
On the complexity of division and set joins
in the relational algebra

Dirk Leinders Jan Van den Bussche
Limburgs Universitair Centrum

ABSTRACT
We show that any expression of the relational division op-
erator in the relational algebra with union, difference, pro-
jection, selection, and equijoins, must produce intermediate
results of quadratic size. To prove this result, we show a
dichotomy theorem about intermediate sizes of relational al-
gebra expressions (they are either all linear, or at least one
is quadratic); we link linear relational algebra expressions to
expressions using only semijoins instead of joins; and we link
these semijoin algebra expressions to the guarded fragment
of first-order logic.

1. INTRODUCTION
Relational division, first identified by Codd [7] , is the pro-
totypical example of a “set join”. Set joins relate database
elements on the basis of sets of values, rather than single
values as in a standard natural join. Thus, the division
R(A,B) ÷ S(C) returns all A’s for which the set of B’s re-
lated to A by R contains the set S. There is also a variant
of division, where the set of B’s must equal the set S. More
generally, one has the set-containment join of R(A,B) and
S(C,D), which returns

˘

(a, c) | {b | R(a, b)} ⊇ {d | S(c, d)}
¯

,

and again the analogous set-equality join. In principle, any
other predicate on sets could as well be used in the place
of ⊇ or = [19, 20]. Note that a set join with predicate
“intersection nonempty” boils down to an ordinary equijoin!

It has long been observed that division is not well handled
by classical query processing [13, 14]. Indeed, while set joins
are expressible in the relational algebra using combinations
of equijoins and difference operators, the resulting expres-
sions tend to be complex and inefficient. In this paper, we
will confirm this phenomenon mathematically. Specifically,
working in the relational algebra with union, difference, pro-
jections, selections, and equijoins (cartesian product being
a special case), we prove that any expression for the divi-
sion operator must produce intermediate results of quadratic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . .$5.00.

size. (The result holds both for containment- and equality-
division, and then of course also for the more general set
joins.)

Our work thus provides a formal justification of work done
by various authors on implementing set joins directly as
special-purpose operators, or on implementing them by com-
piling to the more powerful version of the relation alge-
bra that includes grouping, sorting, and aggregation oper-
ators [15, 17, 18]. For instance, division (and set-equality
join) can be implemented efficiently in time O(n log n) us-
ing sorting or counting tricks.1 Note, however, that for set-
containment join, no algorithm that is better than quadratic
is known.

We will actually prove a number of more general results
about relational algebra expressions which we believe are
interesting on their own, and from which the result about di-
vision follows. Specifically, we will show that any expression
that never produces intermediate results of quadratic size,
will produce only intermediate results of linear size. More-
over, we will characterize the class of queries expressible by
these “linear” expressions as the class of queries expressible
by the semijoin algebra: this is the variant of the relational
algebra where we replace the join operator by the semijoin
operator [5, 6]. Consequently, if a query is not expressible
in the semijoin algebra, then its complexity in the relational
algebra is at least quadratic. Furthermore, we characterize
the class of semijoin algebra queries in turn as the queries
expressible in the “guarded” fragment of first-order logic [3,
11, 12, 8]. An equivalence relation on structures, called
guarded bisimilarity, is known to guarantee indistinguisha-
bility in the guarded fragment, and it is this tool that we
will use to prove our complexity result.

One obvious problem that we leave open is to allow not just
equijoins but theta-joins. Indeed, while we do allow selection
comparisons involving not just equalities, but also order, we
do not know yet how to cover join conditions involving order.
As a matter of fact, our present characterization of linear re-
lational algebra expressions by semijoin expression fails in
the presence of order (or even nonequalities) in join con-
ditions. Moreover, practical query processing uses a more
powerful relational algebra including grouping, sorting, and
aggregation operators. Proving complexity lower bounds in

1For set-equality join, where the result size alone can already
be quadratic, we should really say in time O(n log n) plus
output size.

such a rich setting seems very challenging to us.

2. SEMIJOIN ALGEBRA AND GUARDED
FRAGMENT

From the outset, we assume an infinite, totally ordered uni-
verse U of basic data values. Throughout the paper, we fix
an arbitrary database schema S. A database schema is a
finite set of relation names, where each relation name R has
an associated arity, denoted by arity(R). A database D over
S is an assignment of a finite relation D(R) ⊆ U

n to each
R ∈ S, where n is the arity of R.

To avoid misunderstanding, we define the relational algebra,
as we will use it, formally.

