.10�M6C@=
C@X�9t5VA n 9<5\ª�Nj�'7�ª^.13QAH;�5kA�3�3I5VA n 9<5\=�?QC@X�9tJK.15VGW;�A�?FGW;<5VA�3�365VA n 9<5
p q T��
 � ®������[ª��=��� Q��E.10�;<51>�G�9<3 e	e:e P�� .10IN�3�>�;FX^C@X)A�C�ª��AQ�O4} P�� ~]N
�'7PªU.13`AW51.V0�2�5VA n 9�5"TF�
 � ®������[ªJ�=��� Q���.10�;<51>)G�9�3tC@X�.V3t5VA n 9<5�N� y.8L
0)A�5151Y�T�.87\ªI.V3!C@X�9jJK.15VGH;�A�?FGH51.V0�2E5VA n 9<5Yp s T�C@X�9<0 �
 � ®������[ª��=��� Q��
.10�;<51>�G�9<3bA�515/C@X�9I5VA n 9�5V3b.10'>[N
 �=�?K9�A�;FXoC�?FA�0�3�.8C@.1=	0r��
 i }lg�T �FT:c]T ��`@ccÚ�~]T�.87�g).13K0�=�CbAU¬�mVe�`om�¬�mVe�m'c

=�7tC@X�9 « q T�C@X�9<01\ d \�c�e'`cboh�A�0�0�=�CFA�C@9<3o9�A�;FX�9<519<DE9<0�C��P=�7
�
 � ®������[ªJ�I��� Q���T6JK.8C@X A�3�9]Cz��� ���[ª��Y����� P � Q����^C@X�.13z.13�9<.8C@X�9]?
P�� � ����ª��Y����� P � Q��x=�?=E�� ����ª��Y����� P � Q���T�G�9<B�9�0)G�.10�M^=	0oJKX�9�C@X�9�?��
.13xAz3�=	>�?@;�9�=�?U5V.10�2�N¨�f7t� .13oA�51.10�2Z5kA n 9<5 EfTt\ d \�c�e'`cbohs;<=	0�L
3�.VG�9�?@3KC@X�9jC�?FA�0�3@A�;�C@.1=	0!��
! C B�?@9<S�.1=	>�3KC@=7�"
�T)A�0)GU;�?@9�A�C@9�3QA^3�9]C
E"� ���[ª��Y�V��� P � Q��IC@X�A�C4.10�;<51>)G�9<34A�515
3�=	>�?@;<9<3 P$# .V0«�
! C � ®�������ªJ�=��� Q��
C@X)A�C6A�?@9EA	G | A�;�9<0�CIC@=0E%.10�C@X�9+\�^�_a`cbFc d `cegf?h�}�NRT >�O�~QA�0�GpC@X)A�C
3@A�C@.13l7kY%�p`�ccÚ�Nja�X�9<3�9_A	G | A�;�9<0�CI3�=	>�?@;<9<3 P$# D^>�3lCbB�A�?�C@.1;<.1B)A�C@9_.10
Az51.10�2�T[3�>�;]X�A�3�} P # T�E'T P�� ~_.10�>�O4N�³Q=�C@9xC@X)A�CE.87 EIG�=�9<3H0�=�C
X)A�S
9IA�0pA�G | A�;<9<0�CK3�=�>�?@;<96.10��
! C � ®������[ª��=��� Q���T�.8CK.13K0�=^51=�0�M	9]?
;<=�0�3�.VG�9�?@9<GpA�3bA�0x9<519<DE9<0�CK=�7C��
&� ®�������ªJ�=��� Q���N
�'7C�z.13bA^3�=	>�?@;<9	T�C@X�9<0/T%\ d \�cce�`SbohE;�=	0�3�.VG�9�?@3[C*J�=_C�?FA�0�3�.8C@.1=	0�3

�
� C A�0)G��
! G T�JKX�9�?@9t�
� C .13KB�?@9�S�.1=�>�3[C@=9�
 A�0�G��
� G .13KB�?@9]L
S�.1=	>�3IC@=��
� C NE�fC6u)0�G�3I3�=�>�?@;<9<3 P # .10]�
� G � ®������[ªJ�I��� Q���C@X)A�C
3@A�C@.13l7kY'�p`�c�ÚoA�0�G/T%C@X)A�C`A�?@9pA	G | A�;<9<0�C^C@= P � .10 > O C@X�?@=	>�M	X�A
51.10�2p5VA n 9�5BE%C@X�A�CI.13I.10�;<51>)G�9<Gp.V05��
! C � ®�������ªJ�=��� Q���NI��.1DE.15kA�?@58Y�T
.87 P�� G�=�9<3j0�=�CQX)A�S
9tA�0�A�G | A�;<9<0�C63�=�>�?@;<9t.10!�"
� G � ®������[ªJ�I��� Q���T
.8Cb.V3K0�=`51=	0�M�9�?b;<=	0�3�.VG�9�?@9�GxA�3jA�0x9�5V9�DE9<0�CK=�7/�
 � ®������[ªJ�I��� Q���N
�*0¨B�X�A�3�9]f�`]g�hmEf?e�m�h�T6C@X�9sA�51M�=�?@.8C@X�D 3lCFA�?�C@3p7�?@=	D�C@X�9�3�9]C

�)(�+* � ®������[ªJ�=��� Q���;<=�?�?@9<3�B�=	0�G�.10�MWC@=WC@X�9Eu�0)A�5!C�?FA�0�3�.8C@.1=	0q�)(�+*
JKX�=�3�96u)0)A�5�3lCFA�C@9t.13jA�0�c]h�ÚU¬�mVe�m'cK=�7\C@X�9 « q N) �=�?j9�A�;FX P�� .10
C@X�.13�3�9]C�T%\ d \�cce�`Sboh_>�3�9<3!C@X�9Q3�9]C P � � ���[ª��Y����� P � Q��HC@=_;<=	0�3lC�?@>�;�C
A�B)A�C@X/N�a�X�9xB)A�C@X�C@9�?@DE.10)A�C@9�3^.10�=�0�9U=�7jC@X�9U3�=	>�?@;�9<3`;<=�?�?@9�L
3�B�=	0�G�.10�MWC@=WC@X�9H3lCFA�?�C^C�?FA�0�3�.8C@.V=�0y� C N ;<>�?�?@9�0�C@�'DEB4�%?@9<;�A�515�C@X)A�C
C@X�9K.10�.8C@.VA�5�3lCFA�C@9b=�7�C@X�.13%C�?FA�0�3�.8C@.1=	0H.13�A`¬�mVe�`om%¬omVe'm'c!=�7�C@X�9 « q N

6.3 Naive Evaluation by a Mediator

r�9o0�=�J G�9<3�;]?@. n 9xA�0�A�.1S
9U9<S�A�51>)A�C@.V=�0�=�7QC@X�9�¬g^�_a`cbFc9f?e�m�h�¬
B�?@=�G�>�;<9�G n Y]\ d \�c�e'`cbohUA�M
A�.V0�3lCQC@X�9!i�kGl�ccbnm d `Segf�h�Nb �=�?Q.15151>�3lL
C�?FA�C@.1=	04T4J�9`;�=	0�3�.VG�9�?6C@X�9����#JKn+i�kGl�c�bnm d `Segf�h�NE³I®��R�Q.13IC@X�9
M	A�C@9<2	9<9<B�9�?`7�=�?H³j�*O G�A�CFA�3�=�>�?@;<9�3<N�a�X�9p{%0�C�?@9�	o>�C@.15V.8C@.19<3`7�=�?
3�9<A�?@;FX A�0)G�?@9�C�?@.19<S�A�5Q7k?@=	D ³6®��R�H3�=�>�?@;<9<3o.10�;<51>)G�9�{R��9�A�?@;FX4T
{,-4.10�2zA�0)Gz{! �9]C@;]X/N+�Q.1S
9<0sAo3�=	>�?@;�9HA�0)G�3�=	DE9`3�9<A�?@;FXsB�?@9�G�L
.1;�A�C@9	T[{!��9<A�?@;FXZu�0)G�3_= n�| 9<;]C@3`.10ZC@X�9o3�=�>�?@;<9UC@X)A�C^3@A�C@.13l7�Y�C@X�9
B�?@9�G�.1;�A�C@9�A�0)Gt{! �9]C@;]X6?@9�C�?@.19<S
9�3�C@X�=�3�9R= n�| 9�;�C@3<N,a�=	M�9�C@X�9]?�T�C@X�9�Y
A�;�C_5V.12
9`C@X�9���?@9<5VA�C@.V=�0)A�5�=	B�9�?FA�C@=�?�N5�Q.VS	9<0�A�0�= n�| 9<;�C_.VG�9<0�C@.8L
u�9�?W}�=�N �j� « ~tA�0�GZAWCFA�?@M�9�CE3�=�>�?@;<9	T�{!-/.10�2�?@9�C�?@.19<S	9<3EA�515K51.10�2�3
}�=�N �Q� « B�A�.8?@3F~,3lCFA�?�C@.10�MI7�?@=�D�C@X�9KM	.1S
9<0^= n�| 9<;�C~� � A�0�G_?@9�A�;FX�.10�M
= n�| 9<;�C@3[.10EC@X�9[CFA�?@M�9�C[3�=�>�?@;<9	N%r�9jG�9<3�;�?@. n 9IA60�A�.1S
9b9<S	A�51>)A�C@.1=�0
3lC�?FA�C@9<M�Y n A�3�9�Gx=�0xC@X�9<3�96>�C@.15V.8C@.19<3<N
� �a-F�a,;+02$����a,�&'. >J�HvC-C,;�. @ P���� E ��P # O ��A ,q>�$=�H��&��z-C,�;J.
��A%;J��Ã�;J.���-C,;�.<;��a��Èz�GA�,�;��?>(�
¶�N[�*0�S
=�2
9%{!��9�A�?@;]X6=�0IC@X�9%;<>�?�?@9�0�C/3�=�>�?@;<9 P � JK.8C@X6C@X�9\3�9�A�?@;]X
B�?@9<G�.1;�A�C@9
	 �[ª��)N�¯b9�C�?@.19<S
9zA�3�9�Cp=�7^= n�| 9<;�CW.VG�9�0�C@.8u�9�?@3
}T�Q� « 3F~!7:=�?b3�=	DE96= n�| 9�;�C@3K.V0 � � N

¸�N[�*0�S
=�2
9j{! �9]C@;]XEC@=t= n CFA�.10x°6±p-�G�=�;<>�DE9<0�C@3,7:=�?K9<A�;FXo= n L
| 9�;�C+� � � � � N « 9�C@9]?@DE.V0�9oC@X�=	3�9p51.10�2�3`JK.8C@X�51.10�2�5VA n 9<5
E'N

º�N[�*0�S
=�2
96{,-4.10�2U=	0pA�515y= n�| 9�;�CQ51.10�2�3[7�?@=�DÅ� � T�JK.8C@Xp5VA n 9�5�E'T
A�0�G`?@9�A�;FX�.10�M_A�0H= n�| 9<;�Cp� # .V0H3�=�>�?@;<9 P # N!®!?@9�A�C@9IAv3�9�C�=�7
= n�| 9�;�C@3 � # N

r�9IA�3�3�>�DE9jC@X�A�C�7�=�?K9�A�;]XU3�=	>�?@;<9I51.10�2`?@9<M�.13lC@9�?@9�Go.100> O T�C@X�9
DE9<G�.VA�C@=�?_X�A�3tApG�9<;<.13�.1=	0s?@>�519`C@=WG�9�C@9�?@DE.10�9_C@X�9`51.10�2�C*Y�B�9`=�7
A�515\=	>�C@M�=	.10�MH= n�| 9<;�C651.10�2�3K7�?@=	D = n�| 9�;�Ct� � N r�9_.15151>�3lC�?FA�C@9tC@X�9
G�9<;<.13�.1=	0�?@>�519<3Q>�3�.10�MoA�0�9�m�A�DEB�5V9�Nv®R=	0�3�.VG�9�?6C@X�9tB�=�?�C@.1=	0�=�7RA
�EW��:�����/��9<0�C�?�YH.10W y.1M�N)¹�N

�� ������� ���������
�������������������������! �"$#�����%
��& '(#*)�)�)�+,�.-�/�0�����1��.-�/�0�����),�
��� #*0�2�'�&��32�4�5�5$#768�39�:,%;1�5,<!&�=�9�>�?�9�@BA
��� #*0�2�'�&��32�4�5�5$#768�39�:,%;1�5,<DC�>3EF?GEH9�I�J39HK$LH9MJ�N�@�>�?�9$A
��� ��O�=BP�KQ68�3>�=�9HK(R�EF?�=BP�KSAT%
%�%�%U%�%�%

V C '�� �(R�WSR
EH>HNSP*9HK$E768��JFWB>HKSAT%
V C 'HX ��&�YB ��>�ZB���[�/�0�5�0,�

��� \]#_^
%�%�%U%�%�%
&�& 2�`a2b�S*����������cd��������&����e_�f�������
�����M�����

&����3���G'F�g�����S_CB_��C
�����S_�����������������
&�& ���������h68�����SAh\i�S��jca4�1�/$#*5�5�^�%�%�%
%�%�%U%�%�%

