
Vanhulsel, Janssens, Wets, Vanhoof 1 

Implementing an Improved Reinforcement Learning Algorithm for the Simulation of Weekly 

Activity-Travel Sequences 

 

 

Marlies Vanhulsel 

Davy Janssens 

Geert Wets
1
 

Koen Vanhoof 

 

Hasselt University - Campus Diepenbeek 

Transportation Research Institute 

Wetenschapspark 5, bus 6 

BE - 3590 Diepenbeek 

Belgium 

Tel: +32(0)11 26 {9133; 9128; 9158; 9153} 

Fax: +32(0)11 26 91 99 

E-mail: {marlies.vanhulsel; davy.janssens; geert.wets; koen.vanhoof}@uhasselt.be 

 

 

Submission date 31/07/2007 

 

Word count 

Abstract:        188 

Text:       5264 

Figures:   6*250 

Tables:    1*250 

Total number of words:    7202 

                                                      
1
 Corresponding author 



Vanhulsel, Janssens, Wets, Vanhoof 2 

ABSTRACT 
Recently, within the area of activity-based travel demand modeling there is a general tendency to enhance 

the realism of these models by incorporating dynamics based on learning and adaptation processes. The 

research presented here attempts at contributing to the current state of the art by formulating a framework 

for the simulation of individual activity-travel patterns. 

To this end, the current research redesigns an existing reinforcement learning technique by adding 

a regression-tree function approximator. This artifice enables the Q-learning algorithm not only to 

consider more explanatory and decision variables, but also to handle a larger granularity of these 

dimensions. In addition, the reward function underlying the Q-learning process is drawn up carefully 

based on activity attributes rather than activity type.  

For the purpose of testing the applicability of the proposed improvements, a prototype model is 

implemented and applied to real-world data. The prototype model proves to learn weekly activity-travel 

patterns rather quickly, requiring only a limited amount of memory. Additionally, in order to validate the 

suggested approach, the simulated weekly activity-travel sequences are compared to the observed ones by 

assessing the dissimilarity based on a number of distance measures. 
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INTRODUCTION 
Since the introduction of activity-based travel demand modeling, several methods have been applied to 

forecast individual activity-travel behavior. Some more traditional techniques include logit and nested 

logit models (e.g. Day Activity Schedule (1) and PCATS (2)), Monte Carlo simulations (e.g. RAP (3) and 

SMASH (4)) and discrete choice models (e.g. CEMDAP (5) and MORPC (6)). However, more advanced 

computational methods, such as rule-based systems (e.g. ALBATROSS (7)), genetic algorithms (e.g. 

AURORA (8) and TASHA (9)) and reinforcement learning (e.g. (10)(11)(12)(13)), have been developed 

as well. However, the latter modeling approach in it most elementary application has proven to be 

insufficient for use within the current research area. (10) 

Therefore, this paper aims at contributing to the understanding and modeling of activity-travel 

sequences by: 

• redesigning the simple reinforcement learning algorithm based on techniques originating 

from the area of artificial intelligence; 

• developing a first prototype based on this improved reinforcement learning algorithm; and 

• validating the applicability of this approach by applying the prototype to a small dataset. 

First the research problem will be introduced in the course of a brief literature overview. Then, 

the basic concepts of reinforcement learning will be discussed. Next, the reinforcement learning approach 

extended with a regression tree-based function approximator will be elaborated. Subsequently, the data 

underlying the empirical section will be described. The improved reinforcement learning method will be 

applied to these data and the results will be presented. Conclusions and issues for future research can be 

found in the final section. 

 

PROBLEM DESCRIPTION 
The main assumption of activity-based travel demand models includes that travel is derived from 

individual activity schedules. Indeed, individuals execute certain activities at certain locations in their 

attempt to achieve certain goals. To get to the desired locations, individuals need to travel. Activity-based 

models thus focus on predicting simultaneously several activity-travel related dimensions, such as the 

activity type, duration, location and transport mode used to get to this location. The resulting activity-

travel patterns constitute the basis of the assignment of the individual routes to the transportation network 

when estimating the aggregate travel demand. As a result, activity-based transportation models offer the 

opportunity of predicting travel demand more accurately because they provide a more profound insight 

into individual activity-travel behavior. (7)(14)  

Initially, activity-based modeling efforts focused at deriving models to schedule activity and 

travel episodes in order to match the observed activity-travel patterns, assuming a non-changing 

environment and fixed individual preferences. However nowadays, it is accepted that adaptation and 

learning need to be incorporated into the modeling framework, as individuals are part of an ever-changing 

environment. After all, interacting with this dynamic environment causes continuous adjustments of 

individual preferences, opinions and expectations. Consequently, individual decisions are prone to 

changes as they are taken conditionally upon previously gathered knowledge. To this purpose, dynamic 

activity-based models -in which individuals determine their activity-travel schedules dynamically by 

entering the transportation network simultaneously and interacting with each other-, are developed. 