Definition 1 (relational algebra, RA). The syntax and
semantics of the relational algebra are inductively defined
as follows:

1. Each relation name R ∈ S is a relational algebra ex-
pression. Its arity comes from S.

2. If E1, E2 ∈ RA have arity n, then also E1∪E2 (union),
E1 − E2 (difference) belong to RA and are of arity n.

3. If E ∈ RA has arity n and i1, . . . , ik ∈ {1, . . . , n}, then
πi1,...,ik(E) (projection) belongs to RA and is of arity
k.

4. If E ∈ RA has arity n and i, j ∈ {1, . . . , n}, then
σi=j(E) and σi<j(E) (selection) belong to RA and are
of arity n.

5. If E1, E2 ∈ RA have arities n and m, respectively, and
θ is a conjunction of equalities of the form

Vk

s=1 xis =
yjs , then E1 1θ E2 (join) belongs to RA and is of arity
n+m.

The semantics of the union and difference operators are the
obvious set operators. The semantics of the projection, the
selection and the join operator are as follows: (for relations
r, r1 and r2)

πi1,...,ik (r) := {(ai1 , . . . , aik) | ā ∈ r}

σi=j(r) := {ā ∈ r | ai = aj}

σi<j(r) := {ā ∈ r | ai < aj}

r1 1θ r2 := {(ā, b̄) | ā ∈ r1, b̄ ∈ r2, ais = bjs for s = 1, . . . , k}

Definition 2 (semijoin algebra, SA). The semijoin al-
gebra is the variant of RA obtained by replacing the join
operator E1 1θ E2 by the semijoin operator E1 nθ E2. The
semantics of the semijoin operator is as follows: (for rela-
tions r1 and r2)

r1 nθ r2 := {ā ∈ r1 | ∃b̄ ∈ r2 : ais = bjs for s = 1, . . . , k}

Example 3. Suppose S is Ullman’s well-known example sche-
ma

{Likes(drinker,beer), Serves(bar,beer), Visits(drinker,bar)}.

Let us call a bar lousy if it only serves beers nobody likes.
The query that asks for the drinkers that visit a lousy bar
can be expressed in SA as follows:

π1

`

Visits n
x2=y1

(π1(Serves) − π1(Serves n
x2=y2

Likes))
´

.

Note that SA expressions can only output “stored” tuples,
defined as follows:

Definition 4 (stored tuple). A tuple is stored in database
D if it belongs to some projection πi1,...,ip(D(R)) of one of
the relations of D.

Next, we recall the definition of the guarded fragment of
first-order logic. When ϕ stands for a formula, we follow
the standard convention to write ϕ(x1, . . . , xk) to denote
that every free variable of ϕ is among x1, . . . , xk.

Definition 5 (guarded fragment, GF).

1. Atomic formulas of the form x = y and x < y are in
GF.

2. Relation atoms of the form R(x1, . . . , xk), with R ∈ S
of arity k, are in GF.

3. If ϕ and ψ are formulas of GF, then so are ¬ϕ, ϕ∨ ψ,
ϕ ∧ ψ, ϕ→ ψ and ϕ↔ ψ.

4. If ϕ(x̄, ȳ) is a formula of GF, and α(x̄, ȳ) is a relation
atom such that all free variables of ϕ do actually occur
in α, then ∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) is a formula of GF.

The semantics of GF is that of first-order logic (or the rela-
tional calculus as we call it in database theory), interpreted
over the active domain of the database [1].

Example 6. The query from Example 3 can be expressed by
the following GF formula ϕ(x):

∃y
`

Visits(x, y) ∧ ¬∃z (Serves(y, z) ∧ ∃w Likes(w, z))
´

The following strong correspondence between SA and GF is
proved in the Appendix:

Theorem 7. For every SA expression E of arity k, there ex-
ists a GF formula ϕE(x1, . . . , xk) such that for every database
A,

{ā ∈ U
k | A |= ϕE(ā)} = E(A)

Conversely, for every GF formula ϕ(x1, . . . , xk), there exists
an SA expression Eϕ such that for every database A,

Eϕ(A) = {ā stored tuple in A | A |= ϕ(ā)}

This correspondence between SA and GF is very useful be-
cause it allows us to apply the notion of “guarded bisimula-
tion”, originally developed in the context of GF, to SA. We
recall the definition next.

Definition 8 (guarded set). A set is guarded in database
A if it is of the form {a1, . . . , an}, where (a1, . . . , an) ∈ A(R)
for some R ∈ S.

Definition 9 (guarded bisimulation, guarded bisim-
ilarity). A guarded bisimulation between two databases A
and B is a non-empty set I of finite partial isomorphisms
from A to B, such that the following back and forth condi-
tions are satisfied:2

Forth. For every f : X → Y in I and for every guarded set
X ′, there exists a partial isomorphism g : X ′ → Y ′ in
I such that f and g agree on X ∩X ′.