V G ��� �S����k0�5�"$#*5� ,�
V £ ��� �S����k4�1�/$#*5�5,�

%�%�%U%�%�%
V ¤ ��� �����S_�����G0�/�1M0�/�1g�G2�l
m6*P�Kg�����SAT%

%�%�%U%�%�%
� �L�=�����
n%�EÄN$�';���$=AC> $�0 ;J.��/�rA��GÄ«��$�; �?A%;���Êhoqp�rBrBr(s

a�X�9R7:=�>�?,51.10�9<3%DHA�?@2	9�GvJK.8C@X�t �hu ;<=�?�?@9�3�B�=	0)GtC@=j7:=�>�?Qc�dfe g:h�i]3<N
r�9EG�9�3�;�?@. n 9EG�9<;�.V3�.1=�0z?@>�519<3IC@=o;<5VA�3�3�.87�Y�C*JR=�c�dfe g:h�i]3<N` �=�? � C T
C@X�9^7:=�515V=�JK.10�MW?@>�5V9x}:?@9<B�?@9<3�9�0�C@9<G n Y�AoC�?@.1B�519�~jJK.1515 n 9`>�3�9�G�C@=
G�9�C@9�?@DE.10�9WC@X�9�51.10�2ZC*Y�B�9(��}lN ¦(oBv7w N ¦$o(x�T6g:¬]b�e�_�¬ne�e@��^�`]Ú�g�¬]d
cce�¬�c]T�EL� � ~]N�a�X�9Hu�?@3lC`.8C@9<D =�7KC@X�9HC�?@.1B�519U3�B�9<;<.8u)9<3_C@X)A�C_JKX�9<0
C@X�9xC*JR=�3�> n Lf9<519<DE9<0�C@3p}"A�C�C�?@. n >�C@9<3F~�o$v�A�0�Gho(x�=�;<;�>�?H.10�C@X�9
�EW��:�����/�§9<0�C�?�Y�TjC@X�9<0�C@X�.13p.13�AZ51.10�2�=�7^C'Y�B�9 EL� � JK.1C@X¨51.10�2
5VA n 9<5Ig:¬+b�e�_�¬ge	eM��^�`�Ú�g:¬�cce�¬�c]N�a�X�9xA�C�C�?@. n >�C@9HS�A�51>�9<3o}8oBv7y ���)�
���'P���$����{z y ��)���,| A�0)GGo(x~}��3�q� � �3� �����B�$�B�B��~v;<=�?�?@9<3�B�=�0)GzC@=
C@X�9HA�;�C@>�A�5,= n�| 9<;]C^51.10�2�NU �=�? � ¤ T4C@X�9^7�=	5151=�JK.10�M�?@>�5V9E.13v>�3�9<G%�
}lN ¦��B��T���c]h�cgm�g b7k�e�bFiD��`S^�_�h=Ú�T EL� # ~]N,a�X�9jA�C�C�?@. n >�C@9��B�`G�9�C@9�?@DE.10�9�3
C@X�9I?@>�519QC@= n 96=�7yC*Y�B�9 E�� # JK.8C@Xp5VA n 9<5@��c]h�cgm�g�b9k�e�bFiD��`S^�_�h=Ú�N

7. DISCUSSIONrs9�B�?@9�3�9<0�CpC@X�9�c�d'e g:h�i�7�?FA�DE9�J�=�?@2�=�7`A�G�A�CFA�DE=�G�9<5vA�0)G
w�>�9�?�YQ5VA�0�M�>)A�M	9RC@X�A�C\A�515V=�JK3\3�;<.19<0�C@.13lC@3yC@=K9�m�B�?@9<3�3�2�0�=�JK5V9<G�M	9!=�7
51.10�2�3%A�0�GvC@=j9�m�B�51=	.8C\C@X�.13\2�0�=�JK519�G�M	9[.10^A�0�3lJR9�?@.10�M6w�>�9]?@.V9�3<Nyrs9
G�.13�;<>�3�3[C@X�960)A�.1S
9I9<S�A�51>)A�C@.1=	0p=�7yC@X�9<3�9vw�>�9�?@.19<3 n YoAtDE9�G�.VA�C@=�?�N
a�X�9]?@9�A�?@9!;<519�A�?@58YtDHA�0�YQ;]X�A�51519<0�M�9<3yC@X)A�CyD^>�3lC n 9RA	G�G�?@9<3�3�9�G�N

a�X�9tu�?@3lCICFA�3�2W.13vG�9<S
9�5V=�B�.10�MUDHA�;FX�.10�9^A�3�3�.V3lC@9<G�C@9<;FX�0�.kw�>�9<3jC@=
9�m�C�?FA�;]CE3�9<DHA�0�C@.1;<3HA�0)G�C@=zB�?@=�S�.VG�9o5VA n 9<513E7:=�?H9�m�.V3lC@.10�M�51.10�2�3<N
rs9U0�=�C@9EC@X)A�C_C@X�9�?@9oA�?@9U3�9<S
9]?FA�5�=�0�M	=�.10�M�9���=�?�C@3^C@=�9<0�X)A�0�;<9
51.10�2�3Qµ ¸�T�º�Ta��T�¶���T/¶�¸�·"N,a�X�.13RCFA�3�2E.13�G�.8©E;�>�58C�T n 9<;�A�>�3�9IAv51.10�2`.10
C@X�9+\=^�_a`Sb]c d `Segf�hUDHA<YW=�7�C@9<0zX)A�S
9tD^>�58C@.1B�519_3�9<DHA�0�C@.1;<3<Nta�X�9
3�9<;<=�0)G�CFA�3�2W.1369�m�B�51=	.8C@.10�MU9�m�.13lC@.10�MoJR=�?@2W.10�=�0�C@=	51=	M�.V9�3t.10�C@X�9
CFA�3�2x=�7!A�3�3�=�;<.VA�C@.V0�Mp3�9<DHA�0�C@.1;<3KC@=H51.V0�2�3<Njr�9_0�=�C@96C@X)A�CI.10�=	>�?
;<>�?�?@9<0�C%B�?@=�C@=�C*Y�B�9	T�C@X�9[3�9<DHA�0�C@.V;�3\.V3%51.1DE.8C@9�GtC@=6Aj3�.VDEB�519�5VA n 9<5�T
JKX�9]?@9�A�3,=	0�C@=	51=�M	.19<3R;<A�0`3�>�B�B�=�?�C%?@.1;FX�9�?%?@9<5VA�C@.1=�0�3�X�.1B�3<N, y.V0�A�5158Y�T
J�9jX)A�S
9[C@=_G�9<S
9�5V=�B`?@= n >�3lC[A�0)GE9�©E;�.V9�0�C!C@9<;FX�0�.Vw�>�9�3!7:=�?Kw�>�9�?�Y
9<S�A�51>)A�C@.1=	0�C@X)A�CQ3�;�A�519^C@=HC@X�9t5VA�?@M�9EG�.13lC�?@. n >�C@9�G�i�kGl�ccbnm d `cegf?h
=�7\C@X�9I51.87:9v3�;<.19<0�;�9vG�=	DHA�.104N
 +&��%A�$ { Ã��?B�����È��?AI;J>(��r�9yC@X)A�0�2I��A�? n A�?FAb{%;F2�DHA�04T���C@9<B�X�A�0
OQ9]Y�DHA�0�0/T���=�9I-�A�;�?@=	.8m�T q 519�mH-4A�3�X/T�rs=�9<.8L'´�Y�Xx-/9<9jA�0)G �y9�C@9]?
¯b.V9�M	9�?v7:=�?vC@X�9<.8?67:9�9�G n A�;F2�NEa�X�.136?@9<3�9�A�?@;FX�J�A�3v3�>�B�B�=�?�C@9�G n Y
³6�� zM�?FA�0�C@3[�����T�
¸	¸�¸�¹'�Y�^A�0)GH�����q�'�
º(�(��¶J�^A�0�G n Y^C@X�9t�Q9]?@DHA�0
¯b9<3�9�A�?@;FX���=�;<.19�C*Yz} « C�§M�?FA�0�Cb0�=�N�³ q �
º	¸	~]N

8. REFERENCESµ8¶]·��B�B�j�,�q�B���q�,���]���,�,���j�q���3���D���, �¡q��¢��d£�¤,��¡$¥��§¦� 3¨T $�(�F�
�q������©Hª«���q�¬®���� _����N

µ ¸�·��B�B�j�q�����T�����q��¨B¯,��°F¬T�±¯S�����$ (²����H���±�B�B��ª������S©S¯S�\N
µ º�·��B�B�j�³�(���q�j¨S�,��¤�©��!�H�, B�F�T¡(´��jN
µ ��·��B�B�j�����3�T����µ¶���(¡��³��¤�©H�¶¬�¯S��¦F¬�¡��T $�(�F�jN
µ ��·��B�B�j�q�����,�3���, 3���H����¥��³�(¡3�RN
µ ��·��B�B�j�³�(���q�j¨S�,��¤�©��±·(¸�¹S�bN
µ ��·t��A�? n A�?FA q N�{%;]2�DHA�04T��\A�>�5��!?@=�JK0/T q Nqº69�?@3�X�9<0 n A�>�DpT

¯tN�±x>�3�X�51.V0/T�A�0)Gp��N�±x.8C@;FX�9<515�N�a�X�9I�l��± « ��¸_3lY�3lC@9<DE3
n .1=	51=	M�YpM�?FA�B�Xo9�m�C@9<0)G�9�?[?@9<3�9�A�?@;]XWB�?@=�C@=�C*Y�B�9	N�» h�gGm'c
� egf�cg`*¼Mn�J¾½À¿%g ��c«\=b�g"c]h=bFc]¬@T�¸(�(����N

µ ¹�·k�\N�-�A�;�?@=	.8m�T)OtN)±x>�?�C@X�Y�T� RN�³IA�>�DHA�0�04T�A�0)Go-,N�¯QA�3�;]X�.kG�N
®RX)A�?FA�;�C@9�?@.
	<.10�MHB�?@=	B�9�?�C@.19<3K=�7yB)A�C@X�3K.V0 n .1=	51=�M	.1;�A�5%G�A�CFA
3�=	>�?@;�9<3<N ��`c^JbFc@ccÚ�g:h ��¬7^)�«m�h�c±ÁbnÂ¿/\Ã� ^�h ��cg`�c]h=bFc9e�h�Ú
\(f�`Fg:h ��cg`]d�Ä)cg`]e
e ��¿yccbnm _a`@cD�t^�m'c]¬Ig�hÃ� ^;,�f�_am'cg`E\=b�g"c]h=bFc
&¿Å�.�/\ (�Ty}f¸������
~g�V¶<¹���Æ�¸(�	¸�T�¸(�(����N

µ ��·k�\N�-�A�;�?@=	.8m�T�-%N�¯jA�3�;FX�.VG�T)A�0)GW±zN {[N��j.kG�A�5�N�{\©E;<.19<0�C
C@9<;]X�0�.Vw�>�9<3�C@=^9�m�B�51=�?@96B�A�C@X�3[.10p51.87:9v3�;<.19<0�;<9vG�A�CFA
3�=	>�?@;�9<3<N ��`c^JbFc@ccÚ�g:h ��¬7^)�«m�h�c±ÁbnÂ¿/\Ã� ^�h ��cg`�c]h=bFc9e�h�Ú
\(f�`Fg:h ��cg`]d�Ä)cg`]e
e ��¿yccbnm _a`@cD�t^�m'c]¬Ig�hÃ� ^;,�f�_am'cg`E\=b�g"c]h=bFc
&¿Å�.�/\ (�Ty}f¸������
~g� ¸3�	º�Æ�¸�¶�¶	T�¸(�(����N

µ8¶���· q 519�mo-�A�3�X4T�rs=	.19�L'´�Y�>W-/9<9	T�A�0�Gx-4=�>�.Vw�A^¯jA�3�;FX�.VG/N q
B�?@=�C@=�;�=	54C@=^9�m�C�?FA�;�CbA�0)GxM�9<0�9�?FA�C@9651.V0�2�3b;<A�B�C@>�?@.10�M
DHA�?@2
9�?�3�9<DHA�0�C@.1;<3�7�?@=�D B�> n DE9�G`C@=_C@X�9IX�>�DHA�0UM	9�0�=	DE9�N
Ç4h�Ú�cg`t`@cUK�gfcgÙ%T�¸(�$�(��N

µ8¶	¶]· �Q587%-49�3�9�?�N q w�>�9�?�YH5VA�0�M	>)A�M	967:=�? n .1=	51=	M�.V;<A�5y0�9�C*JR=�?@2�3<N
a�9<;FX�0�.1;�A�54¯b9<B�=�?�Ct¶<¹���T)�*0�3lC@.8C@>�C[7:>�9�?b�*0�7:=�?@DHA�C@.12oG�9�?
OQ>�D n =	5VG�C��Q0�.1S
9]?@3�.1CFA�9�C�	<>W�!9�?@51.V0/T�¸3�$����N

µ8¶�¸�· q N�±pA�?�C@.104N�� « �[��B�?@=�CF{!®N� q JR9 n L'A�;<;<9<3�3�. n 519tG�A�CFA n A�3�9
5V.10�2�.10�M � « ��;]X�A�.10�3[C@=`{!®�0�>�D n 9�?@3RS�.VA^3lJK.13�3�B�?@=�C�N
JKg�^�g:hD��^�`F, e�m�g b�¬FT)¸(��}��
~g� �	¹���ÆY�	¹	¹�T�¸(�$�'��N

Malleable∗Schemas: A Preliminary Report

Xin Dong
University of Washington

Seattle, WA 98195

lunadong@cs.washington.edu

Alon Halevy
University of Washington

Seattle, WA 98195

alon@cs.washington.edu

ABSTRACT
Large-scale information integration, and in particular, search
on the World Wide Web, is pushing the limits on the com-
bination of structured data and unstructured data. By its
very nature, as we combine a large number of information
sources, our ability to model the domain in a completely
structured way diminishes. We argue that in order to build
applications that combine structured and unstructured data,
there is a need for a new modeling tool. We consider the
question of modeling an application domain whose data may
be partially structured and partially unstructured. In par-
ticular, we are concerned with applications where the border
between the structured and unstructured parts of the data
is not well defined, not well known in advance, or may evolve
over time.