(14)(15) 

The modeling effort proposed here aims at capturing these dynamics by use of a reinforcement 

learning technique. 

 

REINFORCEMENT LEARNING 
This section only provides a brief overview of the core of reinforcement learning. A more comprehensive 

description of the reinforcement learning technique can be found in Sutton and Barto (16) and Smart and 

Kaelbling (17). Generally, a reinforcement learning problem attempts to find an optimal policy -which 

consists of searching a rule to select the action yielding the highest reward in a given state.  
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The reinforcement learning process can be summarized as follows. The individual or so-called 

agent first perceives the state of the environment, which is composed of a number of observable variables. 

Based on these observations, the agent chooses an action to be performed, which boils down to 

determining the values of a number of decision variables. The execution of the selected action causes 

changes in the state of the environment. As the agent continuously interacts with his environment, the 

agent perceives this state transition and values its benefit. This value can be either positive (reward) or 

negative (penalty). The agent then processes and memorizes the triplet containing the state, the action and 

the reward or penalty. Subsequently, the agent starts all over again, observing the state of the environment 

in order to select the next action. When selecting an action, the agent appeals to the stored triplets: when 

faced with a state similar to a previously encountered state, actions having lead to a reward will be 

reinforced, while actions associated to a penalty will be avoided. (16) 

In the course of this learning process, the agent continuously trades off exploration of all feasible 

actions versus exploitation of the knowledge gathered so far. To this end, an exploration parameter pexplore 

is defined to reflect the probability of selecting a random action instead of the currently best one. (11) 

To allow for a real-world setting in which no perfect knowledge about the environment is 

available to the agent, the approach in the current research is founded on the model-free Q-learning 

technique, which also enables the agent to learn from delayed rewards. (16) A basic concept within Q-

learning is the Q-value which reflects the expected value of selecting action a in state s and following the 

optimal policy thereafter. A Q-value corresponds to a particular state-action pair (s,a) and can be 

decomposed into the value of the immediate reward (or penalty) R(s,a) and the value of the next state, 

discounted by a factor γ: 
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In the course of the learning process, these Q-values are stored in a look-up table of which each 

entry corresponds to a combination of feasible values for all the dimensions of the state and the action. 

(16) The Q-learning algorithm can be outlined as follows: 
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Initialize Q-values. 

Repeat N times (N = number of learning episodes) 

 Select random state s0. 

 Set s = s0. 

 Repeat until the end of the learning episode 

  Select action a. 

   Choose exploration parameter randomly. 

   If exploration parameter > exploration rate pexplore 

    Choose best action. 

     Repeat for each action from set of feasible actions A(s) 

      Look up Q-value. 

      Add to list. 

     Select action a from this list with the highest Q-value. 

   Else 

    Choose random action. 

     Choose action a randomly from set of feasible actions A(s). 

  Receive immediate reward R(s,a). 

  Observe next state s’. 

  Update Q-value of state-action pair (s,a) according to equation (2). 

  Set s = s’. 

 

The application of reinforcement learning within activity-based models is not novel, since it has 

been implemented before by Charypar and Nagel (10), Janssens et al (11) and Timmermans and Arentze 

(12). Yet, the application of this traditional reinforcement learning algorithm in this research area involves 

some limitations, as will be revealed in the following paragraph.  

 

FUNCTION APPROXIMATION 

Limitations of reinforcement learning algorithm 

First, the traditional reinforcement algorithm is not able to account efficiently for changes in the agent’s 

environment, as this approach requires retraining the Q-function when changes occur. Yet, individuals do 

not operate in a static environment as already pointed out in the problem description. 