Back. For every f : X → Y in I and for every guarded set
Y ′, there exists a partial isomorphism g : X ′ → Y ′ in
I such that f−1 and g−1 agree on Y ∩ Y ′.

Now let A be a database and ā a stored tuple in A, and let
B, b̄ be another such pair. We say that A, ā and B, b̄ are
guarded bisimilar—denoted by A, ā ∼g B, b̄—if there exists
a guarded bisimulation I between them that contains ā 7→ b̄.

The following is a basic fact about GF [3]:

Proposition 10. The guarded fragment is invariant under
guarded bisimulation. Formally, if A, ā ∼g B, b̄, then for
any GF formula ϕ(x̄) we have:

A |= ϕ(ā) ⇔ B |= ϕ(b̄).

By Theorem 7 we obtain:

Corollary 11. If A, ā ∼g B, b̄, then for any SA expression
E we have:

ā ∈ E(A) ⇔ b̄ ∈ E(B).

3. A DICHOTOMY THEOREM
Before we can state the theorem we need precise definitions
of what we mean by “linear” and “quadratic” expressions.
Beware that “linear” is an upper-bound notion, while “qua-
dratic” is a lower-bound notion.

Definition 12. The size of a relation is defined as its car-
dinality. The size of a database D, denoted by |D|, is the
sum of the sizes of its relations.

Using the familiar O and Ω notation, we now define:3

Definition 13. For any RA expression E, define the func-
tion

c(E) : N → N : n 7→ max{|E(D)| : |D| = n}.

Then E is called

2For X,Y ⊆ U, a mapping f : X → Y is a partial isomor-
phism from A to B if it is bijective, and for each R ∈ S,
of arity n, and all x1, . . . , xn ∈ X, we have (x1, . . . , xn) ∈
A(R) ⇔ (f(x1), . . . , f(xn)) ∈ B(R), and moreover, for all
x, y ∈ X, we have x < y ⇔ f(x) < f(y).
3For a function f : N → N, recall that f = O(n) if for some
c > 0 and some n0, f(n) 6 cn for all n > n0; and f = Ω(n2)
if for some c > 0, f(n) > cn2 infinitely often [2].

• linear if for each subexpression E′ of E, c(E′) = O(n);

• quadratic if for some subexpression E′ of E, c(E′) =
Ω(n2).

We will prove:

Theorem 14. Every RA expression is either linear or qua-
dratic.

In other words, intermediate complexities such as O(n log n)
are not achievable in RA. Anyone who has played long
enough with RA expressions will intuitively know that, but
we have never seen a proof. Moreover, we also have the
following variant:

Theorem 15. Every RA expression that is not quadratic,
is equivalently expressible in SA.

Note that the semijoin operator can be expressed in RA in
a linear way; for example,

R(A,B) n
B=C

S(C,D) = πA,B(R 1
B=C

πC(S)).

From the above theorems we therefore obtain:

Corollary 16. A query is expressible by a linear RA ex-
pression if and only if it is expressible by an SA expression.

We will prove Theorem 14 and 15 simultaneously. Our cru-
cial lemma is Lemma 21. In order to state it, we need two
definitions.

Definition 17. Let E be an RA expression of the form
E1 1θ E2. We view θ ≡

Vk

s=1 xis = yjs as the set of pairs
{(is, js) | s = 1, . . . , k}. For ` = 1, 2, the sets constrained`(E)
and their complements unc`(E) are now defined as follows:

constrained1(E) := {i | ∃j : (i, j) ∈ θ}

unc1(E) := {1, . . . , arity(E1)} − constrained1(E)

constrained2(E) := {j | ∃i : (i, j) ∈ θ}

unc2(E) := {1, . . . , arity(E2)} − constrained2(E)

Example 18. For the expression E = R 1x3=y1 S, where R
and S are ternary, we get:

θ = {(3, 1)}

constrained1(E) = {3} unc1(E) = {1, 2}

constrained2(E) = {1} unc2(E) = {2, 3}.

Definition 19. Let D be a database and let E be an RA
expression of the form E1 1θ E2. For any ā ∈ E1(D), we
denote the set of elements occurring in ā by set(ā). We now
define the set of free values of ā as follows:

F
E
1 (ā) := set(ā) − {ai | i ∈ constrained1(E)}

The set FE2 (b̄) of free values of a tuple b̄ ∈ E2(D) is defined
analogously.