We propose the concept of malleable schemas as a mod-
eling tool that enables incorporating both structured and
unstructured data from the very beginning, and evolving
one’s model as it becomes more structured. A malleable
schema begins the same way as a traditional schema, but
at certain points gradually becomes vague, and we use key-
words to describe schema elements such as classes and prop-
erties. The important aspect of malleable schemas is that
a modeler can capture the important aspects of the domain
at modeling time without having to commit to a very strict
schema. The vague parts of the schema can later evolve to
have more structure, or can remain as such. Users can pose
queries in which references to schema elements can be im-
precise, and the query processor will consider closely related
schema elements as well.

1. INTRODUCTION
There has been significant interest recently in combining

∗

Merriam-Webster: Malleable – 1: capable of being ex-
tended or shaped by beating with a hammer or by the pres-
sure of rollers 2a: capable of being altered or controlled by
outside forces or influences b: having a capacity for adaptive
change

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

techniques from data management and information retrieval
(as surveyed in [4]). The underlying reason is that knowl-
edge workers in enterprises are frequently required to ana-
lyze data that exist partially in structured databases and
partially in content management systems or other reposito-
ries of unstructured data. Similarly, the WWW is a repos-
itory of both structured and unstructured sources (web-
forms and webpages). To support the querying needs in
these applications we should be able to seamlessly query
both structured and unstructured data, and consider query
paradigms that involve both ranking answers and structure
based (SQL-like) conditions on query answers.

Previous work in this area focused on dealing with hy-
brid data after the fact. That is, it is assumed that we
already have some set of structured data and another set of
unstructured data, and the goal is to manage it and query
seamlessly.

This paper looks at the entire process of building an appli-
cation that involves both structured and unstructured data.
We ask the following basic question: how do we model data
for an application that will involve both structured and un-
structured data? In particular, we are concerned with the
case where the border between the structured and unstruc-
tured parts of the data is not well defined, and may evolve
over time.

When we start modeling a domain, we typically want
to model it as precisely as possible by defining its struc-
ture with a schema (or possibly a more expressive modeling
paradigm such as an ontology). However, in the process of
modeling we may realize the following. First, we may not be
able to give a precise model of the domain, either because
we don’t know what it is or because one does not exist. Sec-
ond, we may prefer not to model the domain in such level
of detail because an overly complex model may be a burden
on the users. Third, there are parts of the domain we may
want to leave unstructured for the time being.

To address these needs, we propose the concept of mal-
leable schemas as a modeling tool that enables incorporat-
ing both structured and unstructured data from the very
beginning, and evolving one’s model as it becomes more
structured. A malleable schema begins the same way as a
traditional schema, but at certain points gradually becomes
vague. The important aspect of malleable schemas is that
a modeler can capture the important aspects of the domain
at modeling time without having to commit to a very strict
schema. The vague parts of the schema can later evolve to
have more structure, or can remain as such. Users can pose
queries in which references to schema elements can be im-

Clean Schema

Malleable Schema

Structured data
sources

Unstructured data
sources

Figure 1: When someone is trying to create a
schema for a domain to integrate both structured
and unstructured data from a variety of data
sources, malleable schemas can help her capture the
important aspects of the domain at modeling time
without having to commit to a very strict schema.
The vague parts of the schema can later evolve to
have more structure, or can remain as such.

precise, and the query processor will consider closely related
schema elements as well. Figure 1 depicts the key idea of
malleable schemas.

The concept of malleable schemas evolved from several dif-
ferent applications we have been considering recently: (1) per-
sonal information management (PIM) [8], where we con-
stantly model both structured and unstructured data and
the model of the domain needs to be very easy to use, (2)
information integration on the web [3, 9, 18], where the di-
versity of information sources does not allow creating a sin-
gle mediated schema to which everything cleanly maps, and
(3) biomedical informatics [21], where our understanding of
the domain is constantly evolving from multiple different
views and sources.

Large-scale information integration remains one of the im-
portant challenges in web data management. By its very na-
ture, as we combine a large number of information sources,
our ability to model the domain in a completely structured
way diminishes. We argue that the marriage of structured
and unstructured data is crucial for building robust integra-
tion systems, and the modeling questions that arise are key
to the success of such systems. This paper presents our ini-
tial work on malleable schemas. We motivate the concept
with examples, present an initial formal model, and discuss
the implementation challenges.

Related work
There has been a significant body of work on supporting
keyword search in databases [15, 1, 16], result ranking [2,
13, 12], and approximate queries [20, 23, 10, 11, 5]. They
all assume that the model of the data is precise, but we want
to add flexibility in the queries. In contrast, our goal is to
allow the model itself to be imprecise in certain ways. Prob-
abilistic databases [24, 7] (and formalisms such as Bayesian
Networks) allow imprecision about facts in the database, but
the model of the domain is still a precise one.

The work closest to ours is the XXL Query Engine [22],
where the queries allow for imprecise references to schema
elements. The idea there is that the user will query a large

collection of XML DTDs, and there is no unifying DTD for
all of them. Malleable schemas, in contrast, offer a mid-
dle point between a collection of schemas/DTDs (or a cor-
pus [19]) in a domain and a single crisp schema for that
domain. The idea of a malleable schema is that someone is
trying to create a schema for the domain, but in the process
of doing so needs to introduce (possibly temporarily) some
imprecision into the model. We expect to leverage some of
the techniques in [22, 23] in our query processing engine.

Outline: We first present motivating examples for mal-
leable schemas. Section 3 defines a bare-bones formalism
that includes malleable classes and properties, and describes
the semantics of querying. Section 4 describes several exten-
sions to the basic model, and Section 5 discusses implemen-
tation issues. Section 6 concludes.

2. MOTIVATING EXAMPLES
We present two motivating examples for malleable schemas

taken from our application domains: information integration
on the web and personal information management. The in-
tuition underlying malleable schemas is the following. A
traditional schema is a very structured specification of the
domain of interest. It assumes that you know the structure
that you’re trying to capture and that it can be specified.
Malleable schemas are meant for contexts in which one or
more of the following hold:

• There is no obvious structure for the domain, and
therefore our model of the domain needs to be vague
at certain places.

• The structure of the domain is not completely known
at modeling time, and may become clearer as the ap-
plication evolves and the user needs clarify.

• The structure is inherently evolving over time because
the domain is extremely complicated and itself the
subject of study (e.g, biomedical informatics). Con-
sequently, by nature there will always be parts of the
domain that are not precisely modeled.

• A complete structure of the domain would be too com-
plicated for a user to interact with. For example, try-
ing to model every detail of items found on one’s desk-
top in a PIM system would be too overwhelming for a
typical user, and maintaining the model would also be
impractical.

• The borders between the structured and unstructured
parts of the data are fuzzy, and therefore the model-
ing paradigm needs to support smoother transitions
between the two parts.

The idea of malleable schemas is the following. A modeler
starts out creating a schema of a domain intending to cap-
ture the domain as precisely as possible. However, at certain
points in the modeling process, the schema can become less
precise. Malleable schemas provide a mechanism by which
the modeler can capture the imprecise aspects of the domain
during the modeling phase in a well principled fashion. Mal-
leable schemas allow the modeler to capture these aspects
using keywords, but tell the system that these keywords are
meant to capture elements of the schema, rather than being
arbitrary keyword fields.

In the discussion below we assume a very simple data
model: our domain is comprised of objects (with ID’s). Ob-
jects have properties – we distinguish between relationships

that relate pairs of objects and attributes that relate objects
with ground values. Objects are members of classes that can
form a hierarchy. We assume objects can belong to multiple
classes.

Example 1. Consider building an information integration
system for web sources, whose goal is to answer queries from
multiple databases available on the web (e.g., querying mul-
tiple real-estate sites).

You begin modeling the domain by trying to capture the
salient aspects of real-estate that appear in the sources, and
such that you’ll be able to pose meaningful queries on as
many sites as possible. As an example, you create the class
RealEstate, intended to denote real-estate objects for sale
or rental. In an ideal world (which seems likely when you
start building the application), there would be some obvi-
ous sub-classes of RealEstate (such as houses, condo’s) that
you would incorporate into the model. However, after in-
specting several sites you realize that there are many more
sub-classes, and the relationship between them is not clear.
Furthermore, different sites organize real-estate objects in
varying ways, and the concepts used in one place overlap but
don’t correspond directly with concepts used elsewhere. For
example, you may encounter vacation rentals, short-term
rental and sublets. As a consequence, you cannot create a
model of real-estate such that there would be a clean map-
ping between your categories and those used in the sources.
In short, there is no single way of identifying all the sub-
classes of RealEstate.

What you would like to do now is to create a set of sub-
classes, each described by words or a phrase (typically found
as menu items on a real-estate search form on the web). The
subclasses will not necessarily be disjoint from each other;
in fact, there may be overlaps between the classes. Later on
in the life of the application, after having seen many real-
estate listings and user queries, you may decide to impose
more structure on the subclasses of RealEstate.

In principle, you could do this by creating a property for
the class RealEstate called RealEstateType, and have key-
words or phrases be the content of that property. However,
while doing so could be a way of implementing malleable
schemas (see Section 5), it has several disadvantages from
the modeling perspective because the system does not know
that these keywords are identifying subclasses of RealEstate.
Specifically, (1) you would like to refer to these subclasses
in queries in the same way as you refer to other sub-classes,
(2) later on you would like to evolve the schema (possibly
with the help of the system) to create a more crisp class hi-
erarchy, and (3) you may want to create subclasses for these
classes as well. Hence, in a sense, you want to create a new
keyword property, but you want the system to know that it
is identifying subclasses of an existing class.

This type of example is extremely common in information
integration applications that involve many independently
developed sources. By nature these domains are complicated
and there is no obvious single way to model them. Differ-
ent categorizations arise because site builders have different
views of the world, and often because of natural geographical
differences. In addition, large-scale information integration
fundamentally pushes on the limits being able to model a
domain with a single structured representation. 2

Example 2. The following example illustrates that the same
idea can be applied to properties in the schema. Consider

the domain of personal information management, where the
goal is to offer users a logical view of the information on
their desktops [8]. (Note that in practice this logical view is
created automatically without any investment by the user).

Suppose you are creating a schema for information that
people store on their desktops. You create a class called
Project, and a property called Participant. But soon you re-
alize that not all participants are equal, and you have various
kinds of participation modes. For example, you may have
a programmer on the project, a member in the initial plan-
ning phases, advice-giver, etc. You cannot anticipate all the
possible participation modes nor classify them very crisply.
Hence, you would like to create sub-properties of Participant
so you can at least capture some of the information about
the types of participation, and have these sub-properties de-
scribed by keywords. Note that in this example, even if you
could create a clear description of all the types of participa-
tion, you may not want to do so because the model will be
too complex for users to understand.

This example is not possible to implement with yet an-
other keyword attribute as we did in Example 1. Suppose
you create a text property called ParticipationType. The
question is then what object to attach it to. It does not suf-
fice to attach it to the participant object because it is not a
property of that object, but of the relationship of that object
to the project. In principle, the keyword is expressing a re-
lationship between two objects in the domain, and the only
way to do that in the object-oriented model we are consider-
ing is with a property. Of course, even if you could express
ParticipationType somehow, all the disadvantages mentioned
in Example 1 still hold. 2

Note that one of the early purported advantages of XML
is that you can add tags (corresponding to properties and
classes) at will. Even ignoring for a moment that XML has
evolved to be mostly guided by schemas, XML is, again,
a possible implementation avenue for malleable schemas.
However, our focus is on the modeling aspects – trying to
create a schema for a domain while capturing the vague as-
pects and evolving the schema with time.

3. FORMALIZING MALLEABLE SCHEMAS
We now describe a formal model for malleable schemas.

We focus on the main constructs, and then mention several
extensions in Section 4.

3.1 The data model
We frame our discussion in the context of a very simple

schema formalism, close in spirit to object-oriented schemas.
There have been a plethora of object-oriented modeling lan-
guages suggested in the literature. Our goal is not to argue
for one or the other. Instead, we chose a set of features from
these languages that are important for our discussion, and
our focus is on adding malleable features to the formalism.

We model the domain using objects and properties. Each
property has a domain and a range, where the domain is a
set of classes, and the range is either a set of classes or a
set of ground values. We distinguish between two types of
properties: relationships, whose ranges are sets of classes,
and attributes, whose ranges are sets of ground values. In
other words, a relationship is a binary relation between a
pair of objects, while an attribute is a binary relation be-
tween an object and a ground value. We denote classes by

C1, . . . , Cm, and properties by P1, . . . , Pn. In what follows,
we refer to classes and properties collectively as elements.

We support class hierarchies and property hierarchies,
which model the IS-A relationships. For example, Condo is
a sub-class of RealEstate, and programmer is a sub-property
of participant. Specifically, Ci v Cj denotes that Ci is a sub-
class of Cj , and Pi v Pj denotes that Pi is a sub-property
of Pj . We assume that the classes form a directed acyclic
graph, as do the properties. Note that a sub-class inherits
properties from its parent classes. That is, if C1 is in the do-
main (resp. range) of P1, and C2 v C1, then C2 is also in the
domain (resp. range) of P1. The domain and range of a sub-
property can be sub-classes of those of its parent-properties.
Specifically, if C1 and C2 are in the domain (resp. range) of
P1 and P2 respectively, and P1 v P2, then C1 v C2.

The malleable schema elements: The malleable ele-
ments look exactly the same as the other schema elements,
except for the following (mostly conceptual) differences:

• While the name of a regular class or property is typ-
ically a carefully chosen string, the names of schema
elements can be keywords or phrases, and those are
often obtained from external sources. Later we will
extend malleable schema elements to include also reg-
ular expressions (Section 4).