Next, the traditional algorithm requires visiting all feasible state-action pairs at least once, and 

preferably an infinite number of times to converge to the optimal policy. In addition, each state-action 

pair encountered in the course of this iterative process is stored in a look-up table. As a result, when either 

the number of dimensions of the state and/or the action space rises or the granularity of (some of) these 

dimensions increases, the amount of memory needed to store the (growing) Q-table and the time needed 

to estimate the Q-values accurately both increase rapidly. Furthermore, in large state space problems, it is 

generally not realistic to assume that an agent visits every feasible state-action pair once, and certainly not 

several times, during the learning process. (17) 

To this end, the traditional Q-learning algorithm will be revised so as to incorporate dynamics of 

the environment as well as to enable generalization of the state-action space to represent all feasible state-

action pairs, even the ones that have never been encountered, founded on a limited number of visited 

state-action pairs.  

 

Function approximation 

To meet above described issues, reinforcement learning can be complemented with function 

approximation, generalizing either the state or the action space to speed up the learning process and 

decrease the memory requirements. A first class of function approximation consists of variable resolution 

discretization, in which either the state or the action space is reduced by aggregating over similar states or 
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actions. This generalization is carried out either prior or parallel to the learning process, but needs to be 

implemented very carefully in order to be successful. (18) 

Another solution consists of replacing the discrete look-up tables entirely by function 

approximators capable at handling continuous variables and of generalizing across similar states and 

actions. To this end, existing generalization techniques from the area of supervised learning can be used. 

(17)(18) This solution is implemented in the current research and will be elaborated further in the next 

section.  

 

Regression tree-based function approximation 

Within reinforcement learning, supervised learning allows the generalization needed to enhance the 

performance of the core algorithm, founded on the knowledge base constructed in the course of 

subsequent learning phases. Possible supervised learning techniques include, amongst others, artificial 

neural networks, statistical curve fitting and pattern recognition. (17) As opposed to most researches 

incorporating function approximation in reinforcement learning, this research focuses on generalizing 

both state and action space simultaneously. The current approach thus aims at estimating the Q-values by 

use of a tree induction method based on experienced (state, action, Q-value)-triplets. These triplets 

constitute the examples needed as input of the selected supervised learning technique. Because the target 

variable is the continuous Q-value, regression tree induction emerges. 

The improved learning algorithm now looks like this: 

 

Initialize the Q-tree. 

Repeat N times (N = number of learning episodes) 

 Select random state s0. 

 Set s = s0. 

 Repeat until the end of the learning episode 

  Select action a. 

   Choose exploration parameter randomly. 

   If exploration parameter > exploration rate pexplore 

    Choose best action. 

     Populate list of attainable Q-value and their corresponding action 

     boundaries. 

     Select action a from this list matching the highest Q-value. 

   Else 

    Choose random action. 

     Choose action a randomly from set of feasible actions A(s). 

  Receive immediate reward R(s,a). 

  Observe next state s’. 

  Calculate Q-value of state-action pair (s,a) according to equation (2).  

  Save (state, action, Q-value)-triplet [s, a, Q(s,a)] to knowledge base B. 

  Set s = s’. 

 Fit Q-tree based on knowledge base B. 

 

The key differences to the simple reinforcement learning algorithm enclose the selection of the 

best action and the Q-tree induction and will be explained into more detail infra. 

 

DATA 

The data are gathered in the course of the on-going project described in Arentze et al (19), aiming at 

collecting individual activity-travel data across Flanders (Belgium). The dataset is composed of weekly 

activity-travel diaries, complemented with individual and household questionnaires. To the purpose of 

investigating the applicability of the prototype described above, only rather complete weekly activity-
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travel diaries of full-time working individuals being part of a four-member household are examined. As a 

result after filtering, carefully cleaning and completing the activity diaries, the data of ten individuals are 

considered. 

These activity-travel diaries are processed so that each activity-travel episode is defined by: 

• starting time; 

• activity type: daily shopping (1), non-daily shopping (2), education (3), social activities (4), 

leisure (5), bring/get activities (6), touring (7), working (8), services (9), out-of-home eating (10), 

sleeping (11), in-home activities (12) and a residual category, other (13); 

• activity duration; 

• day of the week; 

• activity history: reflects the amount of time elapsed between two consecutive episodes of the 

same activity category and is estimated based on the frequency that a particular activity occurs in an 

individual’s activity pattern as questioned in the individual survey part; 

• activity location: is characterized by the operating base (either the home (0) or work location 

(1)) and the distance from this base location; 

• travel mode: none (0), on foot (101), bike (102), moped (103), motor (104), car (105), train 

(106), bus (107), tram/subway (108), taxi (109) and a remainder category, other (110); 

• travel time. 