Example 20. Take again expression E from Example 18.
Suppose that relation R contains the tuples r1 = (1, 2, 3)

and r2 = (4, 5, 4), and that relation S contains the tuples
s1 = (3, 4, 5) and s2 = (3, 3, 3). Then:

F
E
1 (r1) = {1, 2} F

E
2 (s1) = {4, 5}

F
E
1 (r2) = {5} F

E
2 (s2) = ∅

We can now state the following crucial lemma:

Lemma 21. Let E = E1 1θ E2, where E1 and E2 are SA-
expressions. Assume there exists a database D and a tuple
(ā, b̄) ∈ E1 1θ E2(D) such that FE1 (ā) 6= ∅ 6= FE2 (b̄). Then
there exists a sequence (Dn)n>1 of databases such that for
some constant c > 0 and for all n:

1. |Dn| 6 cn, and

2. |E1 1θ E2(Dn)| > n2.

The proof uses the invariance of SA under guarded bisimi-
larity (Corollary 11), and is given in the Appendix.

Using Lemma 21, we can now prove Theorems 14 and 15. By
structural induction, we will prove that any RA expression
that is not quadratic, is linear and equivalently expressible
in SA.

The base case is clear: R is not quadratic, is linear, and is in
SA. For the case of selection, consider an expression of the
form σE that is not quadratic (the actual selection condi-
tion does not matter here). Then E is not quadratic either,
and by induction, E is linear and equivalently expressible in
SA as E′. We conclude that σE is linear and equivalently
expressible in SA as σE′. The cases of projection, union and
difference are handled similarly.

The only nonstraightforward case is E = E1 1θ E2. Assume
E is not quadratic. Then the conditions of Lemma 21 can-
not be satisfied, because otherwise E would be quadratic.
Hence, we know that for each database D and each join-
ing pair of tuples (ā, b̄) in E1(D) 1θ E2(D), either FE1 (ā)
or FE2 (b̄) is empty (or both). If FE1 (ā) is empty, ā can be
completely retrieved from E2(D); if FE2 (b̄) is empty, b̄ can
be completely retrieved from E1(D). E can thus be written
as Z1 ∪ Z2, where

Z1 = {(ā, b̄) ∈ E1 1θ E2 | FE1 (ā) = ∅}

Z2 = {(ā, b̄) ∈ E1 1θ E2 | FE2 (b̄) = ∅}

We can now express Z1 and Z2 in SA, as follows:

Z2 =
[

f : unc2(E)→constrained2(E)

πp̄(E1 nθ σϕE2)

Here,

ϕ ≡
^

j∈unc2(E)

j = f(j)

and p̄ = 1, . . . , arity(E1), g(1), . . . , g(arity(E2)) where

g(j) =

(

min{i | (i, j) ∈ θ} if j ∈ constrained2(E)

min{i | (i, f(j)) ∈ θ} if j ∈ unc2(E)

A B

R

1 7
1 8
2 7
2 8

S

7
8

R

1 7
1 8
2 8
2 9
3 7
3 9

S

7
8
9

Figure 1: Two databases A and B showing that di-
vision is inexpressible in SA.

The use of the minimum function is arbitrary here; any func-
tion that chooses an element out of a set will do.

The SA expression for Z1 is entirely analogous. Since SA
expressions are always linear, it also follows that E is linear,
as desired. This concludes our proof.

4. DIVISION, SET JOIN, AND FRIENDS
By Corollary 16, to prove that a query can only be expressed
in the relational algebra by quadratic expressions, it suffices
to show that it is not expressible in SA. And to show non-
expressibility in SA, we have Corollary 11 as a tool.

We are thus fully armed now to return to the division op-
erator and set joins from the beginning of this paper, and
show:

Proposition 22. Division is expressible in RA only by qua-
dratic expressions. Furthermore, every RA expression that
is empty if and only if the set join is empty, must be qua-
dratic.

Note that it would not be very interesting to claim that the
set join itself can only be expressed by quadratic expressions,
because the output size of the set join is already quadratic.

To prove Proposition 22, we need to show that R÷S is not
expressible in SA. Thereto, consider the databases A and B
shown in Figure 1. (Here, we take the natural numbers as
our universe U.) Then R÷S equals {1, 2} in A, but is empty
in B (regardless of whether we use the set containment, or
the set equality variant of division). Nevertheless, A, 1 ∼g
B, 1, so any SA expression that returns 1 on A will also
return 1 on B and therefore cannot express R ÷ S. To see
that A, 1 ∼g B, 1, we invite the reader to verify that the
following set I is a guarded bisimulation:

I = {1 7→ 1} ∪ {ā 7→ b̄ | ā ∈ A(R) and b̄ ∈ B(R),

or ā ∈ A(S) and b̄ ∈ B(S)}

To handle the set-join version of Proposition 22, just insert
a column into relation S (this will be the first column of
the new relation), with always the same value 4. Then the
above I is still a guarded bisimulation.

Other queries
Clearly, the applicability of the techniques we have devel-
oped in this paper is not restricted to division and set joins!