• For simplicity, we restrict malleable elements to ap-
pear only on the left-hand side of v inclusions. We
can easily extend and allow malleable elements on the
right-hand side (i.e., have a sub-class element for a
malleable element).

• They are marked as malleable. (This is not a require-
ment, but it may be important for future schema evo-
lution.)

We refer to malleable elements as either malleable classes
or malleable properties. Note that the same name can be
both a malleable property and a malleable class, though
they are treated as two distinct elements in the schema.

While from a formal point of view malleable schema ele-
ments are not so different from ordinary ones, the important
point to emphasize is how they are used in the modeling
process. The typical process of modeling a domain assumes
that we are trying to come up with a very clean model, and
hence choose our schema names carefully. In contrast, the
malleable schema elements are meant for the cases where we
cannot (maybe temporarily) model the domain cleanly, and
so we capture certain aspects using keywords. Hence, by
nature we may have many overlapping malleable classes or
properties (possibly even identical ones called differently),
and there will typically be relatively many malleable sub-
classes for a class (or sub-properties of a property).

Example 3. Continuing with example 1, suppose we de-
fine the following malleable sub-classes of RealEstate: Va-
cationRental, ShortTermRental, and Sublet. In addition, we
define the following malleable sub-properties of contactPer-
son: agent, leaseAgent, and rentalClerk. Note that it is
hard to precisely define the relationships between these mal-
leable schema elements (for example, VocationRental, Short-
TermRental and Sublet can largely overlap), but we would
like to capture them in the model. Formally, we have:

• VacationRental, ShortTermRental, Sublet v RealEstate

• agent, leaseAgent, rentalClerk v contactPerson

3.2 Queries
In our discussion of queries we do not pin down a specific

query language. Instead, we describe the principles of in-
corporating malleable schemas into a given query language.
Our goal is to modify a given query language as minimally
as possible.

There are two changes we make to the query language.
First, wherever we can refer to a class (resp. property) we
allow the query to refer to a malleable class (resp. malleable
property). Second, we distinguish between precise refer-
ences in the query and imprecise ones. We denote imprecise
references by ∼ K, where K is either a class or a property.

Example 4. Consider the following query that asks for
short term rentals in the Tahoe area. Note that we have an
imprecise reference to ShortTermRental and to leaseAgent.

Q : SELECT city, price, ∼ leaseAgent
FROM ∼ ShortTermRental
WHERE location=”Tahoe”

2

A query that only makes precise references is answered in
exactly the same way as it would be otherwise. That is, we
treat every malleable schema element as a normal schema
element.

The interesting case is when the query can make impre-
cise references to the malleable schema elements. Intuitively,
when we have a reference ∼ K, we want to refer to all ele-
ments in the schema that are similar to the element K. We
do not make the definition of similarity part of the query
language, since it depends on the particular context of the
application. For example, the following types of similarities
can be employed:

• Term similarity: Schema names can be compared
by using some string distance such as the Levenstein
measure [6], or according to some lexical references,
such as Wordnet [25], or by the term usage similarity
computed with some TF/IDF measure on a corpus of
documents on the application domain, or using the
combination of any of the above.

• Instance similarity: Similarity can be estimated by
gleaning information from the instances in the database.
For example, if the instances of Apartment and Flat
tend to have very similar characteristics, we may deem
them to be similar.

• Structural similarity: Here, the similarity of two
elements can be determined by their context. We
can compare the super-elements, sub-elements, and
sibling-elements of two elements. For example, if two
elements have very similar sub-elements, chances are
higher that they are similar. Also, two sibling elements
can be similar as they might overlap.

• Schema-corpus similarity: There have been sev-
eral pieces of recent work exploring the use of schema
corpora for tasks such as schema matching and me-
diated schema creation [14, 19]. The underlying idea
in these works is to leverage statistics on large col-
lections of schemas in order to determine similarity
between attributes from disparate schemas. The same
idea can be applied here, where instead of similarity

between disparate schemas we consider similarity be-
tween terms in the same malleable schema. In fact,
a malleable schema can be viewed as an intermediate
point in the evolution of a corpus of schemas into a
traditional schema.

Note that in principle, the names of schema elements ap-
pearing in imprecise references do not even have to be in
the schema. Hence, malleable schemas are attractive in
cases where users are querying unfamiliar (or very complex)
schemas.

Reformulating queries over malleable schemas: Given
a similarity measure over malleable schema elements, the
next issue is how to expand a query over a malleable schema
to get the intended answer.

In the simplest case, query reformulation amounts to ex-
panding to a union query. For example, if in Q the reference
to leaseAgent were a precise one, then we simply need to
create a union query that considers both ShortTermRental
and VacationRental, assuming they were deemed to be sim-
ilar sub-classes. However, this is not the end of the story.
First, it may be the case that VacationRental does not have a
leaseAgent property. In that case we need to pose the query
so that the tuples coming from VacationRental do not have
the column for leaseAgent (otherwise the query will be in-
valid). Second, since Q does have an imprecise reference to
leaseAgent, we need to check several combinations, resulting
in the following query:

Q′ : SELECT city, price, leaseAgent
FROM ShortTermRental
WHERE location=”Tahoe”
OR
SELECT city, price, rentalClerk
FROM ShortTermRental
WHERE location=”Tahoe”
OR
SELECT city, price, leaseAgent
FROM VacationRental
WHERE location=”Tahoe”
OR
SELECT city, price, rentalClerk
FROM VacationRental
WHERE location=”Tahoe”

Some of these subqueries may not be valid, and therefore
need to be pruned. Furthermore, some of the subqueries can
be combined (returning four attributes in each query block).

Finally, we note that there has been significant work on
trying to rank answers of queries posed over combinations
of structured and unstructured data [4]. We do not go into
that issue here, and believe that it is largely orthogonal to
the concept of malleable schemas.

Querying the schema: In addition to allowing queries on
the instances, we allow queries on the schema (e.g., in the
spirit of [17]), as the user might want to know the relation-
ship between the schema elements to help evolve the schema.
Given class C, the user can ask for C’s parent-classes and
sub-classes, and more importantly, for classes that are sim-
ilar to C. The same queries can be posed for properties
too.

4. EXTENSIONS
We now briefly mention several extensions to our basic

model for malleable schemas.

Malleable property chains: This extension is a power-
ful generalization of malleable properties. In addition to
the imprecision that can be captured with malleable proper-
ties, malleable chains can capture varying structures of data.
For example, when we integrate information about people
from multiple sources, not only do we have different proper-
ties for people, but they may be structured differently (e.g.,
the nesting structure of name, address, etc.). Note that
in querying, the similarity among chains compares not only
each of the properties in the chain, but also global aspects of
the chain. Hence, for example, we may consider two chains
with different lengths to be similar (e.g., phoneNo with con-
tact/phone), or we may consider the concatenation of two
chains to be similar to another chain(e.g., name/firstName
and name/lastName with fullName).

Element names as regular expressions:1 Often there is
more structure to the set of sub-classes (or sub-properties)
we want to define, and this structure can be described by
regular expressions. For example, we may want to create
properties *Agent to denote any kind of agent, and define
*Agent v agent to specify that they are sub-properties of
agent. In this way we may help identify various properties
that we want to be agent-related properties.

Malleable values: We often capture aspects of objects
in our model with values. For example, when modeling web
sites for an integration application, we may have an attribute
topic that is assigned one of several values (e.g., BusinessRe-
lated, KidsRelated, Shopping). Formally, these can also be
specified as sub-classes in the model, but it is sometimes
easier to model such distinctions with values. Hence, we
can also support malleable values. For example, suppose
you created a value BusinessRelated for modeling web sites
that have content related to business. However, you then re-
alize that you are not quite sure what you precisely mean by
this category. There are web sites that offer articles about
business, reviews of business and products, and sites about
business people. You can create a description attribute that
can have these values and maybe later evolve them into cat-
egorization as well.

5. IMPLEMENTATION
We are currently implementing a prototype modeling and

querying tool for malleable schemas. We are implementing
it over a relational database, though most of the principles
of the implementation should carry over to XML, object-
relational systems or data integration systems. The details
of the implementation are beyond the scope of this paper.
We briefly describe its main components below.

• Modeling: The modeling tool enables the modeler to
create a malleable schema (in terms of classes and
properties). The tool also allows to query the model
itself in the process of modeling. For example, when
the modeler creates a sub-class, she may want to query
for similar sub-classes that are already in the schema.

1We thank Gerhard Weikum for this idea.

• Translation to relational schema: We take the mal-
leable schema and create a malleable relational schema
for storing the data.

• Query reformulation: Given a query over the relational
schema, we translate it into a set of SQL queries that
can be posed over the database. The translation pro-
cess obtains similarity measures between schema ele-
ments from an external module.

• Ranking: The ranking of the answers in the result con-
siders two factors. First, the set of queries generated
by the query reformulator is ordered by the similar-
ity of the schema elements. Second, when we actually
see the tuples in the result, we may further refine the
ordering of the answers.

6. CONCLUSIONS AND FUTURE WORK
We described malleable schemas, a conceptual tool for

modeling in applications that involve both structured and
unstructured data. The key idea underlying malleable schemas
is that the modeler should be able to capture all the as-
pects of the domain without having to commit to a clean
schema immediately. We argue that such a capability is cru-
cial in applications that combine data from a large number
of sources since it is typically impossible to create a clean
single schema from the start. In fact, malleable schemas
can be viewed as an intermediate point in the evolution of
a large collection of schemas into a single coherent schema
for a domain. Malleable schemas raise several interesting
semantic issues, as well as challenges for efficient query pro-
cessing and automatically evolving a malleable schema to
more structured schema.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments. The research was funded by NSF CAREER Grant
9985114, NSF ITR Grant 0205635, and DARPA Contract
03-000225.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

system for keyword-based search over relational
databases. In ICDE, 2002.

[2] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. In Proc.
of CIDR, 2003.

[3] K. C.-C. Chang, B. He, and Z. Zhang. Toward large
scale integration: Building a metaquerier over
databases on the web. In CIDR, 2005.

[4] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR technologies: What is the
sound of one hand clapping? In Proc. of CIDR, 2005.

[5] W. W. Cohen. Data integration using similairty joins
and a word-based information representation
language. ACM Transactions on Information Systems,
18(3):288–321, 2000.

[6] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IIWEB, pages 73–78, 2003.

[7] N. Dalvi and D. Suciu. Answering queries from
statistics and probabilistic views. In VLDB, 2005.

[8] X. Dong and A. Halevy. A Platform for Personal
Information Management and Integration. In Proc. of
CIDR, 2005.

[9] X. Dong, J. Madhavan, and A. Halevy. Mining
structures for semantics. ACM SIGKDD Explorations
Newsletter, 6:53–60, 2004.

[10] R. Fagin. Fuzzy queries in multimedia database
systems. In PODS, 1998.

[11] L. Gravano, P. G. Ipeirotis, H.V.Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In VLDB,
2001.

[12] L. Guo, J. Shanmugasundaram, K. Beyer, and
E. Shekita. Structured value ranking in
update-intensive relational databases. In ICDE, 2005.

[13] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[14] B. He and K. C.-C. Chang. Statistical schema
matching across web query interfaces. In Proc. of
SIGMOD, 2003.

[15] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In VLDB, 2003.

[16] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

[17] L. V. S. Lakshmanan, F. Sadri, and S. N.
Subramanian. Schemasql: An extension to sql for
multidatabase interoperability. ACM Transactions on
Database Systems, 26(4):476–519, 2001.

[18] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proc. of VLDB, pages 251–262,
Bombay, India, 1996.

[19] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-basd schema matching. In ICDE, 2005.

[20] A. Marian, S. Amer-Yahia, N. Koudas, and
D. Srivastava. Adaptive query processing of top-k
queries in XML. In ICDE, 2005.

[21] P. Mork, A. Halevy, and P. Tarczy-Hornoch. A model
for data integration systems of biomedical data
applied to online genetic databases. In AMIA, 2001.

[22] A. Theobald and G. Weikum. Adding relevance to
XML. Lecture Notes in Computer Science,
1997:105–124, 2000.

[23] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In EDT, 2002.

[24] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR, 2005.

[25] Wordnet. http://www.cogsci.princeton.edu/ wn/.

Mining the inner structure of the Web graph∗

Debora Donato
Universita di Roma,“La Sapienza”

donato@dis.uniroma1.it

Stefano Leonardi
Universita di Roma,“La Sapienza”

leon@dis.uniroma1.it

Stefano Millozzi
Universita di Roma,“La Sapienza”

millozzi@dis.uniroma1.it

Panayiotis Tsaparas
University of Helsinki

tsaparas@cs.helsinki.fi

ABSTRACT
Despite being the sum of decentralized and uncoordinated efforts
by heterogeneous groups and individuals, the World Wide Web ex-
hibits a well defined structure, characterized by several interesting
properties. This structure was clearly revealed by Broder et al. [4]
who presented the evocative bow-tie picture of the Web. Although,
the bow-tie structure is a relatively clear abstraction of the macro-
scopic picture of the Web, it is quite uninformative with respect to
the finer details of the Web graph. In this paper we mine the inner
structure of the Web graph. We present a series of measurements
on the Web, which offer a better understanding of the individual
components of the bow-tie. In the process, we develop algorithmic
techniques for performing these measurements. We discover that
the scale-free properties permeate all the components of the bow-
tie which exhibit the same macroscopic properties as the Web graph
itself. However, close inspection reveals that their inner structure
is quite distinct. We show that the Web graph does not exhibit
self similarity within its components, and we propose a possible
alternative picture for the Web graph, as it emerges from our exper-
iments.

1. INTRODUCTION
In the past decade the world has witnessed the explosion of the

World Wide Web from an information repository of a few millions
of hyperlinked documents into a massive world-wide “organism”
that serves informational, transactional, and communication needs
of people all over the globe. Naturally, the Web has attracted the
interest of the scientific community, and it has been the subject
of intensive research work in various disciplines. One particularly
interesting line of research is devoted to analyzing the structural
properties of the Web, that is, understanding the structure of the
Web graph [4, 15, 1].