 

IMPLEMENTATION 

General 
Within the algorithm described here, the state dimensions enclose the starting time, weekday, current 

location, including location base and distance from this location base, travel mode used to get to this 

location and also the activity history for each activity. The action variables cover the activity type, 

duration, location and transport mode. 

 

Reward function 

The results of reinforcement learning depend largely on the design of the function defining the size of the 

immediate reward that the agent receives after having executed the selected action. Since this immediate 

reward cannot be observed directly from the activity-travel diaries, a stated preference experiment seems 

appropriate to capture the desired data. However, given the amount of variables and the granularity of 

these variables, this type of survey does not allow questioning the required level of detail. Therefore, the 

current research attempts to deduce this reward from statistics within the available activity-travel data 

(11). Besides, this reward function enables capturing differences in activity patterns according to socio-

economic variables because it entirely depends on the underlying data. 

 

Components 

The structure of the reward function is founded on the utility concept used in Charypar and Nagel (20). Its 

components are described hereafter. 

Firstly, the duration reward, plotted in the upper part of figure 1, reflects the extent to which the 

activity duration matches the average duration for that activity. When the duration approaches the average 

duration, the duration reward reaches its maximum value. If the duration drifts away from its average 

towards the minimum or maximum, the duration reward decreases. The duration reward eventually even 

becomes negative when the activity duration falls below the observed minimum or when it exceeds the 

observed maximum activity duration. 
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FIGURE 1 Duration reward and flexibility. 

 

The reward based on the starting time of the activity attempts to capture the effect of the 

preferred starting time of an activity. Similar to the duration reward, the starting time reward drops when 

the starting time of the activity moves away from the preferred starting time. This reward accounts for the 

fact that activities are usually executed within certain time windows. 

Additionally, the weekday reward indicates the individual’s preference to execute a particular 

activity on a certain day of the week. For instance, an individual usually performs his daily shopping 

activity on Saturday, but occasionally -for a number of reasons-, he will go for grocery shopping on 

Monday. The weekday reward is calculated based on the relative number of activity episodes occurring 

on the same weekday. 

The fourth reward component, depending on the activity location, is divided into two separate 

rewards: a reward based on the base location and one based on the distance from this base location. The 

rationale behind this separation is supported by the fact that some locations, such as the home and work 

location, are stationary and serve as starting points from which other activities are organized. (21) 

Moreover in this research, it is assumed that individuals tend to undertake certain activities leaving from a 

fixed location base. To this end, the base location reward captures this preference for each activity. 

Furthermore in this context of activity-travel analysis, it is self-evident that the distance from the base 

location also plays an important role in determining the immediate reward of an action. The distance 

reward records the divergence of the distance between the selected location and the base location from the 

average distance observed in the dataset for the activity into consideration. 

Further, the travel time penalty, displayed in the upper part of figure 2 covers the disutility of the 

time required to bridge the distance between the current location and the location selected to perform the 

chosen activity. For travel times exceeding the observed minimum, the travel time penalty is negative and 

reaches its minimum when the travel time approaches the average time traveled to perform a certain 

activity. But for travel times below the observed minimum, the travel time penalty may become positive. 



Vanhulsel, Janssens, Wets, Vanhoof 9 

 

 
FIGURE 2 Travel time reward and flexibility for traveling by car. 

 

Next to the travel time, other travel-related preferences are incorporated in the reward function by 

inferring a reward based on the travel mode used to get to the desired location. This reward tries to 

capture a number of variable properties inherent in each travel mode, which determine the individual 

preference to utilize a particular travel mode to execute a certain activity or to go to a certain location. 

Such properties include for instance safety, comfort, convenience and flexibility. 

The history reward is inspired by the work of Kasturirangan et al (22) investigating the extent to 

which activity engagement is history dependent. It is generally hypothesized that the amount of time 

elapsed since the last episode of a particular activity (i.e. activity history), influences the decision of 

undertaking the same activity as well as the duration of this activity. The history reward, shown in the 

upper part of figure 3, thus accounts for the consistency of activity patterns by calculating the deviation of 

the activity history with respect to the observed average history for each activity. 
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FIGURE 3 History reward and flexibility. 

 

At last, the reward function includes a penalty assigned to the time spent waiting to be able to 

perform an activity. The waiting time penalty arises as temporal constraints limit the feasible time 

windows in which particular activities need to be executed. For example, daily shopping can only be 

executed between 8am and 8pm, whereas non-daily shopping has to take place between 9am and 6pm. 