A

Visits(alex, pareto bar)
Serves(pareto bar, westmalle)
Likes(alex, westmalle)

B

Visits(alex, pareto bar)
Visits(bart, qwerty bar)
Serves(pareto bar, westmalle)
Serves(qwerty bar, westvleteren)
Likes(alex, westvleteren)
Likes(bart, westmalle)

Figure 2: Two databases A and B showing that the
query “give all drinkers that visit a bar that serves
a beer they like” is not expressible in SA.

For example, over the beer-drinkers database schema from
Example 3, consider the following query Q:

List all drinkers that visit a bar that serves a beer
they like.

Any RA expression of this query must be quadratic.

To see this, we show again that Q is not expressible in SA.
Thereto, consider the databases A and B shown in Figure 2.
(Here, we take the lexicographically ordered strings as our
universe U.) In A, Alex visits the Pareto bar, which serves
Westmalle, which he likes. But in B no drinker visits a
bar that serves a beer he likes. Nevertheless, (A, alex) ∼g
(B, alex), so any SA expression that returns alex on A will
also return alex on B and therefore cannot express Q. To
see that (A, alex) ∼g (B, alex), we invite the reader to verify
that the following set I is a guarded bisimulation:

I = {alex 7→ alex}

∪
[

˘

{ā 7→ b̄ | ā ∈ A(R) and b̄ ∈ B(R)} |

R = Visits, Serves,Likes
¯

5. DISCUSSION
The attentive reader will note that the beer-drinkers query
Q from the previous section is a typical example of a “cyclic”
join query, and such joins are already long known not to be
computable by semijoins only [5, 6, 4]. But note that the
semijoin programs that were considered in the theory of join
dependencies can use only semijoins, while SA expressions
can also use σ, π, ∪ and −. In this connection, it has already
been observed that non-recursive stratified datalog (NRSD)
programs, in which every rule must be an acyclic join query,
correspond to GF [9, 10]. By the well-known correspondence
between acyclic join queries and semijoin programs, these
acyclic NRSD programs also correspond to SA. Hence, the
correspondence we have shown in Section 2 between SA and

GF could also have been derived by combining these previ-
ous results. Nevertheless, the equivalence proof we give is
direct and elementary.

As already mentioned in the Introduction, an obvious prob-
lem left open by us is to allow theta-joins with join condi-
tions involving order or even other predicates. Of course,
the conjecture is that division still requires quadratic ex-
pressions, even when theta-joins are allowed. Note, however,
that Theorem 15 and Corollary 16 no longer literally hold
in this context. For example, the RA expression over unary
relations R and S:

(R− (R nx1 6=y1 R)) × (S − (S nx1 6=y1 S))

is linear but not equivalently expressible in SA. With or-
der conditions in semijoins, SA also becomes strictly more
powerful than GF.

We point out that in previous work, we have already gener-
alized the notion of guarded bisimilarity to SA with order-
semijoins [16], but how to apply this to generalize the results
of the present paper remains open.

Acknowledgment
We thank Jerzy Tyszkiewicz for helpful discussions on the
relationship between the semijoin algebra and the guarded
fragment. The second author would also like to thank Bart
Goethals for inspiring discussions on the semijoin algebra,
and Dirk Van Gucht for inspiring discussions on the com-
plexity of set joins.

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] A. Aho, J.E. Hopcroft, and J.D. Ullman. Data
Structures and Algorithms. Addison-Wesley, 1983.

[3] H. Andréka, I. Németi, and J. van Benthem. Modal
languages and bounded fragments of predicate logic.
Journal of Philosophical Logic, 27(3):217–274, 1998.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On
the desirability of acyclic database schemes. Journal
of the ACM, 30(3):479–513, 1983.

[5] P.A. Bernstein and D.W. Chiu. Using semi-joins to
solve relational queries. Journal of the ACM,
28(1):25–40, 1981.

[6] P.A. Bernstein and N. Goodman. Power of natural
semijoins. SIAM Journal on Computing,
10(4):751–771, 1981.

[7] E.F. Codd. Relational completeness of data base
sublanguages. In R. Rustin, editor, Data Base
Systems, pages 65–98. Prentice-Hall, 1972.

[8] H. de Nivelle and M. de Rijke. Deciding the guarded
fragments by resolution. Journal of Symbolic
Computation, 35(1):21–58, 2003.

[9] J. Flum, M. Frick, and M. Grohe. Query evaluation
via tree-decompositions. Journal of the ACM,
49(6):716–752, 2002.

[10] G. Gottlob, E. Grädel, and H. Veith. Datalog lite: a
deductive query language with linear time model
checking. ACM Transactions on Computational Logic,
3(1):42–79, 2002.