The Web graph is the directed graph induced by the hyperlinks
of the Web: the nodes are the (static) HTML pages, and the edges

∗Partially supported by the EU under contract 001907 (DELIS) and
33555 (COSIN), and by the Italian MIUR under contract ALIN-
WEB.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

Figure 1: The bow-tie structure of the Web graph

are the hyperlinks between them, directed from the page that con-
tains the link to the target of the link. Understanding the structure
and the evolution of the Web graph is a fascinating problem for the
community of theoretical computer science. At the same time it
has many practical implications. Knowledge of the Web structure
can be used to devise better crawling strategies [17], perform clus-
tering and classification [15], improve browsing [5]. Furthermore,
it can help in improving the performance of search engines, one of
the major driving forces in the development of the Web. The cel-
ebrated HITS [13] and PageRank [3] algorithms rely on the link
structure of the Web to produce improved rankings of the search
results. The knowledge of the macroscopic structure of the Web
has been used in devising efficient algorithms for the computation
of PageRank [12, 10].

The first large-scale study of the Web graph was performed by
Broder et al. [4] and it revealed that the Web graph contains a gi-
ant component that consists of three distinct components of almost
equal size: the CORE, made up of a single strongly connected com-
ponent; the IN set, comprised by nodes that can reach the CORE
but cannot be reached by it; the OUT set, consisting of nodes that
can be reached by the CORE but cannot reach it. These three com-
ponents form the well known bow-tie structure of the Web graph,
shown in Figure 11.

The bow-tie picture describes the macroscopic structure of the

1The figure is reproduced from [4]

Web. However, very little is known about the inner structure of the
components that comprise it. Broder et al. [4] pose it as an open
problem to study further the structure of those components. Under-
standing the finer details of the Web graph is an interesting problem
on its own, but it is also important in practice for improving the per-
formance of algorithms that rely on the link structure of the Web.
Furthermore, it could be useful for refining the existing stochastic
models for the Web [1, 18, 14].

The study of the Web graph poses additional challenges. Typi-
cally, the Web graph consists of millions of nodes and billions of
edges. Performing standard graph algorithms (such as BFS and
DFS) on a graph of this size is a non-trivial task since data can-
not be stored in main memory. It is therefore necessary to devise
external-memory algorithms [6] that can work on massive graphs.
The challenge is to customize the algorithms to the Web graph, tak-
ing advantage of the specific structure of the Web.

In this paper we study the finer structure of the Web graph, ad-
dressing the open question raised by Broder et al. [4]. We refine
the bow-tie picture by providing details for its individual compo-
nents. In the process we develop a suite of algorithms for handling
massive graphs. Our contributions can be summarized as follows.

• We implement a number of external and semi-external mem-
ory graph theoretic algorithms for handling massive graphs,
which can run on computers with limited resources. Our al-
gorithms have the distinct feature that they exploit the struc-
ture of the Web in order to improve their performance.

• We experiment with four different crawls and we observe the
same macroscopic properties previously reported in the lit-
erature: the degree distributions follow a power-law, and the
graph has a bow-tie structure, although (depending on the
crawler) a little different in shape.

• We study in detail the inner structure of the bow-tie graph.
We perform a series of measurements on the CORE, IN and
OUT components. Our measurements reveal the following
surprising fact: although the individual components share the
same macroscopic statistics with the whole Web graph, they
have substantially different structure. We suggest a refine-
ment of the bow-tie picture, the daisy structure of the Web
graph, that takes our findings into account.

The rest of the paper is structured as follows. In Section 2 we re-
view some of the basic graph theoretic definitions, and some of the
previous work. In Section 3 we outline the algorithms for handling
the Web graph. in Section 4 we present our experimental findings.
We conclude in Section 5 with a discussion on the implications of
our findings, and possible future experiments.

2. BACKGROUND
Graphs and Power Laws: We will be using various basic graph
theoretic definitions and algorithms that can be found in any graph
theory textbook (e.g., [7]). Here, we only remind the reader of the
definitions of strongly and weakly connected components.

A set of nodes S forms a strongly connected component (SCC) in
a directed graph, if and only if for every pair of vertices u, v ∈ S,
there exists a path from u to v, and from v to u. A set of nodes S
forms a weakly connected component (WCC) in a directed graph G,
if and only if the set S is a connected component of the undirected
graph Gu that is obtained by removing the directionality of the
edges in G.

We will often talk about power-law distributions which are char-
acteristic of the Web. A discrete random variable X follows a

power law distribution if the probability of taking value i is P [X =
i] ∝ 1/iγ , for a constant γ ≥ 0. The value γ is the exponent of the
power-law.

Related Work: The study of the structure of the Web graph has
recently been the subject of a large body of literature. A well-
documented characteristic of the Web graph is the ubiquitous pres-
ence of power law distributions. Kleinberg et al. [14] and Barabasi
and Albert [1] demonstrated that the in-degree of the Web graph
follows a power-law distribution. Later experiments by Broder et
al. [4] on a crawl of 200M pages from 1999 by Altavista confirmed
it as a basic property: the in-degree of a vertex is distributed accord-
ing to a power-law with exponent γ ≈ 2.1. The sizes of the SCC
components also follow a power-law. The out-degree distribution
follows an imperfect power law distribution.

Broder et. al. [4] studied also the structure of the Web graph, and
presented the bow-tie picture. They decomposed the Web graph
into the following components (Figure 1): the CORE, consisting of
the largest SCC in the graph; the IN, consisting of nodes that can
reach the CORE; the OUT, consisting of nodes that are reachable
from the CORE; the TENDRILS, consisting of nodes not in the
CORE that are reachable from the nodes in IN, or can reach the
nodes in OUT; the DISC, consisting of the remaining nodes.

Dill et al. [9] demonstrated that the Web exhibits self-similarity
when considering “Thematically Unified Clusters” (TUCs), that is,
sets of pages that are brought together due to some common trait.
Thus the Web graph can be viewed as the outcome of a number of
similar and independent stochastic processes. Pennock et al. [18]
also argue that the Web is the sum of stochastic independent pro-
cesses that share a common (fractal) structure.

The findings about the structure of the Web generated a flurry
of research in the field of random graphs. Given that the standard
graph theoretic model of Erdös and Rèny [11] is not sufficient to
capture the generation of the Web graph, various stochastic models
were proposed [1, 18, 14]. Most of them address the fact that the
in-degrees must follow a power-law distribution [1]. The copying
model [14] generates graphs with multiple bipartite cliques [15].

3. ALGORITHMIC TECHNIQUES FOR
HANDLING THE WEB GRAPH

This study has required the development of a complete algorith-
mic methodology for handling very large Web graphs. As a first
step we need to identify the individual components of the Web
graph. For this we need to be able to perform graph traversals.
The link structure of the Web graph takes several gigabytes of disk
space, making it prohibitive to use traditional graph algorithms de-
signed to work in main memory. Therefore, we implemented algo-
rithms that achieve remarkable performance improvements when
processing data that are stored on external memory. We imple-
mented semi-external algorithms, that use only a small constant
amount of memory for each node of the graph, as well as fully-
external algorithms that use an amount of main memory that is in-
dependent of the graph size.

We implemented the following algorithms.

• A semi-external graph traversal for determining vertex reach-
ability using only 2 bits per node. The one bit is set when the
node is first visited, and the other when all its neighbors have
been visited (we say that the node is “completed”). The al-
gorithm operates on the principle that the order in which the
vertices are visited is not important. Starting from an initial
set of nodes, it performs multiple passes over the data, each
time visiting the neighbors of the non-completed nodes.

• A semi-external Breadth First Search that computes blocks
of reachable nodes and splits them up in layers according to
their distance from the root. In a second step, these layers are
sorted to produce the standard BFS traversal of the graph.

• A semi-external Depth First Search (DFS) that needs 12 bytes
plus one bit for each node in the graph. This traversal has
been developed following the approach suggested by Sibeyn
et al. [19].

• An algorithm for computing the largest SCC of the Web graph.
The algorithm exploits the fact that the largest SCC is a siz-
able fraction of the Web graph. Thus, by sampling a few
nodes of the graph, we can obtain a node of the largest SCC
with high probability. We can then identify the nodes of the
SCC using the reachability algorithm. As an end product we
obtain the bow-tie regions of the Web graph, and we are able
to compute all the remaining SCCs of the graph efficiently
using the semi-external DFS algorithm.

A software library containing a suite of algorithms for generating
and processing massive Web graphs is available online2. A detailed
presentation of some of these algorithms and a study of their effi-
ciency has been presented in [16]. A complete description of these
algorithms is available in the extended version of this work [8].

4. EXPERIMENTS AND RESULTS
We experiment with four different crawls. The first three crawls

are samples from the Italian Web (the .it domain), the Indochina
Web (the .vn, .kh, .la, .mm, and .th domains), and the
UK Web (the .uk domain) collected by the ”Language Observa-
tory Project” 3 and the ”Istituto di Informatica e Telematica” 4 us-
ing UbiCrawler [2]. The fourth crawl is a sample of the whole Web,
collected by the WebBase project at Stanford5 in 2001. This sample
contains 360 millions of nodes and 1.5 billion of edges. In order
to eliminate non-significant data, we pruned the frontier nodes (i.e.
the nodes with in-degree 1 and out-degree 0, on which the crawler
has been arrested). The sizes of the crawls are shown in Table 1.

4.1 Macroscopic measurements
As a first step in our analysis of the Web graph, we repeat the

experiments of Broder et al. [4] on the macroscopic analysis of the
graph. We computed the in-degree, out-degree and SCC size distri-
butions. As expected, the in-degrees, and the sizes of SCCs follow
a power-law distribution, while the out-degree distribution follows
an imperfect power-law. All our measurements are in agreement
with the respective measurements of Broder et al. [4] for the Alta-
Vista crawl. More detailed results on the various distributions for
the WebBase crawl are reported in [16].

We also computed the macroscopic structure of the Web graph.
We observe a bow-tie structure. The relative sizes of the compo-
nents of the bow-tie are shown in Table 1, where we also present
the numbers for the AltaVista crawl [4], for the purpose of com-
parison. The first observation is that for the Italian, Indochina, and
UK crawls, the IN and TENDRILS components are almost non-
existent. As a result either the CORE is overgrown (for the Italian
and UK crawls), or the nodes are equally distributed between the
CORE and the OUT component. For the WebBase crawl we ob-
serve that the relative size of IN (11%) is significantly smaller than

2http://www.dis.uniroma1.it/∼cosin/
3www.language-observatory.org
4www.itt.cnr.it
5http://www-diglib.stanford.edu/ testbed/doc2/WebBase/

that observed in the AltaVista crawl, while the OUT component
(39%) is now the largest component of the bow-tie. These dis-
crepancies with the AltaVista crawl can most likely be attributed to
different crawling strategies and capabilities, rather than to the evo-
lution of the Web. The first three crawls are relatively recent, and
all crawls are generated using a small number of starting points.
Unfortunately, large-scale crawls are not publicly available.

4.2 The inner structure of the bow-tie graph
We now study the fine-grained structure of the Web graph. We

are interested in understanding not only the characteristics of each
component individually, but also how the components relate to each
other. For this purpose we label each node with the name of the
component to which it belongs. This gives us five sets of nodes
(CORE, IN, OUT, TENDRILS, DISC). For each such subset we
obtain the induced subgraph, resulting in five different subgraphs.
For example, when referring to the IN graph, we mean the graph
that consists of the nodes in IN and all the edges between these
nodes.

As a first step in the understanding of the individual components
we compute the same macroscopic measures as for the whole Web
graph. We compute the in-degree, out-degree and SCC size dis-
tributions for each of the IN, OUT, TENDRILS and DISC graphs.
Figure 2 shows the plots of the distributions for each component
and for the whole graph, for the case of the WebBase crawl. It is
obvious that the same macroscopic laws that are observed on the
whole graph are also present in the individual components.

4.2.1 The structure of the IN and OUT components
Given the fact that the in-degree, out-degree, and SCC size dis-

tributions in the IN and OUT components are the same as for the
whole Web graph, it is tempting to conjecture that the Web has a
self-similar structure. That is, the bow-tie structure repeats itself
inside the IN and OUT components. Dill et al. [9] demonstrated
that the web exhibits self-similarity when considering “themati-
cally unified” sets of web pages. These subsets are structurally
similar to the whole Web. Similar observations are made by Pen-
nock et al. [18]. However, the subsets considered by these previous
works are composed by nodes that may belong to any of the com-
ponents of the bow-tie graph. The question we are interested in
is if such self-similarity appears when considering the individual
components of the bow-tie graph.

The first indication that the self-similarity conjecture is not true
comes from the fact that there is no large SCC in the IN and OUT
components. For the OUT component, in all crawls, the largest
SCC is only a few thousands of nodes. Given that the size of the
OUT component is in the order of millions, the largest SCC is stag-
geringly small. Furthermore, this is also the second largest SCC in
the graph, which, compared the largest one (the CORE), is minus-
cule. We observe a similar phenomenon for the IN component. For
the WebBase graph (which is the most interesting case, since the IN
component is a non-trivial fraction of the graph) the largest SCC in
the IN component is less than 6,000 nodes. Detailed numbers about
the size of the largest SCC in the IN and OUT components are given
in Table 2.