Instead of assigning a large penalty to waiting, the size of the negative value of waiting is rather low for 

small waiting times but rises quickly with increasing waiting time, as it might be more useful to wait a 

few minutes, e.g. for a shop to open, instead of performing another activity with a lower overall reward 

first. (20) 

 

Flexibility weights 

Above described reward components are weighted according to the flexibility measures elaborated in 

Doherty (23) before aggregation. The research presented there proposes that activity-travel analysis 

should take into account the spatial, temporal and interpersonal flexibility of activities rather than the 

activity types to complement traditional dimensions, such as frequency, duration, involved persons, travel 

time and location. The current research defines spatial and temporal flexibility measures for each activity 

type matching each of the components of the reward function. 

On the one hand temporal flexibility captures the variability of the time dimensions, such as 

activity duration, starting time and activity history, with respect to the average value for these time 

dimensions. The activity duration flexibility is equal to the difference of the maximum duration and the 

minimum duration divided by the average duration for a particular activity type. The starting time and 

activity history flexibility values are calculated similarly, utilizing the values of 25
th
 and 75

th
 percentile 

instead of the minimum and maximum. In addition to these temporal flexibility measures, a fourth 

measure is computed based on the number of different days an activity has been executed in the observed 

activity-travel diaries. For all of these criteria, low scores indicate a relatively low temporal flexibility. 

The duration and history flexibility are visualized in the lower parts of figure 1 and figure 3. 
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On the other hand, spatial flexibility refers to the number of locations and their spatial 

distribution. To this end, two flexibility measures are determined. The first one is founded on the average 

number of distinct activity locations from each base location considered in the activity-travel diaries. The 

second one is estimated by dividing the difference between the maximum and minimum distance from 

one of the base locations by the average distance from this base location. The higher the value is, the 

more spatially flexible the activity is with respect to the distance from the considered base location. 

The lower part of figure 2 shows the flexibility calculated based on the average, minimum and 

maximum travel times. This measure is somewhat different form the ones defined in the previous 

paragraphs as it contains both temporal and spatial attributes. 

Because these flexibility measures are all used as weighting factors, reflecting the relative 

importance of the corresponding reward, these measures have to be redesigned. As a result, if an activity 

is rather fixed (low flexibility) with respect to one of the variables, the flexibility weight assigned to this 

dimension is rather high. 

 

Parameter settings 
After having implemented the improved reinforcement learning algorithm described above, the algorithm 

needs to be trained. Therefore, the algorithm will iterate over 1500 learning episodes to learn the optimal 

activity-travel sequence. Furthermore, the step size parameter α is defined so that it decreases as the 

learning process progresses. The discounting factor γ has been 0.10 set to in this research. In addition, the 

exploration rate used in the current research remains rather high at the start and decreases slowly towards 

the end of the learning process, forcing the algorithm to explore at first, and switching to exploitation 

after a while. 

 

Regression tree 

The implementation of the regression tree constitutes the novel part of the improved reinforcement 

learning technique presented here. As opposed to the simple reinforcement learning approach -in which 

the Q-table is updated after having executed the selected action and observed the reward and the 

subsequent state- the current algorithm stores all the (state, action, Q-value)-triplets encountered in the 

course of the learning episode in-between and induces the Q-tree only at the end of the learning episode. 

This artifice has been adopted due to the fact that constructing the Q-tree every time a new example is 

added to the knowledge base proved to be too time consuming compared to the information gain resulting 

from the change in the Q-tree. The regression tree induction applied in this research is based on the 

CART-algorithm formulated in Breiman et al (24), based on the 5000 most recently encountered 

examples within the knowledge base. 

However, the adjustment of the traditional approach attracting the most attention is the selection 

of the best action in the observed state based on the Q-tree. In this stage, the agent has to assign values to 

all the action dimensions given the values of the state variables so as to maximize the Q-value. The 

essential part of the algorithm consists of populating a list of attainable Q-values starting from the known 

values of the state variables, and determining for each of these Q-values the corresponding boundaries, or 

so-called condition set, for the values of the action dimensions. The outline of this method is represented 

in figure 4. 
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FIGURE 4 Flow diagram of population of list containing attainable Q-values and corresponding 

action boundaries. 