[11] E. Grädel. On the restraining power of guards.
Journal of Symbolic Logic, 64(4):1719–1742, 1999.

[12] E. Grädel, C. Hirsch, and M. Otto. Back and forth
between guarded and modal logics. ACM Transactions
on Computational Logic, 3(3):418–463, 2002.

[13] G. Graefe. Relational division: four algorithms and
their performance. In Proceedings of the 5th
International Conference on Data Engineering, pages
94–101. IEEE Computer Society, 1989.

[14] G. Graefe and R.L. Cole. Fast algorithms for universal
quantification in large databases. ACM Transactions
on Database Systems, 20(2):187–236, 1995.

[15] S. Helmer and G. Moerkotte. Evaluation of main
memory join algorithms for joins with set comparison
join predicates. In Proceedings of the 23rd
International Conference on Very Large Data Bases,
pages 386–395. Morgan Kaufmann Publishers Inc.,
1997.

[16] D. Leinders, J. Tyszkiewicz, and J. Van den Bussche.
On the expressive power of semijoin queries.
Information Processing Letters, 91(2):93–98, 2004.

[17] N. Mamoulis. Efficient processing of joins on
set-valued attributes. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of
Data, pages 157–168. ACM Press, 2003.

[18] K. Ramasamy, J.M. Patel, J.F. Naughton, and
R. Kaushik. Set containment joins: The good, the bad
and the ugly. In Proceedings of the 26th International
Conference on Very Large Data Bases, pages 351–362.
Morgan Kaufmann Publishers Inc., 2000.

[19] S.G. Rao, A. Badia, and D. Van Gucht. Providing
better support for a class of decision support queries.
In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data,
pages 217–227. ACM Press, 1996.

[20] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of
Data, pages 743–754. ACM Press, 2004.

APPENDIX
A. SEMIJOIN ALGEBRA AND GUARDED

FRAGMENT
From SA to GF
Lemma 23. For every SA expression E of arity k, for every
database A and for every tuple ā = (a1, . . . , ak) in E(A),
there exists R in S, a tuple t̄ in A(R), and a function f :
{1, . . . , k} → {1, . . . , arity(R)} such that ai = tf(i) for i =
1, . . . , k.

Proof. By structural induction on expression E.

We now prove that for every SA expression E of arity k,
there exists a GF formula ϕE(x1, . . . , xk) such that for every
database A,

E(A) = {ā ∈ U
k | A |= ϕE(ā)}.

The proof is by structural induction on E.

• if E is R, then ϕE(x1, . . . , xk) := R(x1, . . . , xk).

• if E is E1 ∪ E2, then

ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk) ∨ ϕE2

(x1, . . . , xk).

• if E is E1 − E2, then

ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk) ∧ ¬ϕE2

(x1, . . . , xk).

• if E is σi=j(E1), then ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk)

∧ xi = xj .

• if E is σi<j(E1), then ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk)

∧ xi < xj .

• if E is πi1,...,ik(E1) with E1 of arity n, then, by induc-
tion, we have a formula ϕE1

(z1, . . . , zn). By Lemma 23,
ϕE1

(z̄) is equivalent to the formula obtained by replac-
ing in ψ :=

_

R∈S

_

f :{1,...,n}→{1,...,arity(R)}

∃(tj)j∈Q
`

R(t̄)

∧ ϕE1
(tf(1), . . . , tf(n))

´

each tf(i) by zi, i = 1, . . . , n. In this formula, Q is
{1, . . . , arity(R)} − f({1, . . . , n}). Formula ϕE should
now only select components i1, . . . , ik out of this for-
mula. To this end, we modify ψ by using Q′ = {1, . . . ,
arity(R)} − f({i1, . . . , ik}) instead of Q, and replacing
tf(il) by xl, for l = 1, . . . , k. Thus ϕE(x1, . . . , xk) is
obtained.

• if E is E1 nθE2 with θ =
Vs

l=1 xil = yjl and E2 of arity
n, then, by induction, we have formulas ϕE1

(x1, . . . , xk)
and ϕE2

(z1, . . . , zn). Using Lemma 23, ϕE(x1, . . . , xk)
is obtained by replacing in formula χ :=

ϕE1
(x1, . . . , xk) ∧
_

R∈S

_

f :{1,...,n}→{1,...,arity(R)}

∃(tj)j∈Q
`

R(t̄)

∧ ϕE2
(tf(1), . . . , tf(n))

´

each tf(jl) by xil , l = 1, . . . , s. In this formula, Q is
{1, . . . , arity(R)}−f({j1, . . . , js}). Note that condition
θ is enforced by repetition of variables xil .