Therefore, it appears that there exists no sizable SCC in the IN
and OUT components that could play the role of the CORE in a
potential bow-tie. However it is still possible that there exists a gi-
ant weakly connected component (WCC) in each component. We
therefore computed the WCCs of the two sets. Surprisingly we
discovered that there is no giant WCC in either of the two com-
ponents. In fact, there is a large number of WCCs per component
and their sizes follow a power law distribution. Figure 3(a) shows

Italy Indochina UK WebBase AltaVista

nodes 41.3M 7.4M 18.5M 135.7M 203.5M
edges 1.15G 194.1M 298.1M 1.18G 1.46G
CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.3%) 44.7M (32.9%) 56.4 (27.7%)
IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.7%) 14.4M (10.6%) 43.3 (21.3%)
OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39.3%) 43.1 (21.2%)
TENDRILS 6.4K (0.01%) 50.4K (0.66%) 139.4K (0.8%) 17.1M (12.6%) 43.8 (21.5%)
DISC 1.25K (0%) 101.1K (1.4%) 80.2K(0.4%) 6.2M (4.6%) 16.7 (8.2%)

Table 1: Sizes and bow-tie components for the different crawls and the Alta Vista graph

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 N

od
es

Indegree

Total
CORE

OUT
IN

TENDRILS
DISC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

N
um

be
r

of
 N

od
es

Outdegree

Total
CORE

OUT
IN

TENDRILS
DISC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 S

C
C

s

Size of SCCs

Total
OUT

IN
TENDRILS

DISC

(a) In-degree distributions (b) Out-degree distributions (c) SCC size distributions

Figure 2: Macroscopic measures for all components

the WCC size distribution for the WebBase graph. Statistics for
all graphs are reported in Table 2. Most of the WCCs are of size
one. The singleton WCCs comprise 10-22% of the IN component
(with the exception of Indochina), and 20-45% of the OUT com-
ponent. On the other hand, the largest WCC is never more than
30% of the component it belongs to, which is small compared to
the giant WCC in the Web graph, which contains more than 90%
of the nodes. For the WebBase graph, the largest WCC in the IN
component consists of just 1% of the nodes, while the largest WCC
in the OUT component consists of 28% of the nodes.

We also investigate how the nodes in the largest WCCs in the
IN and OUT components are connected to see if they organized in
a bow-tie shape. Our investigation revealed that starting from the
largest SCC in the WCC, we can create a bow-tie that is no more
than 15% of the WCC (for the Italian Web), and usually less than
5%. The rest belongs to the DISC component. (Note that a node
that points to the tendrils coming out of IN, or is pointed to by
those going into OUT, belongs to DISC, although it is still weakly
connected to the graph). This suggests that the WCC consists of
multiple small atrophic bow-ties that are sparsely interconnected
with each other.

Italy Indochina UK WebBase
depth IN 2 11 15 8
depth OUT 26 21 25 580

Table 3: IN and OUT depth

In order to better understand how the nodes in IN and OUT are
arranged with respect to the CORE, we performed the following
experiment. We condensed the CORE in a single node and we
performed a forward and a backward BFS. This allows us to split
the nodes in the IN and OUT components in levels depending on
their distance from the CORE. The depths of the components are
shown in Table 3. In all graphs, the depths of the components are
relatively small. Furthermore, most nodes are concentrated close

to the CORE. Typically, about 80-90% of the nodes in the OUT
component are found within the first 5 layers. For the WebBase
graph, although the OUT is much deeper, with 580 levels, more
than 58% of its nodes are at distance 1 from the CORE, and 93%
are within distance 5. Furthermore, after level 305 there exists only
a single chain of nodes that extends until level 580, making the
effective depth of the OUT 305. The node distributions, level by
level, for the WebBase graph are shown in Figure 3(b) and 3(c),
for the IN and OUT sets respectively. The plots are in logarithmic
scale.

Therefore, we conclude that the IN and OUT components are
shallow and highly fragmented. They are comprised of several
sparse weakly connected components of low depth. Most of their
volume consists of nodes that are directly linked to the CORE.

4.2.2 The structure of the CORE
As a first step in the study of the CORE graph, we examine its

relation with the IN and OUT components. We define an entry
point to the CORE to be a node that is pointed to by at least one
node in the IN component, and an exit point to be a node that points
to at least one node in the OUT component. A bridge is a node
that is both an entry and an exit point. The number of entry and
exit points is shown in Table 2. It is interesting to observe that
a large fraction of the entry points act like bridges. Furthermore,
with the exception of the UK crawl, the majority of the nodes in
the CORE is connected to the “outside” world. In the WebBase
crawl, this number is around 80% of the whole CORE, while the
“deep CORE” consists of a little more than 20%.

We also compute the in-degree distribution of the entry points
when we restrict the source of the links to be in the IN component,
and, as expected, we observe a power law. This implies that most
nodes “serve” as entry points to just a few nodes in the IN compo-
nent, while there exist a few nodes that serve as entry points to a
large number of IN nodes. Similar distributions are obtained when
we consider the out-degree distribution of the exit points, restricted

Italy Indochina UK WebBase

The IN component
nodes in IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.69%) 14.4M (11%)
max SCC 1,590 7,867 4,171 5,876
number of WCCs 1,633 117 62K 3.68M
max WCC 4,085 (29.5%) 13.2K (27.2%) 8,246 (2.7%) 197.5K (1.3%)
singleton WCCs 1,543 (11.15%) 63 (0.13%) 56K (17.89%) 3.2M (22.46 %)

The OUT component
nodes in OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39%)
max SCC 19,170 39,283 26,525 9,349
number of WCCs 3.73M 729,6K 1.97M 25.4M
max WCC 1.43M (12.52%) 335.9K (9.85%) 457.4K (7.75%) 14.94M (28.01%)
singleton WCCs 3.49M (30.6%) 672K (19.71%) 1.84M (31.11%) 24.48M (45.91%)

The CORE component
nodes in CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.28%) 44.7M (33%)
entry points 10.2K (0.03%) 2.3K (0.06%) 106.3K (0.88%) 2.6M (5,87%)
exit points 15.6M (52.2%) 2.3M (59.6%) 4.8M (39.8%) 29.6M (72.03%)
bridges 6.25K(0.02%) 1.5K (0.04%) 61.8K (0.51%) 2M (4.58%)
connectors 1.7M (5.71%) 164.2K (4.32%) 537.9K (4.45%) 2.96M (6.63%)
petals 325.3K (1.09%) 52.5K (1.38%) 138K (1.14%) 1.4M (3.14%)

Table 2: Statistics for the IN, OUT and CORE components for each crawl

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 W

C
C

s

Size of WCCs

In WCC distribution
Out WCC distribution

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10

N
um

be
r

of
 N

od
es

Level

Distribution of IN nodes level by level

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

N
um

be
r

of
 N

od
es

Level

Distribution of OUT nodes level by level

(a) Distribution of WCC sizes per component (b) Distribution of IN nodes level by level (c) Distribution of OUT nodes level by level

Figure 3: Characteristics of the IN and OUT components

to the OUT component.
We then study the connectivity of the CORE. We first look for

nodes that are loosely connected to the CORE. We define a con-
nector to be a node of the CORE that has a single in-coming and
out-going link. A connector forms a petal if the source of the in-
coming link, and the target of the out-going link are the same node.
Large number of connectors would imply weak connectivity of the
CORE. The number of connectors is shown in Table 2, and it is
on average around 5%. Of these 20 to 45% are petals. Therefore,
connectors are only a small part of the CORE.

In order to further understand the connectivity of the CORE, we
test the resilience of the CORE to targeted attacks by performing
the following experiment. For some k we delete all nodes from the
CORE that have total degree (in-degree plus out-degree) at least
k. We then compute the size of the largest SCC in the resulting
graph. Table 4(a) shows how the size of the largest SCC changes
as we decrease k, and we increase the number of deleted nodes for
the case of the WebBase graph. Similar trends are observed in the
other crawls. We observe that the threshold on the total degree must
become as low as 100 in order to obtain an SCC of size less than
50% of the CORE.

We note that there is a large discrepancy between the values of
the in-degrees and out-degrees in the Web graph. The highest in-

degree is close to 566K, while the highest out-degree is just 536.
Note that an upper-bound on the out-degree may be imposed by
the crawler, if it limits the number of outgoing links of a page that
it explores. Therefore, it may be the case that when deleting the
nodes with high total degree, we only delete nodes with high in-
degree. We experiment with a different kind of attack that removes
(approximately) k nodes with the highest in-degree and k nodes
with the highest out-degree. The results are shown in Table 4(b).
The CORE remains resilient even against this combined attack. An
interesting observation while performing this experiment was that
the nodes with the highest in-degree and the nodes with the highest
out-degree are quite distinct. Actually, the correlation between the
in-degree and out-degree is close to zero. It appears that nodes that
are strong hubs in the CORE are not also strong authorities.

There are two ways to interpret these results. The first is that
there are no obvious failure points in the CORE, that is, strong
hubs or authorities that pull the rest of the nodes together, and
whose removal from the graph causes the immediate collapse of
the network. In order to disconnect the CORE you need to remove
nodes with sufficiently low degree. On the other hand, note that we
managed to reduce the largest SCC to 35-40% of the original by re-
moving about 1M nodes. However this is less than 1% of the total
nodes. In that sense the CORE is vulnerable to targeted attacks.

deg del max SCC max SCC % SCC num
50,000 9 44.2M 98.9% 81K
21,500 39 43.7M 97.9% 175K
10,000 199 43.2M 96.6% 285K
4,000 1.1K 42.3M 94.7% 505K
1,000 55K 35.1M 78.6% 3.7M
500 120K 31M 69.6% 5.7M
100 1.03M 14.8M 34.6% 14.7M

in-deg del out-deg del total del max SCC max SCC % SCC num
4,000 1.1K 233 1,154 2,263 42.2M 94.4% 595K
2,600 9.9K 185 10K 20.6K 39.8M 89.0% 1.75M
1,750 26K 158 25K 51K 37M 82.9% 3M
1,000 52K 130 54K 105K 33.7M 75.5% 4.75M
500 112K 105 108K 219K 29.4M 66.1% 7M
225 259K 82 227K 487K 23.5M 53.3% 10M
120 518K 62 499K 949K 17.8M 40.8% 13M

(a) Deleting nodes with high total degree (b)Deleting nodes with high in-degree and out-degree

Table 4: Sensitivity of the CORE under targeted attacks

Figure 4: The daisy structure of the Web

5. DISCUSSION AND FUTURE WORK
In this paper we undertook a study of the Web graph at a finer

level. We observed that the ubiquitous presence of power laws
describing several properties at a macroscopic level does not nec-
essarily imply self-similarity in the individual components of the
Web graph. Indeed, the different components have quite distinct
structure, with the IN and OUT being highly fragmented, while the
CORE being well interconnected.

Our work suggests a refinement of the bow-tie pictorial view of
the Web graph [4]. The bow-tie picture seems too coarse to describe
the details of the Web. The picture that emerges from our work
can better be described by the shape of a daisy (Figure 4): the IN
and OUT regions are fragmented into large number of small and
shallow petals (the WCCs) hanging from the central dense CORE.

It would be interesting to obtain larger, and more “realistic” crawls,
and perform the same measurements to verify our hypothesis. Our
current results are sensitive to the choices and limitations of the
crawlers, and it is not clear if the available crawls are representa-
tive of the actual Web graph. Unfortunately, there are no publicly
available crawls that have been collected with the aim of validating
our hypothesis on the structure of the Web graph. We plan in the
future to collect crawls with this goal in mind.

A deeper understanding of the structure of the Web graph may
also have several consequences on designing more efficient crawl-
ing strategies. The fact that IN and OUT are highly fragmented may
help in splitting the load between different robots without much
overlapping. Moreover, the fact that most of the vertices are at few
hops from the CORE may explain why breadth first search crawling
is more effective than other crawling strategies [17].

Our work motivates further experiments on the Web graph. It
would be interesting to devise efficient algorithms for estimating
the clustering coefficient, a commonly used measure for connectiv-

ity. Furthermore, further exploration of the structure of the CORE
is necessary to gain a deeper understanding. Possible measure-
ments could include spectral properties, or clustering and commu-
nity discovery. As a concluding remark, we observe that we are still
very far from devising a theoretical model that is able to capture the
finer connectivity properties of the Web graph.

6. REFERENCES
[1] A.L. Barabasi and A. Albert. Emergence of scaling in random

networks. Science, (286):509–512, 1999.
[2] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A

scalable fully distributed web crawler. Software: Practice &
Experience, 34(8):711–726, 2004.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. In WWW, 1998.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, S.
Stata, A. Tomkins, and J. Wiener. Graph structure in the web.
Computer Networks, 33:309–320, 2000.

[5] J. Carrı̀ere and R. Kazman. Webquery: Searching and visualizing the
web through connectivity. In 6th WWW Conference, 1997.

[6] Y. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter. External-memory graph algorithms. In SODA, 1995.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
algorithms. MIT Press and McGraw-Hill, 1992.

[8] S. Millozzi D. Donato, S. Leonardi and P. Tsaparas. Mining the inner
structure of the web graph. Technical report, DELIS-TR-157,
http://delis.upb.de/docs/, 2005.

[9] S. Dill, R. Kumar, K. McCurley, S. Rajagopalan, D. Sivakumar, and
A. Tomkins. Self-similarity in the web. In Proceedings of the 27th
VLDB Conference, 2001.

[10] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking the web
frontier. In WWW, 2004.

[11] P. Erdös and A. Rèny. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci., 5:17–61, 1960.

[12] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the
block structure of the web for computing pagerank. Technical report,
Stanford University, 2003.

[13] J. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1997.

[14] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. The web as a graph: measurements, models and methods.
In Proc. Intl.Conf. on Combinatorics and Computing, 1999.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling
the web for emerging cyber communities. In WWW, 1999.

[16] L. Laura, S. Leonardi, S. Millozzi, U. Meyer, and J.F. Sibeyn.
Algorithms and experiments for the webgraph. In European
Symposium on Algorithms (ESA), 2002.