 

After having composed this list, the reinforcement learning agent selects the action condition set 

matching the highest Q-value within the list. Subsequently, the agent derives the values for all of the 

action dimensions to define the best action. The Q-tree in the example shown in figure 5 is based on the 

observed activity-travel diary data of one individual. 
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FIGURE 5 Example of selection of best action. 
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RESULTS 

The reinforcement algorithm has been applied to match the ten observed activity-travel sequences. The 

time required to learn a single weekly activity-travel patterns does not exceed 45 minutes. As figure 6 

shows, the learning time per episode starts at approximately 0.1106 seconds and increases rapidly to 

smooth down at 1.8059 seconds. This progress has been expected in advance because the amount of 

examples utilized to deduce the Q-tree grows with the number of learning episodes and stabilizes at the 

preset limit of 5000 (cf. supra). Nevertheless, taking into consideration the amount of variables and the 

variable’s resolutions included in the current prototype study, the proposed learning algorithm does prove 

to learn rather quickly. 

 

 
FIGURE 6 Run times per learning episode number 

 

Furthermore for the purpose of validating the implemented technique, each of the simulated 

activity-travel patterns is matched to the corresponding observed one. To this end, the (dis)similarity of 

these patterns is assessed, based on the activity type, location and travel mode dimensions. The first 

distance measure is supplied by the Euclidean-Hamming distance. In addition, the Sequence Alignment 

Method (SAM) developed by Joh et al (25) -indicating how much effort (inserting, deleting or 

substituting elements within the pattern) is needed to equalize patterns-, is computed as well. This SAM-

measure can be determined for each dimension of the sequence separately (i.e. unidimensional SAM), but 

it can also estimate the pattern dissimilarity by examining all dimensions simultaneously (i.e. 

multidimensional SAM). 

Table 1 displays the results of these comparisons. Both the Euclidean-Hamming distances and the 

dynamic programming-based multidimensional SAM-measures reveal that the simulated patterns do not 

diverge considerably more from the corresponding observed ones than the observed patterns between 
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themselves. As opposed to these results, the sum of the unidimensional SAM-measure indicates that the 

simulated patterns do differ significantly more from the observed ones. 

 
TABLE 1 Descriptive statistics of distance measures 

  Observed Observed vs. 

simulated 

Min. 88 85 

Max. 162 180 

Avg. 120.18 139.00 

Euclidean-Hamming 

St.dev. 18.94 30.40 

Min. 84 108 

Max. 230 334 

Avg. 144.24 240.00 

Sum of unidimensional SAM 

St.dev. 36.59 64.65 

Min. 43 64 

Max. 120 152 

Avg. 78.08 107.80 

Dynamic programming-based 

multidimensional SAM 

St.dev.. 18.46 26.98 

 

 

CONCLUSIONS AND FUTURE RESEARCH 
In its goal of designing a reliable algorithm for simulating dynamic activity-travel sequences, the current 

paper has introduced an algorithm based on a reinforcement learning approach. This technique has been 

supplemented with a regression-tree function approximator to fit the needs of activity-based micro-

simulation. In addition, the key component of the reinforcement learning algorithm, the reward function, 

has been formulated so as to reflect the individual’s preferences and tendencies based on salient activity 

attributes. 

To test the applicability of this approach, a prototype model has been implemented and applied to 

fit observed weekly activity-travel sequences. The results have proven to be rather promising. First, the 

algorithm has been found to learn rather quickly. Next, the technique has been validated by comparing the 

resulting sequences to the observed ones based on a number of distance measures (25). The Euclidean-

Hamming distance and the multidimensional SAM-measure have shown that the improved reinforcement 

learning algorithm is capable at simulating weekly activity-travel patterns that match the corresponding 

observed patterns quite well. 

To end with, some issues for future research remain. Most importantly, a revision of the 

regression tree induction emerges as the current implementation involves some drawbacks. After all, 

when the learning process progresses both the amount of memory used to store the examples and the 

amount of time needed to estimate the Q-tree and retrieve information from this Q-tree, increase. In 

addition, previously experienced examples become outdated or even invalid in the continuously changing 

environment, and should thus be excluded from the Q-tree estimation. Therefore, the application of other 

(incremental) approaches will be examined. 

Secondly, the improved reinforcement learning algorithm will be utilized to simulate more 

clusters of individuals based on the available socio-demographic and activity-travel data. Moreover, the 

algorithm will be adjusted to enable incorporating interactions between agents to enhance its realism. 
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