From GF to SA
Definition 24. Let A be a database over database schema
S. The set of stored tuples in A is defined by the SA ex-
pression

Gk =
[

R∈S

{πi1,...,ikR | 1 6 i1, . . . , ik 6 arity(R)}.

We now prove that for every GF formula ϕ(x1, . . . , xk), there
exists an SA expression E such that for every database A,

{ā stored tuple in A : A |= ϕ(ā)} = E(A).

By structural induction on ϕ, we construct the desired semi-
join expression Eϕ.

• if ϕ(x1, . . . , xk) is R(xi1 , . . . , xil) then Eϕ := Gk nθ R,
where θ is (xi1 = y1) ∧ (xi2 = y2) ∧ . . . ∧ (xil = yl);

• if ϕ(x1, . . . , xk) is (xi = xj) then Eϕ := σi=j(Gk);

• if ϕ(x1, . . . , xk) is (xi < xj) then Eϕ := σi<j(Gk);

• if ϕ(x1, . . . , xk) is ψ(x1, . . . , xk) ∨ ξ(x1, . . . , xk) then
Eϕ := Eψ ∪ Eξ;

• if ϕ(x1, . . . , xk) is ¬ψ(x1, . . . , xk) then Eϕ := Gk−Eψ;

• suppose ϕ(x1, . . . , xk) is ∃z̄(α(x̄, z̄) ∧ ψ(x̄, z̄)). Let xi1 ,
. . . , xir be the different occurrences of variables among
x1, . . . , xk in α. Now, Eϕ := Gknθ1 (Eαnθ2 Eψ) where
condition θ1 is (xi1 = yf(1))∧(xi2 = yf(2))∧. . .∧(xir =
yf(r)) with f(j) the position of xij in α. Condition θ2
equates the x̄- and z̄-variables in ψ to their occurrences
in α.

B. PROOF OF LEMMA 21
Definition 25. Let A be a database over database schema
S. The tuple space TA of database A is defined as

S

{A(R) |
R ∈ S}.

From the definition of guarded set, it is clear that for each
tuple ā ∈ TA, set(ā) is guarded and conversely, for each
guarded set X there is a tuple ā ∈ TA with set(ā) = X.

Proof of Lemma 21. We give a proof by construction.

The desired sequence is constructed as follows. For D1 we
take D. For k > 1, we construct Dk+1 from Dk as follows:

1. for each x ∈ F1(ā) and for each x ∈ F2(b̄), we make a

fresh new domain element new
(k)(x) that has the same

relative order in the domain as x; if it is not possible
to create such a new domain element, we create an
isomorphic copy D′

k of Dk such that ∀r, s ∈ dom(D′
k)

∃t ∈ U: r < t < s. So, we assume w.l.o.g. that we can
always create these new domain elements satisfying the
specified condition;

2. we set dom(Dk+1) to dom(Dk) extended with the newly
created domain elements;

3. for each tuple t̄ = (t1, . . . , tn) ∈ TD satisfying set(t̄) ∩

F1(ā) 6= ∅, we construct a tuple f
(k)
1 (t̄) = (r1, . . . , rn)

with

ri =



new
(k)(ti) if ti ∈ F1(ā)

ti else

We put this tuple in precisely the same relations as

t̄. Note that by construction t̄ 7→ f
(k)
1 (t̄) is a partial

isomorphism.

4. for each tuple t̄ = (t1, . . . , tn) ∈ TD satisfying set(t̄) ∩

F2(b̄) 6= ∅, we construct a tuple f
(k)
2 (t̄) = (r1, . . . , rn)

with

ri =



new
(k)(ti) if ti ∈ F2(b̄)

ti else

We put this tuple in precisely the same relations as

t̄. Note that by construction t̄ 7→ f
(k)
2 (t̄) is a partial

isomorphism.

D(R)
1 2 3
8 9 10

D(S)
3 4 5

D(T)
6 1
4 7

D2(R)
1 2 3
8 9 10
1′ 2′ 3

D2(S)
3 4 5
3 4′ 5′

D2(T)
6 1
4 7
6 1′

4′ 7

D3(R)
1 2 3
8 9 10
1′ 2′ 3
1′′ 2′′ 3

D3(S)
3 4 5
3 4′ 5′

3 4′′ 5′′

D3(T)
6 1
4 7
6 1′

4′ 7
6 1′′

4′′ 7

Figure 3: Databases D = D1, D2 and D3 in the con-
struction for E = (R nx1=y2 T) 1x3=y1 (S nx2=y1 T).

5. we set the tuple space TDk+1
to TDk

extended with the
newly constructed tuples.