[17] M. Najork and J. L. Wiener. Breadth-first crawling yields
high-quality pages. In WWW Conference, 2001.

[18] D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover, and C.L. Giles.
Winners don’t take all: Characterizing the competition for links on
the web. Proc. of the National Academy of Sciences,
99(8):5207–5211, April 2002.

[19] J.F. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external
depth first search on directed graphs. In SPAA, 2002.

Managing Multiversion Documents & Historical Databases:
a Unified Solution Based on XML

Fusheng Wang
Siemens Corporate Research
fusheng.wang@siemens.com

Carlo Zaniolo Xin Zhou Hyun J. Moon
University of California, Los Angeles

{zaniolo, xinzhou, hjmoon}@cs.ucla.edu

ABSTRACT
XML can provide a very effective environment for the preser-
vation of digital information whereby historical information
can be easily preserved and searched through powerful his-
torical queries. We propose a unified approach to represent
multiversion XML documents and transaction-time data-
bases in XML, and show that temporal queries can then be
expressed in standard XQuery. In our demo we demonstrate
the benefits of this approach on several examples, includ-
ing the UCLA course catalog, W3C XLink standards, the
CIA WorldFact Book, and a database of company employ-
ees. We will also demonstrate the ICAP and ArchIS system
that have explored two alternative implementation architec-
tures, one based on native XML DBMS, and the other on
mapping the historical XML views back into a relational
DBMS.

1. INTRODUCTION
Preservation of digital artifacts represents a critical is-

sue for our web-based society [10, 14]. Web documents are
frequently revised, and this creates the problem of how to
effectively organize, search, and query multiversion docu-
ments. When presented with multiversion documents, users
will want to pose queries on the evolution history of the
documents and their contents, in addition to searching and
retrieving specific versions of such documents. Users would
also like to view and query the history of the content of a
relational database in a similar fashion.

Our demo will illustrate that the technology is at hand
for supporting the preservation and queries of multiversion
documents, since XML and its query languages can manage
and search effectively the history of relational databases and
XML documents. Our approach consists in viewing their
history as one integrated document, whereby each element
is timestamped with its period of validity, by its vstart and
vend attributes. The advantage of this approach is that it
makes it possible to support powerful historical queries using
standard XQuery.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

2. VERSION MANAGEMENT IN XML
Our demo will cover three case studies on evolving XML

documents and several examples involving the transaction-
time history of relational databases.

A first case study is the UCLA course catalog that is
published anew every two years. By integrating successive
versions into a time-stamped history, we can express basic
snapshot queries such as “Find all the graduate courses of-
fered by the History Department in 1998”, and “When was
course CS143 introduced?”. But we can also pose more com-
plex queries, such as “Show me the growth of the courses
offered by the CS department in the last 20 years (a tem-
poral aggregate query)”, or “How many years did it take
for ‘nanotechnology’ topics to migrate from graduate-level
courses to undergraduate ones?”.

A second interesting example involves the successive ver-
sions of the W3C XLink standards [4] that are regularly pub-
lished as new XML documents. Temporal queries bring out
changes between the successive versions and also changes on
meta-level information. For instance, a query that proved
to have unexpected ramifications is “Where authors ever
dropped from one version of XLink to the next?”.

While XLink and the UCLA course catalog were origi-
nally created as XML documents, the CIA World FactBook
[3] was instead converted from HTML. This is an interesting
publication that describes the economy, government, popu-
lation, resources, etc., of every country in the world. A
new version of the WorldFact Book is published each year;
this creates an opportunity to search the political/economic
history of the globe, and ask very specific queries on the
evolution of particular countries and regions, using XML.

These case studies reveal that an integrated history doc-
ument can lead to interesting findings and unexpected dis-
coveries that would have been difficult to obtain from the
separate versions of the document. These examples will be
discussed in the course of our demo.

Historical queries represent an excellent example of the
ability of digital libraries to enhance content delivery ser-
vices well beyond those provided by traditional libraries.
Our ICAP system also supports services, such as color-marking
the changes between any two versions of the document (not
just successive ones) and advanced features inspired by the
version machine [9].

3. HISTORICAL QUERIES
An important advantage of our approach is that it can be

applied to both XML documents and relational databases,
and it requires no change in existing standards. This is sig-

nificant, given that support for temporal information and
historical queries proved to be difficult in standard SQL.
Such difficulties led to a number of proposed temporal ex-
tensions to SQL [16]; but these have not been incorporated
into commercial DBMS. However, historical information can
be managed and queried in XML, without requiring exten-
sions to the current standards, since:

• XML provides a richer data model, whose structured
hierarchies can be used to support temporally grouped
data models by simply adding temporal attributes to
the elements. Temporally grouped representations have
long been recognized to provide a very natural data
model for historical information [11, 12], and

• XML provides more powerful query languages, such
as XQuery, that achieves native extensibility and Tur-
ing completeness via user-defined functions [15]. Thus,
the constructs needed for temporal queries can be in-
troduced as user-defined libraries, without requiring
extensions to existing standards.

In the ICAP project [1], we have defined a temporal li-
brary of XQuery functions to facilitate the formulation of
historical queries and isolate the user from lower-level de-
tails, such as the internal representation of the ‘now’ timestamp.
The complete gamut of historical queries—including snap-
shot and time-slicing queries, element-history queries, since
and until queries—can be expressed in standard XQuery [1].

4. MULTIVERSION XML DOCUMENTS
In the ICAP project [1],
(i) we use structured diff algorithms [6, 13] to compute

the validity periods of the elements in the document,
(ii) we use the output generated by the diff algorithm, to

represent concisely the history of the documents with
a temporally grouped data model. Then,

(iii) we use XQuery, enhanced with the library of tempo-
ral functions discussed above, to formulate temporal
queries on the evolution of these documents and their
contents.

For instance consider a very simple document in three
successive versions:

<document> <!--This is version 1 -->
<chapter no="1">

<title>Introduction</title>
<section>Background</section>
<section>Motivation</section>

</chapter>
</document>
<document> <!--This is version 2 -->

<chapter no="1">
<title>Overview</title>
<section>Background</section>
<section>History</section>

</chapter>
<chapter no="2">

<title>Related Work</title>
<section>XML Storage</section>

</chapter>
</document>
<document> <!--This is version 3-->

<chapter no="1">
<title>Overview</title>
<section>Background</section>
<section>History</section>

</chapter>
<chapter no="2">

<title>Related Work</title>
<section>XML Indexing</section>

</chapter>
</document>

To store and query efficiently the history of this evolving
document, we compute the differences between its succes-
sive versions, using a structure diff algorithm such as those
described in [6, 13]. Then, we represent the history of the
document by time-stamping and temporally grouping these
deltas as shown below. We call this history-grouped docu-
ment V-Document.

<document vstart="2002-01-01" vend="now">
<chapter vstart="2002-01-01" vend="now">

<no isAttr="yes"vstart="2002-01-01"
vend="now">1</no>

<title vstart="2002-01-01"
vend="2002-01-01">Introduction</title>

<title vstart="2002-01-02"
vend="now">Overview</title>

<section vstart="2002-01-01"
vend="now">Background</section>

<section vstart="2002-01-01"
vend="2002-01-01">Motivation</section>

<section vstart="2002-01-02"
vend="now">History</section>

</chapter>
<chapter vstart="2002-01-02" vend="now">

<no isAttr="yes" vstart="2002-01-02"
vend="now">2</no>

<title vstart="2002-01-02"
vend="now">Related Work</title>

<section vstart="2002-01-02"
vend="2002-01-02">XML Storage</section>

<section vstart="2002-01-03"
vend="now">XML Indexing</section>

</chapter>
</document>

We obtain a temporally grouped representation (similar to
that of SCCS [17]) that can be easily queried using XQuery.

4.1 Complex Queries
Using XQuery [5], complex temporal queries on V-Documents

can be easily expressed as described next.

QUERY 1. Evolutionary queries: find the history of titles
for Chapter 1:

for $title in
doc("V-Document.xml")/document/chapter[no="1"]/title
return $title

This query returns the list of the titles of chapter 1, each
with the time periods in which those titles were used. Thus
for the example at hand it will return:

<title vstart="2002-01-01"
vend="2002-01-01">Introduction</title>

<title vstart="2002-01-02"
vend="now">Overview</title>

The next query shows an example of duration query.

QUERY 2. Duration queries: find titles that didn’t change
for more than 2 consecutive years.

for $title in doc("V-Document.xml")/document/chapter/title
let $dur:=substract-dates($title/@vend, $title/@vstart)
where dayTimeDuration-greater-than($dur, "P730D")
return $title

The next two examples demonstrate how the connectives
since and until from first-order temporal logic can be ex-
pressed using XQuery on V-Documents:

QUERY 3. A Since B: find chapters whose “History” sec-
tions remain unchanged since the version when the title was
changed to “Introduction and Overview”.

for $ch in doc("V-Document.xml") /document/chapter
let $title := $ch/title[.="Introduction and Overview"]
let $sec := $ch/section[.="History"]
where not empty($title) and not empty($sec)
and $sec/@vstart = $title/@vend and $sec/@vend ="now"

return $ch

QUERY 4. A Until B: find all chapters whose titles have
not changed until a new section “History” was added.

for $ch in doc("V-Document.xml")/document/chapter
let $title := $ch/title[1]
let $sec := $ch/section[.="History"]
where not empty($title) and not empty($sec)
and $title/@vend = $sec/@vstart

return $ch

ICAP provides several temporal functions, including a
function called snapshot($node, $versionTS) that only re-
turns the element and its descendants where vstart ≤ ver-
sionTS ≤ vend.

QUERY 5. Snapshot queries: retrieve the version of the
document on 2002-01-03:

for $e in doc("V-Document.xml")/document
return snapshot($e,"2002-01-03")

Other functions written in XQuery hide the user from
the implementation details of ’now’. There is also a recur-
sive diff-identical($node, $version1TS, $version2TS) func-
tion that returns the elements that have changed between
version1TS and version2TS . This function can, e.g., be
used to show and/or color-code the differences between two
arbitrary document versions.

QUERY 6. Change queries: retrieve the elements that
have changed from 2002-01-01 to 2002-01-03:

for $e in doc("V-Document.xml")/document
return alldiff($e,"2002-01-01","2002-01-03")

5. ARCHITECTURE & PERFORMANCE
In the ICAP system, history documents are stored and

managed using a native XML systems: in our current im-
plementation we use Tamino [7] and X-Hive [8]. In all
three case-study examined (i.e, UCLA course catalog, W3C
XLink, and the CIA World FactBook), we are dealing with
sizes that do not exceed a few megabytes, and can be ef-
fectively supported by native XML DBMS. However, the
performance of this approach can be unsatisfactory when
dealing with the history of database relations. The current
contents of typical databases can exceed the gigabyte size—
and the size of their transaction time history collected over
several years can be significantly larger. These sizes are
easily handled by relational database systems whose users
have also learned to expect that their DBMS performs well
for large data sets. For instance, users of transaction time
databases are likely to require that their queries on past
snapshots are not much slower than those on their current
databases. Our tests [18] indicate that native XML data-
bases do not scale up to this task, and their performance
are likely to disappoint the users of relational databases. As
described in [18], these performance problems can effectively
be addressed by using a relational DBMS to support histor-
ical (virtual) XML views and queries on these views. In our
ArchIS system, therefore, we decompose the historical views

into individual tables that contain the history of each at-
tribute in the relation. Then, we transform and execute the
XQuery statements expressed against the views into equiv-
alent SQL/XML statements against the stored tables. This
approach assures a satisfactory level of performance [18].

6. TESTBED AND DEMO
Several interesting test cases will be demonstrated in our

demo, including the UCLA course catalog, W3C XLink stan-
dards [4], the CIA World FactBook [3], and a database of
company employees. These examples reveal that V-Documents
often lead to interesting findings that cannot be easily in-
ferred from the snapshots of the original documents. Alter-
native system architectures and their performance [18] will
also be covered in the demo.

Acknowledgment
The authors would like to thank Bertram Ludäscher and
Richard Marciano for illuminating discussions on the preser-
vation of documents.

7. REFERENCES
[1] The ICAP Project. http://wis.cs.ucla.edu/projects/icap/.
[2] UCLA Catalog. http://www.registrar.ucla.edu/catalog/.
[3] CIA: The World Factbook.

http://www.cia.gov/cia/publications/factbook/
[4] XML Linking Language (XLink).

http://www.w3.org/TR/XLink/.
[5] XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/.
[6] Microsoft XML Diff.

http://apps.gotdotnet.com/xmltools/xmldiff/.
[7] Software AG: Tamino XML Server,

http://www.softwareag.com/tamino.
[8] X-Hive/DB. http://www.x-hive.com.
[9] The Versioning Machine.

http://mith2.umd.edu/products/ver-mach/
[10] Library of Congress. Displays for Multiple Versions from

MARC 21 and FRBR. http://www.loc.gov/marc/marc-
functional-analysis/multiple-versions.html

[11] J. Clifford. “Formal Semantics and Pragmatics for Natural
Language Querying”. Cambridge University Press, 1990.

[12] J. Clifford, A. Croker, F. Grandi,and A. Tuzhilin, “On
Temporal Grouping”, in Proc. of the Intl. Workshop on
Temporal Databases, 1995.

[13] Gregory Cobena, Serge Abiteboul, Amelie Marian,
“Detecting Changes in XML Documents”, in ICDE 2002.

[14] A.R. Kenney, et. al., “Preservation Risk Management for
Web Resources Virtual Remote Control in Cornell’s
Project Prism, D-Lib Magazine, Jan 2002, 8(1).