To illustrate this construction, let database D be the one
shown in the upper part of Figure 3 and let expression E be
(Rnx1=y2 T) 1x3=y1 (Snx2=y1 T). Let ā be (1, 2, 3) and let
b̄ be (3, 4, 5). Then, F1(ā) = {1, 2} and F2(b̄) = {4, 5}. For

each i ∈ F1(ā)∪F2(b̄), we denote new
(1)(i) by i′ and new

(2)(i)
by i′′. We assume the following order on the domain of D3:
1 < 1′ < 1′′ < 2 < 2′ < 2′′ < 3 < . . . < 9 < 10. Databases
D2 and D3 are shown in the lower part of Figure 3.

Now take c := 2|D|. Because in each step at most 2|D| tu-
ples are added, the first requirement for the sequence holds.

We now check the second requirement. First, we show that
for each n and k with 1 6 k 6 n− 1

D, ā ∼g Dn, f
(k)
1 (ā)

Take an arbitrary n and consider the set I = {g
(k)

t̄
| t̄ ∈ TD

with set(t̄) ∩ F1(ā) 6= ∅, 1 6 k 6 n − 1} ∪ {ht̄ | t̄ ∈ TD},
where

• g
(k)

t̄
: t̄ 7→ f

(k)
1 (t̄), and

• ht̄ : t̄ 7→ t̄.

In our running example, I = {(1, 2, 3) 7→ (1′, 2′, 3), (1, 2, 3)
7→ (1′′, 2′′, 3), (3, 4, 5) 7→ (3, 4′, 5′), (3, 4, 5) 7→ (3, 4′′, 5′′),
(6, 1) 7→ (6, 1′), (6, 1) 7→ (6, 1′′), (7, 4) 7→ (7, 4′), (7, 4) 7→
(7, 4′′)} ∪ {(1, 2, 3) 7→ (1, 2, 3), (3, 4, 5) 7→ (3, 4, 5), (6, 1) 7→
(6, 1), (7, 4) 7→ (7, 4), (8, 9, 10) 7→ (8, 9, 10)}.

From the construction it follows that each of these functions
is a partial isomorphism between D and Dn. Now we check
the back and forth properties of I:

Forth. Take an arbitrary partial isomorphism f in I and an
arbitrary guarded set X ′ in D. Let t̄′ be a tuple in TD
such that set(t̄′) = X ′. Suppose f is g

(k)

t̄
for some t̄ and

k. We distinguish 2 cases: i) X ′ ∩ F1(ā) 6= ∅. Then,

f agrees with partial isomorphism g
(k)

t̄′
on set(t̄) ∩X ′.

Indeed, they both map values x ∈ F1(ā) onto new
(k)(x)

and they map values y 6∈ F1(ā) onto y. ii) X ′∩F1(ā) =
∅. Then, f agrees with ht̄′ on set(t̄) ∩X ′. When f is
ht̄ for some t̄, f clearly agrees with ht̄′ on set(t̄) ∩X ′.

Back. Take an arbitrary partial isomorphism f in I and
an arbitrary guarded set Y ′ in Dn. We distinguish 2

cases: i) Y ′ = set(f
(l)
1 (ū)) for some 1 6 l 6 n − 1 and

ū ∈ TD; and ii) Y ′ = set(t̄′) for some t̄′ ∈ TD ∩TDn . In

case i), f−1 agrees with (g
(l)
ū)−1 on set(f(t̄)) ∩ Y ′. In

case ii), f−1 agrees with (ht̄′)
−1 on set(f(t̄)) ∩ Y ′.

Furthermore, for each 1 6 k 6 n − 1, ā 7→ f
(k)
1 (ā) is an

element of I. A similar argument leads to

D, b̄ ∼g Dn, f
(k)
2 (b̄)

for each 1 6 k 6 n− 1.

By Corollary 11 we have that for each 0 6 k, l 6 n − 1:

f
(k)
1 (ā) ∈ E1(Dn) and f

(k)
2 (b̄) ∈ E2(Dn), where for simplic-

ity we define f
(0)
1 and f

(0)
2 as the identity function.

In our running example, only (1, 2, 3) satisfies Rnx1=y2 T in
D, but inD3 also (1′, 2′, 3) and (1′′, 2′′, 3) satisfy this expres-
sion; also in D3 the tuples (3, 4, 5), (3, 4′, 5′) and (3, 4′′, 5′′)
satisfy S nx2=y1 T .

Note that for each i ∈ constrained1(E), the i-th component

of f
(k)
1 (ā) equals ai and for each j ∈ constrained2(E), the

j-th component of f
(l)
2 (b̄) equals bj . Because (ā, b̄) satisfies

condition θ, each pair of tuples (f
(k)
1 (ā), f

(l)
2 (b̄)) with 1 6

k, l 6 n− 1 also satisfies θ. This gives us at least n2 tuples
in E1 1θ E2(Dn), which completes the proof.