[15] S. Kepser. “A Simple Proof for the Turing-Completeness of
XSLT and XQuery”. In Extreme Markup Languages, 2004.

[16] G. Ozsoyoglu and R.T. Snodgrass, “Temporal and real-time
databases: A survey”. in TKDE, 7(4):513–532, 1995.

[17] M. J. Rochkind, “The Source Code Control System”, IEEE
Transactions on Software Engineering, SE-1, 4, Dec. 1975,
p. 364-370.

[18] F. Wang, X. Zhou and C. Zaniolo, “Efficient XML-based
Techniques for Archiving Querying and Publishing the
History of Relational Databases”, Submitted for
Publication.

[19] F. Wang and C. Zaniolo. “XBiT: An XML-based
Bitemporal Data Model”, in ER 2004.

[20] F. Wang and C. Zaniolo, “Publishing and Querying the
Histories of Archived Relational Databases in XML”, in
WISE 2003.

T-SIX: An Indexing System for XML Siblings

SungRan Cho
L3S, University of Hannover

scho@l3s.de

ABSTRACT
We present a system for efficientindexed querying of XML doc-
uments, enhanced with sibling operations. R-tree index proposed
in [5] has a very high cost for the following-sibling and preceding-
sibling axes. We develop a family of index structures, whichwe
refer to astransformed split-tree indexes, to address this problem,
in which (i) XML data is horizontally split by a simple, yet efficient
criteria, (ii) the split value is associated with tree labeling, (iii) all
data elements are transformed into new dimensions to avoid possi-
ble overlap between bounding boxes representing data elements in
the split tree. The T-SIX system incorporates building transformed
split-tree index for XML documents as well as query processing on
all XPath axes to provide query answers.

1. INTRODUCTION
Efficient querying XML documents is an increasingly important is-
sue considering the fact that XML becomes the de facto standard
for data representation and exchange over the Web, and XML data
in diverse data sources and applications is growing rapidlyin size.
Given the importance of XPath based query access, XML query
evaluation engines need to be able to efficiently identify the ele-
ments along each location step in the XPath query. In this context,
several index structures for XML documents have been proposed
[4, 5, 7, 8, 10], in a way to efficiently querying XML documents.

As XML documents are modeled by a tree structure, a numbering
scheme, labeling tree elements, allows for managing the hierarchy
of XML data. For example, each element has the position, a pair of
its beginning and end locations in a depth first search. In general,
the numbering approach has the benefit of easily determiningthe
ancestor-descendant relationship in a tree. In this respect, R-tree
index using node’s preorder and postorder, we refer to aswhole-
tree indexes (WI), has been proposed in [5]. Such index, however,
does not consider issues related to the costs of the preceding-sibling
and following-sibling axes.

In this paper, we develop index techniques to reduce the costof
XML siblings. It also addresses an issue of what efficient pack-
ing for XML tree data is. An efficient packing method for a tree

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

is not only to group together data elements which are close ina
tree, but also to reduce dead space resulting in false positives (no
data in indexed space). In the WI, packing method, taking a whole
tree, may cover considerable dead space, which influences query-
ing XML siblings. We design thetransformed split-tree index to
address the problem, in which (i) an XML tree is horizontallysplit
by the simple, but efficient criteria, (ii) the split value isassociated
with tree labeling, (iii) all data elements are transformedinto new
dimensions to avoid possible overlap between bounding boxes rep-
resenting data elements in the split tree. To take advantageof the
semantics of the index structure, we develop novel index lookup
algorithms for XPath axes for the transformed split-tree index.

We describe T-SIX, a system for indexed querying enhanced with
XML sibling operations. T-SIX incorporates tree labeling and co-
ordinate transformation for XML documents. T-SIX implements
novel index lookup algorithms for querying, providing query an-
swers for the entire set of XPath query axes.

This demonstration is organized as follows. Section 2 showsthe
architecture of T-SIX. Section 3 gives the structure of our index
and describes functionality and features that T-SIX encompasses.

2. SYSTEM ARCHITECTURE

Execution Engine

XPath Query

G U I

User

Input

Query Result

Tree Labeling

XML
Data

XML Stores

Index
Split−Tree
Transformed

Specification
Split Value Transformation Build Index

Transformed Split−Tree Index Management

Figure 1: Architecture of T-SIX

T-SIX is a Java-based prototype. Its architecture is depicted in
Figure 1. It consists of two main components: thetransformed
split-tree index management module and theXPath querying mod-
ule. The first component implements various aspects of managing
transformed split-tree index including tree labeling and coordinate
transformation. It accepts the split value of a tree througha graph-
ical interface and builds the index based on the value. The second

component implements a query processor on all XPath axes, that
accepts queries and returns desired elements.

3. DEMONSTRATION OUTLINE
The system encompasses the following functionality and features
that will be demonstrated: (a) facilitates browsing of different XML
data sets, (b) facilitates browsing of element’s original and trans-
formed positional numbers, (c) incorporates building transformed
split-tree index for XML data, (d) incorporates novel indexlookup
algorithms in the transformed split-tree index for XPath query process-
ing, (e) implements a flexible and interactive graphical interface
and display of queries and query results, (f) supports flexible ways
to input split value information for XML documents, and (g) sup-
ports adjusting page size parameter of the index in an interactive
mode.

3.1 Transformed Split-Tree Index Management
Tree Labeling: We use an encoding scheme,Ln andRn, for nodes
in XML documents that has the same effect as preorder and pos-
torder. Ln is the rank at which the node is encountered in aleft
to right depth first search (DFS) of the XML data tree, andRn is
the rank at which the node is encountered in aright to left DFS. In
order to handle level sensitive matching, such as child and parent
axes (matching nodes one level apart), and following-sibling and
preceding-sibling axes (matching nodes with the same parent), the
parent node’sLn, written asPLn is associated with each node. Thus
each XML element node is labeled with three numbers:Ln, Rn,
andPLn. These numbers become coordinates in multi-dimensions.
Users can view element’s positional information,Ln, Rn, andPLn,
through an interface. In Figure 2, an example XML database rep-
resents ane-store that contains information about items and
clients.

Split Value Specification: XML documents can be selected and
browsed in graphical form. XML element nodes are labeled with
element tags or string values; edges are either between elements
or between an element and a string value. Once XML document
is selected, a user can specify the split value, which is associated
with element’sLn andRn. In effect XML data tree is divided hor-
izontally by the split value. T-SIX system provides conveniently
visualize XML tree split. In Figure 2, for example, once a user
submits the split value of 12, thee-store document is split by
the value, in whiche-store, toys, CDs, pop elements are cut
in the XML tree and highlighted through a graphical interface. Split
value information for XML documents can be dynamically modi-
fied on demand.

Transformation: While the separate packing reduces long thin
boundary boxes, that may contain dead space (space which is in-
dexed but does not have data), it causes the overlap between bound-
ing boxes at each region of the tree. Due to overlap, multiple
paths from the root downwards on the SI may need to be traversed,
which results in increasing page accesses. Before buildingthe in-
dex, T-SIX transforms coordinates of element nodes to avoidpossi-
ble overlap. An element noden=(Ln, Rn, PLn) is transformed into
n′=(Ln′, Rn′, PLn′), such that

Ln
′ = Ln

Rn
′ = Ln + Rn

PLn
′ = PLn

Figure 2: XML data

As a result, the original dimensions are extended with in theRn

direction with respect toLn. Users can view the transformed coor-
dinate information of elements.

Building Index: A transformed split-tree index is constructed on
new dimensions (Ln′, Rn′, PLn′). T-SIX supports for loading new
documents to construct the index in the hierarchical structure. Trans-
formed split-tree index contents as well as index operations can be
efficiently visualized in the system. Users can input the page ca-
pacity through a graphical interface. Figure 3, for example, shows
a transformed split-tree index over the splite-store dataset of
Figure 2 with a page capacity of 2. The leaf pages in the index
contain both leaf and non-leaf XML elements, and non-leaf index
pages indicate page boundaries by the smallest and the largest val-
ues occurring in the page.

3.2 XPath Querying
Once an XML document to be queried is selected, users can spec-
ify XPath queries through a flexible graphical interface. After a
user query is submitted, T-SIX uses the transformed split-tree in-
dex to return all relevant XML data. T-SIX system supports all
XPath axes and provides various ways to conveniently visualize
query results. In Figure 3, for example, a user issues a query, “re-
trieve all elements preceding theclinets element”. As a result,
elements returned as well as non-leaf pages scanned in the index
are highlighted in the graphical interface. The XML data tree also
highlights the query results for easy understanding of XPath query
operations.

4. CONCLUSION
The T-SIX system provides XPath querying enhanced with sibling
operations. It supports novel transformed split-tree indexing meth-
ods to facilitate query operations in XML documents and dynamic
changes of split value information on the XML data tree. It ac-
cepts XPath queries and displays query results through a graphical
user interface. Furthermore, it supports dynamic visualization of

Figure 3: XPath querying

the index.

5. REFERENCES
[1] M. Altinel and M. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
Proc. of VLDB, Cairo, Egypt, 53–64, 2000.

[2] J. Clark and S. DeRose. XML path language (XPath) version
1.0 w3c recommendation, Technical Report
REC-xpath-19991116, World Wide Web Consortium, 1999.

[3] E. Cohen, H. Kaplan and T. Milo. Labeling dynamic XML
trees, InProc. of PODS, 271–281, 2002.

[4] B.F. Copper, N. Sample, M.J. Franklin, G.R. Hjaltason and
M. Shadmon. A fast index for semistructured data, InProc.
of VLDB, Rome, Italy, 341–350, 2001.

[5] T. Grust. Accelerating XPath location steps, InProc. of
SIGMOD, 2002.

[6] A. Guttman. R-trees: a dynamic index structure for spatial
searching, InProc. of SIGMOD, 45–47, 1984.

[7] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions, InProc. of VLDB, Rome, Italy,
361–370, 2001.

[8] T. Milo and D. Suciu. Index structure for path expressions, In
Proc. of ICDT, Jerusalem, Israel, 271–295, 1999.

[9] K.V. Ravikanth, D. Agrawal, A.E. Abbadi, A.K. Singh and
T. Smith. Indexing hierarchical data, Univ. of California,
CS-Tr-9514, 1995.

[10] H. Wang, S. Park, W. Fan and P. Yu. ViST: a dynamic index
method for querying XML data by tree structures, InProc. of
SIGMOD, San Diego, USA, 2003.

[11] H.V. Jagadish, S. Al-Khalifa, A. Chapman,
L.V.S. Lakshmanan, A. Nierman, S. Paparizos, J.M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, C. Yu, TIMBER: A
native XML database, VLDB Journal 11(4): 274-291, 2002.

[12] XQuery 1.0: An XML query language, W3C Working Draft,
November 2002.

[13] K. Deschler and E. Rundensteiner. MASS: A multi-axis
storage structure for large XML documents, InProc. of
CIKM, Louisiana, USA, 2003.

	tempPapers.pdf
	tempPapers.pdf
	P-5.pdf
	P-5.pdf
	INTRODUCTION
	A MOTIVATING EXAMPLE
	MAPPING COMBINATION
	AUTOMATED SUPPORT
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	page1: 1
	page2: 2
	page3: 3
	page4: 4
	page5: 5
	page6: 6
	page7: 7
	page8: 8
	page9: 9
	page10: 10
	page11: 11
	page12: 12
	page13: 13
	page14: 14
	page15: 15
	page16: 16
	page17: 17
	page18: 18
	page19: 19
	page20: 20
	page21: 21
	page22: 22
	page23: 23
	page24: 24
	page25: 25
	page26: 26
	page27: 27
	page28: 28
	page29: 29
	page30: 30
	page31: 31
	page32: 32
	page33: 33
	page34: 34
	page35: 35
	page36: 36
	page37: 37
	page38: 38
	page39: 39
	page40: 40
	page41: 41
	page42: 42
	page43: 43
	page44: 44
	page45: 45
	page46: 46
	page47: 47
	page48: 48
	page49: 49
	page50: 50
	page51: 51
	page52: 52
	page53: 53
	page54: 54
	page55: 55
	page56: 56
	page57: 57
	page58: 58
	page59: 59
	page60: 60
	page61: 61
	page62: 62
	page63: 63
	page64: 64
	page65: 65
	page66: 66
	page67: 67
	page68: 68
	page69: 69
	page70: 70
	page71: 71
	page72: 72
	page73: 73
	page74: 74
	page75: 75
	page76: 76
	page77: 77
	page78: 78
	page79: 79
	page80: 80
	page81: 81
	page82: 82
	page83: 83
	page84: 84
	page85: 85
	page86: 86
	page87: 87
	page88: 88
	page89: 89
	page90: 90
	page91: 91
	page92: 92
	page93: 93
	page94: 94
	page95: 95
	page96: 96
	page97: 97
	page98: 98
	page99: 99
	page100: 100
	page101: 101
	page102: 102
	page103: 103
	page104: 104
	page105: 105
	page106: 106
	page107: 107
	page108: 108
	page109: 109
	page110: 110
	page111: 111
	page112: 112
	page113: 113
	page114: 114
	page115: 115
	page116: 116
	page117: 117
	page118: 118
	page119: 119
	page120: 120
	page121: 121
	page122: 122
	page123: 123
	page124: 124
	page125: 125
	page126: 126
	page127: 127
	page128: 128
	page129: 129
	page130: 130
	page131: 131
	page132: 132
	page133: 133
	page134: 134
	page135: 135
	page136: 136
	page137: 137
	page138: 138
	page139: 139
	page140: 140
	page141: 141
	page142: 142
	page143: 143
	page144: 144
	page145: 145
	page146: 146
	page147: 147
	page148: 148
	page149: 149
	page150: 150
	page151: 151
	page152: 152
	page153: 153
	page154: 154
	page155: 155
	page156: 156